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ABSTRACT
The chemical diffusion master equation (CDME) describes the probabilistic dynamics of reaction–diffusion systems at the molecular level [del
Razo et al., Lett. Math. Phys. 112, 49 (2022)]; it can be considered as the master equation for reaction–diffusion processes. The CDME consists
of an infinite ordered family of Fokker–Planck equations, where each level of the ordered family corresponds to a certain number of particles
and each particle represents a molecule. The equations at each level describe the spatial diffusion of the corresponding set of particles, and
they are coupled to each other via reaction operators—linear operators representing chemical reactions. These operators change the number
of particles in the system and, thus, transport probability between different levels in the family. In this work, we present three approaches to
formulate the CDME and show the relations between them. We further deduce the non-trivial combinatorial factors contained in the reaction
operators, and we elucidate the relation to the original formulation of the CDME, which is based on creation and annihilation operators acting
on many-particle probability density functions. Finally, we discuss applications to multiscale simulations of biochemical systems among other
future prospects.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0129620

I. INTRODUCTION
It is a well-established paradigm to consider biochemical dynamics as an interplay between the spatial transport (diffusion) of molecules

and their chemical kinetics (reaction), both of which are inherently stochastic. There exist different approaches for modeling and mathemati-
cally formalizing such reaction–diffusion processes, ranging from reaction–diffusion master equations,1–5 where spatial transport is modeled
by diffusive jumps between local compartments, to concentration-based approaches, such as deterministic6–9 or stochastic partial differential
equations10 and partial integro-differential equations.11 The preceding modeling approaches may be regarded as approximations or limiting
cases of particle-based reaction–diffusion (PBRD) models, which explicitly resolve the diffusive trajectories of individual particles in space
and time, as well as reactions between them. In the standard PBRD models, particles move freely in space following Brownian motion, or any
other form of diffusion process,12,13 and can undergo chemical reactions, which involve one, two, or more reactants in such a way that the
reaction rate can depend on the positions or relative positions between the reactants.14,15 Because of their high complexity, PBRD systems are
mostly studied numerically by means of Monte Carlo simulations of the underlying stochastic reaction–diffusion process.

The mathematical formalization and analysis of PBRD models, however, are difficult because reactions constantly change the number
of particles of each species, changing the dimension and composition of the system. Recent work presents a probabilistic framework and
the characteristic evolution equation for PBRD termed chemical diffusion master equation (CDME).16 The CDME consists of an infinite
ordered family of Fokker–Planck equations (i.e., an enumerated collection), where each equation corresponds to a certain number of particles
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n = 0, 1, 2, . . .. The equations, for each fixed n, describe the spatial diffusion for the corresponding n-particle probability distribution, and
they are coupled via reaction operators that express the changes in the system’s state due to chemical reactions. These operators change the
number of particles in the system, and thus, they can be conveniently expressed in terms of creation and annihilation operators,16 following
a classical analog of the quantum mechanical Fock space concept.17,18 First steps toward solving the CDME analytically by means of the
Malliavin calculus were taken recently.19 A more comprehensive introduction on the topic can be found in Ref. 16.

In this work, we explore the CDME from several perspectives and present three approaches to motivate and formulate it. This work not
only improves our understanding of how to formulate the CDME but also provides a more illustrative and accessible approach to practitioners
than the original work.16 In general, the CDME is composed of a diffusion operator and several reaction operators (one for each included
reaction), all of them acting on a symmetric many-particle distribution function. In analogy to the well-known chemical master equation,20–23

which characterizes spatially well-mixed stochastic reaction kinetics, each reaction operator consists of a loss term describing the probabilistic
outflow from a given configuration state by the reaction and a gain term that captures the probabilistic inflow from other configuration states
due to the reaction. The crucial part is to determine these loss and gain operators for different types of reactions in the absence of a spatially
well-mixed setting; examples are binding and unbinding, creation and degradation, and mutual annihilation. Here, non-trivial combinatorial
factors enter for preserving symmetry and normalization of the many-particle distribution functions under time evolution. The local rate
function, which defines the probability per unit of time for a reaction to take place depending on the spatial positions of its reactants and
products, has to be transformed into an expression that takes the whole system state into account. This issue is addressed via the following
three approaches:

1. We use the local rate functions to specify also the loss and gain operators on a local scale (acting on subsets of reactants and products)
and then combine them into global operators taking all combinations of reacting subgroups into account. The combinatorial factors
included in the operators are motivated by an inductive argument. The CDME may then directly be expressed in terms of these global
loss and gain operators (Sec. II).

2. The global loss and gain operators are expressed in terms of many-particle propensity functions, which define the probability per unit of
time for a reaction to occur as a function of the whole system state. We explicitly derive these many-particle propensity functions from
the given local rate functions using permutations and Dirac δ-distributions. For the exemplary settings of decay and binding, it will be
shown that the resulting CDME agrees with the one of the first approach (Sec. III).

3. The operators in the CDME are expressed as expansions in terms of creation and annihilation operators as in Ref. 16. These expansions
can be condensed in a compact notation that allows us to write the CDME, for a given system of reactions, in a simple, fast, and
straightforward manner. The combinatorial factors do not appear explicitly; instead, they are naturally encoded in the creation and
annihilation operators (Sec. IV). A dictionary specifying the relation between the compact notation for the expansions and the concrete
algebraic expressions in the classical representation is provided in the Appendix.

In all three approaches, we start with a simplified setting containing only one molecular species, which drastically simplifies the notation, and
then generalize to reactions involving several species, such as complex formation and general association reactions.

II. THE CHEMICAL DIFFUSION MASTER EQUATION: AN INTUITIVE FORMULATION
We consider an open system of a varying number of diffusing particles of the same chemical species in a finite space domain X ⊂ Rd.

The diffusion process changes the spatial configuration of the particles, while the reaction process can change the number of particles in the
system. The configuration of the system is thus given by the numbers of particles and their positions. The probability distribution of such a
system is given as an ordered family of probability density functions,

ρ = (ρ0, ρ1, ρ2, . . . , ρn, . . .), (1)

where ρn(x
(n)
) is the probability density of finding n particles at the positions x(n) = (x(n)1 , . . . , x(n)n ) for n ⩾ 1, while ρ0 is the probability for

no particles being present. As the particles are statistically indistinguishable from each other, the densities must be symmetric with respect to
permutations of particle labels, e.g., ρ2(y, z) = ρ2(z, y) for all y, z ∈ X, and more generally,

ρn(x(n)) = ρn(Px(n)) for all P ∈ Pn, (2)

where Pn is the set of all permutations of an n-tuple. The normalization condition is

ρ0 +
∞

∑
n=1
∫

Xn
ρn(x(n))dx(n) = 1. (3)

In general, ρ will also depend on time, ρn = ρn(t, x(n)
), but we will omit t for simplicity. As a remark, the distribution ρ is an element of a linear

function space similar to the Fock space of quantum mechanics; see Refs. 16–18 and Sec. IV.
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Given that there are M ∈ N reactions, the CDME has the general form

∂ρ
∂t
= (D +

M

∑
r=1

R(r))ρ (4)

for a diffusion operator D and reaction operators R(r). Each of the reaction operators R(r) corresponds to one possible reaction, and it is
conveniently split into loss and gain operators,

R(r) = G(r) −L(r), (5)

similarly; the reaction operator in Ref. 16 was split into a particle conserving part (the loss operator) and a non-conserving part (the gain
operator), In the following, we will construct these loss and gain operators at first for reactions of a single species and then for a multi-species
scenario. In each case, we consider a system with only one reaction such that the index r can be skipped. For systems with several reactions,
the results may simply be combined by summing up these operators as in Eq. (4).

A. One species
To start with, we assume that there is only one chemical species A. The most general reaction in this case is of the form

kA→ lA (6)

for k, l ∈ N0. The rate at which a reaction event occurs is given by λ(y(l); x(k)
) > 0, and it depends on the positions x(k) ∈ Xk of the reactants

and the positions y(l) ∈ Xl of the products. Note that the rate function λ should be symmetric with respect to pair exchanges in both of its
arguments.

We can now write the nth component of the CDME as

∂ρn

∂t
= Dnρn + Gnρn+k−l −Lnρn (7)

for appropriate operators Dn, Gn, and Ln referring to diffusion, gain, and loss, respectively. Note that in Ref. 16, the loss operator is denoted
by R(k) and the gain operator by R(k,l); however, we find the new notation less cumbersome. Reactions at the n-particle state produce a
transition to the (n − k + l)-particle state. Thus, the loss of probability for the n-particle state ρn depends only on itself. Similarly, reactions at
the (n + k − l)-particle state produce a transition to the ρn state. Thus, the gain of probability for the n-particle state depends on ρn+k−l.

For physically non-interacting particles, the diffusion operator Dn can be expressed in terms of the one-particle diffusion Dν applied to
the νth particle,

Dn =
n

∑
ν=1

Dν, (8)

where Dν is the infinitesimal generator of the one-particle Fokker–Planck equation. For example, one may think of Dν as something as simple
as the d-dimensional Laplacian, Dν = ∇

2
xν . Ignoring the reaction operators and assuming that there is no exchange of particles with a reservoir

outside of X,24 all the resulting equations are uncoupled and one obtains a family of uncoupled Fokker–Planck equations unless there is an
exchange of particles with the world outside of X, in which case one ends up again with a similar family of many-particle densities, albeit with
a different structure of the coupling between its levels.25 For simplicity of the exposition, we assume reflecting boundaries for X from here on,
i.e., a confinement by rigid walls.

The loss operator acting on the n-particle density will output the total rate of probability loss of ρn due to all possible combinations of
reactants. It is given in terms of the loss per reaction Lν1 ,...,νk (local loss), which acts on k particles at a time, with (ν1, . . . , νk) denoting the
indices of the particles that it acts on. The loss per reaction quantifies how much probability is lost to the current state due to one reaction; it
is thus the integral over the density and the rate function λ over all the possible positions of the products,

(Lν1 ,...,νk ρn)(x(n)) = ρn(x(n))∫
Xl

λ(y(l); x(n)ν1 ,...,νk)dy(l), (9)

where x(n)ν1 ,...,νk ∶= (x
(n)
ν1 , . . . , x(n)νk ). The total loss is then the sum of the loss per reaction over all possible reactions,

Ln = ∑
1⩽ν1<⋅ ⋅ ⋅<νk⩽n

Lν1 ,...,νk. (10)

The form of the ordered sum guarantees that we count all the possible ways of picking up k particles without double counting; see Fig. 1 for a
diagram of the calculation. For the special case of k = 0, we have

(Lnρn)(x(n)) = ρn(x(n))∫
Xl

λ(y(l))dy(l). (11)
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FIG. 1. Diagram representing the loss of probability from the n-particle state due to the reaction kA→ lA [Eq. (10)]. The particle states are represented by a set of boxes,
where each box corresponds to the index of a particle.

Similarly, the gain operator acting on the n-particle density will output the total rate of probability gain of ρn. It can be expressed in terms
of the gain per reaction (local gain) resulting from k reacting particles with indices (ν1, . . . , νk) producing l products with indices (μ1, . . . , μl),
termed Gμ1 ,...,μl . The gain per reaction quantifies how much probability is gained by the current state due to one reaction; it is thus the integral
over the density and the rate function λ over all the possible positions of the reactants,

(Gμ1 ,...,μl ρn+k−l)(x
(n)
) = ∫

Xk
λ(x(n)μ1 ,...,μl ; z(k))ρn+k−l(x

(n)
/{μ1 ,...,μl}

, z(k))dz(k), (12)

where the subscript /{μ1, . . . , μl} means that the entries with indices μ1, . . . , μl are excluded from the tuple x(n) of particle positions. Note
that the indices of the reacting particles ν1, . . . , νk are not relevant for the gain since the reactants’ positions are integrated out (and both the
density and the rate function are symmetric). The total gain is then the sum of the gain per reaction over all possible reactions,

Gn =
(n − l)!

n!
(

n + k − l
k

)
n

∑
μ1...μl=1
μi≠μj ∀i,j

Gμ1 ,...,μl (13a)

= (
n
l
)
−1
(

n + k − l
k

) ∑
1⩽μ1<⋅ ⋅ ⋅<μl⩽n

Gμ1 ,...,μl , (13b)

where we used the symmetry of Gμ1 ,...,μl with respect to the indices. The complicated form of the gain operator is due to the fact that it needs
to consider all the possible ways to pick up k particles from the (n + k − l )-particle state, just as the loss operator, but, in addition, it also needs
to consider all the possible ways of incorporating l particles into the current state in a symmetry-preserving manner; see Fig. 2 for a diagram
illustrating the calculation. Note that the output of the loss and gain operators is also symmetric.

Let us use the preceding formulas for general reactions involving one species to derive the CDME for some common reactions [for
simplicity, we write ρn(x

n, t) as ρn(x
n
)]:

● Degradation A→ ∅: This case is recovered with k = 1, l = 0 using the rate function λd(x) = λd(; x). The CDME reads

∂ρn

∂t
(xn
) =

n

∑
ν=1

Dνρn(xn
) + (n + 1)∫

X
λd(z)ρn+1(x(n), z)dz − ρn(x(n))

n

∑
ν=1

λd(x
(n)
ν ). (14)

● Creation ∅→ A: Here, we set k = 0, l = 1 using the rate function λc(y) = λc(y; ); then, the CDME is

∂ρn

∂t
(xn
) =

n

∑
ν=1

Dνρn(xn
) +

1
n

n

∑
μ=1

ρn−1(x(n)
/{μ})λc(x(n)μ ) − ρn(x(n))∫

X
λc(y)dy. (15)

● Mutual annihilation A + A→ ∅: In this case, we have k = 2, l = 0 with the rate function λa(x1, x2) = λa(; x1, x2). Then,

∂ρn

∂t
(xn
) =

n

∑
ν=1

Dνρn(xn
) +
(n + 2)(n + 1)

2 ∫
X2

λa(z1, z2)ρn+2(x(n), z1, z2)dz1dz2

−ρn(x(n)) ∑
1⩽ν1<ν2⩽n

λa(x(n)ν1 , x(n)ν2 ). (16)
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FIG. 2. Diagram representing the gain of probability for the n-particle state for the reaction kA→ lA [Eq. (10)]. The particle states are represented by a set of boxes, where
each box corresponds to the index of a particle. The final expression can be further simplified; see Eq. (13b).

● Trimolecular reaction: 3A→ 2A: Here, k = 3, l = 2, and the rate function is λ(y(2); x(3)
); then,

∂ρn

∂t
(xn
) =

n

∑
ν=1

Dνρn(xn
) +

n + 1
3 ∑

1⩽μ1<μ2⩽n
∫

X3
λ(y(2); z(3))ρn+1(x(n)

/{μ1 ,μ2}
, z(3))dz(3)

−ρn(x(n)) ∑
1⩽ν1<ν2<ν3⩽n

∫
X2

λ(y(2); x(n)ν1 , x(n)ν2 , x(n)ν3 )dy(2). (17)

Several reactions: Given a system with several reactions of the form krA→ lrA for different kr , lr ∈ N0, r = 1, . . . , M, the nth component
of the CDME is given by a sum of the form

∂ρn

∂t
= Dnρn +

M

∑
r=1
(G(r)n ρn+kr−lr −L

(r)
n ρn) (18)

with accordingly defined operators G(r)n and L(r)n . Special cases of this type of equation were proposed earlier in the context of pattern
formation26,27 as models for adsorption/desorption processes and for the dynamics of agents with internal states; these dynamics can
be interpreted as reactions of orders 0 and 1 (creation, degradation, and unimolecular reactions, respectively).

As one can see from the expressions above, the explicit formulation of the loss and gain operators can become quite complex due to the
combinatorics. This issue worsens when several species are involved. Thus, it appears convenient to have a formalism where the combinatorial
factors are intrinsically built-in,16 and we will present such an approach in Sec. IV. Beforehand, we will explore one example with multiple
species and an alternative explicit representation of the CDME.

B. Multiple species
Consider the reaction

A + B→ C (19)

with rate function λ(y; xA, xB), where xA and xB are the locations of one pair of reactants and y is the location of the product. The stochastic
dynamics of the system is described in terms of the distributions ρa,b,c(x(a), x(b), x(c)), where a, b, c indicate the numbers of A, B, and C
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particles, respectively, and x(a) indicates the positions of the A particles, x(b) indicates the positions of the B particles, and x(c) indicates the
positions of the C particles. The normalization condition [Eq. (3)] generalizes to

∞

∑
a,b,c=0

∫

Xa×Xb×Xc

ρa,b,c(x
(a), x(b), x(c))dx(a) dx(b) dx(c) = 1. (20)

The CDME for this reaction has the same structure as before, namely, ∂ρ/∂t = Dρ +Rρ for a diffusion operator D and a reaction operator
R. Writing the equation component-wise and separating the reaction operator into its total loss and gain operators, we obtain

∂ρa,b,c

∂t
= Dρa,b,c + Ga,b,cρa+1,b+1,c−1 −La,bρa,b,c. (21)

The total loss and gain operators can be written explicitly by defining them per reaction (locally) and applying them to all possible com-
binations of reactors and products in the corresponding state (globally). Following the same logic as in Fig. 1, the loss operator is given by

La,b =
a

∑
μ=1

b

∑
ν=1

Lμ,ν (22)

with
(Lμ,ν ρa,b,c)(x

(a), x(b), x(c)) = ρa,b,c(x
(a), x(b), x(c))∫

X
λ(y; x(a)μ , x(b)ν )dy. (23)

Note that for the loss, the positions of the products are not relevant, so Lμ,ν just depends on the indices μ, ν of the reactants. Moreover, in
contrast to Eq. (10), the sum is not ordered since the reaction involves different species. Analogously, we can write the gain, but it is usually
more complex since now the location of the products does matter. In analogy to Fig. 2, the gain operator is given by

Ga,b,c =
1
c

c

∑
ξ=1

a+1

∑
μ=1

b+1

∑
ν=1

Gξ = (a + 1)(b + 1)
1
c

c

∑
ξ=1

Gξ (24)

with

(Gξρa+1,b+1,c−1)(x
(a), x(b), x(c)) = ∫

X2
λ(x(c)ξ ; z, z′)ρa+1,b+1,c−1((x

(a), z), (x(b), z′), x(c)
/{ξ})dz dz′. (25)

Gathering the terms and incorporating the diffusion term in the same way as before for each species, we obtain the CDME,

∂ρa,b,c

∂t
=

a

∑
μ=1

DA
μ ρa,b,c +

b

∑
ν=1

DB
ν ρa,b,c +

c

∑
ξ=1

DC
ξ ρa,b,c

+
(a + 1)(b + 1)

c

c

∑
ξ=1
∫

X2
λ(x(c)ξ ; z, z′)ρa+1,b+1,c−1((x

(a), z), (x(b), z′), x(c)
/{ξ})dz dz′

− ρa,b,c(x
(a), x(b), x(c))

a

∑
μ=1

b

∑
ν=1
∫

X
λ(y; x(a)μ , x(b)ν )dy,

(26)

where the dependence of ρa,b,c on the positions (x(a), x(b), x(c)) and time t has been skipped in the first line to simplify notation.
We see again that the main difficulty in writing down the CDME correctly is to come up with expressions that relate the loss and gain

operators acting on a subset of particles to the loss and gain operators acting on the whole system. This is expected as the operators need to
account for all possible combinations of particles that can undergo a certain reaction.

III. CDME FORMULATION USING MANY-PARTICLE PROPENSITIES
In this section, we provide another justification of the form of the gain and loss operators (especially of the combinatorial factors) by

utilizing permutations and Dirac δ-distributions to mathematically describe the particle selection process and by transforming the local rate
function into many-particle propensity functions.

For the simplicity of the notation, we again restrict to the case of only one chemical species as in Sec. II A; a case with multiple species will
be discussed in Sec. III B. Given the component-wise formulation [Eq. (18)] of the CDME, we would like to express the gain and loss operators
by means of global many-particle propensities, which express the likeliness for a reaction to take place depending on the whole system state.
More concretely, given a single reaction of the form kA→ lA, we consider for each n the propensity functions Λn : Xn−k+l

×Xn
→ [0,∞),
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where Λn(y(n−k+l); x(n)
) refers to the probability per unit of time that a system with n particles in the ordered positions x(n)1 , . . . , x(n)n gets to

be transformed into a system with n − k + l particles in the ordered positions y(n−k+l)
1 , . . . , y(n−k+l)

n−k+l . Reflecting the assumption that particles of
a single species are modeled as indistinguishable, the many-particle propensities are required to be symmetric with respect to pair exchanges
in both of their arguments.

In terms of the many-particle propensities Λn, the loss and gain operators are given by

(Lnρn)(x(n)) = ρn(x(n))∫
Xn−k+l

Λn(y(n−k+l); x(n))dy(n−k+l), (27a)

(Gnρn+k−l)(y
(n)
) = ∫

Xn+k−l
Λn+k−l(y

(n); x(n+k−l)
)ρn+k−l(x

(n+k−l)
)dx(n+k−l), (27b)

in analogy to the operators given in Sec. II A. These expressions are symmetry preserving owing to the symmetry properties of the densities
and of the propensities. They are probability preserving, too, because taking into account that Lnρn is a loss for ρn while Gn−k+lρn is a gain for
ρn−k+l, the sum of the changes of the total probability in the n- and n − k + l-particle spaces due to the considered reaction is

∫
Xn
(Lnρn)(x(n))dx(n) − ∫

Xn−k+l
(Gn−k+lρn)(y(n−k+l)

)dy(n−k+l)
= 0. (28)

If the densities ρn are symmetric with respect to arbitrary particle permutations initially, the loss and gain operations from Eqs. (27a) and
(27b) will preserve this property. Moreover, owing to the way the densities are normalized in Eq. (3), no normalizing combinatorial factors
arise in Eqs. (27) and (28); rather, the combinatorics is hidden in the definition of Λn. Thus, we conclude that conservation of symmetry and
probability is straightforwardly ensured when working with the many-particle propensities Λn.

Given a finite number M of reactions of the form krA→ lrA, we denote the propensity functions of the rth reaction by Λ(r)n and the
corresponding loss and gain operators by L(r)n and G(r)n . Inserting into Eq. (18), we obtain the nth component of the CDME in terms of the
many-particle propensities Λ(r)n .

The next step is to derive the concrete form of the many-particle propensity Λn for specific reactions and relate them to the local
rate functions λ. Remember that, in contrast to the propensities Λn, the rate functions λ define the rate for a reaction taking place solely
depending on the positions of reactants and products. More concretely, λ(y(l), x(k)

) defines the probability per unit of time for k particles
located at x(k)1 , . . . , x(k)k to be fully replaced due to the reaction kA→ lA by l particles located at y(l)1 , . . . , y(l)l . In contrast, the global many-
particle propensities Λn depend on the complete system state before and after the reactions and already contain combinatorial factors and
symmetrization. As a first scenario, we consider the example of simple decay.

A. Many-particle propensity for simple decay
Here, we develop an explicit formula that relates the reaction rate λd(x) of the decay process, see Eq. (14), to the associated many-particle

propensity Λn+1 : Xn
×Xn+1

→ [0,∞). The following formula captures the essence of the remaining many-particle propensities but does not
yet respect the required symmetries and the normalization:

Λ bs
n+1(y

(n), x(n+1)
) =

n+1

∑
ν=1

λd(x
(n+1)
ν )δn

(x(n+1)
/{ν} − y(n)), (29)

where the superscript “bs” stands for “before symmetrization” and δn refers to the Dirac distribution in n dimensions; in particular,

δn
(x(n+1)
/{ν} − y(n)) =

ν−1

∏
μ=1

δ(x(n+1)
μ − y(n)μ )

n

∏
μ=ν

δ(x(n+1)
μ+1 − y(n)μ ). (30)

The term under the sum in Eq. (29) describes (i) the probability per unit time that the νth particle disappears from position x(n+1)
ν

and (ii) the fact that the rest of the configuration remains unchanged so that its probability is transferred from ρn+1(x(n+1)
) to

ρn(x(n+1)
1 , . . . , x(n+1)

ν−1 , x(n+1)
ν+1 . . . , x(n+1)

n+1 ). The summation over ν accounts for the fact that any of the particles out of configuration x(n+1)

might decay.
The properly symmetrized version of Eq. (29) is obtained by averaging over all permutations of the target space configurations y(n), i.e.,

Λn+1(y(n), x(n+1)
) =

1
n!∑P∈Pn

Λ bs
n+1(Py(n), x(n+1)

). (31)

Owing to the summation over ν in Eq. (29), this formula is already symmetric with respect to permutations of the second argument x(n+1).
In turn, averaging over the permutations in Pn guarantees that the probability associated with a particle disappearing from the (n + 1)-particle
configuration x(n+1) is distributed symmetrically to that of all equivalent n-particle configurations on the receiving end.
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Now, the crucial step is to insert the propensities into Eq. (27) and translate the expressions given in Eq. (31) into combinatorial factors.
Due to the particle exchange symmetry of ρn+1, the contribution of any of the terms under the sum in Eq. (31) to (Gnρn+1)(y(n)) from
Eq. (27b) obeys [see also Eq. (29)]

∫
Xn+1

λd(x
(n+1)
ν )δn

(x(n+1)
/{ν} − Py(n))ρn+1(x(n+1)

)dx(n+1)

= ∫
X

λd(x) ρn+1((Py(n))
1
, . . . , (Py(n))

ν−1
, x, (Py(n))

ν
, . . . , (Py(n))

n
)dx

= ∫
X

λd(x) ρn+1(Py(n), x) dx = ∫
X

λd(x) ρn+1(y(n), x) dx,

(32)

i.e., they are all the same. Summation of this expression over ν [see Eq. (29)] yields a factor of (n + 1), and summation over the n-particle
permutations P ∈ Pn together with the division by n! [see Eq. (31)] ensures that the (n + 1)-particle probability is distributed symmetrically
over the n-particle space.

A similar calculation for the loss (Lnρn)(x(n)) reads

ρn(x(n))λd(x
(n)
ν )∫

Xn−1
δn−1
(x(n)
/{ν} − Py(n−1)

)dy(n−1)
= ρn(x(n))λd(x

(n)
ν ) (33)

for each permutation P and each index ν, where we translated formula (31) for Λn+1 to Λn by a shift in n. Summation over the n-particle
permutations P ∈ Pn cancels the factor 1/n!. By the summation over ν and combining with the result for the gain, we obtain the evolution
equation for the n-particle density under a simple decay process,

∂tρn(x(n)) = (n + 1)∫
X

λd(y) ρn+1(x(n), y) dy − ρn(x(n))
n

∑
ν=1

λd(x
(n)
ν ), (34)

and this is in line with the reaction terms in Eq. (14).

B. Many-particle propensity for multiple species
We continue with the scenario of multiple species as described in Sec. II B. Let λ(y; xA, xB) again denote the conditional probability per

unit time that the reaction A + B→ C occurs with a product particle of species C appearing in y, given that two reactants A and B reside in xA
and xB, respectively. Then, we are interested in the associated many-particle propensities,

Λ(y(a−1), y(b−1), y(c+1); x(a), x(b), x(c)), (35)

which denotes the transfer of probability density per unit time from ρa,b,c to ρa−1,b−1,c+1 due to the considered reaction. Note that we have here
suppressed subscripts a, b, c on Λ to simplify notation.

At first, we define for each tuple of indices ν, μ, ξ the propensity

Λν,μ,ξ(y
(a−1), y(b−1), y(c+1); x(a), x(b), x(c)) = λ(y(c+1)

ξ ; x(a)μ , x(b)ν )δ
a−1
(x(a)
/{μ} − y(a−1)

)δb−1
(x(b)
/{ν} − y(b−1)

)δc
(x(c) − y(c+1)

/{ξ} ). (36)

The interpretation of the expression in Eq. (36) is as follows: Given the reactant and product tuples in the source and target spaces,
(x(a), x(b), x(c)) and (y(a−1), y(b−1), y(c+1)

), respectively, it assigns the (probability) transfer rate λ(y(c+1)
ξ ; x(a)μ , x(b)ν ) to the reaction occurring

between the reactants located at x(a)μ , x(b)ν and producing a product particle in y(c+1)
ξ . The products of δ-distributions make sure that in the

transfer, all other particle positions remain those from the source space tuples.
In analogy to Eq. (29), we can now write down the many particle propensity before symmetrization as

Λbs
(y(a−1), y(b−1), y(c+1); x(a), x(b), x(c)) =

1
c + 1

a

∑
μ=1

b

∑
ν=1

c+1

∑
ξ=1

Λν,μ,ξ(y
(a−1), y(b−1), y(c+1); x(a), x(b), x(c)). (37)

The prefactor of 1/(c + 1) is to be included for the following reason: If y(a−1), y(b−1) are the same as x(a), x(b) after the removal of x(a)μ , x(b)ν

and if y(c+1) after the removal of y(c+1)
ξ agrees with x(c), then there are c + 1 possibilities of augmenting x(c) with the target position y(c+1)

ξ to

generate a (c + 1)-tuple. The probability that out of the reaction of reactants at x(a)μ , x(b)ν emerges a particle in y(c+1)
ξ must be equi-distributed

over these equivalent configurations of c + 1 product particles to retain the required particle exchange symmetry.
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Regarding the symmetrization, we observe that there are (a − 1)!(b − 1)!(c + 1)! equivalent configurations in the target space over which
the probability of being transferred to has to be distributed. In analogy to Eq. (31), we obtain

Λ(y(a−1), y(b−1), y(c+1); x(a), x(b), x(c)) = ∑
P∈Pa−1

∑
Q∈Pb−1

∑
R∈Pc+1

Λbs
(Py(a−1), Qy(b−1), Ry(c+1); x(a), x(b), x(c))

(a − 1)! (b − 1)! (c + 1)!
. (38)

The formula in Eq. (38) is obviously symmetric with respect to the target space configurations by construction. It is also symmetric with respect
to the source space configurations because of the summation over all possible pairs of reactant particles in Eq. (37) and the symmetrization
over the target space configurations in Eq. (38).

Let us now derive the structure of the loss and gain expressions analogous to those in Eq. (27) for this representation of the many-particle
propensity.

1. The loss term L
Extending the definition in Eq. (27a) to the two-species reaction and dropping the superscript on L as it is clear from the context, we

have

(Lρa,b,c)(x
(a), x(b), x(c)) = ρa,b,c(x

(a), x(b), x(c))
a

∑
μ=1

b

∑
ν=1
∫

X
λ(y; x(a)μ , x(b)ν )dy. (39)

To obtain this result, we have used that integration over just one of the terms in the multiple sum over particle indices in Eq. (37) and permu-
tations in Eq. (38) may be summarized as follows: Dropping the prefactors of 1/(c + 1) and ρa,b,c(x(a), x(b), x(c))/(a − 1)! (b − 1)! (c + 1)!
for the moment, we consider only the terms relevant for the integration, i.e.,

∫

Xa−1×Xb−1×Xc+1

Λν,μ,ξ(Py(a−1), Qy(b−1), Ry(c+1); x(a), x(b), x(c))dy(a−1) dy(b−1) dy(c+1)

= ∫

Xa−1×Xb−1×Xc+1

Λν,μ,ξ(y
(a−1), y(b−1), y(c+1); x(a), x(b), x(c))dy(a−1) dy(b−1) dy(c+1)

= ∫

X

λ(y; x(a)μ , x(b)ν ) dy.

(40)

Here, the first equality follows by a transformation of the integration variables from the components of (y(a−1), y(b−1), y(c+1)
) to the com-

ponents of (Py(a−1), Qy(b−1), Ry(c+1)
) and relabeling. The second equality follows because all the δ-distributions in Eq. (36) will generate

unity once upon the integrations over y(a−1)
i (i = 1, . . . , a − 1), y(b−1)

j (j = 1, . . . , b − 1), and y(c+1)
k (k = 1, . . . , ξ − 1, ξ + 1, c + 1), whereas the

integration over y = y(c+1)
ξ remains non-trivial. Thus, we observe that all these terms are identical for any of the c + 1 terms in the sum

over ξ in Eq. (37) and also for any of the permutations in Eq. (38). Carrying out the summation over the permutations yields a factor of
(a − 1)!(b − 1)!(c + 1)!, which cancels the denominator in Eq. (38), while summing over ξ in Eq. (37) cancels the factor of 1/(c + 1) in that
equation. This establishes Eq. (39).

2. The gain term G
To calculate the gain operator G for the target space, Xa

×Xb
×Xc, of the reaction, we have to compute the expectation of the propensity

over the source space, Xa+1
×Xb+1

×Xc−1, in analogy with Eq. (27b). The associated density-weighted integration over (x(a+1), x(b+1), x(c−1)
)

of Λν,μ,ξ in Eq. (36) yields

∫

Xa×Xb×Xc

Λν,μ,ξ(y
(a−1), y(b−1), y(c+1); x(a), x(b), x(c))ρa,b,c(x

(a), x(b), x(c)) dx(a) dx(b) dx(c)

= ∫
X2

λ(y(c+1)
ξ ; z, z′, ) ρa,b,c((y

(a−1), z), (y(b−1), z′), y(c+1)
/{ξ} ) dz dz′. (41)

Here, we have already used the symmetry properties of ρa,b,c to shift the remaining integration variables z and z′ to the end of the tuples of its
first two arguments. These calculations show that the result is again independent of the summation indices μ, ν so that the summation over
these indices in Eq. (37) just generates a prefactor of ab. Summation over ξ guarantees that the configuration (y(a−1), y(b−1), y(c+1)

) receives

its appropriate share of probability transfer from all reactions that produce a particle in any of the positions collected in the tuple y(c+1).
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Any permutation of y(a−1) or y(b−1) will not change the result either owing to the symmetry of ρa,b,c in its first two arguments. Therefore,
the averaging over these permutations will just cancel the prefactor of 1/(a − 1)!(b − 1)! in Eq. (38). After the summation over ξ in Eq. (37),
the resulting expression is also invariant under permutations of y(c+1) owing to the symmetry of ρa,b,c in its last argument. Thus, the summation
over these permutations will just generate a factor of (c + 1)!, canceling the remaining factor in the denominator of Eq. (38). Note, however,
that the factor of 1/(c + 1) from Eq. (37) is retained in the process.

The result for the gain function reads

(Gρa,b,c)(y
(a−1), y(b−1), y(c+1)

) =
ab

c + 1

c+1

∑
ξ=1
∫

X2
λ(y(c+1)

ξ ; z, z′)ρa,b,c([y
(a−1), z], [y(b−1), z′], y(c+1)

/{ξ} ) dz dz′. (42)

After a shift from (a, b, c) to (a + 1, b + 1, c − 1), we obtain an operator that agrees with the mid-term in Eq. (26).
Conservation of the total probability under the loss and gain functions in Eqs. (39) and (42) is guaranteed as we have

∫

Xa×Xb×Xc

(Lρa,b,c)(x
(a), x(b), x(c)) dx(a) dx(b) dx(c)

= ∫

Xa−1×Xb−1×Xc+1

(Gρa,b,c)(y
(a−1), y(b−1), y(c+1)

) dy(a−1) dy(b−1) dy(c+1) (43)

= a b∫
X3

λ(y; z, z′) ∫

Xa−1×Xb−1×Xc

ρa,b,c((ξ, z), (η, z′), ζ) dξdηdζ dydzdz′. (44)

Collecting the loss and gain terms and adding the diffusion terms, we obtain again the CDME given by Eq. (26).
In total, we end up with the same equation, but the way to get there is different: In Sec. II, we have expressed the loss and gain operators

as sums of local operators (acting on subsets of particles), while here in Sec. III, we have translated the local rate functions into many-particle
propensities. In Sec. IV, the combinatorics will be encoded in the annihilation and creation operators, again ending up in the same CDME.

IV. CDME FORMULATION USING CREATION AND ANNIHILATION OPERATORS
Using creation and annihilation operators as presented in Ref. 16, we can formulate the CDME at once without having to worry about the

combinatorial factors. Assuming a system involving only one chemical species, we introduce the creation and annihilation operators acting
on an n-particle density ρn as16

(a+{w}ρn)(x(n+1)
) =

1
n + 1

n+1

∑
j=1

w(x(n+1)
j )ρn(x(n+1)

/{j} ), (45a)

(a−{ f }ρn)(x(n−1)
) = n∫

X
f (y)ρn(x(n−1), y) dy. (45b)

The creation operator a+{w} adds a particle of species A with distribution w by multiplying the single-particle density w with the
density ρn. The resulting density is a function of n + 1 positions, x(n+1), and the sum over j and the prefactor are required to render the result
symmetric with respect to permutations of particle labels. The annihilation operator a−{ f } removes a particle at x with the rate f (x) by
marginalization of the density with the weight function f . As ρn is symmetric, we can simply integrate against the last variable. The resulting
density is a function of x(n−1). As there are n possible ways to remove a particle, the factor of n appears in front of the integral. In Ref. 16, it was
shown that the creation and annihilation operators satisfy some special properties that are useful for calculations, including the commutation
relations,

[a−{ f }, a+{w}] = ⟨ f ,w⟩, [a−{ f }, a−{g}] = [a+{w}, a+{ν}] = 0, (46)

where ⟨u, v⟩ ∶= ∫Xu(x)v(x)dx for suitable functions u, v and [a, b] ∶= ab − ba for operators a, b. Furthermore, the definitions of a+ and a−

extend naturally to the family of n-particle densities by operating element-wise, e.g., a+{w}(ρ0, ρ1, . . .) = (a+{w}ρ0, a+{w}ρ1, . . .).
The following representation of the CDME will be given in terms of a basis (u1, u2, . . .) of the space of single-particle densities. We

emphasize that the obtained results are independent of the specific basis chosen although the expansion coefficients will naturally depend on
the choice of the basis. For a concrete application, the basis functions can be adapted to the problem and reflect some physical properties,
e.g., possible symmetries. We recall that, in quantum mechanics, the common expansions in terms of spherical harmonics and associated
polynomials are motivated by the isotropy of atoms. For keeping the presentation concise, we restrict here to square-integrable probability
densities, which form the separable Hilbert space L2

(X), and we require that the basis is orthonormal, i.e., ⟨uα, uβ⟩ = δα,β, where ⟨⋅, ⋅⟩ denotes
the inner product in L2

(X). More generally, one uses the Banach space L1
(X) of integrable functions as it was done in Ref. 16. However,
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this adds a number of technical issues, and there are no relevant differences in the final expressions. In both cases, the existence of a basis
(u1, u2, . . .) is granted, and in the L1

(X) case, the representations are exact in the sense that every probability density can be expanded in such
a basis.

A. One species
Let us consider again a general one-species reaction kA→ lA with rate function λ(y(l); x(k)

). Under the assumption of independently and
identically diffusing particles, following Eq. (8), the diffusion operator Dn decomposes into a sum of single-particle diffusions Dν applied to
the νth particle, which was shown to have an expansion in terms of creation and annihilation operators,16

Dn =
n

∑
ν=1

Dν

=∑
α,β
⟨uα, D1uβ⟩a

+

α a−β , (47)

where we used the compressed notations a+α ∶= a+{uα} and a−β ∶= a−{uβ}. One observes that the expansion in Eq. (47) does not depend
explicitly on the particle number n, and thus, formally, it represents the full diffusion operator acting on the whole family ρ = (ρ0, ρ1, . . .). In
the presence of pair interactions between the particles, the diffusion operator is made of two-particle operators, which can be expanded into
products a+α a+β a−γ a−δ ; see Sec. 4.1.2 of Ref. 16. Equation (47) is easily seen for the case n = 1. For an arbitrary single-particle density ρ1, we have
the basis expansion ρ1 = ∑α⟨uα, ρ1⟩uα, and for the action of D1, one finds

D1ρ1 =∑
α
⟨uα, D1ρ1⟩ uα =∑

αβ
⟨uα, D1uβ⟩⟨uβ, ρ1⟩ uα, (48)

which corresponds to Eq. (47) upon verifying that a+α a−β ρ1 = uα⟨uβ, ρ1⟩ from (45). The general case of an n-particle density ρn is obtained by
noting the representation ρn = ∑α1⩽⋅ ⋅ ⋅⩽αn

cα1 ,...,αn a+α1 ⋅ ⋅ ⋅ a
+

αn ρvac, where cα1 ,...,αn are the expansion coefficients and ρvac = 1 denotes the vacuum
state (n = 0).

We now need to expand the loss and gain operators in the same manner. First, we consider the loss and gain operators per reaction from
Eqs. (9) and (12), which are linear operators and are thus fully specified by their action on products of single-particle basis functions,

(L(uβ1 ⊗ ⋅ ⋅ ⋅ ⊗ uβk))(x
(k)
) ∶= (uβ1 ⊗ ⋅ ⋅ ⋅ ⊗ uβk)(x

(k)
)∫

Xl
λ(y(l); x(k))dy(l), (49)

(G(uβ1 ⊗ ⋅ ⋅ ⋅ ⊗ uβk))(y
(l)
) ∶= ∫

Xk
λ(y(l); x(k))(uβ1 ⊗ ⋅ ⋅ ⋅ ⊗ uβk)(x

(k)
)dx(k), (50)

with the tensor product v1 ⊗ ⋅ ⋅ ⋅ ⊗ vn =⊗
n
j=1vj defined as (v1 ⊗ ⋅ ⋅ ⋅ ⊗ vn)(x(n)) ∶= v1(x(n)1 ) ⋅ ⋅ ⋅ vn(x(n)n ). One can show that

(uα1 ⊗ ⋅ ⋅ ⋅ ⊗ uαn)αi∈N is a basis of the corresponding tensor space of Hilbert spaces, which is itself a Hilbert space, referred to as a
Fock space. Analogous to the diffusion operator, the total loss and gain over all possible reactions from Eqs. (10) and (13) also have
expansions in terms of creation and annihilation operators,16

Ln =
1
k! ∑α1 ,...,αk

β1 ,...,βk

⟨
k
⊗
i=1

uαi , L
k
⊗
j=1

uβj⟩
k

∏
i=1

a+αi

k

∏
j=1

a−βj , (51)

Gn =
1
k! ∑α1 ,...,αl

β1 ,...,βk

⟨
l
⊗
i=1

uαi , G
k
⊗
j=1

uβj⟩
l

∏
i=1

a+αi

k

∏
j=1

a−βj. (52)

These expansions seem to be rather involved at first sight, yet they is a key element to develop a straightforward formulation of the CDME
even for complex reaction–diffusion networks. The structure of the expressions becomes more transparent by introducing the following short-
hand notation. Let a+ = (a+{uα})α∈N denote the family of creation operators for the basis (uα), and analogously, a− = (a−{uβ})β∈N. For the
coefficients of Dn in Eq. (47), we arrange them as D = (⟨uα, Duβ⟩)(α,β)∈N2 , which is reminiscent of a tensor of rank 2. The expansion of Dn
then reads

D = a+ Da−, (53)

where the products between the symbols in upright font face imply full contractions of “tensor” indices α and β; see Eq. (47); here, we have
dropped the subscript n from Dn noting again that the right-hand side holds for any n. For the loss and gain terms, we make use of multi-
indices α = (α1, . . . , αk) and write (a+)k

= (a+{uα1} ⋅ ⋅ ⋅ a
+
{uαk})α∈Nk and analogously for (a−)l. The coefficients of Ln in Eq. (51) are denoted
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as L = (⟨uα1 ⊗ ⋅ ⋅ ⋅ ⊗ uαk , Luβ1 ⊗ ⋅ ⋅ ⋅ ⊗ uβk⟩)αβ. With this compact notation, the expansions of the gain and loss operators in Eqs. (51) and (52)
take the form (Fig. 3)

L = (a+)k L (a−)k and G = (a+)l G (a−)k, (54)

with products implying contractions over multi-indices α and β; additionally, we agree that contractions involving several annihilation
operators (a−)k introduce a factor of k!, corresponding to the length of the multi-index β. Then, the CDME in its compact form is

∂ρ
∂t
= (a+ Da− + (a+)l G (a−)k

− (a+)k L (a−)k
)ρ. (55)

To recover the explicit form of the equation (as derived in Secs. II and III), one must explicitly evaluate the expressions containing the creation
and annihilation operators. To circumvent these often cumbersome calculations, we provide a dictionary of the expansions for common
reactions in the Appendix, where we can easily verify that the nth component of this equation matches that of Eq. (7), where the loss operator
always acts on ρn and the gain operator acts on ρn+k−l.

The compact notation has a very intuitive logic behind (Fig. 3): Given the reaction kA→ lA, the loss acts on the k reactants at once,
so it involves k creation and k annihilation operators. As the gain depends on both reactants and products, it consists of k annihilation
and l creation operators. The diffusion operator, as it acts on solely one particle at a time, involves only one annihilation and one creation
operator. If diffusion incorporated physical pair interactions, it would act on two particles at a time, so it would involve two creation and two
annihilation operators.

B. Bimolecular reactions
For reaction systems involving multiple species, it is equally easy to obtain the desired equation. We only need to use different creation

and annihilation operators for each species. For examples, for the reaction

A + B→ C, (56)

with rate function λ(yC; xA, xB), where xA and xB are the locations of the reactants and yC is the location of the product, we immediately
obtain

∂ρ
∂t
= (a+ DA a− + b+ DB b− + c+ DC c− + c+ G a−b− − a+b+ L a−b−)ρ, (57)

where ρ is the family of n-particle densities of the form ρa,b,c(x
(a), x(b), x(c)

) for all possible values of the particle numbers a, b, and c. The
creation and annihilation operators for each species are denoted by the corresponding lower case letter. The first three terms describe the
diffusion of the different species, the fourth term is the total loss due to reactions, and the last term is the total gain. Note that the loss of
probability will only depend on the number of reactants of the current state; thus, it only contains operators for the A and B species. On the
other hand, the gain will depend on the number of reactants in another state and the products needed to bring the system to the current state.
These terms have the following expansions:16

a+b+ L a−b− =
1
2∑α1 ,α2

β1 ,β2

⟨uα1 ⊗ uα2 , L(uβ1 ⊗ uβ2)⟩a
+
{uα1}b

+
{uα2}a

−
{uβ1}b

−
{uβ2}, (58)

c+ G a−b− =
1
2∑α

β1 ,β2

⟨uα, G(uβ1 ⊗ uβ2)⟩c
+
{uα}a−{uβ1}b

−
{uβ2}, (59)

FIG. 3. Diagram representing how to write the loss and gain operators for the reaction kA→ lA in the compact notation using creation and annihilation operators. The
operators L and G represent the local loss and gain operators; the operators L and G represent the global loss and gain operators.
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recalling the short-hand a+α1 = a+{uα1}, etc. The local loss and gain operators are given in terms of the rate function λ as

(L(uβ1 ⊗ uβ2))(xA, xB) ∶= (uβ1 ⊗ uβ2)(xA, xB)∫
X

λ(yC; xA, xB)dyC, (60)

(G(uβ1 ⊗ uβ2))(yC) ∶= ∫
X2
(uβ1 ⊗ uβ2)(xA, xB)λ(yC; xA, xB)dxAdxB, (61)

in analogy to Eqs. (49) and (50).
Using the dictionary of the Appendix, it is straightforward to transform Eq. (57) into the explicit integral notation,

∂ρa,b,c

∂t
=

a

∑
μ=1

DA
μ ρa,b,c +

b

∑
ν=1

DB
ν ρa,b,c +

c

∑
ξ=1

DC
ξ ρa,b,c

+
(a + 1)(b + 1)

c

c

∑
ξ=1
(∫

X2
λ(x(c)ξ ; z, z′)ρa+1,b+1,c−1((x

(a), z), (x(b), z′), x(c)
/{ξ})dzdz′) − ρa,b,c

a

∑
ν1=1

b

∑
ν2=1
∫

X
λ(y; x(a)ν1 , x(b)ν2 )dy,

(62)

which is the same as Eq. (26).

C. Enzyme kinetics
Before closing, we develop the CDME for a real-world example, namely, the Michaelis–Menten scheme for enzyme kinetics, which

consists of three reactions and involves four species,

R1 : E + S→ C, (63a)

R2 : C → E + S, (63b)

R3 : C → E + P. (63c)

The scheme describes an enzyme E that can bind a substrate molecule S to form the complex C. This complex can either dissociate again
or yield a product P while releasing the original enzyme. The rate functions corresponding to these reactions are λ1(yC; xE, xS), λ2(yE, yS; xC),
and λ3(yE, yP; xC), respectively. The CDME is an evolution equation for the family ρ of densities of the form ρe,s,p,c(x

(e), x(s), x(p), x(c)
) for all

possible values of e, s, p, and c, and it takes the form
∂ρ
∂t
= Dρ + (

3

∑
r=1

R(r))ρ (64)

with the diffusion and reaction operators

D = e+ DE e− + s+ DS s− + c+ DC c− + p+ DP p−, (65a)

R(1) = c+ G1 e−s− − e+s+ L1 e−s−, (65b)

R(2) = e+s+ G2 c− − c+ L2 c−, (65c)

R(3) = e+p+ G3 c− − c+ L3 c−. (65d)

The expansions of the operators, as well as the corresponding loss and gain operators for each reaction, are completely analogous to the
previous examples. By virtue of the Appendix, we obtain the CDME in its integral notation,

∂ρe,s,p,c

∂t
=

e

∑
μ=1

DE
μρe,s,p,c +

s

∑
μ=1

DS
μρe,s,p,c +

p

∑
μ=1

DP
μρe,s,p,c +

c

∑
μ=1

DC
μ ρe,s,p,c

+
(e + 1)(s + 1)

c

c

∑
ξ=1
(∫

X2
ρe+1,s+1,p,c−1((x(e), z), (x(s), z′), x(p), x(c)

/{ξ})λ1(x(c)ξ ; z, z′)dzdz′)

+
(c + 1)

es

e

∑
μ=1

s

∑
η=1
(∫

X
ρe−1,s−1,p,c+1(x(e)

/{μ}, x(s)
/{η}, x(p), (x(c), z))λ2(x(e)μ , x(s)η ; z)dz)

+
(c + 1)

ep

e

∑
μ=1

p

∑
η=1
(∫

X
ρe−1,s,p−1,c+1(x(e)

/{μ}, x(s), x(p)
/{η}, (x(c), z))λ3(x(e)μ , x(p)η ; z)dz)

− ρe,s,p,c
⎛

⎝

e

∑
ν1=1

s

∑
ν2=1
∫

X
λ1(y; x(e)ν1 , x(s)ν2 )dy +

c

∑
ν=1
∫

X2
λ2(y1, y2; x(c)ν )dy1dy2 +

c

∑
ν=1
∫

X2
λ3(y1, y3; x(c)ν )dy1dy3

⎞

⎠
.

(66)
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D. Non-rigorous extension to Dirac δ-distributions
According to (45) of the annihilation and creation operators, a particle is inserted with a spatial probability density w(x) and removed

with a position-dependent rate function f (x). From a physics perspective, classical particles have a defined position, and so it should be
possible to add and delete particles at a single point y ∈ X (in this case, w would correspond to a point measure). To this end, we formally
extend these operators to accept Dirac δ-distributions as their arguments, ignoring here any mathematical difficulties associated with it. For
δy(x) ∶= δ(x − y), we define

(a+{δy}ρn)(x(n+1)
) =

1
n + 1

n+1

∑
j=1

δ(x(n+1)
j − y)ρn(x(n+1)

/{j} ), (67a)

(a−{δy}ρn)(x(n−1)
) = n∫

X
δ(z − y)ρn(x(n−1), z) dz = n ρn(x(n−1), y). (67b)

For brevity, we will write a+(y) = a+{δy} and a−(y) = a−{δy} in the following. By direct substitution and straightforward calculations
analogous to the ones in Ref. 16, one proves that these operators satisfy the commutation relations [see also Eq. (46)],

[a−(y1), a+(y2)] = δ(y1 − y2), [a−(y1), a−(y2)] = [a+(y1), a+(y2)] = 0, (68)

which agree with the corresponding expressions in quantum field theory.28

In general, for an operator A acting on a single particle at position y, such as diffusion, or an operator B acting on two particles at positions
y1 and y2, we obtain the following representations of the corresponding Fock space operators [see also Eqs. (60) and (64) in Ref. 16]:

A = ∫
X×X

dxdy a+(x) Ã(x; y) a−(y), (69)

B = 1
2!∫X2×X2

dx1dx2dy1dy2 a+(x1)a+(x2) B̃(x1, x2; y1, y2) a−(y1)a−(y2). (70)

As a rule of thumb, given a basis expansion, such as Eq. (47), the functions uα are replaced by δxα , and the sums over α and β are replaced
by integrals over the continuous variables xα and yβ, respectively. The integral kernels Ã and B̃ generalize the coefficient matrices and read
Ã(x; y) ∶= ⟨δx, Aδy⟩ and B̃(x1, x2; y1, y2) ∶= ⟨δ(x1 ,x2), Bδ(y1 ,y2)⟩, respectively; here, δ(x1 ,...,xk)(z1, . . . , zk) ∶= δ(x1 − z1) ⋅ ⋅ ⋅ δ(xk − zk) denotes the
k-dimensional Dirac δ-distribution.

In case of a “diagonal” operator, such as the loss operator L, the one-particle kernel reduces to Ã(x; y) = Ã(y) δ(x − y) for Ã(y)
∶= Ã(y, y) and Eq. (69) simplifies to [cf. Eq. (24) in Ref. 17]

A = ∫
X

dy a+(y) Ã(y) a−(y). (71)

If A is a differential operator (e.g., the diffusion operator D), we note that Ã(x; y) has to be interpreted in a distributional sense,

∫ dy φ(y)Ã(x; y) = ∫ dy φ(y) ⟨δx, Aδy⟩ = ⟨δx, A(∫ dy φ(y) δy)⟩ = ⟨δx, Aφ⟩ = (Aφ)(x) (72)

for suitable test functions φ.
For the global gain and loss operators of the reaction kA→ lA, we apply the same rules, starting from (51) and (52), respectively,

L = 1
k!∫Xk×Xk

dx(k)dy(k)a+(x(k)) L̃(x(k); y(k)) a−(y(k)), (73)

G = 1
k!∫Xl×Xk

dx(l)dy(k)a+(x(l)) G̃(x(l); y(k)) a−(y(k)), (74)

where a+(x(k)) ∶= a+(x(k)1 ) ⋅ ⋅ ⋅ a
+
(x(k)k ) yields the insertion of k particles at positions x(k) = (x(k)1 , . . . , x(k)k ), and analogously a−(x(k)

) for the
removal of k particles; we note that the factors in these products commute. The coefficient functions are readily calculated from the definitions
of the local loss and gain operators, L and G,

L̃(x(k); y(k)) ∶= ⟨δx(k) , Lδy(k)⟩
(49)
= δ(x(k) − y(k))∫

Xl
dz(l) λ(z(l); y(k)), (75)

G̃(x(l); y(k)) ∶= ⟨δx(l) , Gδy(k)⟩
(50)
= λ(x(l); y(k)). (76)

These results together with Eqs. (73) and (74) agree with Doi’s work.17
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For the action of products of the creation and annihilation operators, we find from Eq. (67) by induction

(a+(y(k))ρn−k)(x
(n)
) = (a+(y(k)1 )a

+
(y(k)
/{1})ρn)(x(n))

=
1
n

n

∑
j1=1

δ(x(n)j1
− y(k)1 )(a

+
(y(k)
/{1})ρn−k)(x

(n)
/{j1}
)

=
1

n(n − 1)

n

∑
j1=1

n

∑
j2=1
j2≠j1

δ(x(n)j1
− y(k)1 )δ(x

(n)
j2
− y(k)2 )(a

+
(y(k)
/{1,2})ρn−k)(x

(n)
/{j1 ,j2}

)

=
(n − k)!

n!

n

∑
j1=1
⋅ ⋅ ⋅

n

∑
jk=1

jk≠j1 ,...,jk−1

δ(x(n)j1
− y(k)1 ) ⋅ ⋅ ⋅ δ(x

(n)
jk
− y(k)k )ρn−k(x

(n)
/{j1 ,...,jk}

)

=
k!(n − k)!

n! ∑
1⩽j1<⋅ ⋅ ⋅<jk⩽n

δ(x(n)j1
− y(k)1 ) ⋅ ⋅ ⋅ δ(x

(n)
jk
− y(k)k )ρn−k(x

(n)
/{j1 ,...,jk}

) (77)

and, more immediately,

(a−(y(k))ρn)(x(n−k)
) =

n!
(n − k)!

ρn(x(n−k), y(k)). (78)

In combination with Eqs. (73) and (75), these results deliver the explicit form of the loss term of the CDME,

(Lρn)(x(n)) =
1
k!∫Xl×Xk

λ(z(l); y(k))(a+(y(k))a−(y(k))ρn)(x(n))dz(l)dy(k)

(77)
=
(n − k)!

n! ∑
1⩽j1<⋅ ⋅ ⋅<jk⩽n

∫
Xk
(∫

Xl
λ(z(l); y(k))dz(l))

× δ(x(n)j1
− q(k)1 ) ⋅ ⋅ ⋅ δ(x

(n)
jk
− q(k)k )(a

−
(y(k))ρn)(x(n)

/{j1 ,...,jk}
)dy(k)

=
(n − k)!

n! ∑
1⩽j1<⋅ ⋅ ⋅<jk⩽n

(∫
Xl

λ(z(l); x(n)j1 ,...,jk
)dz(l))(a−(x(n)j1 ,...,jk

)ρn)(x(n)
/{j1 ,...,jk}

)

(78)
= ∑

1⩽j1<⋅ ⋅ ⋅<jk⩽n
(∫

Xl
λ(z(l); x(n)j1 ,...,jk

)dz(l))ρn(x(n)). (79)

Thereby, we have recovered Eq. (10), showing consistency between this approach and the one introduced in Sec. II. We can repeat this exercise
for the gain operator using Eq. (74),

(Gρn+k−l)(x
(n)
) =

1
k!∫Xl×Xk

λ(z(l); y(k))(a+(z(l))a−(y(k))ρn+k−l)(x
(n)
) dz(l)dy(k)

(77)
=

l!(n − l)!
n!k! ∑

1⩽j1<⋅ ⋅ ⋅<jl⩽n
∫

Xl×Xk
λ(z(l); y(k))

× δ(x(n)j1
− z(l)1 ) ⋅ ⋅ ⋅ δ(x

(n)
jl
− z(l)l)(a−(y(k))ρn+k−l)(x

(n)
/{j1 ⋅ ⋅ ⋅jl}

) dz(l)dy(k)

=
l!(n − l)!

n!k! ∑
1⩽j1<⋅ ⋅ ⋅<jl⩽n

∫
Xk

λ(x(n)j1 ,...,jl
; y(k))(a−(y(k))ρn+k−l)(x

(n)
/{j1 ⋅ ⋅ ⋅jl}

) dy(k)

(78)
=

l!(n + k − l)!
n!k! ∑

1⩽j1<⋅ ⋅ ⋅<jl⩽n
∫

Xk
λ(x(n)j1 ,...,jl

; y(k))ρn+k−l(x
(n)
/{j1 ⋅ ⋅ ⋅jl}

, y(k)) dy(k)

= (
n
l
)
−1
(

n + k − l
k

) ∑
1⩽j1<⋅ ⋅ ⋅<jl⩽n

∫
Xk

λ(x(n)j1 ,...,jl
; y(k))ρn+k−l(x

(n)
/{j1 ⋅ ⋅ ⋅jl}

, y(k)) dy(k), (80)

once again, recovering Eq. (13) from Sec. II. The relations in the dictionary from the Appendix are proved in a similar fashion, but using the
expansions of Sec. IV as shown in Ref. 16.
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We can further obtain a relation between the rate functions and the many-particle propensities by comparing the resulting loss from
Eq. (79) with the many particle propensity in Eq. (27a). This relation holds regardless of the density,

∫
Xn−k+l

Λn(y(n−k+l); x(n))dy(n−k+l)
= ∑

1⩽j1<⋅ ⋅ ⋅<jk⩽n
∫

Xl
λ(y(l); x(n)j1 ,...,jk

)dy(l). (81)

This establishes a connection with Sec. III. We can prove this identity independently by deriving the expressions of the many-particle
propensities for the reaction kA→ lA.

V. DISCUSSION
We presented three approaches to formulate the CDME, the governing equation of stochastic particle-based reaction–diffusion dynam-

ics. In general, the CDME consists of a diffusion operator, which describes the spatial transport of particles, and several reaction operators
each corresponding to a chemical reaction in the system. Every reaction operator can further be separated into a loss operator and a gain
operator for the probabilistic outflow and inflow, respectively.

In the first approach, these global loss and gain operators have been expressed as combinations of local loss and gain operators referring
to reactions of subsets of reactants and products within the system. The central combinatorial factors, which come into play due to the
particle exchange symmetry for molecules of the same species, have been justified by carefully applying combinatorial arguments for the
random selection of subsets of particles out of a larger set. Although this approach is intuitive and relatively straightforward, it requires
computing the combinatorial factors of the reaction operators by hand, and it is error-prone when writing the equations for complicated
systems.

The second approach (Sec. III) works directly at the many-particle level by focusing on many-particle propensities, leaving the count-
ing/combinatorial details as a secondary task, albeit still a cumbersome one. The global many-particle propensities are derived as explicit
expressions (in terms of sums and products) of the local rate functions using permutations and Dirac δ-distributions, which provide a
method to select the required particles. One of its main advantages is that, as it works directly with many-particle propensities, it is capable of
incorporating crowding effects in a more straightforward manner than the other approaches.

In the third approach (Sec. IV), the operators arise in the form of expansions containing single-particle creation and annihilation
operators, which encode the combinatorics of particle selections. This allows us to focus on formulating only the operators per reaction,
yielding a fast method to write down the CDME in a compact way for any reaction system, which can be a big advantage from a practi-
cal point of view. The resulting equation can be employed to perform analytical calculations, for instance, one can directly apply Galerkin
discretizations,16,29 opening the door for ready-to-use software libraries for numerical implementation, and to apply methodologies from
quantum field theory.14,18 In addition, the actions of the operators a+ and a− have immediate interpretations within the stochastic Malliavin
calculus,19 which may open a new perspective on the stochastic description of reaction–diffusion systems. However, the compact version of
the CDME can appear obscure for practitioners used to more classical formulations in terms of integrals. To mitigate this issue, we added
a dictionary (see the Appendix) to translate the short-hand notation for expansions in terms of creation and annihilation operators to con-
crete algebraic expressions, which explicitly include the combinatorial factors, sums, and integrals. This could be further automatized using
a symbolic algebra software. We finally explore a special case using δ-distributions (Sec. IV D), which simplify the original expansions into
simple integrals. Although the ease to derive discretizations—as well as some mathematical rigor—is lost, some practitioners might find this
approach more suitable.

From a mathematical perspective, the CDME is formulated in terms of density functions. Another question of interest for future research
is how to formulate a corresponding equation in terms of probability measures as in Ref. 30. This is of relevance since such a formulation
might be more familiar to some mathematicians working on tangential fields, where one requires analogous models to reaction and diffusion,
such as social dynamics.31–33

One of the main future prospective applications of the CDME is to unify most of the well-known reaction–diffusion models at different
scales, establishing the relationships between them and yielding a theoretical and computational framework for multiscale modeling of bio-
chemical reaction systems. For instance, we believe that the well-known models of diffusion-influenced reactions,14,15,34–38 as well as recent
developments,39–41 can be recovered as special cases of the CDME. One can also, in principle, recover the chemical master equation as the
well-mixed limit of the CDME. In this limiting case, it has been shown that the classical law of mass action emerges from the large copy
number limit.42 If the spatial dependence is kept, it has been shown that macroscopic reaction–diffusion models emerge as the large copy
number limit of certain particle-based models,9,43,44 which can be considered as spatial discretizations of the CDME. This further yields a
precise relation between the macroscopic parameters and those at the particle level, allowing for consistent multiscale simulations.9,45 In on-
going work, we are aiming at a general derivation of reaction–diffusion PDEs from the corresponding CDME without using an intermediate
discrete model. To this end, it is essential to consider the correct combinatorial factors in the loss and gain terms. Another example is given
by a recent simulation scheme to couple Markov models of molecular kinetics with particle-based reaction–diffusion simulations,46,47 where
the root model used to derive the schemes is once again a special case of the CDME. Similarly, in Ref. 48, the authors used a hierarchy of
Fokker–Planck equations to model the variable number of ions in an ion channel; a model that we also believe is a special case of the CDME.
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All in all, the CDME has the potential to unify a diverse range of reaction–diffusion models at different scales, yielding mathematical rela-
tionships that serve as the key ingredient to derive novel hybrid multiscale simulations for biochemical dynamics that capture the cascades of
interactions across scales.
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APPENDIX: EXPANSION DICTIONARY

Although using the notation presented in Sec. IV results in writing the CDME at once, it is not evident to find the connection to the
more classical form of the equation. In this appendix, we present a dictionary for the most used cases, where we match the expansions in
terms of creation and annihilation operators in the compact notation with their corresponding expressions in an explicit integral form. These
expressions, although non-trivial, are straightforward to prove along the lines given in Ref. 16. At first, we present the expansions for the
diffusion and then for loss operators, where the form is simpler as compared to the gain terms because it only depends on the reactants.
Finally, we proceed with the gain operators. For the purpose of generality, we use the notation ρ. . ., with the dots in the subindex indicating
the unknown species involved in the reaction, e.g., we write ρa,b,. . .(x

(a), x(b), . . .), where the dots represent numbers and positions of other
species, respectively.

1. Diffusion operators
In the absence of physical interactions, the diffusion operators only act on one particle at a time, so they are the most simple ones,

a+ D a− ρn,... =
n

∑
ν=1

Dνρn,.... (A1)

2. Loss operators
For the loss operators, only the reactants are relevant, while the products just determine the variables of integration. Thus, we denote the

positions of the l products by y(l), regardless of their species.
(i) Reactions of the form ∅→ (l products). The reaction rate function is given by λ(y(l); ). Here, we leave the semicolon inside the rate

function in order to emphasize that there are no reactants. The expression is simply given by

1 L 1 ρ... = ρ...∫
Xl

λ(y(l); )dy(l). (A2)
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(ii) Reactions of the form A→ (l products). The reaction rate function is given by λ(y(l); x). Let the number of A-particles be n, and denote
by x(n)1 , . . . , x(n)n the positions of the n possible reactants. Then,

(a+ L a− ρn,...)(x(n), . . .) = ρn,...(x(n), . . .)
n

∑
ν=1
∫

Xl
λ(y(l); x(n)ν )dy(l). (A3)

(iii) Reactions of the form A + A→ (l products). The reaction rate function is given by λ(y(l); x1, x2), where x1 and x2 are the positions of
the reactants. Then,

((a+)2 L (a−)2 ρn,...)(x(n), . . .) = ρn,...(x(n), . . .) ∑
1⩽ν1<ν2⩽n

∫
Xl

λ(y(l); x(n)ν1 , x(n)ν2 )dy(l), (A4)

where again x(n)1 , . . . , x(n)n denote the positions of the n possible reactants.
(iv) Reactions of the form A + B→ (l products). The reaction rate function is given by λ(y(l); x, z), where x is the position of the A reactant

and z is the position of the B reactant. Let a and b be the numbers of A and B particles and x(a)1 , . . . , x(a)a and x(b)1 , . . . , x(b)b be their positions,
respectively. Then,

(a+b+ L a−b− ρa,b,...)(x
(a), x(b), . . .) = ρa,b,...(x

(a), x(b), . . .)
a

∑
ν1=1

b

∑
ν2=1
∫

Xl
λ(y(l); x(a)ν1 , x(b)ν2 )dy(l). (A5)

(v) Reactions of the form k1A + k2B→ (l products). As a generalization of all the previous examples, we can write the loss for an arbitrary
reaction involving two species in their reactants. The reaction rate function is given by λ(y(l); x(k1), z(k2)), where x(k1) are the positions of the
A-reactants and z(k2) are the positions of the B-reactants; a and b are the numbers of A and B particles, respectively. Then,

((a+)k1(b+)k2 L (a−)k1(b−)k2 ρa,b,...)(x
(a), x(b), . . .) = ρa,b,...(x

(a), x(b), . . .) ∑
1⩽ν1<⋅ ⋅ ⋅<νk1⩽a
1⩽μ1<⋅ ⋅ ⋅<μk2⩽b

∫
Xl

λ(y(l); x(a)ν1 ,...,νk1
, x(b)μ1 ,...,μk2

)dy(l), (A6)

where x(n)ν1 ,...,νk1
∶= (x(n)ν1 , . . . , x(n)νk1

).

3. Gain operators
For the gain operators, both the reactants and the products are relevant, so we need to take both into account. Once again, as the number

of species will, in general, not be known, we indicate particle numbers and position arguments referring to non-participating species by an
ellipsis, . . ..

(i) Reactions of the form k1A + k2B→ l1A + l2B. The reaction rate function is given by λ(y(l1)A , y(l2)B ; x(k1)

A , x(k2)

B ); a and b are the numbers
of A and B particles, respectively. The expression for the gain is then given by

((a+)l1(b+)l2 G (a−)k1(b−)k2 ρa+k1−l1 ,b+k2−l2 ,...)(x
(a), x(b), . . .)

= Cab ∑
1⩽μ1<⋅ ⋅ ⋅<μl1⩽a
1⩽η1<⋅ ⋅ ⋅<ηl2⩽b

∫
Xk1×Xk2

ρa+k1−l1 ,b+k2−l2 ,...((x
(a)
/{μ1 ,...,μl1}

, z(k1)), (x(b)
/{η1 ,...,ηl2}

, ẑ (k2)), . . .)

× λ(x(a)μ1 ,...,μl1
, x(b)η1 ,...,ηl2

; z(k1), ẑ (k2))dz(k1)dẑ (k2) (A7)

with the combinatorial factor

Cab = (
a
l1
)
−1
(

b
l2
)

−1

(
a + k1 − l1

k1
)(

b + k2 − l2
k2

). (A8)

(ii) Reactions of the form k1A + k2B + C → l1A + l2B. The reaction rate function is given by λ(y(l1)A , y(l2)B ; x(k1)

A , x(k2)

B , xC); a, b, and c are the
numbers of A, B, and C particles, respectively. The expression for the gain is then given by
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(a+)l1(b+)l2 G (a−)k1(b−)k2 c− ρa+k1−l1 ,b+k2−l2 ,c+1,...)(x
(a), x(b), x(c), . . .)

= Cabc ∑
1⩽μ1<⋅ ⋅ ⋅<μl1⩽a
1⩽η1<⋅ ⋅ ⋅<ηl2⩽b

∫
Xk1×Xk2×X

ρa+k1−l1 ,b+k2−l2 ,c+1,...((x
(a)
/{μ1 ,...,μl1}

, z(k1)), (x(b)
/{η1 ,...,ηl2}

, ẑ (k2)), (x(c), z′), . . .)

× λ(x(a)μ1 ,...,μl1
, x(b)η1 ,...,ηl2

; z(k1), ẑ (k2), z′)dz(k1)dẑ (k2)dz′ (A9)

with

Cabc = (
a
l1
)
−1
(

b
l2
)

−1

(
a + k1 − l1

k1
)(

b + k2 − l2
k2

)(
c + 1

1
). (A10)

(iii) Reactions of the form k1A + k2B→ l1A + l2B + C. The reaction rate function is given by λ(y(l1)A , y(l2)B , yC; x(k1)

A , x(k2)

B ); a, b, and c are
the numbers of A, B, and C particles, respectively. The expression for the gain is then given by

((a+)l1(b+)l2 c+ G (a−)k1(b−)k2 ρa+k1−l1 ,b+k2−l2 ,c−1,...)(x
(a), x(b), x(c), . . .)

= C̃abc ∑
1⩽μ1<⋅ ⋅ ⋅<μl1⩽a
1⩽η1<⋅ ⋅ ⋅<ηl2⩽b

c

∑
ξ=1
∫

Xk1×Xk2
ρa+k1−l1 ,b+k2−l2 ,c−1,...((x

(a)
/{μ1 ,...,μl1}

, z(k1)), (x(b)
/{η1 ,...,ηl2}

, ẑ (k2)), x(c)
/{ξ}, . . .)

× λ(x(a)μ1 ,...,μl1
, x(b)η1 ,...,ηl2

, x(c)ξ ; z(k1), ẑ (k2))dz(k1)dẑ (k2) (A11)

with

C̃abc =
1
c
(

a
l1
)
−1
(

b
l2
)

−1

(
a + k1 − l1

k1
)(

b + k2 − l2
k2

). (A12)

(iv) Reactions of the form C → A + B. This is a special case of example (ii), putting k1 = k2 = 0 and l1 = l2 = 1. The reaction rate function
is given by λ(yA, yB; xC); a, b, and c are the numbers of A, B, and C particles, respectively. The expression for the gain is then given by

(a+b+ G c−ρa−1,b−1,c+1,...)(x
(a), x(b), x(c), . . .)

=
c + 1
ab

a

∑
μ=1

b

∑
η=1
∫

X
ρa−1,b−1,c+1,...(x

(a)
/{μ}, x(b)

/{η}, (x(c), z), . . .)λ(x(a)μ , x(b)η ; z)dz. (A13)

(v) Reactions of the form A + B→ C. This is a special case of example (iii) with k1 = k2 = 1 and l1 = l2 = 0. The reaction rate function is
given by λ(yC; xA, xB); a, b, and c are the numbers of A, B, and C particles, respectively. The expression for the gain is then given by

(c+ G a−b−ρa+1,b+1,c−1,...)(x
(a), x(b), x(c), . . .)

=
(a + 1)(b + 1)

c

c

∑
ξ=1
∫

X×X
ρa+1,b+1,c−1,...((x

(a), z), (x(b), ẑ), x(c)
/{ξ} . . .)λ(x

(c)
ξ ; z, ẑ)dzdẑ. (A14)

REFERENCES
1C. W. Gardiner, K. J. McNeil, D. F. Walls, and I. S. Matheson, “Correlations in stochastic theories of chemical reactions,” J. Stat. Phys. 14, 307–331 (1976).
2B. Drawert, S. Engblom, and A. Hellander, “URDME: A modular framework for stochastic simulation of reaction-transport processes in complex geometries,” BMC
Syst. Biol. 6, 76 (2012).
3S. A. Isaacson, “A convergent reaction-diffusion master equation,” J. Chem. Phys. 139, 054101 (2013).
4S. Winkelmann and C. Schütte, “The spatiotemporal master equation: Approximation of reaction-diffusion dynamics via Markov state modeling,” J. Chem. Phys. 145,
214107 (2016).
5S. Smith and R. Grima, “Spatial stochastic intracellular kinetics: A review of modelling approaches,” Bull. Math. Biol. 81, 2960–3009 (2019).
6P. Grindrod, Patterns and Waves: The Theory and Applications of Reaction-Diffusion Equations (Oxford University Press, 1991).
7J. D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications (Springer, New York, 2001), Vol. 3.
8F. Brauns, J. Halatek, and E. Frey, “Phase-space geometry of mass-conserving reaction-diffusion dynamics,” Phys. Rev. X 10, 041036 (2020).
9M. Kostré, C. Schütte, F. Noé, and M. J. del Razo, “Coupling particle-based reaction-diffusion simulations with reservoirs mediated by reaction-diffusion PDEs,”
Multiscale Model. Simul. 19, 1659–1683 (2021).
10C. Kim, A. Nonaka, J. B. Bell, A. L. Garcia, and A. Donev, “Stochastic simulation of reaction-diffusion systems: A fluctuating-hydrodynamics approach,” J. Chem. Phys.
146, 124110 (2017).
11S. A. Isaacson, J. Ma, and K. Spiliopoulos, “Mean field limits of particle-based stochastic reaction-diffusion models,” SIAM J. Math. Anal. 54, 453–511 (2022).
12F. Höfling and T. Franosch, “Anomalous transport in the crowded world of biological cells,” Rep. Prog. Phys. 76, 046602 (2013).

J. Math. Phys. 64, 013304 (2023); doi: 10.1063/5.0129620 64, 013304-19

© Author(s) 2023

 21 D
ecem

ber 2023 10:37:23

https://scitation.org/journal/jmp
https://doi.org/10.1007/bf01030197
https://doi.org/10.1186/1752-0509-6-76
https://doi.org/10.1186/1752-0509-6-76
https://doi.org/10.1063/1.4816377
https://doi.org/10.1063/1.4971163
https://doi.org/10.1007/s11538-018-0443-1
https://doi.org/10.1103/physrevx.10.041036
https://doi.org/10.1137/20m1352739
https://doi.org/10.1063/1.4978775
https://doi.org/10.1137/20m1365600
https://doi.org/10.1088/0034-4885/76/4/046602


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

13M. Weiss, “Crowding, diffusion, and biochemical reactions,” in New Models of the Cell Nucleus: Crowding, Entropic Forces, Phase Separation, and Fractals, International
Review of Cell and Molecular Biology Vol. 307, edited by R. Hancock and K. W. Jeon (Academic Press, 2014), Chap. 11, pp. 383–417.
14M. Doi, “Stochastic theory of diffusion-controlled reaction,” J. Phys. A: Math. Gen. 9, 1479 (1976).
15M. von Smoluchowski, “Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen,” Z. Phys. Chem. 92(1), 129–168 (1918).
16M. J. del Razo, D. Frömberg, A. V. Straube, C. Schütte, F. Höfling, and S. Winkelmann, “A probabilistic framework for particle-based reaction-diffusion dynamics using
classical Fock space representations,” Lett. Math. Phys. 112, 49 (2022).
17M. Doi, “Second quantization representation for classical many-particle system,” J. Phys. A: Math. Gen. 9, 1465 (1976).
18P. Grassberger and M. Scheunert, “Fock-space methods for identical classical objects,” Fortschr. Phys. 28, 547–578 (1980).
19A. Lanconelli, “Using Malliavin calculus to solve a chemical diffusion master equation,” arXiv:2203.14676 [math.PR].
20D. T. Gillespie, “A rigorous derivation of the chemical master equation,” Physica A 188, 404–425 (1992).
21D. A. McQuarrie, “Stochastic approach to chemical kinetics,” J. Appl. Probab. 4, 413–478 (1967).
22H. Qian and L. M. Bishop, “The chemical master equation approach to nonequilibrium steady-state of open biochemical systems: Linear single-molecule enzyme
kinetics and nonlinear biochemical reaction networks,” Int. J. Mol. Sci. 11, 3472–3500 (2010).
23S. Winkelmann and C. Schütte, Stochastic Dynamics in Computational Biology (Springer, 2020), Vol. 645.
24R. Klein and L. Delle Site, “Derivation of Liouville-like equations for the n-state probability density of an open system with thermalized particle reservoirs and its link
to molecular simulation,” J. Phys. A: Math. Theor. 55, 155002 (2022).
25L. Delle Site and R. Klein, “Liouville-type equations for the n-particle distribution functions of an open system,” J. Math. Phys. 61, 083102 (2020).
26L. Schimansky-Geier, M. Mieth, H. Rosé, and H. Malchow, “Structure formation by active Brownian particles,” Phys. Lett. A 207, 140–146 (1995).
27F. Schweitzer and J. D. Farmer, Brownian Agents and Active Particles: Collective Dynamics in the Natural and Social Sciences (Springer, 2003), Vol. 1.
28M. E. Peskin, An Introduction to Quantum Field Theory (CRC Press, 2018).
29D. Frömberg and F. Höfling, “Generalized master equation for first-passage problems in partitioned spaces,” J. Phys. A: Math. Theor. 54, 215601 (2021).
30V. P. Belavkin and V. N. Kolokol’tsov, “On a general kinetic equation for many–particle systems with interaction, fragmentation and coagulation,” Proc. R. Soc. London,
Ser. A 459, 727–748 (2003).
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