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Abstract

The following dissertation examines the asymptotic model, initially derived and pub-
lished by Päschke et al. (2012), that describes the tropospheric flow above the boundary
layer of a strongly tilted tropical cyclone (TC)-like vortex in vertical wind shear and
under the influence of diabatic heating.

Beginning with re-deriving the reduced model equations following essential steps of
Päschke et al.’s (2012) asymptotic analysis, we show a straight-forward extension that
accounts for smaller storms in the not originally anticipated cyclostrophic regime. In a
next step we conduct analytical examinations of the leading-order equations that govern
the motion of a TC-like vortex. Based on these findings, we make statements about the
energetics and structural changes of the TC in the context of intensity changes due to
symmetric and asymmetric diabatic heating. Furthermore, we analyze the structural
properties of the equations that allow us to construct an adapted numerical scheme
to efficiently and robustly solve the asymptotic equations by means of finite-volume
methods. Special attention is paid to the semi-implicit second-order time integration of
the coupled system.

The remaining part of this dissertation is dedicated to presenting the results of
numerical experiments that examine mechanisms, either in isolated or combined fashion,
that, as we suggest, play a crucial role in the context of rapid intensification (RI) and
rapid weakening (RW). These experiments are conducted based on both, the asymptotic
model equations and the full three-dimensional equations of atmospheric fluid dynamics,
to make statements about the validity and accuracy of the reduced model equations.
We present possible pathways of intensity changes that are based on a combined
interaction of external wind shear and symmetric-asymmetric diabatic heating. It is
found particularly interesting how diabatic heating interacts with the storms structure
causing both, intensity and structural changes. Implications towards the applicability
of the asymptotic theory in the context of the open research question of RI/RW are
discussed as a final contribution of this dissertation.
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1. Introduction

Tropical cyclones (TCs) are among to the most powerful weather systems on our planet.
Yet, understanding the dynamics of the underlying physical processes belongs to the
key challenges of modern meteorology. Originating typically far offshore close to the
equator, they travel long distances over the open ocean before they potentially make
landfall. When and where a TC makes landfall, however, hundreds of kilometers of
coastline are affected, and adjacent infrastructure is threatened to be devastated. The
cost of rebuilding amounts to billions of USD per year1, not to mention the risk TCs
pose to human life. In the highly urbanized coastlines of North America or Asia civil
protection often requires large-scaled evacuation schemes that involve the full available
capacity of road infrastructure to bring people to safety in time. A misguided forecast is
therefore not only a threat to those who remain in regions that are directly affected by
the strongest winds and high precipitation. The blockage of escape routes additionally
endangers those who are trapped. The success of such operations relies on precisely
knowing where, when, and at which strength a storm will make landfall. Reliable
predictions are therefore of utmost importance.

The problem of TC forecast accuracy essentially splits into two parts, track and
intensity forecast. Track forecast lead time improved dramatically over the last decades
(Yu et al. 2021). The reason for that may be found in higher-quality data sources
with increased availability of satellite observations, station-based measurements and
those conducted aboard of airplanes and ships. This data is assimilated into improved
and fine-tuned numerical models. Through increased computing power and improved
theoretical understanding of the guiding physical processes, this led to closer and closer
resemblance of the true large-scale environmental state in which TCs are embedded
and with which they evolve over time (Magnusson et al. 2021). Better spatio-temporal
localization has helped to prevent casualties, but there are still plenty of cases where
predicted track ensembles do not capture the actual track (Tang et al. 2021), eventually
leaving the local population unprepared.

In contrast, the prediction of intensity and especially the prediction of sudden
intensity changes, often referred to in the literature as rapid intensification (RI) and rapid
weakening (RW), is less well understood. It is, however, just as important to know the
intensity as it is to know the precise location to prepare coordinated safety precautions.
Both, RI and RW, pose an enormous challenge to theoretical and numerical model
development since the physical processes involved stretch above orders of spatial and
temporal scales. The rich body of literature published in the recent years demonstrates
the effort that is put into this research question (Callaghan 2017; Ryglicki et al. 2018;
Rogers et al. 2015, to name just a few).

The crucial issue consists in the theoretical understanding of cloud physical processes
that bridge scales from cloud droplet formation to turbulent mixing and finally the

1https://coast.noaa.gov/states/fast-facts/hurricane-costs.html
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CHAPTER 1. INTRODUCTION

aero-thermodynamical interaction of cloud systems with the meso- and synoptic scale
environment. The role of cloud convective processes is comprehensively reviewed by
Houze (2010) in the light of TCs, but as being a universal research target in meteorology,
many more studies have been conducted trying to understand the dynamics that is
triggered on the smallest scales (W. Grabowski and Smolarkiewicz 1996; Rogers et al.
2015; Wadler et al. 2021).

Cloud convective processes happen typically on scales much smaller than those on
which small scale processes accumulate into organized large-scale flow patterns. It is
therefore to bridge a vast range of scales, or speaking in terms of numerical modelling,
enormous computing power is required to explicitly resolve the microphysical and
turbulent processes and still cover the whole domain of a TC. Efforts in that direction
have been made recently by the HD(CP)2 collaboration that endeavored to resolve cloud
processes in climate (i.e., global) scale simulations (Stevens et al. 2020). Yet, it is
still necessary to put further developments into such high-resolution models to render
them efficient and scalable for the deployment in numerical weather prediction (NWP).
Until it is possible to explicitly resolve cloud microphysics and turbulence, if feasible
at all, numerical models rely on the parametrization of subgrid-scale processes and
fine-tuning of parameters; a procedure that itself requires a certain intuition of the
processes involved.

Climate change will further challenge these efforts. Since TCs are crucially determined
by the state of the large-scale environment in which they are embedded and under whose
influence they evolve, a climatological drift of large-scale conditions will inevitably
affect where and how often TCs emerge, and under which conditions they change
their intensity (IPCC 2021). Furthermore, parametrization of NWP models that are
tuned to the present climatology of the atmospheric state may not keep their accuracy
with changing climate due to global warming. Understanding the underlying physical
processes of TC dynamics are therefore key in adapting to a changing climate, and with
that universal mechanisms that are responsible for vortex motion and intensity change.

Pioneering work on the modeling of TC intensification has been conducted by
Charney and Eliassen (1964), Eliassen (1952), and Ooyama (1964, 1969, 1982) and
later extended by a series of seminal papers of Emanuel (1986, 1991), Hack and
Schubert (1986), Rotunno and Emanuel (1987), and Schubert and Hack (1982, 1983).
Emanuel’s (1986) maximum potential intensity (MPI) theory is based on the notion
of TCs being heat engines and provides an upper estimate of the maximum wind
speed based on the environmental conditions such as ocean surface and upper outflow
temperature. In an axisymmetric model a theoretical balance between diabatic and
frictional forcing is constructed and delivers a handle on the intensity a TC can reach
based on thermodynamic considerations. Typically, these estimates are rarely met but
provide a reasonable indicator to assess the potential risk (Persing and Montgomery
2003; Rousseau-Rizzi et al. 2021; Smith et al. 2008). By their simplicity, the MPI and
related models do not capture the time resolved dynamics and thus do not give much
insight in the timing of an intensification event (Montgomery and Smith 2017a).

Later studies further deepened the picture of a tropical cyclone as a thermodynamic
cycle converting latent, sensible and radiative heat into mechanical work (Pauluis and
Zhang 2017). Bhalachandran et al. (2020), on the other hand, analyzed the energetic
pathways in the spirit of Lorenz (1955) and computed transitions rates between azimuthal
wavenumbers of available potential energy (APE) and kinetic energy. RI and RW were
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found to show characteristic signals in the transitions rates hinting towards the important
role of asymmetries in the process of sudden intensity changes.

The feedback between the boundary layer and the bulk flow is found to be essential
in understanding intensity changes. The bulk flow preconditions the boundary layer
in which convective processes are initiated that feed back energy into the bulk flow. It
is, however, disputed whether frictionally induced convergence or the preconditioning
of the atmosphere with a high level of saturation by evaporation through surface drag
is responsible for triggering deep convection. The first concept is labeled convective
instability of the second kind (CISK) and traces back to Charney and Eliassen (1964) and
Ooyama (1964) while the latter is called wind-induced surface heat exchange (WISHE)
and was coined by Emanuel (1986). It is still not fully understood, what are the exact
feedback mechanisms necessary for maintaining and increasing the intensity of TCs.
While some later studies are in favor for the WISHE concept (Craig and Gray 1996),
others disagree and prefer CISK (Lee and Frisius 2018).

Nonetheless, axisymmetric models have successfully described essential features
of TC dynamics, especially in case of stronger, convectively more organized storms
(Montgomery and Smith 2017a,b). Over the past three decades, however, the role of
shear and asymmetries in the context of shear resiliency and rapid intensification moved
into focus. Dunkerton et al. (2009), Marks, Black, et al. (2008), and Marks, Houze,
et al. (1992) argued in observational studies that substantial tilt may be characteristic for
a TC flow field. The horizontal displacement throughout the depth of the troposphere is
found to be in the same order of magnitude as the horizontal extent of the vortex core,
i.e., in the order of several hundred kilometers.

Asymmetries in the flow field may as a consequence affect the structure of convection
patterns as observations show (Alvey et al. 2015; Callaghan 2017; Frank and Ritchie
1999; Rios-Berrios 2020, among others). The control asymmetries of the flow field have
on the boundary layer and the resulting presence of asymmetric convection, however,
are associated to events of rapid intensity change (Callaghan 2017; Rios-Berrios 2020;
Stevenson et al. 2014; Wadler et al. 2021). In an observational study, Hazelton, Hart,
et al. (2017) and Hazelton, Rogers, et al. (2017) found pronounced asymmetries in the
distribution of strong convective bursts (CBs) in the eyewall and that the rate of CB
events is connected with periods of sustained intensification. There are also studies
examining explicitly this feedback between asymmetries in the flow field and asymmetric
convection pointing towards the role injections of low potential temperature into the
boundary layer play (Li and Dai 2020; Riemer et al. 2010, and references therein).
On the other hand, asymmetric convection is able to lead to structural changes in the
symmetry of the flow field (Davis et al. 2008). The tight interconnection between
asymmetric structures and rapid intensification has also been investigated by means of
high-resolution non-idealized simulations (H. Chen and Gopalakrishnan 2015; Leighton
et al. 2018).

Jones (1995, 2000, 2004) used idealized three-dimensional simulation to examine the
response of idealized vortices to externally imposed shear. In a series of publications,
Reasor, Montgomery, Marks, et al. (2000), Reasor and Montgomery (2001), Schecter,
Montgomery, and Reasor (2002), Schecter and Montgomery (2003), and Reasor,
Montgomery, and Grasso (2004) studied by means of observational and theoretical
approaches how asymmetries develop and evolve under the presence of shear and
found that in their linearized equivalent barotropic (EQB) model radiation of vortex
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CHAPTER 1. INTRODUCTION

Rossby waves (VRWs) act as an intrinsic mechanism to stabilize the vortex against
externally imposed shear. The ability of self-alignment is coupled to the existence of
a critical layer where circulation and precession frequency are synchronous (Schecter
and Montgomery 2004; Schecter 2015). Further analysis added the influence of moist
convection (Schecter and Montgomery 2007). In an idealized ensemble simulation,
Miyamoto and Nolan (2018) examined the timing between vertical alignment and RI.
A different approach was followed by Nolan and Montgomery (2002) and Nolan and
Grasso (2003) who analyzed the growth rate of linear perturbations from a symmetric
reference state in terms of azimuthal and vertical wavenumbers.

Many of the aforementioned approaches have in common that they describe the
problem in cylindrical coordinates and tilt is represented as the deviation from an
unperturbed vertically aligned (axisymmetric) reference state. Hence, a tilted vortex will
show signals in azimuthal wavenumbers 1 and higher. In that tilt is indistinguishable
from genuine asymmetries in the flow field, at least without further analysis. Already
mentioned by Marks, Houze, et al. (1992), TCs often exhibit a center of rotation that
varies vertically and evolves over time. Following a long-standing concept in the theory
of slender vortex filaments (Callegari and Ting 1978; Ling and Ting 1988), it was finally
investigated by Päschke et al. (2012) to what extent a TC under the influence of external
shear and diabatic heating can be described by a tilted centerline. Based on this, an
asymptotic theory was derived.

There is a rich body of literature in which asymptotic analysis was used to simplify
model equations in a variety of fields ranging from pure partial differential equation
(PDE) analysis to applications in the natural and engineering science. Under the
framework of asymptotic analysis, a powerful collection of tools was established that
help to reduce the complexity of the governing equations with the ultimate goal of
rendering them more tractable in terms of analytical and numerical solutions strategies
(cf. Eckhaus 1979, for a recent reference). In many cases, the process of model
reduction helps to gain deeper insights into the dominant driving forces that — under the
prerequisites set carefully in advance of the asymptotic analysis — guide the dynamics
of a process under consideration.

Päschke et al. (2012) (see also the dissertations of Mikusky (2007, Päschke’s maiden
name) and Marschalik (2015)) presented the results of a matched two-scale asymptotic
analysis on the flow field of a TC that possesses an axisymmetric primary circulation,
organized level-by-level around a tilted centerline, and that is exposed to the influence
of externally imposed shear and diabatic heating. Their model provides two tendency
equations, one for the leading-order tangential velocity and a second one for the
centerline position, and essentially captures the interaction of the vortex core structure
with the embedding large-scale quasi-geostrophic (QG) flow. By asymptotic matching
the vortex core structure reduced to a slender vortex filament that is steered by the
QG flow, but also feeds back by self-induced motions. As a result of that analysis,
Päschke et al. (2012) found special cases where analytical solutions exist. E.g., for
a Boussinesq flow with vertically uniform primary circulation, there exist precessing
eigensolutions for the tilted centerline. They further found an asymmetric pathway to
control the tangential velocity, in addition to the well established mechanism based on
symmetric radial inward motions of (conserved) angular momentum (Schubert and Hack
1982). Essentially, as we will further elude in this work, the asymmetric pathway to
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intensification (and attenuation) results from the correlation of tilt and vertical velocity
asymmetries (or diabatic heating).

The present work takes up on these results and adds further refinements to the
asymptotic analysis. The aim of this procedure is to consistently demonstrate the
validity of the original theory of Päschke et al. (2012) through scaling regimes that
involve Rossby numbers higher than 1, i.e., in general stronger storms, which were not
originally captured. By doing so, we naturally reproduce Päschke et al.’s (2012) theory,
highlight the adaptions necessary to extend towards more intense TCs, and we give
some intuition of the limitations of the presented approach. The essentials of these
findings are published by Dörffel et al. (2021).

On the quest of better understanding pathways to TC intensification, we examine the
energetic properties of the asymptotic theory. That allows us, by finding connections
to Lorenz’s (1955) APE concept, to trace back both, symmetric and asymmetric
intensification pathways, to the correlation of potential temperature perturbations and
vertical velocity structures. In other words, it is the thermodynamic adjustment to the
flow structure, that interacts with coordinated vertical motions that can be induced by
diabatic heating, or, more likely in nature, by vertical mass ejection of the boundary
layer. A related study on reanalysis data has been conducted recently by Bhalachandran
et al. (2020) but symmetries and higher-order wavenumber perturbation were assessed
in a cylindrical, i.e., vertically aligned coordinate system not explicitly taking the tilted
structure into account.

On the other hand, our aim is to deepen the understanding of the analytical structure of
the leading-order asymptotic equations. By tracing back substructures of the centerline
equations to a coupled advection–Sturm-Liouville problem, we are able to construct
(abstract) solutions of the centerline equation that form the basis for the subsequent
numerical treatment. Through careful analysis of the individual subdivisions of the
nonlinearly coupled PDE problem, we identify prototypical sub-problems that can
readily be solved by standard methods developed in the context of atmospheric fluid
dynamics and quantum mechanics. We construct a trapezoidal time integration scheme
that allows to consistently integrate the coupled system of equations up to second order
in time and space, yet achieving a high degree of stability to cope with the nonlinearity
of the equations. This procedure poses a natural extension of methods that have been
successfully used to integrating the three-dimensional equations of atmospheric fluid
dynamics (Benacchio and Klein 2019; Smolarkiewicz, Kühnlein, and W. W. Grabowski
2017).

In the spirit of preceding studies (Frank and Ritchie 1999; Jones 1995, 2000, 2004;
Schecter, Montgomery, and Reasor 2002; Wang and Holland 1996), we perform three-
dimensional simulations to test the theory’s predictions. The presented work directly
builds upon the dissertation of Papke (2017) who performed a first series of experiments
to test the response of a tilted vortex to purely asymmetric diabatic heating. To this
end, we also make use of the well established Eulerian-Lagrangian model (EULAG)
(Smolarkiewicz, Kühnlein, and W. W. Grabowski 2017) that integrates the equations
of atmospheric fluid dynamics with the semi-implicit second-order accurate scheme.
As we will demonstrate, asymmetric diabatic heating directly affects tilt precession
frequency and/or amplitude, depending on the relative orientation of tilt vector and
heating dipole. We make further use of the simulation data and analyze the energetic
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CHAPTER 1. INTRODUCTION

transition from heating via APE to kinetic energy. This shall validate the asymptotic
results on the energy budget.

The structure of this thesis is the following. In chapter 2 we will present many of
the derivation steps that lead to the model originally presented by Mikusky (2007) and
Päschke et al. (2012). Chapter 3 will discuss the dynamics and energetics of the forcing
mechanisms induced by diabatic heating and external wind shear. More thorough
insights into the structure of the leading-order asymptotic equations will be provided
that help to construct the numerical scheme as presented in chapter 4. In chapter 5 we
will outline the needed ingredients for performing three-dimensional simulations that
help to validate the asymptotic model. In chapter 6, we will show the results of a series
of numerical experiments deploying both, the asymptotic model implementation and
three-dimensional reference simulations. This thesis will be summarized in chapter 7
where also an outlook to future work will be given.

6



2. Asymptotic Analysis of Tropical
Cyclones

In this chapter we will give motivation and an overview of the methods of Päschke
et al. (2012) and their findings regarding a leading-order set of equations governing the
dynamics of a tilted atmospheric vortex. Further, we highlight possible extensions to
this theory with the aim of enlarging the field of possible applications.

In principle, there is no need for deriving specialized equations for describing the
flow of an atmospheric vortex since the atmospheric equations of fluid dynamics (cf.
eqs. (2.1)) already provide a mathematical framework that governs the motion not only
of vortices but of a variety of phenomena across a wide range of scales in space and time.
However, these equations have proven to pose one of the most challenging problems in
modern applied mathematics when it comes to deriving analytical solutions. In the most
general setting, i.e., in three spatial dimensions with generic initial data and boundary
conditions, next to the fact, that solutions cannot be handled analytically, there is still
ongoing research about existence, uniqueness and regularity of solutions (Farwig 2014;
Robinson 2020). This circumstance may be considered as an artifact of the wide range
of applicability of these equations uniformly describing small-scale turbulent motions
up to the largest scales of planetary flows (Pope 2011).

Nevertheless, it is common practice that solutions are approximated numerically, and
it is not only since the advent of digital computers that sophisticated numerical methods
have been established, which form the backbone of today’s weather forecasting. Con-
tinuous efforts in comparing predictions with observations have proven that numerical
solutions, at least to a certain degree of accuracy, represent reality and allow for weather
forecasts up to several days. It is for this very reason that mispredictions sometimes
come at a surprise and reveal the actual lack of understanding of the underlying physical
processes. So it happened for the integrated forecast system (IFS), developed at the
European Centre for Medium-Range Weather Forecast (ECMWF) and one of the most
accurate medium-range forecast models, that its prediction score with respect to tropical
cyclones was below that of competitors that usually have a lower score in terms of
global predictions (J.-H. Chen et al. 2019).

It is obvious, that the source of errors is a lack of accuracy in representing the driving
physical processes. That can be caused either by under-resolved fluid structures (on a
numerical level) that — in reality — emerge on small scale and accumulate to effects
on a larger scale, or (on an analytical level) by the fact that often physical processes are
approximated through surrogate models that exceed their respective scope of validity.

It is less obvious, however, which particular processes need better representations.
The structure of the governing equations (2.1) does not allow a priori for much more
insight on an analytical level than what the archetype of the equations suggests: mass
continuity, and balances of momentum and internal energy (Klein 2017). Phrasing it a
little differently, they are based on first principles far beyond the scope of atmospheric
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CHAPTER 2. ASYMPTOTIC ANALYSIS OF TROPICAL CYCLONES

fluid dynamics. The particular processes, in our case, guiding the motion of a tropical
cyclone, are hidden in the universality of the atmospheric equations of fluid dynamics.

A possible remedy to the above problems may be increasing the resolution until small
scale structures are resolved sufficiently to drive motions at the larger scale (of interest).
Even with the capabilities of modern high-performance computing, this approach is
limited since scales, separated by orders of magnitude, may interact with each other,
and it remains unclear which processes and thus scales are involved in detail (until a
sufficiently accurate solution is obtained). In light of missing insights on regularity
bounds, it is even questionable if there are analytical solutions for generic settings of
initial data and boundary conditions and if the numerical solution converges towards
the analytical one.

Next to advanced numerical computing techniques such as adaptive mesh refinement
(AMR) (Berger and Oliger 1984), scale asymptotic methods are a powerful family
of tools to construct simplified equations with solutions approximating those of the
original equations (Eckhaus 1979; Klein 2004, 2009, 2017; Kutz 2020). Not only
do they allow for deriving simplified equations which are often easier to solve, both
analytically and numerically, but the structure of these simplified equations may reveal
dominant interactions of physical processes while neglecting less important ones.
These interactions usually cover multiple scales in space and time. By applying
multiscale or matched asymptotic methods it may be possible to find a closed set of
equations combining leading-order effects across two or more scales. In conjunction
with appropriate coordinate choices, asymptotic methods further reveal leading-order
symmetries and help to lower the effective dimensionality of the mathematical description.
As we will see in the present case, a three-dimensional atmospheric vortex can be
effectively described by two independent spatial coordinates (radial and vertical) in
the reduced model equations, yet describing a fully three-dimensional flow field.
Altogether, these insights, gained during deriving a reduced model, may ultimately help
to understand the mechanisms of intensity changes of tropical cyclones and guide the
future development of NWP models.

For reference and following Mikusky (2007) and Päschke et al. (2012), in section 2.1,
we will present the governing equations of atmospheric fluid dynamics and condition
them for the subsequent asymptotic analysis. In sections 2.2 and 2.3 we highlight
details of the asymptotic methods to be applied to the example of a tropical cyclone
in section 2.4, and show how the scaling approach of Päschke et al. (2012) can be
uniformly extended to vortices of different size and strength (i.e., deviating from the
gradient-wind towards the cyclostrophic regime). Finally, in section 2.5 we demonstrate
the extension towards the circulation-free limit. This renders the theory applicable
to “stronger-than-incipient” TCs which typically exhibit flow structures not allowing
to assume a finite circulation throughout the whole depth of the atmosphere.1 These
extensions are partially published by Dörffel et al. (2021).

1TCs are always topped by an anticyclonic outflow layer at altitudes near the tropopause (not only to
compensate for the frictional inflow near the ocean surface). While at lower and mid level altitudes, the
flow typically has a positive (cyclonic) circulation on the Northern Hemisphere, this essentially means
that the outflow layer has a circulation with negative sign, hence, assuming continuity throughout the
vertical depth, there must be a zero-crossing, i.e., there exists a height-level of vanishing circulation.
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2.1. The Governing Equations

Gravitational acceleration 𝑔 = 9.81 m s−2

Coriolis parameter 𝑓ref = 𝑓 |𝜙=30◦ = 7.3 · 10−5 s−1

Beta parameter 𝛽ref = 𝑑𝑓 /𝑑𝑦 |𝜙=30◦ = 2 · 10−11 m−1 s−1

Pressure 𝑝ref = 1 · 105 kg m−1 s−2

Temperature 𝑇ref = 300 K
Dry air gas constant 𝑅 = 287 m2 s−2 K−1

Adiabatic exponent 𝛾 = 1.4

Table 2.1.: Independent parameters characterizing the atmospheric flow. Adopted from
Klein (2010)

The point of departure for the subsequent asymptotic analysis are the compressible
inviscid equations of fluid dynamics on a rotating beta plane. As systematically outlined
in Klein (2010, 2017), our goal is to highlight the derivation of a reduced model for TCs
(the one presented by Päschke et al. 2012) from a more general first-principle law2. In
an earth-relative coordinate system (zonal, meridional and vertical coordinates (𝑥, 𝑦, 𝑧)
with corresponding unit vectors (𝒊, 𝒋 , 𝒌)) the governing equations read

𝜕𝜌

𝜕𝑡
+ ∇∥ · 𝜌𝒖 + 𝜕𝜌𝑤

𝜕𝑧
= 0 , (2.1a)

𝜕𝒖

𝜕𝑡
+ 𝒖 · ∇∥𝒖 + 𝑤𝜕𝒖

𝜕𝑧
+ 1
𝜌
∇∥ 𝑝+ 𝑓 𝒌 × 𝒖 = 0 , (2.1b)

𝜕𝑤

𝜕𝑡
+ 𝒖 · ∇∥𝑤 + 𝑤𝜕𝑤

𝜕𝑧
+ 1
𝜌

𝜕𝑝

𝜕𝑧
= −𝑔 , (2.1c)

𝜕Θ

𝜕𝑡
+ 𝒖 · ∇∥Θ + 𝑤𝜕Θ

𝜕𝑧
= 𝑄Θ , (2.1d)

𝑝 = 𝑝ref

(
𝑅𝜌Θ

𝑝ref

)𝛾
. (2.1e)

𝜌 is the (dry) mass density, 𝒖 the two horizontal and 𝑤 the vertical components of the
velocity vector. ∇∥ are the horizontal components of the three-dimensional gradient
operator ∇, i.e., ∇∥ = 𝒊𝜕𝑥 + 𝒋𝜕𝑦 and ∇ = ∇∥ + 𝒌𝜕𝑧 . 𝑝 (𝑝ref) is the (reference) pressure,
𝑓 = 𝑓ref + 𝛽ref𝑦 the Coriolis parameter in the beta-plane approximation with 𝛽ref the
linearized slope of 𝑓 at the latitude 𝜙0. Finally, 𝑔 is the gravitational acceleration. For
more details on the parameters, see table 2.1.

2.1.1. Non-Dimensionalization and Dimensionless Numbers

To the end of simplifying eqs. (2.1) in the regime of a TC towards a more tractable
set of equations, we seek for justification of omitting terms which are small relative to

2The term first-principle law has rather a “relative” meaning. E.g., while the Navier-Stokes equations act
as a first-principle law for many applications in meteorology (amongst others), yielding a number of
reduced models to be valid on a certain spatial and temporal scale (Ekman layer, Boussinesq, weak
temperature gradient (WTG), QG, etc., see Klein (2010)), they are themselves the limit of large particle
numbers of the Boltzmann equation.
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CHAPTER 2. ASYMPTOTIC ANALYSIS OF TROPICAL CYCLONES

Density 𝜌ref =
𝑝ref

𝑅𝑇ref
≈ 1 kg m−3

Pressure scale height ℎsc =
𝑝ref

𝑔𝜌ref
≈ 104 m

Synoptic length scale 𝐿syn =
𝑁refℎsc

𝑓ref
≈ 1200 km

Var. of pot. temp. ΔΘ =
𝑇refℎsc𝑁

2
ref

𝑔
≈ 30 K

Velocity 𝑢ref =
2
𝜋

tan 𝜙
𝑁2

ref

𝑓 2
ref
𝛽ℎ2

sc ≈ 10 m s−1

Time 𝑡ref =
ℎsc

𝑢ref
≈ 103 s

Speed of sound 𝑐ref =
√︂
𝑝ref

𝜌ref
≈ 300 m s−1

Table 2.2.: Further reference quantities derived from table 2.1. Adopted from Klein (2010)

others and find expressions which are transparent with respect to the involved physical
processes. In the literature of meteorology and fluid dynamics, techniques of simplifying
the fundamental equations of fluid dynamics towards equations which are suited to
the special regime under consideration have a long-standing tradition (Bannon 1996;
Barenblatt 1996; Durran 1989; Eckhaus 1979; Holton 2004; Klein 2008). Although
they all follow the idea of identifying problems (equations) whose solutions are close to
those of the original problems yet easier to find, they essentially differ in the physical
intuition necessary to justify the individual steps of derivation and require different
levels of mathematical rigor.

Simplification essentially means to compare the magnitude of quantities as a proxy to
neglect terms, and therefore it involves measures. Hence, we inevitably have to deal
with concept of units, i.e., physical dimensions. Assigning a concrete numerical value
to a quantity involves the notion of a unit, i.e., a reference quantity that comes along
with a reproducible measuring procedure.3 Physical dimensions, on the other hand,
define a relation between physical quantities in the sense that quantities with the same
dimension can be directly compared to each other (commensurability). This means in
particular that they can be converted to the same units and then be compared by their
numerical value. In summary, a dimensional quantity 𝜙 can be written as

𝜙 = 𝜙∗𝜙ref , (2.2)

where 𝜙∗ is the (non-dimensional) numerical value with respect to the unit expressed
by 𝜙ref. Although a bit of a stretch, it is precisely this property that we need for an
assessment of relative smallness in the further course.

3If, say, a certain object has the length of 2.4 m we compared it with a unit measure of 1 m and concluded
that it was 2.4 times longer. If taken the unit measure of 1 yd, wee would have ended up with the
measurement of 2.62 yd.
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For completeness, we mention that considerations about the dimensionality of physical
quantities are far more powerful than outlined here. So can the sole fact of a set of
parameters having units lead to governing equations (at least up to a multiplicative
constant). More details on the so-called dimensional analysis are covered by Barenblatt
(1996).

Although there exist several established systems of units (with the International
System of Units (SI) the most prominent amongst them) we are free to define our own
problem-adapted set of units and call them reference quantities (cf. tables 2.1 and 2.2).
It may be intuitively clear, that all the independent parameters describe characteristic
properties of the system under consideration, including those associated to initial data,
boundary conditions and external forcing.

From a purely mathematical point of view, it appears beneficial to select these
reference quantities such that the numerical value of a quantity becomes close to unity.
To accommodate for this circumstance, it may be necessary to define several reference
quantities of the same dimension to account for quantities that possess distinctively
different magnitudes, since, e.g., the vertical scale ℎsc ≈ 104 m differs from the horizontal
synoptic length scale 𝐿syn ≈ 106 m.

Strouhal number Sr =
ℎsc

𝑡ref 𝑢ref
= 1

Mach number Ma =
√︂
𝑢ref

𝑐ref
≈ 0.03

Rossby number Ro =
𝑢ref

ℎsc 𝑓ref
≈ 10

(barotropic) Froude number Fr =
𝑢ref√︁
𝑔ℎsc

≡ Ma ≈ 0.03

Non-dimensional beta-parameter 𝛽 =
𝛽ref ℎsc

𝑓ref
≈ 3 · 10−3

Damköhler number Da =
𝑄Θ,ref 𝑡ref

𝑇ref
= 1

Table 2.3.: Dimensionless characteristic numbers.

Buckingham’s 𝜋 theorem — as a consequence of the algebraic property of dimensional
quantities — states that for a number of 𝑚 given reference quantities that in total possess
𝑛 independent dimensions, there are 𝑚 − 𝑛 independent dimensionless numbers that
uniquely describe the system up to a similarity transformation (cf. Barenblatt 1996;
Klein 2017). These dimensionless numbers, however, are not uniquely determined by a
given set of parameters, as, e.g., the product of two dimensionless numbers results in a
third one. In fluid dynamics in general, and meteorology in particular, a common set of
these numbers has been established to characterize a physical system. For our purposes,
we defined a set of them in table 2.3 along the choice of our reference parameters.

In many situations it may be possible to find reference quantities which are inherently
defined by the physical setting (Klein 2017). For systems that exhibit scale interactions,
however, reference quantities are not unique. E.g., different processes may act on
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individual length and/or time scales. Conversely, this means selecting a certain reference
scale will emphasize processes on that particular scale. Hence, the choice of the
reference parameters ultimately depends on the targeted process(es). Intuition about the
scaling of physical processes cannot be overrated when seeking to discover simplified
theories by asymptotic analysis.

Performing the process of non-dimensionalization (following Klein 2010), i.e.,
inserting eq. (2.2) for each quantity into eqs. (2.1) and taking into account the reference
quantities given in tables 2.1 and 2.2, we end up with the non-dimensional set of
governing equations:

𝜕𝜌∗

𝜕𝑡∗
+ ∇

∗
∥ · 𝜌

∗𝒖∗ + 𝜕𝜌
∗𝑤∗

𝜕𝑧∗
= 0 , (2.3a)

𝜕𝒖∗

𝜕𝑡∗
+ 𝒖∗ · ∇∗

∥𝒖
∗ + 𝑤∗ 𝜕𝒖

∗

𝜕𝑧∗
+ 1

Ma2
1
𝜌∗

∇∥ 𝑝
∗+ 1

Ro
(1 + 𝛽𝑦∗)𝒌 × 𝒖∗ = 0 , (2.3b)

𝜕𝑤∗

𝜕𝑡∗
+ 𝒖∗ · ∇∗

∥𝑤
∗ + 𝑤∗ 𝜕𝑤

∗

𝜕𝑧∗
+ 1

Ma2
1
𝜌∗
𝜕𝑝∗

𝜕𝑧∗
= − 1

Fr2 , (2.3c)

𝜕Θ∗

𝜕𝑡∗
+ 𝒖∗ · ∇∗

∥Θ
∗ + 𝑤∗ 𝜕Θ

∗

𝜕𝑧∗
= 𝑄∗

Θ , (2.3d)

𝑝∗ = (𝜌∗Θ∗)𝛾 (2.3e)

Note that differential operators 𝜕𝑡 , ∇∥ , and 𝜕𝑧 involve the notion of dimensional
coordinates which themselves need to be rescaled. By applying the chain rule, the trivial
connection between dimensional and non-dimensional differential operators is given by

𝜕

𝜕𝜉
=
𝑑𝜉∗

𝑑𝜉

𝜕

𝜕𝜉∗
=

1
𝜉ref

𝜕

𝜕𝜉∗
(2.4)

for a coordinate 𝜉. Hence, ∇∗
∥ is to be understood as 𝒊𝜕𝑥∗ + 𝒋𝜕𝑦∗ . We will, however,

from here on drop the superscript ∗ for the sake of streamlining the notation. Further,
note that for now all spatial coordinates are rescaled with the same length ℎsc and all
velocity components with 𝑢ref. This will change in sections 2.4.3 and 2.4.4.

Let us finalize this section with the following observation: The definition of the
reference quantities (tables 2.1 and 2.2) yield the characteristic dimensionless numbers,
defined in table 2.3, which determine the flow regime, provided that the reference
quantities are chosen such that the resulting non-dimensional quantities are of order
unity. Klein (2017) alludes on this in the following sense: There are physical systems
that differ in the set of determining reference quantities. However, they may lead to the
same set of characteristic numbers, and in that they lead to the same non-dimensional
set of equations. Hence, provided same (non-dimensional) initial data and boundary
conditions, they have the same non-dimensional solution, although their physical
solutions may vary by orders of magnitude.

There is an ambiguity in the literature: On the one hand, Klein (2004, 2005,
2017), amongst others, refers to distinguished limits as a scale-independent property
of the physical system under consideration (e.g., the resulting rescaled equations of
atmospheric fluid dynamics by using Earth-characteristic parameters and coupling the
non-dimensional parameters to a small-scale parameter 𝜀, Klein 2010, cf.). Flow or
scaling regimes, in that sense, emerge from rescaling the independent variables of the
system (i.e., the coordinates) by powers of the small-scale parameter 𝜀. Sensible choices
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of coordinate rescaling reveal non-trivial balances that are dominant on that particular
scale. Sometimes they are called rich limits (Klein 2022).

Kutz (2020), on the other hand, uses a slightly different nuance of the term distin-
guished limit. In the context of given equations including a small-scale parameter 𝜀 (i.e.,
the definition of distinguished limits from above), distinguished limits are introduced
as dominant balances that arise from various choices of coordinate rescalings. Along
this line of thoughts, distinguished limits are constructed from identifying dominant
balances, thus the latter give rise to the former. This is in contrast to Klein, who
identifies dominant balances as the result of a particular coordinate scaling.

These two different view point meet once the effective length and time scales of a
particular multiscale system are considered as system properties (and therefore scale
independent). This is a rather philosophical consideration, and for realistic applications,
it may not be of practical use as the majority of physically relevant systems exhibit a
wide range of scaling cascades comprising separated and continuous scales. Throughout
the remainder of this thesis, however, we will refer to the nomenclature of Kutz (2020).

It is the set of characteristic non-dimensional numbers (cf. table 2.3) that describes
the (flow) regime. In other words, in the space of reference quantities, there are sub-
manifolds characterized by a specific choice of non-dimensional characteristic numbers
that describe a specific regime. All solutions on a sub-manifold are distinct in that the
dimensional variables of the solution may take different values. The ratio between a
solution quantity and its reference value, i.e., the non-dimensional solution, however, is
constant. These considerations are essentially the result of Buckingham’s (1914) theorem,
which traces this issue back to the over-determined system of equations determining
non-dimensional quantities expressed by the dimensional reference quantities (see Klein
(2017) for more details).

2.1.2. Scale Analysis

The result of the previous section was the set of equations (2.3) which is parametrized
by the dimensionless numbers given in table 2.3. For the sake of completeness, we want
to illustrate at the example of eqs. (2.3) how scale analysis is applied, and we will see
later how this method compares to asymptotic analysis.

By the very definition of the corresponding reference quantities that we used during
non-dimensionalization we conclude that the order of every term in eqs. (2.3) is
determined by the value of the pre-factorial characteristic numbers. The ratio of the
prefactors reveals which terms interact with each other at leading order, i.e., prefactors
with ratio 1 correspond to interacting terms. However, since every quantity 𝜙 can be
composed of a large-scale contribution 𝜙 (which may exhibit certain symmetries) and
a small scale perturbation 𝜙′ (with |𝜙 | ≫ |𝜙′ |), it is only possible to make estimates
on the largest appearing prefactors, i.e., the leading-order. So are, e.g., all terms of
the continuity equation (2.3a) equipped with the prefactor 1, hence all terms are of
order unity and there is no simplification obvious.4 The same is true for the potential
temperature equation (2.3d).

This is different for the horizontal and vertical momentum equations (2.3b) and (2.3c):
With the prefactors 1/Ma2 ≡ 1/Fr2 ≈ 1000 and 1/Ro ≈ 0.1, there is a clear dominance

4This is the result of setting the Strouhal number to 1, i.e., identifying the reference and the advection
timescale.
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of the pressure gradient and gravity terms involving the Mach and Froude numbers Ma
and Fr. There are no other terms to balance them, so the leading-order balances become

∇∥ 𝑝 = 0 and
𝜕𝑝

𝜕𝑧
= −𝜌 . (2.5)

Hence, in the regime set by the dimensionless numbers of table 2.3, the pressure is
horizontally homogeneous and vertically hydrostatic (at leading order!). Despite the
fact that this approximation is well established in the literature (Holton 2004), it is
unclear how to find higher-order corrections by that approach. Although we are on a
horizontal scale of O(10 km), horizontal pressure gradients may play a role as a driver
for horizontal motions. There are ways to refine this analysis, but they involve a certain
degree of physical intuition and cannot be justified with mathematical rigor, alone.
Asymptotic analysis offers various tools and techniques to rigorously derive simplified
models along the mathematical properties of the governing equations.

It should be mentioned here that authors from different fields different opinions on
the distinction between scale analysis and asymptotics. In the spirit of Kruskal (1963),
both fall under the umbrella of “Asymptotology” making use of the scale separation
of processes acting in a physical system. Nonetheless, asymptotic analysis can be
considered as a systematic and rigorous way of analyzing dominant (and subdominant)
balances within governing equations.

In the subsequent parts of this chapter we will see how we are able to find expression
for next-to-leading-order correction terms by the means of asymptotic analysis that will
help us to gain more insights into the dynamics of TCs.

2.1.3. Distinguished Limits

With eqs. (2.3) we derived a parametrized version of the dimensional eqs. (2.1) involving
the characteristic numbers outlined in table 2.3. Scale analysis, as consulted in the
previous section, provides a fundamental way of assessing the orders of magnitude of
the individual terms of the governing equations. By exploiting the relative smallness of
prefactors in eqs. (2.3) over one another, we described a way to cancel terms that are of
subordinate importance. The distinguished limit, i.e., the set of dimensionless numbers
dictated the relative ordering of the terms of the governing equations. Comparing the
prefactors to order 1 we can decide whether a term is considered small or large (i.e.,
inversely small).

It is tempting to approximate the solution, to be considered as a function that depends
in some unknown non-linear way on the non-dimensional numbers (parameters), by a
multidimensional Taylor expansion at a certain limiting point where the parameters are
small. A limiting process for each parameter independently, as it is well known from
multidimensional calculus, can depend on the path, i.e., if performed consecutively,
on the order in which each parameter is passed to its limit.5 For this approach to be
generally valid, the solution needs to exhibit a certain regularity at the limiting point
that involved higher-order derivatives with respect to the parameters (Klein 2017).

5In fact, by selecting the Euler equations over the Navier-Stokes equations we implicitly passed to the
limit of vanishing viscosity. This choice is based on a well-established assumption of meteorology
and valid for large-scale flows. This assumption, however, could also be derived from an asymptotic
analysis.
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Ultimately, this approach would require a priori the very information on the solution
which we seek to unravel by the asymptotic analysis.

A further aspect, that is important when considering such a limiting process, is that the
ordering of the individual terms of eqs. (2.3), that is established by the non-dimensional
numbers, should be maintained throughout the limiting process! (Otherwise, we would
depart from the given flow regime.) This consideration gives rise to the concept of
distinguished limits.

Thinking about a path through the multidimensional space of non-dimensional
numbers, i.e., a single-parameter function for each non-dimensional number

(Sr,Ma,Ro, Fr,Da) = 𝑭(𝜀) (2.6)

we need to maintain the ordering established by the numerical values of the particular
set of non-dimensional numbers (cf. table 2.3) when passing to the limit 𝜀 → 0. If one
non-dimensional number is large in comparison to another one at a given 𝜀 > 0, then it
must not become smaller than the second one in the limiting process. For 0 < 𝜀 ≪ 1
this behavior can be ensured by coupling the non-dimensional numbers to powers of a
small number 𝜀.

In a series of articles, Klein (2000, 2004, 2008, 2009, 2010) studied how this
distinguished limit can be established in the context of atmospheric flows such that
the subsequent asymptotic analysis reveals leading-order equations that correspond to
reduced model equation well-known in the literature of atmospheric fluid dynamics.
Following these studies, we fix the small scale parameter 𝜀 by the Mach number such
that Ma2 = 𝜀3, i.e., 𝜀 ≈ 0.1. The remaining non-dimensional numbers are then set to
equate a power of 𝜀 times a constant of O(1) (independent of 𝜀):

Fr = Ma =: 𝜀3/2 (2.7a)

Ro =:
1
𝜀 𝑓0

(2.7b)

𝛽 =: 𝜀3𝛽 (2.7c)
Da = Sr = 1 (2.7d)

The distinguished limit (2.7) transforms eqs. (2.3) into

𝜕𝜌

𝜕𝑡
+ ∇∥ · 𝜌𝒖 + 𝜕𝜌𝑤

𝜕𝑧
= 0 , (2.8a)

𝜕𝒖

𝜕𝑡
+ 𝒖 · ∇∥𝒖 + 𝑤𝜕𝒖

𝜕𝑧
+ 1
𝜀3

1
𝜌
∇∥ 𝑝+𝜀( 𝑓0 + 𝜀3𝛽𝑦)𝒌 × 𝒖 = 0 , (2.8b)

𝜕𝑤

𝜕𝑡
+ 𝒖 · ∇∥𝑤 + 𝑤𝜕𝑤

𝜕𝑧
+ 1
𝜀3

1
𝜌

𝜕𝑝

𝜕𝑧
= − 1

𝜀3 , (2.8c)

𝜕Θ

𝜕𝑡
+ 𝒖 · ∇∥Θ + 𝑤𝜕Θ

𝜕𝑧
= 𝑄Θ . (2.8d)

Note, that this set of equations is fully equivalent to its initial form given in eqs. (2.1)
through the definitions of tables 2.1 to 2.3 and eqs. (2.7). With the formulation of
eqs. (2.8), however, we have transformed the multi-parametrical eqs. (2.3) into equations
depending on a single small parameter 𝜀 that ensures to maintain the flow regime
throughout the limiting process, a property that naturally transfers to the solution.
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The distinguished limit of eqs. (2.8) (in the spirit of Kutz (2020)) is based on
the particular choice of reference parameters. Switching to another set of reference
parameters, e.g., by rescaling the coordinates, as we will see in sections 2.4.3 and 2.4.4,
will modify eqs. (2.8) yielding a different distinguished limit.

In section 2.4, we make use of this single-parameter description and seek for solutions
that approximate the atmospheric equations of fluid dynamics in the setting of a TC-like
vortex. To this end, in the next two sections we discuss the methods of perturbation
theory, i.e., we analyze the asymptotic behavior of solution (leading- and higher-order)
in the limit of 𝜀 → 0. In addition to that, we show how by rescaling we are able to enter
different scaling regimes and how to construct theories that span across multiple scale.

2.2. Regular Perturbation Theory and Asymptotic
Expansions

In the previous section we prepared the set of governing equations (2.1) and constructed
a single-parameter family of equations (2.7) involving a small parameter 0 < 𝜀 ≪ 1.
As a consequence, solutions depend parametrically on 𝜀, but in some unidentified
way. Throughout the history of theoretical and mathematical physics (and related fields
of science) it was and is common practice to analyze such problems involving small
parameters6 by means of perturbation theory hoping to find “nearby problems” that are
of simpler structure and easier to solve. In the subsequent summary of the notions of
regular perturbation theory we refer to the seminal publications of Eckhaus (1979),
Erdélyi (1956), and Kruskal (1963). We follow in particular the notation of van Dyke
(1975). This is typically accomplished by representing the solution 𝜙 by a perturbation
series expansion

𝜙(𝑥; 𝜀) = 𝜙 (0) (𝑥) +
𝑛∑︁
𝑖=1

𝜀𝑖𝜙 (𝑖) (𝑥) + 𝑜(𝜀𝑛) (2.9)

i.e., a power series7 in 𝜀, and analyzing the limit 𝜀 → 0. 𝜙 (0) corresponds to the leading-
order solution, i.e., the solution 𝜙 in the limit 𝜀 → 0, subject to the leading-order
problem. {𝜙 (𝑖) }𝑛

𝑖=1 are the expansion coefficients or expansion modes corresponding to
the order O

(
𝜀𝑖

)
and — by construction — independent of 𝜀. 𝑛 is called the truncation

order of the series expansion resulting in the error term 𝑜(𝜀𝑛) (below, we will give the
latter symbol a more meaningful definition). This essentially means, that the summation
of 𝑛 terms approximates 𝜙(𝑥; 𝜀) such that the error can be estimated by the final order
𝜀𝑛.8

For non-zero perturbations we urge to have control over the correction terms, i.e.,
the size of the error introduced by 𝑛 < ∞, i.e., restricting to the approximate problem.

6The methodology is not limited to small parameters. By introducing 𝜇 = 1/𝜀, we can also analyze large
parameters by converting the problem back to one of a small parameter.

7Mind the formal relation to the Taylor series: 𝜕𝑛𝜙(𝑥; 𝜀)/𝜕𝜀𝑛 |𝜀=0 = 𝑛!𝜙 (𝑛) (𝑥).
8Note, that this does not necessarily mean convergence as 𝑛→ ∞, hence the series does not necessarily

converge to 𝜙. In fact, often perturbation (asymptotic) series diverge for large 𝑛. In the same way
the convergence of a Taylor series may be impeded by a lack of higher-order differentiability, the
dependency of 𝜙 on 𝜀 determines if for a given 𝑛 the error term can be estimated by the final order
function. However, for sufficiently regular 𝜙 there is always an optimal truncation order 𝑛∗ > 0 up
until the eq. (2.9) is valid, and the error term is under control.
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To this end, it is necessary to set the terms 𝜀𝑖𝜙 (𝑖) , 𝑖 = 1, 2, . . . for a given 𝑖 into
relation to the other terms, especially to 𝜙 (0) . In other words, we seek for a notion of
relative smallness of two expressions involving functions of 𝜀 in the vicinity of 𝜀 = 0.
Following Eckhaus (1979) and van Dyke (1975), the Landau symbols provide a formal
way of doing that by the following relations:

𝑓 (𝜀) := O(𝑔(𝜀)) ⇔ lim
𝜀→0

𝑓 (𝜀)
𝑔(𝜀) = 𝑐 with |𝑐 | < ∞ (2.10a)

𝑓 (𝜀) := 𝑜(𝑔(𝜀)) ⇔ lim
𝜀→0

𝑓 (𝜀)
𝑔(𝜀) = 0 (2.10b)

𝑓 (𝜀) := O𝑠 (𝑔(𝜀)) ⇔ 𝑓 (𝜀) := O(𝑔(𝜀)) and 𝑔(𝜀) := O( 𝑓 (𝜀)) (2.10c)

Note that the choice of the 𝜙 (𝑖) (𝑥) independent of 𝜀 in eq. (2.9) is a particular one and
may lead to limited success when apply to construct asymptotic approximations. A
more general ansatz is constructed by asymptotic expansion modes that depend on 𝜀
and behave like

𝜙 (𝑖) (𝑥; 𝜀) = O𝑠 (1) ∀𝑖 < 𝑛 ∈ N (2.11)

This condition ensures that the powers of 𝜀 in eq. (2.9) determine the asymptotic order
of each of the summation terms (in a decreasing manner) and hence, the resulting error
term due to the truncation. It is, however, not necessary to ensure eq. (2.11) for the limit
𝑛→ ∞. Often, insightful results can be obtained by truncating the asymptotic series
after the first few expansion modes. Thus, it may not be necessary for higher-order
expansion modes to fulfill eq. (2.11), yet the approximation of eq. (2.9) behaves regular
in the limit 𝜀 → 0. In fact, practical applications often exhibit diverging behavior
for higher-order terms due to the dependency of the solution on 𝜀 and the lack of
higher-order differentiability w.r.t. 𝜀.

Perturbation theory deals with the limiting behavior of 𝜙 when 𝜀 → 0. To this end,
the ansatz (2.9) is inserted into the governing equation and, by passing to the limit
𝜀 → 0 we can find a constituting equation for 𝜙 (0) . This so obtained equation can be
subtracted from the governing equation, and again by passing to the limit 𝜀 → 0, we get
a constituting equation for 𝜙 (1) , and so on. We end up with a hierarchy of equations for
the expansion modes 𝜙 (𝑖) .

Several branches of science have invented, re-invented and extended this methodology
to their respective needs, each coining a particular methodology and terminology. In
celestial mechanics, e.g., the orbit of the moon around the earth in the gravitational
field of earth and sun (a three-body problem without closed analytic solution) has been
analyzed in terms of departures from the Keplerian orbit (solutions of the leading-order
two-body problem) to find corrections that correspond to the three-body interaction
(Gutzwiller 1998). In atmospheric fluid mechanics, this approach led to a number of
low Mach model equations that exclude sub-dominant effects such as acoustic waves
from the equations and by that increase the efficiency of numerical integration (Bannon
1996; Boussinesq 1897; Durran 1989; Klein 2010).

Pioneering work on asymptotic methods was conducted by Eckhaus (1979), Erdélyi
(1956), Friedrichs (1955), Kruskal (1963), and van Dyke (1975), not only in system-
atizing the methodological framework of “Asymptotology [...] the art of dealing with
applied mathematical systems in limiting cases” (Kruskal 1963). So is the choice of
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powers of 𝜀 in eq. (2.9) rather arbitrary. For the sake of generalizing towards more
complex problems, Erdélyi (1956) and later Kruskal (1963) discussed the limitations of
a power series ansatz and introduced a more general form of eq. (2.9) called asymp-
totic expansion, essential for the methodology of asymptotic analysis or asymptotics,
involving an 𝑛-term series with respect to the previously defined small scale parameter
𝜀 called asymptotic series:

𝜙(𝑥; 𝜀) =
𝑛∑︁
𝑖=0

𝜖𝑖 (𝜀)𝜙 (𝑖) (𝑥; 𝜀) + 𝑜(𝜖𝑛 (𝜀)) (2.12)

Here, we introduced the order functions 𝜖𝑛 (𝜀) satisfying 𝜖𝑛+1(𝜀) = 𝑜(𝜖𝑛 (𝜀)) as 𝜀 → 0.
Hence, the perturbation series expansion is a special case of the asymptotic expansion
and asymptotics a superset of perturbation theory. Asymptotology, however, “at best a
quasi-science” (Kruskal 1963), encompasses a rich body of theoretical and empirical
findings that come handy when dealing with actual problems.

Although, there are studies on the general theory of the regularity of asymptotic
analysis with respect to the truncation order 𝑛 and the choice of {𝜖𝑛}𝑛 (Eckhaus 1979),
there is, unfortunately, no formal way of deciding which choice suits a particular problem
best and ensures regularity. Often, either a related problem has proven to be tractable
following a certain strategy, or it is trial and error.

By providing consistent results, Päschke et al. (2012) have given reason to an ansatz
of a regular asymptotic expansion (see Eckhaus (1979) for details)

𝜙(𝑥; 𝜀) =
𝑛∑︁
𝑖=0

𝜖𝑖 (𝜀)𝜙 (𝑖) (𝑥) + 𝑜(𝜖𝑛 (𝜀)) , (2.13)

i.e., assuming that expansion modes do not depend on 𝜀, and restricting to order
functions 𝜖𝑛 (𝜀) = 𝜀𝛼(𝑛−𝑛0 ) . The general form of the asymptotic expansion used later
on reads

𝜙(𝑥; 𝜀) =
𝑛∑︁
𝑖=0

𝜀𝛼(𝑖−𝑛0 )𝜙 (𝑖) (𝑥) + 𝑜
(
𝜀𝑖

)
. (2.14)

With 𝛼 ∈ Q and 𝑛0 ∈ Z we allow for non-integer powers of 𝜀 and for starting the series
with powers other that 𝜀0. As we will see in the subsequent sections, with this approach
we are able to reproduce the findings of Päschke et al. (2012) and generalize them to
other scaling regimes.

2.3. Singular Perturbations and Multiple Scales

Problems in nature often occur on multiple scales that interact with each other. Usually,
small-scale processes are guided by large-scale background states and eventually feed
back to it. Examples are boundary layer-type problems that are common in the context
of fluid dynamics. A fluid system is driven by a substantially different dynamics near
a wall due to friction than it is in the free bulk flow. Other problems involve the
interaction of fast and slow (or small and large) scale structures such as the interaction
of small-scale convective cloud towers embedded into a larger-scale flow field (Hittmeir
and Klein 2017; Klein and Majda 2006) or the aforementioned hierarchical three-body
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problem moon-earth-sun. All of these problems involve a scale separation. The physics
(and the mathematical structure of the governing equations) changes depending on the
characteristic scale under consideration. Loosely speaking, looking through microscope
will alter the view on the problem (as does the view through a telescope).

On a mathematical level, scales appear as small parameters in the governing equations
that balance the different order differential terms and determine the importance of
certain forces over other ones. In the definition of distinguished limits we agreed upon
for this thesis, scales are the characteristic coordinate scales that appear when balancing
certain differential terms at leading-order. Going from one scale to another by rescaling
coordinates by powers of the small-scale parameter 𝜀, one will potentially change the
dominant balances (i.e., switch to another distinguished limit) since prefactorial to the
(differential) terms in the governing equation (i.e., the powers of 𝜀) are affected due to
the explicit or implicit occurrence of the coordinates (e.g., by differential operators).9
Rescaling effectively means re-weighting the terms. These relative weight differences
are what turns asymptotics into a powerful framework of simplifying equations since
it allows ruling out certain terms in the leading-order equations and delegate them
to higher order. Moreover, by coupling high-order modes with lower order modes,
simple solutions of the low (leading) orders can be considered as given sources in the
higher-order equations. A systematic analysis of eqs. (2.8) in terms of different spatial
and temporal scales leads to a family of approximate PDEs accounting for the various
single scale regimes apparent in the atmosphere (cf. Klein 2010).

The advantages of asymptotic analysis, however, come at a price. By rescaling, the
structure and type of the leading-order, i.e., the limiting problem can substantially differ
from the original problem. In a PDE, e.g., some differential terms may be dropped, and
the problem changes its overall characteristic.10 In that so-called singular limit, initial
and/or boundary conditions may not be consistently applicable, anymore. The next two
subsections will discuss strategies to tackle problems of that type.

2.3.1. Multiscale Asymptotics

One method to account for processes where two or more scales are interacting with each
other is called multiscale analysis. The asymptotic ansatz (2.14) is modified such that

𝜙(𝑥; 𝜀) :=
𝑛∑︁
𝑖=0

𝜀𝑖𝜙 (𝑖) (. . . , 𝜀−1𝑥, 𝑥, 𝜀𝑥, . . . ; 𝜀) + 𝑜
(
𝜀𝑖

)
, (2.18)

9In fact, a rescaling of coordinates that does not affect the distinguished limit falls under the category of
similarity transformations.

10Think of the (hyperbolic) wave equation

𝜕2
𝑡 𝜙 + 𝜕2

𝑥𝜙 = 0 . (2.15)

When rescaling the spatial coordinate, 𝑥 → 𝜀𝑥, i.e., focusing on smaller scales, we get the rescaled
problem

𝜀2𝜕2
𝑡 𝜙 + 𝜕2

𝑥𝜙 = 0 . (2.16)

At leading order, we have the approximate balance

𝜕2
𝑥𝜙

(0) = 0 , (2.17)

resembling an elliptic equation, since the second time derivative couples at O
(
𝜀2

)
, at first.
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i.e., the expansion modes are treated as functions of variables, each representing
an accordingly scaled coordinate. This approach results in PDEs in the respective
coordinates to be solved hierarchically.

Multiscale asymptotics is of particular interest in situations where small-scale features
coexists with large-scale features everywhere in the domain (e.g., small oscillations
on a slowly varying (even static) background). The large and the small-scale solution
structures may interact with each other.

Although a powerful tool, multiscale asymptotics requires substantial input from
physical intuition since assumptions are made on the structure of the solution. Equa-
tion (2.18), e.g., requires a priori inputs on the separation between the interacting scales
under consideration (number and ratio in terms of powers of 𝜀 of individually scaled
coordinates that are treated as independent variables). Even in situations where it
is technically possible to rigorously derive structural properties of the solution func-
tions, restricting the solution structure a priori may help to substantially simplify the
calculations (cf. Klein 2004, sec. 3.4). The high level of experience and intuition
necessary to excel in this methodology could be one of the reasons why until now this
method has been only rarely applied to investigate scale interactions in meteorological
scenarios (Grooms, Julien, and Fox-Kemper 2011; Hittmeir and Klein 2017; Majda and
Grooms 2014; Klein and Majda 2006; Owinoh et al. 2011; Pedlosky 1984, to name a
few). See also Grooms and Julien (2018) for a recent review.

2.3.2. Matched Asymptotic Analysis

In scenarios where a restricted subdomain is interacting with the rest of the solution
domain, matched asymptotic analysis can be considered to derive approximate solutions.
In the context of fluid dynamics, one often analyzes the structure and interaction of a
boundary layer (subdomain) with the bulk of the fluid flow (solution domain). Those
derivations lead to successful models for describing fluid flows around obstacles such
as air foils (Veldman 2001), but also gave insight into the flow structure of the planetary
boundary layer (PBL) near the surface where the atmosphere interacts with land or
ocean (Holton 2004).

A slightly different situation arises when studying TCs, that is a vortex core at
small scale extent embedded into a larger-scale flow field. The notions of smallness of
coordinates obviously requires an adapted choice of coordinates. As we will go more
into details later in section 2.4.3, Päschke et al. (2012) considered a radial distance from
the vortex core and derived a model based on two distinct scaling regimes with respect
to the radial coordinate.

The matching procedure involves finding matching conditions, i.e., boundary condi-
tions in the overlap region between two individually scaled solution. To this end, we
introduce the notation 𝜙(𝑥) for a function that approximates the solution on the outer
(larger) scale and 𝜙(𝑥) on the inner (smaller) scale. The basic idea is that the large-scale
limits of a small-scale solution function shall coincide (up to truncation order) with the
small-scale limit of the large scale solution:

lim
𝑥→0

𝜙(𝑥) ≃ lim
�̂�→∞

𝜙(𝑥) = 𝜙𝑀 . (2.19)

Hence, rescaling to a common set of coordinates (possibly at intermediate scale and
where both regimes hold approximately true) provides the matching boundary term 𝜙𝑀 .
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𝑥
𝑥

𝑦

inner sol.outer sol.

compound sol.

Figure 2.1.: Schematics of asymptotic matching. On the two different scales (inner and
outer) individual solutions are found by single-scale asymptotics (dashed
curves). By applying the method of asymptotic matching a compound
solution is found (solid curve).

The compound approximation of the solution on the whole domain reads

𝜙(𝑥) + 𝜙(𝑥) − 𝜙𝑀 (2.20)

The principle of the matching procedure is visualized in fig. 2.1. More details can
be found in Eckhaus (1979), Klein (2004, 2017), and Kutz (2020), and will be given
directly on the example of a TC in section 2.4.5.

A slightly different approach was introduced with van Dyke’s (1975) matching
principle: Assume we have outer and inner solutions 𝜙(𝑥) and 𝜙(𝑥) given in terms of
asymptotic series expansions, symbolized by

𝜙(𝑥) = 𝐸 (𝑚)𝜙(𝑥) + 𝑜(𝜖𝑛 (𝜀)) :=
𝑚∑︁
𝑛=0

𝜖𝑛 (𝜀)𝜙 (𝑛) (𝑥) + 𝑜(𝜖𝑛 (𝜀)) , (2.21a)

𝜙(𝑥) = �̂� (𝑚)𝜙(𝑥) + 𝑜(𝜖𝑛 (𝜀)) :=
𝑚∑︁
𝑛=0

𝜖𝑛 (𝜀)𝜙 (𝑛) (𝑥) + 𝑜(𝜖𝑛 (𝜀)) . (2.21b)

𝐸 (𝑚)𝜙(𝑥) and �̂� (𝑚)𝜙(𝑥) stand for the outer and inner 𝑚-term expansion. Further, let
us define the transformation operation

(𝑇𝜙) (𝑥) = 𝜙(𝑥) = 𝜙(𝑇−1(𝑥)) , (2.22)

i.e., 𝑇 being the conversion between the respectively scaled coordinate of the inner
and outer regime. The coordinate 𝑥 itself shall transform as 𝑇𝑥 = 𝑥 = 𝜀𝛼−1𝑥, with
0 < 𝛼 < 1, in our specific case (cf. section 2.4.3). The actual matching then is
performed by (Eckhaus 1979; Marschalik 2015; Päschke et al. 2012)

�̂� (𝑚𝑖 )𝑇𝐸 (𝑚𝑜 )𝜙 = �̂� (𝑚𝑖 )𝑇𝐸 (𝑚𝑜 )𝑇−1�̂� (𝑚𝑖 )𝜙(𝑥) . (2.23)

The left-hand side symbolizes the asymptotic expansion of the outer solution 𝐸 (𝑚𝑜 )𝜙(𝑥),
given as an asymptotic series up to order 𝑚𝑜, transformed to inner coordinates and
expanded up to order 𝑚𝑖. Due to the smallness of 𝜀, the leading-order terms of the
resulting expansion correspond to the limit 𝑥 = 𝜀1−𝛼𝑥 → 0. Conversely, on the
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right-hand side, the solution given as the expansion �̂� (𝑚𝑖 )𝜙(𝑥) is transformed to the
outer coordinates and expanded into an asymptotic series up to order 𝑚𝑜. Again due to
the smallness of 𝜀, this procedure corresponds to the limiting process 𝑥 = 𝜀𝛼−1𝑥 → ∞.
Finally, for the sake of comparing with the small-scale expansion of the outer solution,
the result is back-transformed to inner coordinates and once again expanded to order
𝑚𝑖 . Both sides of the equation yield asymptotic expansions that can now be compared
order-by-order to find matching terms. The procedure becomes more transparent with
the direct example given in section 2.4.5.

2.4. Two-Scale Asymptotics of Tropical Cyclones

Here, we will recapture the essential results originally derived by Päschke et al. (2012)
and show how to extend their findings, initially restricted to weak TCs in gradient-wind
balance, towards the cyclostrophic regime. Hence, we introduce a more generalized
scaling regime for the inner core solution and demonstrate in which way conclusions of
the original derivation hold true through the regime transition.

From a methodological point of view, Päschke et al. (2012) made use of a two-scale
matched asymptotics scheme to find a set of reduced equations. To this end, the
governing equations are approximated on an inner core region, for which solutions are
then matched to that of the quasi-geostrophic regime at large radii.

2.4.1. Azimuthal Fourier Modes 0 and 1

In the course of the following chapters we will make extensive use of the notion of
azimuthally symmetric structures as well as Fourier-1 modes, i.e., dipolar patterns of
physical fields. Albeit a bit apart from the usual conventions but helpful in streamlining
the notation, we will make the following definitions: For a scalar field given in polar
coordinates (𝑟, 𝜃) ∈ R+ × 𝑇 ( [0, 2𝜋]) we have

𝜙0(𝑟) :=
1

2𝜋

∫ 2𝜋

0
𝜙(𝑟, 𝜃) 𝑑𝜃 , (2.24a)

𝜙11(𝑟) :=
1
𝜋

∫ 2𝜋

0
𝜙(𝑟, 𝜃) cos 𝜃 𝑑𝜃 , (2.24b)

𝜙12(𝑟) :=
1
𝜋

∫ 2𝜋

0
𝜙(𝑟, 𝜃) sin 𝜃 𝑑𝜃 . (2.24c)

We further define the dipole vector 𝝓1 as

𝝓1 :=
(
𝜙11
𝜙12

)
(2.25)

This notation enables us to employ vector algebraic conventions. A dipolar field can be
represented by the regular scalar product

𝜙 = 𝜙11 cos 𝜃 + 𝜙12 sin 𝜃 ≡ 𝝓1 · 𝒆𝑟 (2.26)

with the radial unit vector 𝒆𝑟 = (cos 𝜃, sin 𝜃), and the azimuthal correlation of two
dipolar fields reads

1
2𝜋

∫ 2𝜋

0
(𝑎1 cos 𝜃 + 𝑎2 sin 𝜃) (𝑏1 cos 𝜃 + 𝑏2 sin 𝜃) 𝑑𝜃 ≡ 1

2
𝒂 · 𝒃 . (2.27)
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Figure 2.2.: Schematic structure of an idealized TC (based on Päschke et al. 2012).

Finally, by identifying the Fourier-1 mode of a dipolar field with a two-vector, we have
a handle on the orientation of the field: For a given 𝑟, the vector 𝝓1(𝑟) points towards
the direction of the maximum of the field.

Formally, this construction is nothing else than identifying the complex plane C with
R2, since the real and imaginary parts of Fourier coefficients of real-valued functions
correspond to the sine and cosine modes above. We will make use of the following
correspondence:

𝝓1 =

(
𝜙11
𝜙12

)
∈ R2 ⇔ 𝜙1 = 𝜙11 + 𝚤𝜙12 ∈ C , (2.28)

where 𝚤 is the imaginary unit. This duality will help us to seamlessly switch between
the vectorial and complex representation of dipolar structures when appropriate.

2.4.2. Co-Moving Centerline Coordinate

Before entering the scaling regime of the inner-core vortex flow, we transform the
coordinates by defining centerline-relative coordinates 𝒙rel:

𝒙 ∥ =: 𝑿 (𝑧, 𝑡) + 𝒙rel with 𝒙rel = 𝑟𝒆𝑟 (𝜃) . (2.29)

𝒙 ∥ are the horizontal components of the Earth-relative coordinates. The definition of
these tilted polar coordinates follows the choice of the mesoscale, i.e., it depends on 𝛼
to be defined in eq. (2.33). As a consequence, due to the functional dependency of the
coordinate center w.r.t. 𝑧 and 𝑡, differential operators transform accordingly:

∇∥ = 𝒆𝑟
𝜕

𝜕𝑟
+ 𝒆𝜃

1
𝑟

𝜕

𝜕𝜃
, (2.30a)

𝜕

𝜕𝑧

����
𝑡 ,𝑥,𝑦

=
𝜕

𝜕𝑧

����
𝑡 ,𝑟 , 𝜃

− 𝜕𝑿

𝜕𝑧
· ∇∥ , (2.30b)

𝜕

𝜕𝑡

����
𝑡 ,𝑥,𝑦

=
𝜕

𝜕𝑡

����
𝑡 ,𝑟 , 𝜃

− 𝜕𝑿

𝜕𝑡
· ∇∥ . (2.30c)
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Finally, we define the storm-relative horizontal velocity according to

𝒖 =
𝜕𝑿

𝜕𝑡
+ 𝑢𝑟 𝒆𝑟 + 𝑢𝜃 𝒆𝜃 . (2.31)

Ultimately, eqs. (2.8) transform in the following way:

• Continuity:

𝜕𝜌

𝜕𝑡

����
𝑟 , 𝜃 ,𝑧

+
(
1
𝑟

𝜕𝜌𝑢𝑟𝑟

𝜕𝑟
+ 1
𝑟

𝜕𝜌𝑢𝜃

𝜕𝜃

)
+ 𝜕𝜌𝑤

𝜕𝑧

����
𝑟 , 𝜃 ,𝑡

−

−
(
𝜕𝑿

𝜕𝑧
· 𝒆𝑟

𝜕𝜌𝑤

𝜕𝑟
+ 𝜕𝑿
𝜕𝑧

· 𝒆𝜃
1
𝑟

𝜕𝜌𝑤

𝜕𝜃

)
= 0 (2.32a)

• Radial momentum:

𝜕𝑢𝑟

𝜕𝑡

����
𝑟 , 𝜃 ,𝑧

+
(
𝑢𝑟
𝜕𝑢𝑟

𝜕𝑟
+ 𝑢𝜃
𝑟

𝜕𝑢𝑟

𝜕𝜃
−
𝑢2
𝜃

𝑟

)
+ 𝑤 𝜕𝑢𝑟

𝜕𝑧

����
𝑟 , 𝜃 ,𝑡

+

+ 𝜕

𝜕𝑡

𝜕𝑿

𝜕𝑡

����
𝑟 , 𝜃 ,𝑧

· 𝒆𝑟 + 𝑤
𝜕

𝜕𝑧

(
𝜕𝑿

𝜕𝑡
· 𝒆𝑟

)����
𝑟 , 𝜃 ,𝑡

−

−
(
𝑤
𝜕𝑿

𝜕𝑧
· 𝒆𝑟

𝜕𝑢𝑟

𝜕𝑟
+ 𝑤𝜕𝑿

𝜕𝑧
· 𝒆𝜃

1
𝑟

𝜕𝑢𝑟

𝜕𝜃
− 𝑤𝜕𝑿

𝜕𝑧
· 𝒆𝜃

𝑢𝜃

𝑟

)
+

+ 1
𝜀3

1
𝜌

𝜕𝑝

𝜕𝑟
− 𝜀

(
𝑓0 + 𝜀3𝛽𝑦

) (
𝑢𝜃 +

𝜕𝑿

𝜕𝑡
· 𝒆𝜃

)
= 0 (2.32b)

• Tangential momentum:

𝜕𝑢𝜃

𝜕𝑡

����
𝑟 , 𝜃 ,𝑧

+
(
𝑢𝑟
𝜕𝑢𝜃

𝜕𝑟
+ 𝑢𝑟𝑢𝜃

𝑟
+ 𝑢𝜃
𝑟

𝜕𝑢𝜃

𝜕𝜃

)
+ 𝑤 𝜕𝑢𝜃

𝜕𝑧

����
𝑟 , 𝜃 ,𝑡

+

+ 𝜕

𝜕𝑡

𝜕𝑿

𝜕𝑡

����
𝑟 , 𝜃 ,𝑧

· 𝒆𝜃 + 𝑤
𝜕

𝜕𝑧

(
𝜕𝑿

𝜕𝑡
· 𝒆𝜃

)����
𝑟 , 𝜃 ,𝑡

−

−
(
𝑤
𝜕𝑿

𝜕𝑧
· 𝒆𝑟

𝜕𝑢𝜃

𝜕𝑟
+ 𝑤𝜕𝑿

𝜕𝑧
· 𝒆𝜃

𝑢𝑟

𝑟
+ 𝑤𝜕𝑿

𝜕𝑧
· 𝒆𝜃

1
𝑟

𝜕𝑢𝜃

𝜕𝜃

)
+

+ 1
𝜀3

1
𝜌𝑟

𝜕𝑝

𝜕𝜃
+ 𝜀

(
𝑓0 + 𝜀3𝛽𝑦

) (
𝑢𝑟 +

𝜕𝑿

𝜕𝑡
· 𝒆𝑟

)
= 0 (2.32c)

• Vertical momentum:
𝜕𝑤

𝜕𝑡

����
𝑟 , 𝜃 ,𝑧

+
(
𝑢𝑟
𝜕𝑤

𝜕𝑟
+ 𝑢𝜃
𝑟

𝜕𝑤

𝜕𝜃

)
+ 𝑤 𝜕𝑤

𝜕𝑧

����
𝑟 , 𝜃 ,𝑡

−

−
(
𝑤
𝜕𝑿

𝜕𝑧
· 𝒆𝑟

𝜕𝑤

𝜕𝑟
− 𝑤𝜕𝑿

𝜕𝑧
· 𝒆𝜃

1
𝑟

𝜕𝑤

𝜕𝜃

)
+ 1
𝜀5

1
𝜌

𝜕𝑝

𝜕𝑧
− 1
𝜀5

1
𝜌

𝜕𝑿

𝜕𝑧
· ∇∥ 𝑝 = − 1

𝜀5 (2.32d)

• Potential temperature:

𝜕Θ

𝜕𝑡

����
𝑟 , 𝜃 ,𝑧

+
(
𝑢𝑟
𝜕Θ

𝜕𝑟
+ 𝑢𝜃
𝑟

𝜕Θ

𝜕𝜃

)
+ 𝑤 𝜕Θ

𝜕𝑧

����
𝑟 , 𝜃 ,𝑡

−

−
(
𝑤
𝜕𝑿

𝜕𝑧
· 𝒆𝑟

𝜕Θ

𝜕𝑟
− 𝑤𝜕𝑿

𝜕𝑧
· 𝒆𝜃

1
𝑟

𝜕Θ

𝜕𝜃

)
= 𝑄Θ (2.32e)
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2.4.3. Inner Core Flow

We came to the conclusion that independently of the actual defining reference parameters,
the non-dimensional eqs. (2.3) govern the same general family of problems as the
original eqs. (2.1). In case of the reference parameters being characteristic for the
system, however, the non-dimensional coordinates and solution variables take values of
the order unity, and the small parameters 𝜀 imposes an ordering system in size of the
individual terms.

In section 2.1.3, we discussed how to rescale coordinates in order to capture scaling
regimes other than approached directly by construction of the distinguished limits as
outlined in section 2.1.3 and based on the original reference parameters (see tables 2.1
and 2.2). Since we are in non-dimensional coordinates, re-scaling means multiplying
with an appropriate prefactor. We want to maintain the relative ordering of coordinate
scales (e.g., coordinate 𝑥 being larger than 𝑧), throughout the limiting process, hence the
re-scaling factor has to be in terms of powers of the small scale parameter 𝜀. Together
with the distinguished limit of the dimensionless characteristic numbers11, rescaling the
coordinates by ratios in terms of powers of 𝜀 leads to rebalancing of the constituting
terms of the governing equation(s), the particular distinguished limit or dominant
balance. Meaningful dominant balances, in that sense, justify the choice of the rescaling
factor and therefore manifest a scaling regime. Although the numerical value of the
ratio will change through the limiting process, 𝑧, transformed back to a dimensional
coordinate, will be assured to be about the factor 𝜀 smaller than 𝑥.

All spatial coordinate in eqs. (2.8) are uniformly scaled with respect to the pressure
scale height, i.e., ℎsc ≈ 10 km. Time is scaled with respect to corresponding advection
timescale ℎsc/𝑢ref.

Here, we revisit the findings of Päschke et al. (2012), and enter the inner core regime
by rescaling horizontal and time coordinates of eqs. (2.8) accordingly:

𝒙 ∥ →
1

𝜀1+𝛼 𝒙 ∥ (2.33a)

𝑡 → 1
𝜀2+𝛼−𝛿

𝑡 (2.33b)

The centerline 𝑿 is rescaled consistently with 𝒙 ∥ . With the parameter 𝛼 ≥ 0 we allow
for a more flexible scaling of the inner core size. 𝛼 = 0 corresponds to a horizontal
scaling of O(100 km) while 𝛼 > 0 enlarges this scale by a factor of 𝜀−𝛼. For the sake
of reducing complexity, however, we allow for half-integer values of 𝛼, only. Moreover,
the outer QG scale induces an upper bound at 𝛼 = 1 (cf. section 2.4.4), hence the values
0 and 1/2 are admissible. Along the lines of Päschke et al. (2012) we chose the vortex
core evolution timescale as being by a factor 𝜀−1 larger than the vortex turnover time:

𝑡VC =
𝑡to

𝜀
=
𝐿meso

𝜀𝑢VC
=

ℎsc

𝜀2+𝛼−𝛿𝑢ref
=

1
𝜀2+𝛼−𝛿

𝑡ref (2.34)

Similarly to 𝛼, we introduced the parameter 𝛿 ≥ 0 that settles the leading-order
magnitude of the vortex-core maximum wind speed 𝑢VC. 𝛿 = 0 implies maximum wind
speed of 𝑢VC = 𝑢ref = O

(
10 m s−1) and 𝛿 = 1/2 is equivalent to 𝑢VC = O

(
30 m s−1) .

11Note, that we denote the distinguished limit of an equation the coupled limit of the dimensionless
parameters of the equation(s) including ratios of coordinate rescalings.
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Below we will explore the dependency of the structure of the leading-order equations on
the scalings induced by 𝛼 and 𝛿. In particular, this will help to unveil the leading-order
equations for both, the cyclostrophic and the gradient-wind regime and the structural
similarities through these regimes.

The above stretching transformation recasts eqs. (2.32) into the distinguished limit
equations of the vortex core:

• Continuity:

1
𝜀𝛿

𝜕𝜌

𝜕𝑡

����
𝑟 , 𝜃 ,𝑧

+ 1
𝜀

(
1
𝑟

𝜕𝜌𝑢𝑟𝑟

𝜕𝑟
+ 1
𝑟

𝜕𝜌𝑢𝜃

𝜕𝜃

)
+ 1
𝜀2+𝛼

𝜕𝜌𝑤

𝜕𝑧

����
𝑟 , 𝜃 ,𝑡

−

− 1
𝜀2+𝛼

(
𝜕𝑿

𝜕𝑧
· 𝒆𝑟

𝜕𝜌𝑤

𝜕𝑟
+ 𝜕𝑿
𝜕𝑧

· 𝒆𝜃
1
𝑟

𝜕𝜌𝑤

𝜕𝜃

)
= 0 (2.35a)

• Radial momentum:

1
𝜀𝛿

𝜕𝑢𝑟

𝜕𝑡

����
𝑟 , 𝜃 ,𝑧

+ 1
𝜀

(
𝑢𝑟
𝜕𝑢𝑟

𝜕𝑟
+ 𝑢𝜃
𝑟

𝜕𝑢𝑟

𝜕𝜃
−
𝑢2
𝜃

𝑟

)
+ 1
𝜀2+𝛼𝑤

𝜕𝑢𝑟

𝜕𝑧

����
𝑟 , 𝜃 ,𝑡

+

+𝜀1−2𝛿 𝜕

𝜕𝑡

𝜕𝑿

𝜕𝑡

����
𝑟 , 𝜃 ,𝑧

· 𝒆𝑟 +
1

𝜀1+𝛿+𝛼𝑤
𝜕

𝜕𝑧

(
𝜕𝑿

𝜕𝑡
· 𝒆𝑟

)����
𝑟 , 𝜃 ,𝑡

−

− 1
𝜀2+𝛼

(
𝑤
𝜕𝑿

𝜕𝑧
· 𝒆𝑟

𝜕𝑢𝑟

𝜕𝑟
+ 𝑤𝜕𝑿

𝜕𝑧
· 𝒆𝜃

1
𝑟

𝜕𝑢𝑟

𝜕𝜃
− 𝑤𝜕𝑿

𝜕𝑧
· 𝒆𝜃

𝑢𝜃

𝑟

)
+

+ 1
𝜀4

1
𝜌

𝜕𝑝

𝜕𝑟
−

(
1

𝜀1+𝛼 𝑓0 + 𝜀
−2𝛼𝛽𝑦

) (
𝑢𝜃 + 𝜀1−𝛿 𝜕𝑿

𝜕𝑡
· 𝒆𝜃

)
= 0 (2.35b)

• Tangential momentum:

1
𝜀𝛿

𝜕𝑢𝜃

𝜕𝑡

����
𝑟 , 𝜃 ,𝑧

+ 1
𝜀

(
𝑢𝑟
𝜕𝑢𝜃

𝜕𝑟
+ 𝑢𝑟𝑢𝜃

𝑟
+ 𝑢𝜃
𝑟

𝜕𝑢𝜃

𝜕𝜃

)
+ 1
𝜀2+𝛼𝑤

𝜕𝑢𝜃

𝜕𝑧

����
𝑟 , 𝜃 ,𝑡

+

+𝜀1−2𝛿 𝜕

𝜕𝑡

𝜕𝑿

𝜕𝑡

����
𝑟 , 𝜃 ,𝑧

· 𝒆𝜃 +
1

𝜀1+𝛿+𝛼𝑤
𝜕

𝜕𝑧

(
𝜕𝑿

𝜕𝑡
· 𝒆𝜃

)����
𝑟 , 𝜃 ,𝑡

−

− 1
𝜀2+𝛼

(
𝑤
𝜕𝑿

𝜕𝑧
· 𝒆𝑟

𝜕𝑢𝜃

𝜕𝑟
+ 𝑤𝜕𝑿

𝜕𝑧
· 𝒆𝜃

𝑢𝑟

𝑟
+ 𝑤𝜕𝑿

𝜕𝑧
· 𝒆𝜃

1
𝑟

𝜕𝑢𝜃

𝜕𝜃

)
+

+ 1
𝜀4

1
𝜌𝑟

𝜕𝑝

𝜕𝜃
+

(
1

𝜀1+𝛼 𝑓0 + 𝜀
−2𝛼𝛽𝑦

) (
𝑢𝑟 + 𝜀1−𝛿 𝜕𝑿

𝜕𝑡
· 𝒆𝑟

)
= 0 (2.35c)

• Vertical momentum:

1
𝜀𝛿

𝜕𝑤

𝜕𝑡

����
𝑟 , 𝜃 ,𝑧

+ 1
𝜀

(
𝑢𝑟
𝜕𝑤

𝜕𝑟
+ 𝑢𝜃
𝑟

𝜕𝑤

𝜕𝜃

)
+ 1
𝜀2+𝛼𝑤

𝜕𝑤

𝜕𝑧

����
𝑟 , 𝜃 ,𝑡

−

− 1
𝜀2+𝛼

(
𝑤
𝜕𝑿

𝜕𝑧
· 𝒆𝑟

𝜕𝑤

𝜕𝑟
− 𝑤𝜕𝑿

𝜕𝑧
· 𝒆𝜃

1
𝑟

𝜕𝑤

𝜕𝜃

)
+ 1
𝜀7+𝛼

1
𝜌

𝜕𝑝

𝜕𝑧
−

− 1
𝜀7+𝛼

1
𝜌

𝜕𝑿

𝜕𝑧
· ∇∥ 𝑝 = − 1

𝜀7+𝛼

(2.35d)
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• Potential temperature:

1
𝜀𝛿

𝜕Θ

𝜕𝑡

����
𝑟 , 𝜃 ,𝑧

+ 1
𝜀

(
𝑢𝑟
𝜕Θ

𝜕𝑟
+ 𝑢𝜃
𝑟

𝜕Θ

𝜕𝜃

)
+ 1
𝜀2+𝛼𝑤

𝜕Θ

𝜕𝑧

����
𝑟 , 𝜃 ,𝑡

−

− 1
𝜀2+𝛼

(
𝑤
𝜕𝑿

𝜕𝑧
· 𝒆𝑟

𝜕Θ

𝜕𝑟
− 𝑤𝜕𝑿

𝜕𝑧
· 𝒆𝜃

1
𝑟

𝜕Θ

𝜕𝜃

)
=

1
𝜀2+𝛼𝑄Θ

(2.35e)

The asymptotic expansion of the physical field reads

𝑝 = 𝑝0(𝑧) + 𝜀𝑝1(𝑧) + 𝜀2
(
𝑝 (2) (𝑟, 𝜃, 𝑧, 𝑡) + 𝑝2(𝑧)

)
+ 𝑜

(
𝜀2

)
(2.36a)

𝜌 = 𝜌0(𝑧) + 𝜀𝜌1(𝑧) + 𝜀2
(
𝜌 (2) (𝑟, 𝜃, 𝑧, 𝑡) + 𝜌2(𝑧)

)
+ 𝑜

(
𝜀2

)
(2.36b)

Θ = Θ0(𝑧) + 𝜀Θ1(𝑧) + 𝜀2
(
Θ(2) (𝑟, 𝜃, 𝑧, 𝑡) + Θ2(𝑧)

)
+ 𝑜

(
𝜀2

)
(2.36c)

𝑢𝑟 =
1
𝜀𝛿

(
𝜀𝑢

(1)
𝑟 (𝑟, 𝜃, 𝑧, 𝑡) + 𝑜(𝜀)

)
(2.36d)

𝑢𝜃 =
1
𝜀𝛿

(
𝑢
(0)
𝜃

(𝑟, 𝑧, 𝑡) + 𝜀𝑢 (1)
𝜃

(𝑟, 𝜃, 𝑧, 𝑡) + 𝑜(𝜀)
)

(2.36e)

𝑤 =
1
𝜀𝛿

(
𝜀𝑤 (1) (𝑟, 𝜃, 𝑧, 𝑡) + 𝑜(𝜀)

)
(2.36f)

𝑿 =
1

𝜀1−𝛼
𝑿0 + 𝑿 (0) + 𝑜(1) (2.36g)

We made the same symmetry and scaling assumption for the leading-order tangential
wind 𝑢 (0)

𝜃
as Päschke et al. (2012). Only, we avoid an intermediate asymptotic mode

𝑢
(1/2)
𝜃

as it turns out to be superfluous. From table 2.3 we recall that the Rossby number
is based on the involved length scale and reference velocity. Our approach, in fact, leads
to an effective or vortex core Rossby number

RoVC = 𝜀1+𝛼−𝛿 𝑢ref

ℎsc 𝑓ref︸ ︷︷ ︸
Ro=O(𝜀−1)

= O
(
𝜀𝛼−𝛿

)
, (2.37)

characterizing the flow regime in the vortex core region. If 𝛼 = 𝛿, RoVC = O(1), and
we are in the gradient wind regime. With 𝛿 > 𝛼 we enter the cyclostrophic regime. For
our following considerations we abandon the case of 𝛼 > 𝛿, i.e., the geostrophic flow
regime.

Inserting eqs. (2.36) into eqs. (2.32), we obtain the following hierarchy of asymptotic
equations guiding the motions of tropical storms:

First, we get the cyclostrophic or gradient-wind balance for the leading-order radial
force depending on the choice of 𝛿:

1
𝜌0

𝜕𝑝 (3−2𝛿 )

𝜕𝑟
=

(
𝑢
(0)
𝜃

)2

𝑟
+ 𝑓0𝑢

(𝛼−𝛿 )
𝜃

=



(
𝑢
(0)
𝜃

)2

𝑟
, 𝛿 > 𝛼(

𝑢
(0)
𝜃

)2

𝑟
+ 𝑓0𝑢

(0)
𝜃
, 𝛿 = 𝛼

(2.38)
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Moreover, due to the symmetry of 𝑢 (0)
𝜃

, 𝑝 (3−2𝛿 ) is axisymmetric as well:

𝜕𝑝 (3−2𝛿 )

𝜕𝜃
= 0 . (2.39)

This balance settles the order 𝜀3−2𝛿 at which the pressure is horizontally balancing the
circular motions. We find that the horizontal averages of the at horizontal pressure
modes up to at least O

(
𝜀2) follow the hydrostatic balance:

𝜕𝑝𝑖

𝜕𝑧
= −𝜌𝑖 , 𝑖 = 0, 1, 2 (2.40a)

In addition to that, the non-trivial contribution due to eq. (2.38) is hydrostatic as well:

𝜕𝑝 (3−2𝛿 )

𝜕𝑧
− 𝜕𝑿 (0)

𝜕𝑧
· 𝒆𝑟

𝜕𝑝 (3−2𝛿 )

𝜕𝑟
= −𝜌 (3−2𝛿 ) (2.40b)

According to the equation of state we get12

𝑝 (3−2𝛿 )

𝛾𝑝0
=
𝜌 (3−2𝛿 )

𝜌0
+ 𝜃

(3−2𝛿 )

𝜃0
(2.41)

and for the involved mode of potential temperature we find a modified version of the
weak temperature gradient approximation:

𝑢
(0)
𝜃

𝑟

𝜕Θ(3−2𝛿 )

𝜕𝜃
+ 𝑤 (3+𝛼−2𝛿 ) 𝑑Θ1

𝑑𝑧
= 𝑄

(4+𝛼−3𝛿 )
Θ

(2.42)

𝑤 (3+𝛼−2𝛿 ) is the leading-order mode of vertical velocity that takes into account that the
pressure perturbations due to the gradient-wind (cyclostrophic) balance (2.38) lead to a
modulation of the density and ultimately a perturbation in the potential temperature
(c.f. eqs. (2.40b) and (2.41)). As a result of the tilt, the horizontal pressure gradient
translates into a Fourier-mode 1 perturbation of the density and consequently of the
potential temperature (c.f. eq. (2.40b)). This thermodynamic adjustment leads to a
dipolar deformation of surfaces of constant entropy (potential temperature) which
adiabatic fluid parcels are required to follow, and hence we observe an adiabatic dipolar
perturbation of the vertical velocity (c.f. eq. (2.42)).

Since 𝑤 (𝑖)𝑑Θ1/𝑑𝑧 = 𝑄 (1−𝛿+𝑖) for 𝑖 < 3 + 𝛼 − 2𝛿, we are at liberty to set the heating
𝑄 ( 𝑗 ) ≡ 0 for 𝑗 < 4+𝛼−3𝛿. The corresponding mode of the vertical velocity is balanced
by the anelastic constraint:

1
𝑟

𝜕𝑢
(2−2𝛿 )
𝑟 𝑟

𝜕𝑟
+ 1
𝑟

𝜕𝑢
(2−2𝛿 )
𝜃

𝜕𝜃
+ 1
𝜌0

𝜕𝜌0𝑤
(3+𝛼−2𝛿 )

𝜕𝑧
=
𝜕𝑿 (0)

𝜕𝑧
· ∇∥

(
𝑤 (3+𝛼−2𝛿 )

)
(2.43)

Due to the above order restriction of vertical velocity, all modes of horizontal velocity
of order larger than O

(
𝜀2−2𝛿 ) are horizontally divergence-free, i.e.,

1
𝑟

𝜕𝜌0𝑢
(𝑖)
𝑟 𝑟

𝜕𝑟
+ 1
𝑟

𝜕𝜌0𝑢
(𝑖)
𝜃

𝜕𝜃
= 0 for 𝑖 < 2 − 2𝛿 . (2.44)

12 (𝛾 − 1)/𝛾 =: Γ∗∗𝜀 = 2/7 as 𝜀 → 0, with Γ∗∗ = O(1), is considered small (Newtonian Limit). See the
discussion of eq. (21) in Klein and Majda (2006). For more reference, also see Lipps and Hemler
(1982) and Parkins et al. (2000).
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From axisymmetry of 𝑢 (0)
𝜃

follows 𝑢 (0)𝑟 ≡ 0. For the radial momentum at order O
(
𝜀−2𝛿 )

we get

𝑢
(0)
𝜃

𝑟

𝜕𝑢
(1)
𝑟

𝜕𝜃
− 2

𝑢
(0)
𝜃
𝑢
(1)
𝜃

𝑟
+ 1
𝜌0

𝜕𝑝 (4−2𝛿 )

𝜕𝑟
− 𝜌1

𝜌2
0

𝜕𝑝 (3−2𝛿 )

𝜕𝑟
−

− 𝑓0
(
𝑢
(1+𝛼−𝛿 )
𝜃

+ 𝜕𝑿
(𝛼−𝛿 )

𝜕𝑡
· 𝒆𝜃

)
− 𝛽𝑦𝑢 (2𝛼−𝛿 )

𝜃
= 0 (2.45)

In addition to these diagnostic equations, we find a prognostic equation for the dynamics
of the leading-order tangential wind speed. Equation (2.42) settles the leading-order of
vertical velocity to 𝑤 (𝛼∗ ) with 𝛼∗ = 3 + 𝛼 − 2𝛿 for abbreviation, and we arrive at

𝜕𝑢
(0)
𝜃

𝜕𝑡
+ 𝑢 (1)𝑟

𝜕𝑢
(0)
𝜃

𝜕𝑟
+ 𝑢

(1)
𝑟

𝑟
𝑢
(0)
𝜃

+
𝑢
(0)
𝜃

𝑟

𝜕𝑢
(1)
𝜃

𝜕𝜃
+ 𝑤 (𝛼∗ ) 𝜕𝑢

(2𝛿−1)
𝜃

𝜕𝑧
−

−𝑤 (𝛼∗ ) 𝜕𝑿
(1−2𝛿 )

𝜕𝑧
· 𝒆𝑟

𝜕𝑢
(0)
𝜃

𝜕𝑟
+ 1
𝜌0𝑟

𝜕𝑝 (4−2𝛿 )

𝜕𝜃
+ 𝑓0

(
𝑢
(1+𝛼−𝛿 )
𝑟 + 𝜕𝑿

(𝛼−𝛿 )

𝜕𝑡
· 𝒆𝑟

)
= 0 .

(2.46)

For symmetry reasons (𝜕𝜃𝑢 (0)𝜃
= 0), eq. (2.46) further simplifies to

𝜕𝑢
(0)
𝜃

𝜕𝑡
+ 𝑢 (1)

𝑟 ,0
𝜕𝑢

(0)
𝜃

𝜕𝑟
+
𝑢
(1)
𝑟 ,0

𝑟
𝑢
(0)
𝜃

+ 𝑤 (𝛼∗ )
0

𝜕𝑢
(2𝛿−1)
𝜃

𝜕𝑧
=

𝜕𝑢
(0)
𝜃

𝜕𝑟

(
𝑤 (𝛼∗ ) 𝜕𝑿

(1−2𝛿 )

𝜕𝑧
· 𝒆𝑟

)
0
− 𝑓0𝑢

(1+𝛼−𝛿 )
𝑟 ,0 (2.47)

The subscript (·)0 refers to the Fourier-0 mode according to eq. (2.24a). We may argue
here, that the regime 𝛿 = 0 does not comply with the observations. With eq. (2.38)
we found that the leading-order pressure perturbation (that deviates from horizontal
homogeneity) scales with 𝜀3−2𝛿 , i.e., for 𝛿 = 0 that would correspond to pressure
perturbation of the order O

(
𝜀3𝑝′

)
= 1 hPa, much too weak for a tropical cyclone. For

transparency, however, we keep 𝛿 wherever it appeared in the derivations but may use
the circumstance that it is fixed to 𝛿 = 1/2. Especially for the above equation that helps
us to argue that the coupling 𝑤 (𝛼∗ )𝜕𝑧𝑿

(1−2𝛿 ) can be dropped, which nicely resembles
the result of Päschke et al. (2012) and leads us to the conclusion that this equation is
preserved in its structure also in the regime of 𝛼 = 0.

Equation (2.43) yields a relation between the mean radial inflow 𝑢
(2−2𝛿 )
𝑟 ,0 and the

vertical velocity Fourier modes 0 and 1 (cf. section 2.4.1):

1
𝑟

𝜕𝑟𝜌0𝑢
(2−2𝛿 )
𝑟 ,0

𝜕𝑟
+
𝜕𝜌0𝑤

(𝛼∗ )
0

𝜕𝑧
=

1
2
𝜕𝑿 (0)

𝜕𝑧
·
𝜕𝜌0𝒘

(𝛼∗ )
1

𝜕𝑟
(2.48)

Without friction there is no other driver for radial inflow except vertical mass fluxes,
hence this equation gives the leading-order radial velocity. In particular, the term
𝑢
(1+𝛼−𝛿 )
𝑟 ,0 of eq. (2.47) vanishes for 𝛼 = 0, as assumed by eq. (2.36d). It is driven by

both, Fourier modes 0 and 1 of vertical velocity. Together with the symmetrized radial
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flux components

𝑢
(2−2𝛿 )
𝑟 ,∗ :=

1
2
𝜕𝑿 (0)

𝜕𝑧
· 𝒘 (𝛼∗ )

1 , (2.49a)

𝑢
(2−2𝛿 )
𝑟 ,00 := 𝑢 (2−2𝛿 )

𝑟 ,0 − 𝑢 (2−2𝛿 )
𝑟 ,∗ , (2.49b)

we obtain
𝑢
(2−2𝛿 )
𝑟 ,00 = −1

𝑟

∫ 𝑟

0

𝑟 ′

𝜌0

𝜕

𝜕𝑧

(
𝜌0𝑤

(𝛼∗ )
0

)
𝑑𝑟 ′ . (2.50)

By projecting eq. (2.42) onto Fourier modes 0 and 1, i.e.,

𝑤
(𝛼∗ )
0

𝑑Θ1

𝑑𝑧
= 𝑄

(𝛼∗+1−𝛿 )
Θ,0 (2.51a)

𝑢
(0)
𝜃

𝑟
�̂�−𝜋/2𝚯

(3−2𝛿 )
1 + 𝒘 (𝛼∗ )

1
𝑑Θ1

𝑑𝑧
= 𝑸 (𝛼∗+1−𝛿 )

Θ,1 (2.51b)

Taking advantage of the projections of eqs. (2.40b) and (2.41) onto the Fourier 1 mode
we end up with the perturbation potential temperature dipole induced by the centerline
tilt:

𝚯(3−2𝛿 )
1
Θ0

= − 1
𝜌0

𝜕𝑝 (3−2𝛿 )

𝜕𝑟

𝜕𝑿 (0)

𝜕𝑧
(2.52)

Equation (2.51b) transforms into

𝒘 (𝛼∗ )
1 =

1
𝑑Θ1/𝑑𝑧

(
𝑸 (𝛼∗+1−𝛿 )

Θ,1 + �̂�−𝜋/2
Θ0

𝜌0

𝑢
(0)
𝜃

𝑟

𝜕𝑝 (3−2𝛿 )

𝜕𝑟

𝜕𝑿 (0)

𝜕𝑧

)
(2.53)

where the vertical velocity dipole takes a contribution due to diabatic heating and one
that is caused by and perpendicular to the centerline tilt.

The above derivations lead us to the conclusion that the radial influx splits into a
contribution (𝑢 (2−2𝛿 )

𝑟 ,00 ) due to symmetric diabatic heating (eq. (2.50)) and another one
(𝑢 (2−2𝛿 )

𝑟 ,∗ ) traced back to the projection of the vertical velocity dipole 𝒘 (𝛼∗ )
1 onto the tilt

vector 𝜕𝑧𝑿 (0) (cf. eq. (2.49a)). Since the vertical velocity contribution attributed to
a dipolar potential temperature perturbation is perpendicular to the tilt, it vanished in
the projection of eq. (2.49a) and the only projecting moment comes from the diabatic
heating dipole:

𝑢
(2−2𝛿 )
𝑟 ,∗ =

1
2
𝜕𝑿 (0)

𝜕𝑧
·
𝑸 (𝛼∗+1−𝛿 )

Θ,1

𝑑Θ1/𝑑𝑧
(2.54)

We shall emphasize that the attribution of diabatic heating to vertical velocity is an
artifact of the equations (2.1) that model atmospheric flows by dry dynamics. In
atmospheric fluid dynamics including moist thermodynamics as well as friction, vertical
motions can have different origin. Nevertheless, it is ultimately the projection (i.e., the
orientation) of asymmetric vertical motions relative to the centerline tilt that causes
an azimuthally mean radial inflow 𝑢

(2−2𝛿 )
𝑟 ,∗ additionally to the classical inflow due to

symmetric heating. We will come back to this discussion later.
In section 2.4.4, we will outline the construction of a leading-order solution to

eqs. (2.1) by an approximation to the streamfunction 𝜓. For the sake of matching
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the inner-core and quasi-geostrophic outer solution (in section 2.4.5) we introduce the
streamfunction for the inner-core as well, but due to the presence of diabatic heating,
we cannot assume the flow to be horizontally divergence-free on the expansion order at
which the inner solution is matched to the outer one.

At O
(
𝜀1) , radial and tangential components of the relative horizontal velocity are

expressed by the Helmholtz-Hodge decomposition in polar coordinates:

𝑢
(1)
𝑟 =

1
𝑟

𝜕𝜓 (1)

𝜕𝜃
+ 𝜕𝜙

(1)

𝜕𝑟
, (2.55a)

𝑢
(1)
𝜃

= −𝜕𝜓
(1)

𝜕𝑟
+ 1
𝑟

𝜕𝜙 (1)

𝜕𝜃
. (2.55b)

𝜓 is the streamfunction and 𝜙 is the velocity potential associated to the relative horizontal
velocity. In analogy with Päschke et al. (2012), by cross-differentiation eqs. (2.45)
and (2.46) and projecting to the Fourier-1 mode we find the elliptic equations(

𝜕2

𝜕𝑟2 + 1
𝑟

𝜕

𝜕𝑟
−

(
𝜕𝑟 𝜁

(0)

𝑢
(0)
𝜃

+ 1
𝑟2

))
𝝍 (1)

1 =
1

𝑢
(0)
𝜃

𝒌 × (H + I + J + Q)

≡ 1

𝑢
(0)
𝜃

𝒌 × K (2.56)

and

(
𝜕2

𝜕𝑟2 + 1
𝑟

𝜕

𝜕𝑟
− 1
𝑟2

)
𝝓 (1)

1 = − 1
𝜌0

𝜕

(
𝜌0𝒘

(𝛼∗ )
1

)
𝜕𝑧

+ 1
2
𝜕𝑿 (0)

𝜕𝑧

𝜕𝑤
(𝛼∗ )
0
𝜕𝑟

≡ 𝑹1 (2.57)

The definitions of H, I, J, and Q are given by

H = 𝜕𝑟

(
𝑟𝒘 (𝛼∗ )

1 𝜕𝑧𝑢
(2𝛿−1)
𝜃

)
, (2.58a)

I = 𝑟

(
𝜁 (0) + 2𝛼 𝑓0

)
𝑾1 , (2.58b)

J =

(
𝜕𝝓 (1)

1
𝜕𝑟

) (
𝑟
𝜕𝜁 (0)

𝜕𝑟

)
, (2.58c)

Q =

(
𝑤

(𝛼∗ )
0

𝑢
(0)
𝜃

𝑟
− 𝜕

𝜕𝑟

(
𝑟𝑤

(𝛼∗ )
0 𝜕𝑟𝑢

(0)
𝜃

)) 𝜕𝑿 (1−2𝛿 )

𝜕𝑧
(2.58d)

in conjunction with the definitions

𝑾1 = − 1
𝜌0
𝜕𝑧 (𝜌0𝒘

(𝛼∗ )
1 ) (2.59a)

𝜁 (0) =
1
𝑟

𝜕 (𝑟𝑢 (0)
𝜃

)
𝜕𝑟

. (2.59b)
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By radial integration and variation of constants we have integral expressions for 𝝍 (1)

and 𝝓 (1)
1 :

𝝓 (1)
1 = −𝑟

∞∫
𝑟

1
(𝑟 ′)3

𝑟 ′∫
0

𝑟2𝑹1 𝑑𝑟 𝑑𝑟
′ , (2.60)

𝝍 (1)
1 = 𝒌 ×

©«𝑢
(0)
𝜃

𝑟∫
0

1

𝑟 ′
(
𝑢
(0)
𝜃

)2

𝑟 ′∫
0

𝑟 (H + I + J + Q) 𝑑𝑟 𝑑𝑟 ′
ª®®¬ . (2.61)

The latter equation for the streamfunction is essential for the matching procedure as
outlined in section 2.3.2 and the result of which presented in section 2.3.2. Physically
speaking, the large-scale limit determines how the vortex core couples to the QG flow
which is guided at leading order solely by the streamfunction.

2.4.4. Large-Scale Quasi-Geostrophic Flow

To the end of entering the quasi-geostrophic regime, ubiquitously present in the
meteorological literature (Holton 2004), that resolves advective motions on horizontal
distances comparable to the synoptic scale, we rescale horizontal and time coordinates,
as given through the definitions of table 2.2, according to

𝒙 ∥ →
1
𝜀2 𝒙 ∥ , (2.62)

𝑡 → 1
𝜀2 𝑡 . (2.63)

This choice corresponds to a timescale that is by a factor 𝜀𝛼−𝛿 longer compared to the
turnover timescale of the vortex core (cf. eq. (2.33)). The horizontal scale, however, is
fixed to be of order ℎsc/𝜀2 ≈ 1000 km at subtropical latitudes.

Starting with eqs. (2.7) and transforming the coordinates according to eqs. (2.8), the
resulting equations are

𝜕𝜌

𝜕𝑡
+ ∇∥ · 𝜌𝒖 + 1

𝜀2
𝜕𝜌𝑤

𝜕𝑧
= 0 , (2.64a)

𝜕𝒖

𝜕𝑡
+ 𝒖 · ∇∥𝒖 + 1

𝜀2𝑤
𝜕𝒖

𝜕𝑧
+ 1
𝜀3

1
𝜌
∇∥ 𝑝+

1
𝜀
( 𝑓0 + 𝜀𝛽𝑦)𝒌 × 𝒖 = 0 , (2.64b)

𝜕𝑤

𝜕𝑡
+ 𝒖 · ∇∥𝑤 + 1

𝜀2𝑤
𝜕𝑤

𝜕𝑧
+ 1
𝜀5

1
𝜌

𝜕𝑝

𝜕𝑧
= − 1

𝜀5 , (2.64c)

𝜕Θ

𝜕𝑡
+ 𝒖 · ∇∥Θ + 1

𝜀2𝑤
𝜕Θ

𝜕𝑧
=

1
𝜀2𝑄Θ . (2.64d)

Note, that the modified length scale corresponds to an adjusted Rossby number
Rosyn = O(𝜀).
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Following Päschke et al. (2012), the asymptotic expansion scheme for the variables
reads

𝑝 = 𝑝0(𝑧) + 𝜀𝑝1(𝑧) + 𝜀2
(
𝑝 (2) (𝒙, 𝑧, 𝑡) + 𝑝2(𝑧)

)
+ 𝑜

(
𝜀2

)
, (2.65a)

𝜌 = 𝜌0(𝑧) + 𝜀𝜌1(𝑧) + 𝜀2
(
𝜌 (2) (𝒙, 𝑧, 𝑡) + 𝜌2(𝑧)

)
+ 𝑜

(
𝜀2

)
, (2.65b)

Θ = Θ0(𝑧) + 𝜀Θ1(𝑧) + 𝜀2
(
Θ(2) (𝒙, 𝑧, 𝑡) + Θ2(𝑧)

)
+ 𝑜

(
𝜀2

)
, (2.65c)

𝒖 = 𝒖 (0) + 𝜀𝒖 (1/2) + 𝜀𝒖 (1) + 𝑜(𝜀) , (2.65d)

𝑤 = 𝑤 (0) + 𝜀𝑤 (1) + 𝜀2𝑤 (2) + 𝜀3𝑤 (3) + 𝑜
(
𝜀3

)
. (2.65e)

In the same fashion, we denote horizontally homogeneous static background states
by (𝑝𝑖 , 𝜌𝑖 ,Θ𝑖) (𝑧) and dynamical modes by (𝑝 (𝑖) , 𝜌 (𝑖) ,Θ(𝑖) , 𝒖 (𝑖) , 𝑤 (𝑖) ). Here, we
introduced the general assumption that for an atmospheric state the thermodynamic
fields are static up to higher order. Furthermore, the potential temperature is constant
at leading order (Θ0 = const) and vertical variation enter at next-to-leading order
(𝑑Θ1/𝑑𝑧 ≠ 0) (Klein 2004, 2010).

Inserting the series expansions of eqs. (2.65) into eqs. (2.64) we reproduce the findings
of Päschke et al. (2012) that essentially resemble the quasi-geostrophic model equations:

• O
(
𝜀𝑖−5

)
:

𝜕 (𝑝 (𝑖) + 𝑝𝑖)
𝜕𝑧

= −𝜌 (𝑖) − 𝜌𝑖 for 𝑖 = 0, · · · , 5 (2.66)

• O
(
𝜀−2

)
:

𝜕𝜌0𝑤
(0)

𝜕𝑧
= 0 ⇒ 𝑤 (0) = 0 (2.67)

𝑤 (0) vanished due to the choice of boundary conditions 𝑤 |𝑧=0 = 0.

• O
(
𝜀−1

)
:

𝜕𝜌0𝑤
(1)

𝜕𝑧
+ 𝜕𝜌1𝑤

(0)

𝜕𝑧
= 0 ⇒ 𝑤 (1) = 0 (2.68)

1
𝜌0

∇∥ 𝑝
(2) + 𝑓0𝒌 × 𝒖 (0) = 0 (2.69)

• O
(
𝜀0

)
:

∇∥ ·
(
𝜌0𝒖

(0)
)
+
𝜕

(
𝜌0𝑤

(2) )
𝜕𝑧

= 0 (2.70)

𝜕𝒖 (0)

𝜕𝑡
+ 𝒖 (0) · ∇∥𝒖

(0) + 𝑤 (2) 𝜕𝒖
(0)

𝜕𝑧
+ 1
𝜌0

∇∥ 𝑝
(3) − 𝜌1

𝜌2
0
∇∥ 𝑝

(2)+

+𝛽𝑦𝒌 × 𝒖 (0) + 𝑓0𝒌 × 𝒖 (1) = 0 (2.71)
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• O
(
𝜀1

)
:

∇∥ ·
(
𝜌0𝒖

(1)
)
+
𝜕

(
𝜌0𝑤

(3) )
𝜕𝑧

= 0 (2.72)

𝑤 (2) 𝑑Θ
(1)

𝑑𝑧
= 𝑄

(3)
Θ

= 0 ⇒ 𝑤 (2) = 0 (2.73)

• O
(
𝜀2

)
:

𝜕Θ(2)

𝜕𝑡
+ 𝒖 (0) · ∇∥Θ

(2) + 𝑤 (3) 𝑑Θ
(1)

𝑑𝑧
= 𝑄

(4)
Θ

= 0 (2.74)

We draw conclusions for the expansion modes 𝑤 (0) , 𝑤 (1) , and 𝑤 (2) from the assumption
that corresponding modes of diabatic heating vanish. This is in line with the scaling of
section 2.4.3.

These expressions resemble some well-known properties of atmospheric flows in
the QG regime: The flow is hydrostatic, i.e., vertical pressure gradient is balanced by
mass density up to at least O

(
𝜀5) (eq. (2.66)). Equation (2.69) directly constitutes the

asymptotic formulation of the geostrophic balance. We find that the horizontal flow is
essentially divergence-free since eq. (2.70) together with eq. (2.73) yields

∇∥ · 𝒖 (0) = 0 . (2.75)

Defining 𝜓 (0) = − 𝑝 (2)

𝑓0𝜌0
and applying the cross product with 𝒌, we get from eq. (2.69)

𝒖 (0) = −𝒌 × ∇∥𝜓
(0) , (2.76)

hence, we identify 𝜓 as the streamfunction. As a result of eq. (2.72), the flow is anelastic
at next-to-leading order.

For reproducing the findings of Päschke et al. (2012) that are essential to the construc-
tion of the asymptotic TC model, we introduce the relative vorticity 𝜁 = 𝒌 · (∇∥ × 𝒖)
obtaining the governing equation

𝜕 (𝜁 (0) + 𝛽𝑦)
𝜕𝑡

+ 𝒖 (0) · ∇∥ (𝜁 (0) + 𝛽𝑦) + 𝑓0∇∥ · 𝒖 (1) = 0 (2.77)

at leading order from eq. (2.71). QG Potential vorticity is defined as

𝑞 (0) = 𝜁 (0) + 𝛽𝑦 + 𝑓0

𝜌0

𝜕

𝜕𝑧

(
𝜌0Θ

(2)

𝑑Θ1/𝑑𝑧

)
(2.78)

which, since diabatic heating couples at higher than fourth order, is constant along
horizontal trajectories:

𝜕𝑞 (0)

𝜕𝑡
+ 𝒖 (0) · ∇∥𝑞

(0) = 0 . (2.79)

Päschke et al. (2012) continues the derivation with the elliptic equation

(∇2
∥ + L𝑧)𝜓 (0) = −𝑞 (0)rel := 𝑞 (0) − 𝛽𝑦 (2.80)
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for the relative potential vorticity 𝑞rel introducing the second-order differential operator

L𝑧 (·) =
𝑓 2
0
𝜌0

𝜕

𝜕𝑧

(
𝜌0

𝑑Θ1/𝑑𝑧
𝜕

𝜕𝑧
·
)

(2.81)

These expressions are the result of eq. (2.76) and eq. (2.78). Relative potential vorticity
is not necessarily regular, i.e., may only be defined by means of distributions. As we
outlined in section 2.4.3, the inner core region is resolved by a separate asymptotic
regime constituted on a horizontal length scale which is by a factor 𝜀1−𝛼, 𝛼 ≥ 0, smaller
than the present synoptic scale. Since we require the asymptotic approximation to
converge as 𝜀 → 0, the very idea of asymptotic analysis, the scale separation becomes
infinite, yet leaving the large-scale behavior of the inner-core solution unchanged, hence
core structures shrink to a singularity. For an analytical treatment, it is thus beneficial
to split 𝑞rel into singular (inner core) and regular (QG) parts,

𝑞rel = 𝑞𝑠 + 𝑞𝑟 , (2.82)

where the singular part representing the point vortex is expressed by Dirac delta
distribution focused at the centerline position 𝑿 (𝑧, 𝑡):

𝑞𝑠 (𝒙, 𝑧, 𝑡) = Γ(𝑡, 𝑧)𝛿2(𝒙 − 𝑿 (𝑧, 𝑡)) (2.83)

with the expansion for the total circulation Γ and the centerline position 𝑿

Γ = Γ (0) + 𝜀Γ (1) + 𝑜(𝜀) (2.84a)

𝑿 = 𝑿0(𝑡) + 𝜀1−𝛼𝑿 (0) (𝑧, 𝑡) + 𝑜
(
𝜀1−𝛼

)
. (2.84b)

𝑿 induces a tilted polar coordinates system (𝑟, 𝜃, 𝑧) with

𝑟 := ∥𝒙 − 𝑿∥ and tan 𝜃 :=
(𝒙 − 𝑿) · 𝒋
(𝒙 − 𝑿) · 𝒊 . (2.85)

As solution to eq. (2.80), Päschke et al. (2012) constructed the following streamfunction
which we employ as an ansatz adapted to our scaling:

𝜓 = −Γ(𝑧, 𝑡)
2𝜋

ln 𝑟 + 𝑀0𝑟
2(ln 𝑟 − 1) + 𝜀1−𝛼𝑀1𝑟 ln 𝑟 − 𝜀2−2𝛼𝑀2 + 𝜓∗

2 (2.86)

with the abbreviations

𝑀0 =
1

8𝜋
𝑓 2
0
𝜌0

𝜕

𝜕𝑧

(
𝜌0

𝑑Θ1/𝑑𝑧
𝜕Γ

𝜕𝑧

)
, (2.87a)

𝑀1 = −
𝑓 2
0

4𝜋𝜌0Γ

𝜕

𝜕𝑧

(
𝜌0Γ

2

𝑑Θ1/𝑑𝑧
𝜕𝑿 (0)

𝜕𝑧

)
· 𝒆𝑟 = −𝑴1 · 𝒆𝑟 , (2.87b)

𝑀2 =
𝑓 2
0 Γ

8𝜋𝑑Θ1/𝑑𝑧

((
𝒆𝜃 ·

𝜕𝑿 (0)

𝜕𝑧

)2

−
(
𝒆𝑟 ·

𝜕𝑿 (0)

𝜕𝑧

)2)
. (2.87c)

Owing to that, the singular part of 𝜓 has an explicit representation while the regular
part 𝜓∗

2 is governed by (
∇

2
∥ + L𝑧

)
𝜓∗

2 = −L𝑧𝜓
2𝑑
1 − 𝑞𝑟 , (2.88)

where
𝜓2𝑑

1 = 𝑀0𝑟
2(ln 𝑟 − 1) + 𝜀1−𝛼𝑀1𝑟 ln 𝑟 − 𝜀2−2𝛼𝑀2 , (2.89)

and can be solved by numerical means.
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2.4.5. Matching of Inner and Outer Solution

During the derivations of sections 2.4.3 and 2.4.4 we observed that the inner vortex
core solution takes the centerline position, its time and vertical derivatives into account,
that encodes the large-scale structure of the storm. The outer synoptic-scale solution
couples to the inner core flow by the large-𝑟 tail of the horizontal velocity. For the sake
of clarity, here we use 𝑟 and 𝑡 as coordinates scaled to the inner core flow, whereas we
remain with 𝑟 and 𝑡 scaled to the QG regime, i.e., 𝑟 = 𝜀1−𝛼𝑟 and 𝑡 = 𝜀𝛿−𝛼𝑡.

Without further assumption, following Päschke et al. (2012), we have

�̂� (1−𝛼)𝑇𝐸 (1−𝛼)𝒖 = �̂� (1−𝛼)𝑇𝐸 (1−𝛼) (
−𝒌 × ∇∥𝜓

)
= 𝒖 (0)

0 + 𝜀1−𝛼
(
𝒖 (1−𝛼)

0 + 𝑿 (0) · (∇∥𝒖) (0)0

)
+

+
(

1
𝜀1−𝛼

Γ

2𝜋𝑟
− 𝜀1−𝛼𝑀0𝑟

(
2 ln 𝑟 − 1 + 2 ln 𝜀1−𝛼

))
· 𝒆𝜃+

+ 𝜀1−𝛼𝑟𝒆𝑟 · (∇∥𝒖) (0)0 +

+ 𝜀1−𝛼

((
ln 𝑟 − ln

1
𝜀1−𝛼

)
𝒌 × 𝑴1 + (𝑴1 · 𝒆𝑟 )𝒆𝜃

)
(2.90)

for the near-field limit of the QG velocity. 𝑴1 is defined by eq. (2.87b) and 𝒖0
accounts for the regular QG flow −𝒌 × ∇∥𝜓

∗
2 evaluated at the coordinate center

𝒙 = 𝑟𝒆𝑟 + 𝑿 = 0. Expressions involving (∇∥𝒖) (0)0 resemble the first-order terms of the
Taylor approximation.

We now have to find corresponding expressions of the far-field behavior of the
inner-core flow at the individual orders. To this end, we generalize Päschke et al.’s
(2012) eq. (5.8) to

�̂� (1−𝛼)𝑇𝒖 = �̂� (1−𝛼)
(
𝜕𝑿

𝜕𝑡
+ 𝑢𝑟 𝒆𝑟 + 𝑢𝜃 𝒆𝜃

)
(2.91a)

= 𝜀𝛼−𝛿 𝑑𝑿0

𝑑𝑡
+ 𝜀1−𝛿 𝜕𝑿

(0)

𝜕𝑡
+

+ 𝜀1−𝛿𝑢
(1)
𝑟 𝒆𝑟 +

1
𝜀𝛿

(
𝑢
(0)
𝜃

+ 𝜀𝑢 (1)
𝜃

)
𝒆𝜃 + 𝑜

(
𝜀1−𝛿

)
(2.91b)

= 𝜀𝛼−𝛿 𝑑𝑿0

𝑑𝑡
+ 𝜀1−𝛿 𝜕𝑿

(0)

𝜕𝑡
+

+ 1
𝜀𝛿
𝑢
(0)
𝜃

𝒆𝜃 + 𝜀1−𝛿
(
∇̂𝜙 (1) − 𝒌 × ∇̂𝜓 (1)

)
+ 𝑜

(
𝜀1−𝛿

)
. (2.91c)

Same as Päschke et al. (2012), we assume the diabatic heating to be localized such that
we can conclude that the velocity potential vanished in the far-field limit:

lim
𝑟→∞

∇̂𝜙 (1) = 0 (2.92)

Further, we examine the asymptotic behavior of the solenoidal contribution −𝒌 × ∇̂𝜓 (1) .
Expressing 𝜓 (1) in terms of its Fourier-modes, we have

−𝒌 × ∇̂𝜓 (1) = 𝑢 (1)
𝜃,0 − 𝒌 ×

𝝍 (1)
1
𝑟

− 𝑟𝒆𝜃
𝜕

𝜕𝑟

(
𝒌 × 𝝍 (1)

1
𝑟

)
· 𝒆𝜃 − 𝒌 × ∇̂𝜓

(1)
2 . (2.93)
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Here, −𝜕𝑟𝜓 (1)
0 ≡ 𝑢 (1)

𝜃,0. Subscripts to 𝜓 (1) refer to the corresponding Fourier modes. For
𝝍 (1)

1 , we found the solution by eq. (2.61) for which we now want to derive the far-field
limit. To this end, we define the integral operator

𝐿 [K] : = lim
𝑟→∞


𝑢
(0)
𝜃

𝑟

𝑟∫
0

1

𝑟 ′
(
𝑢
(0)
𝜃

)2

𝑟 ′∫
0

𝑟K(𝑟) 𝑑𝑟 𝑑𝑟 ′


=
𝜋

Γ (1−𝛼−𝛿 )

∞∫
0

𝑟K(𝑟) 𝑑𝑟 , (2.94)

The latter equality uses L’Hôspital’s rule and the fact that 𝑢 (0)
𝜃

→ Γ (1−𝛼−𝛿 )/2𝜋𝑟 for
𝑟 → ∞. This is a direct result of matching the inner-core axisymmetric tangential
velocity to the point vortex limit of the outer QG solution:

lim
𝑟→∞

𝑢𝜃 =
1

𝜀1−𝛼

Γ

2𝜋𝑟
(1 + 𝑜(1))

=
1
𝜀𝛿

(
𝑢
(0)
𝜃

+ 𝜀𝑢 (1)
𝜃,0 + 𝑜(𝜀)

)
(2.95)

Note, that for scaling of Päschke et al. (2012) with 𝛼 = 𝛿 = 1/2, we reproduce the
correspondence of 𝑢 (0)

𝜃
and Γ (0) . For the scaling with 𝛼 = 0 and 𝛿 = 1/2, however, the

leading-order of the circulation enters at O
(
𝜀1/2) . In particular, this implies Γ (0) = 0.

In the original derivations, substantial effort was spent on the limiting behavior of
eq. (2.94). Particularly, the term 𝐿 [I] (with I defined through eq. (2.58b)) needed
special treatment in that the logarithmic tail was split off:

𝐿 [I] = 𝐿 [ Ĩ] + 2𝛼 ln 𝑟𝒌 × 𝑴1 (2.96)

The term proportional to 𝑴1 is the result of the Coriolis term present in the pressure
gradient eq. (2.38) for the gradient-wind regime (𝛼 = 𝛿 = 1/2). In case of 𝛼 = 0, this
term is relegated to higher orders and so is the logarithmic tail. We account for this
circumstance by introducing the factor 𝛼 (in eq. (2.33)) that acts as a switch between the
two scaling regimes. Hence, we can elegantly summarize both regimes and end up with

𝝍 (1) → 𝑟 (𝚿 − 2𝛼 ln 𝑟𝑴1) as 𝑟 → ∞. (2.97a)

where

𝚿 := 𝒌 × 𝐿 [H + Ĩ + J + Q] (2.97b)

𝚿 as the definite integral w.r.t. 𝑟 is independent of it. In summary, for the far-field limit
of the inner-core solution we get

�̂� (1−𝛼)𝑇𝒖𝐸 (1−𝛼)𝑇−1�̂� (1−𝛼)𝑇𝒖 =
𝑑𝑿0

𝑑𝑡
+ 𝜀1−𝛿 𝜕𝑿

(0)

𝜕𝑡
+ 𝜀−𝛿

(
𝑢
(0)
𝜃

+ 𝜀𝑢 (1)
𝜃,0

)
𝒆𝜃 −

− 𝜀1−𝛿𝒌 × 𝚿 − 𝜀1−𝛿𝒌 × ∇̂𝜓
(1)
2 +

+ 2𝛼𝜀1−𝛿 (ln 𝑟𝒌 × 𝑴1 + (𝑴1 · 𝒆𝑟 )𝒆𝜃 ) . (2.98)
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For the final matching, we again recognize that 𝑴1 effectively vanishes in case of 𝛼 = 0
(by being of O

(
𝜀1/2) due to 𝑢 (0)

𝜃
→ Γ (1/2)/2𝜋𝑟). This allows us to cancel the last line

of eq. (2.90). That, together with the original derivation of Päschke et al. (2012) for
𝛼 = 1/2, we end up with the generalized centerline equation of motion

𝜕𝑿 (0)

𝜕𝑡
= 𝒖 (1−𝛼)

0 + 𝑿 (0) · (∇∥𝒖) (0)0 + 𝛼 ln(𝜀) (𝒌 × 𝑴1) + 𝒌 × 𝚿 . (2.99)

Remark. In fact, the above reasoning for matching the circulation allows for another
conclusion: If we consider the inner-core regime with 𝛼 = 0 and 𝛿 = 1, the inner-core
leading-order tangential velocity 𝑢𝜃 becomes O

(
𝜀−1) that again leads to the far-field

limit 𝑢𝜃 → Γ/2𝜋𝑟. We find that at an intermediate scale of 𝜀−1/2𝐿meso = O(300 km),
i.e., the inner-core scale of Päschke et al. (2012), 𝑢𝜃 = O

(
𝜀−1/2) , that is already

accounted for by the original theory, only that the higher core velocities need to be
matched by larger centerline velocities, which is covered by the rescaled inner-core
timescale (cf. eq. (2.34)). Hence, there is a trivial extension to even stronger storms,
the details of which we leave to future work.

2.5. Circulation-Free Meso-Vortices Embedded in QG
Far-Field

The matched asymptotic analysis of section 2.4 revealed that the inner core solution
couples to the large-scale flow via the streamfunction that is induced by the inner core’s
circulation. We found the limiting expression for the integral operator 𝐿 in eq. (2.94)
that enters the definition of 𝚿 in eq. (2.97b) provided the circulation Γ is finite. Not
only for the sake of the physical relevance of the scenario, we now want to deal with the
situation of vanishing circulation. In general, diabatic heating can lead, at least locally,
to such a solution, and we need a special treatment in this limit to maintain stability of
the numerical integration scheme presented in chapter 4.

It is trivial to show that the terms 𝑀0, 𝑀1, and 𝑀2 vanish with Γ → 0 (cf. eqs. (2.87)
and use L’Hôspital’s rule). The remaining term of the streamfunction is

𝜓 = 𝜓∗
2 . (2.100)

Together with eq. (2.88), we find that with vanishing circulation Γ the streamfunction
solely depends on the regular distribution of large-scale potential vorticity 𝑞𝑟 (𝜓∗

1
vanishes with 𝑀0, 𝑀1, and 𝑀2). When matching the outer solution of 𝜓 = 𝜓∗

2 to
the inner core solution we find no corresponding term since in the limit 𝑟 → ∞ the
circulation and with that the streamfunction vanishes.

We conclude that in the limit of a circulation-free meso-vortex embedded into a
large-scale QG flow the terms in eq. (2.99) proportional to 𝑴1 and 𝚿 vanish. The
centerline equation becomes

𝜕𝑿 (0)

𝜕𝑡
= 𝒖 (0)

0 + 𝑿 (0) · (∇∥𝒖) (0)0 . (2.101)

The vortex is completely driven by external forcing and does not feed back to the QG
flow! With Γ being a function of 𝑧 and 𝑡, however, this statement is valid only locally.
For the numerical treatment in chapter 4, the implementation of eq. (2.99) is adapted to
use eq. (2.101) wherever Γ becomes small.
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3. Analysis of Leading-Order Equations

In chapter 2 we revisited the derivation of the asymptotic model equations for a tilted
TC under the influence of diabatic heating and vertical wind shear. So far, the insights
gained by the two-scale matched asymptotic analysis was on a purely mathematical
level. Next to further analytical understanding, we now want to focus on the physical
interpretation of the revealed mechanisms and provide some qualitative explanations of
the dynamics of vortex structure and intensity. These examinations serve as a basis for
the subsequent construction of numerical solution strategies (chapter 4) as well as for
the design of the experiments presented in chapters 5 and 6.

3.1. Principles of TC Intensification by Diabatic Heat
Release

The foremost goal of our investigation on the asymptotic theory on tilted TCs is to
understand how diabatic heating, as a model for the actual physical processes related to
heat exchange, is driving the dynamics of the structure and the intensity of a TC. To this
end, we will analyze how both, the centerline equation (2.99) and the tangential wind
equation (2.47) behave under the influence of diabatic heat release. In the following
subsections we will focus on the model’s prediction in terms of linear and angular
momentum as well as kinetic energy balances and establish relations to existing theories.

3.1.1. Linear Momentum Balance

The possibly most valuable predictive feature of the present theory is given in the form
of the tangential wind equation (2.47). Converted back to an equation with physical
dimensions we have the leading-order equation

𝜕𝑢𝜃

𝜕𝑡
+ 𝑢𝑟 ,00

𝜕𝑢𝜃

𝜕𝑟
+ 𝑤0

𝜕𝑢𝜃

𝜕𝑧
= −(𝑢𝑟 ,00 + 𝑢𝑟 ,∗)

(𝑢𝜃
𝑟

+ 𝑓

)
. (3.1)

𝑢𝑟 ,00, 𝑢𝑟 ,∗, and𝑤0 follow the definition of their non-dimensional asymptotic counterparts
(cf. eqs. (2.49) and (2.51a)).

First, we focus on the symmetric contributions of diabatic heating to the secondary
circulation which are encoded in 𝑢𝑟 ,00 and 𝑤0. The latter is the — in the tilted polar
coordinate system — azimuthally averaged vertical velocity, i.e., the azimuthal Fourier-0
mode of the vertical velocity field 𝑤, and result of 𝑄Θ,0, the Fourier-0 mode of diabatic
heating. As exemplified in fig. 3.1, due to mass conservation (2.43), 𝑢𝑟 ,00 is tied to 𝑤0:
The mass displacement by upward moving air parcels is compensated by radial motions.
While𝑤0 and 𝑢𝑟 ,00 on the left-hand side of eq. (3.1) resemble the axisymmetric advective
motion of air parcels in the 𝑟-𝑧-plane, the source term proportional to 𝑢𝑟 ,00 on the
right-hand side is responsible for acceleration and accounts for conservation of angular
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Figure 3.1.: Schematic secondary circulation induced by symmetric vertical velocity.
Streamlines of the resulting flow in the 𝑟-𝑧-plane are displayed in black
whereas vertical and radial components of the flow are shown in color
shades and contour lines. Negative and positive contributions are shown in
blue and red, respectively. Quantities are shown in arbitrary units. Note,
however, the strong exaggeration of the negative part of vertical velocity.

momentum (cf. section 3.1.2). This coupling of diabatic heating to the dynamics of an
atmospheric vortex essentially resembles the secondary circulation accounted for the
TC intensification throughout the literature (for a summary of the recent understanding,
consult Montgomery and Smith 2017b, and references therein). Since the vertical
velocity is the result of an externally imposed diabatic heating, however, and no explicit
closure is provided on how the vertical velocity depends on the solution (𝑿, 𝑢𝜃 ), there
is no further connection to the notions of CISK (Charney and Eliassen 1964) or WISHE
(Emanuel 1991), that hypothesize on the causality between radial surface inflows and
vertical updrafts.

𝑢𝑟 ,∗ on the other hand is the result of the projection of the vertical velocity Fourier-1
mode 𝒘1 onto the tilt vector 𝜕𝑧𝑿 (cf. eq. (2.49a)). Figure 3.2 demonstrates the origin
of this radial velocity component: Due to the tilt of the vortex, a vertical velocity
dipole may cause a net outflow (inflow) of mass through the boundaries of the tilted
control volume given by a radius 𝑟 and infinitesimal height Δ𝑧. Leading-order mass
conservation (2.43) ensures that an equally sized radial mass influx (outflux) must
compensate it. Radial mass flux, however, means tangential acceleration (deceleration)
of air parcels along their trajectory due to angular momentum conservation. It is thus
the orientation of the vertical velocity Fourier-1 mode relative to the tilt vector that
determines whether the storm (locally) intensifies or attenuates.

We now focus on the effect of diabatic heating on the centerline motion. In
section 2.4.3, we found that for a tilted vortex the vertical velocity possesses an adiabatic
contribution in the form of a dipolar field that is perpendicular to the tilt vector, hence
it does not contribute to intensity changes. It is, however, the full vertical velocity
dipole, i.e., the sum of diabatic and adiabatic contributions, that induces Fourier-1
modes of radial and tangential velocity. In the far-field limit these velocity components
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3.1. PRINCIPLES OF TC INTENSIFICATION BY DIABATIC HEAT RELEASE

Figure 3.2.: Mass flux through boundary of control volume. In the present example,
the antiparallel orientation of vertical velocity dipole and tilt vector causes
mass to leave the control volume. Radial influx (𝑢𝑟 ,∗ < 0) compensates
for the mass deficit while transporting angular momentum to smaller radii
which leads to acceleration.

Figure 3.3.: Horizontal motions induced by dipolar vertical velocity. Next to the
centerline (thick black line in the center), red and blue structures depict
regions of up- and downdrafts, here in the configuration of an adiabatic,
tilted vortex, that draw in air either on the bottom (updraft) or the top
(downdraft) and eject it on the top or bottom, respectively (streamlines
indicated by black arrows). The resulting net flow on top and bottom is
depicted by the large gray arrows.
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accumulate to

𝒖ff = −𝒌 × 𝚿 + 2𝛼 ln 𝑟𝒌 × 𝑴1 + 2𝛼 ((𝒌 × 𝑴1) · 𝒆𝜃 ) 𝒆𝜃 , (3.2)

which are given in the coordinate system attached to the centerline position. As discussed
during the matching procedure (cf. section 2.4.5), this velocity field has to be matched
to the outer QG solution given in earth-relative coordinates. In the matching procedure
of section 2.4.5, we concluded that the last terms of eq. (3.2) finds a counterpart in
the (earth-relative) near-field limit of the QG solution; similarly the second term has a
counterpart in the QG solution and, due to the coordinate rescaling, degenerates to the
logarithmic term in the centerline equation (2.99). Hence, eq. (3.2), posing the flow
relative to the centerline, is reinterpreted in earth-relative coordinates to the centerline
motion plus the near-field limit of the QG flow. As we will see in section 3.2, 𝚿
essentially depends on contributions of symmetric and asymmetric diabatic heat release.
Concentrating on the latter one and discarding symmetric heating for the moment, we
can conclude that it is the vertical velocity dipole that induces centerline-relative motions
encoded in the far-field limit of the streamfunction 𝜓 (1) in the centerline coordinate
system. In earth-relative coordinates, these relative motions translate into the centerline
motion in terms of precession, tilting/aligning or a linear superposition of that.

A bit more intuitive explanation of eq. (3.2) is given with fig. 3.3. Each (positive
and negative) column of vertical velocity along the centerline causes inflow into the
column where the vertical gradient of 𝑤 is positive and outflow in the negative gradient
case. Figure 3.3 demonstrates a simplified setting where tilt direction is constant and tilt
amplitude maximal in the middle layers. Near the bottom the “positive” (red) column
draws air in while the “negative column” (blue) pushes air out. Both effects partially
compensate each other in the inner region between the two columns by forming a closed
circuit, i.e., mass outflux from the negative column equals the mass influx into the
positive column. There is, however, a net effect due to the inflow from larger radii into
the positive column and outflow from the negative column towards larger radii that have
the same direction. This effect causes air to enter the vortex on one side and exit on the
opposite side. In total, as this description was conducted from the viewpoint relative
to the centerline coordinates, the net motion of air in the co-moving frame must be
compatible with a motion in an earth-relative coordinate description. If we assume the
vortex to be embedded into an environment at rest1, this can only mean that the vortex
itself is moving with a velocity of same magnitude and opposite sign. Combining these
considerations with the analogous finding for the top region where the net motions have
opposite sign (due to the inverse sign of the vertical gradients of 𝑤) the motion of the
three-dimensional structure resembles — for the adiabatic case where 𝒘1 is rotated
−90◦ relative to the tilt vector — the precession of the centerline.

Diabatic heating alters this picture in that it may add a component to the vertical
velocity that projects onto the Fourier-1 mode. In comparison to the adiabatic motion,
the net effect may be a rotation (and change in amplitude) of the resulting vertical
velocity dipole which — analogous to the discussion above — leads to a net horizontal
velocity at top and bottom of the vortex, cf. fig. 3.4. Since in this setting the vertical
velocity dipole does not necessarily have to be orthogonal to the tilt vector, diabatic

1Which is true for 𝛼 = 0

42



3.1. PRINCIPLES OF TC INTENSIFICATION BY DIABATIC HEAT RELEASE

Figure 3.4.: Same as fig. 3.3 but vertical velocity dipole is rotated due to contribution
from diabatic heating.

heating can induce far-field motions that are parallel/antiparallel to the tilt vector leading
to further tilting or vertical alignment of the centerline.

We conclude that heating downtilt, i.e., a configuration where the tilt and diabatic
heating dipole vectors are parallel to each other leads to a superposition of precession
and vertical alignment while the opposite orientation (uptilt heating) causes a further
tilting of the centerline in conjunction with precession. (In both situations, precession
is the result of the adiabatic vertical velocity dipole.) Together with the conclusion
drawn from eq. (3.1) we can associate vertical alignment with decreasing intensity.
Asymmetric diabatic heating that leads to intensification, however, goes along with the
stretching (misalignment) of the centerline.

3.1.2. Angular Momentum Balance

With the definition of specific angular momentum (Schubert and Hack 1983),

𝑀 := 𝑟𝑢𝜃 +
1
2
𝑓 𝑟2 (3.3)

we find from eq. (3.1) the specific angular momentum balance

𝜕𝑀

𝜕𝑡
+ 𝑢𝑟 ,00

𝜕𝑀

𝜕𝑟
+ 𝑤0

𝜕𝑀

𝜕𝑧
= −𝑢𝑟 ,∗(𝑢𝜃 + 𝑓 𝑟) . (3.4)

It reveals that in the tilted polar coordinate system, purely symmetric diabatic heating
(i.e. 𝑢𝑟 ,∗ ≡ 0) causes redistribution of angular momentum, only. Local intensification of
tangential wind speed is thus due to the replacement of fluid parcels of lower angular
momentum by such of higher angular momentum. Whether the vortex gets accelerated
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Figure 3.5.: Two different radial profiles of tangential velocity and resulting angular
momentum. Top left panel shows 𝑢𝜃 ∼ 1/𝑟 as 𝑟 → ∞ and bottom left panel
the corresponding angular momentum in the cyclostrophic regime ( 𝑓 ≡ 0).
Top and bottom right panels show tangential velocity with 𝑢𝜃 ∼ 1/𝑟3

as 𝑟 → ∞ and corresponding angular momentum. All quantities are in
arbitrary units.

by symmetric diabatic heating depends on the radial profile of tangential velocity.
The left panels of Figure 3.5 demonstrate that for typical radial velocity profiles with
long-range tail ∼ 1/𝑟, the resulting angular momentum is a monotonously increasing
function of 𝑟 and inward moving air parcels near the bottom transport high angular
momentum inwards and with that accelerate in tangential wind speed. If the tangential
velocity profile differs (see right panels of fig. 3.5), it is possible that the angular
momentum is not monotonous anymore, at least in the cyclostrophic limit (where 𝑓 is
vanishing). In that case, it depends on the positioning of the heating whether inward
motions higher or lower the local value of angular momentum.

The asymmetric component of diabatic heating, encoded by 𝑢𝑟 ,∗, however, introduces
a source term on the right-hand side of eq. (3.4), i.e., along the trajectories of the
secondary circulation, that is proportional to the scalar product of 𝒘1 and 𝜕𝑧𝑿. With the
negative sign on the right-hand side of eq. (3.4) and 𝑢𝜃 + 𝑓 𝑟 being positive for cyclonic
motions on the Northern Hemisphere2, intensification corresponds to a negative sign of
𝑢𝑟 ,∗.

At first glance, it appears to be unphysical that angular momentum can be created.
The explanation can be found in the geometry of the fluid structure and the choice of
centerline-adapted coordinates: Following Noether’s (1918) theorem, every conserved

2The theory is of course also valid on the Southern Hemisphere. In this case, both, 𝑢𝜃 and 𝑀 are negative
and intensification is associated to a positive sign of 𝑢𝑟 ,∗.
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×
𝑢𝜃 (𝑟) ×

�̃�𝜃 (𝒓) = 𝑢𝜃 (∥𝒓 − 𝑿∥)
𝑡 → ∞

𝐶 (𝑅)

Figure 3.6.: Misalignment of an axisymmetric vortex (Two-dimensional projection).
Shown are two example streamlines (solid) of a centered (black) and an
off-centered (gray) flow field of circular structure. The angular momentum
is computed as the integral of fluid elements contained within the cylinder
𝐶 (𝑟) (dotted).

quantity is associated to a symmetry of the system. In case of angular momentum
the corresponding symmetry would be with respect to rotations about the center of
the coordinate system. As long as the vortex is upright, i.e., 𝜕𝑧𝑿 ≡ 0, the centerline
prescribes a cylindrical coordinate system and the rotation symmetry is maintained. In
fact, in this situation 𝑢𝑟 ,∗ ≡ 0 independently of the orientation of 𝒘1. (Hence, there
exists no orientation of 𝒘1 for which the vortex changes its intensity!)

A tilted vortex, however, breaks this very symmetry and thus angular momentum is
not a conserved quantity in the tilted coordinate system, anymore. Angular momentum
can be extracted from or injected to the system by a suitable alignment of 𝒘1 relative
to the tilt vector. The picture becomes more comprehensive when considering the
vortex to be embedded into a larger system in which angular momentum is a conserved
quantity.3 Total angular momentum then consists of the vortex’ contribution (in
centerline coordinates) and another one that accounts for the embedding of the whole
vortex into environment, i.e., the precession of the centerline (and earth’s rotation).
In that context vortex intensification means decreasing the angular momentum of the
embedding and increasing it for the vortex. In fact, intensification of 𝑢𝜃 goes along with
increasing the centerline tilt.

A slightly less abstract but equivalent explanation is found in considering an ax-
isymmetrically circulating flow field: In a cylindrical coordinate system the vertical
component of (relative) angular momentum of the fluid bulk is given by the radius-
weighted volume integration of azimuthal momentum over a cylinder with radius 𝑅 and
height 𝑍:

𝐿 = 𝒌 ·
∫

𝐶 (𝑅,𝑍 )

𝜌(𝒓)𝒓 × 𝒖(𝒓) 𝑑3𝑟 =

𝑅∫
0

2𝜋∫
0

𝑍∫
0

𝜌(𝒓)𝑟2𝑢𝜃 𝑑𝑟 𝑑𝜃 𝑑𝑧 (3.5)

This situation is illustrated in fig. 3.6. If an axisymmetric flow field is centered in the
coordinate origin the velocity completely projects onto the azimuthal component (in

3To a higher degree the whole earth in a coordinate frame relative to the fixed stars is such a system.
Considering the cyclostrophic regime, the background in the Coriolis-free limit is approximately
rotationally invariant.
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that coordinate system). An off-centered flow field, however, partially projects onto
the azimuthal and the radial components with mixed sign, ultimately diminishing the
integral measure compared to the centered flow field. If the off-centered flow field
were to be shifted towards the center of the cylindrical coordinate system without
changing its structure this would mean an increase in angular momentum. Conservation
of angular momentum (without applying external torque) requires the increase of
angular momentum, caused by the shift of the circulation center, to be compensated
by decreasing velocity of the flow field that projects onto the azimuthal coordinate
direction. Hence, neglecting the effects of symmetric diabatic heating and the resulting
global transport of angular momentum by the secondary circulation, vertical alignment
of a tilted vortex by purely asymmetric heating must coincide with the reduction of
intensity and vice versa.

Schecter, Montgomery, and Reasor (2002) reason similarly, yet in a different flavor,
in that they state that “any increase in the (PV weighted) mean square radius4 of the
skirt requires a decrease in the mean square radius of the core”, which means that the
core angular momentum increases at the cost of the skirt’s angular momentum.

The break in symmetry of the fluid flow allows for the extraction of energy from the
asymmetric component of vertical velocity that is in general associated to unorganized
convection and store it into kinetic energy of the symmetric component of the primary
circulation (see also the next section), and therefore in its angular momentum, by
favorable alignment of the vortex asymmetric structure, i.e., the tilt, and the asymmetric
heating. This is a remarkable example of the ability of atmospheric flows to self-organize
by channeling energy released in asymmetric patters into symmetric flow structures!

3.1.3. Energetic Balance

Now, we make use of the analytical findings of the asymptotic theory presented in
chapter 2. As we will see there is a strong connection to Lorenz’s (1955) theory on
available potential energy (APE) that will help us to understand intensity changes due
to diabatic heating on a deeper level. To this end we will derive a leading-order energy
balance equation from the tangential momentum equation (3.1) and further set it into
relation to the expression given by Lorenz (1955).

In Lorenz’s (1955) seminal work on the energetics of (global) atmospheric motions,
he claimed that kinetic energy is the result of imbalanced atmospheric states which lead
to redistribution of air masses, hence to their acceleration. What he coined total potential
energy (TPE) is the sum of the system’s potential energy (within the gravitational field
of the earth) and thermal energy. Due to hydrostatic balance, which is satisfied to very
high order in a regular atmosphere, these two energy forms are maintained in constant
ratio to each other and can be combined.

For every given atmospheric state at rest, there exists a state of minimal TPE that can
be attained by redistributing air parcels adiabatically. Hence, there is no atmospheric
state possible with lower TPE (when maintaining total mass and chemical composition).
That is the atmospheric state achieved after friction diminished all motions. The
difference between the system’s actual TPE and the minimal one is called APE and

4The term PV weighted mean square radius is used synonymously with canonical angular momentum,
i.e., with eq. (3.5).
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accounts for the energy available for conversion into kinetic energy. Lorenz (1955)
derived the balance relations

𝑑 �̄�

𝑑𝑡
= 𝐺 − 𝐶 (3.6a)

𝑑�̄�

𝑑𝑡
= 𝐶 − 𝐷 (3.6b)

accounting for the rate of change of APE, denoted by 𝐴, and the kinetic energy 𝐾 . For
the generation of APE, 𝐺, and the conversion rate to kinetic energy, 𝐶, he provided the
integral expressions

𝐺 =
1
𝑔

𝑝𝑠∫
0

Γ𝑑

Γ𝑑 − Γ̄

𝑇 ′𝑄′

𝑇
𝑑𝑝 (3.7a)

𝐶 = −𝑅
𝑔

𝑝𝑠∫
0

1
𝑝
𝑇𝜔 𝑑𝑝 . (3.7b)

¯(·) indicates the average of a quantity over a constant-pressure surface, and (·)′ refers to
its deviation from that average. 𝑅 and 𝑔 are the dry air gas constant and gravitational
acceleration as given in table 2.1, Γ = 𝜕𝑧𝑇 is the lapse rate of mean temperature and
Γ𝑑 = 𝑔/𝑐𝑝 the dry-adiabatic lapse rate. The specific heat is given by 𝑄 = 𝑐𝑝𝜋𝑄Θ with
the Exner pressure 𝜋 = 𝑇/Θ. 𝜔 = 𝑑𝑝/𝑑𝑡 is the vertical velocity in pressure coordinates
(i.e., the pressure change along flow trajectories). Although essential for global-scale
flows on climatological time scales, friction is neglected in our case, and so we set the
term 𝐷 in eqs. (3.6) to zero.

Let us continue our discussion by presenting the leading-order kinetic energy equation
resulting from eq. (3.1) and the anelastic constraint (2.43):

𝜕𝑒kin

𝜕𝑡
+ 1
𝑟

𝜕

𝜕𝑟

(
𝑟𝑢𝑟 ,00ℎkin

)
+ 𝜕

𝜕𝑧
(𝑤0ℎkin) =

𝜌

Θ𝜕𝑧Θ

(
Θ′

0𝑄Θ,0 +
1
2
𝚯′

1 · 𝑸Θ,1

)
. (3.8)

We introduced 𝑒kin = 1
2 𝜌0𝑢

2
𝜃
, ℎkin = 𝑒kin + 𝑝′, and by neglecting higher-order Fourier

modes, we arrive at the conclusion that the right-hand side term in parentheses is the
azimuthal mean of Θ′𝑄Θ. Therefore, with the volume integral 𝐾 =

∫
𝑉
𝑒kin 𝑑𝑉 , we get

𝑑𝐾

𝑑𝑡
= 𝐶 =

∫
𝑉

𝑔𝜌

Θ𝜕𝑧Θ
Θ′𝑄Θ 𝑑𝑉 + h.o.t. (3.9a)

=

∫
𝑉

𝑔𝜌𝑤
Θ′

Θ
𝑑𝑉 + h.o.t. (3.9b)

Taking eqs. (2.51) into account, we can replace the term 𝑄Θ/(𝜕𝑧Θ) with 𝑤 since the
adiabatic component of 𝑤 is 90◦ rotated relative to the dipole of the potential temperature
perturbation, and thus the product vanishes under the integral rendering only the diabatic
contribution 𝑤dia = 𝑄Θ/(𝜕𝑧Θ) important for the generation of kinetic energy.

We seek to compare the above expression of kinetic energy conversion with both,
𝐺 and 𝐶, as defined in eqs. (3.7). Lorenz’s (1955) formulation takes averages and
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perturbations on constant-pressure surfaces into account while eq. (3.9) is expressed
in regular Cartesian coordinates. To meet at common ground and to have a reference
for analyzing the simulation results of chapter 6 we reformulate eqs. (3.7) in terms of
Cartesian coordinates.

First, addressing to Lorenz’s (1955) notation where

𝑞(𝑥, 𝑦, 𝑝, 𝑡) = 𝑞(𝑝, 𝑡) + 𝑞′(𝑥, 𝑦, 𝑝, 𝑡) , (3.10)

i.e., a three-dimensional variable 𝑞, given in pressure coordinates, is expressed by an
average 𝑞 on a surface of constant pressure, and the perturbation 𝑞′. Consequently, we
have

𝑄 = �̄� +𝑄′ = 𝑐𝑝𝜋(�̄�Θ +𝑄′
Θ) , (3.11)

and with 𝑇 ′/𝑇 = Θ′/Θ̄ and assuming hydrostatic balance we obtain

Γ̄ = −𝜋 𝜕Θ
𝜕𝑧

+ Γ𝑑 . (3.12)

Finally, 𝐺 transforms to

𝐺 =

𝑝𝑠∫
0

1
𝜕𝑧Θ

Θ′𝑄′
Θ

Θ̄
𝑑𝑝 . (3.13)

The above expression is to be understood as the integration of constant-𝑝 averages.
Except for a constant factor accounting for the surface, it resembles a volume integral
expressed in the pressure-coordinate system. To compare it, however, with the Cartesian
integral of eq. (3.9), it is necessary to convert the average expression on pressure surfaces
into Cartesian coordinates. To this end, we introduce the following notation: Let a
quantity 𝑞 be expressed by 𝑞𝑧 (𝑥, 𝑦, 𝑧, 𝑡) in Cartesian and by 𝑞𝑝 (𝑥, 𝑦, 𝑝, 𝑡) in pressure
coordinates. In particular, the height 𝑧 is a function 𝑧𝑝 (𝑥, 𝑦, 𝑝, 𝑡) of pressure. Similarly,
pressure is a function 𝑝𝑧 (𝑥, 𝑦, 𝑧, 𝑡) of height. As a consequence, for fixed (𝑥, 𝑦, 𝑡), 𝑝𝑧
and 𝑧𝑝 are inverse functions:

𝑝𝑧 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑧−1
𝑝 (𝑥, 𝑦, 𝑧, 𝑡) (3.14a)

𝑧𝑝 (𝑥, 𝑦, 𝑝, 𝑡) = 𝑝−1
𝑧 (𝑥, 𝑦, 𝑝, 𝑡) (3.14b)

Hence, for a quantity given in pressure coordinates we derive the following relation5

𝑞 = 𝑞𝑝 (𝑝) = 𝑞𝑧 (𝑧𝑝 (𝑝))
= 𝑞𝑧 (𝑧𝑝 (𝑝) + 𝑧′𝑝 (𝑝))

= 𝑞𝑧 (𝑧𝑝 (𝑝)) +
𝜕𝑞𝑧

𝜕𝑧

����
𝑧=�̄�𝑝 (𝑝)

(𝑧𝑝 (𝑝) − 𝑧𝑝 (𝑝)) + O
(
𝑧′𝑝 (𝑝)2

)
= 𝑞𝑧 (𝑧𝑝 (𝑝)) +

𝜕𝑞𝑧

𝜕𝑧

����
𝑧=�̄�𝑝 (𝑝)

𝑝 − 𝑝𝑧 (𝑧(𝑝))
𝜕𝑧 𝑝𝑧 |𝑧=�̄�𝑝 (𝑝)

+ O
(
𝑝′𝑧 (𝑧)2

)
= 𝑞𝑧 (𝑧𝑝 (𝑝)) −

(
𝑝′

𝑔𝜌

𝜕𝑞𝑧

𝜕𝑧

)����
𝑧=�̄�𝑝 (𝑝)

+ O
(
𝑝′𝑧 (𝑧)2

)
(3.15)

5For the sake of clarity we drop the explicit coordinate dependency on (𝑥, 𝑦, 𝑡).
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Thus, we are able to approximate the average over a pressure surface by an average over
a surface of constant height:

𝑞𝑝 (𝑥, 𝑦, 𝑝, 𝑡) ≈
1
|𝐴|

∫
𝐴

𝑞𝑧 (𝑥, 𝑦, 𝑧𝑝 (𝑥, 𝑦, 𝑝, 𝑡), 𝑡) 𝑑𝑥 𝑑𝑦 , (3.16)

where 𝐴 ⊂ R2 is the two-dimensional surface area of the integration domain. By doing
so, we introduce an error of O

(
𝑞𝜀2) that is about 1% of the magnitude of 𝑞. Substituting

the differential by using the hydrostatic balance, 𝑑𝑝 = −𝑔𝜌 𝑑𝑧, 𝐺 can now be expressed
in terms of Cartesian coordinates:

𝐺 =

∫
𝑉

𝑔𝜌

𝜕𝑧Θ

Θ′𝑄′
Θ

Θ
𝑑𝑉 + O

(
𝜀2

)
. (3.17)

Note that Θ′ and 𝑄′
Θ

are still to be understood as perturbations with respect to averages
on pressure surfaces.

For the transformation of 𝐶 (cf. eq. (3.7b)) we first need to deal with the vertical
velocity in pressure coordinates, 𝜔 := 𝑑𝑝/𝑑𝑡, i.e., the pressure change along fluid
trajectories. From a numerical point of view (given data on a Cartesian grid with limited
temporal resolution), this expression is rather hard to handle, and so we seek for a
replacement better suited to achieve sufficient accuracy:

𝐶 = − 1
|𝐴|

∫
𝐴

𝑝𝑠∫
0

𝑑𝑝

𝑑𝑡

𝑑𝑝

𝑔𝜌
𝑑𝑥 𝑑𝑦 (3.18a)

= − 1
|𝐴|

∫
𝐴

∞∫
0

(
𝜕𝑝

𝜕𝑡
+ 𝒖 · ∇∥ 𝑝 + 𝑤

𝜕𝑝

𝜕𝑧

)
𝑑𝑧 𝑑𝑥 𝑑𝑦 (3.18b)

= − 1
|𝐴|

∫
𝑉

©« 𝜕𝜕𝑡
∞∫

𝑧

𝑔𝜌 𝑑𝑧′ + 𝒖 · ∇∥ 𝑝 − 𝑤𝑔𝜌
ª®¬ 𝑑𝑉 (3.18c)

= − 1
|𝐴|

∫
𝑉

©«−𝑔
∞∫

𝑧

(
∇∥ · (𝜌𝒖) +

𝜕𝜌𝑤

𝜕𝑧′

)
𝑑𝑧′ + 𝒖 · ∇∥ 𝑝 − 𝑤𝑔𝜌

ª®¬ 𝑑𝑉 (3.18d)

= − 1
|𝐴|

∫
𝑉

𝒖 · ∇∥ 𝑝 𝑑𝑉 (3.18e)

We used the definition of 𝜔, the convective derivate 𝑑
𝑑𝑡

= 𝜕𝑡 + 𝒖 ·∇∥ + 𝑤𝜕𝑧 , the integral
form of the hydrostatic balance and the continuity equation (in that order from (a)
to (d)). The last step is justified by canceling the second and fourth term in (d) and
Gauß’ theorem assuming that the mass flux 𝜌𝒖 can be neglected through the lateral
boundaries.6 The integrand of eq. (3.18) now is local in time and involves only the
horizontal gradient of pressure.
We want to close this section by drawing some intermediate conclusions:

6That is a rather strong assumption. With global mass conservation, however, there must be a domain
large enough to ensure this property to be satisfied. We can therefore fulfill this requirement by
enlarging the domain size.
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(i) The asymptotic theory yields the energy budget (i.e., the kinetic energy conversion
rate 𝐶) derived in eq. (3.9), that follows the same analytic expression as the APE
generation term 𝐺 in Cartesian coordinates, given in eq. (3.17), provided the
horizontal mean diabatic heating vanishes.

(ii) Although we considered diabatic heating as the driving force for vertical motions,
it is the configuration of symmetric and asymmetric vertical motions relative to
the storm’s centerline (and tilt), that is important for the intensity and structural
changes. By the leading-order WTG approximation valid for the flow regime of a
TC, diabatic heating and vertical velocity have a direct correspondence, however.

(iii) Up to leading order, APE, generated by the energy input of diabatic heating, is
directly converted to kinetic energy (for mean-zero heating). Hence, APE is
accumulated only at higher-than-leading orders.

In chapter 6 we will continue this discussion by analyzing the energy transition rates of
three-dimensional simulation data and draw further conclusions from that.

3.2. Substructure of the Centerline Equation of Motion

Identifying sub-structural components of eq. (2.99), i.e., the terms corresponding to
individual physical mechanisms, allows for both, insights into the driving mechanisms
of tilted vortex motion under the influence of diabatic or shear-induced forcing and
designing numerical strategies according to the properties of the (rather generic) building
blocks of the couples set of equations. To this end, we particularly analyze eqs. (2.58)
on the basis of distinguishing between diabatic and adiabatic effects. From eq. (2.42)
we know that the Fourier-1 mode 𝒘1 of vertical velocity is a linear superposition

𝒘1 = 𝒘1,dia + 𝒘1,ad , (3.19a)

of contributions due to diabatic heat release,

𝒘1,dia :=
1
Θ′

1
𝑸Θ,1 , (3.19b)

and those which are induced by the tilted geometry of the centerline,

𝒘1,ad :=
1
Θ′

1
𝑊�̂�−𝜋/2𝜕𝑧𝑿 = �̂�−𝜋/2�̂�𝑿 . (3.19c)

𝑊 = (Θ0/𝜌0) (𝑢 (0)𝜃
/𝑟)𝜕𝑟 𝑝 (3−2𝛿 ) and, as introduced earlier, �̂�−𝜋/2 is the two-dimensional

−90◦-rotation matrix. We will show that the expression 𝚿, given in eq. (2.97b), due to
linearity, splits into three subdivisions which exhibit different analytical properties.

In the further course we will make use of the notational convention that operator-valued
entities are indicated by a hat symbol, e.g., �̂� is defined by

�̂� =
𝑊

Θ′
1

𝜕

𝜕𝑧
. (3.20)
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We further analyze the components of 𝚿 given in eqs. (2.58). For H1 we get

H = Hdia + �̂�−𝜋/2Ĥ𝑿 (3.21a)

with the definitions

Hdia :=
𝜕

𝜕𝑟

(
(𝑟𝒘1,dia)

𝜕𝑢𝜃

𝜕𝑧

)
, (3.21b)

Ĥ𝑿 :=
𝜕

𝜕𝑟

(
(𝑟�̂�𝑿) 𝜕𝑢𝜃

𝜕𝑧

)
. (3.21c)

In analogy with eqs. (3.19), 𝑾1 subdivides into

𝑾1 =𝑾1,dia + �̂�−𝜋/2�̂�𝑿 , (3.22a)

𝑾1,dia := − 1
𝜌0
𝜕𝑧 (𝜌0𝒘1,dia) , (3.22b)

�̂�𝑿 := − 1
𝜌0
𝜕𝑧 (𝜌0�̂�𝑿) , (3.22c)

which allows reformulating I:

I = Idia + �̂�−𝜋/2Î𝑿 (3.23a)
Idia := 𝑟 (𝜁 + 𝑓0)𝑾dia (3.23b)

Î𝑿 := 𝑟 (𝜁 + 𝑓0) �̂�𝑿 . (3.23c)

Together with

𝑴1 =
𝑓 2

4𝜋𝜌0Γ

𝜕

𝜕𝑧

(
𝜌0Γ

2

Θ′
1

𝜕𝑿

𝜕𝑧

)
=: �̂�𝑿 (3.24)

we get the following split for Ĩ:

Ĩ = Idia + �̂�−𝜋/2Î𝑿 + 𝐻𝑠 (𝑟 − 1) 1
𝑟2

Γ

2𝜋
�̂�−𝜋/2�̂�𝑿 (3.25)

=: Idia + �̂�−𝜋/2
ˆ̃I𝑿 (3.26)

𝝓1 involves the expression 𝑹1, which is assembled as

𝑹1 =𝑾1,dia + �̂�−𝜋/2�̂�𝑿 + 𝑅𝑄,0𝜕𝑧𝑿 , (3.27a)

𝑅𝑄,0 :=
1
2
(𝜕𝑟𝑤0) . (3.27b)

We proceed with

𝝓1 = 𝝓1,dia + �̂�−𝜋/2𝜙𝑿 + 𝜙𝑄,0𝜕𝑧𝑿 (3.28a)

𝝓1,dia := − 𝑟
∞∫

𝑟

1
𝑟3

𝑟∫
0

¯̄𝑟2𝑾1,dia 𝑑 ¯̄𝑟 𝑑𝑟 (3.28b)

𝜙𝑿 := − 𝑟
∞∫

𝑟

1
𝑟3

𝑟∫
0

¯̄𝑟2�̂�𝑿 𝑑 ¯̄𝑟 𝑑𝑟 (3.28c)

𝜙𝑄,0 := − 𝑟
∞∫

𝑟

1
𝑟3

𝑟∫
0

¯̄𝑟2𝑅𝑄,0 𝑑 ¯̄𝑟 𝑑𝑟 (3.28d)
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giving rise to the formulation for J1:

J = Jdia + �̂�−𝜋/2Ĵ𝑿 + J𝑄,0𝜕𝑧𝑿 . (3.29a)
Jdia := 𝜕𝑟 (𝝓1,dia) (𝑟𝜕𝑟 𝜁) (3.29b)

Ĵ𝑿 := 𝜕𝑟 (𝜙𝑿) (𝑟𝜕𝑟 𝜁) (3.29c)
J𝑄,0 := (𝜕𝑟𝜙𝑄,0) (𝑟𝜕𝑟 𝜁) (3.29d)

Ultimately, we have

Q1 =

(
𝑤0
𝑢

𝑟
− 𝜕𝑟 (𝑟𝑤0𝜕𝑟𝑢)

) 𝜕𝑿
𝜕𝑧

=: Q0
𝜕𝑿

𝜕𝑧
. (3.30)

All together, we can summarize

𝚿 = �̂�𝜋/2𝐿 [K] = �̂�𝜋/2𝐿 [H + Ĩ + J + Q]

= �̂�𝜋/2𝐿 [K̃dia] + �̂�𝜋/2𝐿 [J𝑄,0𝜕𝑧𝑿 + Q0𝜕𝑧𝑿] + 𝐿 [Ĥ + ˆ̃I + Ĵ]𝑿 , (3.31)

where we identify (so far unspecified) terms due — and proportional — to the diabatic
Fourier-mode 1 contributions to 𝒘1, first-order differential terms due to symmetric
diabatic heat release and rotated (generally second-order) differential expression acting
on 𝑿. In eq. (3.31), we introduced the definitions of K̃dia := Hdia + Idia + Jdia.

Most of the evaluations presented so far involve elements of R2, denoted by bold-face
symbols. We now make the transition to complex-valued expressions. Formally, this is
done by identifying elements of R2 with C which we will symbolically represent by
plain symbols, e.g.,

𝑋 := 𝑿 · 𝒊 + 𝚤𝑿 · 𝒋 (3.32)

𝚤 canonically represents the imaginary unit.
In this setting we can formulate the complex eq. (2.99) as

𝚤(𝜕𝑡𝑋 + 𝐿 [(J𝑄,0 + Q0)𝜕𝑧𝑋]) = −𝛼 ln(𝜀)�̂�𝑋 − 𝐿 [Ĥ + ˆ̃I + Ĵ]𝑋+
+ 𝚤𝑢𝑠 − 𝚤𝐿 [Hdia + Idia + Jdia] , (3.33)

or, in a more compact form,

𝚤(𝜕𝑡𝑋 + 𝐴𝜕𝑧𝑋) = �̂�𝑋 + 𝚤𝑄 + 𝚤𝑢𝑠 , (3.34)

with straight-forward abbreviation terms as appearing in eq. (3.33). This matches our
previously set goal to split eq. (2.99) into components with different properties: 𝐴𝜕𝑧
imposes the one-dimensional advection equation, �̂� is a linear second-order differential
operator (further analyzed in section 3.3) and therefore imposes a Schrödinger-like
equation. 𝑄 collects all terms due to asymmetric diabatic heat release (proportional to
𝑤1). All the quantities 𝐴, �̂� and 𝑄 depend on the solution (𝑋, 𝑢), where �̂� explicitly
depends only on 𝑢 and the coordinates 𝑟 and 𝑧. 𝐴, as a function of symmetric diabatic
heat contributions 𝑤0, may in general depend on 𝑋 as well, imposing a non-linear
advection problem. 𝑢𝑠 represents externally imposed background wind shear as function
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of 𝑧 and 𝑡 only. Note, that we neglected the term 𝑿 (0) · ∇∥ (𝒖) (0)0 of eq. (2.99).7 By
doing so, we assume that the geostrophic wind is horizontally uniform.

The outlined analysis gives reason for further examination with respect to the
properties of the sub-equation imposed by each contribution. Analytical findings will be
presented in the remainder of this chapter. A numerical approach of solving eq. (3.34)
together with eq. (3.1) however, will be discussed in detail in chapter 4.

3.3. Sturm-Liouville Theory on the Centerline Hamiltonian

In their section 6, Päschke et al. (2012) pointed out that for exponential or constant
background density profile there exist precessing solutions of the adiabatic centerline
equation. For that specialized case they derived an explicit solution to eq. (2.99). For
more realistic scenarios the assumption on the background density might be too strong.
However, in the following examination we will clarify that precessing solution exist
for a wider range of environmental conditions and are a consequence of the spectral
properties of the time evolution operator of the adiabatic centerline equation.

In section 3.2 we identified those contributions to the centerline motion which do not
dependent on diabatic heat release. Also neglecting forcing by background wind we
end up with a Schrödinger-type equation8

𝚤𝜕𝑡𝑋 = �̂�𝑋 . (3.35)

These findings revealed that �̂� as a linear operator acting on 𝑋 depends on 𝑢𝜃 which is
time-independent in the adiabatic case. Hence, �̂� is time-independent in that case as
well.

Problems of the type of eq. (3.35) are typically treated in the context of quantum
mechanics, where 𝑋 is considered an element of the Hilbert space (𝐻, ⟨·, ·⟩) with
elements being functions 𝜓 : Ω → C and equipped with the scalar product ⟨·, ·⟩.

We motivate the following analysis by assuming that �̂� exhibits a spectrum
{𝜆𝑘}𝑘=1,...,𝑑 with eigenvectors solving

�̂�𝜓𝑘 = 𝜆𝑘𝜓𝑘 (3.36)

and forming a complete orthonormal basis {𝜓𝑘 ∈ 𝐻𝑋 : ⟨𝜓𝑙, 𝜓𝑘⟩ = 𝛿𝑙𝑘} ∀𝑘, 𝑙 = 1, . . . , 𝑑
with 𝑑 ∈ N ∪ ∞ such that we can construct solutions as linear superposition of
eigenvectors

𝑋 (𝑡, 𝑧) =
𝑑∑︁
𝑘

𝑐𝑘 (𝑡)𝜓𝑘 (𝑧) . (3.37)

7This simplification serves the purpose of highlighting the symplectic structure of the centerline equation
of motion and to avoid the inconvenient notation of 𝑿 ·∇∥ (𝒖)

(0)
0 in terms of complex-valued solutions.

Including the shear-term would in fact not alter the general property of the resulting equation, i.e.,
not affect the Sturm-Liouville property of the Hamiltonian, since 𝑿 · ∇∥ (𝒖)

(0)
0 =

(
∇∥ ⊗ (𝒖) (0)0

)
𝑿 is

linear in 𝑿, cf. section 3.3.
8We use the term Schrödinger-type as the regular notion involves a Hamiltonian which is supposed to be

self-adjoint under the regular inner product ⟨ 𝑓 .𝑔⟩ :=
∫
Ω
𝑓 𝑔 𝑑Ω whereas here we have to make use of

weighted scalar products ⟨ 𝑓 , 𝑔⟩𝑤 =
∫
Ω
𝑤 𝑓 𝑔 𝑑Ω . Nonetheless, is it straightforward to generalize the

Schrödinger equation accordingly.
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𝑐𝑘 (𝑡) ∈ C are time-dependent coefficients, consistently defined as

𝑐𝑘 (𝑡) := ⟨𝜓𝑘 (𝑧), 𝑋 (𝑧, 𝑡)⟩ , (3.38)

and, inserting eq. (3.37) into eq. (3.35) we get a set of linear ordinary differential
equations (ODEs):

𝑑𝑐𝑘

𝑑𝑡
= −𝚤𝜆𝑘𝑐𝑘 , 𝑘 = 1, . . . , 𝑑 . (3.39)

Each eigenmode 𝑐𝑘 decouples from the rest and takes only the (constant) eigenvalue 𝜆𝑘
into account. We immediately arrive at the solution given as

𝑐𝑘 (𝑡) = 𝑐𝑘 (0)𝑒−𝚤𝜆𝑘 𝑡 , (3.40)

i.e., eigenmodes precess in the complex plane if 𝜆𝑘 is real, and grow (decay) if 𝜆𝑘 has a
negative (positive) imaginary part.

Now, as we pointed out that the properties of the spectrum of �̂�, if well-posed,
determine the evolution of the eigenmodes and therefore of the overall solution 𝑋 (𝑧, 𝑡),
we need to make statements about these spectral properties of �̂�. To this end, we have
to characterize the solutions of the eigenvalue problem eq. (3.36).

Since �̂� is a one-dimensional linear second-order differential operator we can treat
eq. (3.36) as a Sturm-Liouville problem of the form

𝑑

𝑑𝑧

(
𝑝(𝑧) 𝑑𝜓

𝑑𝑧

)
+ 𝑞(𝑧)𝜓 = −𝜆𝑤(𝑧)𝜓 in Ω = [𝑎, 𝑏] ⊂ R , (3.41)

0 = 𝛼1𝑝(𝑎)𝜓′(𝑎) + 𝛼2𝜓(𝑎)
0 = 𝛽1𝑝(𝑏)𝜓′(𝑏) + 𝛽2𝜓(𝑏)

The coefficients of homogeneous boundary conditions have to satisfy 𝛼2
1 + 𝛼

2
2 > 0 and

𝛽2
1 + 𝛽

2
2 > 0. Sturm-Liouville theory (Teschl 2012) states that eq. (3.41) with coefficient

functions

𝑝 ∈ 𝐶1(Ω,R) , (3.42a)

𝑞 ∈ 𝐶0(Ω,R) , (3.42b)

𝑤 ∈ 𝐶0(Ω,R) , (3.42c)

𝑝, 𝑤 > 0 ∀𝑧 ∈ Ω is called regular Sturm-Liouville problem and possesses a discrete
real spectrum of eigenvalues. We thus have to show that �̂� in eq. (3.36) takes the form

�̂�𝜓 = − 1
𝑤(𝑧)

(
𝑑

𝑑𝑧

(
𝑝(𝑧) 𝑑𝜓

𝑑𝑧

)
+ 𝑞(𝑧)𝜓

)
. (3.43)

In that case, �̂� is called a Sturm-Liouville operator. Together with the boundary
conditions of eq. (3.41) the operator is self-adjoint and possesses real eigenvalues
(Teschl 2012). Eigenmodes of eq. (3.36) would then be precessing solutions of
eq. (3.35). The remaining question is whether �̂� as defined in eqs. (3.33) and (3.34) and
thus the problem (3.36) is of the form of eq. (3.41) and satisfies the requirements (3.42).
For the sake of validating the above statements, we make the following considerations:

54



3.3. STURM-LIOUVILLE THEORY ON THE CENTERLINE HAMILTONIAN

Lemma 3.1. The boundary value problem

�̂�𝜓 ≡ 𝑃𝜓′′ +𝑄𝜓′ + 𝑅𝜓 = 𝜆𝜓 (3.44)

is equivalent to eq. (3.41) provided the same boundary conditions.

Proof9. With the conditions (3.42) satisfied, eq. (3.41) can be expressed as

𝑝𝜓′′ + 𝑝′𝜓′ + 𝑞𝜓 = −𝜆𝑤𝜓 . (3.45)

We hence identify

𝑃 = − 𝑝
𝑤
, (3.46a)

𝑄 = − 𝑝
′

𝑤
, (3.46b)

𝑅 = − 𝑞
𝑤
. (3.46c)

By solving

𝑤 = exp
(∫

𝑄 − 𝑃′

𝑃
𝑑𝑧

)
, (3.47a)

𝑝 = −𝑃 exp
(∫

𝑄 − 𝑃′

𝑃
𝑑𝑧

)
, (3.47b)

𝑞 = −𝑅 exp
(∫

𝑄 − 𝑃′

𝑃
𝑑𝑧

)
, (3.47c)

assuming that 𝑃 ≠ 0 we have traced eq. (3.44) to the form of eq. (3.41). □

Lemma 3.2. The sum of two Sturm-Liouville operators is a Sturm-Liouville operator.

Proof. Let �̂�1 and �̂�2 be Sturm-Liouville operators that are expressed as

�̂�1,2𝜓 = − 1
𝑤1,2

(
𝑑

𝑑𝑧

(
𝑝1,2

𝑑𝜓

𝑑𝑧

)
+ 𝑞1,2𝜓

)
. (3.48)

Then

�̂�𝜓 = �̂�1𝜓 + �̂�2𝜓 ,

= − 1
𝑤1

(
𝑑

𝑑𝑧

(
𝑝1
𝑑𝜓

𝑑𝑧

)
+ 𝑞1𝜓

)
− 1
𝑤2

(
𝑑

𝑑𝑧

(
𝑝2
𝑑𝜓

𝑑𝑧

)
+ 𝑞2𝜓

)
,

= −
(
𝑝1

𝑤1
+ 𝑝2

𝑤2

)
𝜓′′ −

(
𝑝′1
𝑤1

+
𝑝′2
𝑤2

)
𝜓′ −

(
𝑞1

𝑤1
+ 𝑞2

𝑤2

)
𝜓 ,

≡ 𝑃𝜓′′ +𝑄𝜓′ + 𝑅𝜓 , (3.49)

which is of the form of eq. (3.44) and therefore can be traced back to eq. (3.41). □

9Proof adapted from https://en.wikipedia.org/wiki/Sturm_Liouville_theory#
Application_to_inhomogeneous_second-order_boundary_value_problems, accessed
on 11/24/2021.

55

https://en.wikipedia.org/wiki/Sturm_Liouville_theory#Application_to_inhomogeneous_second-order_boundary_value_problems
https://en.wikipedia.org/wiki/Sturm_Liouville_theory#Application_to_inhomogeneous_second-order_boundary_value_problems
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With that statement, we can treat each of the constituents of �̂� individually, as defined
in eq. (3.33), and find that all but one term follow the form of eq. (3.43). The only
attention has to be paid to the expression Ĥ , which is a first-order differential operator.
However, we have the following

Lemma 3.3. The sum of a Sturm-Liouville operator and a first-order differential
operator is a Sturm-Liouville operator.

Proof. Let �̂� be a Sturm-Liouville operator. Then

�̂�𝜓 + �̃�𝜓′ = 𝑃𝜓′′ + (𝑄 + �̃�)𝜓′ + 𝑅𝜓 (3.50)

Which is again of the form of eq. (3.44), hence a Sturm-Liouville operator. □

Lemma 3.4. In case of 𝑞 ≡ 0 and 𝑝, 𝑤 > 0, the operator �̂�, defined through eq. (3.43),
possesses a positive spectrum.

Proof. To show, that the spectrum of �̂� has a definite sign, it suffices to show that �̂� is
definite. We consider the scalar product

⟨𝜓, �̂�𝜓⟩𝑤 = −
𝑏∫

𝑎

�̄�(𝑝𝜓′)′ 𝑑𝑧

= − �̄�𝑝𝜓′��𝑏
𝑎
+

𝑏∫
𝑎

�̄�′𝑝𝜓′ 𝑑𝑧

=

𝑏∫
𝑎

|𝜓′ |2 𝑝 𝑑𝑧 > 0 (3.51)

The first term in the second line of eq. (3.51) is omitted due to the assumption of
homogeneous boundary conditions together with the operator �̂�.10 If 𝜓 is an eigenvector
of �̂�, it follows that

⟨𝜓, �̂�𝜓⟩𝑤 =: 𝜆∥𝜓∥2
𝑤 (3.52)

with ∥·∥𝑤 the norm induced by the scalar product ⟨·, ·⟩𝑤 . From eqs. (3.51) and (3.52)
follows the positive sign of 𝜆. □

With the statements of lemmas 3.1 to 3.4, it is now trivial to conclude that the sum
of first and second-order differential operators that resemble �̂� ≡ −𝐿 [Ĥ + ˆ̃I + Ĵ] −
𝛼 ln(𝜀)�̂� forms a Sturm-Liouville operator, provided the boundary conditions of the
problem are set to satisfy those of eq. (3.41). For practical applications, in chapter 6 we
are bound to Neumann boundary conditions 𝑋 ′(0) = 𝑋 ′(𝑧⊤) = 0 due to the assumption
of rigid lids at 𝑧 = 0 and 𝑧 = 𝑧⊤.

Remark. A complete proof of the sign of 𝑝 and 𝑤 within the definition of the operator
�̂�, assembled by eq. (3.33), remains open to future work. Empirically, however, it is
evident through the experiments of chapter 6 that the eigenspectrum of �̂� is purely
10This is a reasonable assumption as rigid-lid conditions (𝑤 |𝑧=𝑧,𝑧𝑡𝑜𝑝 = 0) induce 𝜕𝑧𝑋 |𝑧=0,𝑧⊤ = 0 in the

adiabatic case.
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negative leading to counterclockwise precession of eigenmodes. In section 2.5, however,
we already discussed the scenario where Γ vanishes (either locally or globally). Since
this quantity appears in the definition of 𝐿 [·] (cf. eq. (2.94)) as a divisor, the above
condition on 𝑤 cannot be assumed anymore, and we have to deal with an irregular
Sturm-Liouville problem.

To meet the requirement that �̂� possesses a real spectrum, which is what we need for
the statement of the existence of precessing eigenmodes, however, it suffices to satisfy
Lagrange’s identity

𝑏∫
𝑎

𝑤(𝜙�̂�𝜓 − (�̂�𝜙)𝜓) 𝑑𝑥 = 0 (3.53)

at least in an improper sense.11 Without further proof, we assume this to be true,
since we argued in section 2.5 that in the circulation-free limit the operator �̂� still is
well-defined throughout in integration domain, and the expression �̂�𝜓 becomes 0 at the
critical points.

With that being stated, we conclude that under a wide range of conditions the adiabatic
centerline equation possesses counterclockwise precessing eigenmode solutions.

3.4. Dynamical Properties of the Vortex Centerline

After examining the adiabatic behavior of the centerline equation of motion, in this
section we will discuss the response of the centerline to forcings that arise from external
wind shear or diabatic heat release.

3.4.1. Motion under the Influence of Shear

Shear, i.e., the vertical gradient of a large-scale external wind field the vortex is embedded
into, is encoded in the leading-order asymptotic equations as external forcing on the
centerline motion, cf. eq. (3.34). Neglecting all other effects than external wind, the
centerline equation of motion reads

𝚤
𝜕𝑋

𝜕𝑡
= �̂�𝑋 + 𝚤𝑢𝑠 . (3.54)

The leading-order circumferential velocity relative to the centerline, on the other hand,
is not affected by externally imposed shear. In fact, both, self-induced motions and
externally imposed background wind, transport the leading-order tangential velocity
field as being “attached to the centerline” as the latter one evolves.

Equation (3.54) can be formally solved by projecting onto the eigenspace of �̂�
(following section 3.3): Defining the coefficients 𝑐𝑘 according to eq. (3.37), the
eigenmodes decouple, and we obtain

𝚤
𝑑𝑐𝑘

𝑑𝑡
= 𝜆𝑘𝑐𝑘 + 𝚤𝑢𝑘 (3.55)

11Here, improper is meant in the sense of an improper integral, i.e., eq. (3.53) may possess an unbounded
integration interval or the integrand may be ill-posed somewhere in the integration interval.
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Trivially, by variation of constants, we can solve this ODE and find the general solution

𝑐𝑘 (𝑡) = 𝑒−𝚤𝜆𝑘 𝑡 ©«𝑐𝑘 (0) +
𝑡∫

0

𝑒𝚤𝜆𝑘 𝑡
′
𝑢𝑘 (𝑡′) 𝑑𝑡

ª®¬ . (3.56)

We note, that the value of 𝜆𝑘 determines the character of the equation and its solutions:
For the lowest eigenmode with 𝜆0 = 0, we obtain the solution

𝑐0(𝑡) = 𝑐0(0) +
𝑡∫

0

𝑢0(𝑡) 𝑑𝑡 (3.57)

that resembles uniform translation due to mean horizontal wind. Shear is covered by
eigenmodes with 𝑘 ≥ 1.

For the specialized case of constant-in-time external wind, we can further simplify
and have

𝑐𝑘 (𝑡) = 𝑐𝑘𝑒−𝚤𝜆𝑘 𝑡 − 𝚤 𝑢𝑘
𝜆𝑘

(3.58)

with the constant 𝑐𝑘 fixed by the initial condition 𝑐𝑘 (0) = 𝑐𝑘 − 𝚤 𝑢𝑘𝜆𝑘
.

Equation (3.55) reveals that for 𝑢𝑘 (𝑡) = 𝚤𝜆𝑘𝑐𝑘 (0) (= const) stationary solutions exist.
Physically speaking, these solutions correspond to shear that cancels the proper motion
of the adiabatic centerline precession. Nonetheless, this setting requires the background
wind shear to be tuned to the initial data of tangential velocity (via the value 𝜆𝑘), a
rather unlikely scenario.

Reasor, Montgomery, and Grasso (2004), on the other hand, demonstrated, that
an initially barotropic vortex can indeed tend towards a configuration where the tilt
direction and amplitude become stationary, and they argue that damping of the tilt mode
by VRWs causes this behavior. Though not directly incorporated into the asymptotic
theory, we can encode VRW damping by introducing a linear damping term −𝚤𝒹𝑐𝑘 ,
with 𝒹 ∈ R+, such that we have the governing ODE

𝚤
𝑑𝑐𝑘

𝑑𝑡
= (𝜆𝑘 − 𝚤𝒹)𝑐𝑘 + 𝚤𝑢𝑘 . (3.59)

In analogy to the previous calculations we have the general solution

𝑐𝑘 (𝑡) = 𝑐𝑘𝑒−(𝚤𝜆𝑘+𝒹)𝑡 − 𝚤 𝑢𝑘

𝜆𝑘 + 𝚤𝒹
(3.60)

that, in the limit 𝑡 → ∞ tends to

𝑐𝑘 (𝑡) →
𝑢𝑘

𝚤𝜆𝑘 −𝒹
as 𝑡 → ∞ . (3.61)

Hence, with active damping through VRWs in the presence of vertical wind shear the
solution settles towards a constant tilt configuration. This solution is qualitatively in
line with Reasor, Montgomery, and Grasso (2004), yet, the damping constant 𝒹 is not
derived on the basis of VRW damping and can only be estimated from quantitative
comparison.
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Remark. Here, we chose a scalar damping coefficient 𝑑, that induces Rayleigh damping,
i.e., a damping term proportional to the amplitude 𝑋 =

∑
𝑐𝑘𝜓𝑘 . Damping could also

be proportional to the second derivative manifesting in the term −𝚤𝒹𝜕2𝑋/𝜕𝑧2 on the
right-hand side of eq. (3.54). Then, in eq. (3.59), 𝑑 would be formally replaced by 𝒹𝑘 ,
the correction term that arises by transitioning the eigenvalue problem �̂�𝜓 = 𝜆𝜓 to(

�̂� + 𝚤𝒹 𝜕2

𝜕𝑧2

)
𝜓 = (𝜆 + 𝚤𝒹𝑘)𝜓 . (3.62)

The qualitative statement of eq. (3.61) yet remains valid.

3.4.2. Motion under the Influence of Symmetric Diabatic Heat Release

Under purely symmetric convection, both, centerline and tangential wind equations
are composed of advection operators on the left-hand side and source terms on the
right-hand side:

𝚤

(
𝜕𝑋

𝜕𝑡
+ 𝐴𝜕𝑋

𝜕𝑧

)
= �̂�𝑋 (3.63a)

𝜕𝑢𝜃

𝜕𝑡
+ 𝑢𝑟 ,00

𝜕𝑢𝜃

𝜕𝑟
+ 𝑤0

𝜕𝑢𝜃

𝜕𝑧
= −𝑢𝑟 ,00

(𝑢𝜃
𝑟

+ 𝑓0

)
(3.63b)

Via the couplings 𝐴 = 𝐴(𝑢𝜃 , 𝑤0) and �̂� = �̂� (𝑢𝜃 ) the equations are genuinely nonlinear.
Note that diabatic heating can add to the nonlinearity via the parameterizations
𝑤0 = 𝑤0(𝑢𝜃 , 𝑋) and 𝑢𝑟 ,00 = 𝑢𝑟 ,00(𝑤0). As we have seen in eq. (3.4), angular
momentum is conserved along trajectories of the secondary circulation in the 𝑟-𝑧-plane
in the absence of tilt and heating asymmetries. In this case, eq. (3.1) is equivalent to

𝜕𝑀

𝜕𝑡
+ 𝑢𝑟 ,00

𝜕𝑀

𝜕𝑟
+ 𝑤0

𝜕𝑀

𝜕𝑧
= 0 . (3.64)

Previous studies on vortex intensity are based on this equation and from those we
know that the underlying intensification mechanism is associated with the secondary
circulation that drags air masses inwards, forces them to raise in the eyewall region
and ejects them on top (Montgomery and Smith 2017b; Vigh and Schubert 2009).
The angular momentum transported inwards is essentially what accelerates the vortex.
Montgomery and Smith (2017b, and references therein) also acknowledge the difficulty
in understanding the role of the boundary layer. At issue is whether turbulent friction
causes the tangential wind to decrease towards the sea surface not balancing the pressure
gradient and ultimately leading to an inflow. By conditioning the stability of the
atmosphere convection is then triggered (CISK hypothesis by Charney and Eliassen
(1964)). Alternatively, the WISHE hypothesis (Emanuel 1991) postulates that it is the
surface wind drag that causes turbulent mixing of the atmosphere and convection is the
consequence of the lifting of air parcels. The latter theory seems to be more favorable as
the underlying mechanism for symmetric vortex intensification (Craig and Gray 1996).

In the process of the secondary circulation, however, also the centerline is guided by
vertical advection that accounts for the vertical transport of the vortex structure, i.e., the
centerline position. For typical heating patterns, we empirically found that the advection
velocity is positive. Depending on the lower boundary conditions, as we will see in
chapter 6, vertical alignment by symmetric diabatic heating proves to be very efficient.
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3.4.3. Motion under the Influence of Asymmetric Diabatic Heat Release

The derivation of eq. (3.34) was based on the fact that the vertical velocity and in
particular its Fourier-1 mode splits into two contributions, one due to diabatic heating
and a second one due to the potential temperature perturbation induced by the tilted
vortex. The more explicit formulation eq. (3.33) points to the relation between the terms
𝐻𝑋 and 𝑖𝑄 of eq. (3.34): The diabatic contribution to the centerline motion 𝑄 takes all
the Fourier-1 modes of vertical velocity into account that are due to diabatic heating. To
discuss the dynamics of asymmetric diabatic heating, we start by setting 𝑤0 = 0. With
eq. (2.50), the immediate consequence is 𝑢𝑟 ,00 ≡ 0, and the tendency equation for the
tangential wind speed reduces to

𝜕𝑢𝜃

𝜕𝑡
= −𝑢𝑟 ,∗

(𝑢𝜃
𝑟

+ 𝑓

)
. (3.65)

With 𝑤1,dia = −𝑤1,ad, i.e., 𝑤1 ≡ 0, the relation between �̂�𝑋 and 𝑄 becomes

𝚤𝑄 |𝑤1,dia=−𝑤1,ad = −𝚤 𝐿 [Hdia + Idia + Jdia]
��
𝑤1,dia=−𝑤1,ad

= 𝚤 lim
𝑟→∞

𝜋

Γ

𝑟∫
0

𝑟 ′ (Hdia + Idia + Jdia)
��
𝑤1,dia=𝑤1,ad

𝑑𝑟 ′

= 𝐿 [Ĥ + ˆ̃I + Ĵ]𝑋 − 2𝛼 lim
𝑟→∞

ln(𝑟)�̂�𝑋

= −�̂�𝑋 − 𝛼 lim
𝑟→∞

(2 ln(𝑟) + ln(𝜀))�̂�𝑋 . (3.66)

The term −2𝛼 lim𝑟→∞ ln(𝑟)�̂�𝑋 accounts for the unbounded integration of the Coriolis
term in the asymmetric WTG equation (2.42). At this point, we realize the difficulty
that arises with the condition 𝑤1,dia = −𝑤1,ad for the scaling regime with 𝛼 = 1/2:
The logarithmic part arising from the diabatic heating constructed in that way in the
far-field limit of the core solution (cf. eq. (2.90)) does not match with a counterpart in
the near-field limit of the outer solution. The compound solution becomes singular in
that case. Note that this behavior is solely caused by the way the diabatic heating is
constructed and does not interfere with the matching condition in the adiabatic case.
In fact, Päschke et al. (2012) mentions this behavior by restricting diabatic heating
to decay sufficiently rapid. A consistent asymptotic solution would involve a weak
diabatic source in the QG far-field regime to match with the core solution such that
the logarithmically diverging term of eq. (3.66) cancels. With Klein, Schielicke, et al.
(2021) an asymptotic model for the QG regime is derived that could be matched to the
present TC model. This work, however, is out of scope of this thesis.

To remedy this issue discussed above, we restrict to 𝛼 = 0 in the further course of this
section and in setting up the initial data for the subsequent numerical experiments (cf.
chapters 5 and 6) The singular effects, however, are only shifted to higher asymptotic
orders. This, as we will see in section 6.3.1, eventually leads to long-term instabilities
which are found under control for the purpose of the presented experiments.

The diabatic heating as constructed above under the scaling regime of 𝛼 = 0, and
neglecting external wind shear, yields stationarity for the centerline equation of motion
— at leading order:

𝚤
𝜕𝑋

𝜕𝑡
= 0 (3.67)
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Until now, we have constructed a diabatic vertical velocity component such that the
resulting vertical velocity dipole vanishes. We are at liberty to make different choices
for 𝑤dia such as rotated version of 𝑤ad about an angle 𝜃0. From eq. (2.42), we know that
𝜃0 = 𝜃0 + 𝜋/2, where 𝜃0 is the direction of the tilt vector. In the complex plane we can
conveniently write

𝑤1,dia = exp(𝚤𝜃0)𝑤1,ad = exp(𝚤𝜃0)�̂�𝑋 . (3.68)

Again we consider the forcing by asymmetric diabatic heating

𝚤𝑄 |𝑤1,dia=exp(𝚤 𝜃0 )𝑤1,ad
= exp(𝚤𝜃0)�̂�𝑋 . (3.69)

Thus, the resulting centerline equation (neglecting forcing by external wind) poses a
linear PDE in 𝑋:

𝚤
𝜕𝑋

𝜕𝑡
= (1 + exp(𝚤𝜃0))�̂�𝑋 (3.70)

The first term corresponds to a forcing induced by the sum of the adiabatic and diabatic
vertical velocity dipoles. Without rigorous proof, but from numerical experiments
we know that under regular conditions, �̂� possesses a negative spectrum leading to
counterclockwise precession. In the way the heating is constructed here, the above
centerline equation of motion leads to a superposition of the adiabatic precessing motion
and a contribution that has in general a complex spectrum (depending on exp(𝚤𝜃0)).
Effectively the eigenvalues of �̂� are modified by the prefactor (1 + exp(𝚤𝜃0)). Recalling
the motion in the eigenspace (cf. eqs. (3.39) and (3.40)), a positive (negative) real part
of exp(𝚤𝜃0) leads to acceleration (deceleration) of the centerline motion, while a positive
(negative) imaginary part of exp(𝑖𝜃0) causes decay (growth) of the eigenmodes.
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4. Numerical Methods for Solving the
Leading-Order System

Chapter 3 served to identify structural properties of the leading-order asymptotic equa-
tions which govern the motion of TCs in both, the gradient-wind and the cyclostrophic
regime. Along the lines of these properties we now seek to construct a numerical
scheme which allows to integrate these equations forward in time in a sufficiently stable
and accurate manner. As a reference we repeat the final result here in compact form:

𝚤

(
𝜕𝑋

𝜕𝑡
+ 𝐴𝜕𝑋

𝜕𝑧

)
= �̂�𝑋 + 𝚤𝑄 + 𝚤𝑢𝑠 (4.1a)

𝜕𝑢

𝜕𝑡
+ 𝑢𝑟 ,00

𝜕𝑢

𝜕𝑟
+ 𝑤0

𝜕𝑢

𝜕𝑧
= −𝑢𝑟 ,0

(𝑢
𝑟
+ 𝑓0

)
(4.1b)

Since we will mainly focus on the mathematical structure rather than the physical
interpretation, and for the sake of clarity we dropped the 𝜃-indices indicating the primary
circulation velocity 𝑢𝜃 . Note the general dependency of the coefficient functions on the
solution state. Definitions of the occurring symbols are given in sections 3.1.1 and 3.2.

In the form of eqs. (4.1), we recognize three prototypes the system is composed of:

i) (non-linear) advection,

ii) linear Schrödinger equation,

iii) generally non-linear source terms.

Each of these items on their own poses a problem with a rich body of solution strategies
existing in literature. The challenge consists in the coupled integration. To this end, we
first construct a generic approach to solve for equations of that type, and subsequently,
by splitting the integration process into quasi-independent sub-steps involving the
trapezoidal rule and operator splitting, we apply well-established numerical methods to
each of the arising prototype equations. This approach is different from the previous
one by Weber (2011), where the whole system was discretized in space by a fourth-
order finite difference method and the resulting time-dependent system of ODEs was
integrated by generic time integration schemes. Despite the high order of accuracy and
the resulting numerical efficiency, due to the nonlinearities, solutions suffered from
spurious oscillations and resulting instabilities. The ultimate goal is to construct a stable
numerical scheme achieving overall second-order accuracy in space and time.

4.1. Formal Time Integration of the Asymptotic Equations

We immediately see that the individual equations of eqs. (4.1) can be recast into the
more abstract form

𝜕𝜓

𝜕𝑡
+ A𝜓 = 𝑅(𝜓, 𝑡) . (4.2)
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In the further course we will identify 𝜓 either with 𝑋 , 𝑢 or (𝑋, 𝑢), depending on
the context. A is a first-order differential operator expressing the advection term of
eq. (4.1a) or eq. (4.1b), i.e., one-dimensional and two-dimensional advection for 𝑋 and
𝑢, respectively. 𝑅(𝜓, 𝑡) collects all right-hand side terms which may depend, in general,
non-linearly on the solution.

For the analysis of PDEs, we identify the solution 𝜓 of eq. (4.2) with elements of a
sufficiently regular1 Hilbert space 𝐻, such that

𝜓 : [0, 𝑇] → 𝐻 (Ω, 𝐹) , 𝑡 ↦→ 𝜓(𝑡) with 𝜓(𝑡) : Ω → 𝐹 (4.3)

Ω represents the spatial domain of functions 𝜙 = 𝜓(𝑡) and 𝐹 is its codomain, i.e., 𝐹 = C,
𝐹 = R, or 𝐹 = C × R depending on whether 𝜓 = 𝑋 , 𝜓 = 𝑢, or 𝜓 = (𝑋, 𝑢). In this
formalism the operator A becomes an abstract linear operator on 𝐻:

A : 𝐻 → 𝐻 , 𝜓 ↦→ A𝜓 (4.4)

As we derived in sections 3.1.1 and 3.2, advection, expressed by A, is associated
to Fourier mode-0 heating. Thus, the linear operator A itself is — in general —
parametrized by the solution 𝜓 = (𝑋, 𝑢) and time 𝑡. Usually2, 𝜓(𝑥, 𝑡) can be expanded
into orthonormal base vectors 𝑒𝑛 of 𝐻

𝜓(𝑥, 𝑡) =
∑︁
𝑛

𝑎𝑛 (𝑡)𝑒𝑛 (𝑥) , where 𝑎𝑛 (𝑡) = ⟨𝑒𝑛, 𝜓(𝑡)⟩ (4.5)

with time-dependent coefficients 𝑎𝑛 (𝑡) ∈ 𝐹. ⟨·, ·⟩ is the scalar product associated to 𝐻.
With this construction eq. (4.2) is equivalent to the ODE

𝑑𝑎𝑚(𝑡)
𝑑𝑡

+
∑︁
𝑛

( �̂�(𝜓, 𝑡))𝑚𝑛𝑎𝑛 (𝑡) = 𝑅𝑚(𝜓, 𝑡) , ∀𝑚 = 1, 2, . . . (4.6)

where we have ( �̂�)𝑚𝑛 = ⟨𝑒𝑚,A𝑒𝑛⟩ and 𝑅𝑚(𝜓, 𝑡) = ⟨𝑒𝑚, 𝑅(𝜓, 𝑡)⟩. Note, that ( �̂�)𝑚𝑛,
again, in general depends on the solution. The rank of the matrix with elements
( �̂�)𝑚𝑛 corresponds to the dimensionality of 𝐻, hence becomes infinite in our case. This
formalism allows us to write eq. (4.2) as an abstract ODE

𝑑𝜓

𝑑𝑡
+ A𝜓(𝑡) = 𝑅(𝜓(𝑡), 𝑡) (4.7)

with 𝑑𝜓/𝑑𝑡 to be understood as the derivative of 𝜓 : 𝑡 ↦→ 𝜓(𝑡) ∈ Ω along trajectories
through 𝐻.

It is now possible to construct solutions of eq. (4.2) by first considering the homoge-
neous problem

𝑑𝜓ℎ

𝑑𝑡
+ A𝜓ℎ = 0 (4.8)

1Actual regularity constraints on 𝜓 depend essentially on the source term 𝑅.
2The fact that we assume 𝜓 to be expressed in terms of an orthogonal basis of 𝐻 implies that we have a

priori knowledge of 𝐻. It is the very task of PDE analysis to explore the properties of elements of 𝐻.
Only for sufficiently simple problems this is possible. For the general and non-linear source terms 𝑅
with which we deal here, however, the problem renders out of scope of the present work. We therefore
consider eq. (4.5) as an ansatz.
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with the formal solution

𝜓ℎ (𝜏) = 𝑒
−

𝜏∫
0
A(𝜓 (𝑡 ) ,𝑡 ) 𝑑𝑡

𝜓(0) =: 𝑒−𝜏𝐴
(𝜏)
𝜓(0) (4.9)

with 𝜏 ∈ [0, 𝑇].3
We introduced the shorthand notation 𝐴(𝜏 ) representing the mean of the differential

operator A(𝜓(𝑡), 𝑡) along the trajectory (𝜓(𝑡), 𝑡) with 𝑡 ∈ [0, 𝜏]. Naturally, 𝜓(0) is the
initial solution state and 𝑒−𝜏𝐴(𝜏) represents the integral operator advecting the solution
from 𝑡 = 0 to 𝑡 = 𝜏. As exceeding the scope of the present work, we omit further details
about the properties of A necessary to render the above construction well-posed. For
now, we need to take care of the dependency of A on 𝜓(𝑡) and 𝑡, which prevents us
from finding an explicit expression of 𝐴(𝜏 ) in eq. (4.9). In section 4.2, however, we will
argue how to linearize 𝑒−𝜏𝐴(𝜏) and solve eq. (4.8) by a finite-volume method.

Continuing with this formal approach, we now can integrate the inhomogeneity of
eq. (4.2) by variation of constants using the ansatz

𝜓𝑝 (𝜏) = 𝑒−𝜏𝐴
(𝜏)
𝜓0(𝜏) (4.10)

for a particular solution which requires solving for 𝜓0(𝜏). Inserted into eq. (4.2) we get

𝑒−𝜏𝐴
(𝜏) 𝑑𝜓0

𝑑𝜏
= 𝑅(𝜓(𝜏), 𝜏) (4.11)

with the formal solution

𝜓0(𝜏) =
𝜏∫

0

𝑒𝑡 𝐴
(𝑡 )
𝑅(𝜓(𝑡), 𝑡) 𝑑𝑡 (4.12)

The general solution then is

𝜓(𝜏) = 𝜓ℎ (𝜏) + 𝜓𝑝 (𝜏) = 𝑒−𝜏𝐴
(𝜏) ©«𝜓(0) +

𝜏∫
0

𝑒𝑡 𝐴
(𝑡 )
𝑅(𝜓(𝑡), 𝑡) 𝑑𝑡ª®¬ (4.13)

Note, that eq. (4.13) is formally the exact solution of eq. (4.2). However, the expression
𝐴( ·) and right-hand side 𝑅 need information of the solution along the integral trajectory,
hence rendering the integral expression of eq. (4.13) unfeasible to solve analytically.

4.2. Construction of Time Integration Schemes

In section 4.1 we transformed the original PDE problem eqs. (4.1) into the formal
solution eq. (4.13), shifting the problem towards finding integral operators for 𝑒−𝜏𝐴(𝜏) and∫ 𝜏

0 · 𝑑𝑡. In this section we will discuss a general approach to constructing approximate
solution strategies and on that basis derive a closure for equation eq. (4.13). For
further comprehension, we streamline notation by symbolically identifying 𝑅(𝑡) with
the expression 𝑅(𝜓(𝑡), 𝑡).

3We make the distinction between 𝑇 and 𝜏 in that the former is a global time integration interval while
the latter is merely interpreted as a time step in the sense of numerical time integration.
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As generally dependent on 𝜓(𝑡), we cannot evaluate 𝑅(𝑡) without prior knowledge
of the solution 𝜓(𝑡) for 𝑡 > 0 and hence the integral in eq. (4.13) cannot be solved
directly. However, literature provides a plethora of numerical quadrature schemes to
solve integrals of the type

∫ 𝑏

𝑎
𝑓 (𝑡) 𝑑𝑡. Rather generally, 𝑛-point quadrature rules take

the form of a weighted sum

1∫
−1

𝑓 (𝑡) 𝑑𝑡 ≈
𝑛−1∑︁
𝑖=0

�̄�𝑖 𝑓 (𝑡𝑖) (4.14)

where the integrand 𝑓 is evaluated at discrete nodes 𝑡𝑖 ∈ [−1, 1], 𝑖 = 0, . . . , 𝑛 − 1,
depending on the choice of the interpolation polynomials and the desired approximation
order 𝑝. Typically, 𝑡𝑖 are chosen such that a polynomial integrand 𝑓 of order 2𝑛 − 1 is
integrated exactly. On a formal level, the integral in eq. (4.13) can be written as

𝜏∫
0

𝑒𝑡 𝐴
(𝑡 )
𝑅(𝑡) 𝑑𝑡 = 𝜏

𝑛−1∑︁
𝑖=0

�̄�𝑖𝑒
𝑡𝑖𝐴

(𝑡𝑖 )
𝑅(𝑡𝑖) + O(𝜏𝑝) , (4.15)

transforming it into an implicit algebraic expression which approximates the exact
solution up to an error of order 𝑝.

With this construction we now want to motivate a specific choice for the number and
position of the nodes 𝑡𝑖 as well as the weights 𝑤𝑖: Considering the backward-advection
operator 𝑒𝑡 𝐴(𝑡 ) it would be necessary to evaluate it multiple times over the integration
interval [0, 𝜏]. This could pose a problem algorithmically as — in general — it appears
to be a highly iterative process. Further, in case of 𝐴(𝑡 ) depending on 𝜓, i.e., nonlinear
advection, shocks can form during forward integration, thus backward integration from
𝑡 > 0 to 0 may be non-unique. There are, however, two points, 𝑡0 = 0 and 𝑡1 = 𝜏, at
which this issue can be bypassed. At 𝑡 = 0 the backward operator trivially becomes
the identity operator, 𝑒𝐴(0) ·0 = id, and at 𝑡 = 𝜏, 𝑒𝜏𝐴(𝜏) cancels with 𝑒−𝜏𝐴(𝜏) , the forward
advection operator in eq. (4.13).4 Conveniently, together with the weights 𝑤0 = 1

2 = 𝑤1
this schemes turns into the trapezoidal rule

𝜏∫
0

𝑓 (𝑡) 𝑑𝑡 = 𝜏

2
( 𝑓 (0) + 𝑓 (𝜏)) + O

(
𝜏3

)
(4.16)

which provides global second-order-in-time integration while being unconditionally
stable (Süli and Mayers 2003) for linear ODE problems. Additional complexity arises,
however, with an implicit solution step, i.e., in general, a non-linear iteration. This
procedure is well known in literature and provides additional energy conservation
properties (Nandy and Jog 2014; Smolarkiewicz, Kühnlein, and Wedi 2014).

Summing up this discussion, eq. (4.13) is approximated by

𝜓(𝜏) = 𝑒−𝜏𝐴(𝜏)
(
𝜓(0) + 𝜏

2
𝑅(0)

)
+ 𝜏

2
𝑅(𝜏) + O

(
𝜏3

)
. (4.17)

4We may note, however, that 𝑒−𝜏𝐴
(𝜏)

itself must be well-posed as well. It is therefore, without further
proof, reasonable to assume that the above construction is well-posed only for limit time step sizes
𝜏. Since the Courant-Friedrichs-Lewy (CFL) condition for the advection scheme needs to satisfied
anyway, from a practical point of view we see no further restriction arising from that.
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We are left with finding a suitable approximation of 𝑒−𝜏𝐴(𝜏) which itself requires time
integration (cf. eq. (4.9)) along the trajectories (𝜓(𝑡), 𝑡) of the solution. Following the
mean value theorem, there exists a pair (𝜓𝑚, 𝑡𝑚) such that

𝜏∫
0

A(𝜓(𝑡), 𝑡) 𝑑𝑡 = A(𝜓𝑚, 𝑡𝑚)𝜏 (4.18)

is exactly satisfied, given that the map (𝜓, 𝑡) ↦→ A(𝜓(𝑡), 𝑡) is sufficiently regular.
By construction (cf. eq. (4.9)) we have A(𝜓𝑚, 𝑡𝑚) ≡ 𝐴(𝜏 ) . Approximating 𝐴(𝜏 ) by
A(𝜓(𝜏/2), 𝜏/2), i.e., at the midpoint of the integration interval, introduces an error of
O

(
𝜏2) , i.e., leads to the approximation

𝑒−𝜏𝐴
(𝜏)
𝜓 = 𝑒−𝜏(A(𝜓 (𝜏/2) ,𝜏/2)+O(𝜏2))𝜓

=

∞∑︁
𝑛=0

(
−𝜏A(𝜓(𝜏/2), 𝜏/2) + O

(
𝜏3) )𝑛

𝑛!
𝜓

= 𝑒𝜏A(𝜓 (𝜏/2) ,𝜏/2)𝜓 + O
(
𝜏3

)
, (4.19)

where the second line uses the definition of the operator exponential. 𝑒−𝜏A(𝜓 (𝜏/2) ,𝜏/2)

is constant over the integration interval, i.e., is independent of (𝜓(𝑡), 𝑡), hence the
integration of the advection term is approximated by a linear operator.

For approximating 𝜓(𝜏/2), there are several possible choices, among them the
two-step linear extrapolation of the advection velocities as outlined in Smolarkiewicz
(2006), or computing a first-order (explicit) predictor as proposed by Benacchio and
Klein (2019). In the further course we will adopt and outline the latter.

The derivation of eq. (4.19) has shown, that we are free to approximate 𝜓(𝜏/2) with
an error of O

(
𝜏2) in the evaluation of A(𝜓(𝜏/2), 𝜏/2) to maintain an overall error of

O
(
𝜏3) . With

𝜓(𝜏/2) = 𝑒−A(𝜓 (0) ,0)𝜏
(
𝜓(0) + 𝜏

2
𝑅(0)

)
+ O

(
𝜏2

)
(4.20)

we can define an explicit predictor to 𝜓(𝜏/2), sufficient for the above condition. This
choice, computing the midpoint value explicitly from values available at time 𝑡 = 0,
renders the overall integration scheme for the advection into the explicit midpoint rule.
Technically, it is possible to make different approximations to 𝜓(𝜏/2), e.g., using an
implicit Euler step for the predictor instead (turning the overall integration scheme into
the implicit midpoint rule). In summary, we have

𝑒−𝜏𝐴
(𝜏)

= 𝑒−A(𝜓∗,𝜏/2)𝜏 + O
(
𝜏3

)
(4.21)

with the predictor

𝜓∗ = 𝑒−A(𝜓 (0) ,0)𝜏
(
𝜓(0) + 𝜏

2
𝑅(0)

)
(4.22)

It is worth mentioning that so far, there was no operator splitting involved in deriving
the prototype solution of eq. (4.17). Independent integration of the sources 𝑅 and the
advection operator A is the result of solving an inhomogeneous ODE by varying the
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constants of the homogeneous solution. An integration scheme emerges that is second-
order accurate in time. In fact, if this equation was solved by integrating the individual
terms via operator splitting, Strang (1968) splitting would have been necessary to achieve
second-order in time with each integration stage being (at least) second-order-in-time.
Here, however, the integration of the source term 𝑅 is conducted via an explicit and
an implicit step, each being first-order-in-time, yet leading to a second-order scheme.
This corroborates the verbal statement of Benacchio and Klein (2019, sec. 3.b.2, last
paragraph) and give a slightly different perspective to Smolarkiewicz and Margolin
(1993).

4.3. Coupled Integration of the Leading-Order Asymptotic
Equations

In the previous section we discussed how we can approach How we can approach the
approximate integration of the prototype formula eq. (4.17). Now we want to apply
these found results to eqs. (4.1) for each individual equation. In general, �̂� changes over
[0, 𝜏] through its dependency on 𝑢. To this end, and thus complying with the formal
time integration scheme as outlined in the previous section, we evaluate �̂� at the starting
point and at the end of the time interval and represent it with the symbols �̂�𝑛 and �̂�𝑛+1.

The semi-discrete form of eqs. (4.1) following eq. (4.17) reads:

𝑢𝑛+1 = 𝑒−A𝑢Δ𝑡

(
𝑢𝑛 − Δ𝑡

2
𝑢𝑛𝑟,0

(
𝑢𝑛

𝑟
+ 𝑓0

))
−

− Δ𝑡

2
𝑢𝑛+1
𝑟 ,0

(
𝑢𝑛+1

𝑟
+ 𝑓0

)
(4.23a)(

1 + 𝚤Δ𝑡
2
�̂�𝑛+1

)
𝑋𝑛+1 = 𝑒−A𝑋Δ𝑡

((
1 − 𝚤Δ𝑡

2
�̂�𝑛

)
𝑋𝑛 + Δ𝑡

2
(
𝑄𝑛 + 𝑢𝑛𝑠

) )
+

+ Δ𝑡

2

(
𝑄𝑛+1 + 𝑢𝑛+1

𝑠

)
(4.23b)

A𝑋 and A𝑢 represent the one- and two-dimensional advection terms acting on 𝑋 and 𝑢
in eqs. (4.1). This formulation involves expressions on both time level, 𝑡𝑛 and 𝑡𝑛+1. It is
important to keep in mind that the expressions 𝑢𝑛+1

𝑟 ,0 and 𝑄𝑛+1 depend on the solution
state (𝑢𝑛+1, 𝑋𝑛+1) at time level 𝑡𝑛+1. By appropriately arranging the evaluation of
sub-expressions advancing the solution (𝑋, 𝑢) from 𝑡𝑛 to 𝑡𝑛+1 can be accomplished by
the following steps:

Explicit step

𝑢∗ = 𝑢𝑛 − Δ𝑡

2
𝑢𝑛𝑟,0

(
𝑢𝑛

𝑟
+ 𝑓0

)
(4.24a)

𝑋∗ =

(
1 − 𝚤Δ𝑡

2
�̂�𝑛

)
𝑋𝑛 + Δ𝑡

2
(
𝑄𝑛 + 𝑢𝑛𝑠

)
(4.24b)
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Advective step

𝑢∗∗ = 𝑒−A𝑢Δ𝑡𝑢∗ (4.25a)

𝑋∗∗ = 𝑒−A𝑋Δ𝑡𝑋∗ (4.25b)

Implicit step To complete the time step the implicit part requires solving for the
fixed-point induced through the dependency of 𝑄𝑛+1 and 𝑢𝑛+1

𝑟 ,0 on the solution at final
time (𝑋𝑛+1, 𝑢𝑛+1). The iterative scheme takes the form

𝑢𝑛+1,𝜈+1 =
𝑢∗∗𝑟 − 1

2Δ𝑡𝑢
𝑛+1,𝜈
𝑟 ,0 𝑓0𝑟

𝑟 + 1
2Δ𝑡𝑢

𝑛+1,𝜈
𝑟 ,0

(4.26a)(
1 + 𝚤Δ𝑡

2
�̂�𝑛+1,𝜈+1

)
𝑋𝑛+1,𝜈+1 = 𝑋∗∗ + Δ𝑡

2
(𝑄𝑛+1,𝜈 + 𝑢𝑛+1

𝑠 ) (4.26b)

with 𝜈 = 0, 1, . . . and initial guesses (𝑋𝑛+1,0, 𝑢𝑛+1,0) = (𝑋∗∗, 𝑢∗∗). Each iteration
cycle requires the solution of the linear problem for 𝑋𝑛+1. The iteration will be
terminated once a prescribed accuracy goal is satisfied, i.e., once the increments
between (𝑋𝑛+1,𝜈+1, 𝑢𝑛+1,𝜈+1) and (𝑋𝑛+1,𝜈 , 𝑢𝑛+1,𝜈) reaches a targeted precision goal,
usually an 𝑙∞ error of 10−13. Note that depending on the order of solving eqs. (4.26a)
and (4.26b) the iteration 𝑢𝑛+1,𝜈+1 can be inserted in the equation for 𝑋𝑛+1,𝜈+1 or vice
versa. This may speed up convergence.

We shall mention that eqs. (4.26) pose generic non-linear optimization problems for
which a vast number of black-box solvers are available. The software environments of
NumPy (Harris et al. 2020) and SciPy (Virtanen et al. 2020) provide various solvers
that can be used instead of the fixed-point iteration as suggested. Tests have shown,
that benefits in terms of computational efficiency are apparent only for problem sizes
(i.e. resolutions) beyond what is reasonable for our purposes. Hence, we make use of
the iterations as suggested above.

4.4. Spatial Discretization of Hamiltonian and Source Terms

This section is dedicated to highlighting details of the spatial discretization. First, we
recapture the derivation of the terms �̂�𝑋 and 𝑖𝑄 in eq. (4.1a) and realize that with
eqs. (3.33) and (3.34) the following expression holds:

�̂�𝑋 = −𝛼 log(𝜀)�̂�𝑋 − 𝐿 [Ĥ + ˆ̃I + Ĵ]𝑋 , (4.27)

where ˆ̃I originates from eq. (3.23c) and subtracting the non-integrable term that causes
the logarithmic divergence (cf. eq. (3.25)) when passing the upper bound of the improper
integral to the limit 𝑟 → ∞.
𝐿 is an integral operator in 𝑟 on the domain [0,∞). This operator needs to be

approximated in a numerical implementation by truncating the integration interval to
[0, 𝑟∞) with 𝑟∞ < ∞. To this end, we define

�̃� [K] :=
𝜋

Γ

𝑟∞∫
0

𝑟K(𝑟) 𝑑𝑟 (4.28)
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and realize that

𝐿 [Ĥ + ˆ̃I + Ĵ]𝑋 = �̃� [Ĥ + Î + Ĵ ]𝑋 + 2𝛼 log(𝑟∞)�̂�𝑋 + 𝑜(1) as 𝑟∞ → ∞ . (4.29)

Note, that the original operator 𝐿 evaluates ˆ̃I𝑋 , while the truncated operator �̃� uses
Î. This behavior arises from integrating (Ĥ + ˆ̃I + Ĵ)𝑋 to a large but finite radius 𝑟∞,
where all integrated terms are sufficiently converged except the logarithmically decaying
one5, which is compensated for by the log(𝑟∞)-term in the above equation.

Additionally, we have 𝑖𝑄(𝑤ad) = −𝐿 [Ĥ + Î + Ĵ ]𝑋 , at least formally (cf. eqs. (3.33)
and (3.34)), and together with eq. (4.29) we conclude that it is sufficient to discretize 𝑄
and �̂� . �̂� then is a superposition.

Starting with 𝑤1,ad requiring 𝜕𝑧𝑋 we discretize6

𝜕𝑋

𝜕𝑧

����
𝑖+1/2

=
1
Δ𝑧

(𝑋𝑖+1 − 𝑋𝑖) , (4.30)

where integer indexes 𝑖 stand for cell-centered grid points 𝑧𝑖 and half-integer indexes for
face-centered grid points 𝑧𝑖+1/2 = 𝑧𝑖 + Δ𝑧/2 in one dimension. Together with7

𝑊(𝑖+1/2, 𝑗+1/2) =
1
2

(
𝑊(𝑖, 𝑗+1/2) +𝑊(𝑖+1, 𝑗+1/2)

)
, (4.31)

𝑊 is defined through eqs. (3.19), we obtain

𝑤1,ad, (𝑖+1/2, 𝑗+1/2) = −𝚤𝑊(𝑖+1/2, 𝑗+1/2)
𝜕𝑋

𝜕𝑧

����
𝑖+1/2

. (4.32)

Hence, both,𝑤 and𝑊 , are stored on nodal grid points, i.e., at points (𝑧𝑖+1/2, 𝑟 𝑗+1/2). Note
that eq. (4.30) and eq. (4.31) represent the typical approach of converting cell-centered
quantities to face-centered ones, either by computing the derivate or averaging.

With these discretizations at hand we can continue and straight-forwardly give
expressions for the terms H , I, and J as defined through eq. (3.33).

H𝑖, 𝑗 =
1
Δ𝑟

(
𝑟 𝑗+1/2𝑤1, (𝑖, 𝑗+1/2)

𝜕𝑢

𝜕𝑧

����
𝑖, 𝑗+1/2

− 𝑟 𝑗−1/2𝑤1, (𝑖, 𝑗−1/2)
𝜕𝑢

𝜕𝑧

����
𝑖, 𝑗−1/2

)
(4.33)

𝑅1, (𝑖, 𝑗 ) =
1
Δ𝑧

1
𝜌0, (𝑖)

(
𝜌0, (𝑖+1/2)𝑤1, (𝑖+1/2, 𝑗 ) − 𝜌0, (𝑖−1/2)𝑤1, (𝑖−1/2, 𝑗 )

)
(4.34)

I𝑖, 𝑗 = 𝑟𝑖
(
𝜁𝑖, 𝑗 + 𝑓0

)
𝑅1, (𝑖, 𝑗 ) (4.35)

For the next expressions a discretized integral operator needs to be defined. For the
sake of generality, we define it as one-dimensional operator that applies to the desired
coordinate direction for which we introduce the placeholder variable 𝑥. By employing
the trapezoidal rule with extrapolated boundary conditions at 𝑥 = 0, we get

𝑥𝑖∫
0

𝑔(𝑥) 𝑑𝑥 ≈ I𝑥 [𝑔]𝑖 := Δ𝑥

(∑︁
𝑘≤𝑖

𝑔𝑘 −
1
2
𝑔𝑖 +

1
4
(𝑔0 − 𝑔1)

)
(4.36)

5For a detailed discussion on the limiting properties of the terms 𝐿 [Ĥ ]𝑋 , 𝐿 [Î]𝑋 , 𝐿 [Ĵ ]𝑋 , see Päschke
et al. (2012, Appendix E).

6Mainly focusing on the spatial discretization we omit time indexes.
7Spatial indexes are put into parenthesis, where necessary, for disambiguation.
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With this discrete formulation we achieve second-order-in-space integration of values at
cell centers. The expression 𝜙1, needed for J , is computed by

𝜙1,𝑖, 𝑗 = −𝑟 𝑗𝑖𝑖, 𝑗 (4.37)

𝑖𝑖, 𝑗 = −I𝑟
[
𝑖2

𝑟3

]
𝑖, 𝑗

+ I𝑟
[
𝑖2

𝑟3

]
𝑖, 𝑗𝑁

(4.38)

where 𝑖2
𝑖2, (𝑖, 𝑗 ) = I

𝑟
[
𝑟2𝑅1

]
𝑖, 𝑗

(4.39)

Instabilities potentially arising from dividing by small radii in eq. (4.38) are coped with
by catching the divisor 𝑟3 at small radii and setting the cell values to zero. This is
legitimate due to the small-𝑟 limit of 𝑖2 (cf. eq. (4.39)). With these ingredients we can
find an approximation to J by

J𝑖, 𝑗 = 𝑟 𝑗
𝜕𝜁

𝜕𝑟

����
𝑖, 𝑗

𝜕𝜙1

𝜕𝑟

����
𝑖, 𝑗

(4.40)

As an exception both, 𝜕𝑟 𝜁 |𝑖, 𝑗 and 𝜕𝑟𝜙1 |𝑖, 𝑗 , are discretized by a central second-order
stencil:

𝜕𝜙1

𝜕𝑟

����
𝑖, 𝑗

=
1

2Δ𝑟
(
𝜙1, (𝑖, 𝑗+1) − 𝜙1, (𝑖, 𝑗−1)

)
(4.41)

𝜕𝜁

𝜕𝑟

����
𝑖, 𝑗

=
1

2Δ𝑟
(
𝜁𝑖, 𝑗+1 − 𝜁𝑖, 𝑗−1

)
(4.42)

Altogether, 𝑄 then is computed as

𝑄𝑖 =
𝜋

Γ𝑖
I𝑟def [𝑟 (H + I + J)]𝑖 (4.43)

with the discrete approximation of the definite integral

∞∫
0

𝑔(𝑥) 𝑑𝑥 ≈ I𝑥def [𝑔] := Δ𝑥

𝑁∑︁
𝑘=0

𝑔𝑘 +
Δ𝑥

4
(𝑔0 + 𝑔𝑁 ) −

Δ𝑥

4
(𝑔1 + 𝑔𝑁−1) (4.44)

and the circulation
Γ𝑖 = 2𝜋𝑢𝑖, 𝑗𝑁 𝑟 𝑗𝑁 . (4.45)

The remaining expression for �̂�1𝑋 is given by

�̂�𝑋
��
𝑖
=

𝑓 2
0

4𝜋Γ𝑖𝜌0, (𝑖)

1
Δ𝑧

(
𝛾𝑖+1/2

𝜕𝑋

𝜕𝑧

����
𝑖+1/2

− 𝛾𝑖−1/2
𝜕𝑋

𝜕𝑧

����
𝑖−1/2

)
(4.46)

with 𝛾𝑖+1/2 a shorthand notation for

𝛾𝑖+1/2 =
1
2

(
𝜌0, (𝑖) (Γ𝑖)2

Θ′
1, (𝑖)

+
𝜌0, (𝑖+1) (Γ𝑖+1)2

Θ′
1, (𝑖+1)

)
. (4.47)
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4.5. Methods for the Quasi-Linear Advection Equation

In section 4.1 we found the linear advection equation eq. (4.8) to be the homogeneous
equation to the general problem eq. (4.7) (and eq. (4.2), respectively). This circumstance
is taken care of in section 4.2 in the time-discrete equation (4.23) by the advection step
eq. (4.25) entering between the explicit and implicit integration of the source terms.

The integral operator 𝑒−𝐴(Δ𝑡 )Δ𝑡 needs to be approximated by a suitable numerical
scheme. In case of the centerline equation (eq. (4.1a)) A𝑋 forms a one-dimensional
derivative operator,

A𝑋𝑋 := 𝐴
𝜕𝑋

𝜕𝑧
(4.48)

while for the time evolution of the tangential velocity 𝑢 (eq. (4.1b)) the advection
operator A𝑢 becomes the two-dimensional directional derivative,

A𝑢𝑢 B 𝑢𝑟 ,00
𝜕𝑢

𝜕𝑟
+ 𝑤0

𝜕𝑢

𝜕𝑧
C A𝑢,𝑟𝑢 + A𝑢,𝑧𝑢 , (4.49)

i.e., a combination of two one-dimensional advection operators acting on 𝑢.
Formally, the exact solution is given by eq. (4.9). For a numerical approximation

𝑒−𝜏𝐴
(𝜏) needs to be discretized with a suitable numerical method. To comply with the

second-order accuracy of the time discretization of the source terms, as presented in
section 4.2, a candidate advection scheme should also be second-order in space and
time.

Despite the plethora of methods available in literature, we will make use of the
scheme outlined in (Benacchio and Klein 2019) comprising the combination of a robust
one-dimensional advection scheme based on finite-volume shock-capturing techniques
and Strang splitting (Strang 1968). However, there are other possible methods that can be
used seamlessly instead (Dumbser and Munz 2005; Jiang and Shu 1996; Smolarkiewicz
and Margolin 1993, 1998, to name just a few).

4.5.1. Strang Splitting

We deduced the initial problem (4.1b) to involve the solution of the equation

𝑑𝑢

𝑑𝑡
+ A𝑟𝑢 + A𝑧𝑢 = 0 , (4.50)

which formally takes the exact solution

𝑢(𝜏) = 𝑒−(A𝑟+A𝑧 )𝜏𝑢(0) . (4.51)

Following the approach of Strang (1968), solutions to this problem can be approximated
by

𝑢(𝜏) = 𝑒− 1
2 A𝑟 𝜏𝑒−A𝑧 𝜏𝑒−

1
2 A𝑟 𝜏𝑢(0) + O

(
𝜏3

)
, (4.52a)

= 𝑒−
1
2 A𝑧 𝜏𝑒−A𝑟 𝜏𝑒−

1
2 A𝑧 𝜏𝑢(0) + O

(
𝜏3

)
, (4.52b)

i.e., by the successive integration of one-dimensional advection problems. In the actual
implementation we alternate between eq. (4.52a) and eq. (4.52b) per time step.
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4.5.2. One-Dimensional Advection

Solving the advection problem eq. (4.25) as part of the coupled integration of eqs. (4.1)
is crucial to the overall stability and accuracy of the solution. As standard problem
throughout the literature of hyperbolic PDEs (LeVeque 1992) we pose the prototype
problem of one-dimensional advection with variable velocity as

𝜕𝜓

𝜕𝑡
(𝑥, 𝑡) + 𝑣(𝑥, 𝑡) 𝜕𝜓

𝜕𝑥
(𝑥, 𝑡) = 0 (4.53)

with the solution defined as a map

𝜓 : Ω × R+ → K
(𝑥, 𝑡) ↦→ 𝜓(𝑥, 𝑡) (4.54)

and initial and boundary conditions 𝜓(𝑥, 0) = 𝜓0(𝑥) and 𝜓(𝑥, 𝑡) |𝜕Ω = 𝑔(𝑥, 𝑡), respec-
tively.

In literature, there is a plethora of schemes to solve equations of the type eq. (4.53), all
with their own advantages and obstacles (consult LeVeque 1992; Tadmor 2012, among
others for review). Among them, finite volume methods allow us to control integral
balances of conserved quantities exactly, which is beneficial for both, accuracy and
stability. In the following, we will adopt the notation and key ideas of the finite volume
scheme presented by Benacchio and Klein (2019) and Smolarkiewicz, Kühnlein, and
Wedi (2014) and show some modification to suit the problem presented here.

To this end, we will not solve eq. (4.53) directly, but first derive an equivalent
conserved equation. Assume a strictly positive density-like quantity 𝜌 following the
continuity equation

𝜕𝜌

𝜕𝑡
(𝑥, 𝑡) + 𝜕𝜌𝑣

𝜕𝑥
(𝑥, 𝑡) = 0 . (4.55)

Then for every quantity 𝜓 obeying the advection equation (4.53) there is a conserved
quantity 𝜌𝜓 that satisfies the conservation law

𝜕𝜌𝜓

𝜕𝑡
(𝑥, 𝑡) + 𝜕𝜌𝑣𝜓

𝜕𝑥
(𝑥, 𝑡) = 0 . (4.56)

By simultaneously solving eqs. (4.55) and (4.56) it is possible to solve eq. (4.53) by
controlling a conserved quantity.

Defining the space-time grid cell 𝑐𝑛+1/2
𝑖

= [𝑥𝑖−1/2, 𝑥𝑖+1/2] × [𝑡𝑛, 𝑡𝑛+1] and introducing
the notation 𝜓𝑛

𝑖
≡ 𝜓(𝑥𝑖 , 𝑡𝑛), a second-order discretization of the time derivative at the

midpoint (𝑥𝑖 , 𝑡𝑛+1/2) of 𝑐𝑛+1/2
𝑖

is given by

𝜕𝜌𝜓

𝜕𝑡

����𝑛+1/2

𝑖

=
1
Δ𝑡

(
(𝜌𝜓)𝑛+1

𝑖 − (𝜌𝜓)𝑛𝑖
)
+ O

(
Δ𝑡2

)
(4.57)

and the spatial discretization by

𝜕𝜌𝑣𝜓

𝜕𝑥

����𝑛+1/2

𝑖

=
1
Δ𝑥

(
(𝜌𝑣𝜓)𝑛+1/2

𝑖+1/2 − (𝜌𝑣𝜓)𝑛+1/2
𝑖−1/2

)
+ O

(
Δ𝑥2

)
. (4.58)
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𝑡𝑛

𝑡𝑛+1

𝑥𝑖 𝑥𝑖+1

𝑥𝑖+1/2

𝜓
𝑛+1/2
𝑖+1/2

𝑣𝑖+1/2 > 0 𝑣𝑖+1/2 < 0

Figure 4.1.: Reconstruction of face values 𝜓𝑛+1/2
𝑖+1/2 .

We end up with the discrete formula

𝜓𝑛+1
𝑖 =

1
𝜌𝑛+1
𝑖

(
(𝜌𝜓)𝑛𝑖 + Δ𝑡

Δ𝑥

(
(𝜌𝑣𝜓)𝑛+1/2

𝑖−1/2 − (𝜌𝑣𝜓)𝑛+1/2
𝑖+1/2

))
+ O

(
Δ𝑡3 + Δ𝑡Δ𝑥2

)
. (4.59)

Hence, we need to find an approximation of (𝜌𝑣𝜓)𝑛+1/2
𝑖+1/2 at the cell-face at half-time

level.
Assuming for a moment 𝑣(𝑥, 𝑡) and 𝜌(𝑥, 𝑡) to be given functions up to first-order

accuracy, we can treat the value (𝜌𝑣)𝑛+1/2
𝑖+1/2 as given and the problem reduces to

approximating 𝜓𝑛+1/2
𝑖+1/2 . Taylor series expansion of 𝜓 at the point (𝑥𝑖 , 𝑡𝑛) gives

𝜓
𝑛+1/2
𝑖+1/2 = 𝜓𝑛

𝑖 + Δ𝑥

2
𝜕𝜓

𝜕𝑥

����𝑛
𝑖

+ Δ𝑡

2
𝜕𝜓

𝜕𝑡

����𝑛
𝑖

+ O
(
(Δ𝑥 + Δ𝑡)2

)
= 𝜓𝑛

𝑖 + Δ𝑥

2
𝜕𝜓

𝜕𝑥

����𝑛
𝑖

− Δ𝑡

2

(
𝑣
𝜕𝜓

𝜕𝑥

)����𝑛
𝑖

+ O
(
(Δ𝑥 + Δ𝑡)2

)
= 𝜓𝑛

𝑖 + Δ𝑥

2
𝜕𝜓

𝜕𝑥

����𝑛
𝑖

(
1 − Δ𝑡

Δ𝑥
𝑣𝑛𝑖

)
+ O

(
(Δ𝑥 + Δ𝑡)2

)
, (4.60a)

where we used eq. (4.53) to replace 𝜕𝑡𝜓. Similarly, we can expand around (𝑥𝑖+1, 𝑡
𝑛)

and find

𝜓
𝑛+1/2
𝑖+1/2 = 𝜓𝑛

𝑖+1 −
Δ𝑥

2
𝜕𝜓

𝜕𝑥

����𝑛
𝑖+1

(
1 + Δ𝑡

Δ𝑥
𝑣𝑛𝑖+1

)
+ O

(
(Δ𝑥 + Δ𝑡)2

)
(4.60b)

From classical numerical analysis of hyperbolic PDEs (LeVeque 1992) we know that
schemes solving the advection equation are unstable if the reconstruction is accomplished
downwind. It is necessary to account for the information of the previous solution state
in upwind direction (where the information is advected from). Therefore, depending on
the sign of 𝑣𝑛+1/2

𝑖+1/2 we either choose eq. (4.60a) or eq. (4.60b) for reconstructing 𝜓𝑛+1/2
𝑖+1/2 .

The remaining issue is to approximate 𝜕𝑥𝜓 |𝑛𝑖 .
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𝜓𝑖−1

𝜓𝑖

𝜓𝑖+1Δ𝜓𝐿
𝑖

Δ𝜓𝑅
𝑖

Figure 4.2.: Slope limiting.

A slightly different interpretation of eqs. (4.60) may be given by fig. 4.1. Depending
on the sign of 𝑣𝑛+1/2

𝑖+1/2 the advected quantity 𝜓𝑛+1/2
𝑖+1/2 must originate from a position 𝑥0

located either in the left or right neighboring cell:

𝑥0
𝑖+1/2 = 𝑥𝑖+1/2 − 𝑣𝑛+1/2

𝑖+1/2
Δ𝑡

2
+ O

(
Δ𝑡2

)
(4.61)

Advection interpreted as transport of 𝜓 means that the half-time level face value 𝜓𝑛+1/2
𝑖+1/2

is equal to this original value 𝜓(𝑥0
𝑖+1/2) which needs to be reconstructed at time level 𝑡𝑛

(adding a slightly different flavor to the previous interpretation of a two-dimensional
Taylor-series expansion). However, for the right-travelling wave we can approximate

𝜓(𝑥0
𝑖+1/2) = 𝜓

𝑛
𝑖 + 𝜕𝜓

𝜕𝑥

����𝑛
𝑖

(𝑥0
𝑖+1/2 − 𝑥𝑖) + O

((
𝑥0
𝑖+1/2 − 𝑥𝑖

)2
)

= 𝜓𝑛
𝑖 + 𝜕𝜓

𝜕𝑥

����𝑛
𝑖

Δ𝑥

2

(
1 − Δ𝑡

Δ𝑥
𝑣
𝑛+1/2
𝑖+1/2

)
+ O

(
(Δ𝑥 + Δ𝑡)2

)
(4.62)

This matches the result for the left-sided reconstruction found in eq. (4.60a) except for
the fact that 𝑣 is evaluated at time 𝑡𝑛+1/2. Since 𝑣𝑛+1/2 = 𝑣𝑛 + O(Δ𝑡), the difference
of the two expression is submerged into the leading-order error term, thus the two
expressions (4.60a) and (4.62) are equivalent in terms of the leading-order error, but
the latter turns out to be numerically more stable.8 With the same procedure we can
find the right-sided reconstruction eq. (4.60b). This line of arguments shall strengthen
the need for an upwind reconstruction of 𝜓𝑛+1/2

𝑖+1/2 .
The slope 𝜕𝑥𝜓 |𝑛𝑖 remains to be determined. Again we follow standard procedures

of numerical analysis for hyperbolic PDEs and first find estimates of the slope by
interpolating linearly between the local cell value and its left and right adjacent values,
see fig. 4.2. To this end we define the left and right slopes

Δ𝜓𝐿
𝑖 := 𝜓𝑖 − 𝜓𝑖−1 , Δ𝜓𝑅

𝑖 := 𝜓𝑖+1 − 𝜓𝑖 . (4.63)

8The situation is similar to comparing the implicit and explicit midpoint rule. In the numerical
implementation, 𝑣𝑛+1/2

𝑖+1/2 is approximated by an explicit predictor step that estimated the face-centered
mid-time-level advection velocities with first-order accuracy.
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𝑟

𝜙(𝑟) 𝜙(𝑟) = 1
2𝑟

1

2

𝜙(𝑟) = 𝑟

𝜙minmod

𝜙Van Leer

𝜙EVL

Figure 4.3.: Slope limiter functions. The second-order TVD area is shown in gray.
Examples of slope limiter functions are given in blue.

Slope Limiting

The total variation diminishing (TVD) constraint

𝑇𝑉𝑛+1 ≤ 𝑇𝑉𝑛 with 𝑇𝑉𝑛 :=
∑︁
𝑖

|𝜓𝑛
𝑖 − 𝜓𝑛

𝑖+1 | (4.64)

for stability of one-dimensional schemes for the linear advection equation (LeVeque
1992) requires the reconstruction of 𝜓 within the cell by a local (linear) interpolant not
to exceed (over- or undershoot) the neighboring values.

This problem is typically overcome by slope limiting which, given left-sided and
right-sided slopes, sets the inter-cell slope Δ𝜓𝑖 = 𝜓𝑖+1/2 − 𝜓𝑖−1/2 to

Δ𝜓𝑖 = sign(Δ𝜓𝐿
𝑖 )Lim(Δ𝜓𝐿

𝑖 , Δ𝜓
𝑅
𝑖 ) . (4.65)

With this notation the TVD condition is expressed as

|𝜓𝑖+1 − 𝜓𝑖 | = |Δ𝜓𝑅
𝑖 | ≥

1
2

Lim(Δ𝜓𝐿
𝑖 , Δ𝜓

𝑅
𝑖 ) (4.66a)

|𝜓𝑖 − 𝜓𝑖−1 | = |Δ𝜓𝐿
𝑖 | ≥

1
2

Lim(Δ𝜓𝐿
𝑖 , Δ𝜓

𝑅
𝑖 ) (4.66b)

Defining the slope ratio9

𝑟𝑖 :=
𝜓𝑖+1 − 𝜓𝑖

𝜓𝑖 − 𝜓𝑖−1
(4.67)

we can introduce the limiter function 𝜙𝐿 , such that

Lim(Δ𝜓𝐿
𝑖 ,Δ𝜓

𝑅
𝑖 ) = 𝜙(𝑟𝑖)Δ𝜓𝐿

𝑖 . (4.68)

For symmetry reasons it must follow

Lim(Δ𝜓𝐿
𝑖 ,Δ𝜓

𝑅
𝑖 ) = 𝜙

(
1
𝑟𝑖

)
Δ𝜓𝑅

𝑖 , (4.69)

9Definitions in literature may vary in that the definition of 𝑟𝑖 is inverse to that of eq. (4.67).
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i.e.,

𝜙

(
1
𝑟

)
=

1
𝑟
𝜙(𝑟) . (4.70)

Together with eq. (4.66) the TVD region of 𝜙(𝑟) is limited by

𝜙(𝑟) ≤ 𝑟

2
and 𝜙(𝑟) ≤ 2 , (4.71)

and in case Δ𝜓𝐿
𝑖
= Δ𝜓𝑅

𝑖
, i.e., 𝑟𝑖 = 1, Lim(Δ𝜙𝐿

𝑖
,Δ𝜓𝑅

𝑖
) = Δ𝜓𝐿

𝑖
= Δ𝜓𝑅

𝑖
, hence it must be

𝜙(1) = 1.
To gain deeper insight, we want to analyze the example of the first-order upwind

scheme:
𝜓𝑛+1
𝑖 = 𝜓𝑛

𝑖 + 𝑣𝑛𝑖
Δ𝑡

Δ𝑥

(
𝜓𝑛
𝑖−1 − 𝜓

𝑛
𝑖

)
. (4.72)

In our framework this is equivalent to neglecting the local slope and setting 𝜓𝑛+1/2
𝑖+1/2 = 𝜓𝑛

𝑖
,

thus, 𝜙(𝑟) = 0 will yield the first-order upwind scheme. The question arises, if there are
any other at least second-order methods fitting into this framework. By setting 𝜙(𝑟) = 𝑟
we get

𝜓
𝑛+1/2,LW
𝑖+1/2 =

1
2

(
1 − Δ𝑡

Δ𝑥
𝑣𝑖𝑛

)
Δ𝜓𝐿

𝑖 (4.73)

Inserted into eq. (4.59) and setting 𝑣 = const = 𝜌 gives

𝜓
𝑛+1,LW
𝑖

= 𝜓𝑛
𝑖 + 𝑣

2
Δ𝑡

Δ𝑥

(
𝜓𝑛
𝑖−1 − 𝜓

𝑛
𝑖+1

)
− 𝑣2

2
Δ𝑡2

Δ𝑥2

(
𝜓𝑛
𝑖−1 − 2𝜓𝑛

𝑖 + 𝜓𝑛
𝑖+1

)
, (4.74)

which is the second-order Lax-Wendroff scheme for the advection equation for 𝑣 > 0
(LeVeque 1992). Similarly, by setting 𝜙(𝑟) = 1 we get

𝜓
𝑛+1,BW
𝑖

= 𝜓𝑛
𝑖 +

𝑣

2
Δ𝑡

Δ𝑥

(
−𝜓𝑛

𝑖−2 + 4𝜓𝑛
𝑖−1 − 3𝜓𝑛

𝑖

)
− 𝑣

2

2
Δ𝑡2

Δ𝑥2

(
𝜓𝑛
𝑖−2 − 2𝜓𝑛

𝑖−1 + 𝜓
𝑛
𝑖

)
, (4.75)

i.e., the scheme of Beam and Warming (1976) for 𝑣 > 0.
Sweby (1984) concluded that weighted averages of both schemes again give a second-

order scheme, one being Fromm’s scheme.10 However, we summarize our discussion
with the comment that a second-order TVD scheme needs to satisfy the requirements

• 𝜙(𝑟) = min(2𝑟, 2)

• min(𝑟, 1) ≤ 𝜙(𝑟) ≤ max(𝑟, 1)
This matches with the shaded region of fig. 4.2. In literature, there is a plethora of
choices for slope limiters, among them the minmod limiter,

𝜙minmod(𝑟) = max(0,min(𝑟, 1)) , (4.76)

and the extended version of Van Leer’s limiter (Klein 2009):

𝜙EVL(𝑟) =
2𝑟

1 + 𝑟

{
Ξ(min(𝑟, 1/𝑟)) , 𝑟 > 0
0 , else

(4.77)

with
Ξ(𝑟) = 1 + 𝑟 (1 − 𝑟) (1 − 𝑟𝑘) (4.78)

With 𝑘 = 0 we obtain the classical formulation of Van Leer (1974).

10Due to the inverse definition 𝑟𝑖 =
Δ𝜙𝐿

𝑖

Δ𝜙𝑅
𝑖

of Sweby (1984) the identification of the schemes of Lax-Wendroff
and Beam-Warming are interchanged.
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Compressible Advection

So far, we assumed 𝜌(𝑥, 𝑡) and 𝑣(𝑥, 𝑡) to be given functions. The integration step
eq. (4.59) is constructed to require (𝜌𝑣)𝑛+/1/2, 𝜌𝑛, and 𝜌𝑛+1. To this end, in the spirit of
Smolarkiewicz, Kühnlein, and Wedi (2014), we write step from 𝑡𝑛 to 𝑡𝑛+1 as

𝜓𝑛+1 = AdvΔ𝑡 (𝜓𝑛, (𝜌𝑣)𝑛+1/2, 𝜌𝑛, 𝜌𝑛+1) + O
(
Δ𝑡3

)
, (4.79)

defining AdvΔ𝑡 as the transport method to advect 𝜓 for a time step of size Δ𝑡 with
the help of a primordial conservation law eq. (4.55) involving a guiding density 𝜌 to
be known at initial and final time as well as an approximation of the density fluxes
(𝜌𝑣𝑛+1/2

𝑖+1/2 ) at half-time on the cell faces.
In general, the time evolution of 𝜌 is tied to 𝑣(𝑥, 𝑡) and therefore cannot assume to be

known a priori. Nonetheless, trivially, we can integrate 𝜌 in eq. (4.55) by

𝜌𝑛+1 = AdvΔ𝑡 (𝜌𝑛, 𝑣𝑛+1/2, 1, 1) + O
(
Δ𝑡3

)
C CAdvΔ𝑡 (𝜌𝑛, 𝑣𝑛+1/2) + O

(
Δ𝑡3

)
(4.80)

as we replace 𝜓 → 𝜌, 𝜌𝑣 → 𝑣, and 𝜌 → 1. The conservative method CAdvΔ𝑡 solely
requires the information of 𝑣𝑛+1/2

𝑖+1/2 .
Equation (4.80) poses a method to solve the continuity eq. (4.55). Thus, replacing

the conserved quantity 𝜌𝑛 by (𝜌𝜓)𝑛 as the first argument of CAdvΔ𝑡 yields the solution
(𝜌𝜓)𝑛+1:

(𝜌𝜓)𝑛+1 = CAdvΔ𝑡 ((𝜌𝜓)𝑛, 𝑣𝑛+1/2) + O
(
Δ𝑡3

)
(4.81)

Together with the solution 𝜌𝑛+1 we obtain 𝜓𝑛+1.
This approach has the advantage that, besides the uniform integration of 𝜌 and (𝜌𝜓),

there is no need to reconstruct 𝑣𝑛+1/2
𝑖+1/2 from (𝜌𝑣)𝑛+1/2

𝑖+1/2 (given as the second argument to

AdvΔ𝑡 in eq. (4.79)) as needed during the reconstruction step for 𝜓𝑛+1/2
𝑖+1/2 (see eqs. (4.60))

which would require 𝜌𝑛+1/2
𝑖+1/2 , i.e., a sufficiently accurate approximation of the density

at the half-time cell interfaces. So instead of constructing (𝜌𝑣)𝑛+1/2
𝑖+1/2 or reconstructing

𝑣
𝑛+1/2
𝑖+1/2 , one can also use CAdvΔ𝑡 to solve the continuity equation (4.56).
During the construction of the advection scheme, we made use of the fact, that

advective quantities are constant along flow trajectories. This is no longer true for
conserved quantities transported by a divergent velocity field. Solving an advection
equation instead of a continuity equation (desired for the reconstruction of 𝜓𝑛+1/2

𝑖+1/2 ) we
introduce an error that is due to the integration of the right-hand side of the continuity
equation, written convective form:

1
𝜌

𝑑𝜌

𝑑𝑡
= −∇ · 𝒗 (4.82)

So takes the result of integrating 𝜌 from 𝑡𝑛 to 𝑡𝑛+1 = 𝑡𝑛 + Δ𝑡 along a flow trajectory
𝑥0(𝑡) the form

𝜌𝑛+1(𝑥𝑛+1
0 ) = 𝜌𝑛+1

adv (𝑥
𝑛+1
0 )𝑒−

∫ 𝑡𝑛+1

𝑡𝑛
∇·𝒗 𝑑𝑡 , (4.83)

with 𝜌𝑛+1
adv (𝑥

𝑛+1
0 ) the solution of eq. (4.82) with trivial right-hand side, i.e., the advection

equation. The exponential factor accounts for the expansion/compression along the
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trajectory. We have 𝜌𝑛+1
adv (𝑥

𝑛+1
0 ) = 𝜌𝑛+1

adv (𝑥
𝑛
0 ), since the solution of the advection equation

is constant along flow trajectories.
Assuming a piece-wise linear-in-time velocity field, the above equation renders into

𝜌𝑛+1(𝑥𝑛+1
0 ) = 𝜌𝑛+1

adv (𝑥
𝑛
0 )𝑒

−∇·𝒗𝑛+1/2 Δ𝑡 . (4.84)

In fact, when considering 𝜌 (or 𝜌𝜓) alone, every time step introduces an error that is
proportional to 1− 𝑒−∇·𝒗𝑛+1/2 Δ𝑡 . The fact, however, that we interested in 𝜓𝑛+1 =

(𝜌𝜓)𝑛+1

𝜌𝑛+1

and that both, (𝜌𝜓) and 𝜌, are integrated individually conveniently gives us the desired
quantity 𝜓 with the error term 𝑒−∇·𝒗

𝑛+1/2 Δ𝑡 canceled by the division. Hence, there is
no need for a more complicated interface-time-centered reconstruction of 𝒗𝑛+1/2

𝑖+1/2 by

means of (𝜌𝒗)𝑛+1/2
𝑖+1/2 and 𝜌𝑛+1/2

𝑖+1/2 , especially since the latter is to be reconstructed up to
first-order itself to maintain the overall order of the numerical scheme.

Note, that the problem to be solved does not necessarily provide guiding density
variable 𝜌. However, we can always construct a virtual density with arbitrary initial
value at the beginning of the time step, e.g., 𝜌𝑛 = 1. In that case, the solution 𝜌𝑛+1 of
eq. (4.55) accumulates the divergence of 𝑣𝑛+1/2

𝑖+1/2 . Another scenario is that of a density that
is governed by a divergence constraint, e.g., the anelastic constraint, where 𝜌0 is static
(𝜕𝑡 𝜌0 ≡ 0), thus, 𝜌0𝜓 is conserved. Then, if (𝜌0𝑣)𝑛+1/2

𝑖+1/2 is discretely divergence-free,
(𝜌0𝜓) can be integrated by CAdv without the need for separately integrating 𝜌0.

As a final remark, we want to emphasize that 𝑣 itself can be an unknown variable and
therefore subject to numerical integration (either by depending on 𝜓 or governed by
a PDE). To maintain overall second-order accuracy in space and time, 𝑣𝑛+1/2

𝑖+1/2 must be
at least first-order accurate (second-order error term in Δ𝑥 and Δ𝑡). In case of 𝑣 being
transported by 𝑣 itself (Burgers’ equation), the most straightforward way (and the one
suggested by Benacchio and Klein (2019)) is to use the method CAdv outlined above
in eq. (4.81) to compute a first-order predictor 𝑣𝑛+1/2,∗

𝑖+1/2 by approximating the transport

velocity 𝑣𝑛+1/4
𝑖+1/4 by 𝑣𝑛

𝑖+1/2. 𝑣𝑛+1/2,∗
𝑖+1/2 then is a first-order predictor to 𝑣𝑛+1/2

𝑖+1/2 sufficient to
maintain the desired accuracy.

4.6. Unitary Time Integration of the Schrödinger Equation

In section 4.2 we constructed the time integration scheme which led to the coupled
integration scheme presented in section 4.3. A deeper motivational aspect of this
construction was the fact that for numerical experiments testing various formulations
of diabatic heating and externally imposed shear, the tilt 𝜕𝑧𝑋 is a crucial quantity. A
scheme for those kinds of experiments needs to ensure that both, locally and globally,
tilt and henceforth 𝑋 itself shall not be affected by spurious oscillations as well as
non-linearly growing/damping modes. Tilt changes should be attributed to interactions
with shear and diabatic heating, not the numerical scheme that accounts for the adiabatic
precession. To this end, the numerical scheme is required to preserve certain invariants
which we will discuss in the following section.

We outlined in the previous chapters that in the adiabatic case ((𝑄Θ,0, 𝑄Θ,1) = (0, 0))
the leading-order tangential velocity is trivially constant (cf. eq. (3.1) with 𝑢𝑟 ,00 = 𝑤0 =

𝑢𝑟 ,∗ = 0). Therefore, the Hamiltonian �̂� (defined in eqs. (3.33) and (3.34)) as well
and the centerline tendency equation takes the form of eq. (3.35) which resembles a
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one-dimensional Schrödinger Equation. In section 3.3 we gave heuristic justification
that �̂� possesses the properties of a (regular) Sturm-Liouville operator and therefore has
a real spectrum of eigenvalues {𝜆𝑘 ∈ R}1≤𝑘≤rank(�̂� ) . It was shown that this condition
leads to the precession of eigenmodes:

�̂�𝑋𝑘 = 𝜆𝑘𝑋𝑘 ⇒ 𝑋𝑘 (𝑡) = 𝑒−𝚤𝜆𝑘 𝑡𝑋𝑘 (0) (4.85)

Note, that eigenmodes are determined up to a complex scalar prefactor.
We immediately conclude from eq. (4.85) that the norm11 of a solution of eq. (3.35)

is conserved:
𝑑

𝑑𝑡
| |𝑋 | |2 =

𝑑

𝑑𝑡

∑︁
𝑛

|𝑐𝑛 |2 = 𝑐𝑛 (−𝚤𝜆𝑛𝑐𝑛) + 𝚤𝜆𝑛𝑐𝑛𝑐𝑛 = 0 , (4.86)

where 𝑐𝑛 = ⟨𝑋𝑛, 𝑋⟩ and ⟨𝑋𝑚, 𝑋𝑛⟩ = 𝛿𝑚𝑛.
A canonical approach in the numerical treatment of the Schrödinger equation is to

construct the time-integration operator such that it fulfills the requirement of unitarity:

�̂� (𝑡, 𝑡0) : 𝑋 (𝑡) = �̂� (𝑡, 𝑡0)𝑋 (𝑡0) = 𝑒−𝚤 (𝑡−𝑡0 ) �̂�𝑋 (𝑡0) (4.87)

We see that

⟨𝑋 (𝑡), 𝑋 (𝑡))⟩ = ⟨�̂� (𝑡, 𝑡0)𝑋 (𝑡0), �̂� (𝑡, 𝑡0)𝑋 (𝑡0)⟩

= ⟨𝑒−𝚤 (𝑡−𝑡0 ) �̂�𝑋 (𝑡0), 𝑒−𝚤 (𝑡−𝑡0 ) �̂�𝑋 (𝑡0)⟩

= ⟨𝑋 (𝑡0), 𝑒𝚤 (𝑡−𝑡0 ) �̂�𝑒−𝚤 (𝑡−𝑡0 ) �̂�𝑋 (𝑡0)⟩
= ⟨𝑋 (𝑡0), 𝑋 (𝑡0))⟩ , (4.88)

i.e., the exact time evolution operator is unitary.
The time-discrete integration formalism of section 4.3 solving for the adiabatic

centerline equation eq. (3.35) reduces to(
1 + 𝚤

2
Δ𝑡�̂�

)
𝑋𝑛+1 =

(
1 − 𝚤

2
Δ𝑡�̂�

)
𝑋𝑛 . (4.89)

This integration step resembles the semi-implicit trapezoidal rule and has proven to
preserve the square norm of the solution through its symplectic property (Hairer et al.
2006). Expanding the solution into eigenmodes at times 𝑡𝑛 and 𝑡𝑛+1 and multiplying
eq. (4.89) we get for the amplitudes of the individual eigenmodes

𝑐𝑛+1
𝑘

(
1 + 𝚤

2
Δ𝑡𝜆𝑘

)
= 𝑐𝑛𝑘

(
1 − 𝚤

2
Δ𝑡𝜆𝑘

)
(4.90)

hence,

|𝑐𝑛+1
𝑘 |

√︄(
1 + 1

4
Δ𝑡2𝜆2

𝑘

)
= |𝑐𝑛𝑘 |

√︄(
1 + 1

4
Δ𝑡2𝜆2

𝑘

)
, (4.91)

i.e., the norm with respect to each eigenmode and therefore the norm of the solution is
constant under this time stepping scheme.

In summary, we have shown that the construction of the time stepping scheme of
section 4.2 satisfies crucial properties to ensure that the forward-in-time integration
does not spuriously affect the amplitude of the tilt by numerical instabilities originating
from truncation errors.
11The norm | | · | | is induced by a scalar product: | |𝑋 | | := ⟨𝑋, 𝑋⟩.
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5. Setup of Three-Dimensional
Reference Simulations

In the previous chapters we discussed the derivation of an asymptotic model for tropical
cyclones under the influence of vertical wind shear and diabatic heating as well as
numerical strategies to solve the reduced model equations. As such, they are supposed
to approximate solutions to eqs. (2.1) under the constraints set by parameters matching
those of a tropical atmosphere (see tables 2.1 to 2.3). In the present chapter, we aim
at outlining how to validate the asymptotic model and compare its solutions against
those of the (unconstrained) governing equations. To this end, we present all the
essential ingredients of the numerical algorithm used for solving eqs. (2.1) for general
atmospheric scenarios, the setup of initial data as well as algorithmic components
essential for conducting tests on the asymptotic theory.

5.1. Outline of the Numerical Scheme

The atmospheric flow equations given in eqs. (2.1) pose a set of PDEs which encompass
a wide range of scenarios including, but not limited to, idealized1 atmospheric physics
(Prusa, Smolarkiewicz, and Wyszogrodzki 2008; Smolarkiewicz and Charbonneau
2013; Ziemiański et al. 2021). There is a plethora of suitable numerical models, all
of which are more or less specialized for a particular application area. The range of
scales, both space and time, determined by the physical problem under investigation,
sets requirements towards the adopted numerical schemes and ultimately controls how
efficient and stable a given numerical implementation is.

For the asymptotic analysis of chapter 2, it was examined how the motions of the
vortex core on the meso-scale (here we choose ∼100 km) affects the dynamics of the
large-scale flow on the synoptic length scales (∼1000 km). The timescale, however, is
set by the inner-core flow (in fact, by being about a factor 1/𝜀 larger than the vortex
turnover timescale, i.e., ∼8 h). The results of Päschke et al. 2012 (summarized in
chapter 2) revealed that for this regime relatively small-scale phenomena such as internal
waves, acoustics and strong pressure oscillations do not play a dominant role. Moreover,
the flow is essentially balanced due to hydrostatics induced by the gravitational force
and due to the cyclostrophic (gradient-wind) balance.

Although — in theory — every numerical model solving for eqs. (2.1) could be
deployed, it is a matter of efficiency and beneficial to design a numerical scheme to meet
the dynamical degrees of freedom of the underlying problem. Throughout the literature
of atmospheric fluid dynamics, it is commonly known that the hydrostatic background

1The term idealized is chosen to restrict to situations in which the fluid can be described as single-
component ideal fluid without complicated parametrizations of boundary conditions, thermodynamic
processes, etc.
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is dominating the solution.2 In fact, solving only for perturbations from that (constant
or slowly varying) background state may lead to substantial improvements in terms of
efficiency and stability.

However, dynamical modes of atmospheric motions cover several orders of magnitude
in both, space and time, and exhibit a variety of wave-like phenomena with different
characteristic wave speeds. Some of them are strong enough to take effect on the scale
of interest (gravity waves), while others, such as acoustic waves, are orders of magnitude
smaller in amplitude and have virtually no effect on the dynamics of an atmospheric
flow. If resolved by the numerical model, they may, however, limit the time step size
due to the CFL condition and the comparably high sonic wave speed (with ∼300 m s−1

one order of magnitude larger than typical wind speeds). As a consequence, a rich body
of literature was established to cope with this issue of low Mach number flows. While
one strategy follows the idea of modifying the governing equations to eliminate acoustic
waves (Bannon 1996; Durran 2008; Klein 2009), another approach is to construct
time stepping scheme to integrate fast wave-like phenomena implicitly (Smolarkiewicz,
Kühnlein, and Wedi 2014).

For the present study, the Eulerian-Lagrangian model (EULAG, Prusa and Smo-
larkiewicz (2003) and Smolarkiewicz, Kühnlein, and Wedi (2014)) was chosen as
numerical framework as it provides the desired properties together with stable and
efficient integration strategies and is furthermore well-tested throughout a considerable
number of studies.

5.1.1. Conservative Time Integration

Similar to the basic time integration scheme presented in chapter 43, the scheme of
EULAG starts by treating eqs. (2.1) as a set of equations of the form

𝜕𝜌𝝍

𝜕𝑡
+ ∇ · (𝜌𝒗 ⊗ 𝝍) = 𝜌𝑹(𝝍, 𝑡) (5.1)

with the state vector 𝝍 = (𝒗,Θ) and the components

𝑹𝒗 = − 1
𝜌
∇𝑝 − 𝑓 𝒌 × 𝒖 + 𝒈 , (5.2a)

𝑅Θ = 𝑄Θ , (5.2b)

of the right-hand side vector 𝑹 = (𝑹𝒗 , 𝑅Θ). Together with the continuity equation

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌𝒗) = 0 , (5.3)

2For example, the strongest pressure variations are associated to the hydrostatic background, which
range from 105 Pa at sea-level to 4 · 104 Pa for a typical vertical extent of 10 km. On the other hand,
dynamical variations for the strongest atmospheric perturbations (such as TCs) are of the order of
5 · 103 Pa, i.e., one order of magnitude smaller.

3In fact, the time integration scheme of chapter 4 is a formal extension based on the ideas presented in
Smolarkiewicz, Kühnlein, and Wedi (2014).
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the system of eqs. (5.1) and (5.3) is equivalent to eqs. (2.1) but in the generic form of a
balance law4. The two eqs. (5.1) and (5.3) are equivalent to

𝑑𝝍

𝑑𝑡
= 𝑹 (5.4)

with the convective derivative 𝑑
𝑑𝑡

= 𝜕𝑡 + 𝒗 ·∇ meaning that 𝝍 changes along streamlines
with the rate 𝑹.

Note that eq. (5.3) can be formally incorporated into the system (5.1) by adding
𝜓𝜌 ≡ 1 and 𝑅𝜌 = 0. However, its unique role as a conservation law becomes apparent
through the discretization process: In section 4.2 we have justified the strategy of
integrating equations of the type eq. (5.4) by making use of the trapezoidal rule for the
right-hand side terms 𝑹 and a conservative scheme to transport 𝝍 along trajectories.
These considerations again led to the formal construction of time stepping scheme for
which the advection operator was integrated separately from the source terms encoded
in 𝑹. To this end, we first discretize eq. (5.1) for 𝑹 ≡ 0 on the time interval [𝑡𝑛, 𝑡𝑛+1]
approximating the partial time derivative at 𝑡𝑛+1/2 by the midpoint rule and for a single
component 𝜓:

𝜓𝑛+1 =
𝜌𝑛

𝜌𝑛+1

(
𝜓𝑛 − Δ𝑡

𝜌𝑛
(∇ · 𝜌𝒗𝜓)𝑛+1/2

)
+ O

(
Δ𝑡3

)
(5.5)

Although solving for an advective scalar 𝜓, this formulation allows to control the
conservative fluxes for 𝜌𝜓 composing a conservative scheme. (∇ · 𝜌𝑣𝜓)𝑛+1/2 can be
interpreted as conservative forcing transporting 𝜓𝑛 along trajectories from 𝑡𝑛 to 𝑡𝑛+1 (by
the mass flux approximated up to first-order by (𝜌𝒗)𝑛+1/2) and is subject to a suitable
second-order-in-time accurate advection method taking the generic form

𝜓𝑛+1 = AdvΔ𝑡 (𝜓𝑛, (𝜌𝒗)𝑛+1/2, 𝜌𝑛, 𝜌𝑛+1) + O
(
Δ𝑡3

)
. (5.6)

Adv is the implementation of a suitable advection scheme; in the present case, the
multidimensional positive definite advection transport algorithm (MPDATA) of (Smo-
larkiewicz 1984) is used. This formulation takes the prior knowledge of 𝜌𝑛+1 at the final
time into account which may need to be integrated on its own. By setting 𝜌𝑛, 𝜌𝑛+1 → 1,
𝜓𝑛 → 𝜌𝑛, and (𝜌𝒗)𝑛+1/2 → 𝒗𝑛+1/2 we can make use of eq. (5.6) to solve for eq. (5.3).

EULAG’s compound integration scheme for eq. (5.1) reads

𝝍𝑛+1 = AdvΔ𝑡
(
𝜓𝑛 + Δ𝑡

2
𝑹𝑛, (𝜌𝒗)𝑛+1/2, 𝜌𝑛, 𝜌𝑛+1

)
+ Δ𝑡

2
𝑹𝑛+1 + O

(
Δ𝑡3

)
, (5.7)

where 𝑹𝑛 is the shorthand for 𝑹(𝝍𝑛, 𝑡𝑛), i.e., eq. (5.7) forms a semi-implicit scheme in
the terms 𝑹(𝝍𝑛+1, 𝑡𝑛+1).

For further details we refer the interested reader to Smolarkiewicz, Kühnlein, and
Wedi (2014), where details are given about the integration of the perturbative system as
well as the implicit-pressure scheme. Further, we note that we make use of the static
grid refinement capability of EULAG, as we will explain in section 5.2.1 when giving
details about the numerical grid.

4Note that, with suitable re-definitions of the components of 𝝍 (and 𝑹), EULAG offers a uniform approach
to integrate the Euler equations under anelastic (Bannon 1996) and pseudo-incompressible constraints
(Durran 1989, 2008), or in a fully compressible mode (Klein 2009; Smolarkiewicz, Kühnlein, and
Wedi 2014).
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Figure 5.1.: Static grid refinement. For an example resolution of 192 × 192 grid points,
the horizontal nodal grid positions are shown.

5.2. Numerical Setup and Initial Data

Päschke et al. (2012) and the derivations of chapter 2 provide a reduced model for the
motion of a tropical cyclone with the centerline position 𝑿 (𝑧, 𝑡) and the circumferentially
averaged mean tangential wind 𝑢𝜃,0 as the dynamical degrees of freedom. The numerical
experiments of chapter 6 are supposed to validate how well the system is represented by
the given dynamical variables and the leading-order equations eqs. (3.1) and (3.34).

To this end, we shall construct initial data by prescribing 𝑿 and 𝑢𝜃 and subsequently
reconstructing the missing flow variables by the leading- and higher-order asymptotic
balance relations derived in section 2.4.3. By satisfying the assumptions of the
asymptotic analysis up to higher-order we shall be able to initialize three-dimensional
simulations which exhibit certain symmetries at leading order (axisymmetric mean
tangential velocity centered around 𝑿). Under the influence of external forcing by
diabatic heating and/or shear these symmetries shall be maintained, as anticipated by
the asymptotic theory. This allows us to compare the results of three-dimensional
numerical experiments with reference simulations of the leading-order asymptotic
equations. Although extended, the construction of the initial data follows essentially the
ideas of the preceding work of Papke (2017). The setup as described in the upcoming
sections matches the one used for creating the results of Dörffel et al. (2021).

5.2.1. Static Grid Refinement

EULAG provides the feature of computing solutions to the Euler equations on a non-
uniform grid. Despite more advanced features, such as vertical and dynamic grid
refinement, here, we make only use of the static grid refinement capability for the
horizontal grid directions. The full horizontal domain, mapped to [−1, 1]2 by an affine
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transformation, is sampled equidistantly in the coordinates (𝑥𝑐, 𝑦𝑐) and subsequently
transformed to stretched coordinates 𝑥𝑝:(

𝑥𝑝
𝑦𝑝

)
= 𝑐1

(
𝑥𝑐
𝑦𝑐

)
+ 𝑐2

(
𝑥𝛼𝑐
𝑦𝛼𝑐

)
(5.8)

The parameters are chosen as 𝑐1,2 = 1/2 and 𝛼 = 5. The result is displayed for the
example of 192 × 192 horizontal grid points by fig. 5.1.

5.2.2. Boundary Conditions

Boundary conditions arise in EULAG as a twofold problem: Firstly, the advection solver
(MPDATA) needs information on the mass flux through the edges of the simulation
domain. Secondly, the implicit pressure equation (see eq. (57) of Smolarkiewicz,
Kühnlein, and Wedi (2014)) resembles a Helmholtz, i.e., an elliptic problem that
requires boundary conditions in order to characterize the problem and make statements
on existence and uniqueness of solutions.

For the sake of reducing complexity in the presented implementation, boundary
conditions are therefore imposed such that the normal component of velocity through
the boundary interface 𝒏 · 𝒗 |𝜕Ω = 0. Note that 𝒗 is the three-dimensional velocity vector
measured the stretched coordinates (cf. section 5.2.1).

This, in particular, implies that there are no mass fluxes through the boundaries. Any
further choice of boundary conditions for the advected variables therefore is obsolete,
and by construction the pressure vanishes at the lateral boundaries: 𝑝 |𝜕Ω𝐿

= 0. These
boundary conditions translate in what is known in literature as “rigid lid, free slip”.

5.2.3. Atmospheric Background State

Starting point of setting up the data is to define an atmospheric background state which
is necessary for both, settling the asymptotic regime and defining the reference state
against which EULAG integrates the dynamical variables as perturbations.

The background state is supposed to be a more or less trivial solution of the governing
equations, in our case horizontally homogeneous and governed by the hydrostatic
equation

𝑑𝑝

𝑑𝑧
= −𝑔𝜌 (5.9)

In analogy to the notation of section 3.1.3, (·) symbolizes a time-independent, hor-
izontally homogeneous variable, i.e., only dependent on the vertical coordinate 𝑧.
Prescribing 𝑝(0) = 𝑝ref, i.e., the mean sea-level pressure, together with the equation of
state eq. (2.1e), eq. (5.9) can be solved for a given vertical profile of potential temperature

Θ(𝑧) = 𝑇ref exp

(
𝑁2

ref
𝑔
𝑧

)
. (5.10)
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See table 2.1 for the parameters 𝑝ref, 𝑇ref, 𝑁ref, and 𝑔. For completeness, the resulting
profiles for pressure and density are

𝑝(𝑧) = 𝑝ref

(
𝑔𝑅

𝑐𝑝𝑁
2
refℎsc

(
exp

(
−
𝑁2

ref
𝑔
𝑧

)
− 1

)
+ 1

)𝑐𝑝/𝑅
(5.11a)

𝜌(𝑧) = 𝑝ref

𝑅Θ(𝑧)

(
𝑝(𝑧)
𝑝ref

)1/𝛾
. (5.11b)

5.2.4. Mean Tangential Velocity and Centerline

The assumptions leading to the regime under investigation settle ranges for both, spatial
and time scales at which the quantities vary at leading order. In the present case, these
are about 100 km spatial and 8 h of temporal extent under which solutions vary at O(1)
compared to the corresponding reference quantities. Although the two regimes with
𝛼 = 0 and 𝛼 = 1/2 are derived in section 2.4.3, we argued in section 3.4.3, that the
prototypical heating pattern that cancels the adiabatic vertical velocity, causes problems
in matching to the outer QG flow since the curvature term proportional to ln(𝑟)𝑴1
does not find a matching counterpart. Nonetheless, this heating pattern is useful as it
allows to investigate the effects adiabatic heating resulting in a linear first-order-in-time
second-order-in-space PDE for the centerline that can be analyzed through the spectral
properties of the operator (1 + exp(𝑖𝜃0))�̂� (cf. eq. (3.70)). Therefore, we select the
regime with 𝛼 = 0, i.e., a vortex core scale of 100 km. Effects that are due to the
interaction of the vortex core flow with the large-scale Coriolis force are present, as we
will see, but separated in magnitude from the leading-order dynamics, at least on the
present timescales.

As discussed before, the degrees of freedom are 𝑢𝜃 and 𝑿, and we aim for them to vary
“on a slow manifold”, which means on a timescale that is large compared to small-scale
oscillatory motions but short w.r.t. the timescale at which the background changes. To
this end, initial data must as well satisfy the scaling regime that led to the asymptotic
model and therefore, we construct the “simplest”, physically meaningful data. Along the
lines of observational studies, we initialize the wind field as leading-order symmetric
tangential wind field corresponding to a barotropic5 Gaussian vorticity profile

𝜁 (𝑟) = 𝜁𝑚 exp
(
−𝜎2𝑟2

)
. (5.12)

𝜁𝑚 and 𝜎 are constants determined by prescribing a value 𝑢𝜃,max at a given radius 𝑅mw:

max
𝑟
𝑢𝜃 = 𝑢𝜃 (𝑟 = 𝑅mw) = 𝑢𝜃,max , (5.13)

i.e., imposing a value of maximum velocity at the radius of maximum wind (RMW).
The resulting velocity profile reads

𝑢𝜃 (𝑟) = 𝑞𝑚
1 − exp(−𝜎2𝑟2)

2𝜎2𝑟
(5.14)

and is shown in fig. 5.2.
5The term “barotropic” refers to the fact, that the vorticity (velocity) does not depend on 𝑧 in the centerline

coordinates, but only on 𝑟 , the distance from the centerline. Barotropy, in the strict sense, is satisfied if
the tilt 𝜕𝑧𝑿 vanishes, rendering the coordinates (𝑟,𝑧) to usual cylindrical coordinates. Non-zero tilt,
however, tilts the coordinate system and with that renders the velocity genuinely baroclinic.
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Figure 5.2.: Initial radial velocity profile associated to Gaussian vorticity profile 5.12.
The black curve shows the unmodified profile of eq. (5.14). The dashed
blue curve represents the mollified velocity profile as taken for initializing
the three-dimensional simulations.

The analytical structure of the centerline equation (3.34), especially that of the
Hamiltonian �̂�, governing adiabatic self-induced motions, provides information on the
characteristics of solutions to the centerline motion. In section 3.3, we found evidence
that �̂� possesses properties of a Sturm-Liouville operator (SLO), in the present case that
of a regular SLO, and therefore, solutions are represented by superpositions of discrete
eigenmodes 𝑿𝑛, each precessing with a unique eigenfrequency 𝜆𝑛. The theory on SLOs
states, that these eigenfrequencies asymptotically follow a sequence with 𝜆𝑛 ∼ 𝑛2, i.e.,
the nontrivial part of the spectrum of �̂� imposes an upper bound on the timescale
(inverse of 𝜆1) on which the solution can vary, but there is no lower bound (1/𝜆𝑛 → 0).
Hence, the first non-trivial eigenmode determines the characteristic timescale at which
slow solutions evolve which is that of the vortex-core timescale imposed a priori on the
asymptotic theory. Thus, although general solutions populate the full spectrum of �̂� (or
at least that part numerically represented), we focus on the first (slowest) non-trivial
eigenvalue 𝜆1 that exhibits a cosine-like eigenfunction 𝑿1(𝑧).

Päschke et al. (2012) found an analytical expression for a simplified setting which
required 𝜌 = const or 𝜌(𝑧) ∼ exp(−𝑧/𝑧ref). Covering more general, and more realistic
settings as presented in section 5.2.3, however, eigenmodes are less feasible to handle
analytically, and numerical approaches are required. The numerical scheme to solve
eqs. (4.1) involves discretizing �̂� (cf. section 4.4). The sparse eigenvalue problem
can be efficiently solved by employing the numerical environment provided by SciPy
(Virtanen et al. 2020).

In section 2.5 we have provided insights into the self-induced motion of a tropical
cyclone caused by the fact that a non-vanishing large-scale circulation is presents.
In both of the regimes 𝛼 = 0 and 𝛼 = 1/2 in section 2.4.3, the long-range velocity
tail of the inner core, proportional to 1/𝑟, couples to the leading-order QG flow and
induces a precessing motion. This long-range tail, however, causes complications in
terms of the boundary conditions since non-vanishing contributions of it may interfere
with the domain boundaries for limited-sized domains. For a numerical simulation
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in general, however, and EULAG specifically, it is necessary to consistently comply
with the boundary conditions. In EULAG, they are chosen to make the orthogonal
velocity components vanish.6 Even for comparably large radii, we cannot simply impose
this condition with eq. (5.13) since this approach would lead to a jump discontinuity
at the boundaries due to the 1/𝑟 velocity tail. To remedy, a domain large enough to
establish the scaling regimes of the inner core (O(100 km)) as well as the QG flow
(O(1000 km)) is employed for the numerical simulations. This approach allows for
a precessing-centerline solution due to the two-scale coupling. Additionally, in the
outer skirts of the QG far field, a smooth transition of the velocity field towards zero is
achieved by the use of a mollifier:

𝑚(𝑟) :=


1 , 0 ≤ 𝑟 < 𝑟1

cos2
(
𝜋
2

𝑟−𝑟1
𝑟1−𝑟∞

)
, 𝑟1 ≤ 𝑟 < 𝑟∞

0 , 𝑟 ≥ 𝑟∞

(5.15)

The two radii of the outer suppression region are 𝑟1 = 1250 km and 𝑟∞ = 1750 km.
These radii are — somewhat arbitrarily — set on the basis of the sensitivity of tilt and
the velocity field towards these parameters and for efficiency reasons, i.e., such that we
can limit the size of the simulation domain without too strong effects on the solution.7
The resulting radial profile of mean tangential velocity as initialized is displayed in
fig. 5.2 by the dashed blue curve.

The resulting initial data are presented in the three-dimensional visualization of
fig. 5.3 showing vortex centerline and streamlines. Further details are discussed in
section 5.2.5.

5.2.5. Higher-Order Perturbations

The balance relations derived in section 2.4.3 deliver higher-order corrections to all
physical fields and allow to bring the initial data closer to a balanced state. Interestingly,
in the adiabatic case all correction terms depend only on the leading-order of 𝑢𝜃 and
𝑿 and are governed by diagnostic differential relations which can be evaluated at any
given instance in time without prior knowledge of the tendency of the physical state.

Numerical experiments (omitted here) have shown that it is beneficial if not necessary
to account for this additional information on the balanced state, since otherwise the
solution exhibits oscillations obscuring the effects we are interested in. For several
reasons, e.g., the fact that we will parameterize the diabatic heating by local values of
tilt and tangential velocity, we need to control local imbalances as they may lead to
fast adjustments causing small-scale features. The parametrization, typically involving

6A more general treatment of velocity boundary conditions is technically possible but is not implemented
in the author’s version of EULAG. Note, that through the use of static or time-varying background
states, however, it is possible to implement open or inflow boundary conditions. That would require an
analytical expression of the background fields, and is thus impractical for our applications.

7In fact, with the three-dimensional simulation we want to approximate the situation where the vortex
transitions smoothly into the environmental synoptic-scale flow. From a compact, or at least
exponentially decaying vorticity profile, the 1/𝑟 decay of 𝑢𝜃 follows, that would actually require an
infinite outer radius. Being unfeasible, we try to mimic this behavior by choosing a mollifier which
allows to limit the simulation domain but still to capture the essential dynamics.
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Figure 5.3.: Centerline (green) and streamlines of initial data. Streamlines are color-
coded (see color bar) with the local value of the potential temperature
perturbation. The figure is adopted from Dörffel et al. (2021) and courtesy
of Natalia Mikula.

differential expressions, then may take on the gradients of these small scale features and
amplify them, eventually causing the simulation to crash.

Given in section 2.4.3 in non-dimensional form, we will repeat those expressions
important for the implementation of the high-order balances. All quantities will be
given in dimensional form, and we follow the notation of 𝜙 = 𝜙 + 𝜙′, where a quantity
𝜙 is expressed as a horizontal mean 𝜙 and the perturbation 𝜙′. The latter typically is
small (𝜙′ = 𝑜(𝜙)) and we often make use of the approximation 𝜙 ≈ 𝜙. Occasionally,
we will deviate from this convention and give individual definitions.

The first expression to evaluate is the gradient wind balance which dominates the
horizontal momentum balance and reads

1
𝜌

𝜕𝑝′

𝜕𝑟
=
𝑢2
𝜃

𝑟
+ 𝑓 𝑢𝜃 . (5.16)

By straightforward numerical integration in the radial coordinate,

𝑝′ =

∞∫
𝑟

𝜕𝑝′

𝜕𝑟
𝑑𝑟 (5.17)

we obtain an expression for the perturbation pressure balancing radial and Coriolis
forcing. Note, that for compactly supported 𝑢𝜃 the outer integration bound effectively
shrinks to 𝑟∞ (see eq. (5.15) for definition) rendering the integral convergent on a
finite-sized simulation domain.

Next in line are corrections due to the hydrostatic balance which governs not only
leading-order pressure and density, but also the respective perturbation quantities:

𝜕𝑝′

𝜕𝑧
= −𝑔𝜌′ . (5.18)
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Given 𝑝′, this equation allows solving for 𝜌′.
With the equation of state eq. (2.1e), we finalize the correction terms for the

thermodynamics quantities by expressing the potential temperature perturbation as

Θ′ = Θ − Θ =
𝑝ref

𝑅𝜌

(
𝑝 + 𝑝′
𝑝ref

)1/𝛾
− Θ (5.19)

We could also directly make use of eq. (2.41). The difference to eq. (5.19), however, is of
order 𝑜(1), and the two variants are asymptotically equivalent. The resulting potential
temperature perturbation is visualized in fig. 5.3 by color-codings of the streamlines.

Through the vertical coupling by hydrostatic balance, pressure troughs are translated
into troughs in density and, via the equation of state, lead to perturbations of potential
temperature. This is the cause for eq. (5.19). Misalignment of the troughs through
the centerline tilt lead to Fourier-1 perturbations in density and potential temperature.
Considering the circular motions initialized by eq. (5.14), fluid parcels need to follow
paths of constant entropy, i.e., potential temperature, (in the adiabatic case) on their way
around the storm. For this reason, the vertical velocity has a non-trivial structure even
in the adiabatic case. We account for that by using eq. (3.19c) in its dimensional form
for the initialization of vertical velocity:

𝑤ad =
1

𝑑Θ/𝑑𝑧
Θ

𝑔

𝑢𝜃

𝑟

1
𝜌

𝜕𝑝′

𝜕𝑟

𝜕𝑿

𝜕𝑧
· 𝒆𝜃 (5.20)

The corrections outlined above already provide substantial improvements in terms of
preserving the initial balance. Numerical experiments, not shown here, unveil that these
adjustments lead to a dramatic reduction of initial oscillations and help to maintain the
structure of the initial flow, hence, the centerline tilt. Päschke et al. (2012, Section 4.4)
and the discussions of sections 2.4.5 and 3.1.1, however, provide further insights by
giving expressions for the streamfunction 𝜓 (2) and the velocity potential 𝜙 (2) associated
to the asymptotic modes of 𝑢 (2)𝑟 and 𝑢 (2)

𝜃
, see eqs. (2.55). As discussed in the context of

eq. (3.2), we subtract the far field tail of the higher-order velocity corrections to match
to the outer solution (at rest) to account for the proper motion of the tilted centerline.
With this additional information we initialize 𝑢𝑟 and 𝑢𝜃 by

𝑢𝑟 = 𝛿𝑢ref𝑢
(2)
𝑟 (5.21)

𝑢𝜃 = 𝑞𝑚
1 − exp(−𝜎2𝑟2)

2𝜎2𝑟
+ 𝛿𝑢ref𝑢

(2)
𝜃

(5.22)

The procedure above for constructing balanced data allows for initializing simulations
which are close to balance and maintain tilt and maximum velocity to high-order of
accuracy, at least in a sensible range of parameters. Still, there are imbalances present
within the first several days of simulation, which is why we additionally make use of an
initialization phase of 4 days which brings the data closer to a state which is balanced
within the numerical scheme of EULAG. Disparity between analytical and numerical
representation of differential balance relations may be the reason for this strategy to be
necessary.
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5.3. Reconstruction of the Leading-Order Quantities

In chapter 6, we will present results of numerical experiments showing the influence
of a diabatic heating imposed on the flow field. In nature, diabatic heating would
be the result of a number of physical processes, among them radiation, sensible heat
fluxes between the (ocean) surface and the boundary layer, and latent heat release by
phase transitions of moisture content (Houze 2010; Marks 2003; Montgomery and
Smith 2017b). Here, however, the guiding question is how heat release is affecting the
dynamics and structure of TCs, rather than vice versa. This question mainly concerns
structures in the diabatic heating field that materialize on the meso-scale and cover the
full depth of the free troposphere, thus being essentially the spatially averaged effect of
latent heat release through moist cloud dynamics.

In NWP, physically motivated models accounting for the chemistry of cloud condensa-
tion and evaporation (i.e., phase transitions and corresponding energy conversion rates)
rely on the notion of moisture content. Typically, this involves transporting additional
variables with the flow, whose spatial structure and the parametrization of conversion
between the different constituents determine the latent heat release and consequently
the feedback to structure and intensity of the TC. We are, however, mainly interested
in how the spatial structure of diabatic heating is affecting the flow structure. Further,
for the simplified asymptotic model, we do not have access to information concerning
moisture variables.8

For this study, we want to investigate the response of the flow structure to a
given (parameterized) diabatic heating pattern. The parametrization, as due to model
limitations, needs to be in terms of the available flow variables (𝜌, 𝑢, 𝑣, 𝑤, Θ), which are
indirectly all determined by the leading-order quantities 𝑿 and 𝑢𝜃,0 via the diagnostic
relations of section 5.2.5. For this reason, in general we have to assume that the
parametrization of the diabatic heating terms depends on 𝑿 (𝜕𝑧𝑿, resp.) and 𝑢𝜃,0. To
this end, and for the sake of directly comparing the simulation results of asymptotic and
three-dimensional equations, we require a methodology to reconstruct mean tangential
wind and the centerline position from the three-dimensional flow field for a given
instance in time. 𝑢𝜃,0 and 𝑿, found by suitable methods, can then be taken as input for
a reference simulation of the asymptotic model.

5.3.1. Reconstruction of the Vortex Centerline

Clearly, the definition of 𝑢𝜃,0 essentially depends on the choice of coordinates, which
itself depend on the centerline position at each horizontal level. As a direct consequence
of the assumption that, at leading order, 𝑢𝜃 is axisymmetric9, the centerline position
must be the position maximizing the symmetric component of 𝑢𝜃 .10 For idealized
simulations, i.e., where we can assume a certain degree of symmetry in the flow field,
we can approximate the centerline coordinates by computing the center of gravity of the

8It would in principle be possible to add information of advective scalar quantities, but requires substantial
extensions to the asymptotic model exceeding the scope of this work.

9In fact, Mikusky (2007) found that the leading-order symmetry of 𝑢𝜃 is a consequence of the asymptotic
scaling rather than an assumption.

10Note, that 𝑢𝜃 is the tangential velocity relative in the co-moving coordinate frame attached to the
centerline.
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vorticity distribution:

𝑿 (𝑧, 𝑡) =
∫
Ω

(
𝑥

𝑦

)
𝜁𝑛 (𝑥, 𝑦, 𝑧, 𝑡) 𝑑Ω (5.23)

Ω = {(𝑥, 𝑦) ∈ R2} is a compact and convex two-dimensional domain over which the 𝜁
is sufficiently regular (positive in our case) and 𝜁𝑛 = 𝜁/| |𝜁 | |Ω is the normalized vorticity
field with the measure

| |𝜁 | |Ω =

∫
Ω

𝜁 𝑑Ω . (5.24)

This approach requires a certain degree of regularity (symmetry) of the velocity
field. There are other choices possible for the definition of the centerline based on
statistical methods and other vorticity-based indicator fields. A more comprehensive
discussion can be found in Mikula et al. (2021) and von Lindheim et al. (2021).
In the former reference, an optimization approach is presented that maximizes the
symmetric component of tangential velocity. That can be considered as ground truth,
yet, it is computationally too expensive to implement as run-time evaluation within the
three-dimensional simulation.

5.3.2. Reconstruction of the Mean Tangential Velocity

Having reconstructed the coordinate center 𝑿, and therefore the polar coordinate center
per level, we could compute the tangential velocity by

𝑢𝜃 = 𝒖 ∥
rel · 𝒆𝜃 = −𝑢 sin 𝜃 + 𝑣 cos 𝜃 (5.25)

and subsequently average in the 𝜃-direction:

𝑢𝜃,0(𝑟, 𝑧, 𝑡) :=
1

2𝜋𝑟

2𝜋∫
0

𝑢𝜃 (𝑟, 𝜃, 𝑧, 𝑡) 𝑑𝜃 (5.26)

The fact, that the three-dimensional simulations are conducted on a Cartesian grid
renders this approach somewhat cumbersome, and furthermore, expensive due to the
mapping between two different grids at each horizontal level and instance in time.

Papke (2017) proposed an algorithm, in which the data is remapped before averaging.
We will summarize this approach here and show a minor extension to achieve higher
accuracy for medium-resolved grids. First, we define radial grid, centered at 𝑿 and
covering a sufficiently large region on top of the numerical Cartesian grid (see fig. 5.4).
For each circle with radius 𝑟 prescribes by the points on that grid, we compute the
circulation Γ, defined as

Γ(𝑟, 𝑧, 𝑡) =
∫

𝐵𝑿 (𝑟 )

𝜁 (𝑥, 𝑦, 𝑧, 𝑡) 𝑑2𝒙 =

2𝜋∫
0

𝑟∫
0

𝜁 (𝑟 ′, 𝜃, 𝑧, 𝑡) 𝑟 ′𝑑𝑟 ′ 𝑑𝜃 (5.27)

by integrating over the disk 𝐵𝑿 (𝑟) := {𝒙 ∈ R2 : | |𝒙 − 𝑿 | | ≤ 𝑟}. From the expression
of vorticity in polar coordinates, 𝜁 = 1

𝑟
𝜕𝑟 (𝑟𝑢𝜃 ) − 𝜕𝜃𝑢𝑟 , we get

Γ(𝑟, 𝑧, 𝑡) =
2𝜋∫

0

𝑟𝑢𝜃 (𝑟, 𝜃, 𝑧, 𝑡) 𝑑𝜃 = 2𝜋𝑟𝑢𝜃,0 . (5.28)
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×

Figure 5.4.: Overlay of radial grid on Cartesian grid. "×" denotes the centerline position
and each radius defines a disk over which to integrate eq. (5.27).

The first integral in eq. (5.27) is computed from vorticity values 𝜁 𝒋 , given on the nodes
of a Cartesian grid, for a set of radii {𝑟𝑖} by means of numerical integration:

Γ(𝑟𝑖 , 𝑧, 𝑡) ≈
∑︁
𝒋

𝑎 𝒋 ,𝑖𝜁 𝒋 (5.29)

𝒋 symbolized the multi-index labelling the grid cells and 𝑖 corresponds to the radius
𝑟𝑖. The area weights 𝑎 𝒋 ,𝑖 depend on the fact whether the cells, adjacent to the node
𝒋, are located within the circle with radius 𝑟𝑖, outside, or are intersected by it. Papke
(2017) constructed an integration scheme to approximate eq. (5.27) by a cut-cell method
accounting for the vertices’ position relative to the intersecting circle arc.

In the following, we will consider grid cells as the volume delimited by the grid
coordinate lines (𝑥 = 𝑥𝑖 and 𝑦 = 𝑦 𝑗 , respectively) and dual cells as the control volume
for the finite volume approximation of the nodal data, see fig. 5.5. The value, stored at
the position (𝑥𝑖 , 𝑦 𝑗), is interpreted as the volume average over the dual grid cell

Ω𝒋 = {(𝑥, 𝑦) ∈ R2 : 𝑥𝑖−1/2 ≤ 𝑥 ≤ 𝑥𝑖+1/2, 𝑦 𝑗−1/2 ≤ 𝑦 ≤ 𝑦 𝑗+1/2 with 𝒋 = (𝑖, 𝑗)} .
(5.30)

The integral eq. (5.27) then is approximated by eq. (5.29) interpreting 𝑎 𝒋 ,𝑖 as the effective
volume of cell 𝒋 contributing to the integration, i.e., the volume fraction of the cell
inside the radius 𝑟𝑖. In the finite volume approximation 𝑎 𝒋 ,𝑖𝜁 𝒋 is the contribution of a
single cell to the approximate integral (5.29).

For a fixed integration radius 𝑟, Papke (2017) identified 5 distinct cases, depending
on the radial distance of the vertices relative to the centerline positions:

(0) 𝑟𝑖 < 𝑟 ∀𝑖 = 1, . . . , 4

(1) 𝑟1 > 𝑟, 𝑟𝑖 < 𝑟 ∀𝑖 = 2, 3, 4
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𝑥𝑖 𝑥𝑖+1

𝑦𝑖

𝑦𝑖+1

(𝑥𝑖+1/2, 𝑦𝑖+1/2)

(𝜌𝑖 , 𝑢𝑖 , 𝑣𝑖 , 𝑤𝑖 ,Θ𝑖)

Figure 5.5.: Schematics of a grid cell. Integer-valued indexes denote data positions on
an Arakawa A-grid (Arakawa and Lamb 1977) used by EULAG. Solid lines
delimit the grid cell, while dashed lines indicate the dual control volume
for which the stored values are interpreted as averages.
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𝑟2 𝑟4

𝑟3 𝑟1

𝑟2 𝑟4

𝑟3𝑎

𝑏

𝑟1

𝑟2 𝑟4

𝑟3𝑎

𝑏

Δ𝑦

𝑟1
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Δ𝑦
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𝑟2 𝑟4

𝑟3Δ𝑥

Δ𝑦

Figure 5.6.: Integration areas for intersecting circular arcs (figure adopted from Papke
(2017)). Colored line segments enclose the area to be integrated. Cell
vertices are numbered by their radial distance to the center of the circle.
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(2) 𝑟𝑖 > 𝑟 ∀𝑖 = 1, 2,
𝑟𝑖 < 𝑟 ∀𝑖 = 3, 4

(3) 𝑟𝑖 > 𝑟 ∀𝑖 = 1, 2, 3, 𝑟4 < 𝑟

(4) 𝑟𝑖 > 𝑟 ∀𝑖 = 1, . . . , 4

This situation is also depicted in fig. 5.6 showing, that the dual cells’ effective volume is
accounted for by a three-, four-, or five-sided polygon plus a circular segment. Note
that, in general, it is necessary to sort the vertices of a dual cell according to their radial
distance in ascending order to meet the situation depicted in fig. 5.6. This involves
mirroring the cell, as described in Papke’s (2017) section 3.3.2.4. Given the length of
the dual cells’ lateral boundaries, Δ𝑥 and Δ𝑦, the corresponding area fractions for the
individual cases are given by

(0) : 𝑎 𝒋 = 0 , (5.31a)

(1) : 𝑎 𝒋 =
𝑎𝑏

2
+ 1

2
𝑟2(Δ𝜃 − sinΔ𝜃) , (5.31b)

(2) : 𝑎 𝒋 = Δ𝑦𝑏 + (𝑎 − 𝑏)Δ𝑦
2

+ 1
2
𝑟2(Δ𝜃 − sinΔ𝜃) , (5.31c)

(3) : 𝑎 𝒋 = Δ𝑥 Δ𝑦 − (Δ𝑥 − 𝑏) (Δ𝑦 − 𝑎)
2

+ 1
2
𝑟2(Δ𝜃 − sinΔ𝜃) , (5.31d)

(4) : 𝑎 𝒋 = Δ𝑥 Δ𝑦 . (5.31e)

𝑎 and 𝑏 depend on the specific case and are given in fig. 5.6. Δ𝜃 is the arc length
between the intersection points with the cell boundary. Amending the integration
formulas eq. (5.31) by contribution according to the circular segments, in conjunction
with the finite-volume integration on dual cells, marks the extension with respect to
Papke original formulations. It allows for the exact11 integration of the area of a disk
with radius 𝑟 ,

𝐴 =

∫
𝐵𝑿 (𝑟 )

1 𝑑2𝒙 = 𝜋𝑟2 , (5.32)

and further provides accurate results even on rather coarse grids.
Note, that the integration scheme involves determining the intersection points of a

dual cell boundary with the circle. Papke (2017) outlined in section 3.3.2.1 how to solve
this as a quadratic problem which we adopted without modifications. The case, where a
circle is enclosed completely by a single grid cell, is ignored since we choose the radial
grid spacing large enough to circumvent this particular issue.

11Up to machine precision.
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6. Physical Test Cases

The asymptotic theory of TCs, originally derived by Päschke et al. (2012) and refined by
Dörffel et al. (2021) and the present work, will be tested in comparison to unconstrained
three-dimensional simulations of the equations of atmospheric fluid dynamics (2.1). The
cited work provides insights on the “motion and structure of atmospheric [. . . ] vortices”
(sic!) in a sense that the theory prescribes the time evolution of atmospheric structures
that resemble a TC under the influence of external shear and diabatic heating. More
precisely, the theory provides tendency equations for the leading-order circumferential
velocity, i.e., the intensity, and the vertical structure, i.e., centerline of the TC.

Clearly, the asymptotic model poses a problem much cheaper to solve numerically in
comparison to the full three-dimensional model, which is one of the main motivational
points for the subsequent assessment. Yet, the model needs to be validated against three-
dimensional simulations to make sure the key assumptions are preserved throughout
the time evolution of the vortex. To this end, we will present a collection of numerical
experiments which compare the simulation results of the asymptotic model against
the three-dimensional Euler equations with Coriolis- and gravitational forcing (cf.
eqs. (2.1)). Next to standard procedures, necessary to efficiently integrate the equations
under atmospheric conditions, there will be no further restriction towards the asymptotic
regime of TCs in terms of symmetry or invariants, so we are able to attribute similarities
between the results of the two approaches to the fact whether (or not) the asymptotic
theory captures physical properties of TCs.

Extending the preliminary results of Papke (2017), we analyze a number of settings,
each focussing on an isolated effect, and compare asymptotic and three-dimensional
results. Of particular interest will be the question, how higher-order effects, truncated
by the asymptotic model, may accumulate and impact its predictive quality. Ultimately,
we want to outline possible pathways towards RI and RW, as it remains unclear, how
weak TCs intensify under unorganized convection. The results of the following sections
have been partially published in Dörffel et al. (2021).

6.1. Effects of Environmental Wind Shear

For the sake of completeness, we start the series of experiments by forcing a barotropic,
vertically aligned vortex by sheared external wind. These results essentially resemble
the findings of Reasor, Montgomery, and Grasso (2004), but we want to put special
emphasis on the connection to the eigenstructure of the governing Hamiltonian, as
discussed on an analytical level in section 3.4.1.

In fig. 6.1, the evolution of the TC centerline is shown as a result of externally imposed
vertical wind shear for both, the asymptotic model and as a solution to three-dimensional
Euler equations. The vortex is initially vertically aligned, and the forcing external
velocity field resembles the first non-trivial eigenmode of the centerline Hamiltonian.
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(b) 3D
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(c) Asymptotic + damping

Figure 6.1.: Centerline evolution of initially barotropic vortex forced by external wind
shear for an integration time of 8 d. Initial data is shown by dotted black
lines, final data by dotted red lines, and the time evolution is encoded by
the transition from black to red. Endpoint (top and bottom) at each time
step are marked by circles and are connected by splines. On the bottom
plane, the projection of the three-dimensional centerline is shown. Results
are shown for the asymptotic model (a), the three-dimensional equations
(b), and the asymptotic model including a damping term (c).

Thus, the external forcing excites that mode in the centerline (see eq. (3.55)). In the
same manner, projections of the external wind shear onto other eigenmodes would excite
the corresponding eigenmodes of the centerline, hence, in general, lead to small-scale
oscillations (not shown here). Since these higher-order oscillation would obscure the
clean picture of how external wind shear induced precession of the centerline, we restrict
to the first eigenmode although in nature a superposition of all modes is present.

By comparing the left and middle panels of fig. 6.1, it becomes apparent, that the
centerline time evolution of the two approaches, asymptotic and three-dimensional,
differs in that the asymptotic result precesses undamped about a tilted mean state that
corresponds to −𝑖𝑢1/𝜆1 (c.f. eq. (3.58)). The three-dimensional simulation, on the other
hand, possesses a clear sign of damping within the eight days of time integration that,
as Reasor, Montgomery, and Grasso (2004) argues, is due to the “dispersion of the
vortex tilt asymmetry on the mean vortex [by] sheared VRWs”. Longer integration
times would eventually lead to a configuration where tilt becomes stationary. Although
not directly captured by the asymptotic theory, we can partially mimic that behavior by
introducing a damping term that is proportional to 𝑋 , i.e., we impose Rayleigh damping.
The result of this approach with a damping term of 𝒹 = 0.035 (c.f. eq. (3.59)) is plotted
in the right panel of fig. 6.1. The observed damping is caused by the inevitable presence
of a gradient of a Gaußian vorticity distribution at the critical radius. The damping rate
of is comparable at least in terms of the order of magnitude to theoretical predictions (cf.
Schecter, Montgomery, and Reasor 2002, Fig. 10). A precise state would require more
insights into the core and skirt structure of the vortex and shall not be part of the present
discussion.

For the remaining experiments of this chapter we draw the following conclusion:
Damping by VRWs is present even in the well-prepared three-dimensional setting
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Figure 6.2.: Adiabatic time evolution of the centerline motion for asymptotic (left panel)
and three-dimensional simulations (right panel). Both plots show the
centerline from 𝑡 = 1 d (black dotted line) to 𝑡 = 6 d (red dotted line) with
intermediate timesteps (thin lines) ranging from black to red. Material
from: Dörffel et al. (2021)

of the initial data since there is a small but non-zero radial vorticity gradient at the
critical radius1. This effect however, is on a timescale long compared to the precession
timescale2, as apparent by the fact that after 8 days the centerline has not yet become
stationary but still exhibits precession. We therefore consider resonant damping by
VRWs as a sub-dominant effect. As the experiments of section 6.2 will show, without
external wind shear the damping becomes even less apparent.

6.2. Adiabatic Tilted Vortices

The initial data, outlined in sections 5.2.4 and 5.2.5, provide the setup for an initially
tilted tropical cyclone that is balanced with respect to high-order asymptotic expansion
modes. The centerline is initialized by the first non-trivial eigenmode of the Hamiltonian
governing the adiabatic centerline motion. Hence, we expect precession of the vortex
centerline about a vertical axis, constant tangential velocity, and maintaining the leading-
order balances. Dominant motions are on the timescale of the precession, and motions
attributed to small scale imbalances are on a faster timescale.

Left and right panels of fig. 6.2 in comparison show the time evolution of the
vortex centerline for both, an asymptotic and a three-dimensional reference simulation,
respectively. Precession time scales in the present case are approximately 5.5 days
for the asymptotic model and 6.5 days for the three-dimensional reference simulation.
This difference is well within the expected range as due to the fact that the asymptotic

1The radius where the primary circulation velocity is in resonance with the velocity due to preces-
sion (Reasor and Montgomery 2001)

2In the presented asymptotic experiment to mimic the behavior of the 3D solution the damping timescale is
longer compared to the precession timescale by a factor of about 30, which corresponds to approximately
8 days. This damping timescale is of the same order of magnitude as theoretically predicted by the
theory of critical layer stirring of Schecter and Montgomery (2004).
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Figure 6.3.: Comparison of vertical velocity (left panel) and potential temperature per-
turbation (right panel) for asymptotic (contour lines) and three-dimensional
simulation (color shading). Values are shown at 𝑡 = 1.5 d and 𝑧 = 5000 m.
𝑤 ranges from −0.04 m s−1 to 0.04 m s−1 and Θ′ from −2 K to −2 K. Solid
(dashed) contours indicate positive (negative) values. In both panels, the
black arrow indicates the tilt vector 𝜕𝑧𝑿. Material from: Dörffel et al.
(2021)

expansion was carried out with the effective expansion parameter of 𝜀1/2 ≈ 1/3, and we
truncated the centerline motion 𝜕𝑡𝑿 at leading-order.

In section 5.2.5 we discussed how higher-order balance relations enter the picture.
Both, vertical velocity 𝑤 and potential temperature perturbation Θ′, have non-trivial
components which account for the fact that the vortex is vertically tilted, see fig. 6.3.
Again, there is qualitative agreement between the asymptotic and the three-dimensional
simulation with relative deviations of O

(
𝜀1/2) .

These visualizations also highlight the structure of the balanced adiabatic flow: Due
to the hydrostatic balance, which is maintained up to all considered asymptotic orders,
the horizontal pressure gradient due to gradient-wind balance imprints perturbations to
the variables 𝜌 and Θ. Next to symmetric perturbations of 𝜌 and Θ, which are associated
to symmetric pressure gradient in the center of the storm, vertical misalignment of
the centerline (the tilt 𝜕𝑧𝑿) is the reason for the symmetric pressure gradient causing
additional dipolar perturbations. For an adiabatic flow, however, potential temperature
is materially conserved, i.e., the flow is along surfaces of constant potential temperature.
Hence, the dipolar perturbation Θ′ causes fluid parcels to ascend or descend on their
orbit around the vortex core. Jones (1995) made the same findings in a setup where the
storm is tilted by externally imposed shear.

6.3. Effects of Asymmetric Diabatic Heat Release

We argued in chapter 3 that there are two disjunct mechanisms of vortex intensity
changes based on either symmetric or asymmetric diabatic heat release. For the latter
one, and that is the mechanism of interest for this section, the orientation of the heating
dipole with respect to the tilt of the centerline determines the dynamics of both, structure
and intensity of the TC.
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We completely neglect symmetric contributions to the diabatic heating as well as
effects induced by sheared external wind. An asymmetric diabatic heating pattern is
constructed from a prototype heating pattern that cancels the vertical velocity,

𝑄Θ, 𝜃0 =
𝑑Θ

𝑑𝑧
𝑤dia (6.1)

with 𝑤dia as constructed in eq. (3.68), the resulting equations are given by eqs. (3.65)
and (3.70). In both equations, terms expressing the relative orientation of the diabatic
heating dipole with respect to the centerline tilt, expressed by the angle 𝜃0, are key. We
identify four neuralgic points:

• Attenuation 𝜃0 = 0: Centerline tilt and tangential velocity decrease.

• Stagnation 𝜃0 = 𝜋/2: Centerline tilt and tangential velocity remain constant,
precession slows down.

• Intensification 𝜃0 = 𝜋: Centerline tilt and tangential velocity increase.

• Antistagnation 𝜃0 = −𝜋/2: Centerline tilt and tangential velocity remain constant,
precession speeds up.

For angles in between, the behavior smoothly transitions in a sense, that the asymmetric
diabatic forcing of the centerline, 𝑖𝑄, (superposing the adiabatic motion) is rotated in the
horizontal plane while the angular dependency of 𝑢𝑟 ,∗ is captured by the factor cos 𝜃0.

In a series of subsequent experiments we will test the asymptotic theory and compare
it against results of three-dimensional simulations where the diabatic heating pattern
is constructed along the lines of section 3.4.3. Special emphasis will be put on the
orientation of the diabatic heating dipole.

6.3.1. Stagnation

The experimental setting called stagnation in the further course of this work naturally
arises from the construction in section 3.4.3, where we constructed a heating dipole
that cancels the vertical velocity at leading order. The relative angle between tilt and
heating dipole is 𝜃0 = 𝜋/2. Although appealing, since leading-order tendency equations
become elegantly simple (cf. eqs. (3.65) and (3.70)), this test undoubtedly shows the
limitations of comparing three-dimensional simulations with leading-order asymptotic
equations.

From a physical point of view a bit of a dull experiment, the stagnation test reveals how
far we can go by forcing the vortex by an artificial diabatic heating dipole before driving
the three-dimensional simulation into a regime where the flow is not well-represented
by the asymptotic theory, anymore. The challenge of the present experiment is twofold:
For once, as discussed in section 3.4.3, coupling between the inner-core and the outer
QG flow suffers from the singularity of the outer point-vortex flow that does not find a
matching counterpart in the inner-core flow when 𝑤 ≡ 0. The situation becomes less
severe through the scaling regime with 𝛼 = 0, i.e., for a vortex whose core size is of
O(100 km). Nonetheless, the singularity remains unmatched even in that case, but the
effect is shifted to higher asymptotic orders. Physically speaking: There is a forcing
induced by the Coriolis force acting on the QG scale that the vortex does not translate
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into a precessing motion of the centerline as the inner-core flow is forced to remain
stationary. This induces a stress on the vortex structure that, on the long run, disrupts its
integrity. Hence, we need to restrict the heating to a limited time interval. A consistent
theory for that case would require including a weakly decaying heat source also in the
QG far field regime, which is missing in the present state of the theory. In the context of
QG flows, an asymptotic theory for this purpose has recently been published (Klein,
Schielicke, et al. 2021). Combining it with the present TC model, however, is left to
future research.

A second challenge consists in reconstructing the dynamical degrees of freedom of the
asymptotic model, i.e., the centerline and circumferentially averaged tangential velocity,
and construct the asymmetric diabatic heating pattern from that. The solution space of
the asymptotic model, however, is embedded into the three-dimensional solution space
of the three-dimensional atmospheric equations, that clearly is of higher cardinality.
Phrased abstractly, this means that a solution of the three-dimensional model has
additional degrees of freedom which may be unintentionally excited, e.g., by (inevitable)
errors in the reconstruction procedure. As we will see, the asymptotic theory in fact
reproduces the behavior of the three-dimensional simulation to a sufficient degree, if
the solution remains close to an asymptotic state. Especially small scale oscillations of
the centerline, thus strong local gradients, as part of the reconstruction, however, may
lead to non-linear feedback loops eventually crashing the simulation.

These difficulties aside, for the sake of a quantitative comparison between the two
different approaches we aim for numerical solutions of both, asymptotic and three-
dimensional equations, which show the vortex behavior for 𝑤 ≈ 0. Computing the
diabatic component of the vertical velocity involves a notion of the tilt that requires
numerical reconstruction of the centerline position by means of eq. (5.23) and the
subsequent numerical differentiation. The resulting diabatic heating then is injected as a
source into the potential temperature equation, all together a process which involves the
risk of suffering from numerical instabilities. To this end, the experiment needed to be
fine-tuned to preserve the structure of both, vortex centerline and mean circumferential
velocity. Here, we continue using a setup found sufficient to show the considered effects.

To limit the heating to a restricted period in time, we multiply the diabatic heating
constructed in eq. (6.1) by an amplitude factor of the form

𝑎(𝑡) = 𝑎0 exp
(
(𝑡 − 𝑡0)2

2𝜎2

)
, (6.2)

where we use 𝑎0 = 1, 𝑡0 = 1.5 d, and 𝜎 = 1 d
2
√

2 ln 300
, i.e., a Gaussian profile centered a

𝑡 = 𝑡0 and approximately limited to the time interval [1 d, 2 d]. The expected negligible
impact on the mean tangential velocity (5.26) is shown in fig. 6.4 by plotting its
maximum for the three-dimensional simulation. The reference plot for the asymptotic
simulation is omitted as the mean tangential velocity is trivially stationary.

At 𝑡 = 1.5 d, 𝑎(𝑡) = 1, hence the diabatic heating 𝑄Θ is such that the vertical velocity
𝑤 is supposed to be suppressed at leading order. In fig. 6.5, 𝑄Θ and 𝑤 (left and right
panels, respectively) are plotted at that time and 𝑧 = 5000 m. As expected, the diabatic
heating pattern that is 90◦ rotated relative to the tilt (indicated by the arrow) leads to
canceling the dominant mode of 𝑤 (cmp. to fig. 6.3, left panel) leading to the residual on
the right which is about one fifth in amplitude compared to the adiabatic vertical velocity.
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Figure 6.4.: Maximum of mean tangential velocity (blue) for stagnation test applying
the heating (maximum amplitude shown in red) with 𝜃0 = 𝜋/2 and 𝑎(𝑡)
given by eq. (6.2). The figure shows the result of the three-dimensional
reference simulation. Material from: Dörffel et al. (2021)

This is in perfect agreement, since the representation of 𝑤 by the first asymptotic mode
induces a relative error of order O

(
𝜀1/2) = O(1/3).

During the phase of active heating, in both panels of fig. 6.6 the centerline precession
is slowed down. After shutting down the heating, the precession frequency is restored
to its value before the heating was activated. In the three-dimensional reference
experiment, however, higher-order oscillations become apparent which are most likely
caused by projections of the diabatic term 𝑖𝑄 in eq. (3.34) onto eigenmodes of the
Hamiltonian �̂� higher than the first. Higher-order eigenmodes thus activated are
superimposed on the first eigenmode and oscillate with higher frequency. The reason for
this behavior may be deviations of the estimated centerline reconstruction of eq. (5.23)
in the three-dimensional simulation from the true one (recall the discussion above).

With the present stagnation experiment we found a stable setup that bypasses the
issues that challenge the stability of the vortex as discussed above. In the further course
of this section we can analyze the behavior of the tilted vortex under rotations of the
heating dipole.

6.3.2. Intensification

We have shown that for a dipolar heating pattern, rotated by 𝜃0 = 𝜋/2 relative to the
tilt, tangential velocity (i.e., intensity) remains constant since the positive and negative
contributions of energy transfer cancel each other. In section 3.1.3 we discussed that for
a given heating dipole the energy input depends on the correlation of diabatic heating
and potential temperature perturbations.

To this end, we set up an experiment where both quantities are positively correlated.
For the sake of comparison with the previous experiment, we construct the diabatic
heating such that maximum heating rate is the same for both experiments, and it only
differs in the phase shift 𝜃0 = 𝜋. The prototype formulation of the heating dipole,
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Figure 6.5.: Diabatic heat release (left) in stagnating configuration and response of
vertical velocity (right). Both panels show horizontal slices at 𝑧 = 5000 m,
positive contour lines in the left panel are solid, negative ones are dashed.
In both plots, the centerline position is indicated by the base of the back
arrow and tilt by its direction. Material from: Dörffel et al. (2021)
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Figure 6.6.: Centerline of stagnation test. Similar to fig. 6.2, the centerline time evolution
for the stagnation experiment is shown for both, asymptotic (left) and three-
dimensional model equations (right). Material from: Dörffel et al. (2021)
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Figure 6.7.: Maximum tangential wind for intensification experiment (blue). Addition-
ally, the amplitude of the heating dipole is plotted by the red curve. Material
from: Dörffel et al. (2021)
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Figure 6.8.: Diabatic heat release in intensifying configuration and response of vertical
velocity (cmp. with fig. 6.5). Material from: Dörffel et al. (2021)

given in eq. (6.1), involves the dependency on the tilt and thus modulations in the tilt
amplitude would impact on the heating amplitude. Keeping the latter constant, when
computing the heating dipole, we replace the dependency on the tilt by

𝜕𝑿

𝜕𝑧
→

����𝜕𝑿𝜕𝑧 ����
𝑡=𝑡0

𝜕𝑧𝑿

|𝜕𝑧𝑿 | , (6.3)

i.e., we fix the amplitude at time 𝑡0 but follow its time-dependent orientation. Same as
in the previous experiment, we constrain the heating in time by the factor given eq. (6.2).
Probing the vortex by an asymmetric heating pattern constructed in that way leads to
increased tangential wind speed as demonstrated in fig. 6.7 (compare with fig. 6.4 of the
stagnation experiment).

As indicated in section 3.1.1, the intensification mechanism is traced back to
circumferentially averaged radial motions 𝑢𝑟 ,∗ that balance vertical mass fluxes through
the surface of a tilted control volume (cf. fig. 3.2). Figure 6.8 confirms that antiparallel
relative orientation of tilt (black arrow) and the diabatic heating dipole (contour lines
in left panel) lead to a Fourier-1 mode configuration of the resulting vertical velocity
(right panel) that is rotated by ∼ 135◦ relative to the tilt, i.e., a phase shift of about −45◦
in comparison to the adiabatic configuration (see fig. 6.3).

With fig. 6.9 we also want to highlight the influence of asymmetric heating on the
dynamics of the centerline. For both, asymptotic (left panel) and three-dimensional
simulations (right panel), the tilt increases with active heating and remains at an
increased level after the heating is shut off.

The constraints on the heating dipole, discussed in section 6.3.1, yield a rather small
impact on the tangential velocity when rotated into the uptilt direction, see fig. 6.7. To
demonstrate the potential of asymmetric heating in intensifying we lift these constraints
a little by increasing the duration of heating to 3 days. In fig. 6.10, we can observe a
significantly larger response of the maximum tangential wind speed by the elongated
heating period demonstrating the potential ability of this pathway to increase the intensity
of the storm.
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Figure 6.9.: Centerline of intensification test. Similarly to figs. 6.2 and 6.6, the centerline
time evolution for the stagnation experiment is shown for both, asymptotic
and three-dimensional model equations. Material from: Dörffel et al.
(2021)
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Figure 6.10.: Maximum tangential wind for strong intensification experiment. In
comparison to fig. 6.7, the heating (indicated by the red curve) is applied
for 3 days. Material from: Dörffel et al. (2021)
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Figure 6.11.: Maximum tangential wind for intensification experiment. Plotted are
the quantities min𝑧 max𝑟 𝑢𝜃,0 (blue) and max𝑄 𝜃 (red). Material from:
Dörffel et al. (2021)
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Figure 6.12.: Diabatic heat release in attenuating configuration and response of vertical
velocity (cmp. with fig. 6.5). Material from: Dörffel et al. (2021)
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Figure 6.13.: Centerline of attenuation test. Similar to figs. 6.2 and 6.6, the centerline
time evolution for the stagnation experiment is shown for both, asymptotic
and three-dimensional model equations. Material from: Dörffel et al.
(2021)

6.3.3. Attenuation

The heating (6.1) takes its maximum along the vertical axis where the tilt is the largest,
i.e., in the middle layers of the atmosphere. Thus, we expect the strongest impact on the
velocity, which is initially uniform in the 𝑧-direction (in the tilted coordinated system),
in the mid-levels of the atmosphere by slowing down the circulation there. To this end,
we analyze the quantity min𝑧 max𝑟 𝑢𝜃,0 that tracks the decrease of 𝑢𝜃,0 at the mid-levels.
The result is plotted in fig. 6.11 confirming the weakening ability of the present heating
configuration.

Similar to fig. 6.8, we show the dipolar vertical velocity field 𝑤 at 𝑧 = 5000 m and
𝑡 = 1 d in fig. 6.12, right panel. The heating dipole, shown in the left panel, causes the
vertical velocity dipole 𝒘1 to align with an angle of −45◦ relative to the tilt vector 𝜕𝑧𝑿.

Finally, fig. 6.13 displays the time series of both, asymptotic and three-dimensional
simulation. As expected, the tilt decreases due to the heating dipole oriented with 𝜃0 = 0.
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Figure 6.14.: Tilt dynamics of the individual experiments of section 6.3. Left and
right panel show the results of the asymptotic (left) and three-dimensional
simulations (right). Material from: Dörffel et al. (2021)

Though, the three-dimensional simulation result is affected by the same oscillations
experienced in the previous experiments.

6.3.4. Summary of Tilt Dynamics

Here, we summarize the tilt dynamics of the experiments conducted in section 6.3.
Figure 6.14 demonstrates the effects of the various configurations of asymmetric diabatic
heating to the amplitude of the tilt, measured by the norm of the local tilt vector:𝜕𝑿𝜕𝑧  :=

𝑧top∫
0

(√︂
𝜕𝑿

𝜕𝑧
· 𝜕𝑿
𝜕𝑧

)
𝑑𝑧, 𝑧top = 10 km (6.4)

The left and right panels of fig. 6.14 display the dynamics of the asymptotic and the
three-dimensional simulation approaches, respectively. In all cases, heating is applied
between 𝑡 = 1 d and 𝑡 = 2 d. As a first general statement, we realize that the tilt dynamics
correlates with the orientation of the dipole of the asymmetric diabatic heating. In
case of the parallel alignment of the heating dipole and the tilt vector (both pointing
in the same direction), the tilt decreases (dotted curves), whereas the situation turns
around with the opposite direction (antiparallel orientation) of tilt and heating dipole,
i.e., the tilt increase (dash-dotted curves). These two setting are found in the previous
subsections to attenuate (parallel orientation) and intensify (antiparallel orientation)
the primary circulation. By comparing to the adiabatic experiment (solid curves),
presented in section 6.2, we are able to confirm that the configuration of the heating
dipole vector being rotated 90◦ counter-clockwise relative to the tilt vector (dashed
curves) leads to no significant deviation from the adiabatic behavior, as also found for
the mean tangential wind in section 6.3.1. There, we found that during the phase of
active heating, the precession of the centerline slows down, which leads to the phase
shift of the higher-order oscillations after the heating shut down, obvious in the left
panel of fig. 6.14, between adiabatic and stagnation experiment.

Albeit the qualitative agreement between the asymptotic model predictions and the
three-dimensional simulations, in varying strength, the adiabatic reference experiments
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Figure 6.15.: Kinetic and available potential energy (solid and dashed black lines) of
intensifying (left) and attenuating (right) vortices as presented in section 3.1
and section 6.3.3. Energy transfer rates according to Lorenz (1955) are
given by the red curves and their corresponding integral expression by
blue curves of the same style. More details are provided in the main text.
Material from: Dörffel et al. (2021)

(black curves) exhibit oscillatory features of the centerline tilt in both simulation
approaches. These are most likely the result of the excitation of higher-order eigenmodes
of the centerline Hamiltonian. For the asymptotic simulations, all experiments feature
an oscillation of approximately 1-day period. The three-dimensional results, however,
add another mode of approximately 10 days (5 days for the half-wave). The effects of
diabatic heating are superimposed on top of these oscillatory features. In case of the
asymptotic experiments, we can conclude that the post-heating behavior correspond to
the one before the heating, i.e., stationarity with a small higher-order perturbation of
period 1 day. The three-dimensional experiment, however, reveals more sever deviations
between pre- and post-heating phases. There are rather substantial excitations of modes
with 1-day period for all the experiments with diabatic heating activated. This may be a
manifestation of the difficulty there is in aligning the heating dipole with the effective
centerline in the three-dimensional experiments. In that approach, the centerline is
not an explicitly given object but needs to be determined by approximate methods,
and therefore it is likely to misplace the center of the heating dipole from what the
“simulation sees as centerline”. Approaches for more sophisticated and robust methods
to determine the centerline are presented by Mikula et al. (2021). However, also for
the three-dimensional simulations, the tilt dynamics follows the same trends as the
asymptotic experiments after neglecting the excitation of higher-order modes.

6.4. Discussion on the Energetics of Tilted Vortices

Thus far, we analyzed intensity changes on the basis of changes of mean tangential wind.
In addition to that we now want to inspect the time evolution of total kinetic energy,
computed as

𝐸kin =
1
2

∫
Ω

𝜌(𝒖2
∥ + 𝑤

2) 𝑑Ω (6.5)

with Ω the three-dimensional simulation domain.
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To this end, along the lines of section 3.1.3, where we presented Lorenz’s (1955)
framework of available potential energy (APE) that provides analytical expressions for
energy rates accounting for the generation of APE (𝐺), the conversion between APE and
kinetic energy (𝐶), and dissipation of kinetic energy by friction (𝐷), here we will analyze
the three-dimensional simulation data and track these energy transitions. This approach
shall provide a more profound understanding of the asymmetric mechanism of intensity
change. In section 3.1.3, we reformulated the original equations of Lorenz (1955) to
apply them to data given on Cartesian grid cells (see eqs. (3.17) and (3.18)). Further,
we found that under the conditions of mean-zero diabatic heating (i.e., especially in the
case of purely asymmetric diabatic heating), the leading-order expressions of 𝐶 and 𝐷
take the same analytical expression (cmp. eqs. (3.9) and (3.17)). Below, we will discuss
this statement on the basis of fig. 6.15.

In both panels of fig. 6.15, the energy quantities Δ𝐸kin and ΔAPE are plotted by black
solid and dashed lines, respectively. Both quantities are computed against a reference
state at 𝑡 = 1 d. 𝐶 and 𝐺 (according to eqs. (3.17) and (3.18)) are displayed by red
dashed and dash-dotted lines, respectively. Integrals of 𝐺 and 𝐶 are depicted by blue
lines of the same style, again. Additionally, we plot the expression eq. (3.9b) (labeled by
𝐶𝐿𝑂, dotted lines) found to be identical for generation and conversion at leading-order
in section 3.1.3. For all energy-like quantities the axis is plotted on the left, while for all
energy rates of change, the corresponding axis is on the right.

In the left panel of fig. 6.15, we examine the simulation data of the strong intensification
experiment, and we immediately conclude that changes in the energies 𝐸kin and APE
are correlated to amplitudes in the transitions rates and thus to the release of diabatic
heating. Furthermore, we find that indeed, at leading order the energy transition rates
coincide approximately. Considering the asymptotic truncation at first order, the relative
discrepancy between all plotted energy rates is well within the relative error bound of
𝜀1/2 ≈ 1/3.

In addition to the rephrased version of Lorenz’s (1955) equations for 𝐺 and 𝐶,
we plotted 𝐶𝐿𝑂 which coincides analytically with 𝐺 assuming the WTG law to be
satisfied, i.e., when diabatic heating directly results in balanced vertical motions. It is
remarkable, that the integral of 𝐶𝐿𝑂, using the vertical velocity field as result of the
three-dimensional simulation (eq. (3.9b)), is virtually identical with the time series of
𝐸kin. It represents the kinetic energy time series even better than the original integral
expression for 𝐶. We observe that 𝐺 is higher in amplitude during the active phase of
heating, while it becomes neutral before and after. 𝐶 and 𝐶𝐿𝑂 on the other hand feature
small amplitude oscillation after diabatic heating is turned off. Finally, we notice that
the difference between 𝐺 and 𝐶 (or 𝐶𝐿𝑂) approximately compares to the increase in
APE.

Similarly, we present the energy analysis for the attenuation experiment (cf. sec-
tion 6.3.3) in the right panel of fig. 6.15. We can observe the analogous behavior, i.e.,
essentially negative conversion rates and decrease of 𝐸kin and APE. In this configuration,
the coincidence between the energy conversion rates is even closer which is to be
expected, since the solution converges towards the trivial state of zero tilt and velocity,
i.e., is inherently more stable.

On the basis of the previous observations, we are able to draw the following
conclusions: Our initial statement that at leading order APE, created by the correlation
of perturbation potential temperature and diabatic heating (cf. eq. (3.17)), is directly
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converted to kinetic energy via vertical motions and accumulates only at next-to-leading-
order. This accumulation is due to deviations from the WTG law, since the evaluation of
𝐺 equals that of 𝐶𝐿𝑂 except for the fact that in the latter the expression 𝑄𝜃

𝜕𝑧Θ
is replaced

by 𝑤. Since furthermore
∫
𝐶𝐿𝑂 𝑑𝑡 follows the time series of 𝐸kin almost identically,

we infer that it is the correlation of potential temperature perturbation and vertical
motion resulting from the diabatic heating that drives intensity changes. Although
physically meaningful in the context of the presented setting for the sake of highlighting
the physical mechanisms, dipolar diabatic heating pattern with areas of accentuated
positive and negative diabatic heat exchange are not realistic for TCs. Nonetheless, the
asymmetric patterns of vertical velocity that are caused by the asymmetric diabatic
heating are what couples to the tilt asymmetry of the flow field and has the potential to
steer the vortex towards intensity changes. Even after the heating is turned off, vertical
motions (accounting for imbalances) further drive the conversion between APE and
𝐸kin.

6.5. Interaction of Shear and Diabatic Heat Release

In the previous section, we discussed the intriguing effects of asymmetric diabatic
heating as a driver for intensity and structural (i.e., centerline) changes and compared
solutions to the asymptotic with those of the unconstrained three-dimensional equations
(2.1). We argued that there is qualitative and, up to the truncation order of the asymptotic
expansion, quantitative agreement between the two approaches. This enables us to make
further prediction on the basis of the asymptotic model. Here, we want to highlight the
interaction of symmetric, asymmetric diabatic heating, and shear with the structure and
intensity of the vortex aiming for a simple yet realistic scenario. To this end, we set up
initial data for the tangential velocity by the profile depicted in fig. 5.2 but multiply it by
the function

𝑧 ↦→ 1 − 𝑧

𝑧max
. (6.6)

The numerical grid covers the physical domain (𝑟, 𝑧) ∈ [0, 1000 km] × [0, 10 km] (in
rescaled coordinates) by 128 × 32 grid points.

The series of experiments presented here takes a parametrization of diabatic heating
into account that possesses both, Fourier modes 0 and 1. Higher-order modes are
discarded as being irrelevant at leading order. The heating itself is constructed on the
principle that the tilted structure of the vortex modulates the thermodynamic state of the
inner core region by a wavenumber-1 perturbation. Equation (2.52) connects the dipolar
perturbation of potential temperature to the tilt of the centerline. For adiabatic motions,
where particles follow isosurfaces of constant potential temperature (entropy), the dipole,
i.e., wavenumber-1 perturbation in azimuthal direction translates into lifting/lowering
of particle trajectories as they circulate about the centerline. This dipolar potential
temperature perturbation hence translates into the vertical lift

Δ𝑧 =
Θ′

𝑑Θ/𝑑𝑧
. (6.7)

We assume that a particle, lifted from below 𝑧LCL (for lifting condensation level)
and elevated above 𝑧LFC (for level of free convection) is able to release heat due to
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Figure 6.16.: Adiabatic lifting due to tilted centerline. The left panel shows the amplitude
of adiabatic lifting Δ𝑧 (cf. eq. (6.7)) of a particle orbiting around the
centerline as result of the potential temperature perturbation Θ(4) (cf.
eq. (2.52)). In the right panel the origin height 𝑧0 is shown from which
a particle is lifted to 𝑧 = 𝑧0 + Δ𝑧. All quantities are in non-dimensional
form.

condensation of moisture (cf. fig. 6.16) (cf. fig. 6.17, left panel). Hence, we allow for
heating only where 𝑧 − 𝑧LCL < Δ𝑧 and 𝑧 > 𝑧LFC. This procedure induces a mask to Δ𝑧

(fig. 6.17, right panel) that sets values to zero everywhere except where (adiabatically
induced) updrafts are strong enough to break through the layer between 𝑧LCL and
𝑧LFC, an ad-hoc model of a CIN. In the unlifted case, we model moisture through a
linear profile with the maximum at the surface and zero at 𝑧LCL. The adiabatic lifting
mechanism then transports moisture through the CIN and above 𝑧LFC where moisture
can evaporate and release heat. The amount of heat is proportional to the moisture
content transported from below 𝑧LCL. Free convection is modeled by convolving the so
far constructed diabatic heat release by a one-sided kernel to smear out the concentrated
peak above 𝑧LFC smoothly into the deep troposphere.

The above construction of diabatic heating relies essentially on the fact that the vortex
is tilted, since moisture is transported through the adiabatic lifting mechanism. In other
words, without tilt, i.e., for a symmetric vortex there is no adiabatic lift along the path
lines of orbiting air parcels which would lead to no diabatic heating from the proposed
mechanism. For this reason, we additionally add a purely symmetric component to the
diabatic heating that depends on the tangential velocity in the sense of WISHE. This
addition delivers a purely symmetric heating pattern that is present even in the case of
no tilt.

Motivated by the construction of eq. (3.68), we have

𝑄WISHE
Θ =

𝑢𝜃

𝑟

(
𝑢2
𝜃

𝑟
+ 𝑓 𝑢𝜃

)
. (6.8)

The total heating then is a superposition of both contributions where prefactors determine
the relative strength.
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Figure 6.17.: Moisture transport due to adiabatic lifting. Adiabatic lifting (cf. fig. 6.16)
caused moisture, modelled by a linear profile between 0 and 𝑧LCL in the
unperturbed atmosphere to be transported through the CIN layer between
𝑧LCL and 𝑧LFC (left panel). Parcels that are capable of passing through
that layer are contributing to the heating (see right panel). All quantities
are in non-dimensional form.

Shear, in the present series of experiments is induced by the external wind that takes
the form

𝒖 = 𝒖0 cos(𝑧/𝑧max) (6.9)

with the constant 𝒖0 determining the difference in wind speed between bottom and top
of the simulation domain.

With the setup as outlined above, we first look into the effect symmetric heating has
on the vortex structure and intensity. To this end, shear and asymmetric contributions are
set to zero. Figure 6.18 (left and top right panel) show the ability of purely symmetric
heating to align the centerline via the vertical advection term 𝐴𝜕𝑧𝑋 in eq. (3.34) that is
due to symmetric diabatic heating and the resulting symmetric vertical velocity. The
lower right panel of fig. 6.18 demonstrates the intensification connected to the purely
symmetric heating.

On the other hand, when deactivating shear and symmetric heating and leaving only
asymmetric heating active, fig. 6.19 demonstrates how the vortex undergoes vertical
alignment by parallel orientation of diabatic heating and the tilt vector (cf. section 6.3.3)
while in that setting the effecting intensity changes are negligible due to the fact that tilt
decreases so fast that the coupling of the diabatic asymmetry to the tilt vanishes.

Finally, with shear, symmetric and asymmetric heating active, fig. 6.20 highlights
a scenario, where shear and aligning forcings by symmetric and asymmetric diabatic
heating compete with each other eventually leading to a configuration where the tilt
(both, in orientation and amplitude) changes only slowly. However, the behavior of
the maximum tangential velocity essentially follows that of fig. 6.18, although even
between 𝑡 ≈ 1 d and 𝑡 ≈ 2 d the asymmetric diabatic heating extracts more energy from
the system than the symmetric heating injects. The observed ongoing increase of 𝑢𝜃
may appear as a contradiction. Maximum wind speed, however, is a local quantity,
while the integrated energy tendencies are global. We expect that, for a more realistic
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Figure 6.18.: Centerline evolution and kinetic energy budget under symmetric diabatic
heating without shear. Left and top right panel show the centerline time
evolution (perspective view and projection on the surface plane), while the
lower right panel depict the time series of max 𝑢𝜃 (blue) and the integrated
energy tendencies (red, cf. eq. (3.9)) due to symmetric (𝑝kin,0, dashed,
hidden by solid line), asymmetric (𝑝kin,1, dotted) adiabatic heating, and
the sum of both (𝑝kin, solid).

setting, this cancelation may lead to stagnation also in the tangential velocity. Further
investigations are subject to future research. Anyway, for the present setting we conclude
that the asymmetric component of diabatic heating efficiently leads to stabilization of
the orientation of the centerline but does not affect the intensity to a strength that suffices
to counteract the symmetric contribution of diabatic heating.

The above results need to be interpreted under the assumption made by the asymptotic
theory. The leading-order equations were derived for the bulk flow of the vortex,
where frictional dissipation does not play a major role. In real TCs, however, the most
dynamical changes of intensity happen in the boundary layer, where friction does play a
major role. Thus, there is a counteracting mechanism that would lead to balancing of
intensifying and attenuating forcings. Due to the present lack of a suited extension of the
asymptotic model that would incorporate the boundary layer, we leave this discussion
open and refer to future work.

114



6.5. INTERACTION OF SHEAR AND DIABATIC HEAT RELEASE

X [km]

100806040200 2040

Y [km] 40
20

0
20

Z [km
]

2
4
6
8 100 80 60 40 20 0 20 40

X [km]

40

20

0

20

Y 
[k

m
]

0 2 4 6 8
t [days]

9.5

10.0

10.5

11.0
u

 [m
/s

]

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

P 
[J/

s]

1e8

u
pkin, 0
pkin, 1
pkin

Figure 6.19.: Same as fig. 6.18 but with purely asymmetric diabatic heating and without
shear.
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Figure 6.20.: Same as fig. 6.18 but with shear, symmetric, and asymmetric diabatic
heating.
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7. Summary and Outlook

This thesis is a continuation of the findings conducted by the preceding works of
Mikusky (2007), Papke (2017), and Päschke et al. (2012). The main motivation was to
test the asymptotic theory of Mikusky (2007) and Päschke et al. (2012) under various
settings and find evidence for the applicability in the context of modelling TCs and
further insights by comparing solutions to the asymptotic model with three-dimensional
simulations.

To this end, we extended the asymptotic theory, originally derived for the interaction
of the synoptic scale with the vortex core scale of 𝐿meso = O(300 km), to a vortex
core scale of 𝐿meso = O(100 km) and showed that the leading-order reduced model
equations are uniformly valid through both of these regimes. We identified the governing
regimes as gradient wind and cyclostrophic and argued that with the asymptotic model
we are well within the regime that describes TCs from the incipient phase to weak
hurricane strength. We have also pointed out that for slender vortices embedded into a
QG far-field the circulation-free limit essentially means that there is no coupling of the
inner-core solution to the QG far-field, at least locally, i.e., on horizontal levels where
the circulation is vanishing. Hence, in this situation the inner core is driven by the
forcing of external wind (shear) but there is no self-induced motion (precession) as a
net effect of in vortex filament’s circulation.

Furthermore, we analyzed the structure of the equation with special emphasis on the
ability to structural and intensity changes. By analyzing linear and angular momentum
budgets, we pinpointed intensity changes to two major factors: (i) Symmetric diabatic
heating causes air parcels to redistribute in the 𝑟-𝑧-plane. In this setting, angular
momentum is materially conserved in the centerline-coordinate system, i.e., constant
along trajectories. Intensification (attenuation) are the result of decreasing (increasing)
the radial distance of a fluid parcel relative to the vortex center. Depending on the radial
(and vertical) distribution of angular momentum, the local velocity increases if higher
angular momentum from larger radii replaces the residing fluid parcels. Similarly, lower
angular momentum can be transported inwards, increasing the tangential velocity of
the transported fluid parcels but ultimately, by replacing higher angular momentum
parcels, lead to (local) attenuation. This is in complete agreement with preexisting
findings studying axisymmetric TC models (Charney and Eliassen 1964; Emanuel 1986;
Montgomery and Smith 2017a).

(ii) In addition to the symmetric mechanism, the asymptotic theory provides a
pathway for intensity changes by asymmetric diabatic heating. With the tangential
momentum budget, we traced intensity changes back to radial mass fluxes that are due
to vertical motions causing in- or outflux through the boundaries of a tilted control
volume that is based on the tilted centerline coordinate system. The angular momentum
budget revealed that this intensification (attenuation) is connected to a source term that
breaks angular momentum conservation in that particular coordinate system by breaking
rotational invariance.
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CHAPTER 7. SUMMARY AND OUTLOOK

Further examination of the energy budget led to the following conclusions: Intensity
changes are due to the correlation of diabatic heat release and perturbations of the
potential temperature. Symmetric and asymmetric diabatic heating contribute at the
same asymptotic order to the energy budget. It is, however, the vortex tilt that modulates
the thermodynamic balance causing asymmetric perturbations of potential temperature
and, by that, opening the “window” to the asymmetric pathway. In the context of
Lorenz’s (1955) theory of APE, this consideration led us to conclude that it is ultimately
the vertical velocity resulting from the diabatic heating that drives the both, symmetric
and asymmetric intensity changes. By numerical experiments, we demonstrated that for
zero-mean heating, APE generated by diabatic heating is instantaneously converted into
kinetic energy at leading order.

En route to solving the asymptotic equations numerically, by constructing formal
solutions to the time-dependent problem, we were able to design a consistent, second-
order time integration scheme. That enabled us to split the non-linear problem into
building blocks of equation archetypes that were identified as archetypical PDE problem,
each treated quasi-linearly and quasi-independently. This approach ultimately allowed
solving Mikusky’s (2007) asymptotic model by a robust and accurate second-order
scheme in space and time. With the numerical framework at hand, we were able to show
that, besides the specialized analytical solutions presented by Päschke et al. (2012), a
wide range of time-dependent solution exists.

In a subsequent step, and in continuation to Papke (2017), we found, that for a
variety of settings, the solutions to the asymptotic model correspond to those of the
three-dimensional, unconstrained equations of atmospheric fluid dynamics. With special
emphasis to the interaction between the tilt asymmetry of the flow field and asymmetries
in the diabatic heating, we found that there is qualitative, and to the degree of the
asymptotic approximation, quantitative agreement of the two approaches.

In a series of numerical experiments we outlined the interactions of the different
forcings by both, symmetric and asymmetric diabatic heating, as well as external
wind shear. We demonstrated that symmetric heating causes vertical alignment due to
vertical advection of momentum, while asymmetric heating steers the vortex centerline
depending on the relative orientation of the tilt and the heating dipole. For the parallel
orientation of both, we found an additional pathway to vertical alignment of the vortex.
This may be of special interest for explaining vortex resiliency against vertical wind
shear in weak TC where organized, i.e., symmetric convection is not yet strong enough
to explain a counteracting force. In such a scenario, both, symmetric and asymmetric
heating components, cause the flow to withstand shear forcing, while their contribution
to the intensity of the TC may cancel each other, at least locally.

Further work may contribute to the question of rapid intensification. With the
above mechanisms it is plausible that a stationary phase, as observed and described
abundantly in the literature, may be the result of a balance of all the above forces. Rapid
intensification (or weakening) could be the response towards a change of environmental
conditions that directly or indirectly affect the established balance. The adjustment
towards a new balance may be established within the timescale as considered for the
asymptotic analysis, i.e., in the order of one day. Nonetheless, there are model extensions
likely to be necessary. We did not account for the stabilization mechanism due to
VRW resonant damping. The timescale of this process is, as (Reasor and Montgomery
2001) pointed out, asymptotically speaking an order in 𝜀 faster than the present model.
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By asymptotic matching, it would be possible to consider the long-term limit of a
solution affected by resonant damping as the initial condition to the present asymptotic
model. Since resonant damping, if present, leads to a stationary solution for constant
background conditions, this task appears to be trivial. Thorough examinations of this
mechanism and further implications w.r.t. the time evolution of TCs, however, are
subject to future research.

Another question arose from the findings of this thesis, that is about the self-induced
motions of the vortex. We found that the streamfunction at next-to-leading order of
the inner-core solution induces motions of the centerline. That forcing, however, is
composed of an adiabatic contribution, leading to precession, and another one caused
by diabatic heating. The latter one itself splits into two contributions due to symmetric
and asymmetric heating, respectively. While the symmetric component leads to vertical
alignment of the vortex structure due to vertical advection, the asymmetric forcing
term depends on the Fourier-1 modes of the diabatic contribution to vertical velocity.
It is not yet fully understood, how the tilted vortex structure affects asymmetries in
the vertical velocity field, but in general, it is easily conceivable, that the asymmetric
forcing term to the centerline equation, 𝑖𝑄 (cf. eq. (3.34)), is such that the vortex is
shifted as whole. Mathematically speaking, a projection onto the zeroth (constant)
eigenmode of the centerline Hamiltonian �̂� would cause such a forcing. From a physical
perspective, this touches upon the question of the extent to which the vortex generates
its own background in which it is transported horizontally. That, again, is subject to
ongoing and future research.
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A. Convergence Results of SHARPIE

In the course of solving the asymptotic equations as outlined in chapters 2 and 4, the
model Scheme for Hamiltonian-Advection equations on Radial geometry by Pseudo-
linear Implicit-Explicit integration (SHARPIE) was developed. Here, we want to present
the results of a convergence test. For a convergence test covering the full dynamics of
the asymptotic model, we initiated a simulation with zero-tilt centerline and tangential
velocity

𝑢𝜃 (𝑟, 𝑧, 𝑡 = 0) = 1 − exp(−𝑟2)
2𝑟

exp (−𝑧/2) . (A.1)

𝑟 and 𝑧 are given in non-dimensional units. The centerline is forced externally by the
wind field

𝑢𝑠 = cos(2𝜋𝑧) . (A.2)

In addition, the dynamics is forced by the diabatic heating computed from eq. (6.1)
with 𝜃0 = 0 and constant amplitude prefactor 𝑎 = 0.1. The numerical grid extends to
(𝑟, 𝑧) ∈ [0, 12.5] × [0, 1] and the time integration stops at 𝑇 = 0.01. The restriction on
the ending time is necessary to avoid shock-like solution that eventually arise due to
the non-linear advection. The lowest-resolved run has a resolution of 32 grid points in
each spatial direction and takes two time steps, i.e., Δ𝑡 = 0.01. For each subsequent
run, the resolution in each direction, as well as in time, is doubled. The highest number
of grid points is 256. For all runs, the slope limiter is deactivated as to achieve full
second-order reconstruction even in the vicinity of local maxima.

The error is computed between two subsequent runs by first averaging the solution
from the cell-centered grid points of the grid with double the resolution to the locations
of the cell-centers of the reference grid. The error is then taken as the modulus of
maximum difference (𝑙∞-norm) between the two runs.

For reference, the solution of the simulation with 1024 grid points in each direction is
displayed in fig. A.1. Both, the centerline 𝑋 and the tangential velocity 𝑢 have evolved
throughout the integration time, but due to the short time interval only slightly. This
is necessary because of the shock formation caused by the fully non-linear coupling
of the system of eqs. (4.1). Time integration time 𝑇 is chosen such to avoid shock
formation within that interval based on heuristic experiments, which have shown that the
convergence order diminishes shortly after. Nevertheless, the absolute (non-normalized)
error for 64 grid points is 4.504 · 10−4 for 𝑋 and 2.785 · 10−3 for 𝑢𝜃 , hence we consider
the signal strong enough for a reliable error convergence analysis.

Figure A.2 displays the error convergence for both, the centerline 𝑋 (dots) and the
tangential velocity 𝑢 (crosses). For both, comparison against a second-order reference,
depicted by the solid line, shows that the error convergence is close to second order.
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APPENDIX A. CONVERGENCE RESULTS OF SHARPIE
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Figure A.1.: Solution of convergence test at final time 𝑡 = 0.025. The centerline is
shown at initial (black) and final time (red) in the left panel. The right
panel shows the tangential velocity 𝑢 at final time.
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Zusammenfassung

Die vorliegende Arbeit untersucht das asymptotische Model, welches in seiner ursprüng-
lichen Form von Päschke u. a. (2012) hergeleitet und veröffentlicht wurde. Es beschreibt
die troposphärische Strömung eines stark geneigten tropischen Wirbelsturms oberhalb
der planetaren Grenzschicht unter den Einflüssen von vertikaler Windscherung und
diabatischer Wärmefreisetzung.

Wir beginnen mit der Herleitung der reduzierten Modellgleichungen, wobei wir im
Wesentlichen den Ausführungen von Päschke u. a. (2012) folgen. Dabei zeigen wir eine
Erweiterung auf, die es zulässt, das reduzierte Modell auch auf Stürme mit kleinerer
räumlicher Ausdehnung anzuwenden, die sich im ursprünglich nicht berücksichtigten zy-
klostrophischen Regime befinden. Im Folgenden stellen wir analytische Untersuchungen
der Gleichungen an, die als Resultat der asymptotischen Betrachtungen die Bewegung
eines tropischen Sturms in führender Ordnung beschreiben. Darauf aufbauend treffen
wir Aussagen über die Energiebilanz und die Veränderungen der Struktur des Strö-
mungsfeldes im Zusammenhang von Intensitätsveränderungen, die durch symmetrische
und asymmetrische Wärmefreisetzung hervorgerufen werden. Des Weiteren gehen wir
auf die analytische Struktur der Gleichungen ein, was es uns erlaubt ein adaptiertes
numerisches Schema zu konstruieren, das mithilfe von Finite-Volumen-Verfahren die
asymptotischen Gleichungen effizient und robust integriert. Wir legen dabei besonderes
Augenmerk auf die gekoppelte, semi-implizite Zeitintegration zweiter Ordnung.

Der verbleibende Teil dieser Arbeit wird numerischen Experimenten sowie der
Darstellung und Interpretation der Ergebnisse gewidmet. Dabei werden Mechanismen,
die im Zusammenhang mit rapider Verstärkung oder Abschwächung stehen und die
Einfluss auf die Wirbelstruktur haben, sowohl isoliert als auch in kombinierter Weise
untersucht. Die Experimente werden mithilfe der numerischen Implementierung der
asymptotischen Gleichungen untersucht, sowie anhand von dreidimensionalen Referenz-
lösungen der Gleichungen der atmosphärischen Fluiddynamik. Wir zeigen mögliche
Wege zur Intensitätsveränderung auf, die auf Interaktionen des Wirbels mit der Sche-
rung des externen Windfeldes und einer Kombination aus symmetrisch-asymmetrischer
diabatischer Wärmefreisetzungen zurückzuführen sind. Von großem Interesse ist dabei
die Interaktion der asymmetrische Komponente der Wärmefreisetzung mit der Sturm-
struktur, die wiederum die Intensität und Struktur selbst beeinflusst. Rückschlüsse in
Bezug auf die Anwendbarkeit der asymptotischen Theorie im Zusammenhang mit
rapider Verstärkung/Abschwächung werden als abschließender Beitrag dieser Arbeit
gezogen.
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