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ABSTRACT
WAVETRAIN is an open-source software for numerical simulations of chain-like quantum systems with nearest-neighbor (NN) interactions
only. The Python package is centered around tensor train (TT, or matrix product) format representations of Hamiltonian operators and
(stationary or time-evolving) state vectors. It builds on the Python tensor train toolbox SCIKIT_TT, which provides efficient construction
methods and storage schemes for the TT format. Its solvers for eigenvalue problems and linear differential equations are used in WAVETRAIN
for the time-independent and time-dependent Schrödinger equations, respectively. Employing efficient decompositions to construct low-rank
representations, the tensor-train ranks of state vectors are often found to depend only marginally on the chain length N. This results in the
computational effort growing only slightly more than linearly with N, thus mitigating the curse of dimensionality. As a complement to the
classes for full quantum mechanics, WAVETRAIN also contains classes for fully classical and mixed quantum–classical (Ehrenfest or mean
field) dynamics of bipartite systems. The graphical capabilities allow visualization of quantum dynamics “on the fly,” with a choice of several
different representations based on reduced density matrices. Even though developed for treating quasi-one-dimensional excitonic energy
transport in molecular solids or conjugated organic polymers, including coupling to phonons, WAVETRAIN can be used for any kind of chain-
like quantum systems, with or without periodic boundary conditions and with NN interactions only. The present work describes version 1.0
of our WAVETRAIN software, based on version 1.2 of SCIKIT_TT, both of which are freely available from the GitHub platform where they
will also be further developed. Moreover, WAVETRAIN is mirrored at SourceForge, within the framework of the WAVEPACKET project
for numerical quantum dynamics. Worked-out demonstration examples with complete input and output, including animated graphics, are
available.
© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0147314

I. INTRODUCTION

Progress in ultra-fast experimental techniques, in particular,
the generation of ultra-short, intense laser pulses, has led to sub-
stantial advances in atomic and molecular physics, chemical reaction
dynamics, material sciences, and related fields.1 This has also moti-
vated research in theoretical and simulation studies of quantum
dynamics in recent years.2–4 However, in marked contrast to elec-
tronic structure theory where a number of software packages have

been under constant development for years or even decades and
which have reached a remarkable degree of sophistication, general-
purpose simulation software for quantum dynamics is relatively
scarce. For example, QuTiP is an open-source Python framework for
the dynamics of open quantum systems.5,6 Another framework for
closed and open quantum systems, coded in Matlab, aims at applica-
tions in quantum optics and condensed matter.7 Furthermore, Libra
offers a toolbox for quantum and classical dynamics simulations,
including non-adiabatic processes in a molecular system.8 This is

J. Chem. Phys. 158, 164801 (2023); doi: 10.1063/5.0147314 158, 164801-1

© Author(s) 2023

 21 D
ecem

ber 2023 10:07:42

https://scitation.org/journal/jcp
https://doi.org/10.1063/5.0147314
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0147314
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0147314&domain=pdf&date_stamp=2023-April-28
https://doi.org/10.1063/5.0147314
https://orcid.org/0000-0003-1361-715X
https://orcid.org/0000-0002-3645-9513
https://orcid.org/0000-0001-8032-3851
https://orcid.org/0000-0002-9658-499X
mailto:jerome.riedel@fu-berlin.de
mailto:p.gelss@fu-berlin.de
mailto:rupert.klein@math.fu-berlin.de
mailto:burkhard.schmidt@fu-berlin.de
https://doi.org/10.1063/5.0147314


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

also a main feature of WAVEPACKET, a general purpose package for
solving coupled Schrödinger or Liouville–von Neumann equations
of closed and open quantum systems, respectively.9–11 Additionally,
it offers modules for fully classical and mixed quantum–classical
dynamics on an equal footing, as well as a module for optimal con-
trol. The latter is the focus of QEngine,12 a C++ library, and of
Krotov, a Python implementation of quantum optimal control.13

Quantum dynamical simulations using any of the software
packages mentioned above are limited to rather few degrees of free-
dom. This is because of the use of conventional grid techniques for
the representations of quantum states and operators, thus suffer-
ing from the curse of dimensionality, i.e., the exponential growth
of storage and CPU time with the number of dimensions. One
way to overcome this problem is the Quantics general purpose
program package,14 which is based on the multi-configurational
time-dependent Hartree (MCTDH) algorithm and its multi-layer
(ML) extensions.15,16 These packages are frequently used for com-
plex quantum molecular dynamics simulation tasks, and they have
evolved into a quasi-standard in the chemical physics community.
From the quantum physics point of view, similar concepts are for-
mulated in terms of tensor networks. In fact, it is well established that
the (ML-)MCTDH algorithm corresponds to (hierarchical) Tucker
tensor formats. For various types of tensor networks, the ITensor
software library is available for practical calculations.17 In particu-
lar, it contains the density matrix renormalization group (DMRG)
algorithm for computing low-energy states of quantum systems.18

The present work deals with high-dimensional quantum
dynamics using tensor train (TT) representations of quantum
states and operators, also known as matrix product states (MPSs)
and operators (MPOs).19–21 The idea behind this format is to
decompose a high-dimensional tensor into a chain-like network
of lower-dimensional tensors, which enables us to simulate and
analyze large-scale problems if the underlying coupling structure
allows for low-rank decompositions. Several applications of ten-
sor trains—which can be considered as a special case of the
ansatz used in the multi-layer (ML) variant of MCTDH15,16 men-
tioned above—and tensor-train operators have shown that it is
possible to mitigate the curse of dimensionality and to tackle
high-dimensional problems, which cannot be solved using con-
ventional numerical methods, see, e.g., dynamical systems,22,23 sys-
tem identification,24,25 quantum mechanics,26–28 and also quan-
tum machine learning.29,30 Typically, the applications require the
approximation of the solutions of systems of linear equations,
eigenvalue problems, and ordinary/partial differential equations.
For this reason, we use the open-source toolbox SCIKIT-TT
(available through https://github.com/PGelss/scikit_tt), a general-
purpose package for tensor trains written in Python based on
NumPy and Scipy. It provides a powerful TT class as well as different
modules for the automatic construction of tensor trains. Further-
more, SCIKIT-TT comprises different solvers for algebraic problems,
which we need for our simulations.

Herein, we present version 1.0 of the WAVETRAIN soft-
ware package, which specializes on high-dimensional quantum
dynamics for systems with a chain-like topology and nearest-
neighbor (NN) interactions only. Using tensor-train (TT) rep-
resentations based on the so-called SLIM scheme,31 this packet
builds on SCIKIT-TT, thus providing efficient low-rank tensor
approximation approaches that aim at reducing the exponential

scaling of the computational effort for solving time-independent and
time-dependent Schrödinger equations in many dimensions. Being
restricted to the SLIM scheme for TT representations for chain-like
quantum systems with NN interactions, this approach is less general
than other tensor schemes, such as the (hierarchical) Tucker format
underlying the ML-MCTDH scheme, but has the advantage of very
favorable scaling of the numerical effort with the chain length.

In our previous papers, the TT scheme was applied to
the solution of the time-independent (TISE) and time-dependent
Schrödinger equation (TDSE) for exciton–phonon systems of NN
type, i.e., quasi-1D excitonic chains, ranging from few to about
one hundred sites.27,28 There, it was demonstrated that the storage
consumption of the SLIM scheme scales linearly with the num-
ber of sites, and the scaling of the CPU time is only slightly less
favorable. Moreover, for the case of the TISE, convergence with
regard to the tensor rank was shown to be essentially indepen-
dent of the system size. In another recent study, the efficiency
in calculating ground states of chains of linear rotors interact-
ing through their dipole moments was investigated. There, it was
found that for these systems, a TT-based approach is less time-
and memory-consuming than the state-of-the-art implementation
of ML-MCTDH.32,33 Finally, it is mentioned that the WAVE-
TRAIN platform also contains modules for fully classical and hybrid
quantum–classical dynamics, both for reference and/or for treat-
ing systems that are too complex for a fully quantum-mechanical
treatment.

II. PHYSICAL SYSTEMS AND HAMILTONIANS
A. Tensor trains and the SLIM decomposition

Throughout the WAVETRAIN software package, we limit our-
selves to the treatment of physical/chemical systems with a chain-
like topology with NN (nearest neighbor) interactions only. For
such systems, quantum-mechanical Hamiltonians H can be decom-
posed into operators S that act locally on single sites and products
of operators L, M that couple NN pairs. Together with the iden-
tity operators I, this notation has given rise to the acronym for the
so-called SLIM decomposition,31 indicating the “slimness” in mem-
ory consumption. Thus, the canonical representation of the tensor
H ∈ R(d1×d1)×⋅⋅⋅×(dN×dN) for a chain with N sites consists only of
elementary tensors, where at most two (adjacent) components are
unequal to the identity matrix,

H = S1 ⊗ I2 ⊗ ⋅ ⋅ ⋅ ⊗ IN + ⋅ ⋅ ⋅ + I1 ⊗ ⋅ ⋅ ⋅ ⊗ IN−1 ⊗ SN

+

ξ1

∑
λ=1

L1,λ ⊗M2,λ ⊗ I3 ⊗ ⋅ ⋅ ⋅ ⊗ IN

+ ⋅ ⋅ ⋅ +

ξN−1

∑
λ=1

I1 ⊗ ⋅ ⋅ ⋅ ⊗ IN−2 ⊗ LN−1,λ ⊗MN,λ

+

ξN

∑
λ=1

M1,λ ⊗ I2 ⊗ ⋅ ⋅ ⋅ ⊗ IN−1 ⊗ LN,λ. (1)

Here, all components Si, Li,λ, and Mi,λ as well as the identities Ii are
matrices in Rdi×di where di are the dimensions of the Hilbert spaces
characterizing quantum states on the sites i. Note that the last line of
Eq. (1) is only to comply with periodic boundary conditions of cyclic
systems and can be omitted otherwise.

J. Chem. Phys. 158, 164801 (2023); doi: 10.1063/5.0147314 158, 164801-2

© Author(s) 2023

 21 D
ecem

ber 2023 10:07:42

https://scitation.org/journal/jcp
https://github.com/PGelss/scikit_tt


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

As shown in Ref. 31, the structure of such a Hamiltonian cor-
responds to the topology of a tensor train (TT, also known as matrix
product) format. Gathering all components of Li,λ (Mi,λ) in cor-
responding core elements Li (Mi) in a row-wise (column-wise)
fashion (see Appendix 2 of Ref. 27) allows us to express Hamiltonian
H in the following form:

H = [[S1 L1 I1 M1]]⊗
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, (2)

where Ji comprises ξi identity matrices Ii along the diagonal and
zero matrices else. Note that the double square bracket notation does
not stand for block matrices but for the compact tensor notation of
Ref. 31. The Appendix of that work gives a proof of the above
equation for all heterogeneous, cyclic systems. For homogeneous
systems, the core elements Si, Li, Ii, Mi, and Ji do not depend on
the site index i.

The ranks of the TT operator (2) are naturally bounded due
to the restriction to NN interactions only, e.g., for homogeneous
and periodic systems, we have ξ1 = ⋅ ⋅ ⋅ = ξN =: ξ and, thus, R = 2 + 2ξ
(see Ref. 31). One of the main advantages of SLIM decompositions
is the linear scaling of the memory consumption with N in case
that the TT ranks of the solution do not increase with the order.
Similarly, this also holds for the computational effort when consid-
ering time-independent and -dependent Schrödinger equations (see
Secs. III B and III C, respectively). The considered SLIM decompo-
sitions in WAVETRAIN are constructed using SCIKIT-TT.

In Subsections II C-II E we will introduce exemplarily a few
simple model Hamiltonians for chain-like systems with their SLIM
decompositions and a description of the Python classes used for their
respective implementations. In particular, those are classes for exci-
tons, for phonons, and for exciton–phonon coupling in quasi-1D
chains. Note that all these classes inherit from a common super-
class for the implementation of the chain topology (see also the class
hierarchy diagram shown in Fig. 1).

B. Super class Chain : General setup of linear
or cyclic chain systems

The properties of the quasi-1D chain-like topologies underly-
ing all of the present work are handled in super class Chain. For
initialization, this class uses just three parameters. In addition to
n_site giving the number of sites, N, the two Boolean variables
periodic and homogen specify whether or not periodic boundary
conditions are to be used and whether the chain is homogeneous or
heterogeneous, respectively. According to the latter setting, all fur-
ther parameters of the respective Hamiltonians are given either as

FIG. 1. Hierarchy of the Python classes representing the physical systems and
Hamiltonians available as samples in WAVETRAIN. Selected attributes and meth-
ods of each class are given in the upper and lower parts, respectively, of the boxes.
The corresponding Python files are located in the folder wave_train/hamilton.

scalars or as Python lists. Furthermore, the class Chain contains the
following two methods of general use:

a. Method get_2Q is intended for quantum-mechanical Hamilto-
nians formulated in terms of the second quantization. For given
dimension d (argument n_dim) of the local Hilbert space, which
is assumed to be the same for each of the sites, this method sets
up matrix representations of the raising (a†

) and lowering (a)
operators, as well as of the number operators. Where applicable,
the position and momentum operators are obtained from the
ladder operators.

b. Method get_TT is at the very heart of the SLIM formalism
within our WAVETRAIN package. Given the lists of matrices
Si,λ, Li,λ, Ii, and Mi,λ (potentially independent of site index i for
homogeneous chains) from one of the sub classes described
below, this method serves to construct the tensor train super
cores according to Eq. (2). Subsequently, an instance of class
TT (tensor train) from the SCIKIT-TT package is created whose
attributes (dimensions, ranks, and cores) are then set accord-
ingly, depending on the initialization parameters n_site,
periodic, and homogen.

C. Class Exciton : Electronic dynamics
As a first example, we introduce a simple Hamiltonian for the

excitonic dynamics of atoms or molecules in a chain-like arrange-
ment. For simplicity, we restrict ourselves here to a chain of two-
state-systems, e.g., assuming only excitations of one electron from
the highest occupied to the lowest unoccupied molecular orbital
(HOMO–LUMO). Then, the excitonic Hamiltonian for a heteroge-
neous system of N sites can be given in terms of (bosonic) exciton
raising, b†

i , and lowering, bi, operators for site i,
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H(ex)
=

N

∑
i=1

αib†
i bi +

N

∑
i=1

βi(b†
i bi+1 + bib†

i+1) + η, (3)

where αi are local (“on site”) excitation energies and η is a general
offset of the energy scale. The nearest-neighbor (NN) coupling ener-
gies βi between site i and i + 1, also known as “transfer integrals” or
“hopping integrals,” govern the delocalization and mobility of exci-
tons within this simple model. Here and throughout the following,
the last summand (i = N) of the NN coupling term (with indices
i + 1 replaced by 1) is used for systems with periodic boundary
conditions only and is omitted otherwise.

The most important methods in class Exciton are described in
the following:

a. Method __init__: The following sample input illustrates
the handling of excitons within our WAVETRAIN software
package:

from wave_train.hamilton.exciton import Exciton
hamilton = Exciton(

n_site = 6, periodic = True, homogen = True,
alpha = 0.1, beta = −0.01, eta = 0.0

)

This creates an object of class Exciton, the definition of which is
imported from sub folder hamilton in the wave_train source
folder. Note that the first three arguments in the code above are
used to initialize the super class Chain (see Sec. II B), whereas
the remaining three arguments specify the energetic parameters
α,β,η as given in Eq. (3), the values of which are taken here from
our previous work in Refs. 27 and 28.

b. Method get_SLIM: Based on the above attributes of class Exciton
and on the definition of the ladder operators in class Chain, this
method provides the SLIM formulation of Eq. (3) yielding

Si = αib†
i bi +

η
N

Ii,

Li,1 = βib†
i , Mi+1,1 = bi+1,

Li,2 = βibi, Mi+1,2 = b†
i+1,

(4)

where the dependence on the site index i is omitted for the
case of a homogeneous chain. Note that method get_SLIM is
called from within method get_TT in super class Chain to con-
struct the tensor train supercores according to Eq. (2) (see
Sec. II A). The following code line illustrates this for the case of
excitons

hamilton.get_TT(n_basis = 2, qtt = False)

where the first argument gives the dimension d of the local
exciton Hilbert space, i.e., the size of the electronic basis set.

c. Method get_exact: For the case of homogeneous excitonic
chains, i.e., with all sites being equivalent, this method provides
analytic/exact solutions of the time-independent Schrödinger
equation (TISE) based on a Bethe ansatz as given in Ref. 27. In
principle, the number of analytic solutions to be calculated can
be chosen by the user (see Sec. III B). However, for linear sys-
tems, only the energy levels for the ground state and for the N
states within the Fock space of singly excited states are currently

available, which are obtained in close analogy to Hückel theory.
For cyclic systems, we also implemented the N(N − 1)/2 energy
levels for states with two quanta of excitation.34

D. Class Phonon : Vibrational dynamics
As another example, we introduce a simple Hamiltonian for the

vibrational (phononic) dynamics of a one-dimensional lattice model
based on the harmonic approximation. In terms of site masses mi,
displacement coordinates Ri, and conjugate momenta Pi, a general
Hamiltonian can be written as

H(ph)
=

1
2

N

∑
i=1

P2
i

mi
+

1
2

N

∑
i=1

miν2
i R2

i +
1
2

N

∑
i=1

μiω2
i (Ri − Ri+1)

2, (5)

where each site i is restrained around its equilibrium position
by harmonic oscillators with frequencies νi. The NN interactions
between neighboring sites i and i + 1 are modeled by harmonic
oscillators with frequency ωi and corresponding reduced masses
μi = mimi+1/(mi +mi+1).

In analogy to the treatment of the excitons in Sec. II C, we
re-formulate the phononic Hamiltonian of Eq. (5) using second
quantization,

H(ph)
=

N

∑
i=1

ν̃i(c†i ci +
1
2
) −

N

∑
i=1

ω̃i(c†i + ci)(c†i+1 + ci+1), (6)

with raising (c†i ) and lowering (ci) operators of (local) vibrations of
site i. The effective frequencies of single site and NN pair vibrations
are given by

ν̃i =

√

ν2
i +

mi−1

mi +mi−1
ω2

i−1 +
mi+1

mi +mi+1
ω2

i , (7)

ω̃i =
μiω2

i

2
√

miν̃imi+1ν̃i+1
, (8)

where for linear systems without periodic boundary conditions, the
second or third term under the square root of Eq. (7) is omitted for
the first (i = 1) or last (i = N) site, respectively. Note that the SLIM
structure defined in Eq. (1) is apparent in our formulation (6) for the
phononic Hamiltonian.

The most important methods in class Phonon are described in
the following:

a. Method __init__: This sample input shows the setup of the
phonon dynamics using the WAVETRAIN package

from wave_train.hamilton.phonon import Phonon
hamilton = Phonon(

n_site = 6, periodic = True, homogen = True,
mass = 1, nu = 1e−3, omg = 2∗∗(1/2)∗1e−3

)

which creates an object of class Phonon, which is imported from
subfolder hamilton in the wave_train source folder. Again, the
first three arguments in the code above are used to initialize the
super class Chain (see Sec. II B), whereas the other three argu-
ments specify the masses and frequency parameters m, ν,ω, as
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given in Eq. (5). The initialization method of class Phonon also
provides the effective frequencies ν̃ and ω̃ [see Eqs. (7) and (8)].

b. Method get_SLIM: Based on the above attributes of class Phonon
and on the matrix representations of the ladder operators from
super class Chain, the SLIM formulation of Eq. (6) is straight-
forwardly expressed as

Si = ν̃i(c†i ci +
1
2
),

Li,1 = −ω̃i(c†i + ci), Mi+1,1 = c†i+1 + ci+1,
(9)

where the dependence on the site index i becomes irrelevant for
a homogeneous chain. Again, method get_SLIM is called from
within method get_TT (super class Chain) to construct the ten-
sor train supercores [see Eq. (2)]. The use of this method is
illustrated here,

hamilton.get_TT(n_basis = 8, qtt = False)

where the first argument gives the dimension d of the local
phonon Hilbert space, i.e., the size of the harmonic oscillator
vibrational basis set. In practice, this parameter needs to be
determined by convergence tests. Typically, it depends on the
total energy available in the simulated system.

c. Method get_exact: In addition, for the one-dimensional chain of
oscillators given in Eq. (5), we implemented reference solutions
for homogeneous chains to check the accuracy of the numeric
TISE solvers described in Sec. III B. For periodic chains, analytic
(Bloch type) solutions are well known (see Ref. 27). For non-
periodic systems, where fully analytic solutions are not available
because of the non-uniformity of the effective frequencies in
Eqs. (7) and (8), energy levels are obtained from a conventional
normal mode analysis, which is considered to be quasi-exact
here. Note that this requires the calculation of the Hessian
matrix of the phonon potential energy function of Eq. (5), which
is provided in method hess_pot in class Phonon (see also Fig. 1).

E. Class Coupled : Exciton–phonon coupling
Because the excitonic energy transfer is known to be affected

by coupling to vibrational degrees of freedom, the study of
exciton–phonon coupling (EPC) is of vital importance, e.g., for the
transport of electronic energy in semiconducting materials35–37 or
the transport of amide I vibrational energy in helical proteins.38,39

Within the Hilbert space used for EPC, which is a direct product of
the Hilbert spaces for the excitonic and phononic states, the total
Hamiltonian can be written as

H = H(ex)
⊗ I(ph)

+ I(ex)
⊗H(ph)

+H(epc), (10)

where H(ex) and H(ph) are the Hamiltonians for excitons and
phonons [see Eqs. (3) and (6)] and where I(ex) and I(ph) are iden-
tity operators on the respective Hilbert spaces. A selection of simple,

Fröhlich–Holstein type Hamiltonians H(epc) for the coupling of
excitons and phonons is implemented in WAVETRAIN,

N

∑
i=1

χib†
i bi ⊗ Ri =

N

∑
i=1

χ̄ib†
i bi ⊗ (c†i + ci),

N

∑
i=1

ρib†
i bi ⊗ (Ri+1 − Ri)

=
N

∑
i=1

b†
i bi ⊗ [ρ̄i(c†i+1 + ci+1) − ¯̄ρi(c†i + ci)],

N

∑
i=1

σib†
i bi ⊗ (Ri+1 − Ri−1)

=
N

∑
i=1

b†
i bi ⊗ [σ̄i(c†i+1 + ci+1) − ¯̄σi(c†i−1 + ci−1)],

N

∑
i=1

τi(b†
i bi+1 + bib†

i+1)⊗ (Ri+1 − Ri)

=
N

∑
i=1
(b†

i bi+1 + bib†
i+1)⊗ [τ̄i(c†i+1 + ci+1) − ¯̄τi(c†i + ci)].

(11)
Here, the EPC constants χ, ρ, and σ give the linear dependence

of the excitonic site energies α on the positions of, or distances
between, nearest or second-nearest sites, respectively. In contrast,
the constants τ characterize the dependence of excitonic coupling
energies β on the corresponding distances, thus including also
Holstein–Peierls type models. The bar notation in Eq. (11) is used
to convert the EPC constants to second quantization,

χ̄i = χi/
√

2miν̃i,

ρ̄i = ρi/
√

2mi+1ν̃i+1, ¯̄ρi = ρi/
√

2miν̃i,

σ̄i = σi/
√

2mi+1ν̃i+1, ¯̄σi = σi/
√

2mi−1ν̃i−1,

τ̄i = τi/
√

2mi+1ν̃i+1, ¯̄τi = τi/
√

2miν̃i,

(12)

Note that in our previous work,27 the distinction between EPC con-
stants with bars and double bars was missing, which, however, was
not required for the cyclic systems mainly investigated there.

In the following, a description of important methods compris-
ing class Coupled will be given as follows:

a. Method __init__: The following lines of input serve to create an
instance of class Coupled

from wave_train.hamilton.coupled import Coupled
hamilton = Coupled(
n_site = 5, periodic = True, homogen = True,
alpha = 0.1, beta = −0.01, eta = 0.0,
mass = 1, nu = 1e−3, omg = 1e−3∗2∗∗(1/2),
chi = 0, rho = 0, sig = 1.6e−4, tau = 0

)

where the first nine arguments specify the chain topology, the
excitons, and the phonons (see Secs. II B–II D, respectively). The
last four arguments specify the parameters χ, ρ, σ, τ required for
the different types of EPC models given in Eq. (11). For simplic-
ity, we only consider the σ-coupling mechanisms in the present
work.
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b. Method get_2Q: Unlike classes Exciton and Phonon, which
essentially use the inherited method get_2Q from super class
Chain, the class Coupled overrides the super class method
get_2Q. Here, one object of class Exciton and another object
of class Phonon are created, along with their respective matrix
representations for ladder operators. This allows a convenient
calculation of direct products of excitonic and phononic oper-
ators, e.g., bi ⊗ ci+1, using the Numpy function kron for the
Kronecker product.

c. Method get_SLIM: This method is intended to provide the SLIM
formulation of Eq. (11), which is given by

Si = (χ̄i − ¯̄ρi)b†
i bi ⊗ (c†i + ci),

Li,1 = (ρ̄i + σ̄i)b†
i bi, Mi+1,1 = c†i+1 + ci+1,

Li,2 = −(c†i + ci), Mi+1,2 = ¯̄σi+1b†
i+1bi+1,

Li,3 = τ̄ib†
i , Mi+1,3 = bi+1 ⊗ (c†i+1 + ci+1),

Li,4 = −¯̄τib†
i ⊗ (c

†
i + ci), Mi+1,4 = bi+1,

Li,5 = τ̄ibi, Mi+1,5 = b†
i+1 ⊗ (c

†
i+1 + ci+1),

Li,6 = −¯̄τibi ⊗ (c†i + ci), Mi+1,6 = b†
i+1.

(13)

Also here, the method get_SLIM is called within method get_TT
of super class Chain, which constructs the tensor train super
cores (see Sec. II B). The following code line illustrates this for
the case of coupled excitons and phonons

hamilton.get_TT(n_basis = [2, 8] qtt = False)

where the Python list in the first argument contains the sizes of
the electronic and vibrational basis sets, respectively.

III. QUANTUM AND CLASSICAL DYNAMICS
A. Super classes for quantum and classical mechanics

This section deals with the implementation of different types of
physical/chemical dynamics within WAVETRAIN. The main work
horses of our software package are the classes TISE and TDSE
containing numerical solvers for the time-independent and time-
dependent Schrödinger equation based on the TT tensor format
(see Secs. III B and III C). For completeness, we have added
classes QCMD and CEoM for mixed quantum–classical molecular
dynamics and fully classical dynamics (see Secs. III D and III E).

The four main classes inherit from a set of super classes for
quantum mechanics, mixed quantum–classical mechanics, and clas-
sical mechanics (see Fig. 2 for a class hierarchy diagram). Upon
initializing objects of any of these classes, an input argument
hamilton is required, which has to be an object of one of the
three classes for excitons, phonons, or coupled systems explained
above in Sec. II. Note that quantum–classical dynamics only works
for coupled exciton–phonon systems while fully classical dynamics
is restricted to phonons only. Most importantly, each of the three
super classes provides a method observe, which deals with calculat-
ing and printing expectation values of important observables, such
as energy, positions, and momenta of the particles. This is comple-
mented by utility methods, such as calculations of “braket” scalar

products, expectation values with their uncertainties, and reduced
density matrices for quantum simulations.

In turn, the three super classes inherit from the more funda-
mental class Mechanics for general mechanical systems. This class
contains method save, which writes important quantities into binary
data files, which can be either of Python “pickle” or of Matlab “mat”
type. Those file types can also be read by method load, which thus
serves to obtain deviations between the results of two simulations,
e.g., for the case of different dynamic or different numerical schemes
applied to the same physical problem and the same time discretiza-
tion. Note that such a comparison is based on root mean squared
deviations (RMSD), either for the quantum state vectors themselves,
for populations, or for expectation values of observables, such as
positions or momenta. The corresponding file names for such a
comparison are set as properties save_file and load_file, and
the type of comparison is set by the string compare. Moreover, class
Mechanics also contains a method for linear regressions of conserved
quantities, such as energy or norm of state vectors, or of the men-
tioned RMSDs. Finally, methods gaussian and sec_hyp can be
used to set up wave packets with Gaussian or hyperbolic secant enve-
lope, respectively (see the description of the eligible sub classes in
Secs. III C and III D).

B. Class TISE : Time-independent Schrödinger
equation

Solving the time-independent Schrödinger equation (TISE),

Ĥ∣Ψn⟩ = En∣Ψn⟩, n = 0, 1, . . . , (14)

yields a set of stationary quantum states ∣Ψn⟩ along with their cor-
responding energies En, where Ĥ is one of the (time-independent)
Hamiltonians presented in Sec. II or another one provided by the
user. To beat the curse of dimensionality, the strategy followed in
the WAVETRAIN software builds on low-rank tensor approxima-
tions for the state vectors, in analogy to the TT representation of
the Hamiltonian given in Sec. II A. In practice, the eigenvalue prob-
lem is solved numerically using the alternating linear scheme (ALS),
which is an iterative algorithm based on sequential contractions of
the TT cores of Ĥ and ∣Ψn⟩ to construct low-dimensional eigen-
value problems.40 A key feature of the WAVETRAIN implementation
is that not only ground states but also higher excited states can
be obtained in an efficient way by means of integrated Wielandt
deflation, which enables us to displace previously computed eigen-
values while keeping all other eigenvalues unchanged (see Ref. 27).
To avoid an explosion of the computational costs for higher excited
states, which would arise in a straight-forward application of the
Wielandt deflation, the computation of the deflated Hamiltonians
is implicitly incorporated into the ALS routine of SCIKIT-TT.

The use of class TISE is illustrated here by the following sample
input:

from wave_train.dynamics.tise import TISE
dynamics = TISE(hamilton=hamilton, n_levels=10,

solver = ’als’, eigen = ’eigs’,
ranks = 15, repeats = 20, conv_eps = 1e−8,
e_est = 0.08)

dynamics.solve()
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FIG. 2. Hierarchy of the Python classes for quantum and classical dynamics available in WAVETRAIN. Selected attributes and methods of each class are given in the upper
and lower parts, respectively, of the boxes. The corresponding Python files are located in folder wave_train/dynamics.

where object hamilton pertains to one of the classes described in
Sec. II and n_levels gives the desired number of eigenvalues to
be calculated. The argument solver serves to choose the scheme
to solve the full eigenproblem, by default the above-mentioned ALS
algorithm, which is one of the key components of the scikit_tt
package. The next argument, eigen, specifies the solver used for the
micro-problems within each of the ALS iterations, in this case the
sparse matrix eigensolver “eigs” from the SciPy package. Alter-
native choices are “eig” or “eigh”. The subsequent arguments
serve to specify the ALS parameters, most importantly the num-
ber (ranks) of maximal ranks of the solutions. In all cases, ALS
iterations are terminated once the estimated eigenvalues do not
change by more than a certain threshold (conv_eps) in the last
three ALS sweeps or when the number of sweeps reaches the limit
given by attribute repeats. Finally, the parameter e_est gives an
estimated energy (here, α − 2∣β∣) close to which the energy levels
are to be searched. If eigen is set to “eig”, eigenvalues closest to
e_est are chosen from the list of all computed eigenvalues. Other-
wise, Scipy’s “eigs” uses the shift-invert mode to find the desired
eigenvalues. This is of importance, e.g., when calculating the stabi-
lization gained from mutual trapping of phonons and excitons from
the lowest eigenvalue within the N (ex)

= 1 manifold.27 Typically,
below that energy, there is a huge number of eigenvalues in the
N (ex)

= 0 manifold, which are not of interest and which can thus be
excluded.

As an alternative, the WAVETRAIN package offers quasi-exact
solutions, provided that the dimension of the full Hibert space, dN , is
not too large (typically 4096 for a standard PC). In that case, tensor
train methods are bypassed and the eigenproblem for a matricized
version of H is solved directly. This is invoked by setting solver
= “qe” where the parameter eigen again specifies the choice of
the numeric solver. While this option is clearly not eligible for

longer chains, it serves the purpose of creating reference solutions
for shorter chains.

The resulting energy levels will also be compared against ana-
lytic (or semi-analytic) solutions, which are available only for the
Hamiltonians (3) for uncoupled excitons and (6) for uncoupled
phonons (see also Ref. 27).

C. Class TDSE : Time-dependent Schrödinger equation
The evolution of quantum states,Ψ(t), is obtained as a solution

of the time-dependent Schrödinger equation (TDSE) for one of the
Hamiltonians Ĥ of Sec. II,

i
d
dt
∣Ψ(t)⟩ = Ĥ∣Ψ(t)⟩, ∣Ψ(t = 0)⟩ = ∣Ψ0⟩, (15)

where atomic units with h = 1 are used. Again, the problem of high
dimensionality is tackled by strategies building on low-rank tensor
representations of the state vectors. Our implementation of class
TDSE within WAVETRAIN builds on the choice of numeric prop-
agators for tensor trains available within the scikit_tt software
package. Restricting ourselves to explicit, reversible, and symplectic
schemes, the most obvious choice is a symmetric, second order Euler
(S2) method. This method has been routinely used in the quantum
dynamics community for several decades, where it is also known
as the second-order differencing scheme.41,42 Within WAVETRAIN,
also higher order variants, e.g., fourth (S4) and sixth (S6) order dif-
ferencing methods are available. The former one has been shown to
offer a good compromise between efficiency and accuracy.28

Frequently used alternatives are based on operator splitting
originally developed for cases where Hamiltonians consist of kinetic
and potential energy, which are treated separately in momentum
and position representation, respectively.43,44 In the present work,
however, we resort to the Hamiltonians of Sec. II B for systems
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with a chain-like topology and NN interactions only. For such cases,
various novel splitting schemes are available in SCIKIT-TT, which
are based on separating the interlacing pairs of NN sites.18,28,45 Not
only the classical first order Lie–Trotter (LT) and second order
Strang–Marchuk (SM) schemes but also higher-order composi-
tions of the basic methods are available, namely, the 4th order
Yoshida–Neri (YN) and the 8th order Kahane–Li (KL) method,
which have displayed an excellent accuracy in our test calculations.28

For more information, see Ref. 46, where an overview of splitting
methods with different order is given.

Finally, note that implicit schemes, such as the trapezoidal
rule or the midpoint rule, are available within scikit_tt too.
However, in our quantum dynamics test simulations, they have
displayed a very unfavorable numeric effort because they involve
the solutions of large-scale linear systems of equations. While
the use of ALS40 is an integral part of the TISE class, doing
this at each time step results in an unfavorable numerical effort.
Therefore, the TDSE class is solely based on explicit integration
schemes.

To demonstrate the use of the TDSE class, we consider the
following sample code lines:

from wave_train.dynamics.tdse import TDSE
dynamics = TDSE(hamilton = hamilton,

num_steps = 50, step_size = 20, sub_steps = 5,
solver = ’s2’, normalize = 0,
max_rank = 8, threshold = 1e−12)

where the object hamilton refers to one of the Hamiltonian classes
of Sec. II. Here, we propagate for 1000 (atomic) units of time, divided
into 50 main time steps with a (constant) length of 20 units. After
each of the main steps, expectation values of important observables
are calculated and printed, and a frame is added to the (option-
ally generated) animated visualization (see Sec. IV). Internally, each
of the main steps can be divided into a (constant) number of sub
steps (here 5). The arguments solver and normalize for the ini-
tialization of class TDSE specify the choice of the numeric solver
(two-letter codes explained above) as well as whether normaliza-
tion of the state vector after every sub step is to be enforced or not.
The remaining arguments are max_rank, the maximal rank in the
decomposition of solutionsΨ(t), and threshold the value of which
is used for the rank truncation within the splitting schemes (LT, SM,
YN, and KL) and the symmetric Euler (S2, S4, and S6) schemes. In
both cases, an orthonormalization scheme called higher-order singu-
lar value decomposition (HOSVD)47 with absolute as well as relative
cut-off criteria for singular values is applied to keep the TT ranks of
our solutions bounded by max_rank.

Before actually solving the TDSE, it is necessary to specify the
initial state ∣Ψ(t = 0)⟩ = ∣Ψ0⟩. To that end, the class TDSE contains
method fundamental to set up an initial state where one (or more)
sites are fundamentally (0→ 1) excited, while all others are prepared
in their ground state. The resulting quantum state is constructed as
a tensor train using the TT class from the SCIKIT-TT toolbox. That
is, depending on a given vector of coefficients coeffs, the canoni-
cal representation of ∣Ψ0⟩ is given by the sum over tensor products
of the form coeff[ j] ⋅ ⊗n

k=1v
(k)
j for non-zero coefficients, where

v
(k)
j = [0, 1]⊺ if k = j and otherwise [1, 0]⊺. The created instance

of the TT class then stores the cores of the corresponding TT
representation of ∣Ψ0⟩.

While this method works in an analogous way for excitons and
phonons, we note that for coupled systems, only the electronic parts
are fundamentally excited, whereas the vibrational parts are in their
ground states. In the following Python example

dynamics.fundamental()
dynamics.solve()

the default behavior is to return a state with a single excitation
localized at the central site of the chain, which then serves as an
initial state for solving the TDSE. It is also possible to give a vec-
tor of coefficients as input for method fundamental, in which case
a weighted sum of products, each with a single site excitation, is
returned. This feature of WAVETRAIN can be used, e.g., to con-
struct bell-shaped wave packets with Gaussian or hyperbolic secant
(sech) envelope with settable mean position, mean momentum, and
width. The Gaussian shape is typically used to describe a free parti-
cle, whereas the sech shape typically occurs as a solution of nonlinear
cubic TDSEs (see, e.g., Davydov’s soliton theory).39,48

As an alternative to the use of fundamentally excited states,
class TDSE also contains method coherent, which is meant only
for vibrational systems (see our description of class Phonons in
Sec. II D). That method serves to set up coherent states of the
i-th site, which are eigenstates of the lowering operator ci, defined
as ci∣ζ⟩i = ζ i∣ζ⟩i with

∣ζ⟩i = e−
∣ζi ∣2

2

∞

∑
k=0

ζk
i√
k!
∣k⟩i. (16)

Here, ∣k⟩i stands for the kth harmonic oscillator eigenstate of the ith
site, and

⟨Ri⟩ =

√
2

miν̃i
ζi (17)

gives the mean value of the displacement coordinate, Ri, of the
respective quantum harmonic oscillator with mass mi and effec-
tive frequency ν̃i. In analogy to method fundamental, also method
coherent allows for the possibility of a combination of excitations
of several sites.

In close analogy to class TISE described in Sec. III B, also
class TDSE offers quasi-exact solutions for simulations where the
full Hilbert space dimension is not too large. In that case, the
matricized Hamiltonian is exponentiated, yielding a direct way to
calculate the time evolution operator. This can be useful when
benchmarking the accuracy of different propagation schemes and/or
different time steps (see, e.g., our results in Ref. 28). Moreover,
for two-state systems, class TDSE calculates analytic Bessel function
solutions of the time evolution,49 e.g., for class Exciton explained in
Sec. II C. However, their use for benchmarking TT-based solutions
is limited because they build on the assumption of non-periodic,
infinitely-long chains.
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D. Class QCMD : Quantum–classical molecular
dynamics

The above-mentioned TT-based approaches implemented in
WAVETRAIN can be very helpful instruments in tackling problems
in quantum dynamics of bipartite systems, such as the example of
coupled excitons and phonons mentioned in Sec. II E. On the one
hand, we have shown that the computational effort is almost lin-
ear in N, which allows for treating long chains.27,28 On the other
hand, these methods can mitigate the curse of dimensionality only
as long as the problem at hand allows for an acceptable accuracy
of the approximate solution when we restrict ourselves to TT cores
with ranks of manageable size. However, the computational effort
for solving the TDSE scales at least with d2 (symmetric Euler) where
d is the dimension of the local Hilbert space. Hence, there are still
simulation scenarios where a fully quantum-mechanical treatment is
out of reach with the computational resources of today and probably
also in the foreseeable future.

In many simulation scenarios, a clear separation of time and/or
energy scales is found. In the above example of coupled excitons and
phonons, the NN excitonic coupling energies β typically exceed the
vibrational energies ν,ω, which is due to the disparity of electronic
and nuclear masses.50 In such cases, a promising way to overcome
the curse of dimensionality is to resort to hybrid quantum–classical
molecular dynamics where only the light (fast) subsystem is treated
quantum-mechanically, while the classical approximation for the
heavy (slow) subsystem is used. Such approaches appear especially
suitable for problems where a large local Hilbert space dimension d
is due to the latter subsystems being more complicated than those of
Eq. (5). An example is conjugated polymer chains where the chro-
mophoric sub-units are typically connected by a chain segment of
several chemical bonds featuring a number of stretching, bending,
and torsional degrees of freedom.51,52

The simplest quantum–classical approach is given by mean
field or Ehrenfest dynamics, which rests on a separability ansatz.
There, the state vector of the coupled system is assumed to be a single
product of the two subsystem states, which is also known as the time-
dependent Hartree method. Moreover, the quantum (excitonic)
states can be restricted to the Fock space of singly excited states
∑

N
i=1 ai(t)b†

i ∣0⟩ with time-dependent, complex coefficients ai(t) and
with ∣0⟩ standing for the electronic ground state. While this assump-
tion neglects couplings to states bearing two or more excitons, it
renders a TT-based approach for the excitons unnecessary.

For the example of the Hamiltonians of coupled excitons and
phonons introduced in Sec. II, the evolution of the quantum sub-
system (excitons) is governed by a Schrödinger-type equation,

i
dai

dt
= [αi + σi(Ri+1 − Ri−1) +W]ai + βi−1ai−1 + βiai+1, (18)

where ai(t) are the expansion coefficients of the excitonic state and
where W stands for the (classical) energy of the phonons. Fur-
thermore, the dynamics of the classical sub-system (phonons) is
described in terms of a classical trajectory, R(t), which is governed
by a Newton-type equation,

mi
d2Ri

dt2 = −miν2
i Ri − μ j−1ω2

j−1(Ri − Ri−1) − σi−1∣ai−1∣
2

+ μ jω2
j(Ri+1 − Ri) + σi+1∣ai+1∣

2. (19)

Note that here the two sub-systems given in Eqs. (18) and (19) are
coupled to each other through terms proportional to the EPC con-
stants σi defined in the third row of Eq. (11). For detailed discussions
of the asymptotics and error estimates of the separability ansatz
and/or the classical approximation (see, e.g., Refs. 39, 48, and 53–55).

The use of class QCMD is shown in the following sample code
lines:

from wave_train.dynamics.qcmd import QCMD
dynamics = QCMD(hamilton = hamilton,

num_steps = 50, step_size = 20, sub_steps = 5,
solver = ’sm’, normalize = 0)

dynamics.fundamental()
dynamics.solve()

where hamilton has to be an object of class Coupled (see Sec. II E)
or another class for bipartite systems provided by the user. Note
that in order to be used for Ehrenfest quantum–classical mechanics
simulations, such classes have to provide methods qu_coupling and
cl_coupling returning the couplings of one sub-system to the respec-
tive other one (see also Fig. 1). For numerically solving the QCMD
scheme, there is a choice of numerical propagators implemented
within the QCMD class, such as a generalized Lie–Trotter (“lt”)
and Strang–Marchuk method (option “sm” in the example code
above), as well as the symplectic pickaback (“pb”) propagator.56

The choice of initial conditions for the quantum sub-system
(e.g., excitons) is the same as in Sec. III C for class TDSE, i.e., fun-
damental electronic excitations, with the possibility for Gaussian
bell-shaped and sech-shaped superpositions thereof. Note that initial
excitations of the classical sub-system (e.g., phonons) are at present
not yet implemented.

E. Class CEoM : Classical equations of motion
Moreover, we have added a class for solving classical (Newton’s

or Hamilton’s) equations of motion to the WAVETRAIN package.
The motivation for this is to generate reference solutions for systems
where a classical analog to the quantum-mechanical Hamiltonian
exists. Hence, this class works, e.g., with objects of class Phonon.
According to the Ehrenfest theorem, quantum-mechanical expecta-
tion values of observables, such as positions and momenta, coincide
with results from classical trajectories, as long as the vibrational
Hamiltonian is a polynomial of order not higher than two, which
is indeed the case for our harmonic model Hamiltonian (5). There,
the positions are governed by the Newton-type Eq. (19) but without
the σ term for the EPC.

The use of class CEoM is illustrated in the following code
lines:

from wave_train.dynamics.ceom import CEoM
dynamics = CEoM(hamilton = hamilton,

num_steps = 50, step_size = 20, sub_steps = 5,
solver = ’rk’, normalize = 0)

dynamics.coherent(displace=[1.0 if i = =
hamilton.n_site//2 else 0.0 for i in
range(hamilton.n_site)])
dynamics.solve()
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FIG. 3. Quantum dynamics of excitons on a linear chain. Left panel: snapshot of quantum numbers for each of the sites. Right panel: evolution of the mean energy and the
norm of the state vector vs time, as well as the autocorrelation function.

TABLE I. Overview of the different visualization services and their cross-dependencies regarding systems and dynamics. Upper four options for simple systems, lower three
options for bipartite systems.

Service System Dynamics Description

QuantNumbers Exciton, phonon TISE, TDSE Mean quantum numbers
Populations Exciton, phonon TISE, TDSE Populations of quantum states
DensityMat Exciton, phonon TISE, TDSE Reduced density matrices
PhaseSpace Phonon TISE, TDSE, CEoM Mean trajectories in phase space
Positions2 Coupled TISE, TDSE, QCMD Excitonic quantum numbers and lattice distortions as line plots
QuantDisplace2 Coupled TISE, TDSE, QCMD Excitonic quantum numbers and lattice distortions as bar plots
QuantNumbers2 Coupled TISE, TDSE, Excitonic and phononic quantum numbers as bar plots

where hamilton is an object of class Phonon (for a description,
see Sec. II D) or another class provided by the user for a system
for which the use of the classical approximation is justifiable. Note
that for use in classical mechanics simulations, such classes have to
encompass additional methods for the calculations of forces and of
classical potential and kinetic energy (see also Fig. 1). For numeri-
cally solving the classical equations of motion, there is a choice of
propagators implemented in class CEoM, such as the Runge–Kutta
(option “rk” in the example above) and the Velocity-Verlet (“vv”)
scheme. In addition, quasi-exact solutions for the harmonic vibra-
tions are available, which require additional Python methods to
calculate the Hessian matrices of the potential and kinetic energy
functions [see also Eq. (25) of Ref. 28]. In the sample code above,
method coherent of class CEoM is used to provide classical initial
conditions equivalent to those of a coherent state of quantum har-
monic oscillators with the displacement of the classical particles
given by Eq. (17), here with ⟨R⟩ = 1 at the central site and ⟨R⟩ = 0
everywhere else.

F. Class load : Loading data from a previous
simulation

In addition to generating solutions of (stationary or dynam-
ical) equations of motion as described in Subsections III B-III E,
WAVETRAIN also offers the possibility of loading previously gener-
ated solutions, If, for example, a TDSE simulation is run with option
load_file=tdse_1.pic, essential data are stored in a Python
pickle file by virtue of method save in class Mechanics (see Sec. III A).
Subsequently, this information is easily retrieved using class Load

from wave_train.io.load import Load
dynamics = Load(’tdse_1’, ’pic’)

The created object contains not only expectation values of
important physical observables, which can be used for automated
analysis of series of runs, but also the TT representation of the last
bound state (TISE) or the state at the last time step (TDSE), which
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FIG. 4. Quantum dynamics of phonons on a linear chain. Left panel: snapshots of populations of harmonic oscillator states for each of the sites, arranged in a row-wise
manner. Right panel: same as in Fig. 3.

FIG. 5. Classical dynamics of phonons on a linear chain. Left panel: trajectories in phase space for each of the sites. Right panel: total energy vs time, along with its
decomposition in kinetic and potential contributions.

allows for an easy restart of a simulation. Finally, objects of class
Load contain also reduced density information, which serve the pur-
pose of creating a new (or different) animated visualization without
having to perform another full simulation (see also Sec. IV).

IV. GRAPHICAL OUTPUT
The ability to create rich graphical output is one of the hall-

marks of simulations with the WAVETRAIN software. To meet the
demand of users for rich and insightful graphical representations,
the software package provides a set of default visualization classes.
They allow the user to track the progress and stability of com-
putations at run time or to create graphical output of previously
generated results by utilizing the Load class (see Sec. III F). After

completion of a simulation, the plots are available not only as images
(png file format) but also as animations (mp4 file format), which are
created using the ffmpeg tool.57

Classes for visualization are created based on a Dependency
Injection (DI) scheme, with different visualization services being
injected into the main class Visual, that handles the execution order
of the respective services. Generally, visualizing the results of solv-
ing the equations of motion introduced in Sec. III clusters into two
independent services that can be separately added to the pipeline for
creating visual output. In the main service step, the current quantum
or classical state is visualized in a collection of subplots for each of
the sites or in a single view along a discretized axis of site indices, in
both cases shown in the left half of the generated figures. Addition-
ally, a second service can be added to monitor system properties, i.e.,
energy (TISE, TDSE, QCMD, and CEoM), norm (TISE, TDSE, and
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FIG. 6. Quantum–classical dynamics of coupled excitons and phonons on a linear chain. Left panel: snapshots of mean quantum numbers of the excitons (green bars) and
vibrational displacements (scaled by 0.1) of the sites (orange bars). Upper right panel: total energy vs time, along with its decomposition in contributions of the quantum and
the classical subsystem, as well as the quantum–classical coupling. Middle and lower right: norm and autocorrelation function of the quantum subsystem only.

QCMD), and autocorrelation function (ACF), C(t) = ⟨ψ(0)∣ψ(t)⟩
(TDSE and QCMD), optionally displayed in the right half of the
generated figures.

The following code snippet illustrates the setup of an animation
for visualizing the quantum dynamics of a single system, e.g., a chain
of excitons, as shown in Fig. 3:

from wave_train.graphics.factory import VisualTDSE

graphics = VisualTDSE(
dynamics = dynamics,
plot_type = ’QuantNumbers’,
plot_expect = True,
movie_file = ’tdse.mp4’).create()

graphics.solve()

Here, it is assumed that dynamics is a previously created object of
class TDSE, as described in Sec. III C. This instance is then inserted
into the factory constructor, which becomes responsible for inter-
nal logical checks, e.g., whether plot type, hamilton instance, and
dynamics instance are compatible. The VisualTDSE factory returns
an instance of the Visual class after a call to the create method, which
will inject the respective services. Visualizations of different dynam-
ics instances follows the same logic, with equivalent factory classes
being provided for TISE, QCMD, and CEoM. In the above code
snippet, the service QuantNumbers for displaying average quan-
tum numbers for each of the sites has been selected, and the toggle
(plot_expect) for the visualization of system properties (expectation
values of norm and energy, ACF) has been activated. The setup for
high-level visualization of these observables is routed through the
factory interface, which provides the factory classes for the differ-
ent dynamics implemented in the WAVETRAIN software (i.e., TISE,

TDSE, QCMD, and CEoM). Note that the new instance graphics
provides a proxy to start solving the Schrödinger equation, thus
replacing the calls to dynamics.solve in the code snippets given previ-
ously in Sec. III. Finally, specifying the movie_file keyword argument
allows us to create animated output in mp4 file format.

The visualization of the system state in the left half of the
figures is based on the reduced density formalism. Once calcu-
lated, the reduced density matrices for each site can be shown
directly or in the form of populations or averaged quantum num-
bers, positions, and/or momenta. For an overview of the different
visualization options, see Table I. Table I also lists the special graph-
ics services designed for use with bipartite systems, e.g., the coupled
exciton–phonon systems described in Sec. II E.

Optionally, the system properties can be visualized in the right
half of the figures. These properties are directly calculated as overlaps
or as expectation values by utilizing the tensor product as provided
by scikit_tt. Where possible, system properties are always separated
into their individual contributions, e.g., for bipartite systems, the
state space is visualized for the two sub-systems separately. Further-
more, for CEoM simulations, the system energy is split into kinetic
and potential energy contributions, whereas for QCMD, energy con-
tributions are decomposed into the contributions from the quantum
and classical subsystem, as well as the energy pertaining to the
quantum–classical coupling.

Typical graphical output from WAVETRAIN is illustrated and
discussed for four selected cases.

● Figure 3 is a visualization of the quantum dynamics of
excitons on a linear chain of length N = 21, with parameters
from Sec. II C. The left half is showing a snapshot for t = 540
after an initial excitation of the central site (i = 11) only. The
semi-transparent bars show analytic solutions, which are
available for infinitely long chains of two-level systems with
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NN coupling only.49 While analytic and numerical results
agree well in the middle of the chain, there are considerable
discrepancies near the edges of the chain, as expected.

● Figure 4 shows the quantum dynamics of phonons on a
linear chain of length N = 9, with parameters from Sec. II D.
The left panel represents snapshots for t = 2000 after an
initial excitation of the central site (i = 4) to a coherent state
with ⟨R⟩ = 50. For this value of the initial displacement, the
representation of quantum state vectors in terms of eight
basis functions per site is almost large enough, with tiny defi-
ciencies still visible in the deviation of the norm of the state
vectors from unity.

● Figure 5 visualizes the dynamics of phonons on a linear
chain of length N = 9, with parameters from Sec. II D.
The left panel shows phase-space portraits for 0 ≤ t ≤ 8400
starting from an initial displacement with ⟨R⟩ = 20 of the
central site (i = 4) only. Note that for the quadratic Hamil-
tonian of Eq. (5), resulting expectation values from quantum
and classical dynamics coincide by virtue of the Ehrenfest
theorem.

● Figure 6 shows the quantum-classical dynamics of coupled
excitons and phonons on a linear chain, with parameters
from Sec. II E. The left part of the figure shows a snapshot
at t = 1875 after preparing an initial state with a sech-like
distribution of an exciton peaked around the central site
(i = 20) (see Ref. 27) but without vibrational excitation.
Hence, this simulation shows the formation of a soliton or,
more precisely, the onset of the dressing of an exciton with
phonons in real time.

V. DOWNLOAD AND INSTALLATION
The WAVETRAIN software is a pure Python3 package and can

be readily installed from the PyPI package index using pip. A com-
mand line installation of the WAVETRAIN software can be achieved
by issuing the following command in a terminal environment:

$ pip install wave_train

where pip installs into a Python3 installation with minimum ver-
sion requirement 3.7.0. The source code is publicly available in
the Github repository PGelss/wave_train under the GNU General
Public License v3.0. For a developer installation of WAVETRAIN,
a specific version of sckit_tt may be required, which can be read-
ily installed from the Github repository PGelss/scikit_tt. By default,
WAVETRAIN installs with the latest scikit_tt version.

VI. CONCLUSIONS AND PROSPECT
In the present work, we have illustrated the use of WAVETRAIN

for rather simple models of excitons and phonons from our previ-
ous works.27,28 However, it is straight-forward to apply our software
to a variety of other quantum systems, as long as they are of a
linear or cyclic chain-like topology with on-site and NN interactions
only. Obvious extensions of the models given above include exciton
dynamics with more than two electronic states per site (e.g., sin-
glet and triplet states) and/or anharmonic description of phonons.

Note that in the latter case, one does not necessarily have to use
the second quantization introduced in Eq. (6). It is also possible to
use, e.g., pseudo-spectral representations in coordinate space to dis-
cretize the vibrational degrees of freedom.9,58 The flexible structure
of the WAVETRAIN package also allows for easy implementation of
other types of quantum systems, such as chains of spin systems (Ising
or Heisenberg models), chains of molecular rotors,33 or polarons
in one-dimensional lattices.59 In all those cases, one would have to
design a new Python class for the underlying Hamiltonian, which
inherits from the super-class Chain. It is recommended for such a
class to have a method __init__ dealing with the physical parameters
of the Hamiltonian (class attributes) and a method __str__ generat-
ing a string for print output. A mandatory ingredient of such a class
is a method get_SLIM, providing the S, L, I, M matrices from which
to construct the tensor cores31 (see also Eqs. (1) and (2) in Sec. II A).

Moreover, the object-oriented architecture of the WAVETRAIN
package also supports a straight-forward addition of Python classes
for further types of equations of motion. An obvious choice is
the Liouville-von Neumann equation (LvNE) adding dissipation
and decoherence to quantum dynamics. In that case, tensor trains
will be used for the representations of the density matrices, and
numerical solution of the LvNE will rest on the efficient ordinary
differential equation (ODE) solvers available in the scikit_tt tool-
box, similar to our implementation of class TDSE described in
Sec. III C. A frequently used alternative to the Ehrenfest or mean
field quantum–classical approach implemented in class QCMD is
the surface hopping trajectory method, featuring stochastic hop-
ping between different electronic states.60 In such a case, TT rep-
resentations are not required, and a corresponding class should
contain its own propagation methods, as is also the case for class
QCMD described in Sec. III D. Yet another option could be dif-
fusive Langevin dynamics adding friction and stochastic forces to
classical dynamics, thus extending the class CEoM (see Sec. III E).
Note that the classes for these three examples will inherit from the
respective super classes for fully quantum, mixed quantum–classical,
and purely classic dynamics, as described in Sec. III A. Moreover,
when writing a new Python class for another type of dynamics, the
following methods will have to be implemented: In addition to a
method __init__ for initialization and a method __str__ for print
output, it is mandatory for such a class to encompass a method solve.
That method calls start_solve used for initialization of the numer-
ical solvers, e.g., propagation one step backward in time, which is
required for the symmetric Euler scheme to solve the TDSE. Sub-
sequently, for every time step, a method update_solve is called that
actually carries out the propagation. Finally, it should be mentioned
that each of the dynamics classes needs to have (one or several)
method(s) to generate an initial system state.

The WAVETRAIN software package is hosted and further
developed at the Github platform, along with the scikit_tt tool-
box for tensor train computations on which it is based. Moreover,
WAVETRAIN is mirrored at the SourceForge platform, as a part
of the WAVEPACKET project for numerical quantum dynamics,
which is already in use for a number of years in several labs.9–11

That MATLAB software package also features quantum and mixed
quantum–classical dynamics, but for general Hamiltonians, i.e.,
without the restriction to chain-like topologies. The recently pub-
lished version 7.0 of WAVEPACKET contains a MATLAB class
definition for the Hamiltonians of Eqs. (3), (5), and (11). Hence,
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integration of WAVETRAIN into the WAVEPACKET project allows
for a simple and direct comparability of results, thus allowing to
benefit from the easy usability and the advanced graphical capa-
bilities of the latter one. However, such comparisons will have to
be limited to short chains up to N ≈ 3 for TISE or N ≈ 6 for TDSE
because—without the use of tensor train methods—WAVEPACKET
suffers from the curse of dimensionality.
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