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Abstract

The dynamics of protons, the nuclei of hydrogen atoms, are of focal interest in chemistry
and biophysics. Common examples are water splitting for hydrogen fuel production
or protonation underlying the function of various essential proteins. In water or other
hydrogen-rich environments, excess protons can travel rapidly over large distances by
transferring between different molecules and interchanging identity with the nuclei of
other hydrogen atoms. This thesis encompasses fundamental theoretical aspects of
the proton-transport dynamics: the spectral signatures, the reaction kinetics and the
non-Markovian nature.

The first two chapters present how the spectroscopic signatures of proton-transfer
processes are predicted based on the stochastic reaction-rate time scales. The first-
order linear approximation to model spectroscopic signatures is given by the harmonic
vibrational motion around semi-stable configurations, the normal modes. However, the
transfer motion of the excess proton between two acceptors, such as water itself, is
not such a normal mode. It is rather described, according to reaction-rate theory as
stochastic motion over an energy barrier. These time scales are extracted from ab initio
simulations and related to the spectra via an analytical model.

In the third chapter, another approach for modeling spectroscopic signatures beyond
the harmonic normal-mode approximation is introduced: that being the inclusion of
anharmonic potential and frequency-dependent friction effects. At ambient temperature
and in a liquid medium, the frequency and band shape of a vibrational mode are
strongly influenced by the energetic and frictional coupling to the environment. When
regarding the spectroscopic signatures of the intramolecular vibrations of water molecules
in the liquid phase, both phenomena are relevant due to the strong intermolecular
interactions via hydrogen bonds. The generalized Langevin equation presents an effective
dynamical model, which handles arbitrary nonharmonic potential shapes in conjunction
with non-Markovian time-dependent friction, and is here employed to extend the normal-
mode-based description of vibrational spectra. The framework is tested on ab initio
simulation data of water to disentangle anharmonic potential and frequency-dependent
friction effects on the intramolecular dynamics.

Chapters four and five focus on aspects of reaction-rate theory, that follow from such
non-Markovian memory friction models, and presumably are relevant for proton-transfer
reactions. A generalized Langevin equation incorporating both time- and space-dependent
friction is introduced and used to systematically study the effect of different memory
friction around the minimal energy, i.e. the reactant state, and around the energy
barrier at the transition state on the mean barrier-crossing times. Besides the memory
friction, the effective mass and the potential shape are relevant variables of theoretical
reaction-rate models. The thesis concludes with a perspective on the competition of these
three effects on reaction times, which is demonstrated for pair-dissociation dynamics in
water from classical molecular-dynamics simulations.





Zusammenfassung

Die Dynamik von Protonen, den Kernen der Wasserstoffatome, ist ein zentrales Thema
der Chemie und Biophysik. Als Beispiele gelten Wasserspaltung für die Herstellung von
Wasserstoffbrennstoff oder Protonierungsdynamik, die der Funktion vieler essentieller
Proteine zugrunde liegt. In Wasser oder wasserstoffreichen Umgebungen können über-
schüssige Protonen leicht über große Entfernungen transportiert werden: durch Sprünge
zwischen den Molekülen und Austausch mit den Kernen anderer Wasserstoffatome. Diese
Arbeit umfasst grundlegende theoretische Aspekte der Protonentransportdynamik: die
spektralen Signaturen, die Reaktionskinetik und die nicht-Markovsche Natur.

In den ersten beiden Kapitel wird gezeigt, wie die spektralen Signaturen des Pro-
tonentransfers mit den Zeitskalen der stochastischen Reaktionsdynamik vorhergesagt
werden können. Das einfachste Modell für spektrale Signaturen ist durch die harmonische
Schwingungsbewegung um metastabile Konfigurationen gegeben: die Normalmoden.
Aber die Transferbewegung des Überschussprotons zwischen zwei Akzeptoren, wie zum
Beispiel Wasser, ist keine solche Normalmode. Entsprechend der Ratentheorie ist wird sie
hier als stochastische Dynamik über eine Energiebarriere beschrieben. Die entsprechenden
Zeitskalen werden aus ab-initio Simulationen extrahiert und über ein analytisches Modell
mit den Spektren in Beziehung gesetzt.

Im dritten Kapitel wird ein weiterer Ansatz zur Modellierung spektraler Signa-
turen vorgestellt: die harmonische Normalmodenapproximation wird um anharmonische
Potential- und frequenzabhängige Reibungseffekte erweitert. Bei Raumtemperatur und
in einem flüssigen Medium sind die Frequenz und Linienform einer Schwingungsmode
stark durch Kopplung an die Umgebung beeinflusst. Beide Effekte treten in den spek-
tralen Signaturen der intramolekularen Schwingungen von Wassermolekülen auf, da
es starke intermolekulare Wechselwirkungen über Wasserstoffbrückenbindungen gibt.
Die Generalisierte Langevin-Gleichung ist ein Modell für nicht-Markovsche Dynamik
in allgemeinen nichtharmonischen Potentialen, welches hier verwendet wird, um die
normalmodenbasierte Beschreibung von Schwingungsspektren zu erweitern. Die Methode
wird hier auf ab-initio Simulationsdaten von Wasser angewendet, um die Effekte anhar-
monischer Potentiale und frequenzabhängiger Reibung auf die intramolekulare Dynamik
zu verstehen.

Die Kapitel vier und fünf konzentrieren sich auf Aspekte der Ratentheorie, die aus
Modellen mit nicht-Markovscher Memory-Reibung folgen und vermutlich für Protonen-
transferreaktionen relevant sind. Eine Form der Generalisierten Langevin-Gleichung, die
sowohl zeit- als auch ortsabhängige Reibung enthält, wird eingeführt und verwendet,
um die Effekte unterschiedlicher Memory-Reibung um die minimale Energie, d. h. den
Ausgangszustand, und um die Energiebarriere herum, im Übergangszustand, auf die
mittlere Reaktionszeit systematisch zu untersuchen. Zusätzlich zu der Memory-Reibung,
sind auch die effektive Masse und die Potentialform relevante Variablen in theoretischen
Ratenmodellen. Die Arbeit schließt mit einem Ausblick auf die Effekte dieser drei
Variablen auf mittlere Reaktionszeiten, die für die Paardissoziationsdynamik in Wasser
anhand klassischer Molekulardynamiksimulationen demonstriert wird.
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Introduction 1
Protons are elementary particles with electric charge +1 e, in units of the elementary
charge, and mass of about 1 u, where u denotes the atomic mass unit. Together with the
electrically neutral neutrons they form the nuclei of all atoms. In contrast to neutrons,
which are usually only released from the atomic nuclei upon nuclear fission, single protons
are abundant in nature. That is because they appear as ionized hydrogen, the smallest
and lightest chemical element, which makes up most of the matter in the universe and,
together with carbon, oxygen and nitrogen, most of the organic matter [17, 18]. Naturally,
excess protons play a key role in many biological and chemical processes [19, 20]. Acid-
base chemistry, which essentially assesses the exchange of protons between different
reactants, is fundamental to scientific and technical applications. Hence, the pH value,
the hydrogen chemical potential given in terms of the concentration or rather activity of
free protons, is an important scale for the characterization and quantification of chemical
substances [21]. In industry, hydrogen fuel produced from renewable energy sources, for
example by synthetic water oxidation, is considered to be crucial for the transition to an
ecologically sustainable economy in sectors that are hard or even impossible to electrify
[18, 22].

Inside proteins, the relocation of protons on short and long time scales in the complex
hydrogen-bond network of amino acids and confined water molecules is believed to be
critically important for protein function in various ways [23]. As examples, such ‘proto-
nation dynamics’ are linked to i) the water-splitting redox reaction inside photosystem
II as part of photosynthesis, ii) proton pumping and water synthesis in cytochrome
c oxidase, which is part of the respiratory chain or iii) conformational transitions in
phytochromes and channelrhodopsins, that exhibit enzyme regulation and light-induced
signal transduction or channeling [24–27, 7].

Since the proton is the smallest atomic nucleus, it is invisible to even the most advanced
experimental imaging techniques. Therefore, dielectric spectroscopic measurements that
are well-established in chemistry and biophysics are often applied to probe the fast
dynamics of excess protons in biological matter [28, 20, 29]. The theory to describe these
measurements is historically based on vibrational normal modes, which is the linear
harmonic approximation to the motion around meta-stable configurations, the local
minima of the energy landscape [30]. Two nonlinear theoretical models for spectroscopy
that go beyond this approach are discussed in this thesis.

At finite temperature, the motion over an energy barrier, i.e. a maximum in the
energy landscape, such as encountered in the proton-transfer reaction between water
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molecules or other proton acceptors, is not a vibrational normal mode. Here the process is
described in terms of stochastic reaction dynamics over an effective energy barrier, which
is characterized by two stochastic time scales. The barrier-crossing waiting time or mean
first-passage time (MFPT) is the average time the particle waits in the reactant state on
one side of the barrier before crossing over to the product state [31, 16]. The transfer-path
or transition-path time is the average time of the actual crossing path of a reaction,
the so-called transition path (TP) [32, 33]. The spectral signatures resulting from these
stochastic time scales are derived analytically and applied to describe excess-proton
transfer dynamics in chapters 3 and 4.

Furthermore, at finite temperature vibrational dynamics are affected by energetic
and frictional coupling to the local environment, that give rise to homogeneous and
inhomogeneous broadening and shifting of the spectroscopic signatures [30, 34]. If the
frictional coupling is adiabatic, energy is dissipated on the time scale of the vibration,
resulting in a so-called homogeneous broadening of vibrational bands. On the other hand,
inhomogeneous broadening becomes relevant when the frictional coupling is nonadiabatic,
i.e. happens on much longer time scales than the vibrational motion. In this case,
the frictional force is nearly constant on the time scale of the vibration and therefore
shifts the vibrational frequency. Inhomogeneous broadening of the total spectra is thus
perceived when this frictional shifting, which is equivalently understood as resulting from
varying inhomogeneous local environments, is time- or ensemble-averaged. These friction
effects on vibrational spectra are modeled in this thesis in chapter 5 by employing the
generalized Langevin equation (GLE); a generalization of the Langevin equation (LE)
to time-dependent, or in this context frequency-dependent friction. Importantly, the
formalism employed here handles both, homogeneous and inhomogeneous broadening, or
equivalently adiabatic and nonadiabatic coupling, without any assumptions on time-scale
separation, that are often applied in the literature.

Reaction-rate theory, which underlies the stochastic theory describing the proton-
transfer spectral signatures, is the third major topic of this thesis. The exponential
dependence of reaction times on the inverse temperature, or rather the energy-barrier
height, forms the foundation of reaction rate theory [35]. Since in many biophysically
relevant processes, such as proton-transfer or protein dynamics and reactions, the energy
barriers are rather low, the preexponential factor then becomes relevant. Historically,
the effect of the harmonic potential-shape parameters for the reactant and the transition
states, i.e. the local extrema of the potential landscape, were considered first [36]. Soon
after, the effects of stochastic frictional forcing and damping by the solvent molecules,
so-called Brownian motion, relative to the solute mass, were shown to exhibit a complex
turnover behavior between slow-downs in either the high- and low-friction limits due to
different mechanisms [37]. Whenever there is no time-scale separation between the solvent
degrees of freedom and the solute coordinate of interest, the Markovian assumption is
violated, and the friction constant governing Brownian motion is rather a time-dependent
property, the friction memory kernel [38, 39]. Ever since, reaction-rate theory has been
focusing on the complex effects of time-dependent friction on the reaction rates, and how
they compete with other known prefactors, such as the potential shape and the mass.
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In short, the thesis is comprised of three methodological aspects: vibrational spec-
troscopy, non-Markovian effects and chemical reaction kinetics; that are applied to three
different systems: excess protons in different environments, pure water, and pair reactions
in water. The following sections of the introduction give an overview of the literature
and the theoretical concepts. In chapter 3 the infrared (IR) spectral signatures and
proton-transfer reaction dynamics in a water cluster, the H5O2

+ cation, are discussed
based on ab initio molecular dynamics (MD) simulations and nonlinear analytical models.
In chapter 4, this analysis is transferred to decompose the excess-proton dynamics in
concentrated hydrochloric acid solutions with comparison to experimental data. In chap-
ter 5, the IR spectral line-broadening of bulk water is discussed and modeled using the
GLE including non-Markovian time-dependent friction and a nonlinear potential, which
is parameterized from ab initio MD data. In chapter 6, a GLE model for non-Markovian
position and time-dependent friction is introduced to differentiate the effects of the well
and barrier regions of a potential landscape on the mean reaction times. In chapter 7,
the pair reaction dynamics of a NaCl ion pair and a pair of unpolar methane beads are
analyzed using the GLE, derived from force-field MD data, and compared to previous
analytical theories.



1. Introduction

1.1. Excess protons in water

The structure and dynamics of excess protons in water sparked interest already two
centuries ago: Grotthus hypothesized that protons move through water by rapidly hopping
between water molecules, a process in which the excess proton repeatedly interchanges
with water hydrogen atoms, as illustrated in Fig. 1.1 [40]. This shuttling process leads
to a high mobility of protons in water compared to other ions, as confirmed in many
experiments [41–45]. In attempts to understand the details of the Grotthus mechanism,
the structure and dynamics of excess protons in water have been investigated in numerous
studies throughout the last century, which were summarized in past reviews [46, 28, 20].
Due to its high net charge, the excess proton has a pronounced dielectric spectroscopic
signature. In fact, already early IR spectroscopy experiments reported strong and broad
mid-infrared signals associated with dissolved protons in acidic aqueous solutions [47, 48].
This so-called ‘continuum band’, located between the water bending and stretching
bands, where only few organic molecules absorb [49–52], and the ‘acid bend band’, a
blue-shifted water bending band [53–56], are well-known spectroscopic features of excess
protons in water. The interpretation of the spectra of systems containing mobile protons
started a debate about the equilibrium solvation structure of excess protons in water.
On the one side, the Eigen state was hypothesized, corresponding to a central hydronium
ion surrounded by three tightly coordinated water molecules, illustrated below in Fig. 1.2
in green [57]. On the other side, in the Zundel state, the excess proton is shared equally
by two water molecules, illustrated in Fig. 1.2 in red [48]. Until today, studies argue that
either the Eigen or the Zundel state is more important, often depending on whether their
observable favors one or the other. Obviously, both states participate in the Grotthus
mechanism, but for a complete picture, the residence and interconversion time scales
need to be known.

Excess proton

Hydronium protons

Figure 1.1.: Illustration of the Grotthus process of proton transport in water. An
excess proton attaches to a water molecule, thereby forming a charged hydronium ion,
H3O+. Whenever any of the three hydrogen atoms of the hydronium ion transfers to a
hydrogen-bonded water molecule, a new hydronium ion is formed, while the original ion
becomes again a neutral water molecule. Thus, an excess proton can transfer quickly
across a chain of water molecules by exchanging identity with the hydrogen atoms of
water itself during the formation of intermediate hydronium ions.
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Theoretical simulation studies of excess protons in water are not unambiguous. Since
the Grotthus mechanism can be understood as a concession of fast chemical reactions
between hydronium and water molecules, the efficient classical force fields are not
applicable and quantum-chemical techniques, such as density-functional theory (DFT)
methods, need to be applied. Until recently, such methods were computationally too
expensive to address larger system sizes beyond a dozen atoms or long time scales
beyond some picoseconds. To complicate the matter, the proton is the smallest atomic
nucleus and hence subject to significant nuclear quantum effects (NQE) even at ambient
conditions [58]. In fact simulation techniques including NQE are evolving rapidly and
naturally are often applied to systems with excess protons [59–62].

More recently, the observation of characteristic IR continuum bands in biological
systems whose function relies on mobile protons shifted the research focus to the role of
confined water and amino acids as proton donors and acceptors in Grotthus-like proton
transfer mechanisms [63, 49, 50, 64, 52, 65, 13, 7].

1.1.1. Methodology

Experimental methods

Among experimental methods for the observation of excess protons, IR spectroscopy is the
most prominent [47, 48, 66–70, 54, 71, 72, 55, 73, 56, 74–76, 52, 2]. Another prominent
method that can probe excess protons directly is nuclear magnetic resonance (NMR)
[77, 78, 43]. Both methods are also applied in biological systems to probe specifically
excess protons, which, due to their small size and fast dynamics, are invisible to the
otherwise widely used structure-resolving techniques, such as X-ray crystallography
[49, 64, 52, 13, 7].

Infrared spectroscopy Linear IR spectroscopy relates the absorbed power of a light
beam at frequency ω to the imaginary part of the dielectric susceptibility and thereby
to the autocorrelation function of the dipole moment. Many inter- and intramolecular
dynamical modes are associated with changes of a local dipole moment and are therefore
IR active, especially the dynamics of the charged excess protons. While strictly speaking,
a spectroscopic method measures a system’s dynamics, vibrational normal modes are
often well-defined for specific molecules but also super-molecular hydration configurations
(further aspects of vibrational line shapes are discussed in section 1.2 and chapter 5). Due
to the extremely high resolution of modern spectrometers and by tight comparison with
computational quantum-chemistry methods, IR spectra are therefore often interpreted
in terms of ensembles of static configurations.

IR spectra of strong acids were among the first studies that reported experimental
evidence of excess proton dynamics from the characteristic spectroscopic signatures
[47, 48]. More recently, pump-probe and other time-resolved IR spectroscopy methods
have addressed the lifetimes of and interconversion times between various spectral regions
[70, 54, 55, 73, 56, 74–76]. Studies in the THz-regime address longer time scales [79, 2]
and less localized, i.e. collectively-coupled motions with the first hydration shells [71].
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Nuclear magnetic resonance NMR spectroscopy measures the resonant Larmor fre-
quencies of nuclear magnetic spins precessing around a strong constant external magnetic
field. Therefore, only nuclei with a nuclear magnetic moment, that is with a total nonzero
spin, which is the case for nuclei with an odd number of either protons or neutrons or
sometimes both, are susceptible to this technique. Both, protons and deuterons, with
spin one half and one respectively, are therefore NMR active. The effective magnetic field
at the nucleus is usually shielded by the local electronic structure because the electronic
spins are likewise reacting to the external magnetic field with an antiparallel magnetic
moment. Generally, a higher local electronic density around the nucleus produces a
higher ‘chemical shielding’, which reduces the effective magnetic field and likewise the
NMR frequency. The relative shift to a lower frequency is called a lower ‘chemical shift’,
while in this case, the chemical shielding is higher. Thus, NMR spectroscopy can be
applied to probe local electronic structure around atomic nuclei and is therefore a widely
used technique in biophysics and molecular chemistry. Importantly, it can be employed
to measure protons directly, albeit at a lower time resolution than dielectric spectroscopic
measurements.

NMR studies of excess protons in solution are reaching back almost as long as IR
measurements [77, 78, 43].

Theoretical methods

Theoretical simulation approaches for studying excess protons rely mostly on quantum-
chemical methods. The quality of the quantum-chemical model usually depends on the
system size and time scale that is to be addressed and then again on whether one is
interested in static or dynamic properties. The most advanced models are vibrational
self-consistent field/virtual state configuration interaction (VSCF/VCI) or NQE methods,
and notably also electron-nuclear coupling in the multiconfiguration time-dependent
Hartree (MCTDH) method, together with many-body, high-level potential energy and
dipole moment surfaces, which have been applied to compute the static properties as
well as IR spectra of excess protons in small water clusters [80–82, 60, 83, 84].

While these methods compare well to gas-phase experimental data, water at ambient
conditions is in the liquid state. The collective, stochastic effects apparent in larger
thermalized systems, such as water solutions of up to several hundred molecules, are
of therefore of vital interest. Here, approximate and therefore computationally more
efficient quantum-chemical methods, such as ab initio MD simulations, either as Born-
Oppenheimer or Car-Parrinello MD (BOMD or CPMD), are widely applied [85–89, 61,
52, 90–94, 62]. Alternatively, classical force-field methods are augmented by heuristic
models [95, 96, 53, 97] or used to sample hydration configurations that are evaluated by
computationally expensive quantum-chemical techniques in post-processing [98, 99].

Ab initio molecular-dynamics simulations As stated above, in water and biological
environments, excess protons are constantly reacting by hopping between different
molecules and even exchanging identity with other hydrogen atoms. Force-field MD
simulations, often called classical MD, that assume stable molecular structures and
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commonly cannot address chemical reactions are therefore not applicable. Ab initio MD
simulations do not rely on such force fields and molecular structure models, but solve
the interatomic forces determined by quantum mechanics from first principles, i.e. by
approximate solution of the Schrödinger equation for the electronic ri and nuclear RI

degrees of freedom

ih̄
∂

∂t
Φ(ri,RI ; t) = HΦ(ri,RI ; t), (1.1)

with the Hamiltonian operator H

H =−
∑

I

h̄2

2MI
∇2

I −
∑

i

h̄2

2me
∇2

i

+
e2

4πϵ0

∑

I<J

ZIZJ

|RI −RJ |
+

e2

4πϵ0

∑

i<j

1

|ri − rj |
− e2

4πϵ0

∑

I,i

Zi

|RI − ri|
, (1.2)

where MI and me are the nuclear and electron masses and ZI the atomic numbers,
so that (eZI) are the nuclear charges. ϵ0 is the vaccum permittivity. Since the full
solution is analytically impossible to obtain and numerically demanding even for the
simplest molecules, various approximations are be employed to address different scientific
questions.

If one is interested in nuclear dynamics, as for the case of the excess proton or IR
signatures in general, an assumption of timescale separation for the dynamics of the
nuclei and the electrons is useful: the Born-Oppenheimer approximation. The ab initio
MD simulations used throughout this work rely on this assumption and are therefore
also called Born-Oppenheimer molecular dynamics (BOMD). In this formalism, for
which the introduction by Marx and Hutter [100] is followed here, only the electrons are
treated quantum mechanically, while the nuclei follow classical Newtonian mechanics
with the forces derived from the electronic structure. Furthermore, at the timescale of the
nuclear motion, the electrons are assumed to relax instantaneously to the ground state
defined by the current nuclear positions. The quantum-mechanical problem is therefore
reduced at each instance of time to the ground-state solution Φ0 of the time-independent
Schrödinger equation for the electrons with energy E0 and Hamiltonian He

E0Φ0 = HeΦ0 (1.3)

and the equations of motion for each nucleus can be formulated as

MIR̈I = −∇I⟨Φ0|He|Φ0⟩ − ∇IVnuc(RI), (1.4)

where the first term on the right side is the gradient of the ground-state energy and the
second term is the gradient of a Coloumb potential comprised of interactions with the
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other nuclei

Vnuc(RI) =
∑

J ̸=I

ZIZJ

|RI −RJ |
. (1.5)

Note, that the common convention is used and the equations are expressed in Hartree
atomic units: energy is given as the Hartree energy, Eh = h̄2/(mea

2
0) and length is

expressed in terms of the Bohr radius a0 = 4πϵ0h̄
2/(mee

2).

A breakthrough for numerical solutions of the time-independent Schrödinger Eq. (1.3)
of many-electron systems was the development of Kohn-Sham density functional the-
ory (KS DFT). Here, the total wave function of the system Φ0 is expanded in terms
of eigenfunctions of non-interacting reference systems. This set of orthonormal single-
electron functions are called the Kohn and Sham (KS) orbitals φi, which together give
the electronic density n(r) for given integer occupation numbers fi

n(r) =
∑

i

fi|ϕi(r)|2. (1.6)

The total energy is then the KS energy EKS(φi)

Etot = ⟨Φ0|He|Φ0⟩ ≈ min EKS(φi), (1.7)

which is given by

EKS(φi) = Ts(φi) +

∫
Vext(r)n(r)dr (1.8)

+
1

2

∫
VH(r)n(r)dr + Exc(n). (1.9)

The first term is the kinetic energy

Ts(φi) =
∑

i

fi⟨ϕi| − ∇2|ϕi⟩. (1.10)

The second term is an external potential, in this case a Coulomb potential from the
nuclear positions RI with charges ZI

Vext(r) = −
∑

I

ZI

|RI − r| . (1.11)

The third term is the Hartree potential, the classical electrostatic potential between the
electronic densities of the different orbitals

VH(r) =

∫
n(r′)
|r − r′|dr

′. (1.12)

The last term is the exchange–correlation energy functional Exc(n), which is often a
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heuristically derived correction functional to account for the missing quantum-mechanical
interactions. This term is crucial as it significantly affects the computational cost and
accuracy of the simulations. The Becke, Lee, Yang and Parr (BLYP) exchange–correlation
functional, used throughout this work, is a type of common GGA (generalized gradient
approximation) functional that only depends on the value and the gradient of the local
electronic density n(r) [101, 102]. The BLYP functional is heuristic and therefore strictly
speaking not based on first principles, but computationally efficient and has been widely
applied to study water and biological system with success, especially in combination
with another heuristic correction for dispersion forces, called D3 [103].

The ground-state solution to the electronic system is found by minimization of the KS
energy Eq. (1.8), which defines the KS Hamiltonian HKS

e in the KS equations
{
−1

2
∇2 + Vext(r) + VH(r) +

∂Exc[n]

∂r

}
ϕi(r) =

∑
Λijϕj(r) (1.13)

HKS
e ϕi(r) =

∑
Λijϕj(r), (1.14)

where the Lagrange multipliers Λij impose the orthogonality constraint between the
orbitals.

For numerical solution of the KS Eqs. (1.13), the KS orbitals need to be expanded in a
suitable set of basis functions. The choice of basis, in particular the number of basis func-
tions, defines again crucially the trade-off between accuracy and computational efficiency.
Typically, the valence orbitals, which define the chemical bonds, are modeled most accu-
rately, while inner shells are featured at lower precision or even integrated into an effective
nucleus with a reduced charge and a repulsive pseudopotential [104, 105]. Theoretically,
Slater-type basis functions ∼ exp(−ζj |ri −R|), centered at each nuclear position R, are
motivated from the solution of the Schrödinger equation. However, for computational
application larger numbers of Gaussian-type basis functions ∼ exp(−ζj |ri − R|2) are
typically used, which come with analytical solutions to many integrals and Fourier-space
representations. The number of different ζj primitive basis functions employed to model
an orbital is typically indicated in the nomenclature of a basis set. So-called polarization
and diffuse functions are additional primitive basis functions for each orbital, that model
far-reaching densities, for example for anions, and induced polarization. As an example,
in this work the TZV2P basis set is a ‘triple-zeta valence’ basis, i.e. three basis functions,
TZV, with two additional functions to account for polarization, 2P, are used to model
electrons in the valence shell [106]. The orthogonality constraint in Eq. (1.13) is implied
on the orbitals ϕi but the occupation of basis functions may spread over many molecules.
Localization of the electronic densities is therefore required to compute local molecular
polarization. Throughout this work maximally localized Wannier functions are used,
which follow as a unitary transform from the basis functions [105].

Nuclear quantum effects NQE are known to become relevant whenever the zero-point
energy exceeds the thermal energy, h̄ω/2 > kBT [58]. Thus, they generally become more
important at lower temperatures, lower masses or higher frequencies. For the lightest
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atomic nucleus, the proton, they may be relevant at room temperature, as has been
demonstrated in numerous works [59, 60, 97, 61, 62]. Only recently, NQE simulation
techniques have advanced significantly to allow to include them into established MD
simulation frameworks. Based on the Trotter formalism, NQE are typically addressed by
replacing each atomic nucleus by a closed-loop polymer, or ring polymer, consisting of P
elementary beads and then running replica simulations. However, the required number
of P increases with the maximal vibrational frequency of the system: “P = 32 replicas
are needed to converge simple structural properties of a system at room temperature
containing O-H covalent bonds” [58]. This is the naive factor by which the computational
cost of these simulations increases when compared to the case without NQE (replicas can
be run in parallel though). Therefore, it remains challenging to combine these methods
with ab initio MD using DFT which is already computationally very expensive, but
required to model protons in aqueous environments, where formation and breaking of
bonds occur constantly. Consequently, only a few works so far have introduced NQE into
such simulations [61, 62], often by making additional assumptions and simplifications, for
example by reducing the number of replicas P , so called ring-polymer contraction (RPC).
In this rapidly emerging field, however, no general method has been established yet.
Instead, each specific system requires careful optimization to allow simulation of NQE of
excess protons in water with affordable additional cost.

1.1.2. Excess proton structure

The Eigen state

The Eigen state was proposed by Wicke et al. [57] as the solvation structure of excess
protons in water, building on earlier works that found that excess protons attach to
water molecules to form the hydronium ion, H3O+. The Eigen state consists of a central
hydronium ion and three water molecules which are tightly hydrogen-bonded to the three
hydrogen atoms of the hydronium, thus forming a H9O4

+ complex. An illustration is
given on the left in Fig. 1.2. The structure was suggested based on measurements of the
molar heat capacity and molar volume, as well as earlier IR and NMR spectra of dissolved
protons, from which the authors deduced ultra-fast motion of the excess proton in the
local hydration environment on the order of 10 fs to 100 fs [77, 47]. In current literature,
this solvation structure is supported mostly by simulation data, especially ab initio
DFT and heuristic multistate empirical valence bond (MS-EVB) simulations at various
levels [107, 108, 85–87, 61, 52, 92, 62]. When computing the static distribution of excess
protons around water molecules in bulk, most studies find on average strong coordination
to a single, but of course varying water oxygen. These distributions are significantly
affected when NQE are taken into account and the excess proton is less localized due
to zero-point motion and tunneling [59, 61, 109, 62]. Also experimental extended X-ray
absorption fine structure (EXAFS) data supports this equilibrium structure [110]. An
established concept building on the Eigen solvation structure is the so-called ‘special-pair
dance’. The role of the excess proton ‘dances’ rapidly between the three candidate
hydrogen atoms of the central hydronium ion, thereby forming ‘special pairs’ with the
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Figure 1.2.: Illustration of the Eigen (H9O4
+, green on the left) [57] and Zundel states

(H5O2
+, red in the middle) [48] as intermediate solvation structures of the excess proton

in water. The figure shows the Eigen-Zundel-Eigen transition as a model for excess-
proton transport. Alternatively, the transport can be regarded as a Zundel-Eigen-Zundel
transition, depending on whether the Zundel or the Eigen states are assumed to be the
dominant solvation species.

according hydrogen-bonded water molecules [107, 62].

The Zundel state

The Eigen state was soon contrasted by the Zundel state [48], in which the excess proton
is symmetrically shared by two water molecules, i.e. H5O2

+. Interestingly, the Zundel
state was also mentioned by Wicke et al. [57], following the theories by Eucken [111] and
later Gierer and Wirtz [41], who suggest solvation structures of the excess proton by
either two or four water molecules, of which the former case corresponds to the Zundel
state.

This solvation structure was supported by the extremely high solubility of protons in
water and discussed with respect to the characteristic IR spectral signatures, specifically
the broad continuum between the water bend and stretch motives [48].

In a static description, the two states are mostly distinguished by the asymmetry of the
excess proton localization between two water molecules. In contrast to the Eigen state,
the asymmetry is small for the Zundel state. Therefore, as mentioned above, in contrast
to ab initio DFT simulations with classical treatment of the nuclei, the Zundel state
is supported by simulations which account for NQE because the static distributions of
proton localization between two water molecules are washed out [59, 61, 62]. Furthermore,
the energetically minimal proton asymmetry depends significantly on the relative distance
between the two oxygen atoms [59, 92, 2, 4]. It is also notable that the Zundel state
is favored when the water clusters which solvate the excess proton are confined to a
two-dimensional slab or even more to one-dimensional water wires [112, 52].

Today, it is also known that the IR signatures associated with the Eigen- and Zundel-
like states are indeed distinct. While the IR continuum between the water bend and
stretch vibrations in the range 2000 cm−1 to 3000 cm−1 as well as the acid-bend mode at
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1750 cm−1 are associated with Eigen-like solvation structures, the spectral signatures at
1000 cm−1 to 1200 cm−1 are associated with proton-transfer motion between two water
molecules, also called ‘proton-transfer mode’, in Zundel-like structures [82, 85, 54, 72,
98, 88, 99, 92, 2, 4].

Lately, the debate whether the dominant solvation structure of the excess proton
in water corresponds to the Eigen or the Zundel state is converging: recent studies
have demonstrated geometrically asymmetric Eigen and Zundel excess proton states
in water and suggested that the distinction between those states is rather small and
thus mostly semantic [55, 73, 62]. Several 2D-IR studies have identified significant
lifetimes of Zundel-like states, where the excess proton fluctuates over large distances
and encompasses asymmetric states that may equally well be characterized as Eigen-like
and thereby relaxed strict static criteria [55, 73, 76].

Obviously, such Zundel-like and Eigen-like structures form dynamic intermediates of
long-distance proton transfer events in water, as also illustrated in Fig. 1.2, where an
Eigen-Zundel-Eigen transition is shown schematically. The alternative perspective is
the Zundel-Eigen-Zundel transition. The general agreement is that there is fast and
reversible interconversion on short time scales and that the energetic difference between
the two structures is rather small, i.e. the lifetimes are also rather similar [94, 62]. A
discussion of the excess-proton dynamics on short and long time scales is given in section
1.1.3.

Concentrated acid solutions

In the following, some static properties of excess protons in concentrated hydrochloric
acid (HCl) solutions are discussed, with data shown as determined from ab initio Born-
Oppenheimer molecular dynamics (BOMD) simulations of BLYP-D3 DFT quality [2]. In
the simulation data, excess protons are identified based on a simple geometric criterion:
after assembling at each time step the water molecules for each oxygen atom with the
closest two hydrogen atoms, the remaining least associated protons form hydronium ions
with their respective closest water molecules. Thereby, at each time step, a total number
of excess protons NH+ equivalent to the number of chloride ions in the simulations is
obtained.

Radial distribution functions

Solvation structures in liquids are often analyzed in terms of spatial correlations using
radial distribution functions (RDFs) of the different solutes. The RDF, gab(r), denotes
the average relative density of particles a at a distance r around particles b. The absolute
density of species a at distance r to species b is then given as ρagab(r) where ρa is the
global density of species a. The RDF is computed from simulation data of two particle
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species with numbers Na and Nb and located at positions ri

gab(r) = (NaNb)
−1

Na∑

i=1

Nb∑

j=1

⟨δ(|ri − rj | − r)⟩. (1.15)

Average particle numbers of species a within distance r of particles of species b are
obtained by integration over gab(r)

Nab(r) = ρa

∫ r

0
dr′4πr′2gab(r

′). (1.16)

The RDF is directly related to data retrieved from EXAFS measurements [113, 114].
In Fig. 1.3A the spatial correlations of the hydronium ions and in Fig. 1.3B of the excess

protons are shown as obtained from ab initio DFT MD simulation of aqueous hydrochloric
acid solutions at various concentrations [2]. Comparable results for aqueous hydrochloric
acid solutions were shown previously for various exchange-correlation functionals used in
ab initio simulations [91] and for different self-consistent iterative multistate empirical
valence bond (SCI-MS-EVB) simulations [115, 116]. Other works have regarded single
excess protons dissolved in water [87].

In Fig. 1.3A the RDFs of the oxygen nuclei of the hydronium ions are shown with
respect to the oxygen nuclei of other hydronium ions (O+) as solid lines, for the oxygen
nuclei of the water molecules (O) as broken lines, for the the excess protons (H+) as
dashed and dotted lines and all hydrogen nuclei (H), including excess protons, as dotted
lines. Next to the trivial peaks of the dashed and dotted as well as the dotted lines at
below 1.0Å belonging to the hydrogen nuclei which are part of the hydronium ions itself,
a clear peak of the broken lines at dO+−O = 2.5Å indicates the water oxygen nuclei in
the first hydration shell. A second, much smaller, peak at about 4.20Å indicates the
water molecules in the second hydration shell of the hydronium ion. Both peaks at about
dO+−O = 2.5Å and at 4.20Å are clearly shown in data for various exchange-correlation
functionals [91], as well as the SCI-MS-EVB simulations [115, 116]. Beyond that, a
decomposition of the first peak into three components has been used to support the
picture of an asymmetric Eigen state [62]. Each peak is accompanied by peaks of the
dotted lines at slightly larger distances, which indicate the hydrogen atoms belonging to
the water molecules in the respective hydration shells. Additionally, the dotted lines show
a weak and broad shoulder below roughly 2.5Å, the origin of which is further discussed
in section 1.1.2. A slight relative maximum of the solid lines at dO+−O+ = 3.00Å but
with a magnitude below one indicates a metastable solvation structure to exist between
the oxygens of two hydronium ions. However, note that there is no such signature in
the dashed and dotted lines, i.e. no apparent correlation with the excess proton of the
nearest hydronium ion. The peak at dO+−O+ = 3.00Å was also observed by Calio et al.
[116] and at dO+−O+ = 3.20Å by Xu et al. [115].

In Fig. 1.3B the RDFs of the excess protons are shown with respect to the other excess
protons (H+) as solid lines and all hydrogen nuclei (H), including excess protons, as
broken lines. The main peak of the broken lines at dH+−H = 1.8Å indicates the mean
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Figure 1.3.: Spatial correlations between the oxygen atoms of hydronium ions (A) and
excess protons (B) with respect to other nuclei in terms of radial distribution functions
(RDFs) as obtained from ab initio MD simulations of hydrochloric acid solutions at
various concentrations. A: RDFs are shown for the oxygen nuclei of the hydronium ions
(O+) as solid lines, for the oxygen nuclei of the water molecules (O) as broken lines, for
the the excess protons (H+) as dashed and dotted lines and all hydrogen nuclei (H),
including excess protons, as dotted lines. B: RDFs are shown for the excess protons
(H+) as solid lines and all hydrogen nuclei (H), including excess protons, as broken lines.

distance between hydrogen atoms within the same hydronium ion. The peak shows
a shoulder at around 2.1Å possibly related to spatial correlations between the excess
proton and two hydrogen atoms in the neighboring water molecule of the H5O2

+ complex.
The second peak of the broken lines at 3.8Å is related to other water molecules in the
first hydration shell, that form hydrogen bonds with the hydronium ion to which the
excess proton is assigned. No spatial correlations are apparent in the RDFs between
excess protons, shown as solid lines. In contrast to that, Xu et al. [115] observed a slight
peak at dH+−H+ = 4.20Å, indicative of spatial correlations between two excess protons.

In summary, the RDFs of the hydronium ions as well as of the excess protons presented
in Figs. 1.3A and B indicate no spatial correlations between excess protons or hydronium
ions and other excess protons. While there appears a slight relative maximum in the
RDF between hydronium ions itself, this may simply be related to close-packing effects
in the liquid.

In Fig. 1.4 the RDFs of the chloride counterions are shown for the three hydrochloric
acid concentrations with respect to the excess protons as solid lines, all hydrogen nuclei,



17

0

2

R
D
F

2M2M2M2M

Cl-H+

Cl-H

Cl-O+

Cl-O

0

2
R
D
F

4M4M4M4M

Cl-H+

Cl-H

Cl-O+

Cl-O

0 2 4 6 8 10

r [Å]
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Figure 1.4.: Spatial correlations between the chloride counterions and other nuclei in
terms of radial distribution functions (RDFs) as obtained from ab initio MD simulations
of hydrochloric acid solutions at various concentrations. RDFs are shown for the excess
protons (H+) as solid lines, all hydrogen nuclei (H), including excess protons, as broken
lines, the oxygen nuclei of the water molecules (O) as dotted lines and the oxygen nuclei
of the hydronium ions (O+) as dashed and dotted lines.

including excess protons, as broken lines, the oxygen nuclei of the water molecules as
dotted lines and the oxygen nuclei of the hydronium ions as dashed and dotted lines. For
all hydrochloric acid concentrations, the general features of the RDFs are comparable
with only weak concentration-dependent trends. The RDFs of the excess protons around
the counterions (solid lines) show two dominant peaks, a small one that is located at
around dCl−H+ = 1.8Å and thereby left of the major peak of the hydrogen nuclei RDFs
at around dCl−H = 2.2Å. This peak is important as it corresponds to excess protons
coordinated directly with the counter ion, i.e. in between the chloride ion and the oxygen
atom of the respective hydronium ion. This contact ion pair is considered as an important
intermediate [114]. Yet, the excess protons are still part of the hydronium ion, since an
even smaller distance of around 1.4Å would be expected for the covalent bond to the
chloride atom [114]. The peak clearly increases with the hydrochloric acid concentration
in Fig. 1.4, but even for the largest concentration of 6M it remains smaller than the
second and largest peak in the RDFs at about 3.5Å. This peak is located to the right of
the first and dominant peak in the RDFs of the oxygen nuclei of the hydronium ions
(dashed and dotted lines) at around dCl−O+ = 3.0Å, which is slightly closer than the
respective peak of all oxygen nuclei at around dCl−O = 3.1Å.
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All of the presented data is in good agreement with results by Baer et al. [114]
from comparable ab initio simulations, who additionally show data for much higher
concentrations up to 16m (∼ 11.7M) and successfully reproduced EXAFS experimental
measurements [113]. Specifically, they report dCl−O+ = 2.96Å and dCl−O = 3.14Å in
excellent agreement with experimental EXAFS data [113]. Data comparing various
exchange-correlation functionals used in the ab initio DFT simulation also consistently
reproduced the results presented in Fig. 1.4 with no significant dependence (except for
the PBE functional) and albeit large errors in some cases [91].

When interpreting the RDFs, the actual densities of the species need to be put into
perspective. The densities of chloride ions, excess protons and hydronium ions are equal
by definition. However, for the 2M hydrochloric acid solution data set, the ratio of
water molecules to chloride ions or respectively excess protons is about 24.8 and drops
to 11.2 for the 4M and 6.5 for the 6M data sets. These numbers would have to be
divided by two, assuming that water molecules are equally and exclusively solvating
all chloride ions and excess protons. It is therefore evident, that for the 6M solution,
hydronium ions are necessarily residing already in the first hydration shell of the chloride
ions. More precisely the average coordination numbers around the chloride ions are
obtained by integration over the first peak of each RDF in Fig. 1.4 and use of Eq. (1.16).
The obtained coordination numbers are reported in tab. 1.1 and are generally in good
agreement with previous simulation and experimental results [114, 113]. The average
number of hydronium ions in the first hydration shell of any chloride ion increases from
0.13 for 2M to 0.52 for 6M. Previously, Baer et al. [114] interpreted this significant
increase in the coordination number with an increase of contact ion pairs, where the
excess proton is shared between the hydronium oxygen and the chloride ion. However,
the coordination number of the excess protons around chloride ions does not increase
as much, only from 0.01 for 2M to 0.05 for 6M. Therefore, the excess protons of the
hydronium ions in the first solvation shell of the chloride ions mostly point away from
chloride ions and must be coordinated with other water molecules, rather than the
chloride ions.

Taken together, this data indicates that the excess protons in aqueous hydrochloric
acid solutions exclusively reside inside the water, as part of hydronium ions within this
definition, and additionally within the hydronium ions mostly reside away from the
chloride ions, i.e. between two oxygen atoms and not between a chloride and an oxygen
atom. This holds true even for moderately high concentrations up to 6M considered in
this study, but necessarily breaks down at very high concentrations when the water is
saturated with hydrochloric acid [114]. The data confirms the high solubility of excess
protons in water, due to energetic but also entropic effects [116, 75]. Along these lines,
according to [114] the dominant effect is the protonation of water when hydrochloric
acid concentration is increased and Calio et al. [116] claimed to not observe a change in
proton solvation structures for hydrochloric acid concentrations up to 3.26M. Linear
trends of IR difference spectra with respect to concentrations up to 6M lead to similar
conclusions, i.e. the correlations of two excess protons, or excess protons and chloride
ions, are negligible [2].
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Table 1.1.: Average coordination numbers Nab(r) around the chloride counterions as
obtained from the first peak of the RDFs in Fig. 1.4 according to Eq. (1.16).

Cl-H+ Cl-H Cl-O+ Cl-O
(r < 2.5Å) (r < 3.0Å) (r < 3.5Å) (r < 3.5Å)

2M 0.01 5.59 0.13 5.06
4M 0.02 5.37 0.27 5.01
6M 0.05 5.07 0.52 4.86

2.5m [114] 0.17 5.82
6m [114] 0.42 5.21
10m [114] 0.71 4.67
16m [114] 1.05 3.99

6m [114, 113] 0.7± 0.2 5.1± 0.5
10m [114, 113] 1.0± 0.3 4.8± 0.5
16m [114, 113] 1.6± 0.3 4.2± 0.5

Hydrogen-bond structure

The hydrogen bond (HB) structure of the water molecules in the first hydration shell of
the excess proton has been shown to play an important role for understanding when and
where the excess proton moves [87, 97, 91, 61].

Hydrogen-bond asymmetry Napoli et al. [61] introduced the hydrogen bond (HB)
asymmetry ϕ as a measure to identify the excess proton among the candidate protons in
a hydronium ion. First, each water molecule is assigned a coordination number as the
difference of the number of acceptor HBs minus the number of donor HBs. Then ϕ is
defined for each candidate proton at each time step as the coordination number of the
closest neighboring water molecule minus the average of the coordination numbers of the
closest water molecules of the other candidate protons of the same hydronium ion. By
construction, the sum of ϕ within a hydronium ion is zero. Napoli et al. [61] found that
protons with strongly negative values of ϕ show the typical spectral signatures associated
with excess protons. This measure is also applied to the ab initio simulation data that
was used for the analysis of the long time diffusion in section 1.1.3, specifically to the
joint trajectories of the excess protons from which the spurious ‘special pair dance’ was
removed.

Normalized distributions of ϕ over the whole simulations are shown in Fig. 1.5A with
mean values given in the legend. The mean values are clearly negative which suggests
that this criterion agrees with the excess-proton identification scheme applied to this
data set and confirms the previous observation by Napoli et al. [61]. To study the
relation between HB structure and proton transfer, the trajectories are filtered in time
around the transfer events, i.e. when an excess proton changes its closest oxygen. The
normalized distributions of ϕ values during 20 fs (40 time steps) before and after a
transfer event are given in Fig. 1.5B–D as gray broken lines with mean values reported
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Figure 1.5.: Normalized distributions of the hydrogen bond asymmetries, denoted as
ϕ, of the excess proton trajectories from ab initio MD simulations of HCl solutions
at various concentrations. See text for definition and details. Mean values of the
distributions are reported in the legends. A: Distributions over the whole trajectories. B–
D: Distributions of ϕ during 20 fs before and after any transfer event (gray broken lines),
i.e. when the excess proton changes the closest oxygen, and distributions of ϕ around
each uni-directional transfer event, which are split into the 20 fs before, corresponding to
the donor oxygen of the proton transfer event (blue and left pointing triangles) and the
20 fs after, corresponding to the acceptor oxygen (red and right pointing triangles).

in the legends. To further elucidate the data, the same filter is applied before and after
each uni-directional transfer event. Uni-directional here refers to transfer events, that
are not followed by a fast return back to the original oxygen atom within the following
50 fs (100 time steps). By only regarding these uni-directional events, different HB
configurations can be discriminated around the donor oxygen of the proton-transfer
event, i.e. before the uni-directional transfer (shown in blue with left pointing triangles),
and the acceptor oxygen, i.e. after the uni-directional transfer (shown in red with right
pointing triangles), which show distinct distributions in Fig. 1.5B–D. The mean values of
the distributions before a transfer are more negative than the corresponding averages in
Fig. 1.5A, indicating that on average a more negative value of ϕ precedes an imminent
transfer event. Therefore, ϕ actually seems to be a useful predictor for proton transfer.
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A B

Figure 1.6.: Correlations between the existence of a fourth hydrogen bond of a hydronium
ion (4HB) and the return probability of the excess proton, as observed in ab initio MD
simulations of HCl solutions at various concentrations. A: Probability of the excess
proton to return across the mid plane between the oxygens within the following 50 fs.
B: Time-averaged probabilities of all hydronium ions for the fourth hydrogen bond to
exist (4HB) or not (3HB), as obtained from the whole simulation (gray, no hatching)
and during the 20 fs before (blue) and after (red) each uni-directional transfer event.

The fourth hydrogen bond Inspired by Tse et al. [87], Biswas et al. [97] and Fischer
and Gunlycke [91] investigated the role of a fourth water molecule hydrogen-bonded to
the hydronium ion. Presumably, its presence determines whether an excess proton would
transfer to a different oxygen atom [97] and in particular whether it is likely to return to
the original oxygen atom, i.e. to perform back-and-forth transfers, or not [91]. Biswas
et al. [97] found a correlation between small values of the proton-sharing coordinate
and a peak at 2.0Å in the RDF between the oxygen atom of the hydronium ion and
the hydrogen atoms of other water molecules in simulations of dilute hydrochloric acid
solutions.

In their simulations of 1.7M HCl solutions, Fischer and Gunlycke [91] observed a
higher return probability (67 %) if the hydronium ion was coordinated with only three
donor HBs as compared to four HBs (53 %), the additional one being an accepted HB
from a fourth water molecule. In accordance with previous works, the fourth HB is
defined to be present if the vector connecting the hydronium oxygen and the hydrogen
atom of the fourth water molecule has a length of less than 2.6Å and points at an angle
of less than 35◦ with respect to the normal of the plane spanned by the three hydrogen
nuclei of the hydronium ion [87, 91]. The probability of a return within the following 50 fs
(100 time steps) upon any transfer across the mid plane between the oxygens obtained
in the simulations is illustrated in Fig. 1.6A depending on whether the donor hydrogen
ion is accepting a HB from a fourth water molecule (4HB, shown in blue with hatching)
or not (3HB, shown in red without hatching). The data demonstrates the clear trend
that the return probability is reduced if a fourth HB is present, in agreement with
previous studies [91]. However, even though this correlation is discernible in the data, the
mechanism does not appear to be a dominant driver for proton transfer in hydrochloric
acid solutions. This follows from Fig. 1.6B, where the probability of observing the fourth
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Figure 1.7.: A: IR absorption spectra obtained from ab initio MD simulations of pure
water (blue solid line) and HCl solutions at various concentrations (dark purple: 2 M,
purple: 4 M and red: 6 M). The spectra are divided by the water molecular number
concentration cW . B: Difference spectra between the three HCl spectra and the water
spectrum, obtained from the spectra in A. The red dotted line shows an experimental
difference spectrum of HCl at 4M [54], rescaled in height to match the simulation results.

HB is plotted for three different time averages; the averages over the whole simulations
of all hydronium ions are given in gray, the averages over the 20 fs (40 time steps) before
and after each uni-directional transfer event, i.e. without return, are given in blue and
red respectively. Throughout the data, the time-averaged probability of a fourth HB
is only about 10–20%. Before and after uni-directional transfer events this probability
is significantly increased but it is still smaller than the probability of a uni-directional
transfer event happening without the presence of a fourth HB.

The data confirms that HB structure is highly correlated with the excess-proton
transfer dynamics and the presented comparison with previous studies strengthens the
existing hypotheses, that the HB asymmetry ϕ or the fourth water molecule are useful
descriptors.

1.1.3. Excess proton dynamics

In the following, the dynamic properties of excess protons in concentrated acid solutions
are discussed, using again the data set of BLYP-D3 DFT quality [2] for illustration.

IR spectroscopic signatures

IR absorption spectra of hydrochloric acid solutions at various concentrations are shown in
Fig. 1.7A and compared to a bulk water spectrum, all calculated from BOMD simulations
[2]. By taking the properly normalized difference spectrum between the hydrochloric-acid
solution spectra and the bulk water spectrum, as shown in Fig. 1.7B, the IR spectral
signatures related to excess-proton dynamics are revealed. The characteristic continuum
band between the water stretching and bending vibrations in the range 2000 cm−1 to
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Figure 1.8.: Examples of five joint trajectories of excess protons in 2M HCl solution on
short (A) and long time scales (B). In A, the pale colored lines indicate the spurious
jumps, resulting from the ‘special pair dance’, that are removed from the trajectories
(see text for details).

3000 cm−1 is well resolved and in addition strong bands are seen at around 1200 cm−1,
400 cm−1 and below. The difference spectra show good agreement with experimental
data, shown as a red dotted line in Fig. 1.7B. The previous literature interpretation
of these signatures in terms of Zundel and Eigen configurations is discussed in section
1.1.2. The interpretation in terms of the proton-transfer reaction dynamics is the topic
of chapter 4.

Long-time dynamics

For the analysis of diffusion of the excess protons on long time scales, the simple excess-
proton identification scheme for static observables needs to be augmented to identify
joint excess-proton trajectories throughout the whole simulation trajectory. Notably,
some works instead use a center-of-excess-charge reaction coordinate to circumvent this
problem [93]. Here, after identifying at each time step of the simulation a total number
of NH+ excess protons, the trajectories of the excess protons are stitched together to a
total of NH+ trajectories, each of the length of the whole simulation. The procedure
obviously introduces jumps in the joint trajectories whenever an excess proton changes
identity, which is a manifestation of the Grotthus process. However, rapid spurious
jumps within the same hydronium ion, the ‘special pair dance’ [107, 62], are filtered from
the trajectories by the following procedure: within each hydronium ion, the candidate
proton that either performs the next transfer to another water molecule or is the next to
be identified as an excess proton while neighboring a chloride atom, remains the excess
proton (a procedure that was also used by Calio et al. [62]). Lastly, the trajectories are
unwrapped over the periodic boundary conditions. Some trajectories of excess protons
produced by this protocol are illustrated in Fig. 1.8A and B along a single Cartesian
coordinate and on two different time scales. Additionally in Fig. 1.8A, the pale colored
lines show the trajectories before removal of the ‘special pair dance’.

Such joint trajectories can be used to calculate mean squared displacements (MSDs),
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4M, D = (0.30 ± 0.05) Å2/ps

6M, D = (0.24 ± 0.03) Å2/ps
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Figure 1.9.: MSDs (mean squared displacements) in the lab frame, ⟨|r(t) − r(0)|2⟩,
of the excess protons (A) and the oxygen atoms (B) computed from the simulation
trajectories of HCl solutions at three different concentrations. In B, the MSD of the
oxygen atoms in the pure-water simulations is shown as well. Errors of the mean are
indicated by the line widths and taken from standard deviations computed over the
individual excess-proton and oxygen-atom joint trajectories. Linear fits are shown as
black broken lines, which are fitted in the long time regimes, 20 ps to 80 ps, the range
that is also shown enlarged in the insets.

⟨|r(t)− r(0)|2⟩, of the excess protons on long time scales. The MSDs averaged over all
excess protons are shown in Fig. 1.9A for simulations of hydrochloric acid solutions at
three different concentrations and compared to the MSDs computed for the oxygen atoms
representative of the water molecules in Fig. 1.9B. In general, the MSD is expected to
show inertial scaling, MSD ∼ t2, for short time scales and diffusive scaling, MSD ∼ t, for
long time scales. Both regimes are well visible in Fig. 1.9B for the oxygen atoms. For
the excess protons the inertial regime is perturbed by the jumps in the joint trajectories,
caused by changes of the excess-proton identities.

The diffusion constant D, which is an experimentally observed quantity, is related to
the MSD by

D =
1

6t
⟨|r(t)− r(0)|2⟩, (1.17)

and computed by a least-square fit of the slopes in the diffusive regime between 20 ps
to 80 ps. The diffusion constants are reported in the legends of Figs. 1.9A and B with
statistical errors from the linear fits.

To access the accuracy of these diffusion constants, the focus is first put on the
values for the oxygen atoms. Within the error the same diffusion constant of about
DO = 0.08Å2

/ps is obtained in all four simulations. While this value is significantly
smaller than the experimental value of DO = 0.23Å2

/ps [117, 118], it is well known
that specifically the BLYP exchange-correlation functional in this simulation approach
produces too small diffusion constants. In agreement with these results, various studies
of water utilizing ab initio MD together with the BLYP exchange-correlation functional,
reported diffusion constants in the range of 0.04Å2

/ps to 0.11Å2
/ps for comparable
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setups to these, as reviewed recently [119].
Note that in experiments the excess proton diffusion constant is known to be strongly

concentration and temperature dependent [45]. In the dilute limit, the experimental
diffusion constant of the excess proton, DH+ = 0.94Å2

/ps, is much higher than the
experimental diffusion constant of water by a factor of DH+/DO = 4.1, an observation
that corroborates Grotthus’ hypothesis [44]. However, this factor drops to about 3.0
at 2M and 1.5 at 6M [45]. This trend was qualitatively captured in self-consistent
iterative multistate empirical valence bond (SCI-MS-EVB) simulations of hydrochloric
acid solutions [115, 116]. Both studies obtained values between DH+ = 0.2Å2

/ps to
0.3Å2

/ps around 1M and DH+ = 0.15Å2
/ps to 0.20Å2

/ps around 3M, compared to
a value of DH+ = 0.37Å2

/ps in the dilute limit (one excess proton in 256 waters) [97].
While a similar trend is also indicated in the present data, the errors are too large
to draw definite conclusions. The obtained diffusion constants for the excess protons,
DH+ = 0.24Å2

/ps to 0.34Å2
/ps, are smaller than the experimental value. However, the

ratios DH+/DO = 0.34/0.09 = 3.8± 0.8 for 2M, DH+/DO = 0.30/0.07 = 4.3± 1.3 for
4M and DH+/DO = 0.24/0.08 = 3.0 ± 0.8 for 6M, that is observed in the presented
data, seem in satisfactory agreement with experiments. Similar ab initio simulation
setups for a single excess proton in a box of water molecules obtained diffusion constants
of DH+ = 0.3Å2

/ps to 0.6Å2
/ps [87] and of DH+ = 0.3Å2

/ps to 0.8Å2
/ps [94]. A

study employing Car-Parinello molecular dynamics (CPMD) simulations of 1.7M HCl
solutions and the Perdew, Burke and Ernzerhof (PBE) exchange-correlation functional
found DH+ = 0.9Å2

/ps to 1.1Å2
/ps compared to DO = 0.04Å2

/ps to 0.07Å2
/ps for

the water molecules [91]. An older study of a single excess proton in a box of 64
water molecules using CPMD with the BLYP functional obtained DH+ = 0.05Å2

/ps to
0.08Å2

/ps compared to DO = 0.02Å2
/ps to 0.06Å2

/ps for the water molecules [120].
It is noteworthy, that the inclusion of nuclear quantum effects in simulations has been
shown to significantly increase the obtained excess-proton diffusion constants closer to
the experimentally observed values [97, 121].

To conclude, the accurate estimation of diffusion constants for the excess proton
remains challenging, which is seen from the wide spread of results obtained in previous
studies. The results presented here for the diffusion constants appear reasonable when
compared to previously reported values and specifically the ratios DH+/DO = 3.0 to 4.3
are in good agreement with experiment.

Short-time dynamics

The mean proton-transfer rate is at the heart of research on excess protons solvated in
water, as it is the relevant microscopic time scale that determines the macroscopic large
diffusion obtained by the Grotthus process, which is not governed by vehicular diffusion
of the oxygens but by exchange of the excess-proton identity. The mean transfer rate is
the inverse of the waiting time of a stochastic barrier-crossing process, that is not to be
confused with the transfer-path time of the actual transition over the barrier.
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Agmon [46] gives a summary of early experimental results, suggesting a mean proton-
transfer time of 1.5 ps obtained in NMR studies [43], which is believed to be correlated
with the hydrogen bond rearrangement and water reorientation dynamics on the time
scales of 1 ps to 2 ps determined from a number of other experiments. These time scales
seem to contrast more recent experimental results from 2D IR spectroscopy, that report
interconversion between different proton hydration structures, i.e. Eigen and Zundel-like
structures, on time scales of around 100 fs and less [122, 55, 74]. On the other hand,
Carpenter et al. [56] write, “the hydrated proton bend displays fast vibrational relaxation
and spectral diffusion timescales of 200 − 300 fs, however, the transient absorption
anisotropy decays on a remarkably long 2.5 ps timescale, which matches the timescale
for hydrogen bond reorganization in liquid water”. Arguing that the latter would be
an upper bound, they infer “the transfer of excess protons in water [...] is an activated
process with a timescale of 1− 2 ps.” Kundu et al. [74] confirm that “during the lifetime
of the H5O2

+ motif, that is on the order of 1 ps, the proton undergoes fluctuating large-
amplitude motions exploring essentially all possible positions between the flanking water
molecules”. Yuan et al. [90] measure a concentration-dependent ‘proton hopping time’ in
HCl solutions using 2D IR chemical exchange spectroscopy with a methyl thiocyanate
probe and extrapolate a time of 1.6 ps for the dilute limit.

It transpires, that two time scales determine the distribution of proton-transfer waiting
times, which was confirmed in various simulation studies and interpreted as stemming
from either back-and-forth or uni-directional proton transfer, respectively, in the literature
sometimes referred to as ‘reversible’ and ‘irreversible’ proton transfer. Napoli et al. [61]
point out that while they find a frequency-correlation time of (1.4±0.3) ps “corresponding
to the pump (3150 cm−1) and probe (1760 cm−1) frequencies used in [54]”, the auto-
correlation of the proton asymmetry actually decays on time scales of less than 100 fs
with a second slower component of (0.8±0.1) ps. Fischer et al. [123] find the time scale of
proton ‘hopping’ to be around 0.5 ps, including back-and-forth events, and deduce a time
scale of 2.5 ps for uni-directional events in a later study [91]. Calio et al. [116] extract
two timescales of about 400 fs to 500 fs and 1.3 ps to 2.3 ps for the concentrations 0.43M
to 3.26M from fits to the long-lived anisotropy decays, which the authors argue “can
correlate experimental time constants to irreversible proton transfer”. In a follow-up study
Calio et al. [62] report three timescales of about 10−17 fs, 320−490 fs and 2.3−3.2 ps for
the concentrations 0.22M to 0.43M from fits to the anisotropy decay of the excess-proton
dynamics projected on the axis of the two closest oxygen atoms, with a slight acceleration
to the values 12−15 fs, 83−270 fs and 1.4 ps when nuclear-quantum effects are considered.
Roy et al. [92] find a time scale of 1− 2 ps for uni-directional proton transfer between two
water molecules in 2M HCl solutions employing two-dimensional transition state theory
and Marcus theory of ion pairing. This number increases significantly to 2− 4 ps in 8M
HCl solutions. Arntsen et al. [94] report time constants of the excess-proton identity
auto-correlation function, which is elaborated on further below. They find a values of
184 fs, but after eliminating back-and-forth events from the data the time scale increases
to 1.69 ps. Furthermore, a couple of studies point out that the long time scale of proton
transport increases significantly with concentration [75, 92].
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Table 1.2.: Collection of proton-transfer time scales in water at 300K reported in the
literature from experiment (upper section) and theory (lower section).

method conc. [M] time
Meiboom [43] NMR 1.5 ps

Woutersen and Bakker [122] 2D IR 5 <0.1 ps
Dahms et al. [55] 2D IR <1 <0.1 ps
Thämer et al. [54] 2D IR 4 >0.48 ps

Carpenter et al. [56] 2D IR 2 <2.5 ps
Kundu et al. [74] 2D IR 1 <0.1 ps

1 ps
Yuan et al. [90] 2D IR chemical dilute 1.6 ps

exchange limit
Fischer et al. [123] DFT CPMD 1.7 0.5 ps

Fischer and Gunlycke [91] DFT CPMD 1.7 2.5 ps
Calio et al. [116] MS-EVB 0.43− 3.26 0.4− 0.5 ps

1.2− 2.3 ps
Calio et al. [62] MS-EVB, 0.22− 0.43 10− 17 fs

DFT BOMD 0.3− 0.5 ps
2.3− 3.2 ps

+ NQE 12− 15 fs
0.83− 0.27 ps

1.4 ps
Arntsen et al. [94] DFT BOMD 0.184 ps

1.69 ps
Roy et al. [92] DFT BOMD 2 1− 2 ps

DFT BOMD 8 2− 4 ps
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A summary of the reported values is given in Tab. 1.2. It transpires that the separation
in back-and-forth and uni-directional events is important to distinguish two time scales in
the broad distributions of proton-transfer times. For stochastic barrier-crossing processes
of highly inertial or non-Markovian coordinates and furthermore for low energy barriers,
it is well established that barrier-crossing events exhibit large numbers of subsequent
back-and-forth events, due to the slow dissipation of the energy required for the initial
barrier-crossing event [35, 124, 125, 16, 92, 4]. Such events appear especially important
with regard to proton-transfer processes and their spectral signatures [2, 4].

Identity auto-correlation functions To describe the long time scales of excess-proton
diffusion observed in the anisotropy decay of 2D IR experiments [54, 56], correlation times
of the excess-proton identity have proven useful. Inspired by previous work [86, 94, 62],
the auto-correlation functions of the excess-proton and hydronium-oxygen identities
are calculated from joint trajectories of the excess protons as have been used for the
analysis of the long-time diffusion properties described in 1.1.3. Following this protocol,
the excess protons are given as the remaining protons after the water molecules are
assembled for each oxygen atom with the closest two hydrogen atoms at each time step
of the simulation. Hydronium ions are defined by an excess proton together with the
water molecule of the closest oxygen atom. Therefore, at each time step a total number
of excess protons NH+ , as well as hydronium ions, equivalent to the number of chloride
ions in the simulation, is obtained. The trajectories are then stitched together to give
NH+ trajectories, each of the length of the whole simulation, for the excess protons and
hydronium oxygens, respectively. Following Arntsen et al. [94], rapid back-and-forth
fluctuation of hydronium-oxygen identities is ‘filtered out’ from the trajectories by the
following procedure. Whenever along a trajectory the identity changes from one oxygen
atom to another, it is checked whether the identity returns to the original nucleus within
0.5 ps. If it returns without passing to a third nucleus in between, the identity remains
with the original nucleus as if the identity did not change throughout this time. For the
excess-proton identities this criterion does not suffice since the identity often fluctuates
between three candidates within one hydronium ion. Rather the same procedure as also
detailed in section 1.1.3 and similar to Calio et al. [62] is used to ‘filter out’ the rapid
back-and-forth fluctuation of excess-proton identities, i.e. the ‘special pair dance’: The
candidate proton that either performs the next transfer to another water molecule or is
the next to be identified as an excess proton while neighboring a chloride atom, remains
the excess proton. These procedures define sets of trajectories from which the fast
identity fluctuations are ‘filtered out’. The identity auto-correlation functions are then
calculated for excess-proton and hydronium-oxygen identities on both sets of trajectories,
‘filtered’ and ‘unfiltered’.

The identity auto-correlation function is here defined as

c(t) =
⟨h(t)h(0)⟩ − ⟨h⟩2

⟨h⟩ − ⟨h⟩2 , (1.18)

where h(t) is one if an excess proton or hydronium oxygen atom has the same identity,
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Figure 1.10.: Identity auto-correlation functions Eq. (1.18) of the excess protons (A)
and hydronium oxygens (B) obtained from ab initio MD simulations of HCl solutions at
various concentrations. The correlation functions are computed from unfiltered (solid
colored lines) and filtered trajectories (broken colored lines), see text for details. The
data is shown on a logarithmic time axis in the insets.

i.e. is the same nucleus, as at t = 0, otherwise h(t) is zero. In this definition the identity
auto-correlation function is designed to reach unity for t = 0 and to decay to zero for
long times and is thereby slightly different compared to previous work [126, 86, 94].
Additionally, the continuous identity auto-correlation function is given as [94, 62]

C(t) =
⟨H(t)H(0)⟩

⟨H⟩ , (1.19)

where H(t) is one as long as an excess proton or hydronium oxygen atom continuously
has the same identity for the entire time interval [0, t] and zero otherwise.

The excess-proton and hydronium-oxygen identity auto correlations obtained according
to Eq. (1.18) are given in Figs. 1.10A and B with the same data shown on a logarithmic
time axis in the insets. Auto-correlation functions of the filtered trajectories are shown
as broken colored lines for the three hydrochloric acid solutions at various concentrations
while the auto-correlation functions of the unfiltered trajectories are shown as solid
colored lines. The curves decay on multiple time scales. All show remarkable long-time
behavior beyond several picoseconds, indicating that proton as well as hydronium identity
is correlated over very long times scales, which occurs from looping of identities over
several different nuclei [86]. As expected, the two types of data from filtered or unfiltered
trajectories converge in these long time regimes. Both, the excess-proton identity auto
correlations in Fig. 1.10A and the hydronium identities in Fig. 1.10B show a clear
concentration dependence, with longer decay times for higher concentrations. On short
time scales the excess-proton identity auto correlations largely decay within 0.1 ps to
a value of 0.5, whereas the hydronium identity auto correlations decay to a value of
0.5 only after about 1 ps to 2 ps. Furthermore, a slight peak in the hydronium identity
auto-correlation of the unfiltered trajectories (solid colored lines in Fig. 1.10B) at about
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Figure 1.11.: Continuous identity auto-correlation functions Eq. (1.19) of the excess
protons (a) and hydronium oxygens (b) obtained from ab initio MD simulations of HCl
solutions at various concentrations. The correlations functions are computed from filtered
(solid colored lines) and unfiltered trajectories (broken colored lines), see text for details.
The data is shown on a logarithmic time axis in the insets.

0.025 ps indicates back-and-forth transfer of the excess proton in the transient H5O2
+

cluster occurring at about twice the transfer-path time, τTP = 12.6 fs to 14.3 fs, which
is related to the 1200 cm−1 proton-transfer-path IR spectral signature [2]. Similarly, a
peak in the excess-proton identity auto correlations of the unfiltered trajectories (solid
colored lines in Fig. 1.10A) at about 0.010 ps indicates the time scale of excess-proton
rattling within a single hydronium ion, referred to as ‘special pair dance’ in the literature
[107, 62].

Next, to focus on the fast time scales of the correlations, the continuous identity auto-
correlation functions according to Eq. (1.19) of the excess protons and of the hydronium
oxygens are given in Figs. 1.11A and B with the same data shown on logarithmic time
axes in the insets. Again, the data is shown in each plot as computed from filtered
(broken colored lines) and unfiltered trajectories (solid colored lines). Note, that for the
computation of these continuous identity auto correlations, configurations where the
excess proton is located between the oxygen atom and a chloride ion are excluded. These
configurations obviously produce spurious long-time auto correlations but have been
analyzed to make up only 5% of the total trajectory lengths of all excess protons even at
the concentration of 6M, which is discussed in detail in section 1.1.2. The excess-proton
continuous identity auto correlations decay fully within 0.3 ps and the hydronium-oxygen
identity continuous auto-correlations within 10 ps. Comparing to the data presented in
Fig. 1.10A and B, the hydronium identity auto correlations in Fig. 1.11B show again a
clear concentration dependence, with longer decay times for higher concentrations. In
contrast, such a dependence is not visible for the excess-proton identity auto correlations
in Fig. 1.11A.

The time scales of the hydronium continuous identity auto correlations have been
interpreted to be consistent with the time scales of the anisotropy decay observed in 2D
IR experiments [56, 94]. Fits to these auto correlations with the sum of two decaying
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Figure 1.12.: Continuous identity auto-correlation functions Eq. (1.19) of the hydronium
oxygens obtained from ab initio MD simulations of HCl solutions at various concentrations
(already shown in Fig. 1.11B). The correlation functions are computed from filtered (A)
and unfiltered trajectories (B), see text for details. Each curve is fitted to a sum of two
decaying exponentials with the time scales reported in the legends and shown as black
broken lines.

exponentials are therefore given as broken black lines, together with the original data
from Fig. 1.11B repeated as solid colored lines in Fig. 1.12A (for the filtered trajectories)
and B (for the unfiltered trajectories). The long time-scales of the bi-exponential fits to
the correlations of the filtered trajectories, shown in 1.12A, reach from 1.2 ps to 1.53 ps,
increasing with concentration. These time scales match the time scales reported for
uni-directional proton transfer rather well (see Tab. 1.2). With regard to the results
reported in section 1.1.3, where the long-time diffusion constants are found to be too
small by a factor of about four when compared to experiment, one would expect the time
scales for uni-directional proton transfer to be longer by the same factor. However, the
present analysis excludes configurations involving chloride ions, which presumably are
characterized by longer decay times. The diffusion constants on the other hand would
have to be split in vehicular diffusion, due to translation of hydronium ions, and the
jump diffusion, due to uni-directional proton transfer, to allow for a better comparison
to the time scales of the auto correlations.

The long time-scales of the bi-exponential fits to the continuous hydronium identity
auto correlations of the unfiltered trajectories, shown in Fig. 1.12b, reach from 0.22 ps
to 0.27 ps, increasing with concentration. They can be interpreted as the mean proton-
transfer waiting times [2], that however are dominated by back-and-forth fluctuations.
In case that back-and-forth motion of the excess-protons between two oxygen atoms
within 0.5 ps are filtered from the trajectories, the continuous hydronium identity auto
correlation in Fig. 1.12a decays on time scales that match experimental spectroscopic
anisotropy decays and have been interpreted as uni-directional proton transfer.
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1.1.4. Nuclear quantum effects

Apart from the challenging computational demand, the estimation of dynamical properties,
such as spectroscopic quantities or time-correlation functions, from MD simulations
addressing NQE remains a “challenging problem” [58]. Strictly speaking, treating NQE
on the basis of the Trotter formalism is only valid for static observables.

So far, to obtain dynamical properties, NQE simulations are mostly propagated using
either CMD or RPMD. Note, that both are based on ring polymers though and do not
consider correlations between nuclei and electrons, thus relying on the Born-Oppenheimer
approximation. In fact, “the formal justification of both CMD and RPMD does not involve
a hierarchy of well-controlled approximations starting from the full quantum mechanical
expression for the various time correlation functions. Because one cannot identify or
compute terms that are neglected by these methods, it is hard to systematically address
their known artifacts, which becomes particularly problematic at low temperatures or
when calculating the nonlinear operators encountered in many types of spectroscopy”
[58]. Thus, it is not surprising that IR spectra obtained from different NQE methods
may vary significantly, see Fig. 1.13, taken from reference [60], which shows IR spectra
for the H5O2

+ cation in vacuum obtained from different NQE simulation techniques.

Figure 1.13.: IR spectra for the Zundel cation in gas phase, H5O2
+, for various NQE

simulation techniques (ring-polymer molecular dynamics (RPMD), centroid molecular
dynamics (CMD) and thermostatted ring-polymer molecular dynamics (TRPMD)).
Reprinted from Rossi, M., Ceriotti, M. & Manolopoulos, D. E. J. Chem. Phys. 140,
234116 (2014), with the permission of AIP Publishing.
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Figure 1.14.: IR and vibrational density of states (VDOS) spectra and difference spectra
for 4M HCl solution from experiment and ab initio molecular dynamics simulations with
quantum and classical nuclei. Reprinted from Napoli, J. A., Marsalek, O. & Markland,
T. E. J. Chem. Phys. 148, 222833 (2018), with the permission of AIP Publishing.

Similarly, diffusion coefficients are known to be vastly affected [97].

To date, only a single study of aqueous hydrochloric acid solution shows IR spectra
obtained from ab initio MD simulations based on DFT which in addition attempts to
model NQE [61]. The study achieves this by making relatively drastic simplifications, for
example performing RPC to a single bead and compare to data with larger ring polymers
only for a single observable. Still, the authors perform most of their analysis, which
focuses on the hydrogen-bond dynamics, based on the classical trajectories. The study
is important here as it compares IR spectra as obtained with and without NQE for a
similar DFT model. The spectra taken from the publication, including also a comparison
to experimental data, are given in Fig. 1.14. The qualitative and quantitative differences
between the absolute as well as the difference spectra obtained with and without NQE
are virtually nonexistent, except for high frequencies of the regime of the OH stretch
vibration around 3300 cm−1. Interestingly, the data obtained without NQE appears to
be in better agreement with the experimental data overall, which of course could be due
to canncellation of errors. Notably, the study finds large deviations between simulations
with and without NQE for the mean distribution of the excess proton positions along
a proton sharing coordinate. While this strong effect of NQE is known for a long time
[59], the actual dynamics do not seem to be drastically changed, which is seen by the
good overall agreement of the spectra. This is also seen from the IR difference spectra
reported in another study, comparing spectra with and without NQE for two versions
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Figure 1.15.: IR difference spectra obtained from classical and CMD trajectories of (a,
left) aMS-EVB 3.2 and (b, right) MS-EVB 3.2 simulations of 1 HCl aqueous system along
with the experimental attenuated total reflection (ATR) difference spectrum. Reprinted
with permission from Biswas, R., Tse, Y. L. S., Tokmakoff, A. & Voth, G. A. J. Phys.

Chem. B 120, 1793 (2016). Copyright 2016 American Chemical Society.

of the multistate empirical valence bond (MS-EVB 3.2) model for the hydrated excess
proton [97]. The spectra taken from [97] are shown in Fig. 1.15 and likewise do not differ
much with and without NQE.

Another recent study performed simulations of a single hydrochloric acid pair in water
using DFT and attempting to account for NQE [62]. They addressed static properties
using a computationally very expensive path-integral simulation with P = 30 beads
for 32 ps and dynamical properties by RPC simulations with a reference potential that
was obtained using machine learning techniques. From this study, it transpires that
either extensive computational resources or advanced methods with possibly uncontrolled
approximations are still required to address NQE in high-level quantum-chemical MD
simulations.

1.1.5. Excess protons in biological systems

The functioning of several widely studied proteins depends on the dynamics of protons.
Examples include the pumping of protons to build electrochemical gradients in bacteri-
orhodopsin [63, 49, 24, 50, 52, 13] or cytochrome c oxidase [127, 128, 27], the transport
of protons from the water-splitting reaction center in photosystem II [129, 25, 130, 26],
the proton-coupled isomerization of phytochromes [131–133, 7] and viral proton channels,
so-called viroporins, that are targeted in drug design [134, 135].

The study of the dynamics of the small and fast-moving protons is especially difficult
in the complex protein environment. IR spectroscopy, which, due to its high resolution
and sensitivity, is an established experimental method in the field of biophysics, is also
used to probe proton dynamics in these systems. However, as discussed above, the
spectral signatures of proton transport are rather broad [52, 2, 4] and the high resolution
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of IR spectroscopy cannot be exploited. By difference spectroscopy it is possible to
distinguish these signatures from the broad background of the protein [49, 50, 64, 52], but
the localization of the protons in the protein and the resulting signatures often requires
guidance by simulations [51, 65]. Time-resolved IR spectroscopy adds another dimension
to the data and therefore aids the interpretation of these signals [131, 7].

In proteins, proton transport also happens in a Grotthus mechanism which differs
from bulk solution because it involves proton-accepting side chains and confined water
molecules [24, 136]. Such scenarios are nowadays also modeled using ab initio MD
simulations [137, 52, 65, 13, 7].

Proton transfer between amino-acid side chains

Model systems for studying the excess proton localization and dynamics in the vicinity
of a typical proton-accepting side chain in a protein, are pairs of deprotonated carboxyl
molecules, as commonly assumed in a protein environment, with water molecules and
an excess proton in between. Such systems have recently been studied in ab initio MD
simulations, the results of which are summarized in Figs. 1.16 and 1.17 [13, 7].

The first model system depicted in Fig. 1.16C, with one water molecule between a pair
of carboxylates, is a typical proton-storage site [65, 7]. It agrees well with the crystal
structure of bacteriorhodopsin, shown in Fig. 1.16A and B, which shows a water molecule
located right in between the head groups of the aspartate side chains D85 and D212 [13].

Suitable coordinates for analyzing the proton localization are given by the oxygen-
oxygen distances ROCOW

and an asymmetry coordinate for the hydrogen atoms, ROCH−
ROWH, similar to the coordinates used for excess protons in bulk or gas-phase water
clusters [59, 2, 4]. Since in this model system the role of the excess proton is fluctuating
rapidly, the asymmetry coordinate is always computed for all three hydrogen atoms near
the water oxygen, OW, with respect to the carboxylic oxygen, OC of either carboxyl
molecule, that produces the smallest absolute asymmetry. This description is useful as it
treats all hydrogen atoms interchangeably and does not double count different pairs of
oxygen atoms.
Example trajectories of ROCH for the three central hydrogen atoms are shown in
Fig. 1.16D. It is well visible in the time course that always two of the three protons
produce a small value of ROCH, and one being closer to a carboxylic oxygen, one being
slightly closer to the water oxygen. As soon as one of these protons changes its asymmetry
and moves closer to the water, the other one moves closer to the carboxylic oxygen. The
free energy of ROCH − ROWH shows in Fig. 1.16D a ∼ 2.5 kBT barrier separating an
excess-proton localization near a carboxylic oxygen and the water oxygen.

A second model system with two water molecules mimics a water cluster near the
chromophore of bacteriophytochrome Agp2, that is proposed to transiently store a mobile
excess proton [7]. The model system consists of two carboxylate molecules, two water
molecules and an excess proton as shown in Fig. 1.17A. The total charge amounts
to -1 e. The carbon atoms are constrained at a fixed mutual distance of 7.4Å, which
corresponds to the distance between the carboxylic side chains of propB and propC
of the chromophore taken from the crystal structure [133]. The water oxygen atoms
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Figure 1.16.: A, B: Illustration of the proposed active-site proton cage near the
chromophore of bacteriorhodopsin. Reprinted from Ref. [13], used under Creative
Commons CC-BY license (http://creativecommons.org/licenses/by/4.0/). C: Snapshot
from the ab initio MD simulation of a water molecule and an excess proton in between
two carboxylate molecules. The reaction coordinate for the proton transfer between
the two carboxylates is the distance between carboxyl group and water oxygen ROCOW

and and the excess proton’s relative asymmetry to these oxygens ROCH − ROWH. D:
Example trajectories of the ROCH distances of the three central hydrogen atoms in the
system. The proton transfer is well visible as a fast jump process by which protons 1
and 2 exchange E: The free energy of the asymmetry coordinate ROCH −ROWH shows
an effective barrier height of about 3 kBT for proton transfer between the two carboxyl
group via a Grotthus mechanism.

are constraint by a quadratic potential in Y and Z direction, k(y2 + z2), illustrated in
Fig. 1.17, to model the confining effect inside the protein. Since the realistic confinement
strength is not known, simulations at three different strengths were performed at k =
0.0, 0.4, 4.0 kBT/Å2, where kBT is the thermal energy.

IR spectra of this toy model system for different confining strengths are shown in
Fig. 1.17B. All systems show a much higher IR intensity along the X axis than in the YZ
plane. The signals in the YZ plane are mostly independent of the confining strengths k.
Clear bands reside at 500, 800 and around 1000 to 1200 cm−1, that are associated with
the modulated OC vibrations. In addition, broad features appear between 2500 cm−1 and
3500 cm−1 for H2O (and between 1500 cm−1 and 2500 cm−1 for D2O), that are associated

http://creativecommons.org/licenses/by/4.0/
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A B

Figure 1.17.: A: Snapshot from the ab initio MD simulation of an excess proton and two
water molecules that are located in between a pair of carboxylate molecules. The pink
cylinder illustrates the confining potential acting on the water oxygen nuclei, which is
centered on the axis connecting the carbon atoms. The carbon atoms are fully constraint
in the MD simulations. B: IR spectra of the model system shown in Figure S13a along
different axes for different confining strengths (k in kBT/Å2) of the water molecules. For
each figure, IR spectra along the X axis connecting the fully constrained carbon atoms
of the carboxylates are shown in the upper panel and IR spectra in the YZ plane in the
lower panel. Reprinted from Ref. [7], used under Creative Commons CC-BY license
(http://creativecommons.org/licenses/by/4.0/).

with modulated OH (and OD) stretching vibrations. The relatively stronger signal along
the X axis on the other hand heavily depends on the confining potential. While for the
two weakly confined cases (red and green lines) the broad features between 2500 cm−1

and 3500 cm−1 for H2O (and between 1500 cm−1 and 2500 cm−1 for D2O) resemble the
ones in the YZ plane, the signature is clearly different for the strongly confined case
(blue line). Here a broad continuum band appears in the 1700 cm−1 to 2500 cm−1 range
for H2O and between 1300 cm−1 and 2000 cm−1 for D2O, likely connected to a proton
delocalization. The data shows that an excess proton exchange between two carboxylate
molecules with two water molecules in between, as suggested by the crystal structure
of Agp2 of the carboxylic side chains of propB and propC, is possible at the ps time
scale, if the water molecules are confined to the central axis by a cylindrical confining
potential. A confining potential is obviously necessary to model the protein environment
in this simplified model system, it is however difficult to estimate the realistic potential
strength.

These toy-model simulations serve as a guidance for generally understanding the
effect of confinement on water-mediated proton transfer dynamics between carboxylate
molecules and its spectral signature, specifically the appearance of a continuum band in
the 1700 cm−1 and 2000 cm−1 range for both H2O and D2O under confinement.

It is also possible to observe proton transfer in ab initio MD simulations of more
complex systems which model the protein environment more closely. This has been
demonstrated for a different extended water cluster that is proposed to transiently store
a mobile excess proton in bacteriophytochrome Agp2, and which consists of one side of

http://creativecommons.org/licenses/by/4.0/


1. Introduction

the chromophore including ring C and ring D, side chains H278 and Y165, that were each
truncated at the ring and three water molecules TW1, TW2 and W6 [7]. An illustration
is given in Fig. 1.18. The system models the scenario of a deprotonated ring D and is
therefore setup with a neutral deprotonated ring D, but also an excess proton and thus a
total charge of 1 e. The excess proton is initially placed between water molecule TW2
and the carboxylic side chain of ring C of the chromophore, which was found by initial
equilibration to be a meta-stable configuration.

The IR spectra are averaged over three non-equilibrium simulations for H2O, five
non-equilibrium simulations for D2O and all dimensions. The resulting spectra are shown
in Fig. 1.18B for both, H2O and D2O, as red lines and compared to average IR spectra
computed from the reference simulations, in which the keto group is protonated, shown
as blue lines. A comparison of the IR spectra clearly shows that the non-equilibrium
simulations exhibit a continuum band between 1700 cm−1 to 3000 cm−1 for H2O (and
between 1800 cm−1 and 2200 cm−1 for D2O), which are not visible in the IR spectra of
the reference simulations. In conclusion, the ab initio MD simulations of the two model
systems of water clusters near the chromophore of Agp2, each show a mobile excess
proton and related continuum bands in the IR spectra for both, H2O and D2O, that
are of comparable magnitude. The continuum bands reach approximately between the
bands of the respective water bending and stretching vibrations, i.e. between 1700 cm−1

to 3000 cm−1 for H2O (and between 1300 cm−1 to 2200 cm−1 for D2O).
The ab initio MD simulation results of these model systems illustrate how proton

dynamics in biological systems may be mediated by hydrogen-bond networks of confined
water molecules and proton-accepting protein side chains. The energy barriers for proton
transfer in the models systems, which are based on realistic scenarios in a protein, are not
too large, on the order of a few kBT , and the dynamics can be resolved by these types of
simulations. The related IR spectral signatures that are experimentally accessible show
distinct features, such as the continuum band.

As for the first model system, the data supported experimental evidence that excess-
proton exchange near the Schiff base of the chromophore in bacteriorhodopsin is possible
in the equilibrated dark-state at ambient temperature, which hints to an active-site
proton cage.

In context of the experimental data presented in [7], the ab initio MD simulations
of the model systems two or three do not exclude either one as being the preferred
system for transient proton storage near the chromophore in bacteriophytochrome Agp2.
It is rather the contrary, both clusters present plausible candidates that confirm the
experimentally observed transient IR spectra.
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Figure 1.18.: A: Snapshots from the ab initio MD simulations of a proposed water
cluster near the chromophore of Agp2, including one side of the chromophore with ring C
and ring D, side chains H278 and Y165, that were each truncated at the ring, three water
molecules TW1, TW2 and W6 (see Fig. 1 of Ref. [7]) and an excess proton, so that the
total charge amounts to 1 e. The pink circle illustrates the location of the excess proton
during the course of the non-equilibrium simulations. A number of constraints is applied
to model the confining effect inside the protein. The heavy atoms of the chromophore and
H278 are fully constrained, except for the carboxylic side chain at ring C. Furthermore
the water oxygen atoms are constraint by a weak quadratic potential in all dimensions,
k(x2 + y2 + z2), with k = 0.04 kBT/Å2. Furthermore, for Y165, the oxygen atom of
the hydroxyl group and the carbon atom of the phenyl ring that connects to the back
bone of the protein are constrained by such a quadratic potential with k = 0.04 kBT/Å2.
A small number of simulations of this non-equilibrium system are performed for each,
H2O and D2O, under NVT conditions at 300K using a simulation time step of 0.5 fs.
All show a transfer of the excess proton to Y165 as a Grotthus process within the first
5 ps, in some simulations the excess proton is further transferred to the nitrogen atom
of the keto group at ring D. Interestingly, in some simulations, Y165 is protonated at
the phenyl ring, before the proton from the hydroxyl group is released, which probably
presents another meta-stable state. Each simulation is run for about 5 ps to 7.5 ps or
until the keto group at ring D is protonated, which is considered the meta-stable reference
configuration. The first 0.1 ps are truncated for initial fast equilibration. B: IR spectra
of the model system shown in Figure S13b. The IR spectra are averaged over three
non-equilibrium simulations for H2O, five non-equilibrium simulations for D2O and all
dimensions. Reprinted from Ref. [7], used under Creative Commons CC-BY license
(http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/
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1.2. Vibrational spectroscopy

Linear vibrational spectroscopy measures the power absorbed by a system subject to an
external field F⃗ (t), oscillating at frequency ω = 2πf . The measured quantity is then the
imaginary part of the susceptibility, ωχ̃′′(ω). According to the fluctuation-dissipation
relation, which is derived in supplement E, the absorbed power is proportional to the
equilibrium fluctuations of an observable a(t) coupling to the field F⃗ (t) in the Hamiltonian
[138]. In the case of IR spectroscopy the external field is the electric field of the incoming
light beam and the observable is the system’s dipole moment.

Thus, to model the IR spectroscopic response of a system, one usually attempts
to model the fluctuations of the system’s dipole moment [30]. Of course, if suitable
simulation data with sufficiently high time resolution is available, the most direct way
is to determine the fluctuations from unperturbed equilibrium simulations [139]. The
Wiener-Kintchine theorem provides an efficient and numerically stable approach to
estimate the fluctuations from the Fourier transform of the observable [140]. However,
this is a computationally demanding approach since force-field MD simulations are usually
insufficient and quantum-mechanical methods are needed.

Alternatively, as mentioned already in the previous section, an efficient model are
normal modes, i.e. harmonic approximations to the dynamics around energetically
minimal states, which can be estimated directly from the stiffness of these states along
all 3N spatial dimensions [30]. Obviously, normal modes become exact in the zero-
temperature limit, when this linear approximation to the dynamics is valid. At elevated
temperature, these harmonic normal modes are mainly affected by two different effects.
On the one hand, nonlinear potential effects beyond the harmonic approximation become
relevant and on the other hand, line broadening occurs as a result of coupling to the
thermal environment. It shall be noted that in the following only nonlinear potential
effects are considered and not nonlinear response which is also a common perspective
taken in the literature with respect to multidimensional or time-resolved spectroscopy.

Line broadening is commonly accounted for by using effective line-shape, or band-shape,
functions that are fitted to the data at hand. The common choice is the Lorentzian line
shape which is derived from the response of the damped harmonic oscillating dipole
moment p(t) with mean ⟨p⟩ = qL, where q is the charge and L a length scale, as

χ̃(ω) =
q2

V ϵ0

k −mω2 + iγω

(k −mω2)2 + γ2ω2
, (1.20)

where kBT is the thermal energy, V is the system volume, ϵ0 is the vacuum permittivity,
m is the mass and k is the stiffness of the harmonic potential U(p) = kp2/2. The
normal-mode frequency ωNM =

√
k/m is the position of the maximum of the function.

The friction constant γ is the linear frictional damping coefficient of the damped oscillator
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and determines the line width. Eq. (1.20) can be rewritten as

χ̃(ω) =
q2

V ϵ0m

ω2
NM − ω2 + iγm−1ω

(ω2
NM − ω2)2 + γ2m−2ω2

(1.21)

≈ q2

V ϵ0mωNM

2(ωNM − ω) + iγm−1

4(ωNM − ω)2 + γ2m−2
, (1.22)

where the near-resonance approximations ω ≈ ωNM and ω2
NM − ω2 ≈ 2ωNM(ωNM − ω)

are used [34]. The imaginary part of Eq. (1.22) is identified as the normalized Lorentzian
function [30]

L(ω0 − ω, β) =
1

π

β

(ω0 − ω)2 + β2
, (1.23)

with a maximal value of 2/(πβ) at ωNM and a full width at half maximum (FWHM) of
2β, so that

ωχ̃′′(ω) =
q2π

2V ϵ0m
L(ωNM − ω, γ/(2m)). (1.24)

Note, that the Lorentzian function becomes the Dirac delta function in the frictionless
limit β → 0.

In the overdamped limit, m → 0, the previous approximations are not valid, but rather,
starting from Eq. (1.20), defining τγ = γ/k, and using k = kBT/L

2, one obtains the
Debye line-shape function [141]

χ̃(ω) =
q2L2

V ϵ0kBT

k + iτγω

1 + τ2γω
2
, (1.25)

which is useful to model slow processes in the GHz regime, such as the well-known Debye
peak of water at around 20GHz [142, 143, 12].

In addition to the frictional broadening discussed above, the effective harmonic stiffness
k may also fluctuate in a varying local environment. The previous equations remain valid
in the limit of homogeneous line-broadening, i.e. when the broadening due the friction γ is
larger than the broadening due to the variance in k. This broadening is therefore expected
for strongly damped vibrations, i.e. with a fast energy exchange with the environment,
and in homogeneous media. Another limit, referred to as inhomogeneous line-broadening
occurs when the variance in k is large compared to the frictional broadening, which is
expected for weakly damped vibrations with slow energy exchange in inhomogeneous
media. Then the individual Lorentzian modes can be modeled to first order as Gauss-
distributed around a mean value ω∗ [30],

ωχ′′(ω) =
q2π

2V ϵ0m

∫
dω′ g(ω′, ω∗)L(ω′ − ω, β), (1.26)
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where g(ω, ω0) = exp[− ln(2)(ω − ω0)
2/β2]

√
ln(2)/π/β) is the normalized Gaussian

distribution, written for a FWHM of 2β analogous to the Lorentzian function above.
This convolution is called the Voigt shape, which in the limit of weak damping γ → 0,
becomes simply the Gaussian line shape

ωχ′′(ω) =
q2π

2V ϵ0m
g(ω, ω∗). (1.27)

It shall be noted that a Gaussian line shape is also experimentally observed in gas-phase
spectra due to the Doppler effect, where it is therefore called Doppler broadening [30].

Since especially the estimation of the molecular friction γ is difficult, in practice
these line shape functions mostly present heuristic but efficient models. However, recent
developments in parameterization of the GLE, which is introduced in detail in section
1.3.1, allow for accurate estimation of molecular friction from MD simulation data. In
the GLE, molecular friction is expressed as a time-dependent memory friction kernel Γ(t)
and the response for a harmonic potential is given as [1]

ωχ̃′′(ω) =
q2

V ϵ0

ω2 ReΓ̃+(ω)
∣∣∣k −mω2 − iΓ̃+(ω)ω

∣∣∣
2 , (1.28)

where Γ+(ω) denotes the single-sided Fourier-transformed friction kernel. When compar-
ing the denominator to the one in Eq. (1.20), it transpires that the real part of Γ+(ω)
acts like homogeneous frictional line-broadening, while the imaginary part acts like a
correction to the harmonic stiffness k as expected for inhomogeneous line broadening.
This line shape function therefore handles both inhomogeneous and homogeneous line
broadening and by numerical evaluation of the GLE also nonlinear potential effects can
be addressed.

1.2.1. Infrared spectrum of liquid water

The experimental IR spectrum of liquid water given in Fig. 1.19 as a black broken line
is comprised of four dominant bands. A spectrum from ab initio MD simulations of
BLYP-D3 quality of 256 water molecules in a periodic box, representative of bulk water,
is shown for comparison as a blue solid line. The data set is discussed in detail in
chapter 5, where it is employed to analyze the frequency-dependent friction of the water
vibrational modes and its effect on the line shape. The assignment of the peak at around
1650 cm−1 as the water bending and the broad peak centered at 3300 cm−1 as the water
stretching band is straightforward when regarding the gas phase normal modes of a single
water molecule (vertical gray broken lines). Note the significant shift compared to the
gas phase and the different band widths which are explained as part of the analysis in
chapter 5. The broad peak centered at 600 cm−1 is associated with librational motion of
water molecules and the peak at around 150 cm−1 with the stretching of hydrogen bonds
[144–146, 12].

Previous effort in modeling the bulk-water IR spectrum is extensive but has proven
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Figure 1.19.: IR absorption spectra obtained from ab initio MD simulations of pure
water (blue solid line, BLYP-D3 quality) and normal modes calculated from a single
water molecule on the same level (vertical gray broken lines) [1]. The black broken line
shows an experimental spectrum [198].

difficult due to a number of complex effects. While simple assignment of the few bands of
bulk water is easy when compared to the few gas-phase normal modes of the comparably
simple single water molecule, these modes are strongly coupled across several molecules
in the bulk phase and quantitative models for the line shape need to account for this
[147–155]. Many works therefore rely on computationally expensive quantum-chemical
ab intio MD methods for simulating bulk water and calculating spectroscopic properties
(such as the BOMD data shown in Fig. 1.19) [144, 156, 145, 157, 119, 158–161, 12, 162, 1].

Alternatively, several works have attempted to optimize the representation of water
molecules in classical MD simulations with respect to the spectral properties [163–166]
or with great success by including many-body interactions [167–172].

Also, mixed quantum-classical approaches have been used, where an emsemble of
configurations is sampled from force-field MD and the spectroscopic properties are then
evaluated on a more complex quantum-chemical level [173, 174, 151, 175, 176], among
which the classical dipole and fluctuating-frequency approximations can be differentiated
[177, 178].

Beyond that, Fermi-resonance between the water bend and stretch vibrations [179]
and NQE [180, 181, 172] are known to affect the line shapes and have been addressed.

Line shape models based on the GLE have also previously gained some attention
[182–188] but only new parameterization methods allow to account for both anharmonic
potential and frequency-dependent friction simultaneously [1].

The complex nature of vibrational lifetimes, which are closely related to molecular
friction and vibrational coupling between different molecules and modes, have been
the focus of several experimental time-dependent and multidimensional IR studies [189–
197, 162], which present further benchmarks for computational studies and inspiration
for future models.



1. Introduction

1.3. Reaction-rate theory

Covalent and non-covalent reactions in solution are relevant in almost all biological
processes as well as technical applications. As such the mean turnover rate from reactants
to products is arguably the most important observable in such processes, as it determines
the time scales that balance the complex reaction chains and circles in biological systems
or simply the efficiency of large-scale technical applications. The analytical prediction of
such mean reaction rates has a long history in theoretical chemistry, reaching back to
Arrhenius [199], who stated the exponential dependence of the reaction rate on the free
energy barrier height separating reactants and products along a reaction coordinate.

In solution, the stochastic random forces and frictional damping induced by the solvent
particles on the reacting solutes result in stochastic Brownian motion [200], which is
modeled by the Langevin equation [201] and determines an important prefactor to the
aforementioned exponential scaling. Kramers [37] first explored the inverse scaling of the
prefactor in opposite limits of the friction constant, known since as Kramers’ turnover.

To complicate the matter, low-dimensional models of reaction dynamics tend to break
down whenever the solvent influence is critical, and therefore even for the simplest
reactions in solution, constant-friction models along a single reaction coordinate appear
insufficient [5]. However, due to their large number, it is not practical to include solvent
molecules explicitly in the model and effective descriptions remain necessary. This issue
has in the past been addressed by searching for more suitable reaction coordinates and
proposing higher dimensional representations [202, 203]. By linear projection, a higher
dimensional representation can be brought back to a one-dimensional dynamical model,
the generalized Langevin equation (GLE) [38, 39] including a time convolution with a
kernel function, known as the memory friction kernel. Therefore, instead of searching for
an explicit high-dimensional representation, a suitable model including a memory kernel
appears to be more accurate and more general. The parameterization of memory kernels
from time series data is an active field of research [204–206, 15], also in the application to
chemical reaction dynamics [124, 207–209]. A crucial advantage of the memory friction
model is its generality. A lot of effort has been put into the development of analytic rate
theories for the generalized Langevin equation, including inertial and memory friction
effects, and therefore the precise prediction of mean reaction rates can be performed
based on a largely reduced set of parameters [210, 211, 16, 212, 213, 3].

1.3.1. Numerical models

Numerical simulations of thermally activated stochastic motion, also known as Brownian
motion, of a reaction coordinate x(t) is most effectively performed with the Langevin
equation (LE), which is given in the overdamped form as [201]

γẋ(t) = −∇U(x) + FR(t), (1.29)

where γ is the friction coefficient and U(x) an arbitrary potential shape. FR(t) is a
stochastic random force, which has zero mean ⟨FR(t)⟩ = 0 and is correlated according to



45

⟨FR(t)FR(t
′)⟩ = 2bδ(t − t′). In case of b = kBTγ, the equation fulfills the fluctuation-

dissipation relation and therefore describes a system at equilibrium. The equation is
conveniently derived by linear projection on the primary coordinate of an infinite number
of independent degrees of freedom describing the solvent particles and then assuming
a time-scale separation between the fast coupled degrees of freedom and the primary
coordinate, i.e. by absorbing the fast solvent coordinates into the effective random force
and frictional damping terms [214]. For the free case, i.e. for U(x) = 0, the mean-squared
displacement (MSD), ⟨[x(t) − x(0)]2⟩ = 2Dt, where D = kBT/(γL

2) is the diffusion
constant and L a length scale, is a topical result of statistical physics [215, 216].

The overdamped LE can also be derived for a position-dependent friction profile γ(x)
[217]

γ(x)ẋ(t) = −∇U(x)− kBT∇γ(x)

2γ(x)
+ FR(x, t). (1.30)

For the time correlation of the random force FR(x, t) follows ⟨FR(x, t)FR(x, t
′)⟩ =

2b(x)δ(t− t′), which for b(x) = kBTγ(x) fulfills the fluctuation-dissipation relation. An
in general position-dependent friction profile γ(x) has been widely applied to model
for example the dynamics of drug diffusion [218], protein dynamics [219, 220] and
also pair reactions [221, 222]. However, be aware of the appearance of a drift term
kBT∇γ(x)/(2γ(x)) in Eq. (1.29) in case of position-dependent friction, ∇γ(x) ̸= 0.

If inertial effects are relevant, the non-overdamped, or inertial, version of the LE is
given as [217]

mẍ = −γ(x)ẋ(t′)−∇U [x(t)] + FR(x, t), (1.31)

where the random force FR(t) likewise has zero mean ⟨FR(t)⟩ = 0 and is correlated
according to ⟨FR(x, t)FR(x, t

′)⟩ = 2b(x)δ(t− t′), where again b(x) = kBTγ(x) fulfills the
fluctuation-dissipation relation.

If a time-scale separation between the solvent degrees of freedom and the primary
coordinate is not given, the GLE follows from the same projection scheme [39, 38]

mẍ = −
∫ t

0
Γ(t− t′)ẋ(t′)dt′ −∇U [x(t)] + FR(t), (1.32)

which is exact in case of a harmonic, U [x(t)] = kx2/2, or no potential, U(x) = 0. The
given GLE Eq. (1.32) is valid if the correlation between the velocity and the random force
⟨v(t)FR(t

′)⟩ is independent of x [223]. In this equation, instead of a friction constant γ, a
time-dependent friction memory kernel Γ(t) couples to the velocity in a time convolution.
Due to the dependence on past states, this is a non-Markovian model in contrast to
the previous two LEs, Eqs. (1.29) and (1.31). For the random force FR(t), zero mean
⟨FR(t)⟩ = 0 and a correlation according to ⟨FR(t)FR(t

′)⟩ = kBTΓ(t− t′) is required to
fulfill the fluctuation-dissipation relation. In case of a non-linear potential U [x(t)], the
GLE Eq. (1.32) has been applied successfully to model dihedral dynamics [15], protein
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dynamics [8], pair reactions [5] and even vibrational line shapes [1].
Note, that the three Eqs. (1.29)–(1.32) are expected to give consistent results in the

respective limits. The Markovian limit, where memory effects are negligible, is obtained
in the zero limit of all time scales in the memory kernel Γ(t), so that Γ(t) → 2γδ(t) and
the friction constant γ therefore corresponds to the integral over the memory kernel
γ =

∫∞
0 Γ(t)dt. Then, Eq. (1.32) reduces to the Markovian LE Eq. (1.31). Likewise in

the overdamped Markovian limit, when inertial effects are negligible compared to the
friction, i.e. m/γ is smaller than the relevant time scale of the system, the Markovian
LE Eq. (1.31) reduces to the overdamped Markovian LE Eq. (1.29).

For application, efficient parameterization and evaluation techniques are furthermore
required. All parameters in Eqs. (1.31)–(1.32) can in principle be derived directly from
the time series of the reaction coordinate x(t) sampling the equilibrium ensemble. The
mass is obtained from the equipartition theorem m = kBT/⟨ẋ2(t) and the potential
is taken to be the free energy as obtained from the distribution function g(x) via
U(x) = −kBT log(g(x)). The friction constant γ is usually estimated from MSDs, which
is also presented in section 1.1.3. The estimation of position-dependent friction profiles
γ(x) is more complex, but can be achieved for example from MFPTs as discussed in
section 1.3.2. The parameterization of the memory friction kernel Γ(t) is certainly the
most difficult and remains an active field of research [204–206, 15, 8, 224–227]. Here, a
parameter-free extraction using a Volterra equation is applied, as detailed in previous
works [8, 1].

For evaluation of the model, the GLE Eq. (1.32) can be solved efficiently using a
Markovian embedding, which requires the memory kernel to be parameterized as a sum
of exponentially decaying and oscillating components [228, 186, 229, 1]

Γ(t) =
n∑

i=0

γi
τ ei

e−t/τei +
l∑

i=0

aie
−t/τoi

[
cos(ωit) +

1

τ oi ωi
sin(ωit)

]
. (1.33)

The generalization of the non-Markovian GLE Eq. (1.32) to include position-dependent
friction effects is more difficult and attempts reach back to Zwanzig [230]. In chapter 6, a
model with locally independent memory friction is introduced [3], which has the striking
advantage that it has a simple corresponding Markovian embedding and therefore the
analytical and numerical treatments are straightforward.

1.3.2. Analytical models

Analytical predictions for barrier-crossing dynamics in a viscous environment reach back
to Kramers [37], who derived different friction-dependent prefactors to the Arrhenius law
in the opposing inertia-dominated and overdamped regimes. The well-known Kramers
turnover between these regimes was only later fully covered in a theory by Mel’nikov and
Meshkov (MM) [231] . A memory-induced acceleration compared to the overdamped
Kramers limit was first explored by Grote and Hynes (GH) [210], which competes with a
slow down in the long memory-time limit [211, 16, 212, 3].
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The transition-state theory (TST) escape rate [36] appears in several of the rate
theories that are considered in the following. According to TST, assuming a harmonic
potential well for the reactant state, the mean escape time of an undamped particle is
given as [36]

τTST =
2π

ωmin
eβU0 , (1.34)

where U0 denotes the potential-barrier height, β−1 = kBT is the thermal energy, and
the well frequency ωmin =

√
U ′′
min/m contains the curvature U ′′

min := U ′′(xmin) at the
minimum xmin of the potential well from which the particle escapes.

Kramers considered the escape from a potential well for a particle undergoing Brownian
motion, as described by the LE Eq. (1.31) with position-independent friction γ, for both
the limits of medium-to-high friction, and low friction [37]. For the medium-to-high
friction regime, he obtained

τhfKr =

[(
γ2

4m2
+ ω2

max

)1/2

− γ

2m

]−1

ωmaxτTST, (1.35)

while in the low-friction limit, he derived

τ lfKr =
m

γβU0
eβU0 , (1.36)

where the barrier frequency ωmax =
√
−U ′′

max/m contains the curvature U ′′
max :=

U ′′(xmax) at the barrier top xmax. Note the opposite scaling of both equations with
respect to the friction constant γ: While for medium-to-high friction τhfKr ∼ γ, for low
friction τ lfKr ∼ γ−1. The bridging of these asymptotic limits, the so-called Kramers’
turnover, was a long-standing problem in statistical mechanics.

Mel’nikov and Meshkov [231] (MM) derived a solution to the Kramers’ problem which
is valid for all values of the friction, and hence connects the two expressions eqs. (1.35),
(1.36). The Mel’nikov and Meshkov (MM) result is given by

τMM = A−1(∆)

[(
γ2

4m2
+ ω2

max

)1/2

− γ

2m

]−1

ωmaxτTST, (1.37)

A(∆) = exp

[
2

π

∫ π
2

0
ln
[
1− e−∆/[4 cos2(x)]

]
dx

]
, (1.38)

∆ = 2
√
2

γ√
m
β

∫ 0

−
√
2L

√
U0 − U(x) dx. (1.39)

While both Kramers’ and MM theory consider Markovian dynamics, that correspond
to numerical results from the LE Eq. (1.31), Grote and Hynes (GH) [210] developed a
theory for the mean first-passage time under influence of memory, hence non-Markovian
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effects. Their expression for the case where the dynamics in the potential well relax fast,
and only memory effects on the barrier are relevant, is given by

τGH =
ωmax

λ
τTST, (1.40)

where Γ̃(λ) denotes the Laplace-transformed memory friction kernel Γ(t) at the barrier
top, and the real reactive frequency, λ > 0, is the solution of the equation

λ =
ω2
max

λ+ Γ̃(λ)/m
. (1.41)

For example, for a single memory time scale, i.e. the exponential kernel Γ(t) = γe−t/τ/τ ,
the frequency λ is given as the single positive solution of the cubic equation

λ3 +
λ2

τ
+
( γ

mτ
− ω2

max

)
λ =

ω2
max

τ
. (1.42)

Note that, either in the inertial, m → ∞, or the long memory limit, τ → ∞, it follows
λ = ωmax and GH theory collapses onto the TST result, τGH = τTST in Eq. (1.40).
Furthermore, in the Markovian limit, i.e. for delta-correlated friction, Γ(t) = 2γδ(t) and
Γ̃(λ) = γ, it follows λ =

(
γ2/(4m2) + ω2

max

)1/2 − γ/(2m), which results in τGH = τhfKr,
the Kramers high-friction result in Eq. (1.35).

In the overdamped Markovian limit, the Fokker-Planck equation for a distribution
P (x, t) is most suitable for analytical and numerical calculations,

∂

∂t
P (x, t) =

∂

∂x

[
β−1

γ(x)
e−βU(x) ∂

∂x

[
P (x, t)eβU(x)

]]
, (1.43)

since it handles arbitrary potential shapes U(x) and even position-dependent friction
γ(x). An exact expression for τMFP between initial xi and final positions xf can then be
derived [31]

τMFP(xi, xf ) = β

∫ xf

xi

dq′γ(x′) eβU(x′)

∫ x′

xmin

dx e−βU(x). (1.44)

Eq. 1.44 can be inverted and thereby used to estimate a position-dependent friction
profile γ(x) from measured values of τMFP [220, 221]. Determined by a different approach,
position-dependent friction profiles γ(x) have reproduced the non-equilibrium dissociation
dynamics of the NaCl ion pair [222]. However, it has been shown recently that memory
effects may give rise to spurious spatially dependent profiles when the GLE is mapped
on Markovian models [8, 5].
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The present thesis reveals the spectroscopic signatures related to non-Markovian effects
and reaction kinetics that are shown to occur for hydrated excess protons and in water
itself. Beyond that, reaction kinetics themselves are subject to non-Markovian effects
even for the simplest pair reactions in water such as NaCl dissociation. The intriguing
insights gained into these various systems fundamental to chemistry and biophysics are
achieved in close conjunction with significant methodological advances.

In the first part of the thesis, the excess-proton dynamics and vibrational signatures
in water are interpreted in terms of nonlinear stochastic reaction dynamics. Specifically,
the framework is presented as applied to excess-proton dynamics in between two water
molecules, i.e. in an isolated cluster in chapter 3, and to the dynamics in concentrated
hydrochloric acid solutions in chapter 4. It is shown that in both systems the excess-
proton spectra along the direction of proton transfer between two water molecules are
nearly proportional to the total IR spectra of the systems, which are experimentally
accessible. Thus, the total spectra report on the proton-transfer dynamics and in turn
the analysis of these dynamics is useful to interpret characteristic signatures in the
total IR spectra, namely the so-called continuum band between the water bend and
stretch bands, as well as a strong feature at around 1100 cm−1. By a combination
of trajectory and spectral decomposition, these well-known signatures are assigned to
different stochastic time scales of the proton-transfer reaction from one water molecule to
another, which in bulk water is an elementary step in the long-range Grotthus transport
of excess protons. Following reaction-rate theory, the stochastic time scales of proton
transfer are the transfer-waiting time, defined as the mean first-passage time, which is the
average time the proton stays with one water molecule between distinct transfer events;
and the transfer-path time, which is the duration of an actual transfer event. In addition
to these two time scales, vibrational bands result from the dynamics of the proton while
waiting near a water molecule, which are quasi-harmonic oscillations around a fluctuating
potential minimum and can therefore be modeled as normal modes of an ensemble of
states. These normal modes of the excess proton are the fastest contribution of the
dynamics and give rise to the continuum band, which is broad because of the strong
fluctuation of the effective potential. The transfer-path time of the actual proton transfer
on the other hand gives rise to the spectral signature at 1100 cm−1. The waiting time
scale is comparably longer, and the associated signature is therefore expected at lower
frequencies in the THz regime, for which experimental evidence was found. In addition to
the decomposition, the IR line shapes of the nonlinear spectral contributions for waiting
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and transfer-path dynamics are derived analytically in chapter 3. The good agreement
of the analytical theory with the decomposed spectra confirms that the characteristic
time scales of each process can be inferred from the spectral signatures.

In the second part, in chapter 5, the vibrational spectrum of bulk water is modeled
using the GLE containing a time-dependent friction memory kernel and a nonlinear
potential, which inherently treats homogeneous and inhomogeneous line-broadening
effects without assumptions of time scale separation. It is shown that the GLE self-
consistently reproduces the vibrational spectra of the bending and stretching vibrations
of water molecules in the liquid phase. By comparing to data of single water molecules in
gas phase, the hydration effect of the bulk liquid can be decomposed in static potential
and dynamic friction effects. It is concluded that while both the bending and stretching
mean potentials of water are softened in bulk when compared to gas phase, which results
in a red shift of the vibrations, this effect is partially compensated by a blue shift due to
time-dependent friction acting on the vibrations. For the stretching band a net red shift
remains but for the bending band the frictional blue shift overcompensates the potential
red shift. The observed shifts has previously been interpreted only in terms of potential
effects, which is an inconsistent interpretation when compared to the static ensemble
energetics.

In the third part, the implications of non-Markovian effects on the stochastic time
scales of chemical reactions are discussed. First, in chapter 6, the scaling of the mean
reaction time, the mean first-passage time or barrier-crossing time, is analyzed for a model
combining position- and time-dependent friction. The model is employed to compare the
effects of different non-Markovian friction on the potential barrier and in the potential
well. It is found, that whenever the dynamics in the potential well are overdamped and
Markovian, the barrier-dynamics dominantly determine the barrier-crossing time, which
in case of long non-Markovian memory friction can result in acceleration, in accordance
with predictions by Grote and Hynes. If, on the other hand, the dynamics in the potential
well are energy-diffusion limited, meaning that inertial or non-Markovian memory effects
are relevant, the well-dynamics dominate the barrier-crossing time rather independently
of the dynamics on the barrier. However, for this case, a small speed-up in case of an
overdamped Markovian barrier is found, which has not previously been observed and
notably behaves opposite to the acceleration predicted by Grote and Hynes.

At last, in chapter 7, the competing effects of memory friction, inertia, and the effective
potential shape on pair reaction dynamics are discussed. By extracting all parameters
of the GLE, namely the friction memory kernel, the effective mass and the nonlinear
pair potential, directly and unambiguously from data obtained in MD simulations of
typical pair reactions in water, the validity of the GLE model is demonstrated. Beyond
that, the effect of these different physically relevant parameters on the mean reaction
times is evaluated independently which is not possible in MD simulations. The analysis
is presented for the dissociation dynamics of the NaCl ion pair and a pair on nonpolar
methane beads in water. For both systems, the importance of non-Markovian memory
effects is demonstrated, which speed up the dissociation reactions by a factor of two
compared to the Markovian limit. The effective mass on the other hand leads to a
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slow-down of the dynamics by a similar factor when compared to the overdamped limit.
The effect of the potential shape is analyzed by comparing numerical simulations to
different analytical results which assume harmonic approximations to the potential,
notably the Kramers’ and Grote and Hynes’s theories. Nonlinearities in the potential
shape are thereby found to slow-down reactions, which, when this effect cancels with
memory-associated acceleration, may spark the wrong conclusion that a Markovian
harmonic theory, i.e. the Kramers theory, describes the system’s dynamics faithfully and
that the Markovian and harmonic approximations would be correct.

To conclude, several new methods for the analysis and modeling of complex biophysical
systems were developed in this thesis and successfully applied in different profound
scenarios with elucidating results. Clearly, these developments and findings motivate a
number of potential future projects.

The decomposition of spectral signatures of stochastic reaction dynamics, developed
with respect to the excess-proton dynamics in water in chapters 3 and 4, can possibly
be applied to gain valuable insight into the vibrational spectra of other systems. Im-
portantly, since vibrational spectra are usually accessible much easier in experiment
than, for example, the reaction times, the presented theory and methods can help to
explicate their relation and distinguish the spectroscopically equivalent Debye signatures
of overdamped dynamics. The ion-pairing dynamics discussed in chapter 7, which are
obviously susceptible to dielectric spectroscopic measurements, potentially present an
interesting system to apply these techniques. Of course, with recent developments in
simulating NQE, more realistic dynamical data of excess protons is becoming available,
which calls for the adaption of the presented methods and theories to the delocalized
nature of the quantum excess proton.

Since in chapter 5 the GLE is proven to self-consistently reproduce the vibrational
spectra of the water intramolecular modes, it would be interesting to apply the framework
to interpret different kinds of shifts that are known when molecules are placed in different
environments, for example, such as different solvents or a protein environment, where
characteristic shifting of vibrational modes has previously been observed. With the large
number of water models available, it will also be interesting to compare the frequency-
dependent friction among them to further understand the robustness of both the water
models and the friction profiles. Likewise, since the broad spectral signature of the
continuum band is associated with the dynamics of excess protons, the analysis can
possibly be applied here to decompose potential- and friction-induced line-shape effects.
In turn, the same accurately parametrized GLE may also be used to build dynamical
models for proton transfer.

The application of the GLE for modeling reaction dynamics is successfully shown
for NaCl and methane dissociation dynamics in water in chapter 7. It may thus be
introduced in coarse-grained models of such systems and extended to other pairing
dynamics or other kinds of reactions. Preliminary results show that position-dependent
memory friction, as for example handled by the type of GLE introduced in chapter 6,
may be a promising model for protein folding or the dissociation dynamics of water
molecules.
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The GLE model for position- and time-dependent friction, introduced in chapter 6,
has the advantage over alternative models that it has a simple Markovian embedding
and is therefore easily evaluated numerically. In order to make it applicable for modeling
complex systems, a parametrization method needs to be developed. Several methods
exist for similar kinds of GLEs, for example the one applied in chapters 5 and 7, which
provide promising starting points for parametrization of the presented model.

Beyond that, the GLE model introduced in chapter 6 obviously calls for some extensions
and thus sparks ideas for the future development of Markovian embeddings. For example,
the currently independent local heat baths with corresponding local non-Markovian
friction kernels could be coupled, which is motivated by the underlying physical picture
and would introduce a controllable tuning between local and position-independent memory
friction.

In chapters 6 and 7 the GLE is explored to gain insight into the scaling of the mean
reaction time in terms of the mean first-passage time. The second time scale that
characterizes the reaction dynamics is the transition-path time of the actual transfer
path which is receiving increasing attention, especially in nonequilibrium scenarios such
as single-molecule experiments on protein folding. It will be interesting to apply the
GLE in the same way to understand the scaling of the transition-path time with respect
to non-Markovian friction memory, inertia and the potential shape.
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ABSTRACT

A stochastic theory is developed to predict the spectral signature of proton-transfer processes and is applied to infrared spectra computed
from ab initio molecular-dynamics simulations of a single H5 O2

+ cation. By constraining the oxygen atoms to a fixed distance, this sys-
tem serves as a tunable model for general proton-transfer processes with variable barrier height. Three spectral contributions at distinct
frequencies are identified and analytically predicted: the quasi-harmonic motion around the most probable configuration, amenable to
normal-mode analysis, the contribution due to transfer paths when the proton moves over the barrier, and a shoulder for low frequen-
cies stemming from the stochastic transfer-waiting-time distribution; the latter two contributions are not captured by normal-mode analysis
but exclusively reported on the proton-transfer kinetics. In accordance with reaction rate theory, the transfer-waiting-contribution frequency
depends inversely exponentially on the barrier height, whereas the transfer-path-contribution frequency is rather insensitive to the barrier
height.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0116686

I. INTRODUCTION

The transfer dynamics of excess protons in the aqueous envi-
ronment is central to many biochemical processes,1 but despite
substantial work, even for acidic water, a complete kinetic model
that would describe all spectral features encompassing the low THz
and infrared (IR) regimes remains elusive. Typically, the discus-
sion is based on two idealized proton-transfer intermediates, namely
the H5 O2

+ Zundel cation, where two water molecules symmet-
rically point their oxygens to the excess proton,2 and the Eigen
cation, where hydronium H3O

+ is formed and solvated by three
water molecules.3 Accordingly, proton diffusion in water is por-
trayed as a stochastic succession of these two states, where the excess
proton switches during diffusion: It is a defect that diffuses rather
than a specific proton, which explains the high proton mobility
in water.4,5

An intensely debated question concerns the relative stabil-
ity and abundance of the Eigen and Zundel forms in acidic
water.6–10 Several experimental 2D IR studies suggest the Zundel
form dominates the proton-transfer spectroscopic signature in bulk

water.8,9,11–14 From ab initio molecular-dynamics (AIMD) work, it
was concluded that an excess proton in bulk liquid water is predom-
inantly present in the Eigen state and that the Zundel form plays the
role of a relatively short-lived transfer or barrier state.15–17 As the
separation between the two water oxygen atoms that flank the excess
proton decreases, the relative stability changes and eventually the
Zundel form becomes preferred over the Eigen form,18 it transpires
that excess proton and water motion are dynamically coupled. As a
consequence, proton transfer from one water molecule to a neigh-
boring one not only involves motion of the proton but also of the
flanking water molecules and even further water neighbors, making
the kinetics highly collective.7,10,13,14,16,19–23

In isolated H5 O2
+ clusters, the subject of this paper, and

protonated water wires the situation is different from bulk:
Experimental8,24–27 and theoretical19,20,28–33 work demonstrated that
the oxygen–oxygen distance is decreased and the Zundel form
is more stable than the hydronium form. By chemical modifi-
cations of two proton acceptors in gas-phase clusters, proton-
transfer energy barriers of variable heights could be demonstrated.34

Proton-transfer barriers also exist inside proteins, where amino-acid
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side chains that act as proton donors can be located at variable
separations.35–38 Thus, energetic barriers for proton transfer exist in
a variety of systems and produce characteristic spectroscopic signa-
tures that fundamentally go beyond the established normal-mode
picture, as we show in this paper.

The excess proton has a high net charge and during a trans-
fer event covers significant distances over short times; consequently,
IR linear and nonlinear spectroscopy are very suitable methods to
detect proton-transfer events and have been applied to bulk acidic
solutions,2 acidic water clusters,34 gas-phase ions,39 and proteins.40

While spectra computed from dynamical simulations encompass
nonlinear dynamics and do not employ a normal-mode approxi-
mation, the interpretation of simulated spectra is typically based on
normal modes, with notable extensions to include anharmonic and
frequency-dependent friction effects.41–43 Also the interpretation of
experimental spectra is traditionally based on normal-mode analysis
around one or multiple local energy minima, where the normal-
mode frequency fNM defines a vibrational time scale according to
τNM = 1/ fNM. However, if a barrier exists, two additional time scales
emerge, the transfer-waiting time τTW, which is the time the proton
waits in one minimum before it transfers,44–46 and the transfer-path
(TP) time τTP, which is the time the actual transfer over the barrier
takes.47–51

In this paper, we show by a combination of stochastic the-
ory and ab initio molecular-dynamics (AIMD) simulations that the
normal-mode, the transfer-waiting, and the TP time scales, which
together characterize the transfer-waiting kinetics, leave distinct and
characteristic spectroscopic traces. As a specific example, we con-
sider a H5 O2

+ cation in gas phase. In order to probe different
proton-transfer barrier heights, we constrain the separation between
the two water oxygen atoms at variable fixed distances, which is
applicable to proteins and other systems where proton-accepting
residues are positioned at well-defined distances.35–37 While the
transfer-waiting time depends exponentially on the barrier height
U0 as τTW ∼ eU0/kBT ,44,46 the normal-mode time scale τNM is deter-
mined by the stiffness of the effective harmonic potential k and the
effective mass m according to τNM = 2π√m/k ∼ 1/√U0, and the TP
time depends logarithmically on U0 as τTP ∼ ln(U0/kBT)/U0.

49–51

From the different functional dependencies on U0, one expects
a not too low barrier heights τNM ∼ τTP < τTW. Indeed, for an
oxygen–oxygen distance of ROO = 2.64 Å, which in our AIMD sim-
ulations of the H5 O2

+ cation leads to a moderate effective barrier
height of U0 = 2.0 kBT, the normal-mode spectroscopic contribu-
tions lie between 1000 and 2000 cm−1, the TP contribution turns
out to be a rather well-defined band centered around 800 cm−1,
and since the waiting-time distribution is rather broad, the transfer-
waiting contribution forms a continuum band below 500 cm−1 that
reaches deep into the GHz range, in agreement with experimental
THz absorption measurements.52,53

Our AIMD results show that the broad low-frequency transfer-
waiting spectral contribution crucially depends on the barrier height,
controlled by the relative distance of the water molecules sharing the
excess proton. In contrast, the TP spectral contribution shifts only
slightly with barrier height, in agreement with recent theoretical and
experimental findings.49–51 Isotope exchange of the excess proton,
on the other hand, affects the TP contribution but not the waiting-
time contribution, as we predict by stochastic theory. In summary,
we show that the spectroscopic signature of proton barrier crossing

reflects transfer-waiting statistics as well as TP kinetics and, in par-
ticular, cannot be modeled by a succession of normal modes located
across the barrier. Our results also apply to experimental systems
with fluctuating barrier heights, such as acidic water, as recently con-
sidered by a combined theoretical/experimental study:53 We show
that the spectrum of unconstrained H5 O2

+ can be quite accurately
reproduced by Boltzmann averaging of spectra of constrained sys-
tems; thus, all of the features we see in our constrained simulations
are also expected in experimental systems where the proton acceptor
separation can fluctuate.

Our simulations are performed at the Born–Oppenheimer level
with classically treated nuclei. Nuclear-quantum zero-point motion
has been shown to lead to an increased proton density at the bar-
rier, which is typically interpreted as a signature of a decreased
barrier height,10,15,16,28,54 but for large enough barriers, such nuclear-
quantum effects are not expected to eliminate the spectroscopic fea-
tures we predict, as discussed in the supplementary material, Sec. I.
Furthermore, electron-nuclear quantum-mechanical coupling has
been shown to be relevant for protonated systems30 but is challeng-
ing to include within the framework of our stochastic theory and
therefore, left for future work.

II. RESULTS AND DISCUSSION

We perform AIMD simulations of a single H5 O2
+ cation

with a total trajectory length of 5 ns for several constrained oxy-
gen separations as well as for unconstrained oxygens (see Sec. III A
for details). Suitable reaction coordinates are the oxygen–oxygen
distance ROO and the excess-proton distance from the oxygen mid-
point position, d = 1

2(RO1H − RO2H)x, projected onto the x-axis that
connects the two oxygens, as illustrated in Fig. 1(a). The two-
dimensional free energy in Fig. 1(d), calculated from the probability
distribution of unconstrained simulations according to U(ROO,d)= −kBT ln p(ROO,d), demonstrates that the global minimum of the
free energy is located around ROO = 2.40 Å, and d = 0. This is the
symmetric Zundel state, where the excess proton is symmetrically
shared by the oxygens.2 For ROO > 2.55 Å, a double-well free-energy
landscape along d appears, which indicates a preferred localization
of the excess proton near one water molecule, analogous to the Eigen
state in bulk water.3 The excess proton trajectory for constrained
ROO = 2.64 Å in Fig. 1(b) is typical for the thermally activated barrier
crossing of a weakly damped massive particle46 and involves a mod-
erate barrier height of U0 = 2.0 kBT, as seen in the corresponding
free-energy profile in Fig. 1(c). Most of the time, the excess proton is
part of a H3O

+ molecule and vibrates in one of the two free-energy
minima with an oscillation time described by the normal-mode time
τNM = 17 fs [inset Fig. 1(b)], while from time to time the proton sud-
denly crosses the barrier, the mean time of such a TP is τTP = 25 fs
[inset Fig. 1(b)]. The longest time scale is the transfer-waiting time,
which for ROO = 2.64 Å is τTW = 440 fs. In Fig. 1(e), we show as a
grey solid line the absorption spectrum of the unconstrained H5 O2

+

cation for an electric field along x, the oxygen separation direction,
calculated from the entire nuclear and electronic polarizations (see
Sec. III A). It shows, in addition to the OH stretch and HOH bend
bands at 3400 and 1800 cm−1, respectively, a prominent feature at
1000 cm−1, which is the Zundel normal mode, where the excess pro-
ton vibrates in a rather soft potential produced by the two flanking
water molecules (see the supplementary material, Secs. II and III, for
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FIG. 1. Ab initio molecular-dynamics (AIMD) simulations of the H5 O2
+ cation. (a) The oxygen–oxygen separation ROO and the proton distance from the oxygen midpoint

along the x axis, named d, describe the excess-proton dynamics. (b) The excess proton trajectory for fixed ROO = 2.64 Å visualizes the transfer-waiting time τTW as well
as the normal-mode time τNM and the transfer-path (TP) time τTP (see the inset). Selected snapshots show structures at the free-energy minimum and at the barrier top.
(c) Free-energy profile for fixed ROO = 2.64 Å, extracted from constrained simulations. (d) 2D free-energy landscape in terms of ROO and d from unconstrained simulations.
(e) Absorption spectra for an E field along the x axis where ω = 2πf . The grey solid line shows the total (i.e., nuclear + electronic) spectrum of the unconstrained system,
compared with the Boltzmann average of constrained systems (black broken line). The grey broken line shows the total spectrum for constrained ROO = 2.64 Å, compared
to the spectrum of only the excess proton (blue line, multiplied by a factor of 2). Note the change of scales at f = 1000 cm−1 and f = 3000 cm−1.

a literature overview). The spectrum for the constrained system with
ROO = 2.64 Å, grey broken line, displays a band at 800 cm−1 and a
very broad shoulder that extends down to the lowest frequencies. As
we show in this paper, these two spectral features stem from pro-
ton TPs and proton transfer-waiting-time stochastics, respectively,
and are the only spectroscopic contributions that reflect the actual
proton-transfer kinetics. Interestingly, the spectral contribution of
only the excess proton for fixed ROO = 2.64 Å (blue solid line, mul-
tiplied by a factor of 2) is almost identical to the full spectrum (gray
broken line), so we conclude that the IR spectrum is predominantly
caused by proton motion and can thus be used to investigate excess-
proton dynamics (more details are given in the supplementary
material, Sec. IV). In fact, the spectrum of the unconstrained
system (gray solid line) agrees well with the free-energy-weighted
Boltzmann average over constrained spectra with different ROO

values (black broken line, see the supplementary material, Sec. V,
for details), indicating that the absorption spectrum can be under-
stood from decoupled proton and oxygen dynamics. Our simulation
model with constrained oxygen–oxygen separation is thus also a
tool to decompose and, thereby, understand unconstrained system
spectra (a finding that is obvious only for static observables55).

In order to distinguish transfer-waiting, TP and normal-
mode spectral contributions, the proton trajectory d(t) is decom-
posed according to d(t) = dTW(t) + dTP(t) + dNM(t), as illustrated
in Fig. 2(a) for ROO = 2.64 Å. The transfer-waiting part dTW(t)

describes two-state kinetics with instantaneous transfers when the
trajectory last crosses a free-energy minimum at d∗TW = ±0.22 Å.
The TP contribution dTP(t) consists of transfer trajectories between
last and first crossing the free-energy minima, including recrossings
where the proton shuttles repeatedly back and forth between the
minima. Recrossings are rather frequent for the low friction expe-
rienced by the proton46 (see the supplementary material, Sec. VI), a
threefold recrossing event is seen in the proton trajectory in Fig. 2(a)
at t = 0.6 ps. Finally, the normal-mode part dNM(t) comprises the
trajectory remainder.

Figure 2(b) shows in blue the simulated excess-proton
spectrum decomposed into its three components according to
χ̃ ′′ = χ̃′′B + χ̃′′TP + χ̃′′NM, the red broken lines show theoretical predic-
tions (which will be explained further below). Trajectory decom-
position in the time domain creates spectral cross contributions,
which are relatively small, as shown in the supplementary material,
Secs. VII and VIII, and are added to χ̃′′NM. The transfer-waiting spec-
trum χ̃′′TW in Fig. 2(b2) displays a pronounced low-frequency shoul-
der, which reflects the transfer-waiting-time distribution. The TP
spectrum χ̃′′TP in Fig. 2(b3) is a rather well defined band at 800 cm−1.
Even though the time fraction the excess proton spends on TPs is
only 16% for ROO = 2.64 Å, the spectral contribution is significant
due to the large and quick charge displacement: The proton transfer
velocity of roughly vTP = 2d∗TP/τTP = 0.44 Å/25 fs = 1.8 × 103 m/s
is slightly larger than the proton thermal velocity of v th = √kBT/mp
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FIG. 2. AIMD simulations of a H5 O2
+

cation with constrained ROO = 2.64 Å.
(a) Decomposition of the excess-proton
trajectory d(t) into the two-state
transfer-waiting contribution dTW(t),
the TP contribution dTP(t) and the
remaining normal-mode contribution
dNM(t). (b) Blue solid lines show the
simulated excess-proton spectrum
ωχ̃ ′′ and its decomposition into the
transfer-waiting ωχ̃′′TW, the TP ωχ̃′′TP and
the normal-mode contribution ωχ̃′′NM.
The red broken lines in (b2) and (b3)
show the corresponding theoretical
predictions according to Eqs. (1) and
(5). The red broken line in (b4) shows
the normal-mode spectrum including
friction-induced line broadening. The
snapshots illustrate the two dominant
normal modes at 1416 and 1659 cm−1.

= 1.5 × 103 m/s, where mp = 1.7 × 10−27 kg is the proton mass.
This confirms previous findings that TPs correspond to the
high-energetic part of the Maxwell–Boltzmann ensemble, i.e., the
excess proton initiates a TP only when its kinetic energy is sig-
nificantly above average.56 The normal-mode spectrum χ̃′′NM in
Fig. 2(b4) consists of two main peaks.

We will now present analytic theories for each simulated spec-
tral contribution shown in Figs. 2(b2)–2(b4). A stochastic two-state
process has the spectrum

ωχ̃
′′

TW(ω) = 2q2d∗TW
2

Vϵ0kBT
Re( ω2q̃TW(ω)

1 − p̃TW(ω)2 ) (1)

and depends on the Fourier-transformed transfer-waiting-time dis-
tribution p̃TW(ω) and the survival distribution q̃TW(ω), which
is defined as qTW(t) = ∫ ∞t pTW(t′)dt′, the positions of the free-
energy minima ±d∗TW, the excess proton charge q = e and the
system volume V (see the supplementary material, Sec. IX, for
a detailed derivation). Using d∗TW = 0.22 Å and bi-exponential
fits for pTW(t) to the simulation data in Fig. 4(c), ωχ̃′′TW(ω)
according to Eq. (1) (red broken line) matches the simulation
data (blue solid line) in Fig. 2(b2) very well without any fit-
ting parameters. For a single-exponential waiting-time distribution,
pTW(t) = τ−1TW exp(−t/τTW), Eq. (1) simplifies to

ωχ̃
′′

TW(ω) = 2q2d∗TW
2

Vϵ0kBT

τTWω2

(4 + τ2TWω2) , (2)

which shows that the spectrum is identical to an overdamped har-
monic oscillator with a corner frequency ω∗TW ∼ 1/τTW (see the
supplementary material, Sec. X, for details). For large frequencies,
ωχ̃′′TW is constant and proportional to the transfer-waiting rate,
ωχ̃′′TW ∼ 1/τTW, for small frequencies ωχ̃′′TW ∼ τTW ω2.

The TP spectral contribution depends on the TP shape.
The ensemble of all 2829 TPs observed in the simulations for
ROO = 2.64 Å is shown in Fig. 3(a) (gray lines), together with the
mean TP (blue solid line) obtained by position averaging. The path-
integral saddle-point prediction for the TP shape over a parabolic
barrier,51

dTP(t) = d∗TW[et/κ − e−t/κ]/N (3)

(red dotted line), matches the simulated mean TP shape very well
(N is a normalization constant). In the supplementary material,
Sec. XI, it is shown that Eq. (3) corresponds to the exact mean
TP shape in the high-barrier limit.50 The fitted characteristic time
κ = d∗TW2

γ/(2U0) = 6.5 fs depends on the effective friction coeffi-
cient γ acting on the proton as it moves over the barrier. A straight
line (black broken line) also describes the simulated mean TP shape
quite well. Figure 3(b) shows the TP-time distribution of all TPs
(green triangles) together with a decomposition into single (non-
recrossing, blue squares) and multiple (recrossing, red dots) TPs,
where the TP time τTP is defined by the turning points of the TPs.
It is seen that multiple TPs that consist of recrossing trajectories
are significantly faster than single TPs, which reflects that recrossing
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FIG. 3. TP statistics. (a) Ensemble of all 2829 proton TPs for constrained ROO = 2.64 Å (gray lines) as a function of the rescaled time t/tTP, where tTP is the individual TP time.
The horizontal blue broken lines indicate the mean TP terminal positions±d∗TP/2, defined by the TP turning points, while horizontal grey dashed lines indicate the free-energy
minima ±d∗TW/2. The simulated mean TP (blue line) agrees well with the path-integral prediction Eq. (3) (red dotted line). The straight black broken line also approximates
the TP shape quite well. (b) Time distribution pTP of all TPs (green triangles) and a decomposition into single (non-recrossing, blue squares) and multiple (recrossing,
red dots) TPs together with fits according to Eq. (4). (c) Recrossing-number probability distribution pRN(n) compared to an exponential fit pRN(n) = (1 − e−α)e−αn, the
confidence interval α ± 20% is shown by grey lines.

protons have a higher kinetic energy and, thereby, tend to rebounce
back over the barrier. Fits according to the Erlang distribution,57

pTP(t) = tβ−1

(β − 1)!( β

τTP
)
β

e
−βt/τTP , (4)

are shown as lines. In Fig. 3(c) the simulated recrossing-number
distribution pRN(n) is compared to an exponential fit with a
decay constant α = 1.1, 40% of all TPs are single transfer events,
n = 0, while the remaining 60% TPs are part of multiple events
with n > 0.

Combining the TP time distribution pTP(t) in the infinitely
sharp limit β→∞, the exponential recrossing-number distribu-
tion pRN(n) and approximating the TP shape as a straight line, the
analytical result for the TP spectral contribution [red broken line
in Fig. 2(b3)] is derived in the supplementary material, Sec. XII,
and is given as

ωχ̃
′′

TP(ω) = d∗TP
2
q2

Vϵ0kBTτTW

64ω2τ2TP

π4(π + ωτTP)2
× eαω2τ2TP

2 cosh(α) − 2 + (π − ωτTP)2 , (5)

it matches the simulation data (blue solid line) around the maxi-
mum quite well. In the comparison, the mean time of recrossing TPs
τTP = 23 fs from Fig. 3(b) is used, which is shown to be the dominat-
ing time scale in the supplementary material, Sec. XII. Interestingly,
the TP spectrum Eq. (5) is a product of a Debye and a Lorentzian line
shape, both with the same characteristic frequency fTP = 1/(2τTP),
which explains its relative sharpness.

The remaining normal-mode contribution χ̃′′NM in Fig. 2(b4)
is obtained by harmonic analysis of the minimal energy structure,
including line broadening from frictional damping (red broken
line). The two dominant normal modes around 1416 and 1659 cm−1,
which correspond to in-phase and out-of-phase coupled vibrations
of the excess protons with the hydrogens of the distant water,

are illustrated in Fig. 2(b4) (see Sec. III A and the supplementary
material, Sec. III, for details).

In Fig. 2(b1), the simulated excess-proton spectrum (blue
solid line) is compared to the sum of the theoretical transfer-
waiting, TP, and normal mode predictions (red broken line);
the agreement is good (except for very high frequencies), which
demonstrates that Eqs. (1) and (5) together with the normal-mode
analysis allow us to quantitatively describe excess-proton transfer
spectra.

The excess-proton spectra in Fig. 4(a1) vary significantly for
different values of ROO. The excess-proton free energies from sim-
ulations in Fig. 4(b) demonstrate that the three systems exhibit
high, moderate, and low barriers. Very pronounced is the change
of the low-frequency shoulder of the transfer-waiting contribution
in Fig. 4(a2), which moves to lower frequencies and becomes weaker
with growing barrier height and is well captured by the theoretical
predictions Eq. (1) (black broken lines), using bi-exponential fits to
the transfer-waiting distributions in Fig. 4(c). Equation (2) demon-
strates that the spectral differences are due to less frequent transfers
as the barrier height increases. The simulated mean transfer-waiting
time τTW in the inset of Fig. 4(c) exponentially increases with
the barrier height U0, as expected for thermally activated barrier
crossing.44,46 On the other hand, the frequency of the TP spectral
contribution in Fig. 4(a3) shifts very little for different ROO, which
is well-captured by Eq. (5) (black broken lines) and reflects the weak
dependence of the TP time τTP on the barrier height in the inset of
Fig. 4(c), in agreement with the predicted logarithmic dependence
of τTP on the barrier height.49

Figure 4(d) compares the IR spectrum of the excess pro-
ton (blue solid line) in the H5 O2

+ cation to the normal-mode
spectrum, including frictional line broadening (grey broken line,
see the supplementary material, Sec. III, for details) for fixed
ROO = 2.40 Å, the barrier-less global minimum of the unconstrained
H5 O2

+ cation. The good agreement highlights that the barrier-
less Zundel state is well described by a normal-mode analysis. This
is in contrast to the results for larger values of ROO in Fig. 4(a),
where a finite barrier exists and the transfer-waiting and TP spectral
signatures dominate over the normal-mode contribution.
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FIG. 4. Decomposition of the excess-
proton spectra for various constrained
ROO. (a) AIMD spectra are shown as col-
ored lines and theoretical predictions are
shown for the transfer-waiting contribu-
tion, Eq. (1), in (a2) and for the TP contri-
bution, Eq. (5), in (a3) as thin black bro-
ken lines. (a4) shows the normal-mode
contributions. See the supplementary
material, Sec. XIII, for details. (b) Pro-
ton free energies landscapes extracted
from simulation trajectories. (c) Transfer-
waiting-time distributions together with
bi-exponential fits (black broken lines).
The inset shows the mean transfer-
waiting times τTW and the mean TP
times τTP as a function of the free-energy
barrier height U0. (d) IR spectrum of the
excess proton (blue solid line) in the
H5 O2

+ cation with a fixed ROO = 2.40 Å
compared to the normal-mode spectrum
including frictional line-broadening (grey
broken line). Vertical grey broken lines
denote the dominant normal modes.

III. CONCLUSIONS AND DISCUSSION

In contrast to traditional normal-mode-based approaches to
proton-transfer spectroscopy, which consider proton vibrations
around energy minima, we here investigate the spectrum of a pro-
ton as it actually makes the move from one energy minimum to
another. While the normal-mode frequencies are on the harmonic-
approximation level determined by the positive curvature of the
energy landscape and by the effective mass, two fundamentally dif-
ferent time scales govern the barrier-crossing absorption spectrum:
the mean time the proton waits in a potential minimum before it
crosses the barrier, the transfer-waiting time, and the mean time
it takes the proton to actually move over the barrier once it has
left the potential minimum, the so-called transfer-path (TP) time.
While the TP time distribution is rather narrow, which leads to a
well-defined TP band, the transfer-waiting times are broadly dis-
tributed, which leads to a wide spectral absorption down to low
frequencies. Recent experimental studies on hydrochloric acid solu-
tions in the THz regime indeed observed broad absorption that, by
comparison with AIMD simulations, could be attributed to proton
motion.52,53

The AIMD simulations of single H5 O2
+ cations reveal a high

similarity between excess-proton-only spectra and spectra from all
nuclei and electronic polarizations. This emphasizes the impact of
proton-transfer processes on experimentally measured spectra and
allows us in turn to develop a stochastic spectral theory based
on excess-proton motion only. The excess-proton transfer between
two water molecules depends strongly on the separation of the
two water oxygens. For oxygen–oxygen separations ROO ≥ 2.5 Å, a
barrier crossing is involved, whereas for closer separations the pro-
ton is rather located directly in between the two water molecules.
It should be noted, though, that nuclear quantum effects signifi-
cantly increase the probability to finding the proton in the barrier

position, which is typically interpreted as an indication that the
effective barrier height is reduced. This means that the effective bar-
rier heights could be smaller in the presence of nuclear quantum
effects.

An H/D isotope exchange of the excess proton does not
shift the low-frequency transfer-waiting signature, as shown in the
supplementary material, Sec. XIV, which is expected since
the excess-proton barrier crossing is a friction-dominated pro-
cess and mass plays only a minor role, as discussed in the
supplementary material, Sec. XV. In contrast, TP and normal-mode
signatures show isotope effects, which suggests how to experimen-
tally distinguish barrier crossing from the other spectral contribu-
tions. For the normal-mode spectral contribution the isotope effect
is well known (see Sec. X in the supplementary material), the mass-
dependence of the TP spectral contribution is rather subtle and
depends on the stochastic mass-friction balance (see Sec. XV in the
supplementary material).

The spectroscopic signatures of proton transfer are most pro-
nounced along the transfer direction, as shown in Sec. V in the
supplementary material, thus dichroic spectroscopic measurements
of oriented samples33,38 would be most suitable to observe the
features discussed in this paper.

A. Methods

The Born–Oppenheimer AIMD simulations of the H5 O2
+

cation were performed with the CP2K 4.1 software package using
a doubly polarizable triple-zeta basis set for the valence electrons,
dual-space pseudopotentials, the BLYP exchange-correlation func-
tional and D3 dispersion correction.58–60 The simulation box size
was 10 × 10 × 10 Å3 and the cutoff for the plane-wave representa-
tion was 400 Ry. For each constrained system, 20 ps simulations
with a time step of 0.5 fs were performed under NVT conditions
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at 300 K by coupling all atoms to a CSVR thermostat with a time
constant of 100 fs, which has been shown to be exceptionally good
for preserving vibrational dynamics.61 Consequently, a number of
independent simulations with a time step of 0.25 fs were performed
under NVE conditions starting from different snapshots of the NVT
data, 12 × 20 ps for the systems with ROO ≤ 2.5 Å and ≥20 × 60 ps
for the systems with ROO ≥ 2.5 Å, 20 × 90 ps for ROO = 2.72 Å. Even
though the time step was chosen to be very small, some systems did
not preserve energy during the NVE simulation due to unfavorable
starting conditions and the small number of degrees of freedom.
These systems were excluded from further analysis. The data for
systems with constrained oxygen atoms stem from NVE simula-
tions, totaling in simulation time 240–1800 ps for each system. In the
case of the unconstrained system, the oxygen atoms were only con-
strained in the yz-plane. Nevertheless, the NVE simulations were less
stable due to large spatial fluctuations along x. For this system, NVT
simulations with a total simulation time of 20 ps were performed.

Linear response theory relates the dielectric susceptibility χ(t)
to the equilibrium autocorrelation of the dipole moment C(t)= ⟨p(t)p(0)⟩, reading in Fourier space

χ̃(ω) = 1
Vϵ0kBT

(C(0) − iω
2
C̃
+(ω)), (6)

with system volume V , thermal energy kBT, and vacuum permit-
tivity ϵ0. IR spectra can therefore be calculated straight-forwardly
from sufficiently sampled trajectories of the AIMD simulation data
using Eq. (6) and the Wiener-Kintchin relation, derived in the
supplementary material, Sec. XVI. Quantum corrections have pre-
viously been addressed,62 but they were not applied here. The dipole
moments were obtained after Wannier-center localization of the
electron density at a time resolution of 2 fs. The power spectra
were smoothed using Gaussian kernels with widths that are log-
arithmically increasing from 20 cm−1 centered at f = 20 cm−1 to
100 cm−1 centered at f = 5000 cm−1. All presented spectra were
scaled by the volume of two water molecules, V = 0.060 nm3, which
follows from the density of water at atmospheric pressure and 300 K,
ρ = 0.99 g/ml. The normal-mode analysis was performed using the
implementation in CP2K 4.1 by diagonalizing the Hessian of ener-
getically optimal structures for the same system parameters as in
the AIMD simulations. The normal modes were obtained as the
Eigenvectors of the Hessian, the Eigenvalues are the frequencies.
A projection of the Eigenvectors onto the excess-proton coordi-
nate gave their spectral contributions. Line broadening resulted
from frictional damping with the same fitted friction coefficient
γ = 16 u/ps for all normal modes (see the supplementary material,
Sec. X, for details).

SUPPLEMENTARY MATERIAL

See the supplementary material for detailed derivations, analy-
sis procedures, additional data, and discussion.
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The theoretical basis for linking spectral signatures of hydrated excess protons with micro-

scopic proton-transfer mechanisms has so far relied on normal-mode analysis. We introduce

trajectory-decomposition techniques to analyze the excess-proton dynamics in ab initio

molecular-dynamics simulations of aqueous hydrochloric-acid solutions beyond the normal-

mode scenario. We show that the actual proton transfer between two water molecules

involves for relatively large water-water separations crossing of a free-energy barrier and

thus is not a normal mode, rather it is characterized by two non-vibrational time scales:

Firstly, the broadly distributed waiting time for transfer to occur with a mean value of

200–300 fs, which leads to a broad and weak shoulder in the absorption spectrum around

100 cm−1, consistent with our experimental THz spectra. Secondly, the mean duration of a

transfer event of about 14 fs, which produces a rather well-defined spectral contribution

around 1200 cm−1 and agrees in location and width with previous experimental mid-infrared

spectra.
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T
he motion of excess protons in aqueous solution is fun-
damental for many biological and chemical processes. The
excess-proton diffusivity is significantly higher compared

to other monovalent cations in water1,2, since the excess proton
exchanges its identity with water hydrogens during the diffusion
process3,4. Grotthus hypothesized a similar process over two
centuries ago5,6, but a detailed understanding of the proton-
transfer dynamics between water or other molecules remains
difficult to date due to the multitude of time scales involved and
the only indirect experimental evidence.

Infrared (IR) spectroscopy in the THz and mid-IR regimes is a
powerful tool to explore the ultrafast dynamics of water and
aqueous ion solutions. For example, the prominent absorption
peak around 200 cm−1 of bulk water is dominated by first-
solvation-shell dynamics, whereas motion involving the second
solvation shell contributes most significantly below 80 cm−1 (2.4
THz)7,8. Furthermore, so-called ‘rattling’ modes for strongly
hydrated ions lead to characteristic absorption features, while for
weakly hydrated ions vibrationally induced charge fluctuations
are dominant9,10, as suggested by dissecting simulation spectra
into contributions from different solvation shells11,12.

IR spectroscopy has proven particularly useful for the study of
the ultrafast dynamics of the excess proton in aqueous
solution13,14. Due to their low pH value, aqueous hydrochloric
acid (HCl) solutions are perfect model systems to study excess-
proton dynamics, since HCl dissociates readily in water and gives
rise to a large number of highly mobile protons that are only
weakly coordinated with neutralizing chloride ions and therefore
behave as if added in excess. The characteristic continuum band
in the IR absorption spectrum, located between the water-
bending mode around 1650 cm−1 and the water-stretching mode
around 3300 cm−1, has long been known and led to the
hypothesis of the Zundel state, i.e., two water molecules sym-
metrically sharing the excess proton15. This model has been
challenged by a contrasting picture, the Eigen state, which is a
hydronium ion caged symmetrically by three water molecules16.
Ever since these idealized structures have been proposed, their
relative stability has been controversially debated13,17–27. It is now
known that neither the idealized Zundel nor the Eigen states are
realistic structural representations and that the excess proton
mostly resides slightly asymmetrically shared between two water
molecules, in the ‘special pair’ state, which geometrically can be
interpreted as a ‘distorted Zundel’ state or a ‘distorted Eigen’
state20,23,24,26–28.

While simulations can reproduce most experimental spectro-
scopic signatures, the understanding of the proton transfer
mechanism requires model building based on and guided by
simulations. It is generally accepted that proton transfer involves
consecutive transitions between states that can be viewed as more
Eigen-like and more Zundel-like and have fast interconversion
times24,26,29. That the excess proton diffusion involves the
crossing of free-energetic barriers follows from the experimentally
known Arrhenius behavior of the excess-proton
conductivity28,30–32. Similar to the above-mentioned discussion
on the relative stability of the Eigen and Zundel states, it remains
debated whether the Zundel state is the transition state between
two Eigen states or the opposite is the case, i.e., whether the Eigen
state is the transition state between two Zundel states23,24,27.
Theoretical models for the spectroscopic signatures of the
hydrated proton motion so far relied on normal-mode calcula-
tions and have explained many aspects of experimental linear
absorption33–35 as well as 2D IR spectra25,26. However, normal
modes by construction cannot deal with the thermally activated
transfer of an excess proton over a free-energy barrier, since this
corresponds to an unstable mode with a negative free-energy
curvature along the transfer reaction coordinate36. It is clear that

such proton-barrier-transfer events will make a sizable spectro-
scopic contribution, since they involve fast motion of a highly
charged object over relatively large distances. From this follows
that an excess-proton transition state, which corresponds to a free
energy maximum and thus occurs with a small probability,
nevertheless can make a dominant contribution to the spectrum,
which would lead to characteristic differences between experi-
mental spectra and normal-mode theory predictions. Indeed, it
has been noted that the normal-mode spectra computed from
instantaneous configurations do not explain all experimental
spectral signatures associated with the excess proton in
water19,25–27, in particular of the proton-transfer dynamics37. It
was recently shown that proton transfer in the H5O2

+ cationic
complex gives rise to two distinct spectroscopically relevant time
scales that cannot be captured by normal-mode analysis38.

In general, the transfer of a particle with mass m over an energy
barrier with negative curvature k < 0 corresponds to an unstable
mode. The dynamics of such a barrier-crossing is not char-
acterized by a vibrational time scale, which according to a har-
monic oscillator model could erroneously be written as
τ ’

ffiffiffiffiffiffiffiffiffiffiffiffi
m=jkj

p
’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mL2=U0

p
, where U0 is the barrier height and L

is the barrier width, but rather by two other time scales, namely
the mean transfer-waiting time τTW and the mean transfer-path
time τTP. τTW is the average waiting time before a transfer event
occurs and τTP is the average time of the actual transfer path over
the energy barrier. The former one scales exponentially with the
barrier height U0, τTW � expðU0=kBTÞ

36,39, whereas the latter
one scales logarithmically with the barrier height U0,
τTP � logðU0=kBTÞ

40–43. In essence, it is not clear with current
theoretical methodology what the spectroscopic signature of
excess-proton transfer events in aqueous solutions is and whether
the continuum band stems just from vibrations in metastable
states or whether transfer reactions over barriers are involved.
Thus, a theoretical approach that is complementary to normal
modes and can handle proton-transfer events that involve free-
energy barriers is needed.

In this study, we investigate the excess-proton dynamics in
aqueous HCl solutions at ambient conditions using ab initio
molecular dynamics (MD) simulations at the Born–Oppenheimer
level and experimental THz/Fourier-transform infrared (THz/
FTIR) measurements. Our simulated IR difference absorption
spectra compare well to our experimental data in the THz regime
as well as to literature data in the mid-IR regime. By projecting
the excess-proton dynamics onto the two-dimensional coordinate
system spanned by the proton position along the axis connecting
the two closest water oxygens d and the oxygen distance ROO44,45,
the excess-proton trajectories and their spectral signatures are
subdivided into three contributions with distinct time scales, as
illustrated in Fig. 1a. The fastest time scale, τNM, reflects vibra-
tions when the excess proton transiently forms a solvated H3O+

molecule which is asymmetrically solvated in a special pair. It is
well captured by a normal-mode description and has been amply
discussed in literature19,25,26,37,46. The other two spectral sig-
natures, stemming from proton transfer events, are the focus of
this study. The associated time scales τTW and τTP are directly
obtained from our simulated excess proton trajectories using a
multidimensional path analysis. While the transfer-waiting time
τTW of aqueous proton-transfer events has been studied
recently47, the identification of both τTW and τTP in simulated
and experimental spectra is a main result of this work. We find a
mean transfer-waiting time of τTW= 200–300 fs depending on
HCl concentration, which in our experimental THz spectra shows
up as a broad weak shoulder around 100 cm−1, that is partially
overlaid by the absorption due to rattling chloride anions at about
150 cm−1 9,11. The mean transfer-path time, from simulations
obtained as τTP= 14 fs, produces a spectroscopic signature
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around 1200 cm−1, which is well captured in experimental mid-
IR spectra14,20,23,24,26. Note that in our simulations the proton
transfer becomes barrier-less for small water separation and thus
includes the highly anharmonic normal-mode vibration of
Zundel-like configurations, which have already been analyzed
theoretically19,25,37,46. In the THz regime our experimental dif-
ference spectra show an additional prominent peak around
300–400 cm−1, in good agreement with our simulation data,
which is demonstrated to be caused by the coupling of the excess-
proton motion to the relative oscillations of the two flanking
water molecules in transient H5O2

+ complexes. Proton transfer
events between water molecules are frequently followed by a few
immediate back-and-forth transfer events, which is a con-
sequence of non-Markovian effects48 that have to do with the
slowly changing solvation structure around the excess proton.
Although these transfer events are therefore not always produc-
tive in the sense that they lead to large-scale diffusion of the
excess proton, they nevertheless give rise to pronounced experi-
mental spectroscopic signatures and therefore need to be included
in the analysis.

RESULTS
Infrared and THz spectra of HCl solutions. Within linear
spectroscopy, the energy absorption rate of incident light with
frequency f= ω/(2π) is proportional to the imaginary part of the
dielectric susceptibility and given by ωχ″(ω). IR power spectra are
obtained from ab initio MD simulations of water (blue solid line)
and HCl solutions at three concentrations between 2 and 6 M

(purple to red solid lines) and are shown in Fig. 1b. The spectra
are divided by the water molecular number concentration
ωχ00cW ¼ ωχ00=cW. Simulation details are provided in the “Meth-

ods” section. All IR spectra show the characteristic features of
pure water spectra, which are the prominent OH-stretching peak
around 3300 cm−1, the HOH-bending mode around 1650 cm−1

and librational modes in the far IR regimes between 200 and
800 cm−1. The IR spectra of HCl solutions additionally show a
broad continuum between the bending and the stretching peaks,
from 2000 to 3000 cm−1, and a broad peak at around 1200 cm−1,
both of which are commonly interpreted as to reflect the excess-
proton dynamics14,23,49. Furthermore, additional features are
observed below 800 cm−1, that are shown in Fig. 2 in comparison
to our experimental THz spectra and will be discussed further
below.

The simulated difference spectra in Fig. 1c (solid lines) clearly
demonstrate three distinct regions (color shaded), that relate to
distinct time scales of the excess-proton dynamics and will in this
work be identified as transfer-waiting (TW, gray), transfer-path (TP,
red) and normal-mode contributions (NM, green). We obtain rather
good agreement with the experimental difference spectrum for 4 M
HCl14, which was scaled to match the height of the simulated IR
1200 cm−1 peak, see Supplementary Fig. 5 for a comparison of
different experimental data. Our simulated 4 M difference spectrum
in Fig. 1c does not reproduce the local maximum of the experimental
difference spectra around 1750 cm−1, which is interpreted as the
acid-bend band, i.e., a blue shift of the bending mode in H3O+

compared to water, and also not the shape of the experimental acid-

Fig. 1 Time scales of excess-proton dynamics and simulated absorption spectra. a Schematic trajectory of an excess proton that transfers between two

water molecules, together with a schematic free energy profile F(d) that exhibits a barrier and is representative of a relatively large oxygen-oxygen

separation ROO. Three time scales characterize the proton trajectory, the normal-mode vibrational period of the solvated transient H3O
+, τNM, the transfer-

path time, τTP and the transfer-waiting time, τTW, where τTW > τTP > τNM. An animation is shown online https://fu-berlin.eu.vbrickrev.com/sharevideo/

df2d94a4-6e7f-499a-a256-17d73b6124e4. b Infrared (IR) absorption spectra obtained from ab initio molecular dynamics (MD) simulations of pure water

(blue solid line) and hydrochloric acid (HCl) solutions at various concentrations (dark purple: 2 M, purple: 4 and red: 6 M). The spectra are divided by the

water molecular number concentration cW. c Difference spectra between the three HCl spectra and the water spectrum, obtained from the spectra in b. The

purple dotted line shows an experimental difference spectrum of HCl at 4 M14, rescaled in height to match the simulation results. d The simulated difference

spectra (as shown in c) divided by the HCl concentrations cHCl. Three distinct spectral regions are shaded in different colors, that are identified with different

excess-proton dynamic processes: transfer waiting (TW, gray), transfer paths (TP, red), and normal modes (NM, green). The transfer-waiting time is close

to the chloride-ion (Cl−) rattling time and the oxygen vibrational time in local H5O2
+ complexes that is described by the ROO coordinate.
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stretch signature around 3000 cm−1 14,19,20,23,50. The reason for this
disagreement is unclear, we note that the normalization of spectra
when calculating difference spectra is a subtle issue, see Supplemen-
tary Note 3 for a discussion.

Figure 1d shows that the three simulated HCl difference
spectra divided by the HCl concentrations cHCl are nearly
indistinguishable. This clearly indicates that the spectroscopic
features are due to single-proton dynamics and that collective
proton effects as well as proton-chloride coupling effects, which
would scale non-linearly in the HCl concentration, are minor.
This is an important finding and justifies our theoretical analysis
of single excess-proton motion in this work.

In order to investigate the intermolecular vibrational dynamics
of water, solvated protons, and chloride ions, we experimentally
measure THz absorption spectra for HCl concentrations of 2 M, 4
M, 6 M, 8 M, and 10 M. For quantitative comparison with our
simulation data, the experimentally measured extinction spectra
are converted into energy absorption spectra using the
Kramers–Kronig relation, details are described in the “Methods”
section and in Supplementary Methods 1. The experimental THz/
FTIR spectra are shown in Fig. 2a in the range 0–650 cm−1

(colored broken lines) together with a literature spectrum of pure
water (blue broken line) and are compared to the available
simulated spectra (solid lines). Again, all experimental and
simulated spectra are divided by the respective water concentra-
tion cw. One notes the good agreement between the experimental
and simulation spectra below 400 cm−1, which is noteworthy
since the spectral amplitudes are not rescaled or adjusted.
However, the reason of the disagreement for larger wave numbers
is not clear. All spectra show a prominent peak at 200 cm−1.
Difference spectra of the experimental data with respect to the
pure water spectrum are shown in Fig. 2b (broken lines) and again
compared to the available simulated difference spectra (solid
lines). Two peaks dominate the difference spectra, one around
150–200 cm−1 and one around 300–400 cm−1. The experimental
difference spectra scale linearly with HCl concentration, which is
demonstrated in Fig. 2c, where the difference spectra are divided
by the HCl concentrations cHCl. For comparison, the simulated
difference spectra divided by cHCl, already presented in Fig. 1d, are
averaged over the three HCl concentrations and shown as a black
solid line. The linear scaling of the experimental spectra with HCl
concentration reconfirms that the difference spectra are related to
single-ion behavior and that collective ion effects are negligible, in
agreement with previous observations13,14. In essence, two
different processes at 150–200 cm−1 and 300–400 cm−1 are
clearly indicated by our experimental and simulated spectra and

will be interpreted by our spectral trajectory-decomposition
techniques. In the remainder we analyze exclusively the 6 M
solution, which provides the best proton statistics.

Excess-proton trajectories and spectra. Excess protons con-
stantly change their identity as they move through the HCl
solution. Each identity change introduces a spurious discontinuity
in the excess-proton trajectory, which does not actually corre-
spond to charge transport and therefore is spectroscopically
irrelevant. In order to extract continuous excess-proton trajec-
tories from our simulations, we use a dynamic criterion as illu-
strated in Fig. 3a (that our extracted excess-proton trajectories are
spectroscopically meaningful we will a posteriori demonstrate by
comparison of spectra calculated from excess proton trajectories
with spectra calculated from the complete simulation system).
Each proton is assigned to its closest oxygen atom at each time
step. Whenever three protons are assigned to the same oxygen,
thereby forming a hydronium ion, all of them are registered as
excess-proton candidates. That means, for the generation of
continuous excess-proton trajectories, we do not select the
hydrogen with the largest separation from the oxygen, which
would lead to fast switching of the excess proton identity, the so-
called ‘special pair dance’ of hydronium with its surrounding
water molecules27,51. Rather, if during the simulation an excess-
proton candidate becomes assigned to a different oxygen and thus
transfers to a neighboring water, it is selected as an excess proton
for the entire time during which it was part of any hydronium
ion27. Note that the spectral effects of the rattling of the excess-
proton candidates within one hydronium ion, i.e., the ‘special pair
dance’, are in some of our calculations below included by taking
into account the flanking water molecules in the calculation of
spectra, but do not show significant spectral signatures. Excess
protons that are coordinated with a chloride anion as the second
nearest neighbor are neglected from our analysis. This does not
influence our excess-proton spectra, since even for the highest
acid concentration of 6 M, only 5% of all configurations are of
this type, as demonstrated in Supplementary Table 3. Note,
however, that the fraction of protons coordinated with chloride
ions increases significantly at higher concentrations52. Our pro-
cedure for calculating continuous excess-proton trajectories is
discussed in further detail in Supplementary Methods 2.

The excess-proton trajectories are described by the two-
dimensional coordinate system defined within local transient
H5O2

+ complexes consisting of the excess proton and its two
nearest water molecules, as illustrated in the right part of Fig. 3a.
The coordinates are the instantaneous distance between the two

Fig. 2 Experimental absorption spectra. a Experimental THz/Fourier-transform infrared (THz/FTIR) absorption spectra of HCl solutions at various

concentrations (colored broken lines for 2 M to 10 M), compared to literature data of pure water74 (blue broken line). The experimentally measured

extinction spectra have been converted into energy absorption spectra using the Kramers–Kronig relation, no amplitude adjustment is used in the

comparison with the ab initio spectra (solid lines). b Experimental and ab initio molecular dynamics (MD) difference spectra derived from the results given

in a and plotted in the respective colors and line styles. c The experimental difference spectra (shown in b) are divided by the HCl concentration cHCl

(colored broken lines) and compared to the average of the simulated difference spectra after dividing by cHCl (black solid line).
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oxygen atoms ROO and the excess proton’s distance from the
midplane d45. The state for d= 0, where the excess proton is in
the middle between the oxygens, will be later used to define the
transition state of the proton transfer between the two flanking
water molecules. Figure 3b shows an example excess-proton
trajectory from our ab intio MD simulations in terms of the ROO
and d coordinates. While the motion along the two coordinates is
strongly correlated, as we will show later, the d trajectory shows
fast oscillatory components that are much weaker in the ROO
trajectory.

The power spectra of the excess-proton trajectories, averaged
over all excess protons in the solution, are shown in Fig. 3c for the
d coordinate as a black broken line and for the ROO coordinate as
a black dotted line, in the calculations we assume a bare charge of
1 e for the excess proton (left axis). We compare with the
simulated difference spectrum of the 6 M HCl solution (red solid
line), which is multiplied by the water concentration cW and
divided by HCl concentration cHCl and thus is normalized per
excess proton (right axis). The qualitative agreement between the
two spectra (black broken and red solid lines) is very good up to
an overall scaling factor of roughly four, which reflects
polarization enhancement due to neighboring water molecules.
The good agreement indicates that the difference spectrum of an
HCl solution is proportional to the spectrum of the highly IR-
active excess proton in terms of its coordinate d47. In other words,
the HCl-solution difference spectrum reports on the excess-
proton motion relative to the two flanking water oxygens and can
therefore be used to investigate proton-transfer dynamics. In
turn, the analysis of excess-proton trajectories allows to reveal the
microscopic mechanism causing the signatures of HCl-solution
difference spectra, which is a central validation of the trajectory-
decomposition technique used in our study. In contrast, the
dynamics of ROO, i.e., the vibrations of the water molecules in the
H5O2

+ complex, black dotted line in Fig. 3c, gives rise to a single

spectral feature around 400 cm−1, which turns out to be present
also in the simulated and experimental HCl-solution spectra, as
will be discussed below.

To check for the effect of the two water molecules that flank the
excess proton on the difference spectrum, we also calculate the IR
spectrum of transient H5O2

+ complexes, as done previously22,53

and presented in more detail in Supplementary Fig. 11. To
construct a difference spectrum, we subtract from the H5O2

+

spectrum the spectrum of hydrogen-bonded water-molecule pairs
obtained from the pure-water ab initio MD simulation. The
resulting difference spectrum in Fig. 3c (gray solid line, right
scale) is reduced by a factor of roughly two compared to the
difference spectrum of the entire HCl solution (red solid line) but
otherwise agrees in shape rather nicely. Compared to the
spectrum of the isolated excess proton (broken line, left scale)
we observe an amplification by a factor of roughly two, but no
essential spectral shape change. We conclude that the flanking
water molecules and in particular the ‘special pair dance’ with
further solvating water molecules does not modify the spectrum
of the excess proton in an essential way. The amplification of the
complete HCl-solution difference spectrum compared to the
H5O2

+ difference spectrum (red and gray solid lines, respectively)
we rationalize by polarization enhancement effects of water
molecules that solvate the H5O2

+ complex.
A few spectral contributions that are not included in the excess

proton power spectrum (black broken line in Fig. 3c) deserve
mentioning: (i) Dynamics orthogonal to the connecting axis of
the oxygens are shown to be small in Supplementary Fig. 11. (ii)
The chloride motion is shown below to contribute only slightly
and at low frequencies to the spectrum. iii) The translation and
rotation of the internal H5O2

+ coordinate system relative to the
lab frame is in Supplementary Figs. 12 and 13 shown to only give
a small spectral contribution. We thus conclude that the IR
difference spectrum between HCl solutions and pure water

Fig. 3 Excess-proton trajectories and spectra. a Illustration of the method used to extract continuous excess-proton trajectories from ab initio molecular

dynamics (MD) simulations. From the three protons in a hydronium ion, the one that will later transfer to a neighboring water is identified as excess proton.

To the right the coordinates d and ROO are defined. b Example trajectories of the d and ROO coordinates. c Power spectra of the d and ROO coordinates are

shown as broken and dotted black lines, respectively (vertical axis on the left). Also shown are the simulated difference spectrum of the 6 M HCl solution,

divided by the HCl concentration cHCl and multiplied by the water concentration cW (red solid line), and the simulated difference spectrum between a

transient H5O2
+ complex in HCl solution and two hydrogen-bonded water molecules in pure water (gray solid line), using the vertical axis on the right. The

inset shows a zoom into the THz regime, which additionally shows our 6 M experimental THz/FTIR difference spectrum (red broken line).
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reports very faithfully on the excess-proton dynamics, apart from
an overall amplification factor.

2D excess-proton trajectory analysis. Figure 4a shows the two-
dimensional (2D) free energy for 6 M HCl obtained from the
negative logarithm of the distribution function of the continuous
excess-proton trajectories as a function of the coordinates d and
ROO, a blow up of the shaded area is given in Fig. 4e. By defi-
nition, the free energy is symmetric with respect to the midplane
at d= 0, which separates two global minima at ROO = 2.51 Å and
d= ±0.2 Å. These minima, highlighted as gray dots in Fig. 4a,
correspond to states where the excess proton is asymmetrically
shared between the two flanking water molecules. The transition
between these minima, i.e., the proton transfer, is, therefore, a
barrier-crossing process in the two-dimensional plane spanned by
ROO and d.

Figure 4b shows cuts through the free energy for constant ROO
along d, each fitted to a quartic expression F(d)= Fd=0(1+
γ2d2+ γ4d4) shown as black broken lines. Details are reported in
Supplementary Methods 3. For negative γ2, two minima at d� ¼

±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�γ2=ð2γ4Þ

p
are separated by a barrier at d= 0, which

correspond to the optimal proton asymmetry for a given value

of ROO and are determined by the parabolic function d*(ROO),
which is plotted as a black broken line in Fig. 4a, e. The cuts in
Fig. 4b are shown for ROO = 2.39 Å, where the barrier just
vanishes (blue solid line), ROO = 2.42 Å, where the absolute
barrier height is minimal and which contains the transition state
in the d-ROO plane at d= 0 (red solid line), and ROO = 2.51 Å,
which contains the global minima of the 2D free energy (green
solid line).

The absolute free energy at d= 0 is plotted in Fig. 4c as a red
solid line and compared to the barrier height relative to the ROO-
dependent minima at d*(ROO) (blue solid line). The minimal
absolute barrier free energy of 0.9 kBT (red line), located at ROO =

2.42 Å, defines the transition state; for ROO = 2.51 Å, for which
the most probable excess-proton state is obtained, the barrier has
a moderate absolute height of 1.8 kBT, suggesting that proton
transfer is not excluded for this value of ROO. Note that for
ROO < 2.39 Å the relative barrier height vanishes and thus a
symmetrically shared excess proton is most likely.

Next, to decompose the excess proton trajectories into
segments where the excess proton moves around the local free
energy minima and where a transfer across the midplane
happens, transfer-path start and end points need to be defined.
For this we use the most likely proton location d*(ROO) (black

Fig. 4 2D excess-proton trajectory analysis. a The two-dimensional (2D) free energy of the excess protons in 6 M HCl solution for the (d, ROO)

coordinates defined in the inset of Fig. 3a. The shaded area is enlarged and shown in e. The gray dots denote the positions of the global minima of the 2D

free energy. The minima for fixed ROO, i.e., the most likely proton locations, d*(ROO), are indicated by a black broken line. b Cuts through the free energy in a

for ROO = 2.39 Å, where the barrier just vanishes (blue solid line), ROO = 2.42 Å, where the absolute barrier height is minimal (red solid line) and ROO =

2.51 Å, for which the global minima of the 2D free energy are obtained (green solid line). c The absolute free energy at d= 0 (red solid line) and the barrier

height relative to the minima at fixed ROO located at d*(ROO) (blue solid line). d Distribution of ROO positions at which complete transfer paths cross the

d= 0 midplane. e Zoom into the free energy shown in a. The vertical colored lines indicate the cuts through the free energy shown in b. An example

trajectory from the ab initio molecular dynamics (MD) simulation is shown as a black solid line. f Path-duration distributions of complete (blue, times

defined from d* to− d*) and incomplete transfer paths (green, times defined from d* to d= 0). Fits according to Eq. (1) are shown as black solid lines.

g Time course of the example trajectory along d, same as shown in e, with complete and incomplete transfer paths indicated as blue and green lines,

respectively. The two branches of the ROO-dependent minimal energy position d*[ROO(t)] are shown as black broken lines.
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broken lines in Fig. 4a, e, g). The start of a transfer path is thus
defined as the last crossing of d*(ROO) on one side of the
midplane at d= 0 and the end of a transfer path as the first
crossing of d*(ROO) on the other side of the midplane at d= 0.
The transfer paths are slightly extended forward and backward in
time to the points where the velocity along d vanishes, the so-
called turning points, in order to be consistent with the analytical
theory presented in38. An example trajectory is shown in Fig. 4e
(thin black line) in the (d, ROO) plane, the corresponding time-
dependent position d is given in Fig. 4g, where the transfer path is
highlighted in blue. Many transfer attempts are unsuccessful and
lead to incomplete transfer paths, where the excess proton crosses
the mid-plane d= 0 but does not reach to the minimal free
energy state d*(ROO) on the other side. Two incomplete transfer
paths are shown in green in Fig. 4g and for consistency are also
extended to their turning points. Transfer-path-time distributions
are given in Fig. 4f; with our definitions used, incomplete transfer
paths turn out to be slightly faster. In total, there are about as
many incomplete (n= 14877) as complete transfer paths
(n= 14357), meaning that about half of all excess protons
reaching the midplane d= 0 actually transfer from one water
molecule to the other. The main peaks in the distributions are
fitted by the Erlang distribution54–56

pTPðtÞ ¼
tβ�1

ðβ� 1Þ!

β

τTP

� �β

e�βt=τTP ; ð1Þ

with the mean transfer-path time defined by τTP, shown as black
solid lines in Fig. 4f, the fit parameters are given in the legend.

The distribution of transition states in Fig. 4d, i.e., the ROO
position at which complete transfer paths cross the midplane at
d= 0, is rather broad and peaks slightly below ROO = 2.42 Å, the
most probable excess-proton position at d= 0. Most paths, in
fact, 77%, cross for ROO > 2.39Å, i.e., for values of ROO where a
barrier along the d coordinate is present. This means that the
dominant mechanism for proton transfer is not one where the
proton waits until the oxygen-oxygen separation ROO reaches
small values so that the remaining barrier along d is small or
absent. Rather, protons cross the d= 0 midplane for a broad
distribution of oxygen-oxygen separations ROO and by doing so
overcome substantial free-energy barriers. This reverberates that a
normal-mode analysis cannot account for all aspects of proton
transfer in HCl solutions.

Spectral signatures of proton transfer. In order to dissect the
excess-proton spectrum in Fig. 3c (black broken line) into con-
tributions that have to do with proton-transfer events and those
that do not, the excess-proton trajectories d(t) are decomposed
into three parts according to

dðtÞ ¼ dTWðtÞ þ dTPðtÞ þ dNMðtÞ: ð2Þ

To illustrate this decomposition, Fig. 5a shows part of an example
excess-proton trajectory, d(t) (black line), together with the most
likely excess-proton positions d*[ROO(t)] (thin gray lines); the
deviations between the black and gray lines visualize excess-
proton motion relative to the oxygen it is bound to. We define the
transfer-waiting contribution to the excess-proton trajectory as
dTW(t)≡ d*[ROO(t)] projected onto the closer branch of
d*[ROO(t)], shown as a blue solid line in Fig. 5b. Thereby, dTW(t)
reflects the proton transfer jumps and also contains the water
motion. The transfer-path contribution dTP(t) in Fig. 5c (red solid
line) is defined as dTP(t)= d(t)− dTW(t) during complete and
incomplete transfer paths (as defined in Fig. 4e, g) and is zero
elsewhere, it describes the excess-proton motion during transfer
processes. Finally, by subtracting dTW(t) and dTP(t) from d(t), we
are left with the oscillations around d*[ROO(t)] when the excess

proton is not undergoing a transfer, which constitutes the
normal-mode contribution dNM(t) in Fig. 5d (green solid line).
Different or more detailed excess-proton trajectory decomposi-
tions are certainly conceivable, the usefulness of the present
scheme follows from its spectral decomposition properties.

In Fig. 5e the excess-proton spectrum, (black solid line) is
decomposed as

ωχ00 ¼ ωχ00TW þ ωχ00TP þ ωχ00NM: ð3Þ

The power spectra of the transfer-waiting, χ00TW (blue line), and
transfer-path contributions, χ00TP (red line), are computed from the
dTW(t) and dTP(t) trajectories using the Wiener–Kintchine
theorem (see “Methods” section for details). All cross-
correlation contributions are included in the normal-mode
contribution, χ00NM (green line).

The normal-mode spectrum ωχ00NM in Fig. 5e accounts for the
continuum band located between 2000 and 3000 cm−1, it is in
fact amenable to normal-mode analysis19,25,27 but by construc-
tion does not include the proton-transfer dynamics. The range of
the dominant normal-mode time scales included in ωχ00NM,
τNM= 11–17 fs, follows from the spectral width of the con-
tinuum band, taken to be f= 2000–3000 cm−1 in Fig. 5e, via
τNM= 1/f.

The transfer-path spectrum ωχ00TP in Fig. 5e shows a
pronounced peak around 1200 cm−1. An analytical model
calculation shows that the peak in the transfer-path spectrum is
related to the mean transfer-path time as fTP= 1/(2τTP)38. Taking
the results from the fits in Fig. 4f, yielding τcTP = 14.1 fs for
complete and τiTP = 12.7 fs for incomplete transfer paths, we
predict f cTP ¼ 1170 cm�1 and f iTP ¼ 1300 cm�1, indicated in
Fig. 5e as vertical lines and which bracket the transfer-path peak
very nicely.

The transfer-waiting spectrum ωχ00TW in Fig. 5e exhibits a peak
around 400 cm−1, a shoulder around 100 cm−1 and a slow decay
for lower frequencies. The peak around 400 cm−1 (12 THz) is
caused by oscillations of the oxygen–oxygen separation, ROO,
which couple to the proton position d via the most likely proton
position d*[ROO(t)]; in simple terms, the proton vibrates with the
water molecule it is bound to. The oxygen vibrational time scale
τROO

= 86 fs, indicated in Fig. 5b, follows from the peak of the
power spectrum of ROO around 400 cm−1, which is plotted in the
lower panel of Fig. 5e and agrees perfectly with the peak in ωχ00TW.
This peak is in fact also well visible in our experimental THz/FTIR
difference spectra, shown again in Fig. 6a as a broken red line for a
6 M HCl solution, the dotted red line shows the corresponding
simulated difference spectrum. Note that this translational
vibration of two water oxygens in the transient H5O2

+ complex
is about twice as fast as the translational vibration of two
hydrogen-bonded water molecules in pure water, which gives rise
to the well-known IR signature around 200 cm−1, shown as a blue
solid line in Fig. 6b obtained from pure-water simulations12. This
frequency shift is the reason why the water-vibration peak appears
prominently in the difference spectra in Fig. 6a.

The shoulder in ωχ00TW around 100 cm−1 is related to the
transfer waiting time τTW, which is the average time between two
consecutive complete proton-transfer events, as predicted from
an analytically solvable barrier-crossing model38. In Fig. 5f we
show distributions of the transfer-waiting first-passage times, i.e.,
distributions of the time difference between crossing the most
likely proton position d*[ROO(t)] on one side of the midplane
d= 0 and crossing d*[ROO(t)] on the other side of the midplane
d= 0 for the first time, for the three HCl concentrations. The
distributions are essentially exponential in nature, which means
that transfer events occur at a roughly constant rate and reflects
the stochastic nature of the excess-proton transfer process in this
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reduced one-dimensional description. The mean of these first-
passage distributions defines the transfer-waiting time τTW, which
is given in Table 1 and increases with rising HCl concentration.
This indicates that hydronium ions have a slightly longer life time
at higher HCl concentrations. In contrast, both complete and
incomplete transfer-path times interestingly show no dependence
on the HCl concentration. The inverse of the transfer-waiting
time τTW = 280 fs for 6 M, which is shown in Fig. 5e as a vertical
line, is located at 120 cm−1 (3.5 THz) and corresponds well to the
position of the shoulder in ωχ00TW, which confirms the connection
between the transfer-waiting time and the spectroscopic signature
around 100 cm−1 that is predicted by analytical theory38. We
note that the total length of the continuous proton-transfer
trajectories are roughly twice as long as the mean transfer-waiting
times, meaning that typically a few back-and-forth proton-
transfer events occur in each trajectory (see Supplementary
Note 7 for more details).

The characteristic time scales of each contribution, i.e., the
transfer-waiting time τTW = 280 fs, the water-oxygen vibrational
time τROO

= 86 fs, the transfer-path times τcTP = 14.1 fs and τiTP =

12.7 fs and the normal-mode times τNM = 11–17 fs are
unambiguously extracted from the simulations and characterize
both the trajectory contributions in the time domain in Fig. 5a–d,
where they are included as horizontal black bars, and also the
different spectral contributions in Fig. 5e.

We comment on the subtle spectral features in the range
1400–1800 cm−1 in Fig. 5e, where small but distinct peaks are
revealed in the different spectral contributions. The transfer-
waiting contribution (blue line) peaks at about 1650 cm−1,
hinting to a weak coupling to an unperturbed water bending
mode of the flanking water molecules. The transfer-path
contribution (red line) peaks at 1750 cm−1, the location of the
experimental acid bend signature, which suggests that the acid
bend couples particularly to the transfer path motion of the excess
proton. Note, that even though the acid bend is primarily
produced by the excess-proton motion orthogonal to the d
coordinate, this contribution to the isotropic spectrum is largely
compensated by motion of the flanking water molecules, as
shown in Supplementary Fig. 11. The normal-mode contribution
(green line) peaks around 1500 cm−1, consistent with previously
calculated normal-mode spectra of Eigen-like solvated proton
structures25. We thus see that our trajectory-decomposition
technique also allows to disentangle the various normal-modes
obtained for the solvated excess-proton complex.

So far we have concentrated on the excess-proton spectral
contribution and not discussed the chloride contribution. The
decomposition of the total simulated 6 M HCl spectrum in Fig. 6b
(red solid line) into the chloride contribution (green solid line,
including all cross correlations) and the remainder (gray solid line)
demonstrates a prominent chloride peak around 150 cm−1, which

Fig. 5 Spectral signatures of proton transfer. a–d Decomposition of an excess-proton trajectory d(t) (black solid line in a) into transfer-waiting dTW (blue

solid line in b), transfer-path dTP (red solid line in c) and normal-mode contributions dNM (green solid line in d). The time course of the ROO-dependent

most likely proton positions at d*[ROO(t)] are shown as thin gray solid lines in (a and b). e IR spectrum of the excess-proton motion projected onto d,

shown as a black solid line, and IR spectra of the contributions shown in a–c in the respective color (the green broken line denotes negative values). The

power spectrum of the ROO coordinate is shown as a gray broken line in the lower panel. The inverse of the characteristic time scales τTW, τROO , 2τ
c

TP and

2τ iTP are shown as thin vertical solid gray lines. f Distributions of the transfer-waiting first-passage times of excess protons, see main text for details.
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translates to a corresponding time scale of τCl� = 185 ps and is due
to the rattling of a chloride in its hydration cage9,10. This peak is
also seen in the simulated difference spectrum in Fig. 6a (red dotted
line) and is slightly shifted to larger frequencies in the experimental
difference spectrum (red broken line). At 100–200 cm−1 the
remainder contribution in Fig. 6b (gray solid line) is significantly
stronger than the pure-water spectrum (blue line), indicating that a
process related to excess-proton motion significantly contributes in
this wavenumber range. We suggest that this process is the excess-
proton transfer-waiting contribution, which in Fig. 5e is shown to
produce a broad shoulder around 100 cm−1.

While the generally good agreement between our simulated
and experimental spectra supports our chosen simulation
methodology, it is clear that our classical treatment of nuclei
motion is a drastic approximation and therefore some of the
agreement might be due to fortuitous cancellation of errors.
Interestingly, previous studies found no significant differences
between IR spectra computed from simulations with and without
nuclear quantum effects below 3000 cm−1 34,35,55, which might
suggest that quantum-mechanical zero-point motion influences
the excess-proton dynamics less than the instantaneous excess-
proton distribution. We discuss quantum nuclear effects and
basis set issues in the “Methods” section and Supplementary
Note 1. Furthermore, we also compare our simulation results for
radial distribution functions28,33,52,56,57 (Supplementary Note 4)
and proton diffusion coefficients28,33,58–60 (Supplementary
Note 8) with previous reports and discuss other observables that
have been used in literature to characterize excess-proton transfer
dynamics, such as identity correlation functions27,58,61 (Supple-
mentary Note 7), the hydrogen-bond asymmetry around
hydronium ions35 and the number of hydrogen bonds hydro-
nium ions participate in34,57,59 (Supplementary Note 9).

Discussion
We show that the spectroscopic signature of proton-transfer
dynamics between two water molecules in hydrochloric acid
(HCl) solutions can be investigated by trajectory decomposition
into transfer-waiting (characterized by the time scale τTW),
transfer-path (characterized by τTP) and normal-mode con-
tributions (characterized by τNM). The decomposition is per-
formed in the two-dimensional coordinate system that is spanned
by the excess-proton position and the oxygen-oxygen distance of
the two flanking water molecules and operates both in the time
domain as well as in the frequency domain. The coupling of the
excess-proton motion to the relative oscillations of the two
flanking water molecules produces a fourth spectral proton-
dynamics contribution (characterized by τROO

). The dynamics of
each of the four contributions are described by distinct time scales
with the ordering τTW > τROO

> τTP > τNM and therefore con-
tribute with distinct peaks to the excess-proton IR spectrum. Due
to the high proton charge, the excess-proton spectrum, and due to
correlation effects with the neighboring water molecules in par-
ticular the excess-proton motion along the axis connecting the
oxygens, contributes significantly to the IR difference spectrum of
HCl. Our experimental THz/FTIR difference spectra resolve the
slowest time scales, τTW and τROO

, of which the former one is
overlaid by an additional spectral contribution due to rattling of
the chloride ions, characterized by yet another time scale τCl� ,
which is close to τTW. Mid-IR experimental difference spectra
from literature on the other hand are compatible with our pre-
dicted spectra associated with the τTP and τNM time scales.

In contrast to the transfer-path time τTP, the transfer-waiting
time τTW shows a weak dependence on the HCl concentration.
Possible reasons include ionic screening and repulsion effects
between neighboring excess protons, but also entropic effects due
to the reduced number of accepting water molecules have been
discussed28,32,62. This is consistent with experimental results
showing a decrease of the excess-proton diffusivity with
increasing HCl concentration60, which is reproduced in our
simulations (see Supplementary Fig. 19). One should note that
the transfer-waiting times in local transient H5O2

+ complexes
include back-and-forth proton-transfer events, which do not
contribute to the long-time excess-proton diffusion28,33,58,59,63

but nevertheless have a pronounced spectroscopic signature38.
Our results nicely complement recent normal-mode calcula-

tions. We find that the continuum band stems from normal-

Fig. 6 Absorption spectra in the THz regime. a Experimental THz/Fourier-

transform infrared (THz/FTIR) difference spectra of 6 M HCl solution (red

broken line) compared to the difference spectrum from ab initio molecular

dynamics (MD) simulations (red dotted line). b The simulated 6 M HCl

spectrum (red solid line) is decomposed into a chloride-ion contribution

(green solid line, including cross correlations) and the remainder (gray solid

line). For comparison the simulated pure-water spectrum (blue solid line) is

also shown.

Table 1 Characteristic time scales of excess-proton transfer

dynamics.

conc. 2 M 4 M 6 M

τTW [fs] 208 ± 6 229 ± 4 283 ± 4

τCl� [fs] 241 ± 3 249 ± 3 231 ± 3

τ
ROO

[fs] 81 ± 3 82 ± 2 86 ± 2

τcTP [fs] 14.08 ± 0.08 14.34 ± 0.05 14.10 ± 0.04

τ iTP [fs] 12.65 ± 0.09 12.80 ± 0.05 12.74 ± 0.05

τNM [fs] (11 ± 1)− (17 ± 1)

The standard errors of the transfer-waiting time τTW and the transfer-path times τ iTP and τcTP are
estimated from the variances of the fitted distributions. The errors of the normal-mode times

τNM, the oscillation time of the two flanking water molecules τ
ROO

and the rattling time of

chloride ions τCl� are estimated from the resolution of the underlying spectra.
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mode vibrations of less symmetric, i.e., more Eigen-like, config-
urations of the excess proton, which are strongly influenced by
the oxygen-oxygen separation ROO14,19,25,26. On the other hand,
our transfer-path signature, which is dominated by a broad
absorption around 1200 cm−1, shows striking similarity with
normal-mode spectra computed for more symmetric, i.e., more
Zundel-like, configurations of the excess proton14,19,25,26. It is not
implausible that normal modes for small separations of the two
flanking water molecules show similar spectroscopic signatures as
the transfer paths we extract from our simulation trajectories. Yet,
in a normal-mode picture the interconversion between the
metastable Zundel-like and Eigen-like excess-proton states cannot
be explained consistently, even though the importance of this
process for a complete description of the mid-IR signatures was
acknowledged several times14,24–26,35. In fact, the broad dis-
tribution of this interconversion time scale is demonstrated by the
transfer-waiting time distribution and also gives rise to a distinct
spectral signature, that we identify in the THz regime.

A recent study employing similar simulation techniques has
decomposed the proton power spectra with respect to the proton
asymmetry coordinate and thereby reached similar conclusions to
ours: Eigen-like configurations give rise to the continuum band
while Zundel-like configurations dominantly contribute around
1200 cm−1 47. That study also determined the proton-transfer
time scale using two-dimensional transition state theory and
Marcus theory of ion pairing and finds this time scale to be
concentration dependent, in agreement with our and previous
observations.

In summary, in many theoretical treatments, only normal
modes of meta-stable or stable states are assumed to produce
spectral contributions. Any spectral mode is therefore interpreted
as being due to a meta-stable state, consequently, broad spectral
modes are often interpreted as reflecting a wide collection of
normal modes with slightly different frequencies. In this paper,
we show that transfer and barrier-crossing events of charged
particles as well as transfer paths create spectral features by a
mechanism that is very different from a normal-mode picture and
that these spectral features are broadened by the stochastic nature
of the transfer dynamics38. In fact, the strength or frequency of a
spectral feature does not allow to tell whether it is caused by
normal-mode oscillations in a stable or meta-stable state or
whether it is caused by transfer or barrier-crossing dynamics.

Methods
Computational methods: ab initio molecular dynamics simulations. The
Born–Oppenheimer ab initio MD simulations of pure water and HCl solutions at
three different concentrations were performed with the CP2K 7.1 software package
using a polarizable double-zeta basis set for the valence electrons, optimized for
small molecules and short ranges (DZVP-MOLOPT-SR-GTH, with the exception
of the chloride anions, that were modeled including diffuse functions in the aug-
DZVP-GTH basis set), dual-space pseudopotentials, the BLYP exchange-
correlation functional, and D3 dispersion corrections64–68. The cutoff for the
plane-wave representation was 400 Ry. The system parameters are summarized in
Table 2.

Before production, each system was equilibrated in classical MD simulations for
200 ps under NPT conditions at atmospheric pressure and 800 ps under NVT
conditions at 300 K, using the GROMACS 2020.5 software69 with the SPC/E water

model70. The force fields for Cl− and H3O+ were taken from71. The ab initio MD
simulations were subsequently performed using a time step of 0.5 fs under NVT
conditions at 300 K by coupling the system to a CSVR thermostat with a time
constant of 100 fs72.

Dipole moments were obtained after Wannier-center localization of the
electron density at a time resolution of 2 fs or 4 fs. At each time step, the Wannier
centers were assigned to the closest oxygen or chloride ion. Water molecules were
assembled by assigning each proton to the closest oxygen nucleus, thereby forming
either water or hydronium ions. For the hydronium ions, all protons were treated
as excess-proton candidates and further processed based on a dynamical criterion
as discussed in the main text and Supplementary Methods 2. The dipole moments
p follow as a sum over the respective position vectors ri and charges qi (q = 2 e for
Wannier centers, and reduced core charges for nuclei), p=∑iqiri for the whole or
desired sub systems.

Linear response theory relates the dielectric susceptibility χ(t) to the equilibrium
autocorrelation of the dipole moment C(t)=∑D〈p(t)p(0)〉, reading in Fourier
space

χðωÞ ¼
1

VkBTϵ0D
Cð0Þ � i

ω

2
eCþ

ðωÞ
� �

; ð4Þ

with system volume V, thermal energy kBT, vacuum permittivity ϵ0 and D being the
number of Cartesian dimensions of the polarization vector p. IR spectra can
therefore be calculated straight-forwardly from sufficiently sampled trajectories of
the ab initio MD simulation data using Eq. (4) and the Wiener–Kintchine relation,
derived in Supplementary Methods 4 as

CðtÞ ¼
1

2πðLt � tÞ

Z 1

�1

dω e�iωt
~pðωÞ~p�ðωÞ; ð5Þ

where ~pðωÞ is the Fourier-transformed dipole-moment trajectory with length Lt and
the asterisk denotes the complex conjugate. Alternatively, for charged subsystems,
as in the case of the chloride ions, the computation using the time derivative of the
polarization, i.e., the current j ¼ d

dt pðtÞ, is preferable

CðtÞ ¼
1

2πðLt � tÞ

Z 1

�1

dω
e�iωt

ω2
~jðωÞ~j

�
ðωÞ: ð6Þ

Quantum corrections have previously been addressed73, but were not
applied here.

Since the Wannier-center localization time step ΔtWC = 4 fs is larger than the
original simulation time step Δt = 0.5 fs, the analysis is performed on two types of
trajectories stemming from the same simulations: one set of trajectories containing
the electronic degrees of freedom and another set of trajectories of higher time
resolution but only containing nuclei positions. This higher resolution data is used
for the calculation of excess-proton spectra and kinetics.

All spectra were smoothed by a convolution with a Gaussian kernel of varying
width, depending on their respective resolution. We used a standard deviation of
55, 20, and 50 cm−1 for bulk spectra, the H5O2

+ complex difference spectrum in
Fig. 3c and excess-proton spectra, respectively. Experimental data was smoothed
using a standard deviation of 3 cm−1.

To address the quality of the chosen basis set, shorter simulations at 6 M were
performed using the non-short range basis set (DZVP-MOLOPT-GTH) as well as
a triple-zeta doubly polarizable (TZV2P-GTH) basis set. Spatial correlations in the
data are compared in Supplementary Fig. 9. While the coordination of excess
protons with chloride ions slightly increases when the more elaborate basis sets are
used, no significant differences in correlations between excess protons and oxygen
nuclei are found, which are the focus of this study.

Experimental methods: THz absorption measurements. THz spectroscopic
measurements in the 30–650 cm−1 frequency range were done with a commercial
Fourier Transform spectrometer (Bruker Vertex 80v, Germany) equipped with a
mercury light source and a liquid helium cooled bolometer detector (Infrared
Laboratories, Germany). Spectra result from an average of 128 scans with a reso-
lution of 2 cm−1. The liquid sample cell is composed of diamond windows (Dia-
mond Materials GmbH, Germany) in which a Kapton spacer of approximately
13 μm was placed between the windows to fix the sample thickness. The exact
thickness of the sample cell was determined from the etaloning pattern of the
empty sample cell. The temperature of the sample was held constant at
20.0 ± 0. 2 ∘C by an external chiller. The measured frequency-dependent extinction
coefficient, αsolution(ω), is determined using the Beer–Lamber law

αsolutionðωÞ ¼
1

d
ln

IwaterðωÞ

IsolutionðωÞ

� �
þ αwaterðωÞ; ð7Þ

where d is the sample thickness, Iwater(ω) and Isolution(ω) are the experimental
transmitted intensities of the water reference and the sample. αwater(ω) is the
extinction coefficient of bulk water and is taken from literature74. The extinction
coefficient α(ω) is converted to the absorption spectrum, proportional to the
imaginary part of the dielectric susceptibility χ″(ω), by fitting the spectra and
performing a Kramers–Kronig transform as presented in Supplementary
Methods 1.

Table 2 Parameters of the ab initio molecular dynamics

simulations.

Conc. 0 M 2 M 4 M 6 M

V
1
3 19.73 Å 20.25 Å 20.25 Å 20.23 Å

NH2O
256 258 244 224

NHþ ;NCl� 0 10 20 30

τ 201 ps 52 ps 84 ps 84 ps

ΔtWC 2 fs 4 fs
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The difference absorption spectra of HCl solutions with respect to pure water
and normalized with respect to the water concentration are given by

ωΔχ00cw ðωÞ ¼
1

cw
ωχ00solutionðωÞ �

1

c0w
ωχ00waterðωÞ; ð8Þ

where cw and c0w are the concentration of water in the aqueous HCl solutions and
bulk water, respectively, determined from the solution density at room
temperature.

Data availability
The datasets generated and analyzed during the current study are available from the
corresponding author on request.
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ABSTRACT: From ab initio simulations of liquid water, the time-
dependent friction functions and time-averaged nonlinear effective
bond potentials for the OH stretch and HOH bend vibrations are
extracted. The obtained friction exhibits not only adiabatic
contributions at and below the vibrational time scales but also
much slower nonadiabatic contributions, reflecting homogeneous
and inhomogeneous line broadening mechanisms, respectively.
Intermolecular interactions in liquid water soften both stretch and
bend potentials compared to the gas phase, which by itself would
lead to a red-shift of the corresponding vibrational bands. In
contrast, nonadiabatic friction contributions cause a spectral blue
shift. For the stretch mode, the potential effect dominates, and thus,
a significant red shift when going from gas to the liquid phase results. For the bend mode, potential and nonadiabatic friction effects
are of comparable magnitude, so that a slight blue shift results, in agreement with well-known but puzzling experimental findings.
The observed line broadening is shown to be roughly equally caused by adiabatic and nonadiabatic friction contributions for both
the stretch and bend modes in liquid water. Thus, the quantitative analysis of the time-dependent friction that acts on vibrational
modes in liquids advances the understanding of infrared vibrational frequencies and line shapes.

■ INTRODUCTION

The OH stretch band in liquid water is significantly red-shifted
and broadened compared to the gas-phase spectrum, while the
HOH bend frequency is in fact slightly blue-shifted when
going from gas to the liquid phase.1 The broadening of the OH
stretch band in liquid water is typically rationalized by a
combination of homogeneous and inhomogeneous effects.2,3

Inhomogeneous line broadening is associated with different
hydrogen-bonding environments of individual OH bonds,
which in the limit when the hydrogen-bonding pattern changes
more slowly than the OH vibrational period and in the
presence of nonlinearities in the OH bond potential produce
vibrational frequencies that vary over time.4−6 Homogeneous
line broadening reflects the fast coupling of OH bonds to their
neighboring water molecules, mostly via hydrogen bonding,
which reduces the vibrational lifetime because the vibrational
energy is quickly transported to neighboring molecules and
thus dissipated into collective modes.7 Indeed, the vibrational
lifetime of the OH stretch is very short (of the order of 190
fs8,9) and thus only 19 times longer than the OH-stretch
vibrational period itself (of the order of 10 fs). The
experimentally observed red shift of the OH stretch band is
usually rationalized by strong hydrogen bonding in liquid
water, which extends and thereby softens the OH bond2,3 (in
fact, the relationship between the hydrogen-bond strength, the
OH bond length and the red shift of the stretch band has been
amply and partly controversially discussed in literature5,10−12).

According to such reasoning, the rather small frequency shift of
the water bending mode when going from gas to liquid water
could be argued to imply that the bond angle potential is only
weakly perturbed by the liquid water environment and thus
that the coupling of bend vibrations to the hydration
environment is weak. This interpretation is puzzling though,
because the vibrational lifetime of the water bending mode in
liquid water is rather short (around 170 fs13,14) and thus only
8.5 times longer than the vibrational period of 20 fs, an even
smaller ratio than for the stretch mode. The short bend
vibrational lifetime reflects quick energy dissipation into
librational modes,15−17 which in turn can be rationalized by
efficient multiphonon energy relaxation based on the excitation
of librational overtones in liquids.18

Time-dependent or, equivalently, frequency-dependent
friction arises whenever the dynamics of a many-particle
system is described in a low-dimensional reaction-coordinate
space,19−25 and its relevance for infrared (IR) spectra was
clearly demonstrated in the past.26−31 All friction contributions
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that decay faster or similarly as the vibrational period stem
from adiabatic solvent degrees of freedom and account for
dissipation into intra- and intermolecular degrees of freedom
(including vibrational overtones);32−35 these friction contri-
butions dominate the vibrational energy relaxation and lead to
homogeneous line broadening. Friction contributions that
decay much slower than the vibrational time scale describe the
slowly changing nonadiabatic hydration environment and in
conjunction with nonlinear bond potentials induce inhomoge-
neous line broadening, as our results explicitly demonstrate. Of
course, there is no clear-cut separation between adiabatic and
nonadiabatic solvent relaxation modes,36−39 prompting for a
time-scale bridging framework to treat the dynamic coupling of
molecular vibration modes and their environment. In fact, the
frequency-dependent friction function, which appears in the
generalized Langevin equation (GLE), is the appropriate
framework to account for all these effects, with the only
drawback that nuclear quantum effects can at the current level
of the formalism not be included without making additional
approximations. Only recently developed extraction methods
that account for nonlinearities40 allow obtaining these time-
dependent friction functions from ab initio molecular dynamics
(aiMD) simulations and with high enough accuracy; this we
self-consistently demonstrate by deriving vibrational spectra
from numerical simulations of the GLE that are virtually
indistinguishable from the vibrational spectra directly obtained
from aiMD simulation trajectories.
In this paper, we address the puzzle posed by the different

line shifts of the water stretch and bend modes by analyzing
the vibrational water dynamics in terms of the time-averaged
nonlinear bond potentials (as a function of the bond length for
the OH stretch and the bond angle for the HOH bend) and
the corresponding time-dependent friction functions, which
are extracted from extensive aiMD simulations for 256 H2O
molecules. In particular, we show that the slight blue shift of
the water bend mode when going from gas to the liquid phase
is not caused by a stiffening of the bend potential, which would
explain the blue shift,1 but rather by the time dependence of
the friction acting on bending vibrations. We find that the
liquid environment in fact significantly softens the time-
averaged bond potentials, and it does so quite similarly for the
stretch and bend modes. Neglecting the frequency dependence
of the friction, both stretch and bend bands would thus be
expected to be red-shifted by comparable amounts when going
from gas to the liquid phase, in stark contrast to the
experimental finding.1 It turns out that nonharmonic bond-
potential effects are rather unimportant for the band position
and thus cannot explain this puzzling finding. Likewise,
frequency-independent friction shifts the bands insignificantly
and only increases the line width, in agreement with
expectations.4 In contrast, the frequency dependence of the
friction is crucial and not only leads, in conjunction with
nonlinearities in the bond potentials, to inhomogeneous line
broadening but also gives rise to pronounced blue shifts for
both stretch and bend bands. The mechanism for this blue
shift is very general,26 as we analytically demonstrate. The
compensation of the potential red shift and the friction blue
shift is incomplete for the stretch band but almost perfect for
the bend band, so the stretch band exhibits a significant net red
shift from gas to liquid, while the bend band shows only a
slight blue shift in both experiments and simulations. The
absence of a significant frequency shift of the bend mode does
by no means imply that bend vibrations couple less to their

environment than stretch vibrations (as has been demonstrated
previously15−17); rather, it is the subtle balance of the potential
and friction contributions to the line shift, which both are
caused by interactions with the liquid environment, that is
different for the stretch and bend bands. We conclude that the
coupling of water stretch and bend vibrations to other intra-
and intermolecular degrees of freedom, as quantified by the
time-averaged bond potentials and friction functions, is of
similar strength, which explains their similar vibrational life
times, although their frequency shifts are rather different,
which we rationalize by a subtle difference of the
compensatory potential and friction effects. The spectral blue
shift due to frequency-dependent friction is a very general
mechanism; it transpires that the concept of frequency-
dependent friction is important for advancing the under-
standing of vibrational spectroscopy.

■ SYSTEM, SPECTRA, AND MODEL

We primarily analyze aiMD simulations of 256 H2O (and D2O
for comparison) molecules in the liquid phase at 300 K that
neglect nuclear quantum effects. Figure 1A compares the

trajectories of the mean OH bond length of a single H2O
molecule in liquid H2O (blue line) and in the gas phase (gray
line), both at 300 K (see Methods for simulation details). The
increase of the mean and the variance of the bond length in the
liquid phase compared to the gas phase is clearly visible, which
reflects the shift and softening of the OH bond potential due to
hydrogen bonding in the liquid phase. The slow fluctuations of
the oscillation amplitude reflect vibrational energy relaxations
that occur over about 100 fs in the liquid phase (pure
dephasing due to fluctuations of the vibrational frequency41,42

is not easily visible in the time domain). Similarly, the bond-
length velocity autocorrelation function (VACF) in Figure 1B
demonstrates a significantly faster decay and thus a decreased
vibrational lifetime in the liquid phase. Although the OH-
stretch absorption spectrum is (apart from electronic and
collective effects) straightforwardly related to the OH bond-

Figure 1. (A) Trajectory of the OH bond length, averaged over both
OH bonds in a single water molecule, from ab initio molecular
dynamics (aiMD) simulations of one H2O in the gas phase (gray line)
and for 256 H2O molecules in the liquid phase (blue line), both at
300 K. (B) Corresponding velocity autocorrelation functions.
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length VACF via Fourier transformation, it turns out that a
careful analysis of the molecular vibrations in terms of the GLE
reveals interesting information on the mechanisms that
determine the vibrational frequencies and line shapes.
Linear IR spectroscopy experiments measure the absorbed

power of light at angular frequency ω = 2πf, which is
proportional to the imaginary part of the dielectric
susceptibility χ̃″(ω). Linear-response theory relates χ̃″(ω) to
the total dipole-moment autocorrelation (see section I of the
Supporting Information), allowing IR spectra to be calculated
from equilibrium simulations.45,46 Figure 2A compares the IR
absorption spectrum from aiMD simulations of liquid H2O
(gray solid line) and D2O (blue solid line) with corresponding
experimental data (gray and blue broken lines, respectively).
One discerns the stretch band (around 3300 cm−1 for H2O and
2400 cm−1 for D2O in the aiMD results) and the bend band
(at 1650 cm−1 for H2O and 1200 cm−1 for D2O). The
librational absorption band is produced by a large number of
different intermolecular vibrational modes47 that are domi-
nated by rotational vibrations of water molecules in their
hydrogen-bond environment (around 700 cm−1 for H2O and
550 cm−1 for D2O) and by translational vibrations of water
molecules against each other around 200 cm−1 for both H2O
and D2O. The agreement between the absorption spectra from
aiMD simulations, which fully account for electronic and
nuclear polarizations, and from experiments is good, which
suggests that the chosen simulation method is well-suited for
modeling IR spectra, although the agreement is known to be
partly due to a cancellation of approximations in the employed
density functional theory (DFT) and the neglect of nuclear
quantum effects.48,49 Molecular simulations of liquids including
nuclear quantum effects have rather recently become feasible,
mostly via centroid and ring-polymer molecular dynamics
(MD) techniques.50 Unfortunately, the projection techniques
we apply on the classical nuclear trajectories from our aiMD
simulations are not available on the quantum level; therefore,
the analysis we do in this paper can currently not be done for
quantum systems without additional drastic and uncontrolled

approximations. Nevertheless, the interplay of potential and
frequency-dependent friction effects we explore in this paper
presumably is not modified by nuclear quantum effects in a
fundamental way, so that the conclusions we draw with regard
to the importance of frequency-dependent friction effects
should remain valid even beyond our classical treatment of the
nuclei.
Figure 2B compares simulated liquid H2O (gray) and single

H2O (blue solid line) spectra at 300 K. The single-water
spectrum shows sharp peaks which perfectly coincide with the
normal-mode frequencies of a single water molecule (vertical
dotted lines, computed on the same DFT level as the aiMD
simulations) at 1607, 3675, and 3772 cm−1, which are within
20 cm−1 of the experimental values 1594.7, 3657.1, and 3755.9
cm−1.51,52 Note that the OH-stretch band consists of two
modes, namely, the low-frequency symmetric mode, where
both OH bonds vibrate in phase, and the high-frequency
antisymmetric mode, where the OH bonds vibrate out of
phase, which do not clearly separate in the liquid spectrum.
The symmetric stretch mode in the gas phase shows a much
smaller intensity than the antisymmetric stretch mode, in
agreement with experiment,52 which is caused by electronic
polarization effects. The OH-stretch peak in the liquid is
significantly red-shifted and enhanced compared to gas phase,
which is typically rationalized by the softening of the OH bond
potential and the constructive collectivity of OH-stretching
vibrations in the liquid (see section II in the Supporting
Information);2,3,53 the significant enhancement is noteworthy,
because one could expect the friction acting on the OH bond
to be much stronger in the liquid and thus to reduce the
vibrational amplitude. In contrast, the HOH-bending mode in
the liquid is slightly blue-shifted and not enhanced, which can
be rationalized by collective effects that are slightly destructive
(see section II in the Supporting Information). All these effects
are fully accounted for by the frequency-dependent friction
acting on the different vibrational modes, as explained below.
The vibrational modes of a water molecule can be described

by the bond angle ϕHOH and the symmetric and antisymmetric

Figure 2. Absorption spectra of aiMD simulations at 300 K of 256 H2O molecules are shown as gray solid lines in panels A−C. The spectra up to
2000 cm−1 are multiplied by a factor three. (A) Comparison to aiMD spectra for liquid D2O (blue solid line) and experimental data (obtained for
298 K), shown as a gray broken line for H2O

43 and a blue broken line for D2O.
44 (B) Comparison to aiMD simulations of a single H2O (blue solid

line). The normal-mode frequencies of a single H2O are shown as vertical dotted lines. (C) Comparison to power spectra of the symmetric stretch,
dOHs (blue solid line); antisymmetric stretch, dOHa (blue broken line); and bend mode vibrations, ϕHOH (blue dotted line), which are averaged over
all molecules and rescaled to match the absorption spectrum.
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stretch distances, dOHs = (dOH1 + dOH2)/2 and dOHa = (dOH1 −
dOH2)/2, where the two OH bond distances in a water
molecule are denoted as dOH1 and dOH2, which are all based on
the nuclear positions in the aiMD simulations, as illustrated in
the inset in Figure 2C. The power spectra of these three
vibrational modes, averaged over all water molecules in the
liquid, are shown in Figure 2C (ϕHOH as dotted, dOHs as solid,
and dOHa as broken blue lines) and compared to the absorption
spectrum from the total dipole moment. The agreement of the
line frequencies and shapes is quite good, except that the
absorption spectrum is red-shifted compared to the dOHs and
dOHa vibrational spectra. This red shift is due to dipolar
correlations between neighboring water molecules (as
mentioned above and discussed in detail in section II in the
Supporting Information) and also due to electronic polar-
ization effects, as shown in section III in the Supporting
Information. The dOHs and dOHa spectra overlap significantly,
with a small red shift of the dOHs spectrum relative to the dOHa
spectrum, in accordance with previous observations.54 The
vibrational spectrum of the ϕHOH mode overlaps perfectly with
the spectrum from the total (nuclear and electronic) dipole
moment, which is due to the fact that the bending angle
vibrations of neighboring water molecules are only weakly (and
in fact anti-) correlated, as shown in section II in the
Supporting Information.53 We conclude that the absorption
spectrum calculated from the total system polarization
(including nuclear and electronic polarization from all water
molecules and their correlations) match the power spectra
based on the single-water nuclear-coordinate-based vibrational
modes rather faithfully. This good agreement lies at the heart
of the common interpretation of IR absorption spectra in
terms of molecular vibrations; it also validates our approach,
because it means that the conclusions from our GLE analysis,
which in the present formulation can be applied only on one-
dimensional reaction coordinates that are derived from nuclear
positions, can also be used to interpret simulated and
experimental absorption spectra.
In the following, we will analyze the dynamics of different

water vibrational modes based on the one-dimensional
GLE55,56

∫̈ = − Γ − ′ ̇ ′ ′ − ∇ [ ] +mx t t t x t t U x t F t( ) ( ) ( )d ( ) ( )
t

0
R

(1)

which contains an in-general nonharmonic time-independent
potential U(x) that corresponds to a free energy as it results
from integrating out all other degrees of freedom except x(t).
The memory kernel Γ(t) describes the time-dependent friction
acting on the fluctuating variable x(t), which can be the bond
angle (ϕHOH), the symmetric stretch distance (dOHs), or the
antisymmetric stretch distance (dOHa). The random force FR(t)
has zero mean ⟨FR(t)⟩ = 0 and fulfills the fluctuation−
dissipation relation ⟨FR(t)FR(t′)⟩ = kBTΓ(t − t′). The GLE
approach as introduced by Mori and Zwanzig in the 1960s is
an exact projection of the full dynamics of a multiparticle
system onto a reduced set of coordinates. Given a one-
dimensional trajectory x(t) from the aiMD simulations, the
effective mass m, the potential U(x), and the friction function
Γ(t) are uniquely determined and can be accurately
extracted,40 as described in sections IV and V in the
Supporting Information. It follows that all intra- and
intermolecular interaction effects on the molecular vibration
dynamics are accurately taken into account: as a crucial test of

the validity of the GLE in the formulation of eq 1, of our
extraction methods, and of our simulation methods of the
GLE, we will further demonstrate below that the GLE
accurately reproduces the vibrational mode spectra calculated
directly from the aiMD simulations. Therefore, our description
of the vibrational dynamics of a water molecule in the liquid
phase via the GLE is accurate, or, more strictly speaking, it
accurately reproduces the vibrational dynamics obtained in our
ab initio simulations.
For a harmonic potential, U(x) = kx2/2, the vibrational

power spectrum that follows from the GLE eq 1 can be given
in closed form as (see section VI in the Supporting
Information)
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ω ω
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where the frequency-dependent friction is obtained by a single-
sided Fourier transform Γ̃(ω) = ∫ 0

∞ dt eiωtΓ(t). In the limit of
frequency-independent friction Γ̃(ω) = γ, this yields the
standard Lorentzian line shape57 (see section VII in the
Supporting Information)
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which will be shown below to give only a poor account of our
simulated vibrational spectra. Nonharmonic potentials are
parametrized as
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where x0 is the position of the minimum of U(x). Vibrational
spectra in the presence of nonharmonic potentials are obtained
from numerical simulations of the GLE using a parametrized
friction function of the form58−60
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consisting of n exponentially decaying components with time
scales τi

e and friction coefficients γi as well as l oscillating and
decaying components with amplitudes ai, oscillation frequen-
cies ωi, and decay time scales τi

o (see sections VIII−X in the
Supporting Information for details).

■ METHODS

All Born−Oppenheimer aiMD simulations are performed with
the CP2K 4.1 software package using a contracted double-ζ
basis set for the valence electrons, optimized for small
molecules and short ranges (DZVP-MOLOPT-SR-GTH),
dual-space pseudopotentials, the BLYP exchange−correlation
functional, D3 dispersion correction, and a cutoff for the plane-
wave representation set to 400 Ry.61−63 A time step of 0.5 fs is
used under NVT conditions at 300 K by coupling all atoms to
a CSVR thermostat with a time constant of 100 fs.64 The bulk
systems contain 256 molecules subject to periodic boundary
conditions in a cubic cell of size (1.9734 nm)3, corresponding
to densities of 996.4 kg/m3 for H2O and 1107.8 kg/m3 for
D2O. The total trajectory lengths of the liquid systems are 230
ps for H2O and 130 ps for D2O. Simulations of a single H2O
molecule, representing the gas phase data, are performed in the
NVE ensemble with 47 initial configurations sampled from a

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.1c09481
J. Phys. Chem. B 2022, 126, 1579−1589

1582



25 ps NVT simulation using an individual thermostat with a
time constant of 10 fs for each atom. The NVE simulations are
each run for 10 ps with a time step of 0.25 fs. The distributions
of their initial configurations sample well the equilibrium
distributions as shown in section XI of the Supporting
Information.
Linear response theory relates the dielectric susceptibility

χ(t) to the equilibrium autocorrelation of the dipole moment
C(t) = ⟨p(t)p(0)⟩, reading in Fourier space65 (see section I in
the Supporting Information)

χ ω
ω

ω̃ =
ϵ

− ̃+ikjjj y{zzzV k T
C C( )

1
(0) i

2
( )

0 B (6)

with system volume V, thermal energy kBT, and vacuum
permittivity ϵ0. IR absorption spectra can therefore be
calculated straight-forwardly from sufficiently long trajectories
from aiMD simulation data using eq 6 and the Wiener−
Khintchine relation,53,66 derived in section XII in the
Supporting Information. Quantum corrections have previously
been addressed, but are not applied here.67 The molecular
dipole moments are obtained after Wannier-center localization
of the electron density at a time resolution of 2 fs. The
Wannier centers are assigned to the molecule of the nearest
oxygen, which always results in exactly four Wannier centers
per water molecule. A charge of −2e is assigned to each
Wannier center, which together with the nuclear charges,
reduced by the electronic charges of the inner shells, allows for

Figure 3. Results for the symmetric stretch coordinate dOHs from aiMD simulations. (A) Potential U(dOHs) for 256 H2O in the liquid phase (gray
solid line) compared to the nonharmonic fit according to eq 4 (blue broken line) and the harmonic part (gray dotted line). (B) Potential U(dOHs)
for a single H2O molecule in the gas phase (green solid line) compared with the nonharmonic fit according to eq 4 (blue broken line) and the
harmonic part (gray dotted line). The liquid-phase potential (gray solid line) is shown for comparison. (C and D) Friction as a function of time and
frequency (gray lines) compared with the fit according to eq 5 (blue lines). Real and imaginary parts in panel D are shown as solid and broken lines,
respectively; the spectrum on top is the full absorption spectrum from aiMD. The blue dotted line in panel C shows a single exponential with decay
time τ = 10 fs; the dotted horizontal line in panel D shows the constant real friction γOHs = Γ̃′( f OHs) evaluated at the symmetric OH stretch
vibrational frequency fOHs = 3390 cm−1. The gray circle denotes the static friction Γ̃′(0). (E) Vibrational power spectrum ωχ̃″ (gray solid line)
compared to models of varying complexity: normal mode of single H2O (broken vertical line), Lorentzian with harmonic potential and constant
friction γOHs (gray dotted line), nonharmonic potential and constant friction γOHs (blue broken line), harmonic potential and frequency-dependent
friction Γ̃( f) (purple solid line), and nonharmonic potential and frequency-dependent friction Γ̃( f) (blue solid line). (F) Vibrational power
spectrum ωχ̃″ using the nonharmonic potential and different values of the constant friction γ, where γOHs = Γ̃′( f OHs) is the friction evaluated at the
symmetric OH stretch vibrational frequency. The gray solid line is the spectrum from aiMD simulations.
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the calculation of the dipole moment. The power spectra are
smoothed using a Gaussian kernel with width 10 cm−1. The
normal-mode analysis is performed for an energetically
minimal configuration of a single H2O using the implementa-
tion in CP2K 4.1 and the same ab initio model as for the aiMD
simulation.

■ RESULTS AND DISCUSSION

We start with a discussion of the symmetric stretch mode dOHs.
The potential (which actually corresponds to a free energy)
U(dOHs) from the aiMD simulations for liquid water (gray
solid line) is in Figure 3A compared with a nonharmonic fit
according to eq 4 (blue broken line); the harmonic
contribution is shown as a gray dotted line. The comparison
of the liquid and gas-phase bond potentials in Figure 3B shows
that the minimum of the potential (i.e., the most probable OH
bond length) increases from x0 = 97.50 pm in the gas phase to
x0 = 99.25 pm in the liquid; at the same time the harmonic
force constant decreases from k/kBT = 0.404 pm−2 in the gas
phase to k/kBT = 0.274 pm−2 in the liquid. This softening of
the potential is due to elongation of the bond, caused by
hydrogen bonding in the liquid, and will in the absence of
frequency-dependent friction effects be shown to induce a
pronounced spectral red shift. Furthermore, the potential
nonharmonicity increases, as can be seen by comparing the
reduced cubic potential coefficient in the liquid phase k̃3 = k3/
kBT(k/kBT)

−3/2 = −0.0840 with the value in the gas phase k̃3 =
−0.0485.
The time-dependent friction function for the symmetric

stretch mode Γ(t) extracted from aiMD simulations (gray line
in Figure 3C) shows multiexponential decay characterized by
relaxation times from a few femtoseconds to many pico-
seconds, which is appreciated by comparison with a single-
exponential function with decay time τ = 10 fs (dotted blue
line, the logarithmic time axis should be noted). This in
particular means that Γ(t) accounts for solvent relaxations that
are equally fast (adiabatic) and slower (nonadiabatic)
compared to the OH vibrational period of about 10 fs; one
thus expects homogeneous as well as inhomogeneous line
broadening to occur, as indeed borne out by our analysis
below. The oscillations that appear in Γ(t) at around 10−250
fs reflect the dissipative coupling of symmetric stretch
vibrations to antisymmetric stretch as well as higher-harmonic
bend and librational modes. This is illustrated by the real and
imaginary frequency-dependent friction components Γ̃′(ω) +
iΓ̃″(ω) = ∫ 0

∞ dt eiωt Γ(t) in Figure 3D (solid and broken gray
lines, respectively), which exhibit maxima at the OH-stretching
and HOH-bending frequencies and also at their higher
harmonics.
The friction function thus accounts for the frequency-

dependent vibrational energy dissipation of a given vibrational
mode within a water molecule as well as into the surrounding
water and in particular accounts for resonances between
different vibrational modes and their overtones. The
resonances contained in the friction function thus are
equivalent to Fermi resonances,32−35 which typically arise in
a quantum formulation and in our classical description are
caused by nonlinear intra- and intermolecular couplings in the
multidimensional potential landscape that describes the
nuclear vibrations. Also non-Condon effects, which arise
because of modifications of the transition dipole moment of
a vibrational mode due to time-dependent changes of the
solvation environment of a molecule,36 are included via the

interplay of the potential U(dOHs) and the time-dependent
friction function Γ(t). Interestingly, the symmetric stretch
shows a much stronger frictional damping at the characteristic
frequency of the bending mode than the antisymmetric stretch
mode, shown in section XIII of the Supporting Information,
which points to a stronger dissipative coupling of bending
vibrations with symmetric than with antisymmetric stretch
vibrations.
For simulations of the GLE, which are necessary for the

analysis of the coupling between nonlinearities in the potential
and frequency-dependent friction, we fit Γ̃′(ω) by the
expression eq 5 with a sum of three exponential and six
oscillating functions, see section VIII of the Supporting
Information for details. The fit shown in blue in Figure
3C,D describes the simulated friction function equally well in
the time as well as in the frequency domain.
The vibrational spectrum of the dOHs mode directly

extracted from aiMD simulations is shown in Figure 3E as a
gray solid line. The simplest possible model for a vibrational
line shape is the Lorentzian model eq 3 for a harmonic
potential and a constant, frequency-independent friction. Using
k/kBT = 0.274 pm−2 from the harmonic fit in Figure 3A and
the friction γOHs = Γ̃′( f OHs) in Figure 3D at the stretch
vibrational frequency f OHs = 3390 cm−1, we obtain the gray
dotted line in Figure 3E. Compared to the normal-mode
frequency of the gas phase, denoted by a vertical green broken
line, the Lorentzian is significantly red-shifted by about 500
cm−1; the width of the Lorentzian reflects homogeneous line
broadening due to adiabatic solvent friction that is described
by the frequency-independent constant γOHs. Note that the
Lorentzian is considerably red-shifted and narrower compared
to the spectrum extracted from the aiMD simulation (gray
line). Interestingly, the friction γOHs that acts at the vibration
frequency fOHs is about 2 orders of magnitude smaller than the
friction in the static limit f = 0, as seen in Figure 3D, which
explains why the stretch vibrational dynamics shown in Figure
1A is rather weakly damped. The vibrational power spectrum
in the presence of the full nonharmonic potential U(dOHs) and
constant friction γOHs, obtained from numerical simulations of
the memoryless Langevin equation (blue broken line, see
section IX in the Supporting Information for details), is only
slightly red-shifted with respect to the Lorentzian obtained for
a harmonic potential, which is expected based on perturbation
theory.4 We conclude that nonlinearities in the potential have
for constant friction only an insignificant influence on the line
frequency and shape. The peak frequency of a Lorentzian does
not depend on the value of the constant friction γ (see section
XIV in the Supporting Information), which is approximately
true also in the presence of the nonharmonic potential
U(dOHs), as demonstrated in Figure 3F where spectra from
numerical simulations for varying γ are compared. We next
check for the influence of time-dependent friction on the
spectrum. For a harmonic potential and for frequency-
dependent friction, the spectrum is determined analytically
by eq 2 and shown in Figure 3E as a purple solid line. A
significant blue shift compared to the results for constant
friction is obtained, so that the position of the spectrum agrees
very well with the simulated spectrum, while the line shape is
too narrow. The blue shift can be understood based on simple
and rather general analytic arguments, as shown below. The
spectrum obtained from the GLE in the presence of the
nonharmonic potential U(dOHs) and time-dependent friction
Γ(t), shown by the blue solid line in Figure 3E (here numerical
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simulations are employed), is significantly broadened com-
pared to the results obtained for a harmonic potential and
time-dependent friction Γ(t) (purple line). This reflects the
effects of inhomogeneous line broadening,4 i.e., the effects of a
slowly varying hydration environment of a vibrating bond that
elongates or compresses the bond length in conjunction with a
nonlinear bond potential, and reproduces the spectrum
extracted from the aiMD simulations (gray line) almost
perfectly; in fact, inhomogeneous line broadening is quite
substantial and accounts for 52% of the total line broadening.
This means that the GLE, when used in conjunction with the
properly extracted nonharmonic time-averaged potential
U(dOHs) and time-dependent friction Γ(t), reproduces the
system dynamics very well, which is not guaranteed in general

because the projection onto the GLE neglects nonlinear
friction effects.31

The ϕHOH water bending coordinate is analyzed analo-
gously: The bend angle potential U(ϕHOH) in Figure 4A
extracted from aiMD simulations (gray line) includes
significant nonquadratic contributions as appreciated by a
comparison of the nonharmonic fit (blue broken line) with the
harmonic part (dotted line) and as witnessed by the magnitude
of the reduced cubic and quartic fit parameters k̃3 = −0.0596
and k̃4 = k4/kBT(k/kBT)

−2 = −0.00323. Different from the
situation for the stretch potential, the liquid environment shifts
the most probable bending angle only very slightly. Never-
theless, the potential is softened considerably, as is seen by a
comparison of the shape and fit parameters of the gas and
liquid-phase potentials U(ϕHOH) in Figure 4B, which can be

Figure 4. Results for the bend coordinate ϕHOH from aiMD simulations. (A) Potential U(ϕHOH) for 256 H2O molecules in the liquid phase (gray
solid line) compared to the nonharmonic fit according to eq 4 (blue broken line) and the harmonic part (gray dotted line). (B) Potential U(ϕHOH)
for a single H2O molecule in the gas phase (green solid line) compared with the nonharmonic fit according to eq 4 (blue broken line) and the
harmonic part (gray dotted line). The liquid-phase potential (gray solid line) is shown for comparison. (C and D) Friction as a function of time and
frequency (gray lines) compared with the fit according to eq 5 (blue lines). Real and imaginary parts in panel D are shown as solid and broken
lines; dotted lines denote negative values of the imaginary part; the spectrum on top is the full absorption spectrum from aiMD. The dotted
horizontal line in panel D shows the constant real friction γHOH = Γ̃′( fHOH) evaluated at the bend vibrational frequency f HOH = 1650 cm−1. The
gray circle denotes the static friction Γ̃′(0). (E) Vibrational power spectrum ωχ̃″ (gray solid line) compared to models of varying complexity:
normal mode of single H2O (broken vertical line), Lorentzian with harmonic potential and constant friction γHOH (gray dotted line), nonharmonic
potential and constant friction γHOH (blue broken line), harmonic potential and frequency-dependent friction Γ̃( f) (purple solid line), and
nonharmonic potential and frequency-dependent friction Γ̃( f) (blue solid line). (F) Vibrational power spectrum ωχ̃″ using the harmonic potential
part and the constant friction γHOH (gray dotted line), the real frequency-dependent friction only Γ̃′( f) (blue broken line), and the real and
imaginary frequency-dependent friction Γ̃′( f) + iΓ̃″( f) (blue solid line). The gray solid line is the spectrum from aiMD simulations.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.1c09481
J. Phys. Chem. B 2022, 126, 1579−1589

1585



rationalized by the fact that attractive electrostatic interactions,
which are predominant for strongly correlated polar liquids
such as water, exhibit negative curvature throughout their
entire interaction range. The time-dependent friction Γ(t)
extracted from the simulations in Figure 4C (gray line) shows
a broad decay but more pronounced oscillations compared to
the stretch vibrations in Figure 3C. The fit (blue solid line) to
the simulated real frequency-dependent friction Γ̃′( f) (gray
solid line) in Figure 4D requires two exponential and 14
oscillatory functions to describe the simulated data satisfac-
torily, see section VIII in the Supporting Information for
details. The dissipative damping is significantly more
pronounced at stretch frequencies around 3400 cm−1 and at
the overtones of the bending around 3300 cm−1 and around
4950 cm−1 than at the bending fundamental around 1650 cm−1

itself, indicative of the nonlinear coupling between different
modes and overtones (where it should be noted that coupling
of bend vibrations to higher-frequency modes and overtones
are reduced when quantum effects are properly included16).
The vibrational spectrum of the ϕHOH coordinate from the

aiMD simulations is shown in Figure 4E as a gray solid line and
is weakly blue-shifted from the gas-phase normal mode
(vertical green broken line), which is a surprising fact and
will be explained now by compensatory potential and friction
effects. The spectrum from the Lorentzian model eq 3 (gray
dotted line) using only the harmonic potential part of
U(ϕHOH) and the frequency-independent friction γHOH =
Γ̃′( f HOH), obtained at the bending peak at f HOH = 1650 cm−1

(horizontal broken line in Figure 4D), is significantly red-
shifted and is not modified much by including the non-
harmonic potential contributions (blue broken line). Upon
including the complex frequency-dependent friction Γ̃( f) but
only the harmonic part of U(ϕHOH), the purple line is
obtained, which is blue-shifted with respect to the constant-
friction case and reaches the frequency of the simulated curve
but is too narrow. Including the complex frequency-dependent
friction Γ̃( f) and also the full nonharmonic potential U(ϕHOH),
the GLE (indicated by the blue line) rather accurately
reproduces the position and width of the simulated spectrum.
In agreement with our stretch-vibration results in Figure 3E,
we detect considerable inhomogeneous line broadening
(amounting to 47% of the total line broadening) from the
comparison of the results with and without nonharmonic
potential contributions in the presence of frequency-dependent
friction. In contrast to the stretch−vibration results, we see that
the blue shift induced by including the frequency dependence
of the friction almost exactly cancels the red shift due to the
softening of the bond potential in the liquid phase, which
means that the frequency dependence of Γ̃( f) close to the
characteristic bend-mode frequency is more pronounced
compared to the stretch mode. It transpires that the fine
details of the frequency dependence of the friction at the
vibrational frequency determine vibrational line shape and
position, which we now analyze in more detail.
It turns out that the imaginary and real parts of the

frequency-dependent friction influence the line position and
shape quite differently.26 This is illustrated in Figure 4F by
comparing spectra using only the harmonic part of the
potential for constant friction (gray dotted line), for purely real
frequency-dependent friction Γ̃′( f) (blue broken line), and for
friction that contains both real and imaginary frequency-
dependent parts Γ̃′( f) + iΓ̃″( f) (blue solid line), note that for
purely imaginary friction the spectrum according to eq 2

exhibits a singularity and thus is not shown. It is in fact the
imaginary part Γ̃″( f) that gives rise to the blue shift, as is now
explained by a simple analytical argument.
For this we consider a single-exponential memory function

Γ(t) = γτ−1 exp(−t/τ). The single-sided Fourier transform is
given as Γ̃(ω) = ∫ 0

∞ dt eiωtΓ(t) = γ/(1 − iτω) with the
asymptotic limits Γ̃(ω) ≃ γ(1 + iωτ) for small ω and Γ̃(ω) ≃
iγ/(ωτ) for large ω; both deviations from the zero-frequency
limit Γ̃(ω → 0) ≃ γ turn out to be imaginary, which already
hints at why the imaginary part of the friction determines the
line position, as demonstrated in Figure 4F. A general form
that contains both asymptotic limits is given by Γ̃(ω) ≃ γ +
iaω + ib/ω, where a = γτ and b = 0 for small ω and a = 0 and b
= γ/τ for large ω. By inserting this asymptotic form into eq 2,
the Lorentzian line shape eq 3 is recovered but with an
effective mass meff = m − a and an effective potential curvature
keff = k + b. The vibrational frequency turns out to be

ω = =
+
−

k

m

k b

m a
0

eff

eff (7)

and in fact increases both in the small and large frequency
limits, because a and b are positive constants for single-
exponential memory. Thus, a blue shift of the vibrational
frequency is very generally expected for frequencies where the
frequency-dependent friction is described by the asymptotic
form Γ̃(ω) ≃ γ + iaω + ib/ω with positive a and b. In fact, this
functional form is able to describe the stretch and band friction
functions rather accurately around the stretch and band
frequencies, respectively, as inspection of Figures 3D and 4D
shows. In other words, frequency-dependent friction can lead
to a blue shift of a vibrational band irrespective of whether the
imaginary friction function decreases or increases in the
vicinity of the vibrational band.
The full width at half-maximum of a Lorentzian is given as

γ/meff ≃ γ/(m − a); thus, the line width is, within the
harmonic approximation, predicted to slightly increase for the
stretch band (because Γ̃″( f) slightly increases at the stretch
vibrational frequency in Figure 3D and thus a is positive) but
to stay rather constant for the bend band (because Γ̃″( f)
slightly decreases at the bend vibrational frequency Figure 4D
and thus a presumably is small and dominated by b). These
predictions are in good agreement with the results shown in
Figures 3E and 4E for the scenario of a harmonic potential and
friction-dependent friction (purple lines). Clearly, the exact
line shape and position are determined by the interplay of
nonlinearities of the potential and frequency-dependent
friction, which can be accessed only by simulations or
perturbation theory, but the simple harmonic model discussed
here allows appreciation of part of the mechanisms at play.

■ CONCLUSIONS

Frequency-independent friction, which reflects the fast
adiabatic dissipative channels available for a specific vibrational
mode, modifies the vibrational spectral line width via
homogeneous line broadening but not the line position. This
is strictly true for a harmonic potential but holds approximately
even in the presence of nonharmonic potential contributions,
as we demonstrate in Figure 3F. On the other hand, the full
frequency dependence of the friction, which in particular
accounts for the slower solvent relaxation processes, gives rise
to a spectral blue shift and additional line broadening. The
latter reflects what is typically called inhomogeneous line
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broadening. In contrast, softening of the bond potential in the
liquid environment, which is due to hydrogen bonding and
hydration interactions, gives rise to a red shift. Therefore, we
find that the line shapes and positions of the bend and stretch
bands in liquid water can be interpreted in terms of the
compensatory effects of frequency-dependent friction and
harmonic as well as nonharmonic potential contributions. For
stretch vibrations, the bond softening dominates and therefore
the stretch vibration is red-shifted when going from gas to
liquid water. For bend vibrations the potential-induced red
shift and the friction-induced blue shift almost exactly
compensate. This of course does not imply that the coupling
of bend vibrations to the hydrating liquid environment is
weaker than for stretch vibrations, as one might naively guess
from only looking at the frequency shifts. Rather, the contrary
is true. It turns out that it is the imaginary part of the
frequency-dependent friction that gives rise to the blue shift, in
line with previous arguments.26 The situation is rather
complex, though, because the effects due to the frequency-
dependency of the friction and due to nonlinearities in the
potential do not decouple.
Our methodology is different from previous approaches to

describe the infrared line shapes of water6,68 because we deploy
the time-averaged bond potential as it naturally emerges via the
projection formalism used to derive the GLE. This in particular
means that in our approach, inhomogeneous line broadening
enters via the time-dependent friction function, not via a time-
dependent bond potential, as in previous theories.
The GLE framework we use to derive the time- or

frequency-dependent friction function is not constrained to
nuclear reaction coordinates that describe the vibrations of a
single molecule, which forms the topic of this paper. Rather,
electronic polarization degrees of freedom can be included as
well and also collective effects that stem from dipolar
correlations between neighboring molecules can be accounted
for by suitable reaction coordinates. Likewise, it would be
interesting to model Raman spectra, which reveal a perspective
on the vibrational molecular modes that is very different from
IR spectroscopy.69

As mentioned before, our ab initio simulations neglect
nuclear quantum effects, owing to the fact that methods to
extract friction functions from path-integral simulations are not
yet available. This approximation presumably is permissible in
the present context, as we target the general compensatory
effects the liquid environment has on bond potentials and the
bond friction function, which should not be fundamentally
changed by nuclear quantum effects. This is corroborated by
results by Marsalek and Markland,49 who reported a red shift
of the OH peak by about 200 cm−1 and of the HOH bend peak
by about 50 cm−1 upon inclusion of nuclear quantum effects in
their simulations, which are somewhat smaller than the shifts
due to potential and frequency-dependent friction effects we
find here. Nonetheless, in the future, it would be highly
desirable to develop techniques that would allow extracting
GLE parameters from path integral simulations48,49 and from
mixed quantum/classical approaches.32,34,70
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Caldeira-Leggett model to vibrational spectroscopy in solution. J.
Phys. Chem. Lett. 2015, 6, 2722−2727.
(32) Lawrence, C. P.; Skinner, J. L. Vibrational spectroscopy of
HOD in liquid D2O. VI. Intramolecular and intermolecular
vibrational energy flow. J. Chem. Phys. 2003, 119, 1623−1633.

(33) Ramasesha, K.; De Marco, L.; Mandal, A.; Tokmakoff, A. Water
vibrations have strongly mixed intra- and intermolecular character.
Nat. Chem. 2013, 5, 935−940.
(34) Kananenka, A. A.; Skinner, J. L. Fermi resonance in OH-stretch
vibrational spectroscopy of liquid water and the water hexamer. J.
Chem. Phys. 2018, 148, 244107.
(35) Matt, S. M.; Ben-Amotz, D. Influence of intermolecular
coupling on the vibrational spectrum of water. J. Phys. Chem. B 2018,
122, 5375−5380.
(36) Schmidt, J. R.; Corcelli, S. A.; Skinner, J. L. Pronounced non-
Condon effects in the ultrafast infrared spectroscopy of water. J. Chem.
Phys. 2005, 123, 044513.
(37) De Marco, L.; Carpenter, W.; Liu, H.; Biswas, R.; Bowman, J.
M.; Tokmakoff, A. Differences in the vibrational dynamics of H2O
and D2O: Observation of symmetric and antisymmetric stretching
vibrations in heavy water. J. Phys. Chem. Lett. 2016, 7, 1769−1774.
(38) Carpenter, W. B.; Fournier, J. A.; Biswas, R.; Voth, G. A.;
Tokmakoff, A. Delocalization and stretch-bend mixing of the HOH
bend in liquid water. J. Chem. Phys. 2017, 147, 084503.
(39) Ojha, D.; Karhan, K.; Kühne, T. D. On the hydrogen bond
strength and vibrational spectroscopy of liquid water. Sci. Rep. 2018,
8, 16888.
(40) Daldrop, J. O.; Kappler, J.; Brünig, F. N.; Netz, R. R. Butane
dihedral angle dynamics in water is dominated by internal friction.
Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 5169−5174.
(41) Stenger, J.; Madsen, D.; Hamm, P.; Nibbering, E. T.; Elsaesser,
T. Ultrafast vibrational dephasing of liquid water. Phys. Rev. Lett.
2001, 87, 027401.
(42) Chuntonov, L.; Kumar, R.; Kuroda, D. G. Non-linear infrared
spectroscopy of the water bending mode: Direct experimental
evidence of hydration shell reorganization? Phys. Chem. Chem. Phys.
2014, 16, 13172−13181.
(43) Bertie, J. E.; Lan, Z. Infrared intensities of liquids XX: The
intensity of the OH stretching band of liquid water revisited, and the
best current values of the optical constants of H2O(l) at 25°C
between 15,000 and 1 cm−1. Appl. Spectrosc. 1996, 50, 1047−1057.
(44) Bertie, J. E.; Ahmed, M. K.; Eysel, H. H. Infrared intensities of
liquids. 5. Optical and dielectric constants, integrated intensities, and
dipole moment derivatives of H2O and D2O at 22°C. J. Phys. Chem.
1989, 93, 2210−2218.
(45) Silvestrelli, P. L.; Bernasconi, M.; Parrinello, M. Ab initio
infrared spectrum of liquid water. Chem. Phys. Lett. 1997, 277, 478−
482.
(46) Heyden, M.; Sun, J.; Funkner, S.; Mathias, G.; Forbert, H.;
Havenith, M.; Marx, D. Dissecting the THz spectrum of liquid water
from first principles via correlations in time and space. Proc. Natl.
Acad. Sci. U. S. A. 2010, 107, 12068−12073.
(47) Schulz, R.; von Hansen, Y.; Daldrop, J. O.; Kappler, J.; Noé, F.;
Netz, R. R. Collective hydrogen-bond rearrangement dynamics in
liquid water. J. Chem. Phys. 2018, 149, 244504.
(48) Habershon, S.; Markland, T. E.; Manolopoulos, D. E.
Competing quantum effects in the dynamics of a flexible water
model. J. Chem. Phys. 2009, 131, 024501.
(49) Marsalek, O.; Markland, T. E. Quantum dynamics and
spectroscopy of ab Initio liquid water: The interplay of nuclear and
electronic quantum effects. J. Phys. Chem. Lett. 2017, 8, 1545−1551.
(50) Markland, T. E.; Ceriotti, M. Nuclear quantum effects enter the
mainstream. Nat. Rev. Chem. 2018, 2, 0109.
(51) Fraley, P. E.; Narahari Rao, K. High resolution infrared spectra
of water vapor: ν1 and ν3 band of H2

16O. J. Mol. Spectrosc. 1969, 29,
348−364.
(52) McClatchey, R. A.; Benedict, W. S.; Clough, S.; Burch, D.;
Calfee, R. F.; Fox, K.; Rothman, L. S.; Garing, J. S. AFCRL
atmospheric absorption line parameters compilation. Environ. Res.
Pap. 1973, 434, 1−78.
(53) Carlson, S.; Brünig, F. N.; Loche, P.; Bonthuis, D. J.; Netz, R.
R. Exploring the absorption spectrum of simulated water from MHz
to infrared. J. Phys. Chem. A 2020, 124, 5599−5605.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.1c09481
J. Phys. Chem. B 2022, 126, 1579−1589

1588



(54) Zhang, C.; Guidoni, L.; Kühne, T. D. Competing factors on the
frequency separation between the OH stretching modes in water. J.
Mol. Liq. 2015, 205, 42−45.
(55) Zwanzig, R. Memory effects in irreversible thermodynamics.
Phys. Rev. 1961, 124, 983−992.
(56) Mori, H. Transport, collective motion, and Brownian motion.
Prog. Theor. Phys. 1965, 33, 423−455.
(57) Infrared and Raman spectroscopy: Methods and applications;
Schrader, B., Ed.; Wiley-VCH: New York, 1995.
(58) Marchesoni, F.; Grigolini, P. On the extension of the Kramers
theory of chemical relaxation to the case of nonwhite noise. J. Chem.
Phys. 1983, 78, 6287−6298.
(59) Morrone, J. A.; Markland, T. E.; Ceriotti, M.; Berne, B. J.
Efficient multiple time scale molecular dynamics: Using colored noise
thermostats to stabilize resonances. J. Chem. Phys. 2011, 134, 014103.
(60) Lee, H. S.; Ahn, S. H.; Darve, E. F. The multi-dimensional
generalized Langevin equation for conformational motion of proteins.
J. Chem. Phys. 2019, 150, 174113.
(61) Hutter, J.; Iannuzzi, M.; Schiffmann, F.; Vandevondele, J.
CP2K: Atomistic simulations of condensed matter systems. Wiley
Interdiscip. Rev. Comput. Mol. Sci. 2014, 4, 15−25.
(62) VandeVondele, J.; Hutter, J. Gaussian basis sets for accurate
calculations on molecular systems in gas and condensed phases. J.
Chem. Phys. 2007, 127, 114105.
(63) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and
accurate ab initio parametrization of density functional dispersion
correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010,
132, 154104.
(64) Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling
through velocity rescaling. J. Chem. Phys. 2007, 126, 014101.
(65) Kubo, R. Statistical’mechanical theory of irreversible processes.
I. General theory and simple applications to magnetic and conduction
problems. J. Phys. Soc. Jpn. 1957, 12, 570−586.
(66) Wiener, N. Generalized harmonic analysis. Acta Math. 1930,
55, 117−258.
(67) Ramírez, R.; López-Ciudad, T.; Kumar P, P.; Marx, D.
Quantum corrections to classical time-correlation functions: Hydro-
gen bonding and anharmonic floppy modes. J. Chem. Phys. 2004, 121,
3973−3983.
(68) Ni, Y.; Skinner, J. L. IR and SFG vibrational spectroscopy of the
water bend in the bulk liquid and at the liquid-vapor interface,
respectively. J. Chem. Phys. 2015, 143, 014502.
(69) Torii, H. Time-domain calculations of the polarized Raman
spectra, the transient infrared absorption anisotropy, and the extent of
delocalization of the OH stretching mode of liquid water. J. Phys.
Chem. A 2006, 110, 9469−9477.
(70) Medders, G. R.; Paesani, F. Infrared and raman spectroscopy of
liquid water through ”first-principles” many-body molecular dynamics.
J. Chem. Theory Comput. 2015, 11, 1145−1154.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.1c09481
J. Phys. Chem. B 2022, 126, 1579−1589

1589



Barrier-Crossing Times for Different

Non-Markovian Friction in Well and

Barrier: A Numerical Study 6
by Florian N. Brünig, Roland R. Netz, and Julian Kappler

Contributions: F.N.B., R.R.N., and J.K. conceived the theory and designed the simula-
tions. F.N.B. and J.K. performed simulations. F.N.B. analyzed the data. All authors
discussed the results, analyses, and interpretations. F.N.B. and J.K. wrote the paper
with input from all authors.

Bibliographic information: This chapter has previously been published in Physical

Review E by the American Physical Society (APS) as open access under the Creative
Commons CC BY licence (http://creativecommons.org/licenses/by/4.0/) [3].

https://doi.org/10.1103/PhysRevE.106.044133

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevE.106.044133


PHYSICAL REVIEW E 106, 044133 (2022)

Barrier-crossing times for different non-Markovian friction in well and barrier: A numerical study

Florian N. Brünig ,1 Roland R. Netz ,1 and Julian Kappler 2,*

1Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
2Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences,

University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom

(Received 3 May 2022; accepted 21 July 2022; published 24 October 2022)

We introduce a generalized Langevin model system for different non-Markovian effects in the well and barrier
regions of a potential, and use it to numerically study the barrier-crossing time. In the appropriate limits, our
model interpolates between the theoretical barrier-crossing-time predictions by Grote and Hynes (GH), as well
as by Pollak et al., which for a single barrier memory time can differ by several orders of magnitude. Our
model furthermore allows one to test an analytic rate theory for space-inhomogeneous memory, which disagrees
with our numerical results in the long well-memory regime. In this regime, we find that short barrier memory
decreases the barrier-crossing time as compared to long barrier memory. This is in contrast with the short well-
memory regime, where both our numerical results and the GH theory predict an acceleration of the barrier
crossing time with increasing barrier memory time. Both effects, the “Markovian-barrier acceleration” and GH
“non-Markovian-barrier acceleration,” can be understood from a committor analysis. Our model combines finite
relaxation times of orthogonal degrees of freedom with a space-inhomogeneous coupling to such degrees and
represents a step towards more realistic modeling of reaction coordinates.

DOI: 10.1103/PhysRevE.106.044133

I. INTRODUCTION

Many physical systems are comprised of large numbers
of interacting degrees of freedom. A standard approach to-
wards understanding dynamics in such systems is to define a
low-dimensional reaction coordinate, motivated by the phe-
nomenon to be investigated, and to construct an effective
model for the dynamics of this reaction coordinate [1–10].
Hereby, the orthogonal degrees of freedom are subsumed into
an effective heat bath, which interacts with the reaction coor-
dinate [1–4]. One is then typically interested in the long-time
dynamics of the reaction coordinate and in particular rare
events such as barrier-crossing phenomena characterized by
mean first-passage times (MFPTs), τMFP [7,11–18]. Systems
where this approach has been applied are molecules in so-
lution, which show conformational transitions, for example,
protein folding [7,19–22], chemical reactions, where the reac-
tion coordinate characterizes the transition from reactants to
products [13,23–28], and vibrational spectroscopy [29,30].

If the dissipative coupling between reaction coordinate and
heat bath is assumed linear, the dynamics is described by
an approximate version of the generalized Langevin equa-
tion (GLE), with memory effects due to the finite relaxation
time of the heat bath [2,31]. However, in many physical sys-
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tems the dissipative interaction between reaction coordinate
and heat bath depends nonlinearly on the current state of
the reaction coordinate [3]. For example, a small molecule
traversing a membrane separating two different fluids, as illus-
trated in Fig. 1(a), clearly interacts with different orthogonal
degrees of freedom, namely, fluid or membrane molecules, de-
pending on where it is currently located. As a second example,
a reaction coordinate describing the folding of a protein is ex-
pected to experience different friction depending on whether
the protein is unfolded or folded. Even for a single confined
solute particle in a fluid, the nonlinear dissipative interac-
tion of the particle and its surrounding fluid molecules leads
to confinement-dependent memory effects [32]; for colloidal
particles in a viscoelastic fluid, such nonlinear solute-solvent
interactions have been observed experimentally [33].

The first analytical relation between the friction magni-
tude and the barrier-crossing time was derived by Kramers
[11]. Kramers considered the memoryless, i.e., Markovian,
Langevin equation with homogeneous friction magnitude.
He showed that, while in the high-friction limit τMFP scales
linearly with the friction, in the low-friction scenario τMFP

scales linear with the inverse of the friction magnitude. The
crossover between these two asymptotic results was eventu-
ally bridged by a theory due to Melnikov and Meshkov [15]
(MM), which is valid for all values of the friction magnitude.

For the scenario where there is no timescale separation
between heat bath and reaction coordinate, so that non-
Markovian memory effects are relevant, the first theory to
describe barrier-crossing times is due to Grote and Hynes
(GH) [13]. In their theory, only the local memory effects in
the barrier region are taken into account, and away from the
barrier region the reaction coordinate is assumed Markovian.

2470-0045/2022/106(4)/044133(20) 044133-1 Published by the American Physical Society
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(a) (b) (c)

FIG. 1. (a) The dynamics of a particle diffusing through a membrane, separating different solvent species, serves as an illustrative example
for space-inhomogeneous friction effects. (b) The truncated quartic potential Eq. (5) is used to model barrier-crossing dynamics. The colors
indicate regions Xi with different local friction. (c) Example trajectory, simulated using single-exponentially decaying locally coupled memory-
friction components, Eq. (6), with τW/τD = 1 and τB/τD = 0.01, that together form the friction kernel of Eq. (2). The coupling function χi(x)
is given by Eq. (3) for the regions Xi, also shown in (b). The mean first-passage time (MFPT), τMFP, for barrier crossing is defined as the average
of all time differences between crossings of the well bottom at x/L = −1 (shown as vertical gray solid lines) to the escape at the boundary at
x/L = 0.5 (shown as a vertical black solid line).

For the case of homogenous memory effects throughout the
well and barrier regions, Pollack, Grabert, and Hänggi (PGH)
derived τMFP, which for long memory scales quadratically
with the memory time, so that the former can exceed the
latter by orders of magnitude [34]. For the special case of a
single-exponential memory function, the quadratic scaling of
τMFP with memory time was also derived analytically from
a harmonic approximation, and a simple heuristic formula
which reproduces the results of the PGH theory was pro-
posed [35]. Importantly, for systems with long memory, the
predictions of the barrier-crossing time by the PGH and GH
theories differ by many orders of magnitude. Evidently it
is crucial whether the coupling between reaction coordinate
and heat bath is linear throughout well and barrier region
(homogeneous friction) or nonlinear and thus different in well
and barrier region (space-inhomogeneous friction) [35,36].

For homogeneous friction, there exist numerical studies
of barrier crossing considering both single-timescale mem-
ory [7,35,37–39], as well as the implications of several
memory timescales [21,40]. Models incorporating space-
inhomogeneous friction have so far mostly been studied in the
double limit where inertial and memory effects are negligible
and can thus be modeled via an overdamped Langevin equa-
tion [41] or the equivalent Fokker-Planck equation [42,43].
However, this limit is subtle, as non-Markovian memory ef-
fects can generate spurious space-inhomogeneous friction if
interpreted in terms of a Markovian model [22]. For space-
inhomogeneous memory friction magnitude with a single
homogeneous timescale, some works observed significant
deviations of τMFP in both analytic theory and simulations
when compared to the space-homogeneous case [44–46]. The
implications of space-inhomogeneous memory timescales in
the well and barrier regions on the global barrier-crossing
dynamics have so far been addressed only by an analytical
model [47–49] which bridges the GH and PGH scenarios in
certain limits. However, this model has never been challenged
by numerical simulations.

We here present a model system to study space-
inhomogeneous friction memory times and magnitudes,
which in the appropriate parameter regimes reproduces the
predictions of both the PGH and GH theory. Our model is

based on the nonlinear Zwanzig model [3,48]. Importantly,
while the model makes certain simplifying assumptions that
are not guaranteed to hold for general systems, it allows us to
study under which conditions τMFP is determined dominantly
by the memory friction either in the well or in the barrier
region. Specifically, we consider a reaction coordinate subject
to a potential well, bounded by a moderate barrier on one
side, as illustrated in Fig. 1(b). In the well and barrier regions
the reaction coordinate is locally coupled to independent heat
baths, each with a single finite and in general different relax-
ation time. This local coupling leads to space-inhomogeneous
single-exponential memory in the reaction coordinate, and by
independently varying the memory effects in the well and bar-
rier region we disentangle the effects of space-inhomogeneous
memory times, τW for the well and τB for the barrier, and
friction magnitudes, γW and γB, on the barrier-crossing time.
By comparing results of numerical simulations to the rate
theories of the GH theory [13] and PGH theory [34] (for
which we for simplicity use our previously derived heuristic
formula [21]), with the latter evaluated using either the well
or barrier friction, we are able to infer which theory describes
the numerical results, and whether the barrier-crossing time
depends dominantly on the well or barrier friction.

We present the results of our numerical study in two parts.
First, we discuss the Markovian regime, for which memory
effects in both the well and barrier regions are negligibly
small, i.e., τB and τW are much smaller than the diffusive
timescale τD = γ L2/(kBT ), given by the friction constant γ ,
a length scale L and thermal energy kBT . The dynamics in
this regime are thus dependent only on inertial effects, which,
strictly speaking, are Markovian only if both instantaneous
position and velocity are used for defining a configuration.
By labeling inertial effects as Markovian, we demarcate such
inertial effects from non-Markovian effects due to coupling
of the principle coordinate with hidden heat bath degrees of
freedom. In our model inertial effects are characterized by
the inertial timescale for the different friction magnitudes,
τm,B = m/γB or τm,W = m/γW. We find that whenever the
well dynamics is in the high-friction regime, m/γW � τD,
then the barrier-crossing time is determined by the barrier top
friction. If then, the barrier top is also in the high-friction
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regime, m/γB � τD, τMFP is described by Kramers’ theory
[11], evaluated using the friction magnitude at the barrier
top. If, instead, the barrier dynamics is in the low-friction
regime, m/γB > τD, while γB and γW are not too different,
then the MM theory [15] or PGH theory [34], evaluated using
the barrier parameters, describes the numerically obtained
barrier-crossing times. On the other hand, if the dynamics in
the well is in the low-friction regime, m/γW > τD, then τMFP

is described by the PGH theory or MM theory, both evalu-
ated using the well parameters, which therefore dominates the
global barrier-crossing dynamics.

In the second part we discuss the non-Markovian regime,
where memory effects in either well or barrier regions are
relevant, i.e., either τB or τW is of at least similar order as
the diffusive timescale τD. For simplicity we keep the friction
magnitudes equal, γB = γW, and consider the high-friction
regime by imposing m/γB = m/γW � τD. Analogous to the
previous case, we find that whenever the well dynamics is
in the Markovian regime, τW � τD, then the barrier-crossing
time is determined by the barrier top friction. If then again,
the barrier top is also in the Markovian regime, τB � τD,
τMFP is described by Kramers’ theory [11], evaluated using
the friction parameters for the barrier top. If, instead, memory
effects in the barrier region are relevant, then the GH theory
[13] agrees with the numerically obtained barrier-crossing
times. In contrast, if the well memory is long, τW > τD, τMFP

is described by the PGH theory using the well parameters.
While then in general τMFP is rather independent of the barrier
friction, Markovian barrier dynamics lead to a speed up of
τMFP as compared to a barrier region with long memory. This
speedup, which we term the “Markovian-barrier acceleration,”
is not captured by any presently available rate theory, but
can be understood from a committor analysis, analogous to
the “non-Markovian-barrier acceleration” already predicted
by the GH theory.

The remainder of this paper is organized as follows. In
Sec. II we first introduce the space-inhomogeneous memory
model we consider. In Sec. III we then compare numerical
simulations of our model to rate-theory predictions. We first
consider the short-memory limit and subsequently study how
local memory effects modify τMFP. In our concluding Sec. IV
we provide a table which summarizes our results.

II. MODEL

We consider a reaction coordinate x and N noninteracting
heat baths with finite relaxation dynamics [3,48]; for x ∈ Xi,
the reaction coordinate couples linearly to the ith heat bath.
As we show in Appendix A 1, integrating out the bath degrees
of freedom then leads to a GLE

mẍ(t ) = −
∫ t

0
dt ′ �[t − t ′, x(t ), x(t ′)]ẋ(t ′)

− ∂xU [x(t )] + η[x(t ), t], (1)

which is a generalization of the model proposed by Zwanzig
[3]. U [x(t )] is a potential landscape, and the space- and time-

dependent friction kernel �[t − t ′, x(t ), x(t ′)] is given as

�[t − t ′, x(t ′), x(t )] =
N∑

i=1

χi[x(t )]�i(t − t ′)χi[x(t ′)], (2)

where the purely time-dependent components �i describe the
internal relaxation dynamics of reservoir i, and the dimension-
less functions χi, defined by

χi(x) =
{

1 if x ∈ Xi,

0 if x /∈ Xi,
(3)

describe the coupling of the reaction coordinate x to reservoir
i. The terms in Eq. (2) have a simple intuitive interpretation:
at any past time t ′, the reaction coordinate x perturbs reservoir
i via the coupling strength χi[x(t ′)]; this perturbation relaxes
in the heat bath for a duration t − t ′ as described by �i(t − t ′),
and finally couples back to the reaction coordinate at the time
t via χi[x(t )].

As we show in Appendix A 2, the random force fulfills the
fluctuation-dissipation relation

β〈η[x(t ), t]η[x(t ′), t ′]〉 = �[t − t ′, x(t ), x(t ′)], (4)

where β−1 = kBT is the thermal energy with kB the Boltz-
mann constant and T the absolute temperature.

For our numerical simulations we consider barrier crossing
in the quartic potential

U (x) = U0

[( x

L

)2
− 1

]2

, (5)

with a length scale L and barrier height βU0 = 3 (we show
some results with varying barrier heights in Appendix C 2).
To systematically study the effect of space-inhomogeneous
memory on τMFP, we consider N = 2 independent heat baths
with coupling regions in the well, XW/L = (−∞,−0.5), and
on the barrier, XB/L = [−0.5, 0.5), as illustrated in Fig. 1(b).
For the resulting two memory kernels �W and �B, we consider
single-exponential kernels,

�i(t ) =
γi

τi

e−t/τi , (6)

with friction magnitudes γi and relaxation timescales τi,
where i ∈ {W, B}. This means that the particle interacts with
two independent heat baths, each of which relaxes according
to a single exponential.

As we show in Appendix A 3, Eq. (1) with local memory
Eq. (2) can be cast into dimensionless form by introduc-
ing a diffusion timescale τD = βγ L2 with γ =

∑
i γi, and

an inertial timescale τm = m/γ . With the potential (5) and
a given barrier height βU0, the system is then specified by
four dimensionless parameters which we choose to be the di-
mensionless inertial timescale τm/τD, the dimensionless local
memory times τi/τD, i ∈ {W, B}, and one of the two relative
friction magnitudes γi/γ , i ∈ {W, B}. To transform dimen-
sionless results to physical dimensions, the temperature T , the
length scale L, and the sum γ of the local friction magnitudes
additionally need to be specified. To simulate the dimension-
less formulation of Eqs. (1), (2), and (4), we use a Markovian
embedding whereby we explicitly simulate the dynamics in
the reservoirs, as detailed in Appendix A 3.
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FIG. 2. MFPT, τMFP/τD, for different barrier memory friction, �B(t ) = γBe−t/τB/τB and well memory friction, �W(t ) = γWe−t/τW /τW,
obtained from numerical simulations (data points) and compared with analytical predictions given by Mel’nikov and Meshkov [15] (MM, solid
and broken lines). The data are shown for various inertial timescales τm/τD and equal memory times in the Markovian limit, τB/τD = τW/τD =
10−4. (a) τMFP plotted over the inertial timescale τm/τD for different ratios of the barrier to total friction magnitude γB/γ . The predictions by
MM are shown for the effective barrier-friction parameters given by γB and for the effective well-friction parameters given by γW. The black
triangles denote simulations with space-homogeneous friction. (b, c) Example trajectories from simulations. (d) τMFP plotted over γB/γ for
various τm/τD. The predictions by MM are shown for the effective barrier-friction parameters as broken lines and for the effective well-friction
parameters as solid lines. (e) Contour plot of agreement of the simulation results with the theoretical predictions. The color denotes whether the
simulated τMFP ∈ [2/3 τtheo, 3/2 τtheo], where τtheo is calculated using MM theory and either the effective well- or barrier-friction parameters.
The hatching indicates that both theoretical predictions agree with the simulated data. White denotes that neither predictions agrees within the
tolerance. (f) Model potential (f1) and friction profile (f2) used to study the effect of the barrier friction on τMFP in the high-friction Markovian
regime. For this model τMFP is exactly predicted by Eq. (8).

In analogy to previous works, we define various limits
by comparison of respective timescales with the diffusive
timescale τD. For example the Markovian limit where memory
effects are negligible is obtained for τi < τD, and the high-
friction limit where inertial effects are negligible is obtained
for τm < τD [21,35,40]. However, since the local friction in
region i, γi, is only part of the total friction γ , which is used to

define τD, a condition τi � τD does not automatically ensure
the expected limit in region i. Rather, a condition involving
the local diffusive timescale, τD,i ≡ βL2γi, needs to be used,
namely, τi/τD,i ≡ τi/τD(γ /γi) � 1. Similarly, inertial effects
are locally relevant for τm,i/τD,i ≡ τm/τD(γ /γi )2 � 1, where
τm,i ≡ m/γi. While the distinction between τm,i, τD,i and τm,
τD is important if γi is significantly smaller than γ , for most
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of the parameter combinations we consider in the main text,
all γi are of similar order as their sum γ .

Since we are interested in evaluating the barrier-crossing
time starting from the well region XW, we restart the simula-
tion once the particle crosses the right boundary at x/L = 0.5,
which we consider a successful escape. At each restart, we
draw the initial position from an approximate Boltzmann dis-
tribution around the well minimum, i.e., we draw a Gaussian
random variable x(0) with 〈x(0)/L〉 = −1 and 〈[x(0)/L +
1]2〉 = kBT/[L2U ′′(−L)] = kBT/(8U0). Similarly, we draw
the initial velocity ẋ(0) from its equilibrium distribution, i.e.,
a Gaussian random variable with 〈ẋ(0)〉 = 0 and 〈ẋ2(0)〉 =
kBT/m. The initial conditions for the heat bath variables we
subsequently draw from their respective Boltzmann distribu-
tions, as detailed in Appendix A 2.

In Fig. 1(c) we show an example trajectory, simulated
using long memory in the well and short memory on the
barrier, for which different dynamics in the different regions
are clearly observed: While in the well region the trajectory
oscillates weakly-damped around the potential minimum, on
the barrier the trajectory is more akin to overdamped diffusive
dynamics. Figure 1(c) furthermore illustrates how we com-
pute τMFP from observed time differences between crossings
of the well minimum and the escape at x/L = 0.5. That this
is a reliable method for calculating τMFP has been shown
before [35].

In the main text, we compare our numerical results to the
GH [13], MM [15], and PGH theory [34], where instead of
the latter we use a heuristic formula [35] in practice. The GH
theory accounts only for barrier memory friction, which is
why we always evaluate it using the barrier memory kernel;
the theory assumes fast equilibration within the well, and does
not depend on the well friction explicitly. Both the Markovian
MM and non-Markovian PGH theory assume homogeneous
friction. We therefore evaluate these theories using either the
local parameters γi, τi of the well or barrier region. This allows
us to infer not only which rate theory describes the barrier-
crossing dynamics in which regime, but also which region
(well or barrier) dominantly determines the global τMFP. In
Appendix B we summarize the equations used to calculate
predictions for all rate theories considered in the main text. In
the main text, we do not compare our numerical simulations to
the analytical rate theory for space-inhomogeneous memory
friction due to Krishnan et al. [48]. The reason for this is
twofold: First, by comparing to the widely used GH and PGH
theories, we are able to assess which local dynamics dominate
the global τMFP. Second, as we show in Appendix C 4, the
theoretical predictions by Krishnan et al. [48] do not cap-
ture the “Markovian-barrier acceleration” regime, which we
prominently discuss below and which we quantify using the
PGH predictions.

III. RESULTS

In order to decouple Markovian inertial effects and
non-Markovian memory effects we analyze both scenarios
independently. For this we first consider the Markovian limit,
τB/τD, τW/τD � 1, and vary τm/τD, and second the high-
friction limit, τm/τD � 1, with varying τB/τD and τW/τD.

A. Markovian friction dynamics

We now consider the Markovian limit for both well and
barrier. In Fig. 2(a) we show the rescaled τMFP/τD as a
function of the rescaled inertial time τm/τD. For reference,
we include numerical results from a GLE with a homoge-
neous single-exponential memory kernel with memory time
τglob/τD = 10−4 and a single friction magnitude γglob = 0.9 γ

(chosen as to coincide with the light green solid line, as
explained further below) [35]; the resulting τMFP are shown
in Fig. 2(a) as black triangles, and clearly show the Kramers
turnover between high-friction dynamics for τm/τD � 1,
where τMFP scales as ∼γ , and low-friction dynamics for
τm/τD 
 1, where τMFP scales as ∼m/γ [11,15,35].

Figure 2(a) furthermore shows numerical results for the
space-inhomogeneous memory model Eqs. (1) and (2) for
τB/τD = τW/τD = 10−4 and the two values γB/γ = 0.1, 0.9.
For γB/γ = 0.1 we have γW/γ = 0.9, so that the friction in
the well is almost one order of magnitude larger as compared
to the friction in the barrier region. Conversely, for γB/γ =
0.9 the friction in the well, γW/γ = 0.1, is almost one order
of magnitude smaller as compared to the friction in the barrier
region. While in the high-friction regime τm/τD � 1, the re-
sults for γB/γ = 0.9 (light green circles; barrier friction much
larger than well friction) agree well with the global mem-
ory friction data (black triangles), in the low-friction regime
τm/τD 
 1, it is τMFP for γB/γ = 0.1 (dark blue squares; well
friction much larger than barrier friction) that is comparable to
the global memory friction result. This indicates that for high
friction, τMFP is dominated by the barrier friction, whereas for
low friction τMFP is dominated by the well friction.

The crossover between barrier-dominated τMFP to well-
dominated τMFP observed in Fig. 2(a) is further confirmed
by comparing the numerical data to predictions of the MM
theory for Markovian barrier crossing, which is based on
homogeneous friction. In Fig. 2(a) we show the predictions
of MM theory, evaluated using either the well friction γW or
the barrier friction γB. Note that because of the symmetry
in the used parameters, the light green solid line represents
both the MM prediction for γB/γ = 0.9, and evaluation us-
ing the barrier friction, as well as the MM prediction for
γB/γ = 0.1, and evaluation using the well friction. On the
other hand, the dark blue broken line represents the opposite
parameter choice in both scenarios. We observe that, while in
the high-friction limit τm/τD � 1, the simulated τMFP agree
with the MM predictions evaluated at the barrier region, for
low friction τm/τD 
 1 the numerical data are described by
the MM theory evaluated at the well.

That for the Markovian high-friction scenario, τMFP is
dominated by the barrier friction, follows from a simple an-
alytical model. In the high-friction Markovian limit τMFP to
start at x0 and reach x f in a potential U (x) and for space-
inhomogeneous friction γ (x) is derived exactly from the
Fokker-Planck equation as [43]

τMFP(x0, x f ) = β

∫ x f

x0

dx γ (x)eβU (x)

∫ x

xL

dx′ e−βU (x′ ), (7)

where xL < x0 is a lower reflecting boundary. To study the
effect of barrier friction on τMFP, we consider the model il-
lustrated in Fig. 2(f): a simplified flat potential U (x), which
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features a reflecting boundary at x = 0 and a step barrier of
height U0, width B and friction γB located at position x = L/2.
Outside of the potential barrier, the friction is γW. Considering
x0 = xL = 0 and x f = L, τMFP is calculated from Eq. (7) to be

τ 0→L
MFP = β

L2

2
γW + β

LB

2
(γB − γW )

+ β
B(L − B)

2
(1 − e−βU0 )(γBeβU0 − γW ). (8)

In the high-barrier limit, where βU0 
 1, Eq. (8) is dominated
by an expression which contains only the barrier friction γB:

τ 0→L
MFP ≈ βγB

B(L − B)eβU0

2
. (9)

This result explains why the τMFP in the high-friction scenario
is determined by the barrier friction.

Example trajectories, comparing the cases of Markovian
high-friction dynamics (τm/τD = 10−4), where τMFP is de-
termined by the barrier friction, and Markovian low-friction
dynamics (τm/τD = 10), where τMFP is determined by the
well friction, are shown in Figs. 2(b) and 2(c). While the
trajectory in Fig. 2(b) generally exhibits dynamics reminiscent
of Markovian high-friction Langevin dyamics around the well
and also in the barrier region, differences in the lengths of
persistent motion due to the vastly different local friction mag-
nitudes are clearly visible. The trajectory in Fig. 2(c) shows
oscillations within the wells and long residence times, which
are typical of inertia-dominated stochastic dynamics [35].

Figure 2(d) shows the numerical τMFP, plotted as a func-
tion of the relative barrier friction γB/γ for various values
of the rescaled inertial time τm/τD. Again, while for high
friction, τm/τD = 10−4, the simulated data agree with the
MM theory evaluated using the barrier friction (light green
broken line), for large τm/τD = 10 the numerical results agree
with the predictions using the well friction (dark blue solid
line). We observe that for the parameters considered, the
rescaled τMFP/τD always increases monotonously with γB/γ ,
indicating that increasing barrier friction while decreasing
well friction slows down barrier-crossing. The analytical MM
theory shows nonmonotonicities for the case of high total
friction, τm/τD = 10−4, but very unequal friction magnitudes
in well and barrier regions, γi/γ � 1, i.e., to the far right and
left of Fig. 2(d). This is discussed in detail in Appendix C 1.

Figure 2(e) illustrates for which parameters the simulated
τMFP is described by the theoretical predictions of MM theory,
evaluated for either the well- or barrier-friction parameters.
The figure again clearly shows that for high-friction dynam-
ics, τm/τD � 0.1, τMFP is determined by the barrier friction,
whereas for low-friction dynamics, the well friction deter-
mines τMFP. The hatched area shows the overlap where both
predictions calculated using well or barrier friction agree
with the simulated τMFP. Obviously, in the crossover between
barrier- and well-dominated friction, where γB ≈ γW, the rate
theories produce similar results when evaluated using barrier
or well friction; see also Fig. 2(d). This is because for γB/γ ≈
0.5, we have γW/γ = (γ − γB)/γ ≈ 0.5, so that the effective
friction magnitudes in well and barrier region, and hence the
predictions of MM theory, which depend on the effective local
friction, are similar.

To summarize Figs. 2(a)–2(e), in the Markovian (short
memory) limit, the rescaled τMFP is for high-friction dynamics
determined by the barrier friction, whereas for low-friction
dynamics it is determined by the well friction. The former
effect is illustrated by the analytical result Eq. (9), while
the latter is intuitively understood from the concept of en-
ergy diffusion. For low-friction dynamics the energy exchange
between the reaction coordinate and the heat bath is weak
and therefore the energy to cross the potential barrier is only
slowly built up in the well region. This process is dominated
by the well dynamics and leads to a slow-down of the global
barrier-crossing times. Since slow energy diffusion is also
apparent for long memory times, a similar effect is observed
in the discussion of the non-Markovian dynamics in the fol-
lowing.

B. Non-Markovian friction dynamics

In Fig. 3 we investigate the memory-time dependence of
τMFP. For this, we consider a constant inertial timescale in the
high-friction limit, τm/τD = 10−4, and identical friction mag-
nitudes for the two reservoirs, γW/γ = γB/γ = 0.5, while
varying the well- and barrier-friction timescales, τW/τD and
τB/τD. We compare our numerical results to analytical pre-
dictions based on both the GH theory [13], which we evaluate
using the barrier-friction parameters τB, γB and which is hence
independent of the well parameters, and PGH theory [34] (for
which we in practice use a heuristic formula [21]), which we
evaluate for both the well parameters τW, γW or the barrier
parameters τB, γB.

In Fig. 3(a) we show the rescaled τMFP as a function of
the barrier memory time τB/τD for various fixed well memory
times τW/τD. For short barrier memory, τB/τD � 0.1, the dy-
namics on the barrier top is Markovian and the numerical τMFP

are independent of τB/τD. If additionally also the memory
in the well is short, τW/τD � 0.1, we are in the Markovian
high-friction limit. While, as we have already discussed in the
context of Fig. 2(a), in this limit the barrier-crossing time is
determined by the barrier friction, the PGH theory evaluated
with well friction (black solid line) agrees with the PGH
theory evaluated with barrier friction (colored solid lines) and
GH theory (black broken line; always evaluated at barrier
friction); this is because we have equal friction magnitudes
in well and barrier. While in the double limit of high friction
and short well memory τW/τD � 0.01, all theories describe
the numerical data (shown as circle and square markers) as
long as τB/τD � 0.01, for τB/τD � 0.01, both the GH theory
and numerical results display an acceleration (as compared
to the Markovian limit τB/τD → 0); we refer to this as GH
“non-Markovian-barrier acceleration.” That the GH theory
describes this acceleration regime is expected because it was
derived assuming fast equilibration within each well, which
is in line with the high-friction Markovian dynamics inside
the well for τm/τD = 10−4, τW/τD � 0.01. We note that in
the limit of τB/τD → ∞, the GH theory agrees with the
predictions of transition state theory [13]. For high-friction
dynamics with short well memory, τMFP is thus determined
by the barrier friction and described by the GH theory.

On the other hand, for long memory in the well, τW/τD �

1, the numerical τMFP (dark purple diamonds and dark blue
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(a) (d)

(b) (e)

(c) (f)

FIG. 3. MFPT, τMFP/τD, for different barrier memory friction, �B(t ) = γB/τBe−t/τB and well memory friction, �W(t ) = γW/τWe−t/τW , from
numerical simulations (data points) compared with analytical predictions given by Grote and Hynes [13] (GH, broken lines) and Pollak et al.

[34] (PGH, solid lines, evaluated using the heuristic formula [21]). The data are shown for various barrier-friction τB/τD and well-friction
times τW/τD, constant inertial timescale in the high-friction limit τm/τD = 10−4, and equal friction magnitudes γB/γ = γW/γ = 0.5. (a) τMFP

plotted over the barrier-friction time τB/τD (data points). The theories are shown for the respective barrier-friction time in black and in the case
of the PGH theory for the well-friction time as colored lines. Simulated τMFP to reach the barrier entry at x/L = −1/2 are shown as colored
dash-dotted lines. (b, c) Example trajectories from simulations for the barrier-dominated and GH-predicted limit (b) and the well-dominated
PGH-predicted limit (c). (d) τMFP plotted over the well-friction time τW/τD (data points). The theories are shown for the respective well-friction
time in black and in the case of the GH theory for the barrier-friction time as colored broken lines. (e) Contour plot of agreement of the
simulation results with the theoretical predictions. The color denotes whether the simulated τMFP ∈ [1/3 τtheo, 3 τtheo], where τtheo is calculated
using either the GH theory with the barrier-friction parameters or the PGH theory with the well-friction parameters. The hatching indicates
that both theoretical predictions agree with the simulated data. The light blue area denotes the “Markovian-barrier acceleration” of the PGH
prediction for which we define τtheo,MBA = 0.2 τtheo,PGH. (f) Committor p(TP|vin ) for transition paths crossing the barrier region plotted over
the initial velocity vin upon entering the barrier region for various barrier-friction times τB/τD and constant well-friction time τW/τD = 1 and
inertial time τm/τD = 10−4. The velocity related to the difference in potential energy relative to the barrier top is plotted as a vertical black
broken line. The flux-weighted equilibrium velocity distribution peq(vin ) is plotted as a gray broken line on a linear scale.
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triangles) are comparable to the predictions of the PGH theory
evaluated with the well parameters, and even for a Marko-
vian barrier, τB/τD � 1, disagree considerably with the GH
theory (which indicates a breakdown of the assumption of
fast equilibration within the well inherent to the GH theory).
In contrast to the Markovian-well scenario, for long well
memory τMFP is thus determined by the well dynamics. In-
terestingly, in the long-well-memory regime, τW/τD � 1, the
observed τMFP show a slight acceleration for small barrier-
memory times τB/τD � 0.1, as compared to the predictions
by the PGH theory and the numerical results for τB/τD 

0.1. We here refer to this acceleration due to short barrier
memory as “Markovian-barrier acceleration,” which notably
behaves opposite as a function of τB as compared to GH
“non-Markovian-barrier acceleration,” as we discuss further
below.

Figures 3(b) and 3(c) show example trajectories where
τMFP is determined by barrier or well friction. For the tra-
jectory shown in Fig. 3(b) τMFP is determined by the barrier
friction, and we observe high-friction Markovian dynamics
within the well and a direct transition path upon entering the
barrier region. The trajectory with well-friction-determined
τMFP, Fig. 3(c), on the other hand shows a long residence time
in the well, and multiple attempts entering the barrier region
before crossing over the barrier top, that are associated with
energy-diffusion, i.e., memory- or inertia-dominated trajecto-
ries [35].

In Fig. 3(d) we show the numerical τMFP as function of the
well memory time τW/τD, for several constant values of the
barrier memory time τB/τD. We again compare to theoretical
predictions based on the PGH and GH theories. Similar to
Fig. 3(a) we see that for short well memory, τW/τD � 0.1,
τMFP becomes independent of the well memory time so that
the dynamics is governed by the barrier. If additionally the
barrier memory time is short, τB/τD � 0.1, then τMFP is de-
scribed by both the PGH (evaluated in the well) and GH
theory. Increasing the barrier memory time τB/τD then leads to
an acceleration of barrier crossing as we discussed in Fig. 3(a),
and as described by the GH theory [leftmost data points in
Fig. 3(d)]. For any value of the barrier memory τB/τD, we ob-
serve that as the well memory is increased, for τW/τD � 1 an
asymptotic long-memory regime with τMFP ∼ τ 2

W is reached
[35], which is well described by the PGH theory evaluated at
the well. Increasing the well memory time τW/τD thus has
both a qualitatively and quantitatively very different effect
from increasing the barrier memory time τB/τD where, as
demonstrated in Fig. 3(a), τMFP slightly increases/decreases
(depending on τW/τD) and then becomes independent of
τB/τD.

Figure 3(e) summarizes the agreement of the simulated
high-friction τMFP with the PGH theory, evaluated on well pa-
rameters, and the GH theory, which is always evaluated using
the barrier parameters. We see that once the well memory
becomes relevant, i.e., for τW/τD � 0.1, τMFP is approxi-
mately described by PGH theory evaluated at the well. The
“Markovian-barrier acceleration” regime appears if memory
in the well is relevant, but in the barrier region the memory
time is short, i.e., for τB/τD � 1, τW/τD � 1, and is shown
as light blue. If well memory effects are negligible, i.e., for
τW/τD � 0.1, but memory effects are relevant in the barrier

region, τB/τD 
 0.1, then GH theory describes the numerical
results. If memory effects are negligible for both well and
barrier region, τW/τD � 1 and τB/τD � 0.1, then we are in
the Markovian limit, where the barrier friction γB determines
τMFP. That in this regime both GH theory (evaluated at the
barrier region) and PGH theory (evaluated at the well region)
describe the numerical τMFP, as indicated by the hatching,
can be rationalized by the fact that we use the same friction
magnitude for well and barrier, γB = γW.

C. Markovian-barrier acceleration

In order to gain intuition about the “Markovian-barrier
acceleration” regime, i.e., the slight barrier-crossing speed-up
observed for τW/τD � 1, τB/τD � 1 in Figs. 3(a) and 3(d), we
perform a committor analysis, the results of which are shown
in Fig. 3(f). The committor shown in the figure is defined as
the probability to be on a transition path through the barrier
region, and plotted as a function of the initial velocity with
which the particle enters the barrier region, vin. For com-
parison, the flux-weighted equilibrium velocity probability
density, peq.(v) ∝ v exp[−mv

2/(2kBT )] [50,51], is given as a
gray broken line. Furthermore, we show as a vertical black
broken line the threshold velocity vt with which an undamped
particle entering the barrier region crosses over the barrier top,
so that mv

2
t /2 = U0 − U (x = −L/2) = 7U0/16, and hence

vt =
√

7U0/(8m).
For short memory in the barrier region, τB/τD � 1, the

committor is relatively small and only very slightly increases
with larger initial velocities (the light green and light red solid
lines), indicating that the kinetic energy is quickly dissipated
in the barrier region and the probability to perform a transition
is approximately independent of the velocity with which the
particle enters the barrier region. For long barrier memory
τB/τD � 1, the committor remains almost zero for velocities
vin � vt , indicating that many trajectories that enter the barrier
region will simply roll back into the well region. They initially
do not have enough kinetic energy to cross the barrier top
and the energy exchange with the barrier heat bath is not
fast enough to gain the missing energy. At vt , the committor
starts to increase sharply and saturates at a value of 1, which
means that virtually every trajectory that enters the barrier
region with at least this kinetic energy performs a transition
through the barrier region. This is consistent with a weak
energy exchange of heat bath and reaction coordinate in the
barrier region, where a trajectory traverses the barrier top only
if initially it has enough kinetic energy to reach there.

The physical picture for the “Markovian-barrier acceler-
ation” regime is hence that for short barrier memory time
the energy exchange between reaction coordinate and barrier
heat bath is fast; this means that for high-friction Markovian
barrier dynamics, a large fraction of particles entering the
barrier region (without enough energy to cross the barrier
top) is able to obtain the missing energy from the barrier
heat bath, which leads to a decrease in τMFP with decreasing
barrier memory time. Interestingly, as can be seen in Fig. 3(a),
this effect changes τMFP in the opposite way as the “non-
Markovian-barrier acceleration” predicted by the GH theory,
and reproduced by our numerical model in the limit of high-
friction Markovian dynamics in the well.
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Nevertheless, the mechanisms behind both regimes are
similar and can each be understood from the committor analy-
sis shown in Fig. 3(f). “Non-Markovian-barrier acceleration”
profits from the fact that in the case of long barrier memory
fast initial velocities, i.e., vin � vt [to the right of the verti-
cal black broken line in Fig. 3(f)], always lead to a direct
transition. In case of short well memory, the initial velocities
vin of subsequent barrier crossing attempts are only weakly
correlated, allowing for the assumption made by the GH
theory that the equilibrium velocity distribution is sampled
equally at any attempt. Consequently the high-velocity tail of
the equilibrium distribution of vin is visited more frequently
over time compared to the long well memory case, where the
initial velocity changes rather slowly for consecutive attempts,
due to the weak coupling to the well heat bath. On the other
hand, in the limit of long well memory the “Markovian-barrier
acceleration” profits from the fact, that in the case of slow
initial velocities, i.e., to the left of the vertical black broken
line, and short barrier memory, there is still a small chance
that a transition over the barrier occurs. This leads to a slightly
faster τMFP when compared to the case that all the energy to
reach the barrier top needs to be accumulated from the well
heat bath.

This analysis furthermore suggests a simple way to quan-
tify the “Markovian-barrier acceleration”: τMFP over the
barrier is mainly determined by τMFP to reach the barrier re-
gion for the first time. Subsequently, a successful transition of
the barrier region happens relatively quickly. On the contrary,
for long barrier memory τMFP over the barrier is determined
by the time to reach the barrier top. In Fig. 3(a) we therefore
also compare τMFP to reach the barrier entry at x/L = −0.5
(dark purple and dark blue dash-dotted lines) and τMFP over
the barrier to reach at x/L = 0.5 (the data coincide with the
dark purple and dark blue solid lines), both evaluated from
simulations with a global memory friction assuming the well
friction parameters. As expected, the former coincide with the
data of the “Markovian-barrier acceleration” regime correctly,
while the later coincide with the data in the case of long barrier
memory.

A comparison of all presented simulation data with the
global analytical rate theory for local memory effects by
Krishnan et al. [48] is shown in Appendix C 4. Their the-
ory performs well in some regimes of the parameter space,
correctly interpolates between predictions by GH and PGH
and therefore intrinsically determines whether the dynamics
are well or barrier dominated. However, in certain parame-
ter regimes, including the “Markovian-barrier acceleration”
regime, major deviations from the numerical results are ob-
served. This is due to instabilities of the perturbation theory
inherent to the analytical approach, in fact, the authors them-
selves state that predictions in this parameter regime should
be validated by simulations, as we have done here.

IV. CONCLUSIONS

We study a model for barrier crossing with different well
and barrier memory friction times and magnitudes. By com-
paring extensive numerical simulations of this model to the
GH theory (which takes into account memory friction in the
barrier region) and the PGH theory (which does not take into

TABLE I. Summary of the regimes observed when varying
single-exponential barrier and well memory friction, and the respec-
tive applicable rate theories with the dominant preexponential scaling
factors. The GH reactive frequency λ is defined in Appendix B1.
The table is approximately valid while the barrier and well friction
magnitudes remain within one order of magnitude. Some effects for
very different friction magnitudes in well and barrier are discussed
in Appendix C 1.
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account space-inhomogeneous memory), we identify in which
region of the model parameter space the barrier-crossing time,
in terms of the mean first-passage time, τMFP, is determined by
the well memory or the barrier memory, respectively.

The memory friction around the barrier top determines
τMFP only if the dynamics in the well is in the Markovian
high-friction regime. In this case τMFP is described by GH
theory if non-Markovian effects on the barrier are present,
and instead by MM theory if Markovian low-friction effects
dominate the barrier dynamics while the friction magnitudes
in well and barrier are comparable.

If the dynamics in the well is in the so-called energy-
diffusion regime, i.e., either dominated by inertia effects,
τm,W/τD,W � 1, or because of long memory in the well,
τW/τD,W � 1, then the rate-limiting step is obtaining enough
energy from the well heat bath to make a barrier-crossing
attempt. In this scenario, τMFP is described by the PGH theory
evaluated for the well parameters. In this regime, high friction
on the barrier top slightly diminishes τMFP; this “Markovian-
barrier acceleration” is due to the strong interaction between
reaction coordinate and heat bath in the barrier region, which
enables particles that enter the barrier region without enough
energy for a barrier crossing to gain the missing energy in
the barrier region and make it over the top. Interestingly,
the same mechanism leads to a slow-down in the case of
a Markovian well, where the “non-Markovian-barrier accel-
eration” correctly predicted by the GH theory happens in
the limit of long barrier memory, not short barrier memory.
This contrast highlights the complex interplay between barrier
friction and well friction. The different regimes, and which
theory needs to be evaluated where in order to describe the
corresponding τMFP, are summarized in Table I. The table
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allows one to quickly infer which aspect of the dynamics of a
reaction coordinate determines the timescales of rare events,
and will help researchers identify the appropriate rate theory
for a given system.

While theoretical works often incorporate only either
space-inhomogeneous friction magnitudes or homogeneous
time-dependent memory friction [7–10,21,34,35,40–43], re-
action coordinates in physical systems with nonlinear inter-
actions may in general exhibit both effects simultaneously.
Our model system therefore represents a step towards more
realistic coarse-grained descriptions of reaction coordinates.
To parametrize a GLE with both space-inhomogeneous mem-
ory friction time and magnitude, such as the one presented
in this work, from time series data, an extension of meth-
ods established for homogeneous memory can be considered
[7,52,53]. Furthermore, there are several relevant extensions
of our model system. First, an interaction between the differ-
ent coupling heat baths could be included, as in a physical
system the orthogonal degrees of freedom are in general not
isolated from each other. Second, it will be interesting to
consider the nonequilibrium scenario where the interaction
between reaction coordinate and orthogonal degrees of free-
dom does not originate from an interaction potential; this
scenario has been studied before for homogeneous friction
[54].

Quantum effects are not incorporated in the present model,
but quantum projection methods have previously been dis-
cussed [55,56]. Within the Born-Oppenheimer approximation
classical barrier crossing dynamics would essentially be mod-
ified by two effects: reduction of the effective barrier height
due to zero-point motion and competition of the classical
barrier-crossing rate with the tunneling rate [14,16]. Beyond
the Born-Oppenheimer approximation, nonadiabatic effects
such as electronic transitions between different energy sur-
faces would require multistate modeling [57].
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APPENDIX A: GENERALIZED LANGEVIN EQUATION

WITH SPACE-INHOMOGENEOUS MEMORY FRICTION

1. Formulation of the GLE in a Markovian embedding

In the present section we show that the GLE with space-
inhomogeneous memory, Eq. (1) from the main text, is
equivalent to a N + 1-dimensional dynamical system, in
which the reaction coordinate x(t ) is coupled to N auxil-

iary degrees of freedom (y1(t ), . . . , yN (t )), which we refer
to as the heat bath. We assume that each of the yi obeys an
overdamped Langevin equation with random force Fi(t ) and
friction magnitude γi. In analogy to the derivation by Zwanzig
[3], we assume that the reaction coordinate is coupled to
the heat bath via a nonlinear potential Uhb(x, y1, . . . , yN ) =∑N

i=1 ki[ fi(x) − yi]2/2, where hb stands for heat bath, ki de-
termines the coupling strength between x and yi, and the
functions fi will be used to obtain a space-inhomogeneous
coupling between reaction coordinate and reservoir i. The
total potential Utot experienced by the dynamical system
(x(t ), y1(t ), . . . , yN (t )) is then given as a sum

Utot(x, y1, . . . , yN ) = U (x) + Uhb(x, y1, . . . , yN ), (A1)

where U (x) is the double-well potential (5). The equations of
motion for x(t ) and the yi(t ) are then given by

mẍ(t ) = −
N∑

i=1

ki{ fi[x(t )] − yi(t )}∂x fi[x(t )]

− (∂xU )[x(t )], (A2)

γiẏi(t ) = ki{ fi[x(t )] − yi(t )} + Fi(t ). (A3)

The random forces Fi are Gaussian white noise with
zero mean, 〈Fi(t )〉 = 0, and covariances 〈Fi(t )Fj (t ′)〉 =
2γikBT δi jδ(t − t ′), so that the Langevin Eq. (A3) obeys the
fluctuation-dissipation relation. To obtain a GLE for only the
reaction coordinate x(t ), we eliminate the degrees of freedom
yi(t ) in Eq. (A2). For this, we use the formal solution of
Eq. (A3), which is given by

yi(t ) = yi(0)e−t/τi + τ−1
i

∫ t

0
dt ′ e−(t−t ′ )/τi fi[x(t ′)]

+
∫ t

0
dt ′ e−(t−t ′ )/τi

Fi(t )

γi

(A4)

= {yi(0) − fi[x(0)]}e−t/τi + fi[x(t )]

−
∫ t

0
dt ′ e−(t−t ′ )/τi∂x fi[x(t ′)]ẋ(t ′)

+
∫ t

0
dt ′ e−(t−t ′ )/τi

Fi(t )

γi

, (A5)

where we define the relaxation time of reservoir i as τi =
γi/ki. Substituting the formal solution for yi(t ) into Eq. (A2),
we obtain

mẍ(t ) = −
∫ t

0
�[t − t ′, x(t ), x(t ′)]ẋ(t ′) dt ′

− ∂xU [x(t )] + η[x(t ), t] (A6)

with the space-inhomogeneous memory function

�[t − t ′, x(t ), x(t ′)]

=
N∑

i=1

γi

τi

∂x fi[x(t )]e−(t−t ′ )/τi∂x fi[x(t ′)], (A7)
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and the random force

η[x(t ), t] = −
N∑

i=1

γi

τi

∂x fi[x(t )]e−t/τi{ fi[x(0)] − yi(0)}

+
N∑

i=1

1

τi

∫ t

0
dt ′ ∂x fi[x(t )]e−(t−t ′ )/τi Fi(t

′). (A8)

How the coupling of the reaction coordinate to reservoir
i varies with x(t ) is determined by the function fi[x(t )]. To
obtain an on-off coupling depending on the value of x(t ), as
used in Eqs. (2) and (3), we choose functions

fi(x) =

⎧
⎨
⎩

x, x ∈ Xi

min(Xi ), x < min(Xi )
max(Xi ), x � max(Xi ),

, (A9)

where Xi is a spatial domain, which we assume to be a single
interval, within which x(t ) couples to reservoir i. With this
definition, the spatial derivative of fi is the coupling function,

(∂x fi )(x) = χi(x) :=
{

1, x ∈ Xi

0, x /∈ Xi
, (A10)

so that Eqs. (A2) and (A3) couple x(t ) and yi(t ) if and only if
x(t ) ∈ Xi, equivalent to a local memory kernel in that regime;
cf. Eq. (A7). Note that, strictly speaking, the derivative ∂x fi

is not single-valued at the two points, x = min(Xi ), max(Xi );
since the probability that the reaction coordinate takes either
one of these values is zero, this is not an issue.

To simulate the GLE (1), we always use the equivalent for-
mulation in terms of a dimensionless version of the Markovian
system of Eqs. (A2) and (A3), given in Appendix A 3.

2. Generalized fluctuation-dissipation relation

We now show that the memory kernel (A7) and the ran-
dom force (A8) obey the generalized fluctuation-dissipation
relation

〈η[x(t ), t]η[x(t ′), t ′]〉 = kBT �[x(t ), x(t ′), t − t ′]. (A11)

To compute the autocorrelation on the left-hand side of
Eq. (A11) for all times t , t ′, and not just for times larger
than the longest initial relaxation time maxi{τi} of the heat
bath, we need to specify initial conditions yi(0) for the
auxiliary variables, which appear in Eq. (A8). For this we
assume that, for given x(0), the yi(0) are distributed accord-
ing to the Boltzmann distribution pertaining to the potential
Uhb, so that yi(0) − fi[x(0)] are given by a Gaussian distri-
bution with zero mean and variance 〈{yi(0) − fi[x(0)]}2〉 =
kBT τi/γi. With this initial condition, the autocorrelation of the
noise η[x(t ), t] follows as

〈η[x(t ), t]η[x(t ′), t ′]〉

=
N∑

i=1

(γi

τi

)2
χi[x(t )]χi[x(t ′)]e−(t+t ′ )/τi〈[ fi[x(0)] − yi(0)]2〉

+
N∑

i=1

1

τ 2
i

∫ t

0
dt ′′

∫ t ′

0
dt ′′′ χi[x(t )]χi[x(t ′)]

× e−(t−t ′′+t ′−t ′′′ )/τi〈Fi(t
′′)Fi(t

′′′)〉.

=
N∑

i=1

kBT
γi

τi

χi[x(t )]χi[x(t ′)]e−(t+t ′ )/τi

+
N∑

i=1

1

τ 2
i

χi[x(t )]χi[x(t ′)]e−(t+t ′ )/τi

×
∫ t

0
dt ′′

∫ t ′

0
dt ′′′ e(t ′′+t ′′′ )/τi 2γikBT δ(t ′′ − t ′′′)

=
N∑

i=1

kBT
γi

τi

χi[x(t )]χi[x(t ′)]e−(t+t ′ )/τi

+
N∑

i=1

2kBT
γi

τ 2
i

χi[x(t )]χi[x(t ′)]e−(t+t ′ )/τi

×
∫ min(t,t ′ )

0
dt ′′ e2t ′′/τi

=
N∑

i=1

kBT
γi

τi

χi[x(t )]χi[x(t ′)]e−|t−t ′|/τi . (A12)

By comparing the result (A12) with the memory kernel (A7),
we observe that the generalized fluctuation-dissipation rela-
tion Eq. (A11) holds.

3. Dimensionless formulation of the GLE

In the present section, we give the dimensionless version of
both the GLE (1), as well as the equivalent Markovian system
Eqs. (A2) and (A3). This in particular makes explicit how
many independent parameters the GLE model has.

Using the typical length scale L of the potential Eq. (5), and
the thermal energy kBT ≡ β−1 as energy scale, we define the
diffusive time, τD = βL2γ , which is the typical time a freely
diffusing particle with friction constant γ =

∑
i γi needs to

travel a distance L in a flat potential landscape. We further-
more define the inertial timescale τm = m/γ , on which inertia
is dissipated.

Using the scales L, τD, τm, β, we rewrite the coupled
Langevin Eqs. (A2) and (A3) in dimensionless form as

τm

τD

¨̃x(t̃ ) = −
N∑

i=1

γi

γ

τD

τi

{ f̃i[x̃(t̃ )] − ỹi(t̃ )}∂x̃ f̃i[x̃(t̃ )]

− (∂x̃Ũ )[x̃(t̃ )], (A13)

˙̃yi(t̃ ) =
τD

τi

{ f̃i[x̃(t̃ )] − ỹi(t̃ )} +
√

γ

γi

F̃i(t̃ ), (A14)

where t̃ := t/τD, x̃(t̃ ) := x(τDt̃ )/L, ˙̃x(t̃ ) = τDẋ(τDt̃ )/L,
¨̃x(t̃ ) = τ 2

Dẍ(τDt̃ )/L are dimensionless time, position,
velocity and acceleration. −(∂x̃Ũ )(x̃) is the dimensionless
deterministic force corresponding to the quartic potential (5)
and given by

−(∂x̃Ũ )(x̃) = −4Ũ0(x̃2 − 1)x̃ (A15)

with dimensionless barrier height Ũ0 := βU0.
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The dimensionless coupling between reaction coordinate
and heat bath is given by f̃i(x̃) := fi(Lx̃)/L, so that

f̃i(x̃) =

⎧
⎨
⎩

x̃, x̃ ∈ X̃i

min(X̃i ), x̃ < min(X̃i )
max(X̃i ), x̃ � max(X̃i )

, (A16)

where X̃i = Xi/L, so that

(∂x̃ f̃i )(x̃) = χ̃i(x̃) =
{

1, x̃ ∈ X̃i,

0, x̃ /∈ X̃i.
(A17)

The dimensionless random forces F̃i(t̃ ) =
L/(kBT )

√
γ /γiFi(t ) are Gaussian white noise with zero

mean, and covariances 〈F̃i(t̃ )F̃j (t̃ ′)〉 = 2δi jδ(t̃ − t̃ ′).
As in Appendix A 1, we formally solve Eq. (A14), and sub-

stitute the result into Eq. (A13), to obtain the dimensionless
GLE

τm

τD

¨̃x(t̃ ) = −
∫ t̃

0
�̃[t̃ − t̃ ′, x̃(t̃ ), x̃(t̃ − t̃ ′)] ˙̃x(t̃ ′) dt̃ ′

− (∂x̃Ũ )[x̃(t̃ )] + η̃[x̃(t̃ ), t̃], (A18)

with the dimensionless space-inhomogeneous memory kernel

�̃[t̃ − t̃ ′, x̃(t̃ ), x̃(t̃ ′)]

=
N∑

i=1

γi

γ

τD

τi

χ̃i[x̃(t̃ )]χ̃i[x̃(t̃ ′)] exp
[
−

τD

τi

(t̃ − t̃ ′)
]
, (A19)

and the dimensionless random force η̃[x̃(t̃ ), t̃] :=
βη[x(t ), t]/L. Instead of explicitly eliminating the heat-bath
variables, Eqs. (A18) and (A19), can also be obtained by
directly recasting Eqs. (A6) and (A7), in dimensionless
form. Similarly to Eq. (A11), the dimensionless memory
kernel �̃ and random force η̃ obey the generalized
fluctuation-dissipation theorem

〈η̃[x̃(t̃ ), t̃]η̃[x̃(t̃ ′), t̃ ′]〉 = �̃[t̃ − t̃ ′, x̃(t̃ ), x̃(t̃ ′)]. (A20)

APPENDIX B: RATE THEORIES

1. Formulas for rate theories considered in the main text

In the present section we recall the formulas used to evalu-
ate the various rate theories we consider in the main text.

a. Transition-state theory

While we do not explicitly show results from transition-
state theory (TST) [58] in the main text, the TST escape rate
appears in several of the rate theories we consider. According
to TST, for a parabolic free-energy in the reactant state, the
mean escape time is given as [58]

τTST =
2π

ωmin
eβU0 , (B1)

where as before U0 denotes the barrier height, β−1 = kBT is
the thermal energy, and the well frequency ωmin =

√
U ′′

min/m

contains the curvature U ′′
min := U ′′(xmin ) at the minimum xmin

of the potential well from which the particle escapes.

b. Kramers’ theory

Kramers considered the escape from a potential well for a
particle described by the Markovian inertial Langevin equa-

tion, for both the limits of medium-to-high friction, and low
friction [11]. For the medium-to-high friction regime he ob-
tained

τ hf
Kr =

[(
γ 2

4m2
+ ω2

max

)1/2

−
γ

2m

]−1

ωmaxτTST, (B2)

while in the low-friction limit, he derived

τ lf
Kr =

m

γ βU0
eβU0 , (B3)

where the barrier frequency ωmax =
√

−U ′′
max/m contains the

curvature U ′′
max := U ′′(xmax) at the barrier top xmax. Note the

opposite scaling of both equations with respect to the friction
constant γ : While for medium-to-high friction it holds that
τ hf

Kr ∼ γ , for low friction we have τ lf
Kr ∼ γ −1.

c. Mel’nikov and Meshkov theory

Mel’nikov and Meshkov [15] (MM) derived a solution to
the Kramers’ problem which is valid for all values of the
friction, and hence bridges the two asymptotic expressions
Eqs. (B2) and (B3). The MM result is given by

τMM = A−1()

[(
γ 2

4m2
+ ω2

max

)1/2

−
γ

2m

]−1

ωmaxτTST,

(B4)

A() = exp

[
2

π

∫ π
2

0
ln[1 − e−/[4 cos2(x)]]dx

]
, (B5)

 = 2
√

2
γ

√
m

β

∫ 0

−
√

2L

√
U0 − U (x) dx. (B6)

d. Grote and Hynes theory

While both Kramers’ and Mel’nikov and Meshkov theory
consider Markovian dynamics, Grote and Hynes [13] devel-
oped a theory for the mean first-passage time, τMFP, under
the influence of memory effects. Their expression for the case
where the dynamics in the potential well relax fast, and only
memory effects on the barrier are relevant, is given by

τGH =
ωmax

λ
τTST, (B7)

where �̃(λ) denotes the Laplace-transformed memory friction
kernel �(t ) at the barrier top, and the real reactive frequency
λ > 0 is given as the solution of the equation

λ =
ω2

max

λ + �̃(λ)/m
. (B8)

Thus, for a single exponential kernel �(t ) = γ e−t/τ/τ , λ is
calculated from the cubic equation

λ3 +
λ2

τ
+

( γ

mτ
− ω2

max

)
λ =

ω2
max

τ
. (B9)

Note that, either in the inertial, m → ∞, or in the long
memory limit, τ → ∞, it follows that λ = ωmax and the GH
theory collapses onto the transition-state theory result, τGH =
τTST in Eq. (B7).

Furthermore, in the case of instantaneous, i.e., delta-
correlated friction, �(t ) = 2γ δ(t ) and �̃(λ) = γ , it follows
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λ = (γ 2/(4m2) + ω2
max)1/2 − γ /(2m), which results in τGH =

τ hf
Kr, the Kramers high-friction result in Eq. (B2).

e. Heuristic formula

In our previous work we constructed a heuristic formula
that agrees with both the theory by Pollak et al. [34] (PGH)
and numerical simulations of τMFP in the double-well potential
Eq. (5), and a GLE with a global single-exponential memory
kernel with friction magnitude γ and memory time τ [21,35].
Using the diffusive and inertial timescales τD = γ βL2 and
τm = m/γ , the heuristic formula is given by

τemp.

τD

=
eβU0

βU0

[
π

2
√

2

(
1 + 10βU0

τ

τD

)−1
+

τm

τD

+ 2

√
βU0

τm

τD

+ 4βU0
τ 2

τ 2
D

]
. (B10)

2. Evaluation of rate theories for a space-inhomogeneous

memory kernel

Whenever we evaluate a rate theory for the effective fric-
tion parameters of a region, we use the respective regional
friction and memory parameters, or equivalently τi, τD,i =
L2βγi, τm,i = m/γi. On the other hand, in plots we always
rescale the τMFP as well as the parameters using the diffusive-
and inertial times τD = L2βγ , τm = m/γ , which correspond
to the total friction magnitude γ =

∑
i γi. In the present sec-

tion we state the relevant relations between these local and
global timescales.

The relation between the local and global diffusive and
inertial timescales is given by

τD,i = L2βγi =
γi

γ
L2βγ =

γi

γ
τD, (B11)

τm,i =
m

γi

=
γ

γi

m

γ
=

γ

γi

τm, (B12)

so that

τm,i

τD,i

=
(

γ

γi

)2
τm

τD

, (B13)

τi

τD,i

=
γ

γi

τi

τD

, (B14)

τMFP

τD,i

=
γ

γi

τMFP

τD

. (B15)

Therefore, if we want to calculate τMFP/τD for region i using
a rate theory for globally homogeneous friction, we have to
evaluate

τMFP

τD

=
γi

γ

τMFP

τD,i

∣∣∣∣
(γ /γi )2τm/τD, (γ /γi )τi/τD

, (B16)

where the first argument (γ /γi)2τm/τD is the argument for
the dimensionless inertial timescale τm/τD in the rate theory,
and the second argument (γ /γi )τi/τD is the argument for the
dimensionless single-exponential memory τ�/τD in the rate
theory.

(a)

(b)

FIG. 4. MFPT, τMFP/τD, for various single-exponential barrier-
and well-memory friction parameters, compared with analytic pre-
dictions given by Grote and Hynes [13] [GH, solid line in (a)],
Mel’nikov and Meshkov [15] (MM, dotted lines), Pollak et al. [34]
(PGH, evaluated using the heuristic formula [21]), and transition-
state theory (TST, black broken lines). The numerical data are shown
for equal barrier and well-friction times, τB/τD = τW/τD = 10−3,
and the inertial timescale is fixed in the high-friction regime τm/τD =
10−3. Dark blue square markers denote data for which the local
friction timescales are kept constant, τB/τD,B = τW/τD,W = 10−3,
instead of the global ones. (a) Results for the limit γB/γ � 1, the
limit of Markovian low friction on the barrier. (b) Results for the
limit γW/γ � 1, the limit of Markovian low friction in the well.

APPENDIX C: FURTHER COMPARISONS OF

NUMERICAL DATA WITH RATE THEORIES

1. Very unequal friction coefficients in well and barrier regions

In Fig. 2(d) above we show both the well- and barrier-
evaluated MM predictions for high friction, τm/τD = 10−4.
Both curves show a nonmonotonic behavior as a function
of the barrier friction magnitude γB/γ : Whereas the barrier-
evaluated MM theory displays a minimum at small γB/γ ,
the well-evaluated MM prediction for τMFP becomes mini-
mal at γB/γ close to 1. We here investigate these two limits
in detail by performing simulations for both γB/γ � 1 and
1 − γB/γ = γW/γ � 1. We show the results in Fig. 4, where
we consider an inertial timescale of τm/τD = 10−3 and equal
friction timescales in the well and barrier, τB/τD = τW/τD =
10−3.

In Fig. 4(a) we consider the limit γB/γ � 1, i.e., the limit
of Markovian low friction on the barrier. While the MM
and PGH theories, both evaluated for the barrier friction pa-
rameters, show a nonmonotonic trend (namely the Kramers
turnover), the numerical τMFP (light green circles) levels off to
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(a)

(b)

FIG. 5. MFPT, τMFP/τD, for various single-exponential barrier-
and well-friction parameters, shown as a function of the barrier
height βU0. The numerical data are shown for two well-friction
times, τW/τD = 10−4 and τW/τD = 1, fixed barrier-friction time
τB/τD = 1 (a) and τB/τD = 10−3 (b), always for equal friction con-
stants γB/γ = γW/γ = 1/2. The inertial timescale is fixed in the
high-friction regime τm/τD = 10−4. For comparison, predictions by
Grote and Hynes [13] (GH, broken lines) and Pollak et al. [34]
(PGH, solid lines, evaluated using the heuristic formula [21]) are also
shown.

a constant for small γB/γ , with a value close to the prediction
of transition-state theory (black broken line). This limit is
also correctly recovered by the GH theory evaluated for the
barrier friction parameters (light green solid line). Therefore,
for γB/γ � 1, the GH theory outperforms MM theory and
PGH theory. This is in contrast to the results shown in the
main text in Figs. 2(a), 2(d), and 2(e), where the local friction
magnitudes are considered to be within one order of magni-
tude, and the well-friction evaluated MM theory describes the
numerical data correctly.

We discuss the opposite limit γW/γ � 1 in Fig. 4(b). Here
the numerical τMFP (light green circles) is consistent with
both the MM and PGH theories, evaluated using the barrier
parameters, and markedly different from the predictions of
transition-state theory and the PGH theory evaluated using the
well parameters. The agreement of barrier-evaluated theories
and the numerical data indicates that the system is described
by the Kramers high-friction limit. At first sight this might
seem surprising, because for γW/γ � 1 the local dynamics in
the well is clearly underdamped, as for γW/γ = 10−3 we have
τm,W/τD,W = 103. However, since for γW/γ � 1 we have
τD,W � τD,B, even though the mean time a particle in the well
needs to reach the barrier is a large multiple of τD,W, this time

may still be much smaller than the time to diffusively cross the
barrier (which depends on τD,B). Therefore, for γW/γ � 1,
even though the well dynamics is in the energy diffusion limit,
the crossing over the barrier can still be the rate-limiting step
of the escape process.

Furthermore, we note that in both Figs. 4(a) and 4(b),
for the lowest value of the local friction magnitude γi/γ =
10−3, the local friction times, τi/τD,i = 1, are not anymore in
the Markovian limit. To exclude local non-Markovian effects
influencing the shown τMFP, we also show numerical data
for constant local friction times, τB/τD,B = τW/τD,W = 10−3

(dark blue squares) in Figs. 4(a) and 4(b). These data are
almost identical to the data at constant τB/τD, τW/τD, so we
conclude that non-Markovian effects remain negligible for the
parameter regime shown.

2. Variation of barrier height

In the main text, we consider numerical results and rate
theories for the barrier height βU0 = 3. In Fig. 5 we compare
numerical results for barrier heights ranging from βU0 = 2 to
βU0 = 7 to rate-theory predictions, and find that conclusions
drawn in the main text remain true also for larger barrier
heights.

While in Fig. 5(a) we show results for non-Markovian
barrier dynamics τB/τD = 1, in Fig. 5(b) we consider a barrier
with Markovian dynamics, τB/τD = 0.001. For both subplots
we use γW/γ = γB/γ = 0.5, i.e., an equal partitioning of the
total friction magnitude to well and barrier, and high friction
τm/τD = 10−4. For both subplots, we consider two represen-
tative parameters for the well-friction time τW/τD. The results
for τW/τD = 10−4, shown as light green circles in Fig. 5,
correspond to the Markovian high-well-friction regime, for
which the dynamics are predicted by the GH theory. The dark
blue squares in the figure correspond to τMFP for well-friction
time τW/τD = 1, which corresponds to the long-well-memory
regime where τMFP is predicted by the PGH theory, evaluated
using the memory kernel parameters at the potential well. As
Fig. 5(b) demonstrates, the “Markovian-barrier acceleration”
regime discussed in detail in the main text also exists for larger
barrier heights.

Overall, Fig. 5 shows that the predictions from the main
text are consistent with the numerical data for all barrier
heights βU0 ∈ [2, 7] considered here. In fact the predictions
seem to improve for higher barriers. The exponential depen-
dence of τMFP on the barrier-height, known since Arrhenius
[59], is also well visible in our semilogarithmic representation
of the data.

3. Variation of inertial timescale

In Fig. 3 we consider barrier crossing for the high-friction
regime τm/τD = 10−4, while the friction magnitudes are equal
γB/γ = γW/γ = 0.5 and the friction memory times in the
well τW/τD and on the barrier τB/τD are varied. In Fig. 6
we show additional numerical and analytical τMFP for larger
inertial times. We consider the inertial times τm/τD = 10−4

[Figs. 6(a)–6(c)], 10−2 [Figs. 6(d)–6(f)], and 1 [Figs. 6(g)–
6(i)]. While the first column of Fig. 6 shows the rescaled τMFP

as a function of the barrier-friction time τB/τD for various
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 6. MFPT, τMFP/τD, for different barrier memory friction, and well memory friction, obtained from numerical simulations (data points)
and compared with analytic predictions given by Grote and Hynes [13] (GH, broken lines) and Pollak et al. [34] (PGH, solid lines, evaluated
using the heuristic formula [21]). The data are shown for various barrier-friction τB/τD and well-friction times τW/τD and equal friction
magnitudes γB/γ = γW/γ = 0.5. The inertial timescale is constant and different in each row (a–c: τm/τD = 10−4, d–f: τm/τD = 10−2, g–i:
τm/τD = 1). (a, d, g) τMFP plotted over the barrier-friction time τB/τD. The theories are shown for the respective barrier-friction time in black
and in the case of the PGH theory for the well-friction time as colored solid lines. (b, e, h) τMFP plotted over the well-friction time τW/τD. The
theories are shown for the respective well-friction time in black and in the case of the GH theory for the barrier-friction time as colored broken
lines. (c, f, i) Contour plots of agreement of the simulation results with the theoretical predictions. The color denotes whether the simulated
τMFP ∈ [1/3 τtheo, 3 τtheo], where τtheo is calculated using either the GH theory with the barrier-friction parameters or the PGH theory with the
well-friction parameters. The hatching indicates that both theoretical predictions agree with the simulated data. The light blue area denotes the
“Markovian-barrier acceleration” of the PGH prediction for which we define τtheo,MBA = 0.2 τtheo,PGH.

values of the well-friction time τW/τD, in the second column
we vary the well-friction time for several constant values of
the barrier-friction time. In both the first and second columns,
the appropriate analytic predictions including memory effects
are given either by the GH theory, which is evaluated for the
effective barrier-friction parameters, determined by τB (bro-
ken lines) or by the PGH theory (solid lines), which is eval-
uated for the effective well-friction parameters, given by τW.
The third column of Fig. 6 depicts phase diagrams that sum-

marize for which parameters (τB/τD, τW/τD) the numerical
data agree with the predictions of the GH theory or PGH the-
ory. Note that [Figs. 6(a)–6(c)] are replots of Figs. 3(a), 3(d),
and 3(e).

Figure 6 shows that all conclusions drawn in the main
text also hold true as τm/τD is varied, i.e., away from the
high-friction limit. In particular, for larger inertial timescales
τm/τD, the predictions for the τMFP are described glob-
ally by the PGH theory for the well-friction parameters.
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(a) (b)

FIG. 7. MFPT, τMFP/τD, for different barrier memory friction, �B(t ) = γB/τBe−t/τB and well memory friction, �W(t ) = γW/τWe−t/τW ,
obtained from numerical simulations (data points) and compared with analytic predictions given by Mel’nikov and Meshkov [15] (MM) as
well as the predictions by Krishnan et al. [48] (KSR, dotted lines), equivalent to Figs. 2(a) and 2(d). The data are shown for equal memory
times in the Markovian limit with τB/τD = τW/τD = 10−4. (a) τMFP plotted over the inertial timescale τm/τD for different ratios of the barrier
friction constant to total friction γB/γ . (b) τMFP plotted over γB/γ for various τm/τD. The predictions by MM are shown for the effective
barrier-friction parameters, given by γB, as broken lines and for the effective well-friction parameters, given by γW, as solid lines.

(a) (b) (c)

(d) (e) (f)

FIG. 8. MFPT, τMFP/τD, for different barrier memory friction and well memory friction, obtained from numerical simulations (data points)
and compared with analytic predictions given by Grote and Hynes [13] (GH, broken lines) and by Pollak et al. [34] (PGH, solid lines,
evaluated using the heuristic formula [21]), as well as predictions by Krishnan et al. [48] (KSR, dotted lines). The data are shown for various
barrier-friction τB/τD and well-friction times τW/τD and equal friction constants γB/γ = γW/γ = 1/2. The inertial timescale is constant and
different in each row (a–c: τm/τD = 10−4, d–f: τm/τD = 10−2). (a, d) τMFP plotted over the barrier-friction time τB/τD. The prediction by the
PGH theory are shown for the respective barrier-friction time as black and for the well-friction time as colored solid lines. (b, e) τMFP plotted
over the well-friction time τW/τD. The prediction by the PGH theory is shown for the respective well-friction time in black and in the case
of GH theory for the barrier-friction time as colored broken lines. (c, f) Perturbation parameters εB for the barrier region and εW for the well
region and energy loss E/(kBT ), both relevant for stability of the KSR theory. The thin black horizontal line denotes the value 1.
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(a) (b)

(c) (d)

FIG. 9. MFPT, τMFP/τD, for various single-exponential barrier- and well-friction parameters, obtained from numerical simulations (data
points) and compared with analytic predictions given by Grote and Hynes [13] [GH, solid line in (a)], Pollak et al. [34] (PGH, evaluated using
the heuristic formula [21]), transition-state theory (TST, black broken lines), as well as the predictions by Krishnan et al. [48] (KSR, dotted
lines). The numerical data are shown for equal barrier and well-friction times, τB/τD = τW/τD = 10−3 and the inertial timescale is fixed in the
high-friction regime τm/τD = 10−3. (a) Results for the limit γB/γ � 1, the limit of Markovian low friction on the barrier. (c) Results for the
limit γW/γ � 1, the limit of Markovian low friction in the well. (b, d) Perturbation parameters εB for the barrier region and εW for the well
region and energy loss E/(kBT ), both relevant for stability of the KSR theory. The thin black horizontal line denotes the value 1.

Furthermore, Figs. 6(d) and 6(g) show that the “Markovian-
barrier acceleration” regime is also present for larger inertial
times. On the other hand, the “non-Markovian-barrier accel-
eration” predicted by the GH theory vanishes.

4. Comparison of numerical results to KSR theory

In the present section, we compare our numerical τMFP

with the predictions of a theory for barrier crossing with
space-inhomogeneous memory friction. Krishnan, Singh, and
Robinson (KSR) [48] derived an analytic theory for τMFP in
a piecewise harmonic potential with different well and barrier
memory friction; this theory is based on the formalism by Pol-
lak, Grabert, and Hänggi [34]. The analytical KSR predictions
for τMFP had not been compared to numerical simulations in
the literature.

The KSR model takes as input the memory-friction ker-
nels for the well and barrier regions, for both of which we
consider single exponentials, the particle mass m = τmγ , the
local angular frequencies of the potential for the well, ω0 =
(∂2

x U )(x = −L)/m and barrier ωb = −(∂2
x U )(x = 0)/m, and

the barrier height βU0 = 3, where as before U (x) is the quartic
potential (5).

We now compare the predictions of KSR theory with the
same numerical data as considered in Figs. 2 and 3.

First, in Fig. 7 we consider the data from Fig. 2. For a
detailed discussion of the data we refer to the main text, as this
section focuses on evaluating the quality of the KSR theory
with respect to the other theories. For the Markovian limit, i.e.,
τW/τD = τB/τD � 1, we generally observe good agreement
between numerical data and KSR theory throughout Fig. 7.
However, the predictions by MM using effective local param-
eters perform slightly better in the whole parameter range.
Of course, the true strength of the model by KSR here is
the correct interpolation between barrier- and well-dominated
dynamics, which needs to be chosen by hand in the evaluation
of MM theory. This is most clearly seen in Fig. 2, where
KSR theory switches between the barrier-dominated and well-
dominated MM predictions as τm/τD is increased.

The data of Fig. 3(a) and 3(d) are discussed in this sec-
tion in Figs. 8(a) and 8(b), where τm/τD = 10−4. While
the predictions by KSR again interpolate correctly between
well- and barrier-dominated dynamics, in the regime where
τW/τD � 0.1 and τB/τD � 0.1, we observe significant devia-
tions between the numerical τMFP and the corresponding KSR
prediction. As can be seen clearly in the upper left corner of
Fig. 3(a) and the right side of Fig. 3(b), the numerical and
analytical data can deviate by several orders of magnitude.
For larger inertial timescales, these deviations become smaller
as shown in Figs. 8(c) and 8(d) where τm/τD = 10−2. We
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note that KSR throughout predicts a barrier crossing speedup
as τB/τD is increased [see Figs. 8(a) and 8(d)], whereas the
numerical data display the “Markovian-barrier acceleration”
behavior for τW/τD � 1, for which barrier crossing is in fact
slower as τB/τD is increased. Possible explanations for the
deviations observed in Figs. 7 and 8 are discussed in the
following.

To rationalize the deviations between numerical and an-
alytical predictions, we point out that KSR themselves state
that their theory is not to expected to be reliable if εB �
1 in the barrier region or εW � 1 in the well region (note
that ε and ε′ are used in the original work [48]). The per-
turbation parameters εB, εW represent a measure for the
strength of coupling between reaction coordinate and heat
bath, and are defined as εB = γB/[2mλB(1 + τBλB)2] and
εW = γW/[2mλW(1 + τWλW )2], with λB and λW the GH fre-
quencies which solve Eq. (B8) for the respective memory
kernels (well or barrier). These conditions are easily violated
in the case of small inertial timescales τm = m/γ , as Fig. 8(c)
shows. However, a similar perturbation parameter ε is also
relevant for the applicability of the PGH theory, and those
authors note in their paper that the PGH theory remains valid
even for large ε, if at the same time the energy loss per cycle
through the well region is large, βE > 1 [34]. More so,
the PGH predictions have been shown to globally agree well
with numerical results obtained from a homogeneous memory
kernel [35].

The clear deviations between KSR theory and the numer-
ical results in Fig. 8(a), observed for small τB/τD and large
τW/τD (dark purple and dark blue lines), can be rationalized
by the simultaneous breakdown of both the conditions on the
pair εB, εW, and βE : as Fig. 8(c) shows, in the regime where
deviations between theory and numerical data are observed,
εB � 1 while βE � 1. In contrast to that, Fig. 8(f) shows
the perturbation parameters and energy loss per cycle for

slightly larger inertial times τm/τD = 0.01. Here the condi-
tions εB < 1 and εW < 1 are met and the predictions agree
with the simulation data in Figs. 8(c) and 8(e).

In Fig. 4 we consider τMFP for the cases where γB/γ � 1
and γW/γ � 1, i.e., the the scenario where the well- and
barrier-friction magnitudes are very different. In Figs. 9(a)
and 9(c) we compare the numerical results for τMFP with
KSR theory. As can be observed in Fig. 9(a), KSR theory
(light green dotted line) correctly captures the limit γB/γ �
1, i.e., the limit of Markovian low friction on the barrier.
However, Fig. 9(c) shows that KSR theory does not capture
the opposite limit. For γW/γ � 1, KSR theory predicts a
significant slow-down, which is not confirmed by simulation
data. The breakdown of KSR theory is again understood
by considering the perturbation parameters εB, εW and the
energy loss E/(kBT ), which are plotted in Figs. 9(b) and
9(d) for the respective data. As previously discussed for the
data in Fig. 8, KSR theory breaks down whenever the energy
loss per cycle in the well region is small, E/(kBT ) � 1,
while the coupling to the barrier heat bath is strong, εB �
1. This is again the case for the data in Fig. 9(c), as can
be seen from the corresponding perturbation parameters in
Fig. 9(d).

In summary, while KSR theory does capture the crossover
from well-dominated to barrier-dominated τMFP, the theory
captures neither the “Markovian-barrier acceleration” regime,
nor the limit γW/γ � 1. This can be explained by the assump-
tions underlying the KSR derivation, which are not fulfilled in
these regimes: In both regimes, the energy exchange with the
well heat bath is weak (small βE � 1), while simultane-
ously the coupling to the barrier heat bath is strong (εB � 1).
While in the “Markovian-barrier acceleration” regime, the
weak energy exchange in the well is due to long memory, in
the regime γW/γ � 1, the weak energy exchange is because
of the small well friction.
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ABSTRACT: When described by a one-dimensional reaction
coordinate, pair-reaction rates in a solvent depend, in addition to
the potential barrier height and the friction coe�cient, on the
potential shape, the e�ective mass, and the friction relaxation
spectrum, but a rate theory that accurately accounts for all of these
e�ects does not exist. After a review of classical reaction-rate
theories, we show how to extract all parameters of the generalized
Langevin equation (GLE) and, in particular, the friction memory
function from molecular dynamics (MD) simulations of two
prototypical pair reactions in water, the dissociation of NaCl and of
two methane molecules. The memory exhibits multiple time scales
and, for NaCl, pronounced oscillatory components. Simulations of
the GLE by Markovian embedding techniques accurately
reproduce the pair-reaction kinetics from MD simulations without any fitting parameters, which confirms the accuracy of the
approximative form of the GLE and of the parameter extraction techniques. By modification of the GLE parameters, we investigate
the relative importance of memory, mass, and potential shape e�ects. Neglect of memory slows down NaCl and methane
dissociation by roughly a factor of 2; neglect of mass accelerates reactions by a similar factor, and the harmonic approximation of the
potential shape gives rise to slight acceleration. This partial error cancellation explains why Kramers’ theory, which neglects memory
e�ects and treats the potential shape in harmonic approximation, describes reaction rates better than more sophisticated theories. In
essence, all three e�ects, friction memory, inertia, and the potential shape nonharmonicity, are important to quantitatively describe
pair-reaction kinetics in water.

■ INTRODUCTION

Pair reactions in water, such as the association and dissociation
of ions or hydrophobic molecules, are fundamental in
biological and chemical processes and are commonly described
by di�usive motion of the pair distance in a one-dimensional
potential landscape.1−4 The most important signatures of such
reactions are the rates at which a pair dissociates or is created,
which determine the turnover of complex biological reaction
networks and the e�ciency of large-scale chemical applica-
tions. Reaction-rate theory has a long history and dates back to
Arrhenius,5 who discovered the exponential dependence of
reaction time on the free-energy or potential barrier height that
separates reactants and products along a suitably chosen
reaction coordinate. In a solvent, the reacting solutes
experience friction,1−4,6−8 which determines the pre-exponen-
tial factor of the Arrhenius law. But the mass of the reactants
also influences the rate of a reaction. In fact, in his landmark
paper, Kramers showed that reaction times exhibit a minimum
at an intermediate value of the ratio of the e�ective friction and
mass of a given reaction coordinate, a phenomenon that is
called Kramers’ turnover.1,9

However, the assumption of instantaneous friction,
employed in early theories, breaks down whenever there is

no pronounced separation between time scales of fast solvent
relaxation and slow di�usion along the reaction coordinate,
which is the case even for the simplest pair reactions in
water.10,11 One strategy is to circumvent such non-Markovian
e�ects and to reduce friction memory by using suitable
multidimensional reaction coordinates that explicitly account
for solvent degrees of freedom.12−15 Alternatively, the
generalized Langevin equation (GLE),16,17 which explicitly
accounts for time-dependent friction due to solvent relaxation,
can be used to model reaction rates18−34 and transition-path
times.35−37

Di�erent analytical rate theories based on the GLE have
been developed but necessarily rely on various approximations,
the e�ects of which are di�cult to disentangle.22,32,38,39 This is
where numerical solutions of accurately parametrized GLEs
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become instrumental. The extraction of memory kernels from
general time series data is an active field of research,33,40−45 in
particular in the context of reaction kinetics.10,30,46−49 With
recent methodological advances, it is possible to extract
memory kernels from trajectories in the presence of arbitrary,
not necessarily harmonic, potentials and to numerically solve
the resulting GLE by Markovian embedding techni-
ques.23,31,50,51 While the one-dimensional GLE may in
principle contain nonlinear friction contributions, the approx-
imate linear friction GLE, which only includes a linear coupling
of the velocity to a friction kernel with no further dependencies
on position or velocity, becomes valid for a broad class of
systems under well-defined conditions;52 this explains why it
accurately describes the dynamics of very di�erent physical
systems.31,51 In this connection, it is important to note that
most existing reaction-rate theories are in fact based on the
approximate linear friction GLE.
As simple model systems, we consider the dissociation and

association kinetics of two di�erent pair reactions in water,
NaCl and methane, which exhibit drastically di�erent
hydration properties. Ions are favorably dissolved in water by
the formation of a strongly ordered hydration shell,53−55

whereas nonpolar small objects such as methane are repelled
from water and induce strong water−water hydrogen bonding
in their hydration shell.56−58 In fact, NaCl ion-pair dissociation
in water has been widely studied,12−14,30,46,49,54,59−64 and the
failure of a Markovian kinetic model along a one-dimensional
reaction coordinate,12,13,62,65 the relevance of inertial62 and
memory e�ects,30,46,49,61 has been demonstrated. In contrast,
the reaction dynamics of hydrophobic molecules has received
less attention. We analyze the reaction dynamics of these two
systems based on extensive MD simulation trajectories of
single reactant pairs in explicit water, from which we extract all
parameters of the one-dimensional linear friction GLE in terms
of the natural reaction coordinate, namely, the distance
between the two reactants: These are the potential (or free-
energy) landscape, the reduced mass, and the memory friction
kernel that in general exhibits multiple time scales and
oscillatory components.
As a crucial first step, we demonstrate by simulations of the

GLE that it accurately reproduces the kinetics of the
underlying MD simulations, which is nontrivial since the
GLE could in principle also contain nonlinear friction
contributions.52,66 In a second step, we investigate how the
pair-dissociation kinetics change when we independently vary
the memory times and the e�ective mass, encompassing the
Markovian limit of vanishing memory time and the over-
damped limit of vanishing mass.
Throughout this paper, we determine reaction rates from

mean first-passage times, τMFP, which can be conveniently
extracted from long simulation trajectories and which
accurately reproduce barrier escape times, as we have shown
previously.22 We find that for both NaCl and methane, the
neglect of memory slows down dissociation by roughly a factor
of 2, while the neglect of mass accelerates dissociation by a
similar factor. When neglecting both memory and mass, partial
error cancellation takes place, but dissociation still slows down
considerably. Approximating the free-energy landscape by a
harmonic barrier also introduces significant errors. Thus, it
transpires that for the quantitative prediction of reaction times,
memory, finite mass, and nonharmonic potential e�ects must
be simultaneously taken into account, and the GLE is the

appropriate tool to disentangle the e�ects of these di�erent
contributions on reaction times.
The free-energy barriers for the dissociation of NaCl and

methane are about 4 kBT and 2 kBT, respectively; these are
typical barrier heights not only of molecular association and
dissociation reactions in water but also of dihedral stereo-
isomerization23 as well as fast protein folding transitions.67

Most reaction-rate theories rest on assumptions that become
only valid in the limit of high free-energy barriers. Since many
transitions in biophysical chemistry are in fact characterized by
rather low barrier heights of the order of only a few kBT and
experimental transition rates are customarily interpreted in
terms of reaction-rate theories, we therefore also compare the
results from our simulations with reaction-rate-theory
predictions. Interestingly, it turns out that, due to partial
error compensation, Kramers’ theory,1 which neglects memory
as well as nonharmonic potential e�ects, predicts the NaCl
dissociation time better than Grote/Hynes (GH) theory,38

which only neglects nonharmonic potential e�ects. It follows
that agreement between the predictions of a particular
reaction-rate theory and experimental or simulation results
does not necessarily mean that the approximations made in
deriving the reaction-rate theory are valid for the specific
system.

■ SIMULATION MODEL AND THEORETICAL
FRAMEWORK

We analyze the dynamics of single NaCl and methane pairs
from MD simulations in SPC/E water at 300 K as described in
the Methods section. The distance between the two reactants
is used as the reaction coordinate x, along which a weak
harmonic confining potential Ucon(x) = kx2/2 is applied to
prevent the reactants from di�using apart and thereby to
increase the number of association and dissociation events.
The potential or free energy of a NaCl ion pair, U(x) =
−kBT log(p(x)), obtained from the distribution function p(x),
is shown in Figure 1A as a solid line. The contact pair (CP)
state is separated by a barrier of 4.37 kBT, located at the
transition state (TS), from the solvent-separated pair (SSP)
state. Snapshots from the MD simulation illustrate the di�erent
states in Figure 1A. In fact, the TS in this one-dimensional
projection corresponds to an ensemble of disparate states that
do not single out well the actual TS in an enlarged
multidimensional description.12,15 This however is not a
problem for our kinetic description using the GLE, since
non-Markovian e�ects, caused by dimensional reduction, are
fully accounted for. Note that the confinement potential
Ucon(x) changes the barrier height from the CP to the TS state
slightly, as seen by comparing U(x) (solid line) and U(x) −
Ucon(x) (broken line) in Figure 1A. Thus, the presence of a
confining potential influences the reaction times, and it in fact
also influences the shape of the extracted memory kernel, in
agreement with previous results for confined molecules68 (see
Supporting Information (SI) section I for details); this,
however, does not a�ect our general conclusions that memory,
inertial, and potential-shape e�ects influence barrier-crossing
times. The actual NaCl interaction potential, obtained by
subtracting the centrifugal contribution and the confinement
potential, Uint(x) = U(x) − Ucon(x) + 2kBT log(x) (dotted line
in Figure 1A), goes for large separations x to a constant. Note
that in order to describe the simulated NaCl pair dynamics
along x, the potential U(x) has to be used within the GLE.
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In the following, we concentrate on the dissociation kinetics
starting from the CP state, which we characterize by the mean
first-passage time, τMFP.

22 For this, we obtain from a single long
MD trajectory first-passage times (FPTs), defined as the time
span between passing through the initial position xi and
reaching the final position xf for the first time. In Figure 1B, a
few FPTs for the passage from the CP to the SSP state from an
actual MD trajectory are shown, the average of all FPTs gives
τMFP. In Figures 1B,C, the dynamics of the NaCl ion-pair
separation is shown on three di�erent time scales, which
illustrates the stochastic nature of the barrier-crossing
dynamics that is characterized by the waiting time in the CP
state on the order of τMFP ≈ 70 ps.
In order to reveal the mechanisms that control the pair-

reaction dynamics, we use the GLE that includes a general
nonlinear potential U(x) and a memory friction kernel Γ(t):

= [ ] +mx t t t x t t U x t t( ) ( ) ( )d ( ) ( )
t

0 (1)

Here, m is the e�ective mass and η(t) is a Gaussian random
force with vanishing mean ⟨η(t)⟩ = 0 and correlations
⟨η(t)η(t′)⟩ = kBTΓ(t − t′). The GLE in eq 1 neglects
nonlinear friction e�ects, which is valid when correlations
between velocities and random forces are independent of x52

and has been successfully used to model the dynamics of
protein folding and molecular vibrations.31,51 We will further
below validate the linear friction GLE in eq 1 by comparison
with MD data. All parameters in eq 1 are extracted from
simulation trajectories: The mass is obtained from the

equipartition theorem =m k T x t/ ( )B
2 and is demonstrated

to be independent of x in SI section II, as indeed expected for a
linear distance coordinate.52 The potential follows from the
distribution p(x) via U(x) = −kBT log(p(x)), and the memory
friction kernel Γ(t) is extracted from the simulation trajectory
by numerical inversion of eq 1.31,51

In order to validate the linear friction GLE and its
parametrization, we need to compare predictions of the GLE
with the MD simulation results. For this, the GLE is
numerically solved using Markovian embedding, for which
the memory kernel is parametrized as a sum of exponentially
decaying and oscillating components according to51,69−71
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where
i

e and
i

o denote the memory times of the non-
oscillating and oscillating memory components, ωi denotes the
oscillation frequency, and

i

e and
i

o denote the amplitudes of

the memory components. The parametrization of the memory
kernel is done in a way such that the long-time friction

coe�cient γ, defined by the integral = t t( )d
0

, is given

by = +
i i

e

i i

o and thus is independent of the memory

time scales.
In the Markovian limit, i.e., when all memory times go to

zero, the memory kernel takes the form Γ(t) → 2γδ(t). In this
limit, the GLE eq 1 reduces to the ordinary Langevin equation
(LE)72

= [ ] +mx t x t U x t t( ) ( ) ( ) ( ) (3)

where the random force ξ(t) has zero mean and is correlated
according to ⟨ξ(t)ξ(t′)⟩ = 2γkBTδ(t − t′). In the limit m → 0,
the overdamped LE is obtained from eq 3, which neglects
memory as well as inertial e�ects. The numerical e�ort of
simulating the GLE in eq 1 is linear in the number of fit
functions in eq 2 and thus amounts to n + l + 1 times the e�ort
of simulating the LE in eq 3. Additionally, the simulation e�ort
scales as the inverse of the discretization time step, which has
to be on the order of the shortest time scale of the system,
which can be either the shortest memory time scale in eq 2 or
the inertial time scale m/γ.
Most analytical rate theories are on the harmonic level and

approximate the potential quadratically around the barrier top
and the potential well. We investigate the accuracy of this
approximation, which becomes exact only in the infinite-barrier
height limit, in SI section III by a perturbation analysis in terms

Figure 1. (A) E�ective potential U(x) of a single NaCl ion pair in
SPC/E water as a function of the ion separation x as obtained from
molecular dynamics (MD) simulations in the presence of a weak
harmonic confining potential Ucon(x) (solid line). The broken line
denotes U(x) − Ucon(x), and the dotted line denotes the interaction
potential Uint(x) for which also the centrifugal potential contribution
has been subtracted. Snapshots from the MD simulations illustrate the
contact pair (CP), the solvent-separated pair (SSP) (both at the
potential minima), and the transition state (TS) at the potential
maximum. (B,C) Example trajectories of the interionic distance x on
three di�erent time scales, 2, 20, and 200 ps. The mean first-passage
time τMFP between the initial CP state and the final SSP state is
calculated from the average of all first-passage times (FPTs); see main
text for details.
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of cubic and quartic potential corrections. The classical
Kramers’ expression for the escape of a massive particle over
a barrier that is subject to memoryless friction, as described by
LE eq 3, valid in the medium-to-high friction regime, reads1

= +
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where the barrier frequency = U m/max max depends on

the potential curvature =U U x( )max max at the barrier top
located at xmax. For low friction γ/m → 0, this expression
r e p r odu c e s t h e t r a n s i t i o n - s t a t e t h e o r y l im i t

= e2
U

Kr TST min

1
0, where β−1 = kBT is the thermal

energy, U0 denotes the barrier height, and = U m/min min is

the oscillation frequency at the minimum xmin with
=U U x( )min min .73 In the high-friction limit, γ/m → ∞, eq 4

reduces to = e U U2 /
m

U

Kr TST max min
max

0 which is

linear in the friction coe�cient γ. Note that eq 4 misses the
correct scaling in the low-friction or high-mass limit,

e
m

U

U

MFP
0

0, where τMFP scales inversely proportional to

γ, which was also derived by Kramers.1 An exact expression for
τMFP in the Markovian limit, valid for arbitrary mass and
friction and using the quadratic potential approximation, was

derived by Mel’nikov and Meshkov (MM)74 (see SI section
IV).
The GH prediction for τMFP in the presence of memory

acting at a harmonic barrier reads38

=
GH

max

TST (5)

where the frequency λ is determined by the solution of the

equation = + m/( ( )/ )max
2 and ( ) denotes the

Laplace-transformed memory friction kernel Γ(t) acting at
the barrier. In the Markovian limit, i.e., for short memory time,

one has =( ) and the GH expression reduces to the
Kramers’ medium-to-high-friction result in eq 4. Note that in
the limit of high mass or long memory time, GH theory
reproduces the transition-state theory result, τGH = τTST, which
means that it misses both the correct high-mass limit,

characterized by e
m

U

U

MFP
0

0,1,74 as well as the correct

long-memory-time limit, where τMFP scales as e
U

MFP

2
0

.22,39

In the overdamped Markovian limit, nonharmonic potential
e�ects can be analytically treated and τMFP between initial and
final positions, xi and xf, is given as75

=x x dx x e xe( , ) ( ) di f
x

x
U x

x

x
U x

MFP
( ) ( )

i

f

min (6)

Figure 2. Analysis of NaCl dissociation dynamics in water. (A,B) Memory friction kernel (A) and its integral (B) from MD simulations (blue solid
lines) compared with a fit according to eq 2 (yellow broken lines) which is a sum of two exponential and two oscillatory components (red broken
lines). The fit parameters are given in the legend. (C) Potential U(x) is shown as a gray solid line (right scale) with the extrema indicated by
vertical gray dotted lines. Profiles of τMFP(xf) (left scale) starting from the CP state are shown from MD simulations (blue solid line), from
simulations of the GLE eq 1 (blue short-dashed line), from the theory in the overdamped Markovian limit eq 6 (blue long-dashed line), and from
simulations of the LE eq 3 in the zero-mass limit (blue dotted line). (D) Contour plot of the CP-SSP dissociation τMFP from GLE simulations as a
function of the mass and memory-time scaling parameters ϵ and α. The gray solid lines illustrate the paths shown in (E−G). (E−G) τMFP for the
CP-SSP dissociation reaction as a function of ϵ = α (E), α for ϵ = 1 (F), and ϵ for α = 1 (G). Predictions according to Kramers’ theory eq 4 (dotted
lines), GH theory eq 5 (solid lines), MM theory (dashed-dotted line), and the overdamped Markovian theory eq 6 (broken lines) are shown for
comparison. Simulations of the LE according to eq 3 are shown as a dash-double-dotted line in F. The error bars of the GLE simulation results in
E−G are smaller than the symbol size.
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Here, γ(x) denotes a general position-dependent friction
profile and xmin a reflecting boundary. Equation 6 can be
inverted and thereby used to determine γ(x) from measured
profiles of τMFP(xi , xf).

76,77 In fact, position-dependent friction,
determined by a di�erent approach, has been shown to
reproduce NaCl dissociation dynamics from simulations.63

However, memory e�ects give rise to spurious spatially
dependent friction profiles when analyzed on the Markovian
level.31 Furthermore, spatially dependent friction cannot
simultaneously describe dissociation and association kinetics,
which demonstrates the presence and importance of memory,
as shown in SI section V. In fact, the assumption of a friction
memory kernel that is independent of position is in this paper
shown to be very accurate; the Markovian assumption, i.e., the
neglect of memory e�ects, on the contrary is shown not to be
accurate. As we demonstrate in SI section III, using a harmonic
approximation for the free energy U(x) around its minimum
and its barrier and in the high-barrier limit, the τMFP between
arbitrary initial and final positions to the left and right of a
barrier predicted by eq 6 equals the Kramers’ prediction eq 4
in the high-friction limit. In fact, the Kramers’, MM, and GH
rate theories do not depend on the precise locations of the
initial and final positions of τMFP, which is a consequence of the
high-barrier assumption inherent in their derivations, but the
dependence of τMFP on the final position is not very
pronounced (the dependence of τMFP on the initial position
is even weaker and displayed in SI section VI). It therefore is
instructive to compare analytical rate-theory results for τMFP

with MD and GLE simulation results. We show in SI section
III by a perturbative analysis beyond the harmonic
approximation that deviations between the Kramers’ high-
friction approximation and eq 6 are for not too low barrier
height mostly due to the harmonic approximation and not so
much due to the high-barrier assumption, which opens up
routes to systematically improve upon literature rate theories.

■ RESULTS AND DISCUSSION

The memory kernel Γ(t) for NaCl extracted from MD
simulations is shown in Figure 2A (blue line), and its running
integral in Figure 2B (blue line) starts to increase at a few fs
and plateaus at about 4 ps. The shape of Γ(t) is rather similar
to previous results for single anions and cations in water,78

which demonstrates that memory is caused not only by ion−
ion interactions but also by hydration e�ects. A fit using the
sum of two exponentially decaying and two oscillating
components according to eq 2, shown in Figure 2A,B as a
yellow broken line, is in near perfect agreement with the
extracted data and will be used for all further GLE modeling.
The individual memory components are shown as red broken
lines, and their parameters are given in the legend.
In Figure 2C, the potential U(x) is shown (gray line)

together with the τMFP(xf) profile from MD (blue solid line)
for an initial position xi at the minimum of U(x) as a function
of the final positions xf, which corresponds to dissociation from
the CP state (corresponding results for the inverse association
reaction are reported in SI section VII). The dependence of
τMFP on the initial position xi is very weak, as demonstrated
and analytically explained in SI section VI. The τMFP(xf) profile
from the GLE eq 1 with all parameters extracted from MD
simulations (blue short-dashed line) agrees very well with the
MD data (blue solid line). This presents a crucial validation of
the linear friction GLE eq 1 and of the extracted parameters.

The GLE is not only able to reproduce the MD data, it also
allows us to analyze the e�ects of varying mass and memory
times on the dissociation kinetics in a nonharmonic potential
landscape, which is not possible with MD simulations and also
not with analytical rate theories. For this, we scale the mass m
in the GLE by a factor ϵ according to m = ϵmMD. Likewise, we
scale all memory times by a second factor α according to

=
i i

MD and =
i i

1 MD, which ensures a smooth
crossover to the Markovian limit as α → 0. Since the friction
coe�cient γ is independent of α, by changing the value of α we
are able to disentangle the e�ects of memory times and
memory amplitudes, the latter being characterized by the
friction coe�cient γ, on the reaction kinetics. In the
overdamped Markovian limit, i.e. for α, ϵ → 0, τMFP is given
by eq 6, shown as a long-dashed line in Figure 2C and
compared with simulations of the LE eq 3 in the m → 0 limit
(dotted line). Both results agree nicely with each other,
validating the numerical procedures used, but exhibit
significantly longer τMFP than the MD data by a factor of
almost two to the right of the free-energy barrier, which clearly
demonstrates the significance of inertia and memory e�ects for
reaction dynamics.
The e�ect of gradually and simultaneously reducing inertial

and memory e�ects is demonstrated in Figure 2E, where τMFP

from the CP to the SSP state obtained using the GLE is shown
as a function of α = ϵ (circles). The overdamped Markovian
limit from eq 6 (broken horizontal line) is approached by the
GLE data in the limit α = ϵ → 0, as expected. The Kramers’
prediction eq 4 (dotted line) is evaluated using the friction
coe�cient γ and mass m extracted from the MD data and using
the fitted potential curvaturesU

min
andU

max
in the well and at

the barrier top (see SI section VIII for details of the fitting
procedure). It exhibits an almost negligible dependence on ϵ,
which shows that in the Markovian limit there are no
discernible inertial e�ects. The significant di�erence between
the broken and dotted lines is due to the harmonic-potential
and high-barrier approximation in Kramers’ theory. Interest-
ingly, the Kramers’ prediction (dotted line) is for α = ϵ = 1
closer to the GLE result than the more accurate numerical
solution of eq 6 (broken horizontal line) which does not use
the harmonic-potential nor the high-barrier approximation;
this is due to a subtle error compensation between the
harmonic-potential/high-barrier and Markovian approxima-
tions, as we will discuss in more detail further below. As
mentioned before, due to the high-barrier approximation, the
Kramers’ prediction does not depend on the locations of the
initial and final positions used in the definition of τMFP (as is
the case for the MM and GH reaction-rate theories), while the
MD and GLE simulation results obviously do, as demonstrated
in Figure 2C and in SI Section VI. This is a general
shortcoming of the high-barrier approximation employed in
analytical theories and should be kept in mind when
comparing with MD or GLE simulation results.
To disentangle inertial and memory e�ects, we in Figure 2F

show τMFP for NaCl dissociation from the CP to the SSP state
using the GLE eq 1 as a function of the memory scaling
parameter α for original mass ϵ = 1 (circles). τMFP exhibits a
pronounced minimum close to the original memory time α =
1, which demonstrates that memory accelerates barrier
crossing for short and intermediate memory times but slows
down barrier crossing for very long memory times. The barrier-
crossing speed up for intermediate memory times, including
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the original memory time α = 1, can be intuitively understood
by a simplified picture: Memory friction pushes against the
direction of the previous velocity and thereby supports barrier
crossing for a certain time after an unsuccessful barrier-crossing
attempt.22 In the Markov limit α → 0, the GLE data converge
to the result obtained by simulations of the LE with finite mass
eq 3 (dash-double-dotted horizontal line), as expected. The
Kramers’ prediction eq 4 (dotted horizontal line) is shifted
down relativ to the LE result eq 3 due to the harmonic
potential approximation, as discussed before. Except an overall
shift to shorter times, GH theory eq 5 (solid line) nicely
reproduces the GLE data for not too large α values and
converges to the Kramers’ prediction in the Markovian limit α

→ 0, which reflects that GH theory can be viewed as a
correction to the Kramers’ theory. In the long memory-time
limit, α → ∞, GH theory converges to the transition-state
theory time and therefore misses the quadratic scaling with the
memory time indicated by the black solid line.22,39,79 We again
observe that Kramers’ theory (dotted horizontal line), which
neglects memory e�ects as well as nonharmonic potential
e�ects, agrees better with the GLE data for original memory
time, i.e., for α = 1, than GH theory, which includes memory
e�ects, and the LE eq 3, which includes the full potential
shape.
In Figure 2G, the NaCl dissociation time, τMFP, from the CP

to the SSP state, using the GLE is shown as a function of the
mass scaling parameter ϵ for the original memory times, i.e., for
α = 1 (circles). The dissociation time monotonically increases
with growing mass. For the original mass, ϵ = 1, τMFP is
considerably larger than in the overdamped limit, ϵ → 0, an
e�ect that is underestimated by Kramers’ theory (dotted line),
MM theory (dash-dotted line), and to a certain degree also by
GH theory (solid line). So we see that inertial e�ects are more
important for non-Markovian than for Markovian systems. GH
theory and Kramers’ theory converge to transition-state theory
for large mass with a characteristic m

MFP
scaling

(straight broken line), which deviates from the τMFP ∼ m
scaling (straight solid line) for Markovian systems in the large-
mass limit, as predicted by MM theory. In the low mass limit,
on the other hand, Kramers’ and MM theories converge. The
GLE data show a slow crossover to the τMFP ∼ m scaling for
large mass. Again, we see that due to error cancellation,

Kramers’ theory agrees almost perfectly with the GLE data for
original mass (ϵ = 1) but also for slightly enhanced mass, as
would be relevant for heavier reactants.
The dependence of the NaCl dissociation time τMFP on mass

and memory time as obtained from the GLE is illustrated in
Figure 2D in a contour plot as a function of α and ϵ, where
three regimes can be broadly distinguished: the memory-
speed-up regime (for low mass and intermediate memory
time), the inertial slow-down regime (for large mass), and the
memory-slow-down regime (for long memory time). The gray
square indicates α = ϵ = 1, i.e., the original system parameters,
and the gray solid lines indicate the one-dimensional cuts
shown in Figure 2E−G.
In Figure 3A, we compare the NaCl dissociation time from

the CP to the TS at the barrier top for the four di�erent
relevant limiting scenarios, namely (from left to right), the case
with original mass and memory, the Markovian limit with
original mass, the overdamped limit (using ϵ = 0.01 in the
GLE) with original memory, and the overdamped Markovian
limit. Note that the comparison of the various limits with the
original MD simulations for the transition from the CP state to
the barrier top in Figure 3A is slightly di�erent than that for
the transition from the CP to the SSP state in Figure 2E−G.
The blue bars denote simulation results using the GLE, eq 1,
and the LE, eq 3, with the latter being used in the limit α, ϵ →
0, employing the full nonharmonic potential U(x). We see that
the MD and GLE results for original memory and mass agree
very nicely with each other. The dissociation time in the
Markovian limit with original mass is roughly doubled, and in
the overdamped limit with original memory, it is roughly half,
compared to the MD result (denoted by a broken horizontal
line). In the overdamped Markovian limit, we see that the LE
simulations (blue bar) and the exact integral formula eq 6
(gray bar) agree nicely with each other, as expected, and that
their agreement with the MD result is slightly better than that
for the GLE results when either the original mass or memory is
used. This reflects partial error compensation of the neglect of
mass and memory, as amply discussed above. Kramers’ theory
eq 4 (yellow bar), which in addition employs a harmonic
potential-shape and high-barrier approximation, slightly lowers
the dissociation time and thus further improves the agreement
with the MD data, another manifestation of error cancellation

Figure 3. (A,B) Summary of memory friction and mass e�ects on the pair dissociation dynamics of NaCl and methane in water at 300 K. The bars
denote τMFP from the CP to the TS state from MD (gray bars and horizontal broken lines) and from simulations of the GLE eq 1 (blue bars) in the
di�erent limits of the memory and mass scaling parameters, α and ϵ. The theoretical overdamped Markovian limit eq 6 is shown as light-gray bars,
and Kramers’ theory eq 4 for high friction is shown as yellow bars. Error bars for the simulations denote the standard deviation of block averages,
and error bars of Kramers’ theory are estimated from the dominant errors in the harmonic fits to the potentials, as shown in SI section VIII. (C)
Dissociation profiles τMFP(xf) for two methane molecules in water starting from the CP state from MD (blue solid line), from simulation of the
GLE eq 1 (blue short-dashed line), from the overdamped Markovian theory eq 6 (blue long-dashed line), and from simulation of the LE eq 3 in the
zero-mass limit (blue dotted line). The potential U(x) is shown as a gray solid line (right scale), vertical lines denote the CP, TS, and SSP states.
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(note that the Kramers’ formula eq 4 is divided by 2 for the
comparison since the final state is the barrier top).
Interestingly, the well-to-barrier-top dissociation shows
reduced nonharmonic potential corrections in comparison
with the well-to-well dissociation discussed in Figure 2,
meaning that the Kramers’ result in Figure 3A (yellow bar)
agrees rather well with the prediction from the integral formula
eq 6 (gray bar), as will be explained in detail further below.
To demonstrate that our findings are not specific to ion

dissociation, we show in Figure 3B,C results for the
dissociation dynamics of a pair of methane molecules in
water at 300 K (the detailed analysis is presented in SI section
IX). In Figure 3C, we show the free energy from the MD
simulations (gray line) together with τMFP profiles starting from
the free-energy minimum, corresponding to the CP state, for
varying final position xf. We compare results from MD
simulations (blue solid line) and corresponding GLE
simulations (blue short-dashed line) and find, as for NaCl,
good agreement. The τMFP profiles for the overdamped
Markovian limit from eq 6 (blue long-dashed line) and from
simulations of the LE eq 3 in the overdamped limit (blue
dotted line) agree nicely with each other and are significantly
higher than the MD results. The comparison of methane
dissociation times from the CP to the TS at the barrier top
using di�erent approximations in Figure 3B is similar to the
NaCl results in Figure 3A and demonstrates significant and
compensating memory and mass e�ects.
All analytical rate theories we compare with, namely MM,

GH and Kramers’ theory, use the harmonic approximation for
the well and barrier regions of the pair potentials, which
becomes accurate only in the high-barrier limit. The
comparison of Kramers’ theory eq 4 with eq 6 in Figure 2E
demonstrates that the harmonic approximation is not very
good for NaCl dissociation from well to well, and it becomes
better for the NaCl dissociation from well to barrier top in
Figure 3A. To shed light on that, in Figure 4, we compare the
τMFP from Kramers’ theory eq 4 in the high-friction limit
(colored solid lines) with the exact integral formula eq 6 (gray

solid lines) as a function of barrier height U0, using the
potential U(x) with a linearly scaled amplitude and the friction
coe�cient γ for NaCl from MD simulations. Data are shown
for going from the CP to the TS, i.e., to the barrier top (blue
and thin gray lines), and from the CP to the SSP, i.e., over the
barrier from well to well (yellow and thick gray lines). The
exponential scaling for U0 → ∞ is clearly seen. The relative
di�erence between the two predictions, given in the inset,
decreases with U0, as expected. The decrease however is quite

slow and scales to leading order asU
0

1 for the CP-SSP and as

U0
1/2 for the CP-TS transitions, which is accurately predicted

by a perturbative analysis (gray lines), see SI section III for
details. The e�ect of the harmonic approximation is
considerable for the CP-SSP transition and decreases the
dissociation time by about 25% for a barrier height of U0 ≈ 5
kBT, as also seen in Figure 2D. The e�ect of the harmonic
approximation is much less drastic for the CP-TS reaction,
contrary to what would be expected based on the leading-order
perturbation results, which is due to a subtle compensation of
cubic and quartic potential e�ects at the barrier top, as
explained in SI section III. Therefore, while for high barriers
the harmonic-potential approximation, employed in all
analytical rate theories, is valid, nonharmonic potential e�ects
are significant at moderate barrier heights as encountered for
dissociation reactions in water and many other reactions in
biophysical chemistry and cannot be disregarded.

■ CONCLUSIONS

The dissociation dynamics of a NaCl and a methane−methane
pair from MD simulations is accurately reproduced using the
GLE when mass, memory function and pair potential are used
as extracted from MD simulations. This is a nontrivial test of
the accuracy of the approximate linear friction GLE, the
friction-kernel extraction techniques, and the GLE simulation
methods employed by us and allows us to use the GLE as a
diagnostic tool to quantitatively study how friction memory
and inertial e�ects influence reaction kinetics. By varying the
mass and the memory times in the GLE, which is not possible
within MD simulations, the impact of these fundamental
system properties on the reaction dynamics is quantified. It
turns out that mass, memory as well as nonharmonic potential
e�ects are important for the quantitative prediction of reaction
rates of NaCl and methane in water. Due to error cancellation,
Kramers’ theory, that neglects memory as well as nonharmonic
potential e�ects, performs better than GH theory, that neglects
nonharmonic potential e�ects but approximately accounts for
mass and memory e�ects. This in particular means that good
comparison of Kramers’ theory with experimental or simulated
reaction times does not mean that memory e�ects are
negligible. Our results are obtained for specific pair reactions
in water, but our conclusions presumably are valid for a much
wider class of systems because the GLE employed by us makes
no reference to system specificities except for the mass, the
memory function and the free-energy profile.
As we show in this paper, neglecting mass or memory

changes the dissociation time of NaCl roughly by a factor of 2,
an equivalent change of reaction time is obtained when shifting
the free-energy barrier by kBT ln 2 ≈ 0.7 kBT. So the e�ects we
are discussing are in some sense comparable to typical
experimental or theoretical uncertainties in the free-energy
barriers. Nevertheless, for the quantitative prediction of
reaction times and the thorough understanding of the

Figure 4. E�ect of nonharmonic potential contributions on the NaCl
dissociation dynamics in the overdamped Markovian limit. We
compare τMFP given by Kramers’ theory eq 4 in the high-friction limit
(colored solid lines) with the integral formula eq 6 (gray solid lines)
for dissociation from the CP to the TS state (blue and thin gray lines)
and from the CP to the SSP state (yellow and thick gray lines) as a
function of barrier height U0. In the inset, the relative di�erence
between the two predictions is shown as blue and yellow broken lines
(dotted lines denote negative values) and compared with the
perturbation prediction (gray lines); see main text for details.
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mechanisms controlling reaction times in complex systems, it is
important to know how memory, mass and potential-shape
e�ects modify reaction rates.
We extract all GLE parameters from force-field MD

simulations. In the future it would be interesting to use ab
initio simulations instead80,81 and to investigate in more detail
the role of the water model81,82 for ion pair-reaction dynamics
in water.

■ METHODS

MD simulations are performed in explicit water at 300 K, using
GROMACS version 2020.6,83 the SPC/E water force field,84

force-field parameters for the NaCl ion pair as reported
previously,85 which are similar to recently optimized values,86

and Lennard-Jones parameters for the methane beads from the
GROMOS 53A6 force field.87 A weak confinement potential
along the connecting vector of the reactants is applied, Ucon(x)
= kx2/2, with k = 100 kJ mol−1 nm−2 for NaCl and k = 30 kJ
mol−1 nm−2 for methane. The cubic simulation box with side
length 4 nm is completely filled with water molecules and
periodic boundary conditions are applied. Before production
the systems are equilibrated under NPT conditions with
atmospheric pressure for 400 ps using a Berendsen barostat
with a time constant of 0.5 ps and subsequently under NVT
conditions for 1 ns. Production runs are performed for 200 ns
under NVT conditions using the velocity rescaling thermostat
with a time constant of 0.5 ps only acting on water. The
simulation time step is 2 fs and correlation functions are
extracted at full time resolution. The center-of-mass motion of
the entire system is removed at each simulation time step. The
memory kernel is extracted from correlation functions as
detailed previously.23,31 The potential, U(x) = −kBT log(p(x)),
is calculated directly from the distribution function p(x) with a
bin size of 0.0025 nm for the ion and 0.005 nm for the
methane pair.
Simulations of the GLE eq 1 using parametrized memory

kernels with a sum of n exponential and l oscillating
components, as given in eq 2, are performed by Markovian
embedding using a fourth-order Runge−Kutta scheme.51 The
integration time step is 2 fs, equivalent to the MD simulation.
When changing the mass and memory times, in particular for
α, ϵ < 1, the simulation time step is suitably adapted. Errors of
τMFP, estimated from block averages, are smaller than the
symbol size. The memoryless LE eq 3 is also simulated using a
fourth-order Runge−Kutta scheme. Further details on the
simulation techniques is given in SI section X.
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Germany, where he is currently pursuing a Ph.D. degree with Prof.

Roland Netz. His research interests are vibrational spectroscopy,

proton dynamics, and modeling of non-Markovian e�ects using the

generalized Langevin equation, atomistic and quantum simulations, as

well as theoretical calculations.

Roland Netz studied physics at the Technical University of Berlin and

at MIT and received his Ph.D. in 1994 from the University of

Cologne. After postdoctoral positions at Tel-Aviv University, UC

Santa Barbara, Seattle, Institute Charles Sadron in Strasbourg, CEA in

Paris, and the Max-Planck Institute for Colloids and Interfaces in

Potsdam, he was appointed associate professor of physics at the LMU

Munich in 2002 and full professor of physics at the TU Munich in

2004. Since 2011 he has held a chair in theoretical biosoft-matter
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226−248.
(6) Allen, M. P. Brownian dynamics simulation of a chemical
reaction in solution. Mol. Phys. 1980, 40, 1073−1087.
(7) Trullas̀, J.; Giró, A.; Padró, J. A. Langevin dynamics study of
NaCl electrolyte solutions at different concentrations. J. Chem. Phys.
1990, 93, 5177−5181.
(8) Lickert, B.; Stock, G. Modeling non-Markovian data using
Markov state and Langevin models. J. Chem. Phys. 2020, 153, 244112.
(9) Best, R. B.; Hummer, G. Diffusive Model of Protein Folding
Dynamics with Kramers Turnover in Rate. Phys. Rev. Lett. 2006, 96,
228104.
(10) Straub, J. E.; Borkovec, M.; Berne, B. J. Calculation of dynamic
friction on intramolecular degrees of freedom. J. Phys. Chem. 1987, 91,
4995−4998.
(11) Hänggi, P.; Talkner, P.; Borkovec, M. Reaction-rate theory:
Fifty years after Kramers. Rev. Mod. Phys. 1990, 62, 251−341.
(12) Geissler, P. L.; Dellago, C.; Chandler, D. Kinetic pathways of
ion pair dissociation in water. J. Phys. Chem. B 1999, 103, 3706−3710.
(13) Mullen, R. G.; Shea, J.-E. E.; Peters, B. Transmission
coefficients, committors, and solvent coordinates in ion-pair
dissociation. J. Chem. Theory Comput. 2014, 10, 659−667.
(14) Roy, S.; Baer, M. D.; Mundy, C. J.; Schenter, G. K. Reaction
Rate Theory in Coordination Number Space: An Application to Ion
Solvation. J. Phys. Chem. C 2016, 120, 7597−7605.
(15) Takayanagi, T.; Nakatomi, T.; Yonetani, Y. On the ion-pair
dissociation mechanisms in the small NaCl·(H2O)6 cluster: A
perspective from reaction path search calculations. J. Comput. Chem.
2018, 39, 1835−1842.
(16) Zwanzig, R. Ensemble Method in the Theory of Irreversibility.

J. Chem. Phys. 1960, 33, 1338−1341.
(17) Mori, H. Transport, collective motion, and Brownian motion.

Prog. Theor. Phys. 1965, 33, 423−455.
(18) Adelman, S. A. Generalized Langevin theory for many-body
problems in chemical dynamics: Reactions in liquids. J. Chem. Phys.
1980, 73, 3145−3158.
(19) Ciccotti, G.; Ryckaert, J. P. On the derivation of the generalized
Langevin equation for interacting Brownian particles. J. Stat. Phys.
1981, 26, 73−82.
(20) Guar̀dia, E.; Padró, J. A. Generalized Langevin dynamics
simulation of interacting particles. J. Chem. Phys. 1985, 83, 1917−
1920.
(21) Canales, M.; Sesé, G. Generalized Langevin dynamics
simulations of NaCl electrolyte solutions. J. Chem. Phys. 1998, 109,
6004−6011.
(22) Kappler, J.; Daldrop, J. O.; Brünig, F. N.; Boehle, M. D.; Netz,
R. R. Memory-induced acceleration and slowdown of barrier crossing.
J. Chem. Phys. 2018, 148, 014903.

(23) Daldrop, J. O.; Kappler, J.; Brünig, F. N.; Netz, R. R. Butane
dihedral angle dynamics in water is dominated by internal friction.
Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 5169−5174.
(24) Satija, R.; Makarov, D. E. Generalized Langevin Equation as a
Model for Barrier Crossing Dynamics in Biomolecular Folding. J.
Phys. Chem. B 2019, 123, 802−810.
(25) Wolf, S.; Lickert, B.; Bray, S.; Stock, G. Multisecond ligand
dissociation dynamics from atomistic simulations. Nat. Commun.
2020, 11, 2918.
(26) Seyler, S. L.; Pressé, S. Surmounting potential barriers:
Hydrodynamic memory hedges against thermal fluctuations in
particle transport. J. Chem. Phys. 2020, 153, 041102.
(27) Singh, V.; Biswas, P. A generalized Langevin equation approach
for barrier crossing dynamics in conformational transitions of
proteins. J. Stat. Mech. Theory Exp. 2021, 2021, 063502.
(28) Cherayil, B. J. Particle dynamics in viscoelastic media: Effects of
non-thermal white noise on barrier crossing rates. J. Chem. Phys. 2021,
155, 244903.
(29) Ferrer, B. R.; Gomez-Solano, J. R.; Arzola, A. V. Fluid
Viscoelasticity Triggers Fast Transitions of a Brownian Particle in a
Double Well Optical Potential. Phys. Rev. Lett. 2021, 126, 108001.
(30) Meyer, H.; Wolf, S.; Stock, G.; Schilling, T. A Numerical
Procedure to Evaluate Memory Effects in Non-Equilibrium Coarse-
Grained Models. Adv. Theory Simulations 2021, 4, 2000197.
(31) Ayaz, C.; Tepper, L.; Brünig, F. N.; Kappler, J.; Daldrop, J. O.;
Netz, R. R. Non-Markovian modeling of protein folding. Proc. Natl.
Acad. Sci. U. S. A. 2021, 118, No. e2023856118.
(32) Acharya, S.; Bagchi, B. Non-Markovian rate theory on a
multidimensional reaction surface: Complex interplay between
enhanced configuration space and memory. J. Chem. Phys. 2022,
156, 134101.
(33) Mukherjee, S.; Mondal, S.; Acharya, S.; Bagchi, B. Tug-of-War
between Internal and External Frictions and Viscosity Dependence of
Rate in Biological Reactions. Phys. Rev. Lett. 2022, 128, 108101.
(34) Cherayil, B. J. Effects of Hydrodynamic Backflow on the
Transmission Coefficient of a Barrier-Crossing Brownian Particle. J.
Phys. Chem. B 2022, 126, 5629−5636.
(35) Satija, R.; Das, A.; Makarov, D. E. Transition path times reveal
memory effects and anomalous diffusion in the dynamics of protein
folding. J. Chem. Phys. 2017, 147, 152707.
(36) Carlon, E.; Orland, H.; Sakaue, T.; Vanderzande, C. Effect of
Memory and Active Forces on Transition Path Time Distributions. J.
Phys. Chem. B 2018, 122, 11186−11194.
(37) Singh, D.; Mondal, K.; Chaudhury, S. Effect of Memory and
Inertial Contribution on Transition-Time Distributions: Theory and
Simulations. J. Phys. Chem. B 2021, 125, 4536−4545.
(38) Grote, R. F.; Hynes, J. T. The stable states picture of chemical
reactions. II. Rate constants for condensed and gas phase reaction
models. J. Chem. Phys. 1980, 73, 2715−2732.
(39) Pollak, E.; Grabert, H.; Hänggi, P. Theory of activated rate
processes for arbitrary frequency dependent friction: solution of the
turnover problem. J. Chem. Phys. 1989, 91, 4073−4087.
(40) Fricks, J.; Yao, L.; Elston, T. C.; Forest, M. G. Time-Domain
Methods for Diffusive Transport in Soft Matter. SIAM J. Appl. Math.
2009, 69, 1277−1308.
(41) Lei, H.; Baker, N. A.; Li, X. Data-driven parameterization of the
generalized Langevin equation. Proc. Natl. Acad. Sci. U. S. A. 2016,
113, 14183−14188.
(42) Jung, G.; Hanke, M.; Schmid, F. Iterative Reconstruction of
Memory Kernels. J. Chem. Theory Comput. 2017, 13, 2481−2488.
(43) Grogan, F.; Lei, H.; Li, X.; Baker, N. A. Data-driven molecular
modeling with the generalized Langevin equation. J. Comput. Phys.
2020, 418, 109633.
(44) Vroylandt, H.; Goudeneg̀e, L.; Monmarché, P.; Pietrucci, F.;
Rotenberg, B. Likelihood-based non-Markovian models from
molecular dynamics. Proc. Natl. Acad. Sci. U. S. A. 2022, 119,
No. e2117586119.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Perspective

https://doi.org/10.1021/acs.jpcb.2c05923
J. Phys. Chem. B 2022, 126, 10295−10304

10303



(45) Vroylandt, H.; Monmarché, P. Position-dependent memory
kernel in generalized Langevin equations: Theory and numerical
estimation. J. Chem. Phys. 2022, 156, 244105.
(46) Ciccotti, G.; Ferrario, M.; Hynes, J. T.; Kapral, R. Dynamics of
ion pair interconversion in a polar solvent. J. Chem. Phys. 1990, 93,
7137−7147.
(47) Benjamin, I.; Lee, L. L.; Li, Y. S.; Liu, A.; Wilson, K. R.
Generalized Langevin model for molecular dynamics of an activated
reaction in solution. Chem. Phys. 1991, 152, 1−12.
(48) Rey, R.; Guar̀dia, E.; Padró, J. A. Generalized Langevin
dynamics simulation of activated processes in solution: Ion pair
interconversion in water. J. Chem. Phys. 1992, 97, 8276−8284.
(49) Annapureddy, H. V. R.; Dang, L. X. Understanding the Rates
and Molecular Mechanism of Water-Exchange around Aqueous Ions
Using Molecular Simulations. J. Phys. Chem. B 2014, 118, 8917−8927.
(50) Klippenstein, V.; Tripathy, M.; Jung, G.; Schmid, F.; Van Der
Vegt, N. F. Introducing Memory in Coarse-Grained Molecular
Simulations. J. Phys. Chem. B 2021, 125, 4931−4954.
(51) Brünig, F. N.; Geburtig, O.; von Canal, A.; Kappler, J.; Netz, R.
R. Time-Dependent Friction Effects on Vibrational Infrared
Frequencies and Line Shapes of Liquid Water. J. Phys. Chem. B
2022, 126, 1579−1589.
(52) Ayaz, C.; Scalfi, L.; Dalton, B. A.; Netz, R. R. Generalized
Langevin equation with a nonlinear potential of mean force and
nonlinear memory friction from a hybrid projection scheme. Phys.
Rev. E 2022, 105, 054138.
(53) Sedlmeier, F.; Netz, R. R. Solvation thermodynamics and heat
capacity of polar and charged solutes in water. J. Chem. Phys. 2013,
138, 115101.
(54) Van Der Vegt, N. F.; Haldrup, K.; Roke, S.; Zheng, J.; Lund,
M.; Bakker, H. J. Water-Mediated Ion Pairing: Occurrence and
Relevance. Chem. Rev. 2016, 116, 7626−7641.
(55) Schwierz, N. Kinetic pathways of water exchange in the first
hydration shell of magnesium. J. Chem. Phys. 2020, 152, 224106.
(56) Lum, K.; Chandler, D.; Weeks, J. D. Hydrophobicity at Small
and Large Length Scales. J. Phys. Chem. B 1999, 103, 4570−4577.
(57) Ashbaugh, H. S.; Pratt, L. R. Colloquium: Scaled particle theory
and the length scales of hydrophobicity. Rev. Mod. Phys. 2006, 78,
159−178.
(58) Sedlmeier, F.; Netz, R. R. The spontaneous curvature of the
water-hydrophobe interface. J. Chem. Phys. 2012, 137, 135102.
(59) Ohtaki, H.; Radnai, T. Structure and dynamics of hydrated
ions. Chem. Rev. 1993, 93, 1157−1204.
(60) Karim, O. A.; McCammon, J. A. Dynamics of a Sodium
Chloride Ion Pair in Water. J. Am. Chem. Soc. 1986, 108, 1762−1766.
(61) Rey, R.; Guardia, E. Dynamical Aspects of the Na+-Cl− Ion Pair
Association in Water. J. Phys. Chem. 1992, 96, 4712−4718.
(62) Ballard, A. J.; Dellago, C. Toward the Mechanism of Ionic
Dissociation in Water. J. Phys. Chem. B 2012, 116, 13490.
(63) Wolf, S.; Stock, G. Targeted Molecular Dynamics Calculations
of Free Energy Profiles Using a Nonequilibrium Friction Correction.
J. Chem. Theory Comput. 2018, 14, 6175−6182.
(64) Post, M.; Wolf, S.; Stock, G. Molecular Origin of Driving-
Dependent Friction in Fluids. J. Chem. Theory Comput. 2022, 18,
2816−2825.
(65) Roy, S.; Baer, M. D.; Mundy, C. J.; Schenter, G. K. Marcus
Theory of Ion-Pairing. J. Chem. Theory Comput. 2017, 13, 3470−

3477.
(66) Brünig, F. N.; Netz, R. R.; Kappler, J. Barrier-crossing times for
different non-Markovian friction in well and barrier: A numerical
study. Phys. Rev. E 2022, 106, 44133.
(67) Dalton, B. A.; Ayaz, C.; Tepper, L.; Netz, R. R.Fast protein
folding is governed by memory-dependent friction. arXiv2022;
https://arxiv.org/abs/2208.13842.
(68) Daldrop, J. O.; Kowalik, B. G.; Netz, R. R. External Potential
Modifies Friction of Molecular Solutes in Water. Phys. Rev. X 2017, 7,
041065.

(69) Marchesoni, F.; Grigolini, P. On the extension of the Kramers
theory of chemical relaxation to the case of nonwhite noise. J. Chem.
Phys. 1983, 78, 6287−6298.
(70) Morrone, J. A.; Markland, T. E.; Ceriotti, M.; Berne, B. J.
Efficient multiple time scale molecular dynamics: Using colored noise
thermostats to stabilize resonances. J. Chem. Phys. 2011, 134, 014103.
(71) Lee, H. S.; Ahn, S. H.; Darve, E. F. The multi-dimensional
generalized Langevin equation for conformational motion of proteins.
J. Chem. Phys. 2019, 150, 174113.
(72) Risken, H.The Fokker−Planck Equation, 2nd ed.; Springer:
Berlin, 1996.
(73) Eyring, H. The Activated Complex in Chemical Reactions. J.

Chem. Phys. 1935, 3, 107−115.
(74) Mel’nikov, V. I.; Meshkov, S. V. Theory of activated rate
processes: Exact solution of the Kramers problem. J. Chem. Phys.
1986, 85, 1018−1027.
(75) Weiss, G. H. First Passage Time Problems in Chemical Physics.

Adv. Chem. Phys. 1967, 13, 1−18.
(76) Hinczewski, M.; von Hansen, Y.; Dzubiella, J.; Netz, R. R. How
the diffusivity profile reduces the arbitrariness of protein folding free
energies. J. Chem. Phys. 2010, 132, 245103.
(77) Von Hansen, Y.; Sedlmeier, F.; Hinczewski, M.; Netz, R. R.
Friction contribution to water-bond breakage kinetics. Phys. Rev. E -
Stat. Nonlinear, Soft Matter Phys. 2011, 84, 051501.
(78) Kowalik, B.; Daldrop, J. O.; Kappler, J.; Schulz, J. C.; Schlaich,
A.; Netz, R. R. Memory-kernel extraction for different molecular
solutes in solvents of varying viscosity in confinement. Phys. Rev. E
2019, 100, 012126.
(79) Kappler, J.; Hinrichsen, V. B.; Netz, R. R. Non-Markovian
barrier crossing with two-time-scale memory is dominated by the
faster memory component. Eur. Phys. J. E 2019, 42, 119.
(80) Timko, J.; Bucher, D.; Kuyucak, S. Dissociation of NaCl in
water from ab initio molecular dynamics simulations. J. Chem. Phys.
2010, 132, 114510.
(81) Zhang, C.; Giberti, F.; Sevgen, E.; de Pablo, J. J.; Gygi, F.; Galli,
G. Dissociation of salts in water under pressure. Nat. Commun. 2020,
11, 3037.
(82) Wills, A.; Fernández-Serra, M. Role of water model on ion
dissociation at ambient conditions. J. Chem. Phys. 2021, 154, 194502.
(83) Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.;
Hess, B.; Lindahl, E. GROMACS: High performance molecular
simulations through multi-level parallelism from laptops to super-
computers. SoftwareX 2015, 1−2, 19−25.
(84) Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. The missing
term in effective pair potentials. J. Phys. Chem. 1987, 91, 6269−6271.
(85) Dang, L. X. Mechanism and Thermodynamics of Ion Selectivity
in Aqueous Solutions of 18-Crown-6 Ether: A Molecular Dynamics
Study. J. Am. Chem. Soc. 1995, 117, 6954−6960.
(86) Loche, P.; Steinbrunner, P.; Friedowitz, S.; Netz, R. R.;
Bonthuis, D. J. Transferable Ion Force Fields in Water from a
Simultaneous Optimization of Ion Solvation and Ion-Ion Interaction.
J. Phys. Chem. B 2021, 125, 8581−8587.
(87) Oostenbrink, C.; Villa, A.; Mark, A. E.; Van Gunsteren, W. F. A
biomolecular force field based on the free enthalpy of hydration and
solvation: The GROMOS force-field parameter sets 53A5 and 53A6.
J. Comput. Chem. 2004, 25, 1656−1676.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Perspective

https://doi.org/10.1021/acs.jpcb.2c05923
J. Phys. Chem. B 2022, 126, 10295−10304

10304





Supplementary Information:

Proton-Transfer Spectroscopy Beyond

the Normal-Mode Scenario A



Supplementary information:
Proton-transfer spectroscopy beyond the normal-mode scenario

Florian N. Brünig,1 Paul Hillmann,1 Won Kyu Kim,2 Jan O. Daldrop,1 and Roland R. Netz1, a)

1)Freie Universität Berlin, Department of Physics, 14195 Berlin, Germany
2)Korea Institute for Advanced Study, School of Computational Sciences, Seoul 02455,
Republic of Korea

(Dated: October 23, 2022)

a)rnetz@physik.fu-berlin.de

1

A. Supplementary Information:

Proton-Transfer Spectroscopy Beyond the Normal-Mode Scenario



I. QUANTUM ZERO-POINT MOTION EFFECTS

Quantum zero-point motion is known to smear out particle distributions and thereby to increase the particle density
at barriers. Therefore in this section, we estimate the potential barrier height of a double-well potential for which the
ground-state probability density develops a minimum at the barrier.
The one-dimensional stationary Schrödinger equation

− ℏ
2

2m

∂2

∂d2
ϕ(d) = (U(d)− E)ϕ(d) (S1)

is solved numerically for the quartic double-well potential

U(d) = U0

((
d

d∗TW

)2

− 1

)2

, (S2)

which is shown in fig. S1A to approximate the effective potential describing the excess proton distribution obtained
from our ab initio molecular-dynamics (AIMD) simulations very well.
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Figure S1. A Free-energy profiles U(d) for fixed ROO, extracted from constrained ab initio molecular-dynamics (AIMD)
simulations of the H5O2

+ cation, are shown as colored lines. Fits according to eq. (S2) are shown as black dotted lines with fit
parameters given in the legend. B Dependence of d∗TW on U0. Here a linear fit is shown as a black dashed line.

The equations are rescaled as

∂2

∂x̃2ϕ(x̃) = (Ũ(x̃)− Ẽ)ϕ(x̃), (S3)

Ũ(x̃) = Ũ0(x̃
2 − 1)2, (S4)

with x̃ = d/d∗TW, Ũ0 = 2mU0d
∗
TW

2/ℏ2 and Ẽ = 2mEd∗TW
2/ℏ2. Using the proton mass m = 1.7 × 10−27 kg,

ℏ = 1.1 × 10−34 Js and d∗TW = 0.22Å for the system with ROO = 2.64Å, the rescaling factor for the energies is
ℏ
2/(2md∗TW

2) = 7.4× 10−21 J = 1.8 kBT at 300K. Note that this scaling factor implicitly depends on U0 due to the
dependence of d∗TW on U0 shown in fig. S1B.
Dimensionless ground state energies Ẽ are numerically computed for Ũ0 ∈ [1, 2] using bisection to find the eigenvalues
of the dimensionless Schrödinger equation eq. (S3). The ground state energy Ẽ shows approximately linear dependence
on Ũ0 ∈ [1, 2] (see green dots in fig. S2A). A minimum of the ground-state density at the barrier is defined by a
positive curvature at the origin, ∂2

∂x2ϕ2(x̃ = 0) > 0. From the Schrödinger equation eq. (S3) it becomes clear that the
wave function of the ground state develops a minimum at the origin for Ẽ < Ũ0. It follows for the curvature of the
probability density by inserting eq. (S3)

∂2

∂x̃2ϕ
2(x̃) = 2

[(
∂ϕ(x̃)

∂x̃

)2

+ (Ũ(x̃)− Ẽ)ϕ2(x̃)

]
. (S5)
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A B

Figure S2. A Dimensionless ground state energy Ẽ as a function of the barrier height Ũ0 (green dots). A linear fit according to
Ẽ(U0) = 0.601 Ũ0 + 0.542 is shown as a black dashed line. The crossing between the ground-state energy Ẽ and Ẽ = Ũ0 (red
line) is marked as a vertical blue line at Ũc := Ũ0(Ẽ = Ũ0) = 1.36. B Curvature of the ground state probability density at the
origin as a function of Ũ0. A linear fit according to ∂2φ2/∂x̃2(x̃ = 0) = 0.334 Ũ0 − 0.455 is shown as a black dashed line. The
point where the curvature vanishes is marked as a vertical blue line, which is given by Ũc = 1.36.

A B

Figure S3. A Ground state probability densities for Ũ0 = 1, Ũ0 = Ũc and Ũ0 = 1.8. B Ground state probability densities around
the origin.

Since the ground state is symmetric around the origin this becomes at the origin

∂2

∂x̃2ϕ
2 = 2(Ũ0 − Ẽ)ϕ2. (S6)

Fig. S2B shows the curvature at the origin ∂2

∂x2ϕ2(x̃ = 0) as a function of Ũ0 (green dots). A linear fit is used to
determine the critical potential strength at which the curvature vanishes as Ũc = 1.36. Fig. S3 shows a comparison of
the ground state density distributions for Ũ0 = {1, Ũc, 1.8}.
From this analysis we conclude that when treating the excess proton quantum-mechanically, a minimum in the ground
state probability density, reflecting the effect of the barrier, appears for barrier heights of the double-well potential

U0 >
ℏ
2

2m [d∗TW(U0)]
2 Ũc kBT, (S7)

which holds for U0 > 2.5 kBT , as can be read off from fig. S4. Therefore, using the naive assumption that a minimum in
the probability density at the barrier top indicates the presence of an effective quantum-mechanical barrier, which is far
from obvious, one could speculate that the presented results for the spectroscopic signatures of proton barrier-crossing
are expected to survive quantum-mechanical zero-point motion effects for high enough potential barriers.
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Figure S4. A minimum in the ground state probability density appears for 2m
ℏ2kBT

[d∗TW(U0)]
2 U0 > Ũc, obtained by rearrangement

of eq. (S7), where U0 is the barrier height of the double-well potential, Ũc = 1.36 is taken from fig. S2B and d∗TW(U0) is taken
from the linear fit in fig. S1B.
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II. SUMMARY OF PREVIOUS EXPERIMENTAL AND THEORETICAL STUDIES ON

INFRARED SPECTRA OF THE H5O2
+ CATION
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Figure S5. Collection of experimental (A) and theoretical (B) IR spectra of the H5O2
+ cation in the proton-transfer regime

(colored lines), compared to the IR spectrum obtained from AIMD simulations in this study, shown in black. A The experimental
spectra were recorded using infrared multiple-photon-dissociation (IRMPD) spectroscopy1,2, infrared predissociation (IRPD)
spectroscopy in Argon3 and Neon4 and Fourier-transform IR (FTIR) spectroscopy of H5O2

+ cations solvated in acetonitrile5. B

Theoretical spectra were obtained using AIMD simulations on the MP2/cc-pVTZ level6, the multiconfiguration time-dependent
Hartree (MCTDH) method7, CPMD simulations using the BLYP functional8, CPMD simulations using the BLYP functional9,
MD simulations on the CCSD(T) potential energy surface using MP2 dipole moment functions (based on10)9, AIMD simulations
on the BLYP-D3 TZV2P level11, MD simulations using the multistate-empirical-valence-bond (MS-EVB) method12, AIMD
simulations on the DZVP-BLYP level13, classical MD, centroid MD (CMD), as well as ring polymer MD simulations (RPMD,
TRPMD)14 on the CCSD(T) potential energy surface10. For comparison, the spectrum of the unconstrained H5O2

+ cation
obtained from AIMD simulations in this study (obtained on the BLYP-D3 TZV2P level) is shown as the black line at the top.
All theoretical spectra report on isolated H5O2

+.

A collection of IR spectra of the H5O2
+ cation in the so-called proton-transfer regime, 600 cm−1 to 1500 cm−1, obtained

from experiments is given in fig. S5A and from theoretical calculations in fig. S5B. The spectra vary greatly among
different experimental studies, highlighting the subtle differences between experimental techniques and setups and
also pointing to a pronounced temperature dependence of the spectra. Importantly, there are systematic differences
between the gas-phase spectra obtained for isolated H5O2

+ cations from theoretical calculations and experimental
spectra, which rely on different model systems and employ different techniques, one experimental study reports on
H5O2

+ cations in acetonitrile solution.
Regarding the experimental infrared multiple-photon-dissociation (IRMPD) spectra, the authors themselves raise the
question whether their data can be directly compared to linear absorption spectra1,2. For the infrared predissociation
(IRPD) spectra3,4 on the other hand, messenger-induced artifacts are known and have been studied theoretically8,11.
For the case of H5O2

+ cations solvated in acetonitrile solution, it is clear that the fluctuating electric fields created by
the solvent strongly influence the resulting spectra5. Thus, differences between the different experimental spectra do
not reflect inaccuracies in the measurements but rather subtle differences in the studied experimental systems.
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Figure S6. Comparison of theoretical IR spectra of the H5O2
+ cation in the proton-transfer regime at various temperatures

obtained from Car-Parinello MD (CPMD) simulations on BLYP level8,9.

The following collection of comments from the literature report on the discrepancies between the IRMPD and IRPD
experimental spectra of isolated H5O2

+ cations. Fridgen et al. 2 say that “at this point, we are unable to determine
the source of the discrepancy between the present infrared spectrum and that obtained by Asmis et al. 1”. Hammer
et al. 4 state “the IR profiles obtained in these two measurements1,2 were markedly different, perhaps reflecting the
different ion sources used in the two experiments and/or the specific fluence characteristics of the laser sources”. Sauer
and Döbler 6 discuss “that differences between the IRMPD spectrum1 and the IRPD spectrum3 should be due to the
different excitation mechanisms and/or different temperatures”. Vendrell, Gatti, and Meyer 7 state that “spectra could
not be consistently assigned in terms of fundamental frequencies and overtones of harmonic vibrational modes due to
large amplitude anharmonic displacements and couplings of the cluster1,2,4,15” and conclude their study by pointing
out that their “reported calculations are in excellent agreement to the experimental measurements of Refs.4,15 on the
predissociation spectrum of H5O2+·Ne.”, which is the most widely accepted low-temperature spectrum of the isolated
cation to date.
Furthermore, in theoretical studies, the temperature dependence was analyzed by Park et al. 8 and Kaledin et al. 9

in Car-Parinello MD (CPMD) simulations, presented in fig. S6, and by classical MD simulations on the CCSD(T)
potential energy surface using MP2 dipole moment functions (based on10), leading to the conclusion that “classical MD
simulations at a temperature of 30K qualitatively reproduce many of the key features in the experimental vibrational
[Ar-] predissociation”. Nuclear quantum effects were studied in detail by Rossi, Ceriotti, and Manolopoulos 14 , who
compared spectra from different ring polymer MD simulations. The messenger-induced changes of spectra apparent in
IRPD techniques were investigated by Park et al. 8 and Baer, Marx, and Mathias 11 .
More recent studies have focused on the H5O2

+ cation in larger water clusters or in bulk water or other solvents
and at room temperature5,12,13,16–18. Importantly, the electric fields of the environment heavily influence the spectra.
These studies identify remarkably broad IR features in the 1000 cm−1 to 1200 cm−1 regime, associated with “proton
shuttling”16, the “proton-transfer mode (PTM)”5,13,17 or the “shared proton stretch”18.
The review of the published experimental and theoretical data shows that the data produced in this study is in
qualitative agreement with previous results on H5O2

+ cations in gas phase. However, especially in the region of
800 cm−1 to 1200 cm−1 associated with the proton-transfer motion, large temperature and system-dependent differences
between the previously published results are observed and reflect the incomplete understanding of proton-transfer
dynamics.
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III. NORMAL-MODE ANALYSIS OF THE H5O2
+ CATION

101

102

103

ω
χ̃
′
′ X
[T
H
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Figure S7. IR spectra of the excess proton (colored lines) in the H5O2
+ cation for different constraint oxygen distances ROO

compared to normal-mode spectra calculated from energetically optimized structures and projected on the proton coordinate
(grey dashed sticks). The discrete normal modes sum to smooth spectra (grey lines) by including line-broadening at finite
temperature obtained from damped harmonic oscillations of the normal modes according to eq. S36 in section X and assuming
a friction coefficient of γ =16u/ps. The spectra are shown for different orientations (A–C, G–I: x-axis connecting the two
oxygens, D–F, J–L: yz-plane).

The normal modes are obtained as the Eigenvectors of the Hessian of the optimal structure in a chosen coordinate
system, the corresponding Eigenvalues determine the vibrational frequencies. The normal-mode analysis of the different
H5O2

+ systems was performed for energetically optimized structures using the same set of parameters as for the AIMD
simulation.
A projection of the Eigenvectors on the proton coordinate allows to obtain the relative magnitudes of the excess-proton
spectra predicted from the normal-mode analysis. These are scaled to the magnitudes of the excess-proton spectra
obtained directly from the AIMD simulations for various ROO and orientations in fig. S7. To improve the normal-mode
spectra, line-broadening of the normal modes at finite temperature is modeled by damped harmonic oscillations (see SI
section X). For vibrational motion in the yz-plane the agreement is very good for all barrier heights indicating, that
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the method is well suited for modeling the excess-proton dynamics without a barrier. Along x the normal mode spectra
serve to explain the major peaks of the spectra at high frequencies, which are thereby identified as the normal-mode
contributions. The broad low-frequency shoulder, which is related to the barrier-crossing effects, can obviously not be
modeled using normal modes.
The system with ROO = 2.40Å represents the global unconstrained minimum of the free-energy landscape, shown in
fig. 1D in the main text, and can therefore be used to compare qualitatively to published data on the unconstrained
H5O2

+ cation, as done in tab. S1 for the range 100 cm−1 to 2000 cm−1. The normal-modes can be grouped to rocking
and wagging modes in the range 300 cm−1 to 600 cm−1, the water-water stretch at around 550 cm−1 to 650 cm−1, which
is missing in the constrained case, the widely discussed proton-transfer mode along x, which varies greatly between
800 cm−1 to 1200 cm−1, a pair of modes between 1300 cm−1 to 1600 cm−1, associated with perpendicular excess-proton
motion in the yz-plane, and the two water-bending modes at 1600 cm−1 to 1800 cm−1, for which the lower one shows
excess-proton motion in the yz-plane (named in-phase or gerade) and the higher one shows excess-proton motion along
x (named out-of-phase or ungerade).
Illustrations of the normal modes in the range 100 cm−1 to 2000 cm−1 of H5O2

+ cations with various contrained
ROO are shown in fig. S8, where the colored frames indicate similar normal modes for different values of ROO.
Fig. S9 summarizes the frequencies of the normal modes for all values of ROO and highlights the associated relative
excess-proton-motion intensities either along x or in the yz-plane. Most modes shift only weakly, including the
wagging and rocking modes in the range 300 cm−1 to 600 cm−1 and the pair of modes between 1300 cm−1 to 1600 cm−1,
associated with perpendicular excess-proton motion in the yz-plane. However, the proton-transfer mode (1157 cm−1

for ROO = 2.40Å) strongly increases for values of ROO ≥ 2.40Å, as shown previously by Wolke et al. 19 for the
D5O2

+ cation, which possibly explains why the proton-transfer mode in bulk is suggested to reside at much higher
wavenumbers compared to the gas-phase spectra13. The in-phase water bending mode shows no shifting but the
out-of-phase water bending mode, associated with excess-proton motion along x, strongly shifts. Generally, modes
associated with proton motion along x are shown to be highly sensitive on the value of ROO, while modes that are
associated with proton motion in the yz-plane are not.
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Figure S8. Illustrations of the normal modes of the H5O2
+ cation for various constrained ROO, projected on the xy and xz

planes. The colored frames guide the eye through the shifting of a respective normal mode through A-F.
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Figure S9. Normal mode frequencies of the excess-proton dynamics in the H5O2
+ cation for various constrained ROO as shown

in fig. S7. The shading indicates the relative amplitudes of the respective normal modes, normalized to the maximal amplitude
for each value of ROO. The colors and grey dashed lines guide the eye through the shifting of a respective normal mode, as also
shown in fig. S8.
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IV. DECOMPOSITION OF THE H5O2
+ IR SPECTRA INTO EXCESS-PROTON AND WATER

CONTRIBUTIONS
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total

H
+

2H2O

difference

101 102 103

f [cm−1]

100

101

102

103

ω
χ̃
′
′ Y
Z
[T
H
z]

100 101 102
f [THz]

A

D

100

101

102

103

ω
χ̃
′
′ X
[T
H
z]

ROO = 2.40 Å
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Figure S10. Decomposition of the IR spectra of the H5O2
+ cation with two constrained oxygens at a given distance ROO in

different directions (A–C, G–I: along the x-axis connecting the two oxygens, D–F, J–L: along the yz-plane) into water and
excess-proton contributions. The total IR spectra are shown in grey, the spectra of the excess proton in green and the spectra of
the two water molecules in blue. The cross-correlation spectrum defined as χ̃′′

H+,H2O
= χ̃′′

tot − χ̃′′

H+ − χ̃′′

H2O is shown in red. The
dashed red line denotes negative values of the cross-correlation spectrum.

By using Wannier centers for charge localization, the total dipole moment of the simulation systems can be exactly
decomposed into proton and water contributions ptot(t) = pH+(t) + pH2O(t). A comparison of the IR spectra of the
total dipole moment ωχ̃′′

tot of the H5O2
+ cation for various constrained oxygen positions to the power spectra of only

the excess proton ωχ̃′′
H+ and the power spectra of the dipole moments of the two flanking water molecules ωχ̃′′

H2O
is

shown in fig. S10A-L in different directions. As discussed in SI section VII, the cross-correlation spectra ωχ̃′′
H+,H2O

,
shown in red in fig. S10A-L, are proportional to the cross-correlations of water-dipole-moment and excess-proton
dynamics. Along x, the cross-correlation spectra of the six systems shown here, are nearly entirely positive as well as
nearly proportional to the power spectrum of the proton itself, indicating constructive coupling of the proton motion
to the water dipole moments along this axis, as previously shown6. An apparent exception to this is the rocking and
wagging regime at 300 cm−1 to 600 cm−1 and the split OH-stretching mode at around 3500 cm−1, which show a strong
negative cross-correlation spectrum in both x direction and yz-plane. Adjacent to this band all systems show two weak
OH-stretching vibrations along x, likely a Stark effect of the mean excess-proton field on the water dipole moments.
In the yz-plane the cross-correlation spectra are nearly entirely negative, indicating mainly out-of-phase motion of the
excess-proton and the water dipole moments, producing generally weaker spectra in yz compared to x.
It can be concluded that the IR spectrum of the H5O2

+ cation along the axis connecting the two water oxygens reflects
the excess-proton dynamics. This justifies the IR signal to be used as a reporter of the excess-proton dynamics, as well
as the focus on its dynamics.
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V. COMPARISON OF CONSTRAINED AND UNCONSTRAINED DICHROIC IR SPECTRA OF

THE H5O2
+ CATION
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Figure S11. IR spectra of the H5O2
+ cation in different directions (A, D, G, J: along the x-axis connecting the two oxygens,

B, E, H, K: along the yz-plane C, F, I, L: isotropic spectrum). A–I The colors correspond to systems with different
fixed oxygen-oxygen separation ROO, grey lines denote the unconstrained system. J–L Comparison of the IR spectra of
the unconstrained system (grey lines) to a Boltzmann average (red lines) according to eq. (S8) of the spectra in A-I. The
HOH-bending mode and OH-stretching mode of the water molecules are indicated in F and I. The short straight grey lines in A,
D, G and J indicate the ω2-scaling associated with the low-frequency shoulder of the power spectra.

IR spectra of the unconstrained H5O2
+ cation and various systems with constrained ROO are shown in fig. S11

in different directions. The x-axis corresponds to the direction connecting the two oxygens, while the yz-plane is
orthogonal to that axis, as illustrated in fig. 1A in the main text. Interestingly, the spectra in x-direction strongly
depend on the value of the constrained oxygen separation ROO for frequencies lower than 2500 cm−1 (figs. S11A, S11D,
S11G and S11J). The HOH-bending mode is shifted to almost 2000 cm−1 for ROO = 2.32Å (fig. S11A) and to slightly
lower frequencies than the unconstrained system for ROO ≥ 2.40Å (figs. S11D and S11G), whereas the frequency of
the OH-stretching mode is not affected by fixing ROO.
The various spectra for the yz-plane in figs. S11B, S11E, S11H and S11K are indistinguishable on the other hand.
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Here, the dominant features are the librations of the water molecules at 300 cm−1 and the OH-stretching mode at
around 3500 cm−1. While the OH-stretching mode appears in both directions, the HOH-bending mode is mainly
visible along the x-axis. Note that in the yz-plane the HOH-bending mode contributions of the outer hydrogens of
each water molecule cancel out due to symmetric motion with respect to the x-axis.
The isotropic spectra in figs. S11C, S11F, S11I and S11L depend on ROO only in the regime 400 cm−1 to 1700 cm−1

since for lower frequencies, between 10 cm−1 to 400 cm−1, the yz-contributions to the isotropic spectrum are dominant.
In particular, this motivates the analysis of dynamics along x-direction, which shows the dominant contribution to the
isotropic spectrum except for very low frequencies.
Interestingly, the spectra of the unconstrained systems are well recovered by a Boltzmann average of the spectra of the
systems with fixed ROO according to

ωχ̃′′(ω)<ROO> =

∑
i ωχ̃

′′(ω)ROOi
e−U(ROOi

)/kBT

∑
i e

−U(ROOi
)/kBT

, (S8)

using the free energy along ROO of the unconstrained system, U(ROO), shown in fig. 1D in the main text. As shown
in figs. S11J, fig. S11K and fig. S11L, the agreement is very good along all directions, which indicates a sufficient
dynamic decoupling of the slow oxygen coordinate ROO from the proton coordinate d with respect to IR spectra and
allows observations for the constrained systems to be generalized to the unconstrained system.

VI. RECROSSING TRANSFER PATHS OF THE EXCESS PROTON IN THE H5O2
+ CATION

After crossing the barrier once, the excess proton often immediately recrosses the barrier. In order to quantify this effect,
the transfer paths are grouped into transfer events. A transfer event is defined by subsequently occurring transfer paths
without recrossing of the same minimum and is sorted by the number of these crossings. An example for this definition
is given in fig. S12A. The normalized distribution of the transfer events by the number of recrossings, in the following
called the recrossing-number distribution pRN(n), is given in fig. S12B. For low barriers up to 40 subsequent recrossings
are observed. For higher barriers the distribution is shifted to lower numbers of recrossings. Nevertheless, for all barrier
heights a significant fraction of transfer events consist of multiple recrossings,

∑∞
i=1 pRN(n) = 0.47 for ROO = 2.56Å,

0.32 for ROO = 2.64Å and 0.14 for ROO = 2.72Å. The mean number of recrossings is
∑∞

i=0 n pRN(n) = 1.84 for
ROO = 2.56Å, 0.70 for ROO = 2.64Å and 0.41 for ROO = 2.72Å.
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Figure S12. A Example trajectory of the excess-proton coordinate d(t) in the H5O2
+ cation with constrained ROO=2.64Å,

showing nine transfer paths between the minima of the free energy denoted as grey dotted lines. The first three transfer paths
belong to a single transfer event (with two recrossings). The subsequent two transfer paths also belong to a single transfer event
(with one recrossing). The remaining four transfer paths according to our definition show no recrossing. It follows pRN(0) = 4/6,
pRN(1) = 1/6 and pRN(2) = 1/6. B Recrossing-number probability distributions pRN(n) normalized such that

∑
∞

n=0 pRN(n) = 1,
for different ROO.
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VII. IR POWER SPECTRA FROM LINEAR-RESPONSE THEORY

Assuming linear response of an observable x(t) with respect to a force that couples to an observable y(t), the response
function χxy(t) is related to the correlation function Cxy(t

′) = ⟨x(t+ t′)y(t)⟩ for t ≥ 020

χxy(t) = − 1

kBT

d

dt
Cxy(t), (S9)

where kBT is the thermal energy. Realizing that χ(t) is single-sided, i.e. χ(t) = 0 for t < 0, the Fourier transform is
calculated as

χ̃xy(ω) = − 1

kBT

∫ ∞

0

dt eiωt d

dt
Cxy(t)

= − 1

kBT

(
Cxy(0)− iω

∫ ∞

0

dt eiωtCxy(t)

)

= − 1

kBT

(
Cxy(0)− iωC̃+

xy(ω)
)
, (S10)

where the superscript + denotes a single-sided Fourier transform. In case of x = y, Cxx(t) is an autocorrelation
function, which is real and symmetric, therefore it follows for the imaginary part of the response function in Fourier
space

χ̃′′
xx(ω) =

1

kBT
ωRe(C̃+

xx(ω)) (S11)

=
1

kBT

ω

2
C̃xx(ω). (S12)

When computing the power spectra of a stochastic process x(t), limited to the time domain [0, Lt], the Wiener-Kintchine
theoreme, eq. (S65) in section XVI, can be used to express C̃xx(ω) in terms of x̃(ω), turning eq. (S12) into

χ̃′′
xx(ω) =

ω

2kBTLt
|x̃(ω)|2. (S13)

In case of x(t) being the polarization p(t) of the system, which is coupling to an external electric field E(t), the
dimensionless dielectric susceptibility χ(t) is given by

χ̃(ω) =
1

V ϵ0l
⟨χ̃pp(ω)⟩, (S14)

where ϵ0 is the vacuum permittivity, V is the system volume and an average is performed over the l dimensions of p.
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VIII. SPECTRAL CROSS CONTRIBUTIONS OF EXCESS-PROTON DYNAMICS IN THE H5O2
+

CATION

A decomposition of a trajectory x(t) into two parts x(t) = x1(t) + x2(t) gives rise to three contributions in the total
power spectrum

ωχ̃′′
xx(ω) =

ω2

2kBT

[
C̃1(ω) + C̃2(ω) + 2C̃1,2(ω)

]

= ω
[
χ̃′′
1(ω) + χ̃′′

2(ω) + χ̃′′
1,2(ω)

]
, (S15)

where the cross-correlation contribution χ′′
1,2(ω) is defined such that it equals the difference spectrum

χ̃′′
diff(ω) = χ̃′′

xx − χ̃′′
1(ω)− χ̃′′

2(ω) = χ̃′′
1,2(ω)

=
ω

kBT
C̃1,2(ω). (S16)

A positive cross-correlation spectrum hints to in-phase motion, a negative cross-correlation spectrum to out-of-phase
motion of x1(t+ t′) and x2(t) at a given frequency.
Therefore the decomposition of the excess-proton dynamics in the time domain according to d(t) = dTW(t) + dTP(t) +
dNM(t) into a transfer-waiting dTW(t), a transfer-path dTP(t) and a normal-mode contribution dNM(t), as introduced
in fig. 2 in the main text, produces spectral cross contributions. The spectral contributions ωχ̃′′

TW, ωχ̃′′
TP and ωχ̃′′

NM

as well as the spectral cross contributions ωχ̃′′
TW,NM, ωχ̃′′

TP,TW and ωχ̃′′
NM,TP resulting from this decomposition are

shown in fig. S13.
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Figure S13. Spectral decomposition of the excess-proton dynamics in the H5O2
+ cation for different constrained ROO (A:

ROO = 2.56Å, B: ROO = 2.64Å, C: ROO = 2.72Å), similar to the results in fig. 2B in the main text (colored lines). The
different cross-contributions are shown in red and negative cross-contributions as red broken lines.
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IX. DYNAMICS OF A TWO-STATE PROCESS

Consider an arbitrary two-state process d(t) characterized by a a jump distance D, a jump-time probability distribution,
which is the transfer-waiting-time probability distribution pTW(t) with

∫∞
0

pTW(t)dt = 1, and a survival probability
qTW(t) =

∫∞
t

pTW(t′)dt′. The conditional expectation values ⟨d(t)⟩|d(0) for the process starting at time t = 0 at either
d(0) = 0 or d(0) = D are thus given as

⟨d(t)⟩|d(0)=0 =
�

�
��0 p00(t) +D p0D(t), (S17)

⟨d(t)⟩|d(0)=D =
�

�
�
�0 pD0(t) +D pDD(t), (S18)

where pxy(t) denotes the probability to be at d(t) = y when starting at d(0) = x. In the long-time limit each state has
equal probability. The autocorrelation function, C(t) = ⟨d(t)d(0)⟩, is therefore given as

⟨d(t)d(0)⟩ = 1

2

(
(

(
(

(
(

((

0 ⟨d(t)⟩|d(0)=0 +D ⟨d(t)⟩|d(0)=D

)
(S19)

=
D2

2
pDD(t). (S20)

In order to express the probability pDD(t) in terms of the first-passage-time distribution pTW(t) and survival probability
qTW(t), all possible jumps within time t have to be considered, as illustrated in fig. S14

pDD(t) =

∫ ∞

0

dtDqTW(tD)
∞∑

N=0

N∏

j=1

∫ ∞

0

dtDj pTW(tDj )

∫ ∞

0

dt0jpTW(t0j ) δ


t− tD −

N∑

j=1

(tDj + t0j )


 .

(S21)

Figure S14. Schematic of a binary jump process d(t) with jumps separated by residence times t0j and tDj following the notation
considered in eq. (S21). A doublewell potential, U(d), is shown to highlight the relation of the binary jump process to the
barrier-crossing dynamics.
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Since pTW(t) and qTW(t) are single-sided, a single-sided Fourier transform is performed,

p̃+DD(ω) =

∫ ∞

0

dt eiωt

∫ ∞

0

dtDqTW(tD)
∞∑

N=0

N∏

j=1

∫ ∞

0

dtDj pTW(tDj )

∫ ∞

0

dt0jpTW(t0j ) δ


t− tD −

N∑

j=1

(tDj + t0j )




(S22)

=

∫ ∞

0

dtDqTW(tD)
∞∑

N=0

N∏

j=1

∫ ∞

0

dtDj pTW(tDj )

∫ ∞

0

dt0jpTW(t0j ) e
iω[tD+

∑N
j=1(t

D
j +t0j )]

(S23)

=q̃TW(ω)
∞∑

N=0

p̃TW(ω)2N (S24)

=
q̃TW(ω)

1− p̃TW(ω)2
, (S25)

and it follows for the single-sided Fourier-transformed autocorrelation, eq. (S20),

C̃+(ω) =
D2

2

q̃TW(ω)

1− p̃TW(ω)2
. (S26)

From eqs. (S10) and (S26) we obtain our expression for the response function of the binary jump process

χ̃DD(ω) = − D2

2kBT

(
1− iωq̃TW(ω)

1− p̃TW(ω)2

)
. (S27)

In case of the jumping variable d(t) being a polarization with polarization jump 2qd∗TW, where q is the charge and
d∗TW a length scale, the dielectric susceptibility of the binary polarization jump process reads

χ̃(ω) = −2q2d∗TW
2

V ϵ0kBT

(
1− iωq̃TW(ω)

1− p̃TW(ω)2

)
, (S28)

and eventually its power spectrum, proportional to the imaginary part of the dielectric susceptibility, is obtained as

ωχ̃′′(ω) =
2q2d∗TW

2

V ϵ0kBT
Re
(

ω2q̃TW(ω)

1− p̃TW(ω)2

)
. (S29)
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X. POWER SPECTRUM OF THE DAMPED HARMONIC OSCILLATOR

The absorbed power ωχ̃′′
xx(ω) of the damped harmonic oscillator described by the differential equation

mẍ(t) = −γẋ(t)− kx(t) + Fext(t), (S30)

is computed from the linear response in Fourier space

χ̃xx(ω) =
x̃(ω)

F̃ext(ω)
(S31)

= (k −mω2 − iγω)−1 (S32)

=
k −mω2 + iγω

(k −mω2)2 + γ2ω2
, (S33)

where x̃(ω) is the oscillating variable, m the mass, γ the friction coefficient, k the spring constant of the harmonic
potential and F̃ext(ω) an external force. For the power spectrum follows

ωχ̃′′
xx(ω) =

γω2

(k −mω2)2 + γ2ω2
, (S34)

which by introducing the time scales τ = 2γ/k, τm =
√
m/k and length scale D with D2 = kBT/k converts to

ωχ̃′′
xx(ω) =

2D2

kBT

τω2

4(1− τ2mω2)2 + τ2ω2
. (S35)

In case of the oscillating variable x(t) being a polarization with polarization jump qD, where q is the charge, the
dielectric susceptibility reads

ωχ̃′′(ω) =
2q2D2

V ϵ0kBT

τω2

4(1− τ2mω2)2 + τ2ω2
. (S36)

In spectroscopy this is known as a Lorentz band shape, which in the overdamped case, τm → 0, reads

ωχ̃′′(ω) =
2q2D2

V ϵ0kBT

τω2

4 + τ2ω2
, (S37)

known as the Debye band shape21.
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XI. TRANSFER-PATH SHAPE

Kim and Netz 22 derived the transfer-path-time shape t(dTP) over a harmonic barrier by an exact calculation, valid for
arbitrary barrier height, as

t(dTP) =τ − 2γd∗TW
2

kBTU

∫ √
U(dTP/d∗

TW−1)

√
U

dy

(
erf(y)− erf(

√
U)

erf(
√
U(dTP/d∗TW − 1))− erf(

√
U)

− 1

2

)
D+(y), (S38)

where D+(x) = e−x2 ∫ x

0
dt et

2

is the Dawson integral function, γ is the friction constant, U = U0/kBT is the
dimensionless barrier height, d∗TW a length scale and τ the time of the complete transition path across 2d∗TW. Note
that the shape function is expressed at time t as a function of position d. The second term in eq. (S38) vanishes for
dTP = 2d∗TW and reduces to −τ for dTP = 0 (derived in22) and therefore t(dTP = 0) = 0 and t(dTP = 2d∗TW) = τ . For
a variable s = y/

√
U , eq. (S38) is rewritten as

t(dTP) =τ − 2γd∗TW
2

kBT
√
U

∫ dTP/d∗

TW−1

1

ds

(
erf(

√
Us)− erf(

√
U)

erf(
√
U(dTP/d∗TW − 1))− erf(

√
U)

− 1

2

)
D+(

√
Us). (S39)

For large U ≫ 1 and d∗TW < dTP < 2d∗TW, eq. (S39) reduces to the asymptotic expression

t(dTP) ≈ τ +
γd∗TW

2

kBT

∫ dTP/d∗

TW−1

1

ds
D+(

√
Us)√

U

= τ +
γd∗TW

2

2kBTU
ln(dTP/d

∗
TW − 1), (S40)

where we use D+(
√
Ut)/

√
U ≈ 1/(2Us).

Therefore, further using the symmetric nature of t(dTP) in the limit U → ∞, we obtain the asymptotic expression for
t(dTP) as

t(dTP) =

{
− γd∗

TW
2

2kBTU ln(1− dTP/d
∗
TW), for 0 < dTP < d∗TW

τ +
γd∗

TW
2

2kBTU ln(dTP/d
∗
TW − 1), for d∗TW < dTP < 2d∗TW.

(S41)

It is straightforward to invert eq. (S41), yielding

dTP(t) =





−d∗TW

(
e
−

2kBTUt

γd∗
TW

2 − 1

)
, for 0 < t < τ/2

d∗TW

(
e

2kBTU(t−τ)

γd∗
TW

2
+ 1

)
, for τ/2 < t < τ.

(S42)

Using the curvature parameter κ = γd∗TW
2/(2kBTU), and shifting the variables t → t+ τ/2 and dTP → dTP + d∗TW to

fulfill dTP(t = 0) = 0, we arrive at the leading order expression as the sum of the above two functions

dTP(t) = d∗TW

[
e−

τ−2t
2κ − e−

τ+2t
2κ

]

= d∗TW

[
et/κ − e−t/κ

]
/e

τ
2κ . (S43)

This expression is easily compared to the transfer-path shape (in the presence of a harmonic potential) derived from
the path-integral approach (equivalent to eq. 3 in the main text)23,24

dTP(t) = d∗TW

[
et/κ − e−t/κ

]
/N , (S44)

with a slightly different normalization factor N = e
τ
2κ − e−

τ
2κ . Note that the difference vanishes in the high-barrier

limit U → ∞, i.e. κ → 0, in which limit eq. (S43) derived from reference22 becomes equivalent to eq. (S44) derived
from the path-integral approach.
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XII. SPECTRAL SIGNATURES OF TRANSFER PATHS

The IR spectral signature of transfer paths is derived by modeling the Fourier-transformed transfer-path contribution
d̃TP(ω) based on the transfer-path time τTP and the recrossing-number probability distribution pRN(n).
Recall that the power spectrum ωχ̃′′(ω) of a stochastic process x(t) limited to the time domain [0, Lt] is computed
from the Fourier-transformed expressions x̃(ω) as presented in section VII. In the following an expression for d̃TP(ω)
is derived, based on the model for dTP(t) illustrated in fig. S15A. The mean transfer path is expected to repeat on
average with period τTW. The model is therefore constrained to [0, τTW ]; using eq. (S13), the IR power spectrum of
the transfer-path contribution can then be written as

ωχ̃′′
TP(ω) = ω2 q2

V ϵ0kBTτTW
d̃TP(ω)d̃

∗
TP(ω), (S45)

where q is the displaced charge. dTP(t) is modeled by a single mean transfer path with shape d0TP(t) that is followed by
a subsequent number of recrossing transfer paths, according to the recrossing-number probability distribution pRN(n)

dTP(t) =

∞∑

n=0

pRN(n)

n∑

m=0

(−1)md0TP (t−mτTP) , (S46)

where the factor (−1)m accounts for the alternation of recrossing transfer paths that are going up and down. A Fourier
transform with respect to t turns eq. (S46) into

d̃TP(ω) =
∞∑

n=0

pRN(n)
n∑

m=0

(−1)m
∫ ∞

−∞
dt eiωt d0TP(t−mτTP)

= d̃0TP(ω)
∞∑

n=0

pRN(n)
n∑

m=0

(−1)me−iωmτTP . (S47)

An expression for the mean transfer-path shape d0TP(t) is obtained by regarding ensembles of rescaled transfer paths,
shown in fig. S16 for various ROO, along with the mean transfer paths, obtained from space-averaging the ensembles of
rescaled transfer paths at each rescaled time between the respective turning points of the trajectory. The mean value
at the turning points defines the length scale d∗TP. The single mean transfer path d0TP(t) reaching between the turning
points is then modeled by a truncated straight line

d0TP(t) = d∗TP

(
2t

τTP
− 1

)
(θ (t)− θ (t− τTP)) , (S48)

(S49)

with the Fourier transform

d̃0TP(ω) = d∗TP

eiωτTP (2− iωτTP)− 2− iωτTP

ω2τTP
. (S50)

The time scale τTP in eq. (S47) is estimated directly from the simulation data, using the distributions shown in
fig. S15B – D. The distributions of transfer-path times considering only multiple transfers in fig. S15B–D are sharply
peaked at roughly the same value τTP = 0.023 ps for all systems.
To account for subsequent recrossings, the expression eq. (S47) is evaluated for an exponential decay of the recrossing-
number probability distribution, pRN(n) = (1− e−α)e−αn, with decay parameter α and shown in fig. S17 for the given
systems. Using this fit function the final expression for the transfer-path spectral contribution evaluates to

ωχ̃′′
TP(ω) =

2d∗TP
2q2

V ϵ0kBTτTW

eα
(
ωτTP cos

(
ωτTP

2

)
− 2 sin

(
ωτTP

2

))
2

ω2τ2TP (cosh(α) + cos (ωτTP))
. (S51)

An approximate expression for eq. (S51) is derived by factorizing ωχ̃′′
TP(ω) into the recrossing contribution

Xrec(ω, α, τTP) and the shape contribution |d̃0TP(ω, τTP)|2

|d̃0TP(ω, τTP)|2 = d∗TP
2 4
(
ωτTP cos

(
ωτTP

2

)
− 2 sin

(
ωτTP

2

))
2

ω4τ4TP

, (S52)

Xrec(ω, α, τTP) =
eαω2τ2TP

2 (cosh(α) + cos (ωτTP))
, (S53)

ωχ̃′′
TP(ω) =

q2

V ϵ0kBTτTW
Xrec(ω, α, τTP)|d̃0TP(ω, τTP)|2. (S54)
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Figure S15. A Model for the transfer-path trajectory dTP(t) with length τTW. In this example the initial transfer path
d0TP(t) with duration τTP starts at t = 0 and is followed by N = 2 recrossing transfer paths, where N is drawn from the
recrossing-number probability distribution pRN(N). The recrossing transfer paths are alternating and shifted relative to each
other by the recrossing time τRT ≈ τTP. B–F Transfer-path-time probability distributions measured between the turning points
(pTP(t), B-D), between the minima of the free-energy landscape, (pwTP(t), E) and recrossing-time distributions measured between
recrossings of d = 0 (pRT(t), F). The distributions (data points) are fitted to pTP(t) = tβ−1

(β−1)!

(
β
τ

)β
e−βt/τ (solid, broken or

dotted lines). Note that only the red curves in B–D are considered in the calculation of the TP spectral signature.
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A B C

Figure S16. Ensembles of transfer paths sampled from the trajectories of the excess proton in the H5O2
+ cation for different

constrained oxygen distances ROO (A: ROO = 2.56Å, B: ROO = 2.64Å, C: ROO = 2.72Å), scaled to their individual transfer-
path times tTP between the respective turning points. The blue dashed lines indicate the mean initial and final values, which
are used to estimate the parameter d∗TP, the mean transfer-path distance along d. The horizontal grey dashed lines indicate the
minima of the free energy, which are used to estimate the parameter d∗TW. Mean transfer paths averaged over d (colored lines)
are fitted between the minima of the free energy using eq. (3). The fits are shown as red dotted lines. Fit parameters are given
in the legend.

The relevant maximum of Xrec(ω, α, τTP) resides at ω = π/τTP, which minimizes the denominator in eq.(S53). A
Taylor expansion of the cos function in eq.(S53) to second order in ω around π/τTP leads to

Xrec(ω, α, τTP) =
eαω2τ2TP

2 cosh(α)− 2 + (π − ωτTP) 2
. (S55)

Furthermore the shape contribution |d̃0TP(ω, τTP)|2 can be estimated around ω = π/τTP by the following expression,
which is in good agreement with the local series expansion

|d̃0TP(ω, τTP)|2 = d∗TP
2 64ω2τ2TP

π4 (π + ωτTP) 2
, (S56)

ωχ̃′′
TP(ω) =

d∗TP
2q2

V ϵ0kBTτTW

64eαω4τ4TP

π4 (π + ωτTP) 2 (2 cosh(α)− 2 + (π − ωτTP) 2)
. (S57)

Note that eq. (S57) is a multiplication of a Debye-type function with the shoulder frequency ω = π/τTP, stemming
from the shape contribution eq. (S56), and a Lorentz-type function with the resonance frequency ω = π/τTP, stemming
from the recrossing contribution eq. (S55).
If the transfer-path shape d0TP(t) is alternatively modeled by a truncated cosine wave with period 2τTP according to

d0TP,cos(t) = d∗TP cos

(
πt

τTP

)
(θ (t)− θ (t− τTP)) , (S58)

with the Fourier transform

d̃0TP,cos(ω) = d∗TP

iωτ2TP

(
1 + eiωτTP

)

π2 − ω2τ2TP

, (S59)
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Figure S17. Recrossing-number probability distributions pRN(n) for different constrained oxygen distances ROO (A: ROO = 2.56Å,
B: ROO = 2.64Å, C: ROO = 2.72Å), normalized to

∑
∞

n=0 pRN = 1 and fits according to pRN(n) = (1− e−α)e−αn. The grey
shaded areas show the variation of α± 20%
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A B

Figure S18. Models for the transfer-path spectral contribution given by eq. (S51) for the linear transfer-path shape (A) and
eq. (S60) for the cosine transfer-path shape (B). The approximations are given by eqs. (S57) and (S61) and are shown as black
dashed lines in A and B. The grey shaded areas show the variation of α± 20%.

a slightly different result is obtained.
The resulting final expression

ωχ̃′′
TP,cos(ω) =

d∗TP
2q2

V ϵ0kBTτTW

eαω4τ4TP (cos (ωτTP) + 1)

(π2 − ω2τ2TP)
2 (cosh(α) + cos (ωτTP))

, (S60)

is Taylor-approximated as above to give

ωχ̃′′
TP,cos(ω) =

d∗TP
2q2

V ϵ0kBTτTW

eαω4τ4TP

(π + ωτTP) 2 (2 cosh(α)− 2 + (π − ωτTP) 2)
, (S61)

which are both shown in fig. S18B. In fact both approximate equations differ only by a factor of 64/π4 ≈ 2/3. The
linear shape was chosen for the presentation in the main text because of the good qualitative agreement of the mean
TP shape in fig. S16 and quantitative agreement of the spectral shape in fig. S18A.
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XIII. IR SPECTRAL DECOMPOSITION OF THE EXCESS-PROTON DYNAMICS IN THE

CONSTRAINED H5O2
+ CATION

Spectral decompositions of the excess-proton dynamics in the H5O2
+ cation for different constrained ROO are shown

in fig. S19. Theoretical spectra are shown for the barrier-crossing model derived in section IX (respective eq. (1) in the
main text) and the transfer-path model derived in section XII (respective eq. (5) in the main text), using the distance
between the minima of the free energy in fig. 4B in the main text and fits applied to the distributions in fig. 4C in the
main text and in section XII.
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Figure S19. Spectral decomposition of the excess-proton dynamics in the H5O2
+ cation for different constrained ROO (A:

ROO = 2.56Å, B: ROO = 2.72Å) in analogy to the results in fig. 2B in the main text (colored lines). Theoretical spectra for the
models discussed in the previous sections are shown as grey broken lines.
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XIV. IR SPECTRA OF THE DEUTERATED H5O2
+ CATION

In order to test isotope effects, simulations were performed with the excess proton replaced by an excess deuteron. The
resulting IR spectra for various ROO and directions are shown in fig. S20 and compared to the excess-proton data. The
regime between 400 cm−1 to 2000 cm−1 shows various shifts to lower frequencies and also splittings. This H/D isotope
effect is expected since this region is linked to the excess-proton motion. As expected, the OH-stretching vibrations
are not effected. These vibrations are associated with the flanking water molecules, that are not deuterated. Fig. S21
compares the H/D isotope effect for the decomposed spectra analog to fig. 2 in the main text. In contrast to the
normal-modes involving the excess-proton as well as the transfer-path signature, which are all shifted by deuteration,
the low-frequency transfer-waiting shoulder does not shift.
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Figure S20. Comparison of the IR spectra of the H5O2
+ cation with an excess proton (1H+) or an excess deuteron (2H+) in

different directions. A, D, G: along the x-axis connecting the two oxygens, B, E, H: along the yz-plane, C, F, I: isotropic
spectra. Each row corresponds to a system with a distinct constrained oxygen distance ROO given in the first legend. The
HOH-bending mode and OH-stretching mode of the water molecules are indicated in D and E.

26

149



100

101

102

ω
χ̃
′
′
[T
H
z]

1H+, ROO = 2.56 Å
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Figure S21. Comparison of the IR spectra of the H5O2
+ cation with an excess proton (1H+) or an excess deuteron (2H+) for

different ROO (A: ROO = 2.56Å, B: ROO = 2.64Å, C: ROO = 2.72Å), decomposed as described in fig. 2 in the main text.
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XV. DEUTERON TRANSFER-WAITING TIMES

As discussed in the previous section, no isotope effect is found for the low-frequency transfer-waiting shoulder of the
IR spectrum, i.e. the mean transfer-waiting time τTW does not depend on the mass of the reaction coordinate, but
solely on friction constant γ, which is expected to be the same for the system with either an excess proton or an excess
deuteron. Unfortunately, the determination of the friction constant γ is not straight-forward. In fig. S22 the mean
transfer-waiting times τTW measured from the simulations are compared to the heuristic formula25

τTW = e
U0

kBT


m
γ

kBT

U0
+

π

2
√
2

γd∗TW
2

U0
+ 2

√
md∗TW

2

U0


 . (S62)

Since the mass m, barrier height U0 and widths of the barrier 2d∗TW are known (given in fig. S22), estimates for the
friction constant γ are obtained by comparing the simulation data to the heuristic formula. Note, that the theoretical
predictions are only valid for U0 > 2 kBT , and can therefore not be used for interpretation of the data for the lowest
barrier considered here25. The obtained values, γ ≈ 400 u/ps for ROO = 2.64Å and γ ≈ 900 u/ps for ROO = 2.72Å,
vary greatly and also deviate from the friction constants fitted to the line-broadening of the normal-modes, γ = 16 u/ps.
This discrepancy highlights the complex frequency dependence of dielectric friction, as previously discussed by Sedlmeier
et al. 26 and Brünig et al. 27 . Indeed, fig. S22 validates the observation of the negligible isotope effect on the mean
transfer-waiting time, since the heuristic formula of eq. (S62) shows little mass dependence in the predicted regime
of γ, as seen in figs. S22B and S22C (the systems with a substantial barrier) from the negligible difference between
the heuristic predictions for m = 1u (solid lines) and m = 2u (dashed lines) in the regime of the measured mean
transfer-waiting time (horizontal dotted lines).
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1H+, heuristic, m = 1u

1H+, AIMD

2H+, heuristic, m = 2u

2H+, AIMD

B

101 102 103 104

γ [u/ps]

101

τ
T
W

[p
s]

ROO = 2.72 Å
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Figure S22. The transfer-waiting times τTW of the excess proton (1H+) and the excess deuteron (2H+) of the H5O2
+ cation,

horizontal dotted lines, for different constrained oxygen distances ROO (A: ROO = 2.56Å, B: ROO = 2.64Å, C: ROO = 2.72Å),
compared to the heuristic formula eq. (S62), solid and broken lines, as a function of the friction constant γ. Parameters entering
the heuristic formula are given in the legends.
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XVI. WIENER-KINTCHINE THEOREM

The correlation function Cxy(t) of two stochastic processes x(t) and y(t) limited to the interval [0, Lt] is efficiently
computed from the Fourier-transformed expressions x̃(ω) and ỹ(ω) according to

Cxy(t) =
1

2π(Lt − t)

∫ ∞

−∞
dω e−iωtx̃(ω)ỹ∗(ω), (S63)

where the asterisk denotes the complex conjugate. This is known as the Wiener-Kintchine theoreme28. Both sides of
eq. (S63) are Fourier-transformed to give

∫ ∞

−∞
dt eiωt Lt

(
1− t

Lt

)
Cxy(t) = x̃(ω)ỹ∗(ω), (S64)

which in the limit of large Lt reduces to

C̃xy(ω) = L−1
t x̃(ω)ỹ∗(ω). (S65)

Eq. (S63) can be derived starting off with the definition of the correlation function

Cxy(t) =
1

Lt − t

∫ Lt−t

0

dt′ x(t′ + t)y(t′). (S66)

Defining x(t), y(t) = 0 for t ̸∈ [0, Lt], the integral bounds can formally be extended

Cxy(t) =
1

Lt − t

∫ ∞

−∞
dt′ x(t′ + t)y(t′), (S67)

and making use of the convolution theorem

Cxy(t) =
1

4π2(Lt − t)

∫ ∞

−∞
dt′
∫ ∞

−∞
dω e−iω(t+t′)x̃(ω)

∫ ∞

−∞
dω′ e−iω′t′ ỹ(ω′)

=
1

4π2(Lt − t)

∫ ∞

−∞
dω e−iωtx̃(ω)

∫ ∞

−∞
dω′ ỹ(ω′)

∫ ∞

−∞
dt′e−it′(ω+ω′)

=
1

4π2(Lt − t)

∫ ∞

−∞
dω e−iωtx̃(ω)

∫ ∞

−∞
dω′ ỹ(ω′)2πδ(ω + ω′)

=
1

2π(Lt − t)

∫ ∞

−∞
dω e−iωtx̃(ω)ỹ(−ω), (S68)

noting that ỹ(−ω) = ỹ∗(ω) for a real function y(t) in order to obtain eq. (S63).
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Supplementary Methods

Supplementary Methods 1:

Kramers-Kronig estimate of complex index of refraction

Our THz spectroscopic experiments measure the frequency dependent extinction coefficient,

αsolution(ω), defined by the Beer-Lambert law

αsolution(ω) =
1

d
ln

(
Iwater(ω)

Isolution(ω)

)
+ αwater(ω), (1)

where d is the sample thickness, Iwater(ω) and Isolution(ω) are the experimental transmitted

intensities of the water reference and the sample. αwater(ω) is the extinction coefficient

of bulk water and is taken from literature [1]. For comparison to the simulated data the

power loss, i.e. the absorption spectrum, proportional to the imaginary part of the dielectric

susceptibility χ′′(ω), has to be computed from the experimental extinction coefficient.

The extinction coefficient α(ω) is related to n′′(ω), the imaginary part of the index of

refraction, via

α(ω) =
2ωn′′(ω)

c
, (2)

where c is the speed of light in vacuum.

The complex dielectric susceptibility χ(ω) is related to the complex index of refraction n(ω)

as [2]

n2(ω) = [n′(ω) + i n′′(ω)]2 (3)

= 1 + χ(ω) = 1 + χ′(ω) + iχ′′(ω), (4)

from which follows

χ′(ω) = n′2(ω)− n′′2(ω)− 1 (5)

χ′′(ω) = 2n′(ω)n′′(ω). (6)

The missing real part of the index of refraction n′(ω) is related to the imaginary part n′′(ω)

by the Kramers-Kronig relation [3]

n′(Ω) = n′(∞) +
2

π
p.v.

∫
∞

0

ωn′′(ω)

ω2 − Ω2
dω, (7)
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where p.v. denotes the Cauchy principal value and n′(∞) is the real index of refraction at

the upper boundary of the integral. In practice, since experimental data is only available in

a limited frequency range, extrapolation beyond the data range may improve the Kramers-

Kronig inversion and a so-called ‘anchor point’, obtained from an independent measurement,

can be used to replace n′(∞) [4]. For measurements in the infrared (IR) regime, a good

estimate for n′(∞) is obtained by using the real index of refraction measured in the visible

[5].

We perform the Kramers-Kronig transform using a set of Ansatz functions for the index

of refraction, each consisting of a real part l′i(ω) and an imaginary part l′′i (ω), which follow

approximately from a Lorentz oscillator model for the dielectric susceptibility [5]

l′′i (ω) =
A2

iβiω

(ω2
0,i − ω2)2 + β2

i ω
2

(8)

l′i(ω) =
A2

i (ω
2
0,i − ω2)

(ω2
0,i − ω2)2 + β2

i ω
2
, (9)

and extrapolate beyond the range of the available experimental data. We fit the imaginary

index of refraction obtained from the experimental extinction coefficient α(ω) via eq. (2) as

n′′(ω) =
∑

i

l′′i (ω), (10)

0 5 10 15 20

f [THz]

0.0

0.2

0.4

0.6

n
′
′

H2O, Bertie, 1996

5 Lorentz fit

a

0 5 10 15 20

f [THz]

1.5

2.0

n
′

H2O, Bertie, 1996

eq. (11)

b

0 5 10 15 20

f [THz]

0

50

100

150

ω
χ
′′
[T
H
z]

H2O, Bertie, 1996

eq. (12)

c

Supplementary Figure 1. Example of the calculation of the absorption spectrum ωχ′′ from refractive

index data. The blue solid lines show literature data of water [1]. a: Imaginary part of the index

of refraction n′′ and a fit (black broken line) as a sum of five Lorentz-type fit functions eq. (8)

(red broken lines). b: Real part of the index of refraction n′ and the estimate (black broken line)

obtained from the Kramers-Kronig transform eq. (11) of the fit in a. The real parts of the individual

fit functions according to eq. (9) are shown as red broken lines, shifted by the offset n′

lit. = 1.33. c:

Absorption spectrum ωχ′′ and the estimate (black broken line) that is computed from the original

data for n′′ in a and the estimate for n′ in b.
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where the l′′i (ω) contain fit parameters Ai, ω0,i and βi. The real index of refraction is then

given by

n′(ω) = n′

lit. +
∑

i

l′i(ω), (11)

where the constant real index of refraction in the visible n′

lit. = 1.33 is taken from the

literature, which has been shown to be in general a good approximation for biological matter

[5]. The absorption spectrum, ωχ′′(ω), which is eventually used to compare to the simulation

data, is computed using eqs. (2) and (6) [6] as

ωχ′′(ω) = c α(ω)n′(ω), (12)

where α(ω) is the original data and n′(ω) is parametrized according to eq. (11). As a

benchmark example, Supplementary Fig. 1 illustrates the result of this procedure applied to

literature data of water [1] in the regime 10 cm−1 to 600 cm−1, for which the experimental

THz spectra are obtained. In Supplementary Fig. 2a the fits to the experimental THz data of

aqueous hydrochloric acid (HCl) solutions in the range 2M to 10M (colored solid lines) are

shown as black broken lines, that are used to estimate the real part of the refractive index,

shown in Supplementary Fig. 2b as broken colored lines. The fit parameters are reported in

Supplementary Tab. I. Eventually the resulting absorption spectra, shown in Supplementary

Fig. 2c, are used to compare to simulation data in the main text.

4
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Supplementary Figure 2. Calculation of the absorption spectra ωχ′′ from experimental THz extinction

coefficient spectra of aqueous HCl solutions at various concentrations. a: Imaginary part of the index

of refraction n′′ computed directly from the experimental absorption spectra (colored solid lines) and

fits (black broken lines). The pure water data (blue solid line, 0M) is taken from literature [1]. Each

fit is a sum of five Lorentz-type fit functions eq. (8) with fit parameters reported in Supplementary

Tab. I. b: Estimates of the real part of the index of refraction n′ (colored broken lines) obtained

from the fits in a according to eq. (11). c: Absorption spectra ωχ′′ (colored broken lines) that are

computed from the original data for n′′ in a and the estimates for n′ in b.
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Supplementary Table I. Fit parameters of the five Lorentz-type fit functions eq. (8), that are used to

fit the imaginary part of the index of refraction n′′ of aqueous HCl solutions at various concentrations

in Supplementary Fig. 2A.

Ai [THz] ω0,i/(2π) [THz] βi [THz]

0 M

0.679 1.749 53.66

0.3628 4.298 30.04

0.4378 5.653 26.39

0.1594 11.81 41.97

1.206 20.59 120.3

2 M

1.008 2.552 141.7

0.4925 4.314 34.67

0.3729 5.58 22.37

0.2535 11.01 40.95

1.121 20.16 117.5

4 M

0.7589 1.301 41.06

0.5611 4.178 35.08

0.3975 5.616 21.92

0.2813 10.49 32.56

1.175 19.82 137.2

Ai [THz] ω0,i/(2π) [THz] βi [THz]

6 M

0.9225 2.048 81.82

0.5483 4.082 32.04

0.4036 5.7 20.58

0.3602 10.55 33.78

1.04 18.67 118.9

8 M

0.7904 1.703 51.2

0.5899 4.124 32.88

0.4266 5.845 20.53

0.414 10.55 34.43

0.9807 17.85 112

10 M

0.85 2.035 72.92

0.6844 4.483 39.35

0.3892 6.035 19.1

0.3797 10.6 31.25

0.9387 17.08 109.7
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Supplementary Methods 2:

Excess-proton identification

The identification of excess protons from trajectory data is a non-trivial task since the notion

of an excess proton itself is subtle. While for the idealized structure of a Zundel cation

it is possible to identify one proton that is qualitatively different from the others, in that

it is symmetrically shared between two oxygen atoms, such a discrimination is impossible

for an ideal symmetric Eigen cation from a configuration at a single time. Certainly it is

possible to simply determine the protons that are the least closely associated to any oxygen

atom in the simulation at each time step and call them excess protons. This is a perfectly

reasonable choice when examining static properties of excess protons, as for example the

radial distribution functions (RDFs) in Supplementary Note 4. Marx et al. [7] used a similar

definition for the calculation of excess proton probability distributions in ab initio molecular

dynamics (MD) simulations of protonated water.

In this work, however, we are interested in dynamical properties of excess protons. Since we

aim to track and examine protons during their transfer between water molecules, including

when they stay close to an oxygen atom, a selection based on a static geometric criterion

would not suffice. Due to fluctuations of protons inside a hydronium molecule, also called

‘special pair dance’ [8, 9], a criterion based on instantaneous interatomic distances would

lead to the disruption of otherwise continuous proton-transfer trajectories. Instead, similar

to Calio et al. [9], we record the trajectories of protons that could potentially transfer from

one water to a neighboring one and later discard those that did not. In fact, we are selecting

protons that transfer from one water molecule to another and call them excess protons for

simplicity.

Selection of transfer candidates

Ignoring the possibility of spontaneous autoionization of water molecules, proton transfer can

only occur from one water molecule to another if the former has an extra proton associated

to it, i.e. if it is a hydronium molecule. For the identification of hydronium molecules we use

a geometric criterion: Each oxygen atom gets assigned its closest two protons which together

form water molecules. The remaining protons are then assigned to the water molecule with

7
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Supplementary Figure 3. Illustration of three consecutive snapshots during a proton transfer process.

Transfer candidates and selected protons are highlighted. It becomes apparent why two of the

protons belonging to one hydronium molecule are selected at the same time as transfer protons (see

second snapshot). Such overlapping trajectories lead to the fact that our conditions select more

protons than there are excess protons in the simulation.

the closest oxygen atom and together make up a hydronium molecule. All protons that belong

to such a hydronium molecule are considered candidates for proton transfer. Furthermore,

we exclude those candidates whose distance to their closest chloride ion is smaller than that

to their second closest oxygen atom. These protons reside between a chloride ion and an

oxygen atom (as opposed to residing between two oxygen atoms as most hydrogen atoms do)

and do not exhibit proton transfer between water molecules.

5.5%, 11.1% and 16.4% of all protons fulfill these conditions in the 2M, 4M and 6M

simulation, respectively. This means that on average 28.9, 56.4 and 78.4 protons, respectively,

are being selected as transfer candidates at each time step, which is a little less than three

times the number of excess protons NH+ = 10, 20 and 30 in each simulation. This is to be

expected, since each excess proton corresponds to one hydronium molecule which in turn

holds three protons that are part of H3O
+. The difference to 3NH+ is due to the excluded

protons that are located between an oxygen atom and a chloride ion.

Elimination of trajectories without transfer

The conditions explained above define proton trajectories that potentially contain proton

transfers between two water molecules. In order to further reduce the number of protons to

those that actually contribute to proton transfer, the trajectories are filtered by another -

dynamical - condition that selects only those trajectories which contain a transfer, defined

8
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by a change of the proton’s closest oxygen atom (the same criterion was used by Calio et al.

[9]). This last condition leaves ∼ 50% of the previously selected protons in each simulation

that actually contribute to the analysis, which is still more than NH+ selected protons per

time step because some trajectories overlap. This is the case since during the lifetime of

a hydronium molecule, two of its protons might be tracked at the same time. One proton

which transfers to initially create the respective hydronium molecule and one that transfers

away from it later on. Figure 3 illustrates such a situation.

9
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Supplementary Methods 3:

Fits of the free-energy landscape

The two-dimensional (2D) free energy landscape spanned by ROO and d shown in Fig. 4a in

the main text, is fitted for cuts through the free energy along d. As in the main text in Fig. 4,

here in Supplementary Fig. 4a, cuts along d are shown for ROO = 2.39Å, where the barrier

just vanishes (blue solid line), ROO = 2.42Å, where the absolute barrier height is minimal

(red solid line), and ROO = 2.51Å, for which the global minima of the 2D free energy are

obtained (green solid line). Additionally, some results for other values of ROO are shown as

gray solid lines. The data is fitted by the quartic expression F (d) = Fd=0(1 + γ2d
2 + γ4d

4),

shown as black broken lines in Supplementary Fig. 4a with the fit parameters reported in

Supplementary Tab. II. In Supplementary Fig. 4b the fit parameters γ2 (gray solid line)

and γ4 (gray broken line) are plotted over ROO. The vertical colored lines indicated the

respective values of ROO shown in Supplementary Fig. 4a. The barrier vanishes for γ2 > 0,

which defines the blue solid line. At the position where the absolute barrier height is minimal,

indicated by the red solid line, the quartic fit parameter γ4 is maximal.
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Supplementary Figure 4. Cuts along d through the two-dimensional free energy shown in the main

text in Fig. 4a and fitted to F (d) = Fd=0(1 + γ2d
2 + γ4d

4). (a) Cuts at various values of ROO are

shown as solid lines and fits as black broken lines with fit parameters reported in Supplementary

Tab. II. (b) The fit parameters γ2, shown as a gray solid line, and γ4, shown as a gray broken line,

are given over ROO.
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Supplementary Table II. Fit parameters for the fits shown in Supplementary Fig. 4a using the

quartic expression F (d) = Fd=0(1 + γ2d
2 + γ4d

4).

ROO [Å] Fd=0 [kBT ] γ2 [Å−2] γ4 [Å−4]

2.35 2.24 11.63 919.7

2.39 1.12 7.78 1099

2.42 0.73 -38.29 1747

2.45 0.78 -62.25 1625

2.51 1.76 -49.17 623.5

2.55 3.11 -35.24 319.6
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Supplementary Methods 4:

Wiener-Kintchine theorem

The correlation function Cxy(t) of two stochastic processes x(t) and y(t) limited to the time

interval [0, Lt] is efficiently computed from the Fourier-transformed expressions x̃(ω) and

ỹ(ω) according to

Cxy(t) =
1

2π(Lt − t)

∫
∞

−∞

dω e−iωtx̃(ω)ỹ∗(ω), (13)

where the asterix denotes the complex conjugate. This is known as the Wiener-Kintchine

theorem [10]. Both sides of eq. (13) are Fourier-transformed to give
∫

∞

−∞

dt eiωt Lt

(
1−

t

Lt

)
Cxy(t) = x̃(ω)ỹ∗(ω), (14)

which in the limit of large Lt reduces to

C̃xy(ω) = L−1
t x̃(ω)ỹ∗(ω). (15)

Eq. (13) can be derived starting off with the definition of the correlation function

Cxy(t) =
1

Lt − t

∫ Lt−t

0

dt′ x(t′ + t)y(t′). (16)

Defining x(t), y(t) = 0 for t ̸∈ [0, Lt], the integral bounds can formally be extended

Cxy(t) =
1

Lt − t

∫
∞

−∞

dt′ x(t′ + t)y(t′), (17)

and making use of the convolution theorem

Cxy(t) =
1

4π2(Lt − t)

∫
∞

−∞

dt′
∫

∞

−∞

dω e−iω(t+t′)x̃(ω)

∫
∞

−∞

dω′ e−iω′t′ ỹ(ω′)

=
1

4π2(Lt − t)

∫
∞

−∞

dω e−iωtx̃(ω)

∫
∞

−∞

dω′ ỹ(ω′)

∫
∞

−∞

dt′e−it′(ω+ω′)

=
1

4π2(Lt − t)

∫
∞

−∞

dω e−iωtx̃(ω)

∫
∞

−∞

dω′ ỹ(ω′) 2πδ(ω + ω′)

=
1

2π(Lt − t)

∫
∞

−∞

dω e−iωtx̃(ω)ỹ(−ω), (18)

noting that ỹ(−ω) = ỹ∗(ω) for a real function y(t) in order to obtain eq. (13).
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Supplementary Notes

Supplementary Note 1:

Alternative methods for simulation and characterization of excess-

proton dynamics

It is known that nuclear quantum effects (NQEs), specifically zero-point effects, significantly

influence distributions of excess protons in water [7, 9, 11]. While the techniques for

simulating NQEs have significantly advanced in recent years, the accurate calculation of

dynamical properties, which is the focus of this study, remains an active field of research

[12]. There are some subtle questions how the time-dependent polarization correlation

functions of decomposed excess-proton trajectories, which form the basis of our spectroscopic

analysis, would be extracted from simulation data encompassing NQEs, in particular, it is

unclear whether the common approaches taken by centroid or ring-polymer MD are directly

applicable. Most of all, it is noteworthy that previous studies found no significant differences

between IR spectra computed from simulations with and without NQEs below 3000 cm−1

[11, 13], which could mean that the neglect of NQEs might have less severe consequences for

time-dependent correlation functions than it has for spatial distributions of excess protons.

We therefore interpret the good agreement between simulated and experimental spectra in

the THz regime in fig. 2c and in the mid-IR regime in fig. 1c as a validation of our chosen

simulation techniques. Besides, our neglect of NQEs allows us to generate long trajectories

that improve statistics and therefore the quality of our spectra, particularly down in the THz

regime.

In Supplementary Note 4 we extract radial distribution functions involving excess protons

and chloride ions from our simulation trajectories and obtain good agreement with previous

simulations and experimental data [14–18].

In Supplementary Note 7 we show that our transfer-waiting time distributions in fig. 5f

correspond quite closely to hydronium-oxygen continuous-identity auto-correlation functions

[19], which were previously introduced to characterize proton-transfer time scales. The

same correlation functions, but with the fast back-and-forth excess-proton transfer events

between the same two water molecules of the transient H5O2
+ complexes removed, have

13

B. Supplementary Information:

Spectral Signatures of Excess-Proton Waiting and Transfer-Path Dynamics in Aqueous

Hydrochloric Acid Solutions



been used to interpret the long time scales of uni-directional proton transfer, which reflects

signatures observed in 2D IR experiments at time scales of 1 ps to 2 ps [19–21]. We note

that back-and-forth proton-transfer events that occur within transient H5O2
+ complexes

are spectroscopically relevant and therefore must be included in the prediction of spectra.

The longer time scale of uni-directional proton transfer at 1 ps to 2 ps contributes in linear

absorption spectra at frequencies below 1THz.

In Supplementary Note 8 we determine the diffusivities of excess protons and water molecules

and obtain similar results as previous simulations [13, 16–19, 22]. Compared to the experimen-

tal data, the absolute diffusivities of excess protons DH+ and water oxygens DO are smaller by

a factor of about three, but their ratios, given by DH+/DO = (3.0±0.8), (4.3±1.3), (3.8±0.8)

for 6M, 4M, 2M HCl, respectively, are albeit large errors in satisfactory agreement with the

experimental ratios of about DH+/DO = 1.5, 2.3, 3.0 for similar concentrations [23].

It has been shown that proton-transfer events are caused by subtle structural changes in the

excess-proton solvation environment, for example the hydrogen-bond structure in the second

solvation shell [11, 13, 18, 22]. Based on our simulations, we confirm that the suggested

hydrogen-bond asymmetry coordinate can indeed be used to predict the excess proton that

is most likely to transfer to a neighboring water among the three transfer candidates within

a hydronium ion [11]. Along these lines, the presence of a fourth water molecule that forms

a hydrogen-bond to a hydronium ion weakly correlates with back-and-forth transfer behavior

[13, 18, 22]. These findings are presented in detail in Supplementary Note 9.

Supplementary Note 2:

Experimental infrared spectra of aqueous hydrochloric acid solutions

Supplementary Fig. 5a shows experimental IR absorption spectra and Supplementary Fig. 5b

shows difference spectra of aqueous HCl solutions at various concentrations. All data is taken

directly as published in the literature. The proton continuum band is clearly visible in all

difference spectra, albeit with slight differences in shape. In comparison to our calculated

difference spectra in Fig. 1b in the main text, the features at 40THz, 50THz and 90THz

are more pronounced.

Indeed difference spectra depend on the normalization applied to the underlying HCl solution
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Supplementary Figure 5. Experimental IR absorption spectra (a) and corresponding difference

spectra (b) of aqueous HCl at various concentrations, taken from [11, 24–27]. The data was not

published with an absolute scale and is thus scaled arbitrarily. No difference spectrum was published

for the spectrum at 1M [24].

and pure water spectra which is further elucidated in Supplementary Note 3. Normalizations

commonly used for spectra calculated from simulations employ sample volume or concentration

of water molecules. In experimental setups, however, these parameters are often not reported.

Of the four publications we took difference spectra from, only Napoli et al. explained the

applied normalization scheme as normalization “to a unit area over the range shown”[11]. In

light of these subtleties, comparisons between difference spectra from different sources should

be considered with care.
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Supplementary Note 3:

Normalization of infrared difference spectra of aqueous hydrochloric

acid solutions

The normalization of the difference spectra is subtle and in many studies not well documented

as discussed in the previous Supplementary Note 2. In Supplementary Fig. 6, we illustrate

how small deviations in the normalization constants can lead to drastic variations among

the difference spectra. Throughout this work difference spectra ω∆χ′′

cw
(ω) are defined

as normalized by the water concentration cw of the aqueous HCl solutions and by the

concentration c0

w
of the reference water spectrum

ω∆χ′′

cw
(ω) =

1

cw

ωχ′′

solution
(ω)−

1

c0
w

ωχ′′

water
(ω), (19)

according to eq. (8) from the methods section. In Supplementary Fig. 6, the difference spectra

of the 4M HCl solution, obtained from ab initio MD simulations in this study, are shown

as a blue solid line and compared to difference spectra, that are obtained if instead slightly

varied water concentrations for the acid solution c∗w are used in the normalization. The

data illustrates, that even in the moderate range of c∗w/cw = 0.8 to 1.2, some features of the

difference spectra, like the dip at the position of the water bend around 1650 cm−1 (50THz),

or the features in the OH stretch above 3000 cm−1 (90THz), are significantly changed. These

features therefore have to be considered with great care. However, the dominant spectroscopic

features, like the continuum band between 2000 cm−1 to 3000 cm−1 and the peak around

1200 cm−1 (35THz), that are associated with the excess proton dynamics and are at the

focus of this study, are modified in height but not in shape and seem therefore very robust

with respect to the normalization protocol.
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Supplementary Figure 6. Illustration of the effect of variations of the normalization protocol used for

difference spectra of the 4M HCl solution, obtained from ab initio MD simulations. The difference

spectra are defined according to eq. (19) and the water concentrations for the acid solution c∗w are

varied (colored solid lines) with ratios reported in the legend. For comparison experimental data for

a 4M HCl solution is shown as a black broken line [27].
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Supplementary Note 4:

Spatial correlations

Spatial correlations in liquids can be quantified with radial distribution functions (RDFs),

gab(r), which denote the average density of particles of type a at a relative distance r around

particles of type b. The local average density of a relative to b at distance r is given as

ρagab(r) where ρa = Na/V is the global density of a. The RDF is computed from simulation

data of two particle species with numbers Na and Nb that are located at positions r⃗i and r⃗j

[28]

gab(r) =
V

4πr2NaNb

Na∑

i=1

Nb∑

j=1

⟨δ(|r⃗i − r⃗j| − r)⟩. (20)

Average coordination numbers of species a within distance r of particles of species b are

obtained by integration over gab(r)

Nab(r) = ρa

∫ r

0

dr′4πr′2gab(r
′). (21)

In this Supplementary Note, the spatial correlations of the excess protons in the HCl solutions

are analyzed using RDFs, specifically also the correlations with the chloride ions. Excess

protons are identified in the simulation data as the remaining protons after the water

molecules are assembled for each oxygen atom with the closest two hydrogen atoms at each

time step of the simulation. Here and in Supplementary Note 8 we are not excluding protons

close to the chloride ions, in contrast to the analysis of the proton-transfer statistics in the

main text, which is described in Supplementary Methods 2. Hydronium ions are defined for

each excess proton together with the water molecule of the closest oxygen atom.

4.1. Correlations with the chloride ions

In Supplementary Fig. 7 the RDFs of the chloride ions are shown for the three HCl concen-

trations with respect to the excess protons as solid lines, all hydrogen nuclei, including excess

protons, as broken lines, the oxygen nuclei of the water molecules as dotted lines and the

oxygen nuclei of the hydronium ions as dash-dotted lines. For all HCl concentrations, the

general features of the RDFs are comparable. But, there are a few concentration-dependent
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Supplementary Figure 7. Spatial correlations between the chloride ions and other nuclei in terms of

radial distribution functions (RDFs) as obtained from ab initio MD simulations of HCl solutions at

various concentrations. RDFs are shown for the excess protons (H+) as solid lines, all hydrogen

nuclei (H), including excess protons, as broken lines, the oxygen nuclei of the water molecules (O)

as dotted lines and the oxygen nuclei of the hydronium ions (O+) as dash-dotted lines.

trends. The RDFs of the excess protons around the chloride ions (solid lines) show two

dominant peaks, a small one that is located at around dCl−H+ = 1.8Å and thereby left of

the major peak of the hydrogen nuclei RDFs (broken lines) at around dCl−H = 2.2Å. This

peak is important as it corresponds to excess protons coordinated directly with the chloride

ion, i.e. the excess proton sits in between the chloride ion and the oxygen atom of the

respective hydronium ion. This contact ion pair is considered an important intermediate in

the solvation of HCl [14]. Yet, the excess protons are still part of the hydronium ion, since

an even smaller distance of around 1.4Å would be expected for the covalent bond to the

chloride atom, which appears at much higher concentrations than 6M [14]. The peak height

at dCl−H+ = 1.8Å (solid lines) clearly increases with HCl concentration in Supplementary

Fig. 7, but even for the largest concentration of 6M it remains smaller than the second and

largest peak in the RDFs at about 3.5Å. This peak is located to the right of the first and
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dominant peak in the RDFs of the oxygen nuclei of the hydronium ions (dash-dotted lines)

at around dCl−O+ = 3.0Å, which occurs at a slightly smaller distance than the respective

peak of all oxygen nuclei at around dCl−O = 3.1Å.

All of the presented data is in good agreement with results by Baer et al. [14] from comparable

ab initio simulations, who additionally show data for much higher concentrations up to

16m (16mol/kg ≃ 11.7M) and successfully reproduced extended X-ray absorption fine

structure (EXAFS) experimental measurements [15]. Specifically, they report dCl−O+ =

2.96Å and dCl−O = 3.14Å in excellent agreement with experimental EXAFS data [15]. Data

comparing various exchange-correlation functionals used in the ab initio simulation also

consistently reproduced the results presented in Supplementary Fig. 7 with no significant

dependence on the type of functional (except for the PBE functional), albeit with large

statistical uncertainties in some data [18].

When interpreting the RDFs, the actual densities of the species need to be put into perspective.

The global densities of chloride ions, excess protons and hydronium ions are equal by definition.

However, for the 2M HCl solution data set, the ratio of water molecules to chloride ions or

respectively excess protons is about 24.8 and drops to 11.2 for the 4M and 6.5 for the 6M

data sets. These numbers would have to be divided by two, assuming that water molecules

are equally and exclusively solvating all chloride ions and excess protons. It is therefore

evident, that for the 6M solution, hydronium ions are necessarily residing already in the

first hydration shell of the chloride ions. More precisely, the average coordination numbers

around the chloride ions are obtained by integration over the first peak of each RDF in

Supplementary Fig. 7 and use of eq. (21). The obtained coordination numbers are reported

in Supplementary Tab. III and are generally in good agreement with previous simulation and

experimental results [14, 15]. The average number of hydronium ions in the first hydration

shell of any chloride ion increases from 0.13 for 2M to 0.52 for 6M, see third column in

Supplementary Tab. III. Previously, Baer et al. [14] interpreted this significant increase in

the coordination number as an increase of contact ion pairs, where the excess proton is shared

between the hydronium oxygen and the chloride ion. However, the coordination number of

the excess protons around chloride ions does not increase as much, only from 0.007 for 2M

to 0.054 for 6M, see first column in Supplementary Tab. III. Therefore, the excess protons

of the hydronium ions in the first solvation shell of the chloride ions mostly point away from

chloride ions and are predominantly coordinated with other water molecules, rather than
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Supplementary Table III. Average coordination numbers Nab around the chloride ions as obtained

from the first peak of the RDFs in Supplementary Fig. 7 and eq. (21). Errors of the simulation data

are estimated from the resolution of the RDFs.

Cl-H+ (r < 2.5Å) Cl-H (r < 3.0Å) Cl-O+ (r < 3.5Å) Cl-O (r < 3.5Å)

2M 0.007± 0.001 5.64± 0.07 0.13± 0.01 4.8± 0.1

4M 0.020± 0.001 5.42± 0.07 0.26± 0.01 4.6± 0.1

6M 0.054± 0.001 5.12± 0.07 0.51± 0.01 4.2± 0.1

6M, MOLOPT 0.091± 0.001 5.0± 0.1 0.56± 0.02 4.0± 0.2

6M, TZV2P 0.115± 0.001 5.0± 0.2 0.63± 0.02 4.0± 0.2

2.5m [14] 0.17 5.82

6m [14] 0.42 5.21

10m [14] 0.71 4.67

16m [14] 1.05 3.99

6m [14, 15] 0.7± 0.2 5.1± 0.5

10m [14, 15] 1.0± 0.3 4.8± 0.5

16m [14, 15] 1.6± 0.3 4.2± 0.5

with chloride ions. However, it is noteworthy that the chloride-excess-proton coordination is

affected, when a different basis set is considered in the simulations, which is shown below

in subsection 4.3 for simulations at 6M. In particular, an increase of the coordination of

the excess protons with the chloride ions is observed when considering the MOLOPT or

TZV2P basis sets. Therefore, while the above results have to be considered with care when

comparing to experimental data and additional analysis with more elaborate basis sets may

be useful, the analysis performed in this study is self-consistent for the MOLOPT-SR basis

set.

Taken together, this data indicates that the excess protons in aqueous HCl solutions mostly

reside inside hydronium ions within our definition, and additionally stay away from the

chloride ions, i.e. are located between two oxygen atoms and not between a chloride and an

oxygen atom. This holds true even for moderately high concentrations up to 6M considered in

this study, but necessarily breaks down at very high concentrations when the water becomes

saturated with HCl [14]. The data confirms the high solubility of excess protons in water, due
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to energetic but also entropic effects [17, 29]. Furthermore, it justifies the focus on proton

transfer between water molecules and the excess-proton selection and identification scheme

in Supplementary Methods 2 to analyze the excess-proton spectral signatures of the HCl

solutions. Note, that already the linear trend of the HCl difference spectra with concentration

shown in Fig. 1d in the main text indicates that in the range up to 6M considered in the ab

initio MD simulations in this study, the effect of the chloride ions on the excess-proton spectra

and dynamics is negligible. Similarly, Napoli et al. [11] previously showed that IR spectra

of excess protons coordinated with chloride ions show much weaker spectral signatures as

compared to the average spectra of all the excess protons.

4.2. Correlations between oxygen and hydrogen atoms

In Supplementary Fig. 8a the spatial correlations of the hydronium ions and in Supplementary

Fig. 8b of the excess protons themselves are discussed. Comparable results for aqueous HCl

solutions were previously shown for various exchange-correlation functionals used in ab initio

simulations [18] and for different self-consistent iterative multistate empirical valence bond

(SCI-MS-EVB) simulations [16, 17].

In Supplementary Fig. 8a the RDFs of the oxygen nuclei of the hydronium ions are shown

with respect to the oxygen nuclei of other hydronium ions (O+) as solid lines, for the oxygen

nuclei of the water molecules (O) as broken lines, for the the excess protons (H+) as dash-

dotted lines and all hydrogen nuclei (H), including excess protons, as dotted lines. Next to

the trivial peaks of the dash-dotted as well as the dotted lines at below 1.0Å, belonging to

the hydrogen nuclei which are part of the hydronium ions itself, a clear peak of the broken

lines at dO+
−O = 2.5Å indicates the water oxygen nuclei in the first hydration shell, each of

which are candidates to form a transient H5O2
+ complex, i.e. the special pair, together with

the hydronium ion. This peak is roughly consistent with the most probable oxygen-oxygen

distance of the transient H5O2
+ complex, that is seen in the free energy in Fig. 4a in the

main text. A second, much smaller, peak at about 4.2Å indicates the water molecules in the

second hydration shell of the hydronium ion. Boths peaks at about dO+
−O = 2.5Å and at

4.2Å are clearly shown in data for various exchange-correlation functionals [18], as well as

for SCI-MS-EVB simulations [16, 17]. Beyond that, a decomposition of the first peak into

three components was used to support the picture of an asymmetric Eigen state [9].
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Supplementary Figure 8. Spatial correlations between the oxygen atoms of hydronium ions (a) and

excess protons (b) with respect to other nuclei in terms of radial distribution functions (RDFs) as

obtained from ab initio MD simulations of HCl solutions at various concentrations. a: RDFs are

shown for the oxygen nuclei of the hydronium ions (O+) as solid lines, for the oxygen nuclei of the

water molecules (O) as broken lines, for the the excess protons (H+) as dash-dotted lines and all

hydrogen nuclei (H), including excess protons, as dotted lines. b: RDFs are shown for the excess

protons (H+) as solid lines and all hydrogen nuclei (H), including excess protons, as broken lines.

Each peak is accompanied by peaks of the dotted lines at slightly larger distances, which

indicate the hydrogen atoms belonging to the water molecules in the respective hydration

shells. Additionally, the dotted lines show a weak and broad shoulder below roughly 2.5Å,

the origin of which is further discussed in Supplementary Note 9. A slight relative maximum

of the solid lines at dO+
−O+ = 3.00Å but with a magnitude below one indicates a metastable

structure between two hydronium ions. However, note that there is no such signature in

the dash-dotted lines, i.e. no apparent correlation with the excess proton of the nearest

hydronium ion. The peak at dO+
−O+ = 3.00Å was also observed by Calio et al. [17] and at

dO+
−O+ = 3.20Å by Xu et al. [16].

In Supplementary Fig. 8b the RDFs of the excess protons are shown with respect to the
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other excess protons (H+) as solid lines and all hydrogen nuclei (H), including excess protons,

as broken lines. The main peak of the broken lines at dH+
−H = 1.8Å indicates the mean

distances between hydrogen atoms within the same hydronium ion. The peak shows a

shoulder at around 2.1Å possibly related to spatial correlations between the excess proton

and two hydrogen atoms in the neighboring water molecule of the transient H5O2
+ complex,

i.e. of the special pair. The second peak of the broken lines at 3.8Å is related to other water

molecules in the first hydration shell, that form hydrogen bonds (HBs) with the hydronium

ion to which the excess proton is assigned. No spatial correlations are apparent in the RDFs

between excess protons, shown as solid lines. In contrast to that, Xu et al. [16] observed a

slight peak at dH+
−H+ = 4.20Å, indicative of spatial correlations between two excess protons.

In summary, the RDFs of the hydronium ions as well as of the excess protons presented in

Supplementary Figs. 8a and b indicate no spatial correlations between excess protons or

hydronium ions and other excess protons. While there appears a slight relative maximum in

the RDF between hydronium ions itself, this may simply be related to close-packing effects

in the liquid.

4.3. Results for different basis sets

To address the quality of the simulations for the chosen MOLOPT-SR basis set, additional

simulations of HCl solutions at 6M with the DZVP-MOLOPT-GTH and TZV2P-GTH

basis sets are performed [30, 31]. For both cases the chloride ions are modeled including

diffuse functions by using the aug-DZVP-GTH and aug-TZV2P-GTH basis sets, respectively.

Otherwise the setups are equivalent to the MOLOPT-SR simulations and each simulation

is run for 28 ps under NVT condition. The spatial correlations in each data set are then

compared by computing RDFs, the results of which are presented in Supplementary Figs. 9a–

e. The correlations of the oxygen atoms and the hydrogen atoms among each other, that are

most important for the solvation structure of the excess protons and therefore the focus of this

study as discussed above, show no significant dependence on the choice of basis set as is seen

from the near-perfect agreement of the RDF curves throughout Supplementary Figs. 9c–e.

Regarding the chloride ions, some differences in the RDFs in Supplementary Figs. 9a and b

are clearly discernible though. Most importantly, the first major peaks in the RDFs between

chloride ions and oxygen atoms of hydronium ions (solid lines in Supplementary Fig. 9a) as
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0

2

4

R
D
F

Cl-H+, 6M: TZV2P

Cl-H+, 6M: MOLOPT

Cl-H+, 6M: MOLOPT-SR

Cl-H, 6M: TZV2P

Cl-H, 6M: MOLOPT

Cl-H, 6M: MOLOPT-SR

b

0 2 4 6 8 10

r [Å]
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Supplementary Figure 9. Spatial correlations between the chloride ions and oxygen atoms (a),

chloride ions and hydrogen atoms (b), oxygen atoms of hydronium ions and oxygen atoms (c) or

hydrogen atoms (d), and excess protons (e) with respect to other nuclei in terms of radial distribution

functions (RDFs) as obtained from ab initio MD simulations of HCl solutions at 6M for various

basis sets considered in the simulation. Data obtained for the TZV2P basis set is shown in blue, for

the MOLOPT basis set in purple and for the MOLOPT-SR basis set in red. a,c: RDFs are shown

for the oxygen nuclei of the hydronium ions (O+) as solid lines, for the oxygen nuclei of the water

molecules (O) as broken lines. b,d,e: RDFs are shown for the excess protons (H+) as solid lines and

all hydrogen nuclei (H), including excess protons, as broken lines.
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well as between chloride ions and excess protons (solid lines in Supplementary Fig. 9b) increase

when the MOLOPT or TZV2P basis sets are used. Additionally, a second much smaller peak

is visible at a closer distance for both simulations with the MOLOPT and TZV2P basis sets

(solid blue and purple lines in Supplementary Fig. 9b), indicating that contact pairs between

chloride ions and excess protons appear rarely throughout the simulations. This means that

the role of the chloride spectator, that is argued in Supplementary Note 4.1 to be of minor

importance, may be underestimated in simulations using the MOLOPT-SR basis set. In

Supplementary Note 4.1 the coordination number of the excess protons around chloride ions

at 6M was found to be 0.054 from integration over the first major peak of the RDF up to

2.5Å (solid red line in Supplementary Fig. 9b and first column in Supplementary Tab. 4.1).

When considering the MOLOPT basis set, this value increases to 0.091 and for the TZV2P

basis set to 0.115, meaning that on average each excess proton is for 9% or respectively 12%

of the time coordinated with a chloride ion as the second nearest neighbour (or rarely even

as the nearest neighbor) in a configuration that is not well described by a transient H5O2
+

complex which forms the basis of the analysis performed in the main text.
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Supplementary Note 5:

Decomposition of infrared spectra of transient H5O2
+ complexes

To allow for a decomposition of IR spectra of transient H5O2
+ complexes into contributions

perpendicular and parallel to the connecting axis of the water oxygens, the dynamics of

the transient H5O2
+ complexes are described in a comoving internal coordinate system as

introduced in the main text and shown in Supplementary Fig. 10c. The x-axis is defined as the

axis connecting both oxygen atoms (in the following referred to as O-O axis), the coordinate

origin being located in the middle between the oxygens. The yz-plane lies perpendicular

to that axis. A transformation to this coordinate system thus involves a time-dependent

translation and rotation of the trajectory ri(t) in the laboratory frame of each atom inside a

H5O2
+ complex and can be described by

r
′

i(t) = Mφ(t),θ(t) [ri(t)− r0(t)], (22)

where r0(t) is the trajectory of the oxygen-oxygen midpoint and Mφ(t),θ(t) is a rotation

matrix setting both oxygen atoms on the x-axis. The coordinate transform is illustrated in

Supplementary Fig. 10. These operations do of course have an influence on the resulting

spectra, which is discussed in Supplementary Note 6.

a b c

Supplementary Figure 10. Illustration of the coordinate transform eq. (22) from the laboratory

frame to the internal coordinate system of the transient H5O2
+ complexes, allowing for a distinction

of movements perpendicular and parallel to the connecting axis between the water oxygens (referred

to as O-O axis). a: First the oxygen-oxygen midpoint r0(t) is subtracted from the coordinates of

the atoms of the transient subsystem ri(t). b: Then the atoms are rotated, such that both oxygen

atoms lie on the x-axis. c: In the resulting internal coordinate system the variable d is defined as

the projection of the excess proton location onto the x-axis. ROO is the distance between the two

oxygen atoms.

27

B. Supplementary Information:

Spectral Signatures of Excess-Proton Waiting and Transfer-Path Dynamics in Aqueous

Hydrochloric Acid Solutions



The internal coordinate system further defines d, the projection of the excess proton location

onto the O-O axis, and ROO, the distance between the two oxygen atoms according to

ROO(t) = |x′

O1
(t)− x′

O2
(t)|

d(t) = x′

H+(t).

Using such an internal coordinate system, we can decompose the spectra of protons and water

molecules inside the transient H5O2
+ complexes as well as their cross-correlation spectra into

their contribution along and perpendicular to the O-O axis, respectively.

For that purpose, we extract the trajectories of the closest two water molecules to each

previously extracted excess-proton trajectory (see Supplementary Methods 2), resulting

in trajectories of transient H5O2
+ complexes. Since the water molecules involve valence

electrons, we use the localized-Wannier-center trajectory data for this, resulting in trajectories

with a slightly lower time resolution of 4 fs than for the nuclei-only data. In order to be

able to decompose the trajectories into parts perpendicular and parallel to the O-O axis,

we describe the multidimensional H5O2
+ trajectories using the internal coordinate system

introduced above and calculate spectra accordingly.
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Supplementary Figure 11. Absorption spectra including nuclei and electrons of transient H5O2
+

complexes consisting of their excess protons (H+, red solid lines), their closest two water molecules

(2 H2O, blue solid lines) and cross correlations (Cross, gray solid and broken lines) parallel to the

O-O axis (a) and perpendicular to it, i.e. in the yz-plane of the local coordinate system (b). The

isotropic spectrum is shown in c. Broken lines indicate negative values. Note that the spectra are

averaged over the spatial dimensions.

In Supplementary Fig. 11 the resulting spectra are shown, separated into the contributions

along (Supplementary Fig. 11A) and perpendicular to the O-O axis (Supplementary Fig. 11b)
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and each averaged over their spatial dimensions. The excess-proton spectrum perpendicular

to the O-O axis (Supplementary Fig. 11b, red solid lines) clearly dominates the isotropic

excess-proton spectrum (Supplementary Fig. 11c, red solid line). Including cross correlations,

defined as the difference between the total spectrum and the sum of the proton and water

contributions, a different picture emerges. In Supplementary Fig. 11a and b the cross

correlations between the excess proton and its two closest water molecules are plotted in

gray. The cross correlations between proton and water molecules are of the same order of

magnitude and of similar shape as the proton spectrum itself and almost entirely positive

along the x-axis and negative along the yz-plane, meaning that the water polarization is to

some degree amplifying the proton’s polarization dynamics along the O-O axis, whereas they

cancel perpendicular to the O-O axis. This phenomenon was similarly observed for isolated

H5O2
+ complexes [32]. Also, Sauer and Döbler [33] found in an MD study of H5O2

+ that

“[...] the O-H+-OY,Z bends (perpendicular to the O-O axis) have vanishing IR intensities and

should not be seen in the spectra [...]”.

The analysis presented in this Supplementary Note shows, that the IR spectra of H5O2
+

complexes in HCl solutions dominantly represent the motion of the excess proton along the

O-O axis. This motivates the projection of the protons’ movement onto the O-O axis, d, that

is used for the decomposition in the main text.
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Supplementary Note 6:

Spectral signature resulting from change of coordinate system

As presented in Supplementary Note 5, the dynamics of the transient H5O2
+ complexes,

including the excess protons, is described in the comoving internal coordinate systems. To

estimate the effect of this coordinate transformation on the spectrum of protons and water

molecules in the H5O2
+ complexes, we compare the decomposed spectra of these complexes in

the original coordinate system to those after translation and subsequent rotation, respectively.

Figure 12 shows a comparison between the spectrum of H5O2
+ complexes in their original

coordinate system and translated according to ri,trans(t) = ri(t)− r0(t) (compare eq. (22)).

The translation does not have any effect on the spectrum of the two water molecules

because they are not charged and the dipole moment of a neutral system does not change
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Supplementary Figure 12. a–c: Averaged non-normalized absorption spectra including nuclei and

electrons of transient H5O2
+ complexes in their original coordinate system (solid) and translated

such that the coordinate origin is the midpoint between the oxygens (broken). d–f: The differences

between the spectra above. A dotted line in e shows the spectrum of the movement of the oxygen

midpoint r0(t).
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Supplementary Figure 13. a–c: Non-normalized absorption spectra including nuclei and electrons

of transient H5O2
+ complexes that are translated but in their original orientation (solid) and

additionally rotated such that the oxygen atoms lie on the O-O axis (broken). d–f: The differences

between the spectra above.

upon translation. The excess proton, however, has a charge. Thus, its dipole moment

is affected by this translation. The effect can be approximated by the spectrum of all

oxygen midpoint trajectories r0(t) of the H5O2
+ complexes using a charge of 1 e, which is

shown in Supplementary Fig. 12e as a dotted line. While the translation leads to significant

change in the proton spectrum at low and high frequencies, in the frequency range between

20THz to 80THz the effect of the translation is mostly negligible. Obviously, the error in

the projected spectrum in Supplementary Fig. 12b is not transferred to the single-proton

spectrum projected along the oxygen-oxygen distance coordinate d, that we show in Fig. 3c

in the main text.

In contrast to the translation, the rotation mostly affects the water spectrum, because the

translation due to rotation is larger for atoms further away from the rotation center. This

can be seen in Supplementary Fig. 13 which shows a comparison between the spectrum of

H5O2
+ complexes that were translated as shown in Supplementary Fig. 12 and those that
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were additionally rotated according to r
′

i(t) = Mφ(t),θ(t) ri,trans(t) (compare eq. (22)). The

proton spectrum is barely affected and the effect on the water spectrum is limited to low

frequencies.

Since both translation and rotation have at most a minor effect on the transient H5O2
+

spectrum in the relevant frequency range, our findings from the decomposition into x- and

yz-contribution in Supplementary Note 5 for transient H5O2
+ complexes also apply to the

lab frame.
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Supplementary Note 7:

Distribution of proton-transfer waiting times

The mean proton-transfer rate is at the heart of research on excess protons solvated in

water, as it is the relevant microscopic time scale that determines the macroscopic large

diffusion obtained by the Grotthuss process. As outlined in the main text, the mean transfer

rate corresponds to the waiting time of a stochastic barrier-crossing process, that is not

to be confused with the transfer-path time of the actual transition over the barrier. The

waiting-time distributions that are also shown in Fig. 5c in the main text are discussed in

this Supplementary Note and are compared to previous results from literature.

Agmon [34] gives a summary of early experimental results, suggesting a mean proton-transfer

time of 1.5 ps obtained in NMR studies [35], which is believed to be correlated with the

hydrogen bond rearrangement and water reorientation dynamics on the time scales of 1 ps to

2 ps determined from a number of other experiments. These time scales seem to contrast more

recent experimental results from 2D IR spectroscopy, that report interconversion between

different proton hydration structures, i.e. Eigen and Zundel-like structures, on time scales

of around 100 fs and less [20, 36, 37]. On the other hand, Carpenter et al. [38] write, “the

hydrated proton bend displays fast vibrational relaxation and spectral diffusion timescales

of 200− 300 fs, however, the transient absorption anisotropy decays on a remarkably long

2.5 ps timescale, which matches the timescale for hydrogen bond reorganization in liquid

water”. Arguing that the latter would be an upper bound, they infer “the transfer of excess

protons in water [...] is an activated process with a timescale of 1− 2 ps.” Kundu et al. [20]

confirm that “during the lifetime of the H5O2
+ motif, that is on the order of 1 ps, the proton

undergoes fluctuating large-amplitude motions exploring essentially all possible positions

between the flanking water molecules”. Yuan et al. [39] measure a concentration-dependent

‘proton hopping time’ in HCl solutions using 2D IR chemical exchange spectroscopy with a

methyl thiocyanate probe and extrapolate a time of 1.6 ps for the dilute limit.

It transpires, that two time scales determine the distribution of proton-transfer waiting times,

which was confirmed in various simulation studies and interpreted as stemming from either

back-and-forth or uni-directional proton transfer, respectively, in the literature sometimes

referred to as ‘reversible’ and ‘irreversible’ proton transfer. Napoli et al. [11] point out that
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Supplementary Table IV. Collection of proton-transfer time scales reported in the literature.

method conc. [M] T [K] time

Meiboom [35] NMR exp. 1.5 ps

Woutersen and Bakker [36] 2D IR exp. 5 300 <0.1 ps

Dahms et al. [37] 2D IR exp. <1 300 <0.1 ps

Thämer et al. [27] 2D IR exp. 4 300 >0.48 ps

Carpenter et al. [38] 2D IR exp. 2 300 <2.5 ps

Kundu et al. [20] 2D IR exp. 1 300 <0.1 ps

1 ps

Yuan et al. [39] 2D IR chemical dillute 300 1.6 ps

exchange exp. limit

Fischer et al. [40] DFT CPMD 1.7 300 bi-directional 0.5 ps

Fischer and Gunlycke [18] DFT CPMD 1.7 300 uni-directional 2.5 ps

Calio et al. [17] MS-EVB 0.43− 3.26 300 0.4− 0.5 ps

1.2− 2.3 ps

Calio et al. [9] MS-EVB, 0.22− 0.43 300 10− 17 fs

DFT BOMD 0.3− 0.5 ps

2.3− 3.2 ps

+ nuc.-quantum 12− 15 fs

effects 0.83− 0.27 ps

1.4 ps

Arntsen et al. [19] DFT BOMD 300 bi-directional 0.184 ps

uni-directional 1.69 ps

Roy et al. [41] DFT BOMD 2 300 1− 2 ps

DFT BOMD 8 300 2− 4 ps
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while they find a frequency-correlation time of (1.4 ± 0.3) ps “corresponding to the pump

(3150 cm−1) and probe (1760 cm−1) frequencies used in [27]”, the auto-correlation of the

proton asymmetry actually decays on time scales of less than 100 fs with a second slower

component of (0.8 ± 0.1) ps. Fischer et al. [40] find the time scale of proton ‘hopping’ to

be around 0.5 ps, including back-and-forth events, and deduce a time scale of 2.5 ps for

uni-directional events in a later study [18]. Calio et al. [17] extract two timescales of about

400 fs to 500 fs and 1.3 ps to 2.3 ps for the concentrations 0.43M to 3.26M from fits to the

long-lived anisotropy decays, which the authors argue “can correlate experimental time

constants to irreversible proton transfer”. In a follow-up study Calio et al. [9] report three

timescales of about 10− 17 fs, 320− 490 fs and 2.3− 3.2 ps for the concentrations 0.22M to

0.43M from fits to the anisotropy decay of the excess-proton dynamics projected on the axis

of the two closest oxygen atoms, with a slight acceleration to the values 12− 15 fs, 83− 270 fs

and 1.4 ps when nuclear-quantum effects are considered. Roy et al. [41] find a time scale of

1− 2 ps for uni-directional proton transfer between two water molecules in 2M HCl solutions

employing two-dimensional transition state theory and Marcus theory of ion pairing. This

number increases significantly to 2 − 4 ps in 8M HCl solutions. Arntsen et al. [19] report

time constants of the excess-proton identity auto-correlation function, which is elaborated on

further below. They find a values of 184 fs, but after eliminating back-and-forth events from

the data the time scale increases to 1.69 ps. Furthermore, a couple of studies point out that

the long time scale of proton transport increases significantly with concentration [29, 41].

A summary of the reported values is given in Supplementary Tab. IV. It transpires that the

separation in back-and-forth and uni-directional events is important to distinguish two time

scales in the broad distributions of proton-transfer times. For stochastic barrier-crossing

processes of highly inertial or non-Markovian coordinates and furthermore for low energy

barriers, it is well established that barrier-crossing events exhibit large numbers of subsequent

back-and-forth events, due to the slow dissipation of the energy required for the initial

barrier-crossing event [32, 41–45]. Such events appear especially important with regard to

proton-transfer processes and their spectral signatures.

The proton-transfer waiting time distributions of the excess-protons in aqueous HCl solutions

at various concentrations, reported in the main text in Fig. 5c, are plotted in Supplementary

Fig. 14a on a double logarithmic scale in order to investigate the long time behavior. The

distributions do decay in the picosecond range with a clear concentration dependence, i.e.
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Supplementary Figure 14. Distributions of proton-transfer waiting times (a) and of the life times of

the transient H5O2
+ clusters, i.e. the trajectory lengths, (b) in HCl solutions at various concentrations

as obtained from ab initio MD simulations. The same data as in a is also shown in Fig. 5c in the

main text. For comparison, single exponential decays, p(t) = exp(−t/τ)/τ , using the mean of the

distributions τ reported in the legend, are plotted as black broken lines.

the distributions have a longer tail for higher concentrations. Still, a single exponential fit

using the mean of the distribution τTW as the decay time scale, pTW(t) = exp(−t/τTW)/τTW,

is sufficient to describe the long time tail of the distributions. However, since the excess

protons are tracked only in the transient H5O2
+ cluster, the transfer-waiting times can only

capture proton transfer during the life times of these H5O2
+ clusters, i.e. the lengths of the

trajectories, that are defined according to the procedure that is detailed in Supplementary

Methods 2. The distributions of trajectory lengths are given in Supplementary Fig. 14b.

They are again compared to single exponential functions, p(t) = exp(−t/τ )/τ , shown as black

broken lines, with the mean values of the distributions as the decay constants τ . For all three

concentrations the mean values are about 1.5 times larger than the respective waiting-times

reported in Supplementary Fig. 14a, indicating that on average one to two transfers occur

during the life time of a transient H5O2
+ cluster.

Identity auto-correlation functions

To describe the long time scales of excess-proton diffusion observed in the anisotropy decay

of 2D IR experiments [27, 38], correlation times of the excess-proton identity have proven

useful. Inspired by previous work [9, 19, 46], we computed auto-correlation functions of
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the excess-proton and hydronium-oxygen identities from joint trajectories of the excess

protons as also prepared for the analysis of the long-time diffusion properties described in

Supplementary Note 8. Following this protocol, the excess protons are given as the remaining

protons after the water molecules are assembled for each oxygen atom with the closest two

hydrogen atoms at each time step of the simulation. Hydronium ions are defined by an

excess proton together with the water molecule of the closest oxygen atom. Therefore, at

each time step a total number of excess protons NH+ , as well as hydronium ions, equivalent

to the number of chloride ions in the simulation, is obtained. The trajectories are then

stitched together to give NH+ trajectories, each of the length of the whole simulation, for

the excess protons and hydronium oxygens, respectively. Following Arntsen et al. [19], rapid

back-and-forth fluctuation of hydronium-oxygen identities is ‘filtered’ from the trajectories

by the following procedure. Whenever along a trajectory the identity changes from one

oxygen atom to another, we check whether the identity returns to the original nucleus within

0.5 ps. If it returns without passing to a third nucleus in between, the identity remains

with the original nucleus as if the identity did not change throughout this time. For the

excess-proton identities this criterion does not suffice since the identity often fluctuates

between three candidates within one hydronium ion. Rather the same procedure as also

detailed in Supplementary Note 8 and similar to Calio et al. [9] is used to ‘filter’ the rapid

back-and-forth fluctuation of excess-proton identities, i.e. the ‘special pair dance’: The

candidate proton that either performs the next transfer to another water molecule or is

the next to be identified as an excess proton while neighboring a chloride atom, remains

the excess proton. These procedures define sets of trajectories from which the fast identity

fluctuations are ‘filtered’. The identity auto-correlation functions are then calculated for

excess-proton and hydronium-oxygen identities on both sets of trajectories, ‘filtered’ and

‘unfiltered’.

We define the identity auto-correlation function as

c(t) =
⟨h(t)h(0)⟩ − ⟨h⟩2

⟨h⟩ − ⟨h⟩2
, (23)

where h(t) is one if an excess proton or hydronium oxygen atom has the same identity,

i.e. is the same nucleus, as at t = 0, otherwise h(t) is zero. In our definition the identity

auto-correlation function is designed to reach unity for t = 0 and to decay to zero for long

times and is thereby slightly different compared to previous work [19, 46, 47]. Additionally,
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Supplementary Figure 15. Identity auto-correlation functions eq. (23) of the excess protons (a)

and hydronium oxygens (b) obtained from ab initio MD simulations of HCl solutions at various

concentrations. The correlations functions are computed from unfiltered (solid colored lines) and

filtered trajectories (broken colored lines), see text for details. The data is shown on a logarithmic

time axis in the insets.

the continuous identity auto-correlation function is given as [9, 19]

C(t) =
⟨H(t)H(0)⟩

⟨H⟩
, (24)

where H(t) is one as long as an excess proton or hydronium oxygen atom continuously has

the same identity for the entire time interval [0, t] and zero otherwise.

The excess-proton and hydronium-oxygen identity auto correlations obtained from our data

according to eq. (23) are given in Supplementary Figs. 15a and b with the same data shown

on a logarithmic time axis in the insets. Auto-correlation functions of the filtered trajectories

are shown as broken colored lines for the three HCl solutions at various concentrations while

the auto-correlation functions of the unfiltered trajectories are shown as solid colored lines.

The curves decay on multiple time scales. All show remarkable long-time behavior beyond

several picoseconds, indicating that proton as well as hydronium identity is correlated over

very long times scales, which occurs from looping of identities over several different nuclei

[46]. As expected, the two types of data from filtered or unfiltered trajectories converge in

these long time regimes. Both, the excess-proton identity auto correlations in Supplementary

Fig. 15a and the hydronium identities in Supplementary Fig. 15b show a clear concentration

dependence, with longer decay times for higher concentrations. On short time scales the

excess-proton identity auto correlations largely decay within 0.1 ps to a value of 0.5, whereas
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Supplementary Figure 16. Continuous identity auto-correlation functions eq. (24) of the excess

protons (a) and hydronium oxygens (b) obtained from ab initio MD simulations of HCl solutions

at various concentrations. The correlations functions are computed from filtered (solid colored

lines) and unfiltered trajectories (broken colored lines), see text for details. The data is shown on a

logarithmic time axis in the insets.

the hydronium identity auto correlations decay to a value of 0.5 only after about 1 ps to

2 ps. Furthermore, a slight peak in the hydronium identity auto-correlation of the unfiltered

trajectories (solid colored lines in Supplementary Fig. 15b) at about 0.025 ps indicates back-

and-forth transfer of the excess proton in the transient H5O2
+ cluster occurring at about

twice the transfer-path time, τTP = 12.6 fs to 14.3 fs reported in the main text. Similarly, a

peak in the excess-proton identity auto correlations of the unfiltered trajectories (solid colored

lines in Supplementary Fig. 15a) at about 0.010 ps indicates the time scale of excess-proton

rattling within a single hydronium ion, referred to as ‘special pair dance’ in the literature

[8, 9].

Next, to focus on the fast time scales of the correlations, the continuous identity auto-

correlation functions according to eq. (24) of the excess protons and of the hydronium

oxygens are given in Supplementary Figs. 16a and b with the same data shown on logarithmic

time axes in the insets. Again, the data is shown in each plot as computed from filtered (broken

colored lines) and unfiltered trajectories (solid colored lines). Note, that for the computation of

these continuous identity auto correlations, configurations where the excess-proton is located

between the oxygen atom and a chloride ion are excluded. These configurations obviously

produce spurious long-time auto correlations but have been analyzed to make up only 5% of

the total trajectory lengths of all excess protons even at the highest concentration of 6M,
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Supplementary Figure 17. Continuous identity auto-correlation functions eq. (24) of the hydronium

oxygens obtained from ab initio MD simulations of HCl solutions at various concentrations (already

shown in Supplementary Fig. 16b). The correlation functions are computed from filtered (a) and

unfiltered trajectories (b), see text for details. Each curve is fitted to a sum of two decaying

exponentials with the time scales reported in the legends and shown as black broken lines.

which is discussed in detail in Supplementary Note 4. The excess-proton continuous identity

auto correlations decay fully within 0.3 ps and the hydronium-oxygen identity continuous

auto-correlations within 10 ps. In contrast to the data presented in Supplementary Fig. 15a

and b, while the hydronium identity auto correlations in Supplementary Fig. 16b show again

a clear concentration dependence, with longer decay times for higher concentrations, such a

dependence is not visible for the excess-proton identity auto correlations in Supplementary

Fig. 16a.

The time scales of the hydronium continuous identity auto correlations have been interpreted

to be consistent with the time scales of the anisotropy decay observed in 2D IR experiments

[19, 38]. Fits to these auto correlations with the sum of two decaying exponentials are

therefore given as broken black lines, together with the original data from Supplementary

Fig. 16b repeated as solid colored lines in Supplementary Fig. 17a (for the filtered trajectories)

and b (for the unfiltered trajectories). The long time-scales of the bi-exponential fits to the

correlations of the filtered trajectories, shown in 17a, reach from 1.2 ps to 1.53 ps, increasing

with concentration. These time scales match the time scales reported for uni-directional

proton transfer rather well (see Supplementary Tab. IV). With regard to the results reported

in Supplementary Note 8, where the long-time diffusion constants are found to be too small

by a factor of about four when compared to experiment, one would expect the time scales
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for uni-directional proton transfer to be longer by the same factor. However, the present

analysis excludes configurations involving chloride ions, which presumably are characterized

by longer decay times. The diffusion constants on the other hand would have to be split in

vehicular diffusion, due to translation of hydronium ions, and the jump diffusion, due to

uni-directional proton transfer, to allow for a better comparison to the time scales of the

auto correlations.

When regarding the long time-scales of the bi-exponential fits to the correlations of the

unfiltered trajectories, shown in Supplementary Fig. 17b, which reach from 0.22 ps to

0.27 ps, increasing with concentration, we find them to match perfectly the mean proton-

transfer waiting times reported in the main text and in Supplementary Fig. 14. The

continuous hydronium identity auto correlation therefore presents an alternative and intuitive

interpretation for the proton-transfer waiting times that we discuss in the main text. In case

that back-and-forth fluctuations of the excess-protons between two oxygen atoms within

0.5 ps are filtered from the trajectories, the continuous hydronium identity auto correlation

in Supplementary Fig. 17a decays on time scales that match experimental spectroscopic

anisotropy decays and have been interpreted as uni-directional proton transfer.
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Supplementary Note 8:

Large-scale excess-proton diffusion

For the analysis of diffusion of the excess protons on long time scales, the principle excess-

proton identification and selection scheme detailed in Supplementary Methods 2 needs to

be augmented to identify joint excess-proton trajectories throughout the whole simulation

trajectory. For this, excess protons are first identified based on a geometric criterion: after

assembling at each time step the water molecules for each oxygen atom with the closest

two hydrogen atoms, the remaining least associated protons form hydronium ions with their

respective closest water molecules. We thereby obtain at each time step a total number

of excess protons NH+ equivalent to the number of chloride ions in the simulations. The

trajectories of the excess protons are then stitched together to a total of NH+ trajectories,

each of the length of the whole simulation. In contrast to Supplementary Methods 2, protons

that reside between an oxygen and a chloride atom are included in this analysis. The

procedure obviously introduces jumps in the joint trajectories whenever an excess proton

changes identity, which is a manifestation of the Grotthuss’ process. However, rapid spurious

jumps within the same hydronium ion, the ‘special pair dance’ [8, 9], are filtered from the

trajectories by the following procedure: within each hydronium ion, the candidate proton that

either performs the next transfer to another water molecule or is the next to be identified as

an excess proton while neighboring a chloride atom, remains the excess proton (a procedure
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Supplementary Figure 18. Examples of five joint trajectories of excess protons in 2M HCl solution

on short (a) and long time scales (b). In a, the pale colored lines indicate the spurious jumps,

resulting from the ‘special pair dance’, that are removed from the trajectories (see text for details).
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b

Supplementary Figure 19. MSDs (mean squared displacements) in the lab frame, ⟨|r(t)− r(0)|2⟩, of

the excess protons (a) and the oxygen atoms (b) computed from the simulation trajectories of HCl

solutions at three concentrations. In b, the MSD of the oxygen atoms in the pure-water simulations

is shown as well. Errors of the mean are indicated by the line widths and taken from standard

deviations computed over the individual excess-proton and oxygen-atom joint trajectories. Linear

fits are shown as black broken lines, which are fitted in the long time regimes, 20 ps to 80 ps, which

is the range that is also shown enlarged in the insets.

that was also used by Calio et al. [9]). Lastly, the trajectories are unwrapped over the

periodic boundary conditions. Some trajectories of excess protons produced by this protocol

are illustrated in Supplementary Fig. 18a and b along a single Cartesian coordinate and on

two different time scales. Additionally in Supplementary Fig. 18a, the pale colored lines show

the trajectories before removal of the ‘special pair dance’.

Subsequently, the joint trajectories are used to calculate mean squared displacements (MSDs),

⟨|r(t)− r(0)|2⟩, of the excess protons in the lab frame. The MSDs averaged over all excess

protons are shown in Supplementary Fig. 19a for simulations of HCl solutions at three different

concentrations and compared to the MSDs computed for the oxygen atoms representative of

the water molecules in Supplementary Fig. 19b. In general, the MSD is expected to show

inertial scaling, MSD ∼ t2, for short time scales and diffusive scaling, MSD ∼ t, for long

time scales. Both regimes are well visible in Supplementary Fig. 19b for the oxygen atoms.

For the excess protons the inertial regime is perturbed by the jumps in the joint trajectories,

caused by changes of the excess-proton identities.

The diffusion constant D, which is an experimentally observed quantity, is related to the
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MSD by

D =
1

6t
⟨|r(t)− r(0)|2⟩, (25)

and computed by a least-squares fit of the slopes in the diffusive regime between 20 ps to

80 ps. The diffusion constants are reported in the legends of Supplementary Figs. 19a and b

with statistical errors from the linear fits.

To access the accuracy of these diffusion constants, we first focus on the values for the oxygen

atoms. Within the error the same diffusion constant of about DO = 0.08Å
2
/ps was obtained

in all four simulations. While this value is significantly smaller than the experimental value

of DO = 0.23Å
2
/ps [48, 49], it is well known that specifically the BLYP exchange-correlation

functional in our simulation approach produces too small diffusion constants. In agreement

with our results, various studies of water utilizing ab initio MD together with the BLYP

exchange-correlation functional, reported diffusion constants in the range of 0.04Å
2
/ps to

0.11Å
2
/ps for comparable setups to ours, as reviewed recently [50].

When regarding the excess proton diffusion constant, it has to be noted that it is known

to be heavily concentration and temperature dependent in experiments [23]. In the dilute

limit, the experimental diffusion constant of the excess proton, DH+ = 0.94Å
2
/ps, is much

higher than the experimental diffusion constant of water by a factor of DH+/DO = 4.1, an

observation that corroborates Grotthuss’ hypothesis [51]. However, this factor drops to

about 3.0 at 2M and 1.5 at 6M [23]. This trend was qualitatively captured in self-consistent

iterative multistate empirical valence bond (SCI-MS-EVB) simulations of HCl [16, 17]. Both

studies obtained values between DH+ = 0.2Å
2
/ps to 0.3Å

2
/ps around 1M and DH+ =

0.15Å
2
/ps to 0.20Å

2
/ps around 3M, compared to a value of DH+ = 0.37Å

2
/ps in the dilute

limit (one excess proton in 256 waters) [13]. While a similar trend is also indicated by

our simulation data, the errors are too large to draw definite conclusions. The obtained

diffusion constants for the excess protons, DH+ = 0.24Å
2
/ps to 0.34Å

2
/ps, are smaller than

the experimental value. However, the ratios DH+/DO = 0.34/0.09 = 3.8 ± 0.8 for 2M,

DH+/DO = 0.30/0.07 = 4.3± 1.3 for 4M and DH+/DO = 0.24/0.08 = 3.0± 0.8 for 6M, that

are observed in our simulations, seem in satisfactory agreement with experiments. Similar ab

initio simulation setups to ours but using a single excess proton in a box of water molecules

obtained diffusion constants of DH+ = 0.3Å
2
/ps to 0.6Å

2
/ps [22] and of DH+ = 0.3Å

2
/ps to

0.8Å
2
/ps [19]. A study employing Car-Parrinello molecular-dynamics (CPMD) simulations
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of 1.7M HCl solutions and the PBE exchange-correlation functional found DH+ = 0.9Å
2
/ps

to 1.1Å
2
/ps compared to DO = 0.04Å

2
/ps to 0.07Å

2
/ps for the water molecules [18]. An

older study of a single excess proton in a box of 64 water molecules using CPMD with the

BLYP functional obtained DH+ = 0.05Å
2
/ps to 0.08Å

2
/ps compared to DO = 0.02Å

2
/ps

to 0.06Å
2
/ps for the water molecules [52]. The inclusion of nuclear quantum effects in

simulations has been shown to significantly increase the obtained excess-proton diffusion

constants [13].

We conclude that the accurate estimation of diffusion constants for the excess proton remains

challenging, which is seen from the wide spread of results obtained in previous studies.

Our results for the diffusion constants appear reasonable when compared to previously

reported values and specifically the ratios DH+/DO = 3.0 to 4.3 are in good agreement with

experiment.
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Supplementary Note 9:

Hydrogen-bond structure

The hydrogen bond (HB) structure of the water molecules in the first hydration shell of

the excess proton has been shown to play an important role for when and where the excess

proton moves [11, 13, 18, 22]. In this Supplementary Note the HB structure around the

excess protons in HCl solutions obtained in our ab initio simulations is discussed using some

previously established methods. We follow the standard criterion and define HBs to be

present when the distance between two oxygens, i.e. the donor and the acceptor of the HB,

is < 3.5Å, and the angle between the vector connecting the two oxygens and the vector

connecting the donor oxygen with the hydrogen atom is < 30◦ [47].

Hydrogen-bond asymmetry

Napoli et al. [11] introduced the HB asymmetry ϕ as a measure to identify the excess proton

among the candidate protons in a hydronium ion. First, each water molecule is assigned a

coordination number as the difference of the number of acceptor HBs minus the number of

donor HBs. Then ϕ is defined for each candidate proton at each time step as the coordination

number of the closest neighboring water molecule minus the average of the coordination

numbers of the closest water molecules of the other candidate protons of the same hydronium

ion. By construction, the sum of ϕ within a hydronium ion is zero. Napoli et al. [11] found

that protons with strongly negative values of ϕ show the typical spectral signatures associated

with excess protons. We applied this measure to our simulation data, specifically to the

joint trajectories of the excess protons that were prepared for the analysis of the long time

diffusion in Supplementary Note 8 and from which the spurious ‘special pair dance’ was

removed.

Normalized distributions of ϕ over the whole simulations are shown in Supplementary Fig. 20a

with mean values given in the legend. The mean values are clearly negative and we therefore

conclude that this criterion agrees with our excess-proton identification scheme. To study the

relation of HB structure with proton transfer, we filter the trajectories in time and regard

the normalized distributions of ϕ values around the transfer events, when an excess proton

changes its closest oxygen. Distributions of ϕ during 20 fs (40 time steps) before and after
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Supplementary Figure 20. Normalized distributions of the hydrogen bond asymmetries, denoted

as φ, of the excess proton trajectories from ab initio MD simulations of HCl solutions at various

concentrations. See text for definition and details. Mean values of the distributions are reported

in the legends. a: Distributions over the whole trajectories. b–d: Distributions of φ during 20 fs

before and after any transfer event (grey broken lines), i.e. when the excess proton changes the

closest oxygen, and distributions of φ around each uni-directional transfer event, which are split

into the 20 fs before, corresponding to the donor oxygen of the proton transfer event (blue and left

pointing triangles) and the 20 fs after, corresponding to the acceptor oxygen (red and right pointing

triangles).

a transfer event are given in Supplementary Fig. 20b–d as grey broken lines with mean

values reported in the legends. To further elucidate the data, we applied the same filter

before and after each uni-directional transfer event. Uni-directional here refers to transfer

events, that are not followed by a fast return back to the original oxygen atom within the

following 50 fs (100 time steps). By only regarding these uni-directional events, we can

discriminate different HB configurations around the donor oxygen of the proton-transfer
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event, i.e. before the uni-directional transfer (shown in blue with left pointing triangles), and

the acceptor oxygen, i.e. after the uni-directional transfer (shown in red with right pointing

triangles), which show distinct distributions in Supplementary Fig. 20b–d. The mean values

of the distributions before a transfer are more negative than the corresponding averages in

Supplementary Fig. 20a, indicating that on average a more negative value of ϕ precedes an

imminent transfer event. Therefore, ϕ actually seems to be a useful predictor for proton

transfer.

The fourth hydrogen bond

Inspired by Tse et al. [22], Biswas et al. [13] and Fischer and Gunlycke [18] investigated the

role of a fourth water molecule hydrogen-bonded to the hydronium ion. Presumably, its

presence determines whether an excess proton would transfer to a different oxygen atom [13]

and in particular whether it is likely to return to the original oxygen atom, i.e. to perform

back-and-forth transfers, or not [18]. In their simulations of 1.7M HCl solutions, Fischer

and Gunlycke [18] observed a higher return probability (67 %) if the hydronium ion was
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Supplementary Figure 21. Correlations between the existence of a fourth hydrogen bond of a

hydronium ion (4HB) and the return probability of the excess proton, as observed in ab initio MD

simulations of HCl solutions at various concentrations. a: Probability of the excess proton to return

across the mid plane between the oxygens within the following 50 fs. b: Time-averaged probabilities

of all hydronium ions for the fourth hydrogen bond to exist (4HB) or not (3HB), as obtained from

the whole simulation (grey, no hatching) and during the 20 fs before (blue) and after (red) each

uni-directional transfer event.

48

203



coordinated with only three donor HBs as compared to four HBs (53 %), the additional one

being an accepted HB from a fourth water molecule. In accordance with previous works, the

fourth HB is defined to be present if the vector connecting the hydronium oxygen and the

hydrogen atom of the fourth water molecule has a length of less than 2.6Å and points at an

angle of less than 35◦ with respect to the normal of the plane spanned by the three hydrogen

nuclei of the hydronium ion [18, 22]. The probability of a return within the following 50 fs

(100 time steps) upon any transfer across the mid plane between the oxygens obtained in

our simulations is illustrated in Supplementary Fig. 21a depending on whether the donor

hydrogen ion is accepting a HB from a fourth water molecule (4HB, shown in blue with

hatching) or not (3HB, shown in red without hatching). The data shows the clear trend that

the return probability is reduced if a fourth HB is present, in agreement with previous studies

[18]. However, even though this correlation is discernible in our data, the mechanism does

not appear to be a dominant driver for proton transfer in HCl solutions. This follows from

Supplementary Fig. 21b, where the probability of observing the fourth HB is plotted for three

different time averages; the averages over the whole simulations of all hydronium ions are

given in grey, the averages over the 20 fs (40 time steps) before and after each uni-directional

transfer event, i.e. without return, are given in blue and red respectively. Throughout the

data, the time-averaged probability of a fourth HB is only about 10–20%. Before and after

uni-directional transfer events this probability is significantly increased but it is still smaller

than the probability of a uni-directional transfer event happening without the presence of a

fourth HB.

We confirm that HB structure is highly correlated with the excess-proton transfer dynamics

and the presented comparison with previous studies strengthens the existing hypotheses,

that the HB asymmetry ϕ or the fourth water molecule are useful descriptors.
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I Infrared power spectra from linear-response theory

Assuming linear response of an observable x(t) with respect to a force that couples to an

observable y(t), the response function χxy(t) is related to the correlation function Cxy(t
′) =

⟨x(t+ t′)y(t)⟩ for t ≥ 0S1

χxy(t) = −
1

kBT

d

dt
Cxy(t), (S1)

where kBT is the thermal energy. Realizing that χ(t) is single-sided, i.e. χ(t) = 0 for t < 0,

the Fourier transform is calculated as

χ̃xy(ω) = −
1

kBT

∫ ∞

−∞

dt eiωt
d

dt
Cxy(t)

χ̃xy(ω) = −
1

kBT

(
Cxy(0)− iω

∫ ∞

0

dt eiωtCxy(t)

)

χ̃xy(ω) = −
1

kBT

(
Cxy(0)− iωC̃+

xy(ω)
)
, (S2)

where the superscript + denotes a single-sided Fourier transform. In case of x = y, Cxx(t) is

an autocorrelation function, which is real and symmetric, therefore it follows for the imaginary

part of the response function in Fourier space

χ̃′′
xx(ω) =

1

kBT
ωRe(C̃+

xx(ω)) (S3)

=
1

kBT

ω

2
C̃xx(ω). (S4)

When computing the power spectrum of a stochastic process x(t), limited to the time domain

[0, Lt], the Wiener-Khintchine theorem, eq. (S96) in section XII, can be used to express

C̃xx(ω) in terms of x̃(ω), turning eq. (S4) into

χ̃′′
xx(ω) =

ω

2kBTLt

|x̃(ω)|2. (S5)
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When computing the power spectrum of the observable x(t) from the ensemble average of

equilibrium trajectories, a decomposition of x(t) into two parts x(t) = x1(t) + x2(t) gives rise

to three contributions in the total power spectrum

ωχ̃′′
xx(ω) =

ω2

2kBT

[
C̃1(ω) + C̃2(ω) + 2C̃1,2(ω)

]

= ω
[
χ̃′′
1(ω) + χ̃′′

2(ω) + χ̃′′
1,2(ω)

]
, (S6)

where the cross-correlation contribution χ′′
1,2(ω) is defined such that it equals the difference

spectrum

χ̃′′
diff(ω) = χ̃′′

xx − χ̃′′
1(ω)− χ̃′′

2(ω) = χ̃′′
1,2(ω)

=
ω

kBT
C̃1,2(ω). (S7)

A positive cross-correlation spectrum hints to in-phase motion, a negative cross-correlation

spectrum to out-of-phase motion of x1(t+ t′) and x2(t) at a given frequency.

In case of x(t) being the polarization p(t) of the system, coupling to an external electric field

E(t), the dimensionless dielectric susceptibility χ(t) is given by

χ̃(ω) =
1

V ϵ0D
⟨χ̃pp(ω)⟩, (S8)

where ϵ0 is the vacuum permittivity, V is the system volume and an average is performed

over the D dimensions of p.
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II Decomposition of water infrared spectra into single-

molecular and collective components

Fig. S1A and B show a complete decomposition of the total (A, nuclear and electronic)

and the nuclei-only (B, further discussed in section III) IR spectra obtained from aiMD

simulations of 256 H2O molecules (gray solid lines), as introduced in the main text, into self

(blue solid lines) and collective cross components (purple solid lines), which follow from the

molecular dipole moments pi(t) of all the molecules in the bulk asS2

χ̃′′(ω) = χ̃′′
self(ω) + χ̃′′

cross(ω) (S9)

∼ ⟨
∑

i

pi(0)
∑

j

pj(t)⟩ =
∑

i

⟨pi(0)pi(t)⟩+
∑

i

⟨pi(0)
∑

j ̸=i

pj(t)⟩. (S10)

The data in fig. S1A clearly shows, that whereas in the OH stretching regime the collective

cross-component effects are constructive and lead to an amplification of the total infrared

spectrum with respect to the self spectrum, in the HOH bending regime the collective

cross-component effects are destructive and lead to a slight decrease of the amplitude of the

total IR spectrum with respect to the self spectrum. In the regime of the librations between

300 cm−1 to 800 cm−1 the collective effects contribute constructively as well as destructively.

At the small signature around 200 cm−1, associated with translational vibrations of water

molecules against each other, the collective cross-component effects contribute constructively.
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Figure S1: Decomposition of the infrared (IR) spectra (gray solid lines) into self (blue
solid lines) and collective cross contributions (purple solid lines), obtained from the total
dipole-moment trajectory from the ab initio Molecular Dynamics (aiMD) simulation of 256
H2O molecules including nuclear and electronic charges after Wannier localization (A) and
an approximation using partial charges on the nuclear dynamics of the same aiMD simulation
(B, see the following section III for details).
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III Infrared spectra from nuclear coordinates
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Figure S2: Comparison of IR spectra obtained from the total dipole-moment trajectory
including nuclear and electronic charges from the aiMD simulation (gray solid line) and an
approximation using partial charges on the nuclear dynamics of the same aiMD simulation
(blue solid line).

Fig. S2 shows a comparison of the IR spectrum of the aiMD simulation, using the total dipole

moment including nuclear and electronic charges and a nuclei-only power spectrum, which is

obtained by assigning the partial charges 1 e to the hydrogen atoms and −2 e to the oxygen

atoms of the aiMD simulation in post processing. Both spectra are qualitatively similar but

the nuclei-only spectrum is significantly increased at lower frequencies, due to the neglect

of electronic polarization effects. In the OH-stretching regime at around 3300 cm−1 both

spectra coincidentally have a similar amplitude. Interestingly the nuclei-only spectrum in the

OH-stretching regime is blue-shifted with respect to the spectrum from nuclear and electronic

charges, indicating a slow down of the total dipole-moment dynamics in this regime due to

the electronic degrees of freedom.
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IV Extraction and parametrization of the potentials

From the entire set of trajectories of a vibrational coordinate a histogram is created with 50

equidistant bins centered at xi. From this histogram h(xi) the potential (or free energy) is

calculated as

U(xi) = − log(h(xi))kBT, (S11)

where the potential if shifted vertically so that min(U [xi]) = 0. The largest and smallest value

of xi where U(xi) < 8 kBT are the edges for a new histogram with 99 equidistant bins. From

this histogram the potential is again calculated as shown above. This potential is then fitted

to a 4th-order polynomial, U(x) = a+ bx+ cx2 + dx3 + ex4, using the Levenberg-Marquardt

algorithm. The position of the minimum of the fit function, x0, is subsequently obtained

using Newton’s method, both implemented in scipy v1.5. Eventually, U(x) is rewritten as

U(x) =k0 +
k

2
(x− x0)

2 +
k3
3
(x− x0)

3 +
k4
4
(x− x0)

4 (S12)

k4 =4e (S13)

k3 =3(d+ k4x0) (S14)

k =2(c+ k3x0 −
6

4
k4x

2
0) (S15)

k0 =a−
k2
2
x2
0 +

k3
3
x3
0 −

k4
4
x4
0. (S16)

Note that k0 is small but can be non-zero because of discretization effects. The results of the

fits for the different vibrational coordinates are presented in fig. S3A–D, by comparing the

second derivatives of the fit functions, U ′′(x) = k + 2k3(x− x0) + 3k4(x− x0)
2, (blue broken

lines) with second derivatives obtained numerically from the data, U ′′(xi) = (U(xi+1) −

2U(xi) + U(xi−1))/(xi − xi−1)
2, using histograms with 300 equidistant bins. The numerically

obtained derivates are smoothed (gray and purple dots) by iterative convolution with a

flat window function, which has a width of three bins. The plots illustrate that for all
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vibrational coordinates the fit functions and particularly the harmonic fit parameter k (shown

as horizontal gray dotted lines) match well the numerically obtained curvature of the potential

around the position of the minima at x0 (shown as vertical gray dotted lines).
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Figure S3: Second derivatives of the potential, obtained numerically and iteratively smoothed
(gray and purple dots), of the various vibrational coordinates (A: dOHs coordinate, B: ϕHOH

coordinate, C: dOHa coordinate and D: dOH coordinate.). The second derivatives of the fit
functions are shown as blue broken lines. The vertical gray dotted lines denote the position
of the minima at x0 and the horizontal gray dotted lines denote the values of the harmonic
fit parameters k. The insets show a wider range of data, for which U(xi) < 8 kBT .

V Extraction of the time-dependent friction kernels

The extraction of time-dependent friction kernels from trajectories with an anharmonic

potential is performed using a modification of a recently published approachS3 and is based

on previous work by Harp and Berne S4 . The derivation starts from the generalized Langevin
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equation (GLE)

mẍ(t) = −

∫ t

0

Γ(t− t′)ẋ(t′)dt′ −∇U [x(t)] + FR(t), (S17)

which is multiplied by the initial velocity ẋ(0) and ensemble averaged

m ⟨ẋ(0)ẍ(t)⟩ = −

∫ t

0

dt′ Γ(t′) ⟨ẋ(0)ẋ(t− t′)⟩ − ⟨ẋ(0)∇U [x(t)]⟩ , (S18)

assuming the random force FR(t) to be uncorrelated with ẋ(0). Defining the correlation

functions as

Cvv(t) = ⟨ẋ(0)ẋ(t)⟩ , (S19)

Cv∇U(t) = ⟨ẋ(0)∇U [x(t)]⟩ , (S20)

Cx∇U(t) = ⟨x(0)∇U [x(t)]⟩ , (S21)

eq. (S18) is written as

m
d

dt
Cvv(t) = −

∫ t

0

dt′ Γ(t′)Cvv(t− t′)− Cv∇U(t) (S22)

and integrated over time

mCvv(t)−mCvv(0) = −

∫ t

0

dt′′
∫ t′′

0

dt′ Γ(t′)Cvv(t
′′ − t′)−

∫ t

0

dt′′ Cv∇U(t
′′). (S23)
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For the terms on the right hand side, one finds

∫ t

0

dt′′ Cv∇U(t
′′) =

∫ t

0

dt′′ ⟨ẋ(0)∇U [x(t′′)]⟩

=

∫ t

0

dt′′ ⟨ẋ(−t′′)∇U [x(0)]⟩

=

〈
∇U [x(0)]

∫ t

0

dt′′ ẋ(−t′′)

〉

=

〈
∇U [x(0)]

∫ 0

−t

dt′′ ẋ(t′′)

〉

= ⟨∇U [x(0)]x(0)⟩ − ⟨∇U [x(0)]x(−t)⟩

= Cx∇U(0)− Cx∇U(t) (S24)

and

∫ t

0

dt′′
∫ t′′

0

dt′ Γ(t′)Cvv(t
′′ − t′) =

∫ t

0

dt′′
∫ t′′

0

dt′′′ Γ(t′′ − t′′′)Cvv(t
′′′)

=

∫ t

0

dt′′′ Cvv(t
′′′)

∫ t

t′′′
dt′′ Γ(t′′ − t′′′)

=

∫ t

0

dt′′′ Cvv(t
′′′)

∫ t−t′′′

0

dt′′ Γ(t′′)

=

∫ t

0

dt′′′ Cvv(t
′′′)G(t− t′′′), (S25)

where

G(t) =

∫ t

0

dt′ Γ(t′), (S26)

is the integral over the friction kernel. Inserting eq. (S24) and eq. (S25) into eq. (S23), one

obtains

mCvv(t)−mCvv(0) = −

∫ t

0

dt′ Cvv(t
′)G(t− t′)− Cx∇U(0) + Cx∇U(t). (S27)
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The mass is found to be

m =
Cx∇U(0)

Cvv(0)
, (S28)

which follows from multiplying the GLE eq. (S17) by the initial position x(0), averaging over

the ensemble and evaluating at t = 0

m ⟨x(0)ẍ(0)⟩ = −⟨x(0)∇U [x(0)]⟩ (S29)

−m ⟨ẋ(0)ẋ(0)⟩ = −⟨x(0)∇U [x(0)]⟩ . (S30)

Using eq. (S28) in eq. (S27), one finds

Cvv(t)
Cx∇U(0)

Cvv(0)
= −

∫ t

0

dt′ Cvv(t
′)G(t− t′) + Cx∇U(t). (S31)

Eq. (S31) is a Volterra equation of first kind which can be discretized in time, t = i∆t, and

solved numerically,

C i
vv

C0
x∇U

C0
vv

= −

i∑

j=0

wj,i∆t Cj
vvG

i−j + C i
x∇U (S32)

= −Giwi,i∆t C0
vv −

i−1∑

j=0

wj,i∆t Cj
vvG

i−j + C i
x∇U , (S33)

where wj,i are integration weights and the corresponding iteration relation reads

Gi = −
1

ωi,i∆tC0
vv

(
i−1∑

j=0

ωi,j∆tCj
vvG

i−j +
C0

x∇U

C0
vv

C i
vv − C i

x∇U

)
. (S34)

Thus by calculating the necessary correlation functions, C i
vv = Cvv(i∆t) and C i

x∇U =

Cx∇U(i∆t), from equilibrium trajectories, the integral of the time-dependent friction kernel,

Gi = G(i∆t), can be obtained by iteration from the initial value G0 = 0. The friction kernel

Γi = Γ(i∆t) is subsequently obtained by a numerical derivative.
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VI Power spectrum of the Generalized Langevin Equation

A random process x(t) with mass m and subject to time-dependent (or frequency-dependent)

friction Γ(t) in a harmonic potential U(x) = k
2
x2 can be described by the generalized Langevin

equation

mẍ(t) = −

∫ t

0

dt′ Γ(t− t′)ẋ(t′)− kx(t) + FR(t), (S35)

obeying for the random force FR(t) the fluctuation-dissipation relation ⟨FR(t)FR(t
′)⟩ =

kBTΓ(t− t′). A Fourier transform gives

−ω2mx̃(ω) = iωΓ̃+(ω)x̃(ω)− kx̃(ω) + F̃R(ω), (S36)

as well as

⟨F̃R(ω)F̃R(ω
′)⟩ = kBT

∫ ∞

−∞

dt eiωt
∫ ∞

−∞

dt′ eiω
′t′Γ(t− t′) (S37)

= kBT

∫ ∞

−∞

dt′ ei(ω
′+ω)t′

∫ ∞

−∞

dt eiω(t−t′)Γ(t− t′)

= 2πkBTδ(ω
′ + ω)Γ̃(ω). (S38)

The absorbed power ωχ̃′′(ω) is derived in Fourier space from linear response to an external

force Fext, which is calculated according to

χ̃(ω) =
⟨x̃(ω)⟩

F̃ext(ω)
. (S39)

= (k −mω2 − iΓ̃+(ω)ω)−1, (S40)
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Using eqs. (S38) and (S40) the autocorrelation in Fourier space is given by

C̃xx(ω) =

∫ ∞

−∞

dt eiωt⟨x(t)x(0)⟩ (S41)

=
1

4π2

∫ ∞

−∞

dt eiωt
∫ ∞

−∞

dω′ e−iω′t

∫ ∞

−∞

dω′′e−iω′′0⟨x̃(ω′)x̃(ω′′)⟩

=
1

4π2

∫ ∞

−∞

dω′ 2πδ(ω − ω′)

∫ ∞

−∞

dω′′⟨x̃(ω′)x̃(ω′′)⟩

=
1

2π

∫ ∞

−∞

dω′′⟨x̃(ω)x̃(ω′′)⟩ (S42)

=
1

2π

∫ ∞

−∞

dω′′⟨χ̃(ω)F̃R(ω)χ̃(ω
′′)F̃R(ω

′′)⟩

= kBT

∫ ∞

−∞

dω′′χ̃(ω)χ̃(ω′′)δ(ω′′ + ω)Γ̃(ω)

= kBT χ̃(ω)χ̃(−ω)Γ̃(ω), (S43)

which is further simplified by realizing that the Fourier transform of the purely real function

χ(t) is even χ̃(−ω) = χ̃∗(ω)

C̃xx(ω) = kBT χ̃(ω)χ̃
∗(ω)Γ̃(ω)

= kBT |χ̃(ω)|2 Γ̃(ω)

=
kBT Γ̃(ω)∣∣∣k −mω2 − iΓ̃+(ω)ω

∣∣∣
2 . (S44)

From eq. (S4) the power spectrum follows

ωχ̃′′(ω) =
ω2 ReΓ̃+(ω)

∣∣∣k −mω2 − iΓ̃+(ω)ω
∣∣∣
2 . (S45)
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VII Power spectrum of the damped harmonic oscillator

The absorbed power ωχ̃′′(ω) of the damped harmonic oscillator described by memoryless

Langevin equation

mẍ(t) = −γẋ(t)− kx(t) + Fext(t), (S46)

is computed from the linear response in Fourier space

χ̃(ω) =
⟨x̃(ω)⟩

F̃ext(ω)
(S47)

= (k −mω2 − iγω)−1 (S48)

=
k −mω2 + iγω

(k −mω2)2 + γ2ω2
, (S49)

where x̃(ω) is the oscillating variable, m is the mass, γ the friction coefficient, k the spring

constant of the harmonic potential and F̃ext(ω) an external force. For the power spectrum

follows

ωχ̃′′(ω) =
γω2

(k −mω2)2 + γ2ω2
, (S50)

which by introducing the time scales τ = 2γ/k, τω =
√
m/k and length scale L with

L2 = 2kBT/k converts to

ωχ̃′′(ω) =
L2

kBT

τω2

4(1− τ 2ωω
2)2 + τ 2ω2

. (S51)
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In spectroscopy this is known as a Lorentzian line shapeS5, which in the overdamped case,

τω → 0, reads

ωχ̃′′(ω) =
γω2

k2 + γ2ω2
(S52)

=
L2

kBT

τω2

4 + τ 2ω2
. (S53)

Eq. (S52) is also known as the Debye line shape.

VIII Parametrization of the extracted memory kernels

The memory kernels Γ(t), extracted from the aiMD simulation data as described in section

V, are truncated at 50 ps, oversampled at a time resolution of ∆t = 0.025 fs and subsequently

Fourier transformed using the FFT algorithm implemented in numpy v1.19. The real part of

the Fourier-transformed memory kernel is then fitted to a combination of n exponential and

l oscillating memory kernels according to eq. (5) in the main text. The Fourier-transformed

expressions of the fundamental kernels are found to be

Γ̃+
osc(ω, ai, τi, ωi) =

ai
2

( 1 + i
ωiτi

1
τi
+ iωi − iω

+
1− i

ωiτi
1
τi
− iωi − iω

)
, (S54)

Γ̃+
exp(ω, γi, τi) = γi

1

1− iωτi
, (S55)

Γ̃+(ω) =
n∑

i=1

Γ̃+
exp(ω, γi, τ

e
i ) +

l∑

i=1

Γ̃+
osc(ω, ai, τ

o
i , ωi). (S56)

The real part of the Fourier-transformed memory kernel Γ̃′+(ω) is fitted in the (2n + 3l)-

dimensional parameter space using the Levenberg-Marquardt algorithm implemented in scipy

v1.5. n and l are iteratively increased until the fit quality does not improve significantly. The

initial values for all γi, τ ei , ai, τ
o
i and ωi are chosen suitably. After fitting in Fourier space,

another fit is performed in the time domain, by subtracting the l oscillating fit functions

from the memory kernels in the time domain and again fitting the n exponential functions
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to the remainder. This significantly improves the fits for the long-time tails of the memory

kernels. The hereby obtained fit parameters for the friction memory kernels for the different

vibrational coordinates in the bulk water system are summarized in tabs. S1–S4.

The effective masses of the vibrational coordinates that are used throughout this study

are determined by the equipartition theorem mOHs = kBT/⟨ ˙dOHs
2
⟩ = 1.901 04 u, mOHa =

kBT/⟨ ˙dOHa
2
⟩ = 1.845 71 u, mOH = kBT/⟨ ˙dOH

2
⟩ = 0.936 477 u and mHOH = kBT/⟨ ˙ϕHOH

2
⟩ =

0.418 17 uÅ
2
. Comparable analytic estimates are given by the reduced mass of the dOH

coordinate mOH = (mOmH)/(mO + mH) = 0.947 617 u. For the masses of the dOHs and

dOHa coordinates it follows mOHa = mOHs = 2mOH = 1.895 23 u. Furthermore, mHOH =

mH⟨dOH⟩
2/2 = 0.503 345 uÅ

2
can be estimated.
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Table S1: Fit parameters according to eq. (5) in the main text of the friction

memory kernel of the dOHs coordinate.

γi [u/ps] τ ei [ps]
2758 0.115
25941 1.28
54005 5.72

ai [u/ps2] τ oi [ps] ωi [THz]
8468 0.00944 170
3525 0.0146 1290
5985 0.0256 614
1095 0.0599 675
10560 0.0807 28.7
6318 0.122 313

Table S2: Fit parameters according to eq. (5) in the main text of the friction

memory kernel of the ϕHOH coordinate.

γi [u/ps] τ ei [ps]
661 0.582
5210 3.08

ai [u/ps2] τ oi [ps] ωi [THz]
322 0.0257 1280
2139 0.0283 28.9
2577 0.0322 953
37 0.0323 1590
786 0.0394 110
4600 0.0396 643
374 0.0417 162
435 0.0465 136
4089 0.0532 612
69 0.056 252
471 0.0612 84.4
49 0.0839 284
40 0.12 311

2836 0.143 14.4
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Table S3: Fit parameters according to eq. (5) in the main text of the friction

memory kernel of the dOHa coordinate.

γi [u/ps] τ ei [ps]
5653 0.183
32596 2.03

ai [u/ps2] τ oi [ps] ωi [THz]
7584 0.0165 1280
3186 0.021 300
5051 0.0266 602
3208 0.0361 141
1320 0.0401 413
2810 0.0415 644
39665 0.0752 36.5
1353 0.0768 677
2010 0.0856 100

Table S4: Fit parameters according to eq. (5) in the main text of the friction

memory kernel of the dOH coordinate.

γi [u/ps] τ ei [ps]
1212 0.109
9005 1.06
19399 4.52

ai [u/ps2] τ oi [ps] ωi [THz]
1343 0.0174 249
1669 0.0264 616
1544 0.0301 145
420 0.0364 411
137 0.0688 673
845 0.0699 100

10641 0.081 35.5
1802 0.115 312
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IX Simulation of the generalized Langevin equation

The GLE

mẍ(t) = −

∫ t

0

Γ(t− t′)ẋ(t′)dt′ −∇U [x(t)] + FR(t), (S57)

with a sum of n exponential and l oscillating memory kernels, analogous to eq. (5) in the

main text,

Γ(t) =
n∑

i=1

ai e
−t/τi +

l∑

i=1

ai e
−t/τi

(
cos(ωit) +

1

τiωi

sin(ωit)
)
, (S58)

can be efficiently simulated using Markovian embedding (which for the oscillating components

is derived in detail in section X)

ẋ(t) = v(t), (S59)

mxv̇(t) = −∇U [x(t)] +
n∑

i=1

ai[yi(t)− x(t)] +
l∑

i=1

ai[zi(t)− x(t)], (S60)

γiẏi(t) = ai[x(t)− yi(t)] + Fi(t) for n exp. components,

(S61)

żi(t) = wi(t), (S62)

miẇi(t) = −γiwi(t) + ai[x(t)− zi(t)] + Fi(t) for l osc. components.

(S63)

For the n exponential components we obtain ai =
γi
τei

from the fit parameters γi and τ ei . To

obtain mi and γi for the l oscillating components from the fit parameters ai, τ oi and ωi we use

mi = ai((τ
o
i )

−2 + ω2
i )

−1, (S64)

γi = 2
mi

τ oi
. (S65)
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The random force Fi present in eqs. (S61) and (S63) is

Fi =
√
2kBTγiδt−1Ξ, (S66)

where Ξ is a Gaussian random distribution with zero mean and a standard deviation of one.

In the numerical simulation we use the numpy.random.normal function to generate these

random numbers. Eqs. (S60)–(S63) are numerically solved using a 4th-order Runge-Kutta

scheme to obtain the trajectory of x. The timestep of the simulation is 0.001 fs and only every

500th value is stored. Thus the trajectory is evaluated at a time step of 0.5 fs. The trajectory

contains 2.5× 107 values which corresponds to a simulation time of 12.5 ns. Each trajectory is

divided into 50 parts of 250 ps and their spectra are calculated using the Wiener-Khintchine

relation introduced in section XII. All 50 spectra are then averaged to give the final spectrum.

Starting velocity and position are set to be zero.

The memoryless Langevin equation, with a friction constant γ replacing the integral over the

memory kernel,

mẍ(t) = −γẋ(t′)−∇U [x(t)] + FR(t), (S67)

is likewise simulated using a 4th-order Runge-Kutta scheme. The timestep of these simulations

is 0.1 fs for a total of 107 steps, which corresponds to a simulation time of 1 ns. Each trajectory

is divided into 200 parts of 5 ps and their spectra are calculated using the Wiener-Khintchine

relation introduced in section XII. All 200 spectra are then averaged to give the final

spectrum.
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X Oscillating memory kernels

X.1 Oscillating memory kernels from a Hamiltonian model

Oscillating memory kernels arise from inertial dynamics in orthogonal degrees of freedom at

time scales of the order of the primary reaction coordinate. The relation of the time scales of

the orthogonal coordinate and the memory kernel is understood from an explicit derivation of

the dynamics of the primary coordinate x with velocity v, linearly coupled to an orthogonal

coordinate y with velocity w and coupling constant k. The Hamiltonian of the system is

given as

H =
m

2
v2 +

my

2
w2 +

k

2
(x− y)2, (S68)

defining the Hamilton equations

ẋ(t) = v (S69)

mv̇(t) = k [x(t)− y(t)] (S70)

ẏ(t) = w(t) (S71)

myẇ(t) = −k [x(t)− y(t)] . (S72)

These Newtonian equations of motion can straight-forwardly be extended to Langevin

equations by introducing random forces Fx(t), Fy(t) and friction terms with coefficients γx, γy

ẋ(t) = v (S73)

mv̇(t) = −γxv(t) + k [x(t)− y(t)] + Fx(t) (S74)

ẏ(t) = w(t) (S75)

myẇ(t) = −γyw(t)− k [x(t)− y(t)] + Fy(t). (S76)
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The random forces have zero mean, ⟨Fi(t)⟩ = 0, and strength ⟨Fi(t)Fi(t
′)⟩ = 2γikBTδ(t− t′),

fulfilling the fluctuation-dissipation relation.

To obtain the GLE including the memory kernel, we will now find a solution for y using

eq. (S76) and insert this solution in eq. (S74). Eq. (S76) is essentially a driven damped

harmonic oscillator, which can be solved in a general fashion using matrix exponentials and

introducing the inertial time scale τmy
= my/γy and the memory time scale τky = γy/k. First

we write the coupled first order ordinary differential eqs. (S75) and (S76) in the matrix form

˙⃗y(t) = Ay⃗(t), (S77)

where

y⃗(t) =



y

ẏ


 (S78)

A =




0 1

−(τmy
τky)

−1 −τ−1
my


 , (S79)

A−1 =



−τ−1

my
(τmy

τky)
−1

−1 0


 . (S80)

The solution is given as

y⃗(t) = exp (A[t− t0])y⃗0

+

∫ t

t0

dt′ exp (A[t− t′])




0

−(τmy
τky)

−1x(t′) +m−1
y Fy(t

′)


 .

(S81)
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Next a partial integration over the integral containing x(t) is performed

y⃗(t) = exp (A[t− t0])y⃗0

−


A−1 exp (A[t− t′])




0

−(τmy
τky)

−1x(t)







t

t0

+ A−1

∫ t

t0

dt′ exp (A[t− t′])




0

−(τmy
τky)

−1v(t′)




+

∫ t

t0

dt′ exp (A[t− t′])




0

m−1
y Fy(t

′)


 .

(S82)

The matrix exponential can be evaluated by diagonalizing the matrix A. After introducing

ω0 =
√
(2τmy

)−2 − (τmy
τky)

−1 the Eigenvalues λ1,2 of A are given as

λ1,2 = −(2τmy
)−1 ± ω0, (S83)

and the matrix exponential reads

exp(At) =
1

λ2 − λ1




λ2e
λ1t − λ1e

λ2t eλ2t − eλ1t

λ1λ2

(
eλ1t − eλ2t

)
λ2e

λ2t − λ1e
λ1t


 (S84)

= e−t/(2τmy )



cosh(ω0t) +

sinh(ω0t)
2τmyω0

− sinh(ω0t)
ω0

sinh(ω0t)
τmy τkyω0

cosh(ω0t)−
sinh(ω0t)
2τmyω0


 , (S85)
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giving

A−1 exp(At) = τmy
τkye

−t/(2τmy )



− 1

τmy
cosh(ω0t) +

1
2τ2my

ω0

sinh(ω0t) +
1

τmy τkyω0

sinh(ω0t) − 1
2τmyω0

sinh(ω0t)− cosh(ω0t)

1
τmy τky

cosh(ω0t) +
1

τmy τkyω0

sinh(ω0t)
1

τmy τkyω0

sinh(ω0t)


 .

(S86)

The solution for y(t) = y⃗1(t) is now obtained from eqs. (S82)–(S86) and by sending t0 → −∞,

i.e. assuming an equilibrated system

y(t) =x(t)−

∫ t

−∞

dt′v(t′)e−(t−t′)/(2τmy )

[
cosh(ω0(t− t′)) +

1

2τmy
ω0

sinh(ω0(t− t′))

]

−

∫ t

−∞

dt′Fy(t
′)e−(t−t′)/(2τmy )

1

myω0

sinh(ω0(t− t′)).

(S87)

To obtain the generalized Langevin equation for x(t) containing the oscillating memory kernel

Γ(t) = ke−t/(2τmy )

[
cosh(ω0t) +

1

2τmy
ω0

sinh(ω0t)

]
, (S88)

eq. (S87) is inserted in eq. (S74)

mv̇(t) = −γxv(t) + Fx(t) +

∫ t

−∞

dt′v(t′)Γ(t− t′) + F ′
y(t), (S89)

where

F ′
y(t) = k

∫ t

−∞

dt′Fy(t
′)e−(t−t′)/(2τmy )

1

myω0

sinh(ω0(t− t′)). (S90)
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X.2 Underdamped limit: oscillating kernel

The kernel of eq. (S88) can be analysed for two limiting cases. For Im(ω0) > (2τmy
)−1, which

is equivalent to 4τmy
> τky , the underdamped case, ω0 is purely imaginary and the kernel is

Γ(t) = ke−t/(2τmy ) cos(Im(ω0)t) +
1

2τmy
Im(ω0)

sin(Im(ω0)t). (S91)

The integral is evaluated to

γ =

∫ ∞

0

dtΓ(t) = k
4τmy

1− 4τ 2my
Im(ω0)2

= kτky = γy. (S92)

X.3 Overdamped limit: exponential kernel

For Re(ω0) < (4τmy
)−1 and τky > (4τmy

), the overdamped case, it follows that ω0 is purely

real. The integral equally gives

γ =

∫ ∞

0

dtΓ(t) = k
4τmy

1− 4τ 2my
ω2
0

= kτky = γy. (S93)
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XI Simulations of single H2O molecule in the NVE en-

semble

For the aiMD simulations of a single H2O molecule, representing the gas phase, 47 initial

configurations are sampled from a 25 ps NVT simulation and subsequently simulated in the

NVE ensemble. The NVT simulation is temperature-controlled using an individual thermostat

with a time constant of 10 fs for each atom. The NVE simulations are each run for 10 ps with

a time step of 0.25 fs. The distributions of their initial configurations are shown in fig. S4 to

sample well the equilibrium distributions from the NVT trajectory.

A B

C D

Figure S4: Comparison of the distributions for the different coordinates sampled from the
aiMD simulations of a single H2O molecule under NVT conditions (blue solid lines) and 47
samples taken from the NVT trajectory as initial conditions for equivalent simulations under
NVE conditions (orange dots). A: dOHs coordinate, B: ϕHOH coordinate, C: dOHa coordinate
and D: dOH coordinate.
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XII Wiener-Khintchine theorem

The correlation function Cxy(t) of two stochastic processes x(t) and y(t) limited to the

interval [0, Lt] is efficiently computed from the Fourier-transformed expressions x̃(ω) and ỹ(ω)

according to

Cxy(t) =
1

2π(Lt − t)

∫ ∞

−∞

dω e−iωtx̃(ω)ỹ∗(ω), (S94)

where the asterisk denotes the conjugate form. This is known as the Wiener-Khintchine

theoremS7. Both sides of eq. (S94) are Fourier-transformed to give

∫ ∞

−∞

dt eiωt 2πLt

(
1−

t

Lt

)
Cxy(t) = x̃(ω)ỹ∗(ω), (S95)

which in the limit of large Lt reduces to

C̃xy(ω) = L−1
t x̃(ω)ỹ∗(ω). (S96)

Eq. (S94) can be derived starting off with the definition of the correlation function

Cxy(t) =
1

Lt − t

∫ Lt−t

0

dt′ x(t′ + t)y(t′), (S97)

and making use of the convolution theorem

Cxy(t) =
1

4π2(Lt − t)

∫ Lt−t

0

dt′
∫ ∞

−∞

dω e−iω(t+t′)x̃(ω)

∫ ∞

−∞

dω′ e−iω′t′ ỹ(ω′)

=
1

4π2(Lt − t)

∫ ∞

−∞

dω e−iωtx̃(ω)

∫ ∞

−∞

dω′ ỹ(ω′)

∫ Lt−t

0

dt′e−it′(ω+ω′)

=
1

4π2(Lt − t)

∫ ∞

−∞

dω e−iωtx̃(ω)

∫ ∞

−∞

dω′ ỹ(ω′)2πδ(ω + ω′)

=
1

2π(Lt − t)

∫ ∞

−∞

dω e−iωtx̃(ω)ỹ(−ω), (S98)
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noting that ỹ(−ω) = ỹ∗(ω) for a real function y(t) in order to obtain eq. (S94).

XIII Decomposition of the OH stretch mode

Figure S5: Comparison of IR spectra in the OH-stretching regime obtained from the total
dipole-moment trajectory including nuclear and electronic charges from the aiMD simulation
of 256 H2O molecules (gray solid line), an approximation using partial charges on the nuclear
dynamics of the same aiMD simulation (blue sold line, introduced in section III), experimental
Fourier-transform infrared spectroscopy (FTIR) data (gray broken line)S6 and rescaled power
spectra of the dOH (green solid line), dOHs (purple solid line) and dOHa (purple broken line)
vibrational coordinates.

As introduced in the main text, vibrational coordinates for the OH stretch mode are given by

dOHs = (dOH1 + dOH2)/2 for the symmetric stretching-vibration and dOHa = (dOH1 − dOH2)/2

for the antisymmetric stretching vibration. Fig. S5 compares the power spectra of these

coordinates, obtained from averaging over all 256 H2O molecules in the aiMD simulation, to

power spectra of the dOH coordinate, experimental FTIR data and the IR spectra obtained

from the total dipole-moment trajectory including nuclear and electronic charges from the

aiMD simulation and an approximation using partial charges on the nuclear dynamics of the

aiMD simulation, as introduced in section III. The power spectrum of the dOH coordinate is

blue-shifted with respect to the power spectra considering the total dipole moment, indicating

a slow down of the collective nuclear and electronic dynamics with respect to the single-

molecule dynamics, as discussed in section II. This is similar to the effect of the slow down
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observed in the IR spectra including electronic degrees of freedom compared to the nuclei-only

IR spectra, discussed in section III. As expected for the decomposition, the power spectra

of dOHs and dOHa exactly sum up to the dOH power spectrum, there exists no remaining

cross-correlation spectrum, so they form orthogonal coordinates.

The potentials, power spectra and analysis in terms of frequency-dependent friction of the dOHs

and ϕHOH coordinates are shown in the main text. The remaining discussion is shown here for

the dOH coordinate in fig. S6 and for the dOHa coordinate in fig. S7. The potential of the dOH

coordinate shows strong nonharmonic contributions in fig. S6A, seen from the reduced potential

coefficients k̃3 = k3/kBT (k/kBT )
−3/2 = −0.128 and k̃4 = k4/kBT (k/kBT )

−2 = 0.00503. The

potential of the dOHa coordinate is symmetric by definition and therefore has a negligible cubic

and only a small quartic contribution k̃4 = −0.0141 in fig. S7A compared to the potential

of the dOHs coordinate, shown in fig. 3A in the main text, which has a significant cubic

contribution. When compared to the potential of a single water molecule in figs. S6B and S7B,

the dOH coordinate shows a shift of the minimum from 97.37 pm to 99.06 pm, i.e. elongation of

the bond length due to hydrogen bonding. As expected, the potential of the dOHa coordinate

is centered around zero for both systems. Both coordinates show a significant potential

softening in the liquid phase, which follows from comparison of the dominant harmonic

contributions of k/(kBT ) = 0.139 pm−2 for dOH and k/(kBT ) = 0.272 pm−2 for dOHa with the

respective gas-phase values of k/(kBT ) = 0.183 pm−2 for dOH and k/(kBT ) = 0.352 pm−2 for

dOHa.

The memory kernels in the time domain, shown in figs. S6C for the dOH coordinate and S7C

for the dOHa coordinate, are discussed further below in fig. S8. The frequency-dependent

friction, shown in figs. 3D in the main text for the dOHs coordinate, S6D for the dOH coordinate

and S7D for the dOHa coordinate show remarkable differences. The frequency-dependent

friction of the dOHs coordinate shows a much stronger contribution in the regime of the HOH

bending band at around 1650 cm−1, indicating that it couples more intensely to the HOH

bending mode than the dOHa mode.
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Figure S6: Results for the stretch coordinate dOH from aiMD simulations. A, B: Potential U(dOH) for
256 H2O in the liquid phase (gray solid line) and for a single H2O molecule (green solid line in B), both
compared to the nonharmonic fit according to eq. (4) in the main text (blue broken line) and the harmonic
part (gray dotted line). C, D: Friction as a function of time and frequency (gray lines) compared with the fit
according to eq. (5) in the main text (blue lines). Real and imaginary parts in (D) are shown as solid and
broken lines, the spectrum on top is the full absorption spectrum from aiMD. The dotted horizontal line
in (D) shows the constant real friction γOH = Γ̃′(fOH) evaluated at the OH stretch vibrational frequency

fOH = 3400 cm−1. The gray circle denotes the static friction Γ̃′(0). E: Power spectrum ωχ̃′′ (gray solid line)
compared to models of varying complexity: Lorentzian with harmonic potential and constant friction γOH

(gray dotted line), nonharmonic potential and constant friction γOHs (blue broken line), harmonic potential

and frequency-dependent friction Γ̃(f) (purple solid line), nonharmonic potential and frequency-dependent

friction Γ̃(f) (blue solid line).
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Figure S7: Results for the antisymmetric stretch coordinate dOHa from aiMD simulations. A, B: Potential
U(dOHa) for 256 H2O in the liquid phase (gray solid line) and for a single H2O molecule (green solid line in
B), both compared to the nonharmonic fit according to eq. (4) in the main text (blue broken line) and the
harmonic part (gray dotted line). C, D: Friction as a function of time and frequency (gray lines) compared
with the fit according to eq. (5) in the main text (blue lines). Real and imaginary parts in (D) are shown as
solid and broken lines, the spectrum on top is the full absorption spectrum from aiMD. The dotted horizontal
line in (D) shows the constant real friction γOHa = Γ̃′(fOHa) evaluated at the OH stretch vibrational frequency

fOHa = 3440 cm−1. The gray circle denotes the static friction Γ̃′(0). E: Power spectrum ωχ̃′′ (gray solid line)
compared to models of varying complexity: normal mode of single H2O (broken vertical line), Lorentzian
with harmonic potential and constant friction γOHa (gray dotted line), nonharmonic potential and constant

friction γOHa (blue broken line), harmonic potential and frequency-dependent friction Γ̃(f) (purple solid line),

nonharmonic potential and frequency-dependent friction Γ̃(f) (blue solid line).
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Figs. S6E and S7E show the power spectra of the two coordinates, compared to the different

GLE models. As shown in the main text for the dOHs and ϕHOH coordinates, the frequency-

dependent-friction model including a nonharmonic potential outperforms the other models for

all coordinates. In case of the dOHa coordinate, shown in fig. S7E, the frequency-dependent-

friction model with the harmonic potential also performs very well, due to the negligible

nonharmonic contribution to the potential in fig. S7A.
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20000
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Γ
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2
]

dOH

dOHs

dOHa

Figure S8: Comparison of time-dependent friction kernels extracted from the aiMD simulations
for the dOH (gray solid line), dOHs (blue solid line) and dOHa (purple solid line) coordinates.

The time-dependent friction kernels of the dOH, dOHs and dOHa coordinates are compared in

fig. S8, scaled by the mass of the respective coordinate. The time-dependent friction kernel

of the dOHa coordinate differs significantly from the one of the dOHs coordinate. However, all

friction kernels show various oscillating decay time scales between 10 fs and 5 ps, which is

discussed in detail in the main text for the example of dOHs.

XIV Constant-friction line shape

The dependence of the Lorentzian line shape function eq. (S51) on the friction coefficient

γ for the dOHs coordinate is illustrated in fig. S9A and for the ϕHOH coordinate in fig. S9B.

A variation of γ does not shift the peak position but significantly changes the width. This
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follows analytically from the maximum of eq. (S51)

∂

∂ω
[ωχ̃′′(ω)] =

L2

kBT

[
−

8τω (ω4τ 4ω − 1)

(ω2 (τ 2 − 8τ 2ω) + 4ω4τ 4ω + 4) 2

]
(S99)

!
= 0 for ω = τ−1

ω , (S100)

which does not depend on γ. When considering nonharmonic effects in the potential, simulated

power spectra still show no significant shifts for variation of the friction coefficient, as shown

in figs. S9C and D.
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Figure S9: Power spectra, obtained from the aiMD simulations (gray solid lines) and compared
to spectra from a constant friction model with the harmonic fit to the potential (A, B)
and considering nonharmonic effects (C, D). The spectra are shown for variations of the
friction coefficient γOHS = Γ′(fOHS) and γHOH = Γ′(fOHS), where fOHS = 3390 cm−1 and
fHOH = 1650 cm−1 are at the maxima of the respective power spectra from the simulations.
A, C: dOHs coordinate and B, D: ϕHOH coordinate.
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I Effect of the confinement along the reaction coordinate

The harmonic confinement, kx2/2, applied along the reaction coordinate x, the distance

between the two reactants, has an impact on the equilibrium distributions and the reaction

kinetics. In Fig. S1 this effect is illustrated by showing the effective pair potentials and

τMFP for the NaCl ion pair obtained from simulations with different confinement strengths

k = 30, 50, 100 kJmol−1nm−2; the data for k = 100 kJmol−1nm−2 in blue is shown throughout

the main text and the other sections of the supplement. In Fig. S1A the effective potential

landscape is shown to be significantly broadened when the value for k is decreased. Also the

barrier height from the contact-pair (CP) to solvent-separated-pair (SSP) states, i.e. for the

dissociation reaction, decreases by about 0.5 kBT when going from k = 100 kJmol−1nm−2 to

k = 30 kJmol−1nm−2.
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Figure S1: Effective pair potentials (A) and profiles of τMFP(xf ) (B) for both the dissociation
(solid lines) and association reactions (broken lines) along the reaction coordinate x, obtained
from molecular dynamics (MD) simulations of the NaCl ion pair in water at different harmonic
confinement strengths kx2/2. In B the positions of the local minima of the pair potential
for k = 100 kJmol−1nm−2 are indicated by vertical gray broken lines, which define the initial
positions xi for the profiles of τMFP(xf ).

In Fig. S1B profiles of τMFP(xf) are shown for both the dissociation (solid lines) and the

association reactions (broken lines) from MD simulations. In accordance with the changes of

the barrier height seen in Fig. S1A, the dissociation reaction becomes faster with decreasing

confinement strength, while the association reaction becomes slower. Thus, to focus on
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the dissociation reaction in such equilibrium simulations, a high confinement is preferable,

because the systems spends little time in the less favorable solvent-separated pair (SSP) state.

In Fig. S2 it is demonstrated that also the extracted kernels are slightly modified when the

confinement potential strength changes, which presumably reflects that the memory kernel is

different for the CP and the SSP state.
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Figure S2: Memory friction kernel (A) and its running integral (B) for the NaCl ion pair in
water from MD simulations at different harmonic confinement strengths kx2/2.
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II Effective mass along the reaction coordinate

The effective mass of the reaction coordinate is estimated from the equipartition theorem,

m = kBT/⟨ẋ2(t)⟩ and found to be 13.961 u for NaCl and 8.049 u for methane, which is in

good agreement with the theoretical predictions of the reduced mass, 13.946 u for NaCl and

8.022 u for methane. As an important test of the form of the GLE, Eq. (1) in the main

text, that uses a constant mass, the effective mass for the two systems considered in this

study are shown in Figs. S3A and B as a function of the reaction coordinate Xi according

to mi = kBT/⟨ẋ2
i (t)⟩|xi(t)∈Xi

. The mass profiles are seen to be constant, as expected for

atomic-distance coordinates based on exact argumentsS1.
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Figure S3: Effective mass profiles (blue circles) computed from the equipartition theorem
along the reaction coordinate for the NaCl ion pair (A) and the methane pair separation
coordinate (B) in water. For illustration the pair potentials are shown as thick gray lines on
a second axis.
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III Nonharmonic-potential and barrier-height effects

The exponential scaling of reaction times with the potential barrier height U0 is known since

ArrheniusS2. Our work focuses on the prefactor of the exponential scaling that is predicted

by various analytical rate theories and depends on mass, memory friction and the potential

shape. As also discussed in sections IV and VIII, the rate theories that are considered

in this study, namely MM, GH and Kramers’ medium-to-high-friction theories, use local

harmonic approximations for the well and barrier regions of the nonharmonic pair potentials.

This is often called a high-barrier approximation, since the local harmonic approximation

becomes exact in the high-barrier limit. However, the harmonic approximation and the

high-barrier approximation are distinct. In this section a perturbation analysis is presented in

the overdamped Markovian limit that includes non-harmonic corrections and thereby allows

us to improve the analytic prediction of reaction times for finite barrier height and to test

the high-barrier approximation in dependence of the barrier height.

The exact prediction for the crossing time over a barrier in the overdamped Markovian limit

given in Eq. (6) in the main text, which for constant friction γ reads

τMFP(xi, xf ) = βγ

∫ xf

xi

dx′ eβU(x′)

∫ x′

xmin

dx e−βU(x), (S1)

is first compared to the Kramers’ result for high friction, which follows via a harmonic

approximations of the potential U(x) and is given by

τhfKr =
γ

mωmax

τTST (S2)

=
2πγ

mωmaxωmin

eβU0 (S3)

=
2πγ

√

U II
min|U II

max|
eβU0 . (S4)

The test is performed for a double-well (DW) potential, U(x) = U0(1− (x/L)2)2 with length

scale L, illustrated in Fig. S4A, as well as for the NaCl and methane pair potentials, which
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are scaled by a constant factor in order to be able to vary the barrier height U0 from well to

barrier top, i.e. from the contact pair (CP) to the transition state (TS).

The curvatures at the well bottom and at the barrier top, that enter the Kramers theory,

are obtained from iterative smoothing of the pair potentials, as discussed in detail in section

VIII. For consistency, the potential that is used for the evaluation of Eq. (S1) is obtained at

the highest iteration of smoothing as presented in Fig. S10. Since different iteration levels

are used around the well bottoms and the barrier top, the smoothed potential is constructed

by combination of potentials with different numbers of smoothing iterations. The obtained

smooth potentials are shown in Fig. S4D and G as blue solid lines and are compared to the

raw data represented by gray solid lines. Subsequently, to accelerate the numerics, the smooth

potential is represented by a fifth-order spline, for which the number of knots is determined

such that the squared deviation between the spline and the smooth potential for values

< 10 kBT is below 0.0002(kBT )
−2. Afterwards, the spline is scaled linearly when investigating

different barrier heights. The double integral in Eq. (S1) is then evaluated using the function

‘integrate.dblquad’, while for the spline representation the class ‘interpolate.UnivariateSpline’

is used, both implemented in scipy 1.5.4.

In Fig. S4B and C the results for the double-well potential are presented, scaled by the diffusion

time scale τD = γL2/kBT . In Fig. S4D–F the results for the NaCl and in Fig. S4G–I for the

methane system are presented. Kramers’ theory (colored solid lines) slightly underestimates

the exact analytical theory by up to 10%-20% in each system, but the relative difference,

τ
eq.(6)
MFP /τKramers

MFP − 1, which is shown in the insets in Figs. S4B,E,H, does decrease with barrier

height, as expected, but the decrease is quite slow. Even at a barrier height of U0 = 20 kBT

a relative difference of about 2% persists for the double-well and the NaCl systems and of

about 6% for the methane system. Therefore, while for high barriers the quality of the local

harmonic approximations of the potential used by the analytical rate theories does improve,

even at moderately high barriers < 20 kBT , nonharmonic-potential effects are significant and

cannot be disregarded.
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The error of the harmonic approximation can be estimated analytically from the exact solution,

Eq. (S1), by deriving higher-order corrections to the Kramers’ high-friction result Eq. (S2),

which allows to predict the scaling of the relative error of the harmonic approximation with

the barrier height. First, the inner integral of Eq. (S1) is approximated by Taylor expansion

around the barrier top position xB according to

I(x′) =

∫ x′

xmin

dx e−Ũ(x) = I(xB) + (x′ − xB)I
′(xB) + (x′ − xB)

2I ′′(xB)/2 + · · · , (S5)

where βU(x) = Ũ(x) is used. Since I ′(xB) = exp(−Ũ(xB)), the first term in the expansion is

exponentially dominant over the correction terms. By expanding the potential U(x) around

the local minimum at xA, i.e. the potential well, the inner integral thus can be written as

I(x′) =

∫ x′

xmin

dx e−Ũ(x) ≈ I(xB) ≈
∫ ∞

−∞
dx e−Ũ(x) (S6)

≃
∫ ∞

−∞
dx exp

(

−ŨA − 1

2
(x− xA)

2Ũ II
A − 1

6
(x− xA)

3Ũ III
A − 1

24
(x− xA)

4Ũ IV
A + ...

)

(S7)

≃ e−ŨA

∫ ∞

−∞
dx exp

(

−1

2
(x− xA)

2Ũ II
A

)(

1 +
1

72
x6(Ũ III

A )2 − 1

24
x4Ũ IV

A + ...

)

(S8)

= e−ŨA

(√

2π

Ũ II
A

+
(Ũ III

A )2

72

15
√
2π

(Ũ II
A )7/2

− Ũ IV
A

24

3
√
2π

(Ũ II
A )5/2

+ ...

)

(S9)

= e−ŨA

√

2π

Ũ II
A

(

1 +
5(Ũ III

A )2

24(Ũ II
A )3

− Ũ IV
A

8(Ũ II
A )2

+ ...

)

, (S10)

where Roman superscripts denote the order of derivatives, Ũ i
A = ∂iŨA/∂x

i|x=xA
. In the

derivation, the series expansion of the exponential function has been used exp(x) = 1 + x+

x2/2+ ... and the fact that odd powers in x do not contribute to the symmetric integral. The

extension of the integral boundaries to infinity corresponds to a high-barrier approximation

and leads to a correction that is exponentially small in the barrier height.

S-7

D. Supporting Information:

Pair-Reaction Dynamics in Water: Competition of Memory Friction, Inertia and the

Potential Shape



MFPT to barrier top

Next, the outer integral of Eq. (S1) is approximated by a Taylor expansion of the potential

around the barrier top at xB. First, we consider the case in which the upper boundary of the

integral, i.e. the final position of τMFP, is located at the barrier top,

τMFP(xi, xB) ≃ βγI(xB)

∫ xB

xi

dx′ eβU(x′) (S11)

≃ βγI(xB)

∫ xB

−∞
dx exp

(

ŨB +
1

2
(x− xB)

2Ũ II
B +

1

6
(x− xB)

3Ũ III
B +

1

24
(x− xB)

4Ũ IV
B + ...

)

(S12)

≃ βγI(xB)e
ŨB

∫ xB

−∞
dx exp

(

−1

2
(x− xB)

2|Ũ II
B |
)

(

1 +
1

6
x3Ũ III

B +
1

72
x6(Ũ III

B )2 +
1

24
x4Ũ IV

B + ...

)

(S13)

≃ βγI(xB)e
ŨB

1

2

√

2π

|Ũ II
B |

(

1− 2Ũ III
B

3
√
2π|Ũ II

B |3/2
+

5(Ũ III
B )2

24(Ũ II
B )3

+
Ũ IV
B

8|Ũ II
B |2

+ ...

)

.

(S14)

The extension of the integral boundary to minus infinity leads to a correction that is

exponentially small in the barrier height but also eliminates the dependence on the initial

position xi. The final expression for the MFPT is given as

τMFP(xi, xB) ≃ βγeŨB−ŨA
1

2

√

2π

|Ũ II
B |

√

2π

Ũ II
A

(

1 +
5(Ũ III

A )2

24(Ũ II
A )3

− Ũ IV
A

8(Ũ II
A )2

+ ...

)

(

1− 2Ũ III
B

3
√
2π|Ũ II

B |3/2
+

5(Ũ III
B )2

24(Ũ II
B )3

+
Ũ IV
B

8|Ũ II
B |2

+ ...

)

(S15)

≃ eŨ0
1

2

2πβγ
√

|Ũ II
B |Ũ II

A

(

1− 2Ũ III
B

3
√
2π|Ũ II

B |3/2
+

5(Ũ III
A )2

24(Ũ II
A )3

− Ũ IV
A

8(Ũ II
A )2

+
5(Ũ III

B )2

24(Ũ II
B )3

+
Ũ IV
B

8|Ũ II
B |2

)

(S16)

=
τhfKr

2

(

1− 2Ũ III
B

3
√
2π|Ũ II

B |3/2
+

5(Ũ III
A )2

24(Ũ II
A )3

− Ũ IV
A

8(Ũ II
A )2

+
5(Ũ III

B )2

24(Ũ II
B )3

+
Ũ IV
B

8|Ũ II
B |2

)

.

(S17)
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MFPT over barrier top

Here the outer integral of Eq. (S1) reaches over the barrier

τMFP(xi, xf ) ≃ βγI(xB)

∫ xf

xi

dx′ eβU(x′) (S18)

≃ βγI(xB)

∫ ∞

−∞
dx exp

(

ŨB +
1

2
(x− xB)

2Ũ II
B +

1

6
(x− xB)

3Ũ III
B +

1

24
(x− xB)

4Ũ IV
B + ...

)

(S19)

≃ βγI(xB)e
ŨB

∫ ∞

−∞
dx exp

(

−1

2
(x− xB)

2|Ũ II
B |
)(

1 +
1

72
x6(Ũ III

B )2 +
1

24
x4Ũ IV

B + ...

)

(S20)

≃ βγI(xB)e
ŨB

√

2π

|Ũ II
B |

(

1 +
5(Ũ III

B )2

24(Ũ II
B )3

+
Ũ IV
B

8|Ũ II
B |2

+ ...

)

, (S21)

where compared to the well-to-barrier-top case, Eq. (S14), the prefactor 1/2 and the

−2Ũ III
B /(3

√
2π|Ũ II

B |3/2) term are missing. The final result is given as

τMFP(xi, xf ) ≃ βγeŨB−ŨA

√

2π

|Ũ II
B |

√

2π

Ũ II
A

(

1 +
5(Ũ III

A )2

24(Ũ II
A )3

− Ũ IV
A

8(Ũ II
A )2

+ ...

)

(

1 +
5(Ũ III

B )2

24(Ũ II
B )3

+
Ũ IV
B

8|Ũ II
B |2

+ ...

)

(S22)

≃ eŨ0
2πβγ

√

|Ũ II
B |Ũ II

A

(

1 +
5(Ũ III

A )2

24(Ũ II
A )3

− Ũ IV
A

8(Ũ II
A )2

+
5(Ũ III

B )2

24(Ũ II
B )3

+
Ũ IV
B

8|Ũ II
B |2

)

(S23)

= τhfKr

(

1 +
5(Ũ III

A )2

24(Ũ II
A )3

− Ũ IV
A

8(Ũ II
A )2

+
5(Ũ III

B )2

24(Ũ II
B )3

+
Ũ IV
B

8|Ũ II
B |2

)

. (S24)
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Application to explicit potentials

The correction terms Eq. (S17) and Eq. (S24) can be evaluated analytically for the double-well

model potential

U(x) = U0

(

1− x2

L2

)2

, (S25)

U I(x) = −U0

(

4x

L2
− 4x3

L4

)

, (S26)

U II(x) = −U0

(

4

L2
− 12x2

L4

)

=⇒ Ũ II
A = Ũ0

8

L2
, Ũ II

B = −Ũ0
4

L2
, (S27)

U III(x) = U0
24x

L4
=⇒ Ũ III

A = −Ũ0
24

L4
, Ũ III

B = 0, (S28)

U IV (x) = U0
24

L4
=⇒ Ũ IV

A = Ũ IV
B = Ũ0

24

L4
. (S29)

When inserting these values into Eq. (S17) and Eq. (S24), we obtain for the transition to the

barrier top and over the barrier top the same result (except the prefactor of 1/2) since the

third derivative at the barrier vanishes, Ũ III
B = 0, i.e. for xf > xB we obtain

τMFP(xi, xf ) ≃ τhfKr

(

1 +
5(Ũ III

A )2

24(Ũ II
A )3

− Ũ IV
A

8(Ũ II
A )2

+
Ũ IV
B

8|Ũ II
B |2

)

= τhfKr

(

1 +
15

64Ũ0

− 3

64Ũ0

+
12

64Ũ0

)

= τhfKr

(

1 +
3

8Ũ0

)

(S30)

=⇒ τMFP(xi, xf )

τhfKr

− 1 =
3

8Ũ0

. (S31)

This estimate is shown in Fig. S4C as a gray solid line and agrees well with the actual

error, i.e. the relative difference between the Kramers’ high friction prediction and the exact

analytical result, that is plotted as a yellow broken line for the well-to-well case (CP to SSP)

and as a blue broken line for the well-to-barrier-top case (CP to TS). Specifically the U−10

scaling is well visible.

For both the NaCl and methane systems, the correction terms for well-to-barrier-top and
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Figure S4: Comparison of the scaling of τMFP with the barrier-height in the overdamped
Markovian limit as given by Kramers’ high friction theory Eq. (S2) (in B, E and H: blue solid
line for going from the CP to the TS and yellow solid line for going from the CP to the SSP)
and the exact analytical result of Eq. (6) (gray solid lines). The relative difference between
the analytical theories, i.e. τ eq.(6)MFP /τKramers

MFP − 1 is given as broken lines in the respective colors
in C, F and I (as well as in the insets in B, E and H), dotted colored lines denote negative
values. Additionally, the analytical estimate of the relative difference, given by Eq. (S17) and
Eq. (S24), is shown as lightgray solid lines in C, F and I and in the insets in B, E and H.
See main text for details. A–C: Results for the double-well potential. D–F: Results for the
NaCl pair potential. F–G: Results for the methane pair potential.
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well-to-well cases, Eq. (S17) and Eq. (S24) respectively, are unequal. To evaluate these terms

the local numerical derivatives are used as reported in Tab. S1 in section VIII. The local

polynomial approximations of the potentials that follow from these parameters are also shown

explicitly in Figs. S4D and G as broken black lines for the well bottom and dotted black lines

for the barrier top.

We first discuss the well-to-barrier-top case (CP to TS), for which the estimated error,

Eq. (S17), is given in Figs. S4F and I as thin gray solid lines. For both NaCl and methane

it agrees well with the actual error, i.e. the relative difference between the Kramers’ high

friction prediction and the exact analytical result, that is plotted as blue broken lines, the

dotted lines denote negative values. All curves show a crossing from positive to negative

values at around U0 = 10 kBT , which reflects a complex competition of the various terms in

Eq. (S17).

For the well-to-well case (CP to SSP) the estimated error, Eq. (S24), is given in Figs. S4F and

I as thick gray solid lines and again compared to the actual error, that is plotted as yellow

lines, dotted lines denote negative values. The estimated error is in both cases dominated by

the U−10 scaling, that is also visible for the DW system discussed above and shown in Fig. S4C.

For NaCl this scaling agrees well with the actual error (yellow broken line in Fig. S4F). For

methane the actual error for the well-to-well case (yellow broken and yellow dotted lines

in Fig. S4I) is much closer to the one of the well-to-barrier-top case (blue broken and blue

dotted lines in Fig. S4I), than to the estimated one. This behavior is understood from

the underlying potential in Fig. S4G, which shows that the two scenarios are actually very

similar. Moreover, the barrier is highly asymmetric when compared to the potential of NaCl

in Fig. S4D, which means that the cubic term at the barrier top, Ũ III
B , is important. However,

the −2Ũ III
B /(3

√
2π|Ũ II

B |3/2) term drops out of the estimated error for the well-to-well case,

Eq. (S24), due to the shift of the integration boundaries to infinity, which explains the

deviation between the actual and the predicted error. Once again, these results confirm the

complex interplay of potential effects beyond the harmonic approximation.
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IV Rate theories for barrier crossing

Theoretical predictions for barrier-crossing dynamics in a viscous environment reach back

to KramersS3, who derived different friction-dependent prefactors to the Arrhenius law in

the opposing inertia dominated and overdamped regimes. The well-known Kramers turnover

between these regimes was only later fully covered in a theory by Mel’nikov and Meshkov

(MM)S4. A memory-induced barrier-crossing acceleration compared to the overdamped

Kramers limit was first demonstrated by Grote and Hynes (GH)S5, which gives way to

barrier-crossing slow down in the long memory-time limitS6,S7.

All these reaction-rate theories calculate a prefactor to transition-state theory, which, assuming

a harmonic potential well for the reactant state, predicts the mean escape time of a particle

over a frictionless barrier to beS8

τTST =
2π

ωmin

eβU0 , (S32)

where U0 denotes the barrier height, β−1 = kBT is the thermal energy, and the well frequency

ωmin =
√

U ′′min/m depends on the curvature U ′′min := U ′′(xmin) at the minimum xmin of the

potential well from which the particle escapes.

Kramers considered the escape from a harmonic potential well for a particle undergoing Brow-

nian motion, as described by the Langevin equation (LE) Eq. (3) with position-independent

friction γ, for both the limits of medium-to-high friction and low frictionS3. For the medium-

to-high friction regime, he obtained

τmh
Kr =

[

(

γ2

4m2
+ ω2

max

)1/2

− γ

2m

]−1

ωmaxτTST, (S33)

from which follows in the high-friction limit, γ/m → ∞,

τhfKr =
γ

mωmax

τTST, (S34)
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where the barrier frequency ωmax =
√

−U ′′max/m depends only on the curvature U ′′max :=

U ′′(xmax) at the barrier top xmax, which reflects usage of the harmonic approximation for the

barrier.

In the low-friction limit he derived

τ lfKr =
m

γβU0

eβU0 . (S35)

Note the opposite scaling of the predictions with the friction constant γ: While for high

friction τhfKr ∼ γ, for low friction τ lfKr ∼ γ−1.

Mel’nikov and Meshkov (MM)S4 derived a solution to the Kramers’ problem which is valid

for all values of the friction and hence bridges the two asymptotic expressions Eq. (S33) and

Eq. (S35). The Melnikov’/Meshkov (MM) result is given by

τMM = A−1(∆)

[

(

γ2

4m2
+ ω2

max

)1/2

− γ

2m

]−1

ωmaxτTST, (S36)

A(∆) = exp

[

2

π

∫ π
2

0

ln
[

1− e−∆/[4 cos2(x)]
]

dx

]

, (S37)

∆ = 2
√
2

γ√
m
β

∫ 0

−
√
2L

√

U0 − U(x) dx. (S38)

Importantly, while the prefactor A(∆), which becomes relevant in the inertial regime, γ →

0, considers the full nonharmonic potential, U(x), Eq. (S36) still contains the harmonic

approximations of the potential for both well and barrier and is therefore not exact for a

general potential shape.

While both Kramers’ and MM theory consider Markovian dynamics, Grote and Hynes (GH)S5

developed a theory for the mean first-passage time including non-Markovian effects. Their

expression for the case where the dynamics in a harmonic potential well relax fast and only

memory effects on a harmonic barrier are relevant is given by

τGH =
ωmax

λ
τTST, (S39)
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where Γ̃(λ) denotes the Laplace-transformed memory friction kernel Γ(t) at the barrier top,

and the real reactive frequency, λ > 0, is the solution of the equation

λ =
ω2
max

λ+ Γ̃(λ)/m
. (S40)

Thus, for a single exponential kernel Γ(t) = γe−t/τ/τ , λ is given as the single positive solution

of the cubic equation

λ3 +
λ2

τ
+
( γ

mτ
− ω2

max

)

λ =
ω2
max

τ
. (S41)

In the Markovian limit, i.e. for delta-correlated friction, Γ(t) = 2γδ(t) and Γ̃(λ) = γ, it follows

that λ = (γ2/(4m2) + ω2
max)

1/2 − γ/(2m) and thus τGH = τmh
Kr , the Kramers medium-to-high-

friction result in Eq. (S33). Note that, either in the inertial, m → ∞, or the long memory

limit, τ → ∞, it follows that λ = ωmax and thus Grote/Hynes (GH) theory reduces to the

transition-state theory result, τGH = τTST. It thereby misses both the Markovian low-friction

limit, covered by Eq. (S35)S3,S4 and the memory slow-down regime for long memory time

that is obtained if memory effects in the barrier and well regions are equally importantS6,S7.

Evidently, it also misses nonharmonic-potential effects.

In the overdamped Markovian limit, the Fokker-Planck equation is most suitable for analytical

calculations, for arbitrary potential shapes U(x) and position-dependent friction γ(x) it

readsS9

∂

∂t
P (x, t) =

∂

∂x

[

β−1

γ(x)
e−βU(x) ∂

∂x

[

P (x, t)eβU(x)
]

]

(S42)

and describes the time propagation of the distribution P (x, t). From the Fokker-Planck

equation, the exact expression for τMFP between initial xi and final positions xf , shown as

Eq. (6) in the main text, follows asS10

τMFP(xi, xf ) = β

∫ xf

xi

dx′γ(x′) eβU(x′)

∫ x′

xmin

dx e−βU(x). (S43)

Eq. (S43) can be inverted and thereby used to estimate a position-dependent friction profile
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γ(x) from measured values of τMFP, which is presented in detail in section V.

V Position-dependent friction effects

The dynamics of overdamped Markovian systems is often modeled with a position-dependent

friction profile, γ(x). Such a profile can be estimated from τMFP(x) data and the Fokker-Planck

solution Eq. (6) in the main text, that is repeated here

τMFP(xi, xf ) = β

∫ xf

xi

dx′γ(x′) eβU(x′)

∫ x′

xmin

dx e−βU(x), (S44)

where xi is the starting position and xf the final position of τMFP, β = (kBT )
−1 and xmin is

the lower reflecting boundary. Eq. (S44) holds for dissociation dynamics with xf > xi. The

corresponding solution for association dynamics xf < xi is

τMFP(xi, xf ) = β

∫ xi

xf

dx′γ(x′) eβU(x′)

∫ xmax

x′

dx e−βU(x), (S45)

where xmax is the upper reflecting boundary.

Eq. (S44) and Eq. (S45) can be inverted to giveS11,S12

γ→(xf ) = kBT
∂τMFP(xi, xf )

∂xf

e−βU(xf )

[
∫ xf

xmin

dx e−βU(x)

]−1

, for xf > xi, (S46)

γ←(xf ) = −kBT
∂τMFP(xi, xf )

∂xf

e−βU(xf )

[

∫ xmax

xf

dx e−βU(x)

]−1

, for xf < xi, (S47)

or, alternatively, when instead taking the spatial derivative with respect to the initial position

xi

γ→(xi) = −kBT
∂τMFP(xi, xf )

∂xi

e−βU(xi)

[
∫ xi

xmin

dx e−βU(x)

]−1

, for xf > xi, (S48)

γ←(xi) = kBT
∂τMFP(xi, xf )

∂xi

e−βU(xi)

[
∫ xmax

xi

dx e−βU(x)

]−1

, for xf < xi. (S49)
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Figure S5: Position-dependent friction profiles estimated from τMFP profiles obtained from
MD simulations of the NaCl ion pair in water for either the dissociation dynamics, γ→(x),
(A, C) or the association dynamics, γ←(x) (B, D), using the respective Eq. (S46)–Eq. (S49).
The overlap profiles are shown as black broken lines, see text for details. For illustration
the pair potentials are shown as thick gray lines on a second axis. A, B: The profiles are
shown as calculated from τMFP for various fixed initial positions xi and plotted over the final
positions xf as colored solid lines. C, D: The profiles are shown as calculated from τMFP for
various fixed final positions xf and plotted over the initial positions xi as colored solid lines.
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From Eq. (S46) and the τMFP(xf) data for the dissociation dynamics of the NaCl ion pair

shown in the main text in Fig. 2C, the friction profile γ→(xf) is estimated, while from

Eq. (S47) and the τMFP(xf) data for association dynamics shown in Fig. S8B, one obtains

the friction profile γ←(xf ).

In practice, the estimation of these profiles is not straight-forward. Importantly, xi and

xf should not be too close to each other because otherwise inertial and memory effects

lead to spurious artifactsS12,S13. It is therefore advisable to estimate the profiles for various

combinations of xi and xf and take the mean in regions where the data overlap, as presented

previously for water pair dynamicsS12. Profiles γ→(xf ) along xf for various fixed values of xi

are given in Fig. S5A and for γ←(xf ) in Fig. S5B as colored solid lines.

Corresponding profiles γ→(xi) along xi for various fixed values of xf are given in Fig. S5C

and for γ←(xi) in Fig. S5D as colored solid lines. The overlap profiles are estimated from the

mean of all profiles γ(xf )|xi
(or γ(xi)|xf

) for which |xf − xi| ∈ [0.05, 0.1] nm and are shown in

Fig. S5A–D as black broken lines and repeated in Fig. S6 as blue (γ→(x)) and yellow (γ←(x))

lines.

Comparison of the four position-dependent friction profiles in Fig. S6 demonstrates significant

deviations among them. In fact, the result depends strongly on the direction of τMFP, i.e.

on whether one determines friction profiles from dissociation or association reactions, and

also on details of the averaging procedure. We conclude that due to significant inertial and

memory effects, strong variations between the friction profiles for association and dissociation

reactions determined from variation of the initial and final positions are seen in Fig. S5S12,S13

and therefore there is no unique friction profile that would describe the dynamics of the NaCl

separation coordinate.
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Figure S6: Comparison of the various position-dependent friction profiles estimated from
τMFP profiles obtained from MD simulations of the NaCl ion pair in water for either the
dissociation dynamics, γ→(x), (blue lines) or the association dynamics, γ←(x) (yellow lines),
using the respective Eq. (S46)–Eq. (S49), shown in Fig. S5 as black broken lines. Profiles
that are estimated for various fixed initial positions xi and plotted over the final positions xf

are here shown as solid lines. The broken lines denote the opposite case, i.e. profiles that are
estimated for various fixed final positions xf and plotted over the initial positions xi. For
illustration the pair potential is shown as a thick gray line on a second axis.
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VI Dependence of the mean first-passage time on the

initial position

In Fig. S7 the dependence of τMFP(xi, xf ) on the initial position xi is illustrated for the NaCl

ion pair (Fig. S7A) and the pair of methane beads (Fig. S7B). The data is shown both for

the dissociation (blue solid lines) and association reactions (blue broken lines) and the final

positions xf are taken as the local minima (vertical thin gray broken lines) left and right of

the potential barrier (gray solid lines). All profiles are very flat within the well regions from

which they depart, even for the association reaction of methane where the barrier to the CP

state is virtually non-existent. This means that the precise choice of xi is rather unimportant

when comparing with analytical rate theories, for which the predicted τMFP does not depend

on the choice of xi due to the inherent high-barrier approximation, which is discussed in

section III.
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Figure S7: Profiles of τMFP(xi) for the dissociation (solid lines) and associations reactions
(broken lines) along the reaction coordinate x, obtained from MD simulations of the NaCl ion
pair (A) and a pair of methane beads (B) in water. For comparison the potentials are shown
as a gray solid line with the scale on the right side of the plot. The positions of the minima
are indicated as vertical gray dotted lines and determine the final positions of each τMFP(xi).

The weak dependence of the MFPT on the initial position can be easily understood in the

Markovian overdamped limit based on the exact expression Eq. (6) in the main text, from
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which one derives

∂τMFP(xi, xf )/∂xi

∂τMFP(xi, xf )/∂xf

= −
eβU(xi)

∫ xi

xmin
dx e−βU(x)

eβU(xf )
∫ xf

xmin
dx e−βU(x)

. (S50)

If the initial position xi coincides with the potential minimum and if there is no second deeper

minimum between xi and xf , one obtains in the high-barrier limit

∂τMFP(xi, xf )/∂xi

∂τMFP(xi, xf )/∂xf

≈ −eβU(xi)−βU(xf )/2, (S51)

which means that the ratio of the dependence of the MFPT on the initial position and on

the final position depends exponentially on the free energy difference of the initial and final

positions. For dissociation reactions, the initial state has a lower free energy than the final

state, which explains the very weak dependence of the dissociation MFPT on the initial

position in Fig. S7 compared to the dependence on the final position shown in the main text.

VII NaCl ion pair association reaction dynamics

In Fig. S8, the analysis of the association dynamics of the NaCl ion pair in water is presented,

using the same methodology that is employed in the main text for the dissociation reaction.

In Fig. S8A a summary of the results is presented similar to Fig. 3A in the main text and in

Figs. S8B–E the data is shown in detail similar to Figs. 2C,E–G in the main text.
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Figure S8: Analysis of the association dynamics along the separation coordinate of a single
NaCl ion pair in water. A: Summary of the results, similar to Fig. 3A in the main text, in
terms of τMFP from the SSP to the CP of the pair potential, as obtained from MD (gray
bar and horizontal gray broken line) and using the generalized Langevin equation (GLE)
in different limits of the memory and inertial scaling parameters, α and ϵ (blue bars). The
analytical result of Eq. (6) is shown for the overdamped Markovian limit as a lightgray bar.
Additionally, Kramers’ theory for high friction Eq. (S34) is shown as a yellow bar. Stochastic
errors for the MD data are obtained as standard errors of the mean over ten fragments of
the total trajectory. Stochastic errors for the various GLE and LE simulations (blue bars)
are calculated from the standard error of the mean over ten independent runs. Errors for
the rate theories (yellow bars) are estimated from the dominant errors in the harmonic fits
to the potentials, as shown in SI section VIII. B: Profiles of τMFP starting from the SSP
state, obtained directly from MD simulations (yellow solid line), from simulation of the GLE
Eq. (1) (yellow short-dashed line), from the theory for the overdamped Markovian limit
Eq. (6) (yellow long-dashed line) and from simulations of the overdamped LE, Eq. (3) for
m → 0 (yellow dotted line). For comparison the potential is shown as a gray solid line with
the scale on the right side of the plot. The positions of the extrema are indicated as vertical
gray dotted lines. C–E: Scaling of τMFP of the association reactions from the SSP to the CP
(yellow squares) with respect to changing both α and ϵ simultaneously (C), only memory
effects (D) and only inertial effects (E) as obtained from GLE simulations. Theoretical
predictions by Kramers for medium-to-high friction (dotted lines) and by GH (solid lines) are
shown for comparison. The analytical result Eq. (6) is shown in C as a broken yellow line.
Predictions by MM theory are shown in E as a dash-dotted line. Further numerical data are
obtained for the Markovian limit using Eq. (3) in D (yellow dash-double-dotted line).
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VIII Harmonic approximations of the pair potentials

The rate theories that are considered in this study, namely MM, GH and Kramers’ medium-

to-high-friction theories, use local harmonic approximations for the well and barrier regions

of the nonharmonic pair potentials. Thus, the pair potentials must be fitted quadratically,

U(x) = U II
i (x − xi)

2/2 around the extrema at xi, the two well regions of the contact pair

(CP) and solvent-separated pair (SSP) states, with U II
A and U II

C respectively, as well as the

TS at the barrier top, with U II
B . The parameters xi and U II

i are obtained from the numerical

derivatives of the potentials. The potentials, U(x)/(kBT ) = − log(h(x)), are obtained from

histograms h(x) of the trajectory data with equidistant bins of width xj+1 − xj = 0.5 pm,

that are smoothed by iterative convolution with a flat window function, which has a width of

three bins. The numerical derivatives are then calculated by successive central differences, i.e.

U I(xj) =
U(xj+1)− U(xj−1)

(xj+1 − xj−1)
, (S52)

U II(xj) =
U(xj+2)− 2U(xj) + U(xj−2)

(xj+1 − xj−1)2
, (S53)

U III(xj) =
U(xj+3)− 3U(xj+1) + 3U(xj−1)− U(xj−3)

(xj+1 − xj−1)3
, (S54)

U IV (xj) =
U(xj+4)− 4U(xj+2) + 6U(xj)− 4U(xj−2) + U(xj−4)

(xj+1 − xj−1)4
. (S55)

The first and second numerical derivatives obtained after different iterations of smoothing

are shown in different shades of gray in Fig. S10. The curves are then linearly interpolated to

obtain xi from U I(xi) = 0, shown as vertical black broken lines throughout Fig. S10, and

κi from U II(xi) = κi shown as horizontal black broken lines in the lower panels in Fig. S10.

The convergence of the values of xi and U II
i with the number of iterations is reported in the

insets in Fig. S10. A summary of the fit parameters together with higher derivatives is given

in Tab. S1.

In Figs. S9A and B, the local harmonic fits are shown as black broken lines and compared

to the potentials as thick solid lines. The fit parameters are reported in the legends. For
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A B

Figure S9: Asymptotic harmonic fits of the well and barrier regions, shown as black broken
lines, of the effective pair potentials (gray solid lines) of the NaCl ion pair (A) and the
methane pair (B) in water. The fitted curvatures U II

i are reported in the legend with indices
from A to C corresponding to the three extrema from left to right. Alternative local harmonic
fits corresponding to curves for different levels of smoothing in Fig. S10, i.e. different numbers
of smoothing iterations, are plotted as broken lines in different shades of gray corresponding
to Fig. S10.

comparison, the parabolas corresponding to the other curves in Fig. S10, i.e. different numbers

of iterations of the smoothing procedure, are plotted as broken lines in the corresponding

shades of gray. It is seen that these alternative local harmonic fits are also good local

approximations of the potential. Due to the wide spread of curvatures determined in Fig. S10

and confirmed graphically in Figs. S9A and B, relative error margins for U II
i of ±10% are

assumed. These relative errors are propagated to errors of the rate theories that are evaluated

based on these harmonic approximations, noting that
√

U II
max appears in the numerator and

√

U II
min in the denominator of the different rate theories. Therefore, a relative error of 10% in

Table S1: Derivatives at the local extrema of the pair potentials, determined

after iterative smoothing.

NaCl xi [nm] U II [kBT/nm2] U III [kBT/nm3] U IV [kBT/nm4]
0.289 7453 −5.18× 105 2.77× 107

0.378 -1341 2.39× 104 1.38× 106

0.465 750 3.68× 103 1.14× 106

CH4

0.387 788 −3.17× 104 2.34× 106

0.595 -95 1.64× 103 3.49× 104

0.667 109 1.71× 103 −1.37× 105
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both curvatures directly propagates to the relative error of the predicted τMFP and is assumed

to be the dominant source of error.
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Figure S10: First (upper panels) and second derivatives (lower panels) of the effective pair
potentials around the three local extrema corresponding to the CP (A, D), the TS (B, E) and
the SSP states (C, F) for NaCl and methane. The derivatives are calculated numerically after
consecutive iterations of smoothing of the potentials, that are obtained from the simulation
data at a fixed bin width. The vertical black broken lines denote the position of the local
extrema, xi, determined from the first derivatives. In the lower panels the horizontal black
broken lines denote the values of the harmonic fit parameters U II

i , that are determined from
the second derivatives at the highest iteration of smoothing. The convergence of the relative
deviations of the values of xi and U II

i with the number of iterations is shown in the insets.
A–C: Results for the NaCl pair potential. D–F: Results for the methane pair potential.
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IX Methane pair reaction dynamics

In Fig. S11, the analysis of the dissociation dynamics of a pair of unpolar methane beads

in water is presented, using the same methodology that is employed in the main text for

the NaCl ion pair. MD simulations were performed analogously to the MD simulations for

NaCl as presented in the methods section. The reaction coordinate is the relative distance x,

along which a weak harmonic potential with force constant k = 30 kJmol−1nm−2 is applied

to increase the number of dissociation events. The memory kernel obtained from the MD

simulation data is shown in Fig. S11A and its integral in Fig. S11B as blue solid lines. In

contrast to the memory kernel of the NaCl ion pair shown in Fig. 2A, three exponentially

decaying components, according to Eq. (2), suffice to fit the memory kernel satisfactorily

(yellow broken lines in Fig. S11A and B). Furthermore, the integral value of γ = 790 u/ps is

only roughly half the value of that for the ion pair and is reached after about 20 ps.

In Fig. S11C the free energy obtained from the MD simulation is shown as a thick gray line

around the barrier, that separates the CP and the SSP in the first hydration shell. In analogy

to Fig. 2C in the main text, a profile for τMFP is shown as a blue solid line, between the initial

position xi located at the minimum of the free energy, corresponding to the CP and varying

final positions xf , i.e. for the dissociation reaction of the methane beads. The association

reaction is not considered here, since its barrier is very small. According profiles for τMFP as

obtained from a numerical simulation of the GLE Eq. (1) using the fit to the memory kernel,

shown in Fig. S11A and the free energy shown in Fig. S11C, are shown in Fig. S11C as a blue

short-dashed line and exhibit good agreement with the profiles obtained directly from the

MD. Again, we compare to profiles for the overdamped Markovian limit, that are obtained

from Eq. (6), shown as a blue long-dashed line, as well as from numerical simulation of the

overdamped LE, Eq. (3) for m → 0, shown as a blue dotted line. Similar to the NaCl ion

pair, the τMFP profiles of the methane dissociation dynamics of the MD data are significantly

sped up when compared to the profiles in the overdamped Markovian limit. Therefore, also

in this system the reaction dynamics are significantly dependent on both inertia and memory
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friction, which is summarized in Fig. S11D, showing a contour plot of the dissociation times

τMFP as a function of α and ϵ, the scaling factors of the memory and inertial time scales.

In Fig. S11E τMFP in the simultaneous limit of small inertia and small memory times, α, ϵ → 0,

is shown as blue circles. Again, in this overdamped Markovian limit the analytical result from

Eq. (6), τ eq.(6)MFP = 39.56 ps shown as a blue broken line, is approached, which was already seen

in Fig. S11C to be significantly slower than τMFP = (19.4± 0.4) ps for the original dynamics,

α = ϵ = 1, which corresponds rather well to the MD data, τMFP = (25.86± 0.01) ps. This

limit is reached only for α, ϵ < 0.02, which is in contrast to the respective data for the NaCl

ion pair, presented in Fig. 2E, where the analytic limit is reached already for α, ϵ < 0.1.

Therefore, when compared to the case of the NaCl ion pair, the dissociation dynamics of two

methane beads in water is relatively further away from the overdamped Markovian limit. Also

in the methane system there appears to be a significant cancellation of memory acceleration

and slowing-down due to inertial effects, which is discussed in the following.

Fig. S11F shows how the dissociation dynamics of a pair of methane beads in water depends

on the memory-time scaling parameter α. τMFP obtained from GLE simulations are shown as

blue circles, that level to a constant value of τMarkov
MFP = (42.2± 0.8) ps in the Markovian limit,

α → 0, which is similar to the value of the overdamped Markovian limit τ eq.(6)MFP = 39.56 ps in

Fig. S11C and likewise significantly slower than τMFP for the original dynamics, α = 1. This

memory-induced acceleration is well predicted by GH theory, shown as a blue solid line in

Fig. S11F. In the Markovian limit the GH theory converges to the constant value of Kramers’

medium-to-high-friction theory (blue dotted line). In the long memory-time limit, τMFP show

a quadratic scaling with the memory time scale that is not captured by either theory, as

discussed already for the NaCl ion pair data in the main text. Interestingly, GH theory for

α ≤ 1 (as well as Kramers’ medium-to-high-friction theory in the Markovian limit, α → 0)

agrees well with the τMFP data of the GLE simulations. This suggests that the harmonic

approximations of the potential shape employed by both theories are rather good, which is in

contrast to the results presented for NaCl in the main text. However, a detailed analysis of
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Figure S11: Analysis of the reaction dynamics for a single methane pair in water, similar to
the analysis in the main text for a NaCl ion pair, using simulations of the GLE Eq. (1) and
the LE Eq. (3). A, B: The memory friction kernel (A) and its integral (B) are shown as blue
solid lines together with a fit according to Eq. (2), shown as yellow broken lines, which is a
sum of three exponentially decaying components (red broken lines). The fit parameters are
given in the legend. C: Profiles of τMFP starting from the CP state, obtained directly from
MD simulations (blue solid line), from simulation of the GLE Eq. (1) (blue short-dashed
line), from the theory for the overdamped Markovian limit Eq. (6) (blue long-dashed line)
and from simulations of the overdamped LE, Eq. (3) for m → 0, (blue dotted line). For
comparison the potential is shown as a gray solid line with the scale on the right side of the
plot. The positions of the extrema are indicated as vertical gray dotted lines. D: Contour
plot of τMFP between the CP and the SSP states for rescaled inertial and memory times
determined by the scaling parameters ϵ and α. The gray solid lines illustrate the parameter
combinations shown in detail in E–G. E–G: Scaling of the τMFP for dissociation as obtained
from GLE simulations (blue circles) when changing memory times and mass simultaneously
(E), when changing only memory times (F) and when changing only the mass (G). Theoretical
predictions according to Kramers theory for medium-to-high friction (dotted lines) and by
GH (solid lines) are shown for comparison. Predictions by MM theory are shown in G as a
dash-dotted line. Further numerical data obtained for the overdamped Markovian limit using
Eq. (6) for m → 0 is shown in E (blue broken line) and for the Markovian limit using Eq. (3)
in F (blue dash-double-dotted line, which overlaps with the blue dotted line).
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the harmonic approximation with respect to the barrier height given in section III shows that

the good agreement is in fact fortuitous for the specific barrier height and due to cancellation

of competing nonharmonic-potential effects.

Fig. S11G shows the dissociation dynamics of a pair of methane beads in water as a function

of the particle mass, that is varied by the scaling parameter ϵ. The τMFP data (blue

circles) only slowly saturates in the overdamped limit for ϵ < 0.01 to a value of about

τ od.non−M.
MFP = 10 ps, indicating that the original dynamics, ϵ = 1, is in fact slowed-down by

a factor of τ od.non−M.
MFP /τMFP = 0.5 due to inertial effects. The GH (solid blue line), Kramers’

medium-to-high friction (dotted blue line) and MM theories (blue dash-dotted line) that are

plotted here for comparison, do not model the data satisfactorily. In the inertial limit the

MM theory shows a different scaling than the other theories, τMFP ∼ ϵ, which appears in

better agreement with the simulation data.

While for methane, nonharmonic potential effects appear less important, the competition

of inertial and memory effects on the dissociation dynamics is clearly visible also for the

methane data.
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X Simulation of the GLE

Simulations of the GLE, Eq. (1) in the main text,

mẍ(t) = −
∫ t

0

Γ(t− t′)ẋ(t′)dt′ −∇U [x(t)] + η(t), (S56)

using parametrized memory kernels with a sum of n exponential and l oscillating components,

Γ(t) =
n
∑

i=0

γe
i

τ ei
e−t/τ

e
i +

l
∑

i=0

γo
i e
−t/τoi

2τ oi (1 + (ωiτ oi )
2)−1

[

cos(ωit) +
sin(ωit)

τ oi ωi

]

, (S57)

are performed by Markovian embedding according toS14

ẋ(t) = v(t) (S58)

mv̇(t) = −∇U [x(t)] +
n
∑

i=1

aei [yi(t)− x(t)] +
l
∑

i=1

aoi [zi(t)− x(t)], (S59)

γe
i ẏi(t) = aei [x(t)− yi(t)] + Fi(t), (S60)

żi(t) = wi(t) (S61)

mo
i ẇi(t) = −γo

iwi(t) + aoi [x(t)− zi(t)] + Fi(t). (S62)

Eq. (S59)–Eq. (S62) are numerically solved using a 4th-order Runge-Kutta scheme in a

custom C++ implementation to obtain the trajectory of x. For the n exponential components

aei = γe
i /τ

e
i is obtained from the fit parameters γe

i and τ ei . mo
i and aoi for the l oscillating

components are obtained from the fit parameters γo
i , τ

o
i and ωi by using

aoi =
γo
i

2τ oi (1 + (ωiτ oi )
2)−1

, (S63)

mo
i =

γo
i τ

o
i

2
. (S64)
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The random force Fi present in Eq. (S60) and Eq. (S62) is given by

Fi =
√

2kBTγiδt−1Ξ, (S65)

where Ξ is a Gaussian random distribution with zero mean and a standard deviation of one.

The memoryless LE, Eq. (3) in the main text,

mẍ(t) = −γẋ(t)−∇U [x(t)] + ξ(t), (S66)

with a constant homogeneous friction γ as well as its overdamped limit, m → 0, are simulated

using a 4th-order Runge-Kutta scheme in a custom C++ implementation. The corresponding

equations for the LE Eq. (S66) are

ẋ(t) = v(t) (S67)

mv̇(t) = −γv(t′)−∇U [x(t)] + FR(t), (S68)

and for the overdamped limit

γẋ(t′) = −∇U [x(t)] + FR(t), (S69)

where FR(t) are again random forces given by Eq. (S65).

The full nonharmonic potential used in the simulations of the GLE and LE, U(x) =

−kBT log(p(x)), is calculated directly from the distribution function p(x) obtained in the MD

simulations with a bin size of 0.0025 nm for the ion and 0.005 nm for the methane pair. Inside

the range [0.27, 0.8] nm for the ion pair ([0.36, 1.0] nm for the methane pair), the gradient is

computed with a local linear fit between the nearest data points of U(x). Outside of this

range the potentials are approximated using a least-square fit to a polynomial of third order.

Most GLE simulations are performed with an integration timestep of dt = 2 fs = dtMD,
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Figure S12: Scaling of τMFP for the dissociation of NaCl in water from the CP state to the
TS as a function of the mass scaling parameter ϵ from simulations of the GLE. Different
symbols illustrate different simulation time steps, the time step used for the analysis and the
total simulation times are the same. Blue symbols denote data produced according to the
criterion introduced in the text and used for all data shown in the main text.

equivalent to that of the MD simulation, and every value is stored for the computation of

τMFP. Usually, ten independent simulations, each of a length of 20 ns, are run. For the

long-memory and inertial regimes, where τMFP are significantly larger, each simulation was

run instead for 200 ns. Errors of τMFP, that are estimated from the standard error of the

mean across the ten simulations, are smaller than the size of the plot symbols.

When modifying the original masses and memory times to explore the overdamped and

Markovian limits, i.e for α, ϵ < 1, the simulation timestep is multiplied by a factor 10i, where

i = min(0, ⌊1+ log10[min(α, ϵ)]⌋), while only every 10−i-th step is stored for the analysis. The

necessity for decreasing the simulation time step is illustrated in Fig. S12 for the dissociation

dynamics of the NaCl ion pair in water by showing τMFP as a function of the mass scaling

parameter ϵ < 1. Different symbols denote different integration time steps, dt, while the

total length of the simulations and the time step used for the analysis is kept fixed. It is well

visible that for ϵ < 0.01 the gray circles (corresponding to data for dt = dtMD) deviate from

the data with smaller integration time steps, which clearly indicates discretization effects.

Likewise, for ϵ < 0.001 the gray squares (corresponding to data for dt = 0.1 dtMD) deviate

from the gray triangles. The criterion introduced above for choosing the integration time

step based on the values of ϵ and α is used for the data shown in blue, these results are not
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affected by discretization errors.
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Fluctuation-Dissipation Theorem E
Consider a Hamiltonian system under a perturbation by a time-dependent external
force F (t) coupling directly to an observable A(q, p), that is a function of positions q
and momenta p, for example an external electric field E(t) coupling to the polarization
P (q). Then the total Hamiltonian Htot will consist of an unperturbed part H0 and the
time-dependent perturbation H ′(t),

Htot = H0 +H ′(t) (E.1)

= H0 −A(q, p)F (t). (E.2)

The effect of the external force on any observable, expressed as the deviation ∆B(t)
from the unperturbed mean B0, defines in the linear regime the single-sided linear
response function χBA(t− t′), i.e. χBA(t) = 0 for t < 0,

∆B(t) =

∫ t

−∞
χBA(t− t′)F (t′)dt′. (E.3)

Alternatively eq. (E.3) reads in Fourier space

∆B̃(ω) = χ̃BA(ω)F̃ (ω). (E.4)

The Fourier-transformed expression χ̃BA(ω) of the single-sided linear response function
χBA(t) is also called the generalized susceptibility, which is a complex function consisting
of real χ̃′

BA(ω) and imaginary parts χ̃′′
BA(ω)

χ̃BA(ω) = χ̃′
BA(ω) + iχ̃′′

BA(ω). (E.5)

In some works the imaginary part is defined with a minus sign. This is a matter of
convention, related to the definition of the Fourier transform. In this work the forward
and backward Fourier transforms are defined as

f̃(ω) =

∫ ∞

−∞
dt eiωtf(t), (E.6)

f(t) =
1

2π

∫ ∞

−∞
dω e−iωtf̃(ω). (E.7)

χ̃′
BA(ω) in eq. (E.5) is called the reactive part and χ̃′′

BA(ω) is called the dissipative



E. Fluctuation-Dissipation Theorem

part, which becomes clear in the following derivation.

The dissipated energy from the system per period of time T = 2π/ω of the perturbing
force F (t) is given by

⟨dH
′(t)
dt

⟩ = 1

T

d

dt

∫ T

0
⟨A(q, p)F (t)⟩dt (E.8)

=
1

T

∫ T

0
⟨A(q, p)⟩δF (t)

δt
dt (E.9)

The real force F (t) at the given frequency ω is

F (t) =
1

2π
Re

∫ ∞

−∞
δ(ω − ω′)F̃ (ω′)e−iω′tdω′ (E.10)

=
1

2π
ReF̃ (ω)e−iωt (E.11)

=
1

4π

(
F̃ (ω)e−iωt + F̃ ∗(ω)eiωt

)
, (E.12)

where F̃ ∗(ω) is the complex conjugate to F̃ (ω). Analogously the real deviation ∆A(t)
from the unperturbed mean A0 contributes to the energy dissipation and is expressed
through linear response as

⟨A(q, p)⟩ = ∆A(t) (E.13)

=

∫ t

−∞
χAA(t− t′)F (t′)dt′ (E.14)

=
1

2π
Re

∫ ∞

−∞
δ(ω − ω′)F̃ (ω′)e−iω′tχ̃AA(ω

′)dω′ (E.15)

=
1

4π

(
χ̃AA(ω)F̃ (ω)e−iωt + χ̃∗

AA(ω)F̃
∗(ω)eiωt

)
. (E.16)

Entering eqs. (E.12) and (E.16) into eq. (E.9) one obtains

⟨dH
′(t)
dt

⟩ = 1

T

∫ T

0

ω

(4π)2
⟨ − iχ̃AA(ω)F̃ (ω)F̃ ∗(ω)

+ iχ̃∗
AA(ω)F̃

∗(ω)F̃ (ω)

+ terms containing e±2iωt⟩dt.

(E.17)

The e±2iωt terms are time-averaged out and the real remainder is

⟨dH
′(t)
dt

⟩ = ω

8π2
χ̃′′
AA(ω)F̃ (ω)F̃ ∗(ω) (E.18)

=
ω

8π2
χ̃′′
AA(ω)|F̃ (ω)|2, (E.19)
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which shows that the imaginary part of the susceptibility χ̃′′
AA(ω) is related to the energy

dissipation introduced by a force F (t) that is conjugate to A(q, p) in the Hamiltonian.
In the following the generalized susceptibility χ̃AB(ω) will be related to the correlation
functions of the observables, which is the essence of the fluctuation-dissipation theorem.
Consider the distribution function ρ(q, p, t) of an N particle system described by the
perturbed Hamiltonian of eq. (E.2). Its time propagation is governed by the Liouville
operator

L(q, p, t) =
3N∑

i

[
δH

δpi

δ

δqi
− δH

δqi

δ

δpi

]
(E.20)

=
3N∑

i

[
δH0

δpi

δ

δqi
− δH0

δqi

δ

δpi

]
− F (t)

[
δA

δpi

δ

δqi
− δA

δqi

δ

δpi

]

= L0(q, p)− F (t)∆L(q, p), (E.21)

and

δ

δt
ρ(q, p, t) = −L(q, p, t)ρ(q, p, t). (E.22)

Again the function ρ(q, p, t) is split into unperturbed ρ0(q, p) and perturbed parts
∆ρ(q, p, t), as well as using the Liouville operator as given in eq. (E.21)

δ

δt
[ρ0 +∆ρ(t)] = − [L0 − F (t)∆L] [ρ0 +∆ρ(t)] (E.23)

δ

δt
[∆ρ(t)] = −L0∆ρ(t) + F (t)∆Lρ0 + [F (t)∆L∆ρ(t)] (E.24)

The last term is neglected as it is small and eq. (E.24) is formally solved

∆ρ(t) =

∫ t

−∞
dt′e−(t−t′)L0F (t′)∆Lρ0. (E.25)

Assuming a canonical distribution, ∇ρ0(H0) = − ρ0
kBT ∇H0, the integrand is expressed as

∆Lρ0 = − ρ0
kBT

∆LH0 (E.26)

= − ρ0
kBT

3N∑

i

[
δA

δpi

δ

δqi
− δA

δqi

δ

δpi

]
H0 (E.27)

=
ρ0
kBT

Ȧ, (E.28)
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where Ȧ is defined for the unperturbed system H0 to be

Ȧ =
3N∑

i

[
δA

δqi
q̇i +

δA

δpi
ṗi

]
(E.29)

= −
3N∑

i

[
δA

δpi

δ

δqi
− δA

δqi

δ

δpi

]
H0. (E.30)

Eq. (E.28) is inserted into eq. (E.25)

∆ρ(t) =
1

kBT

∫ t

−∞
dt′F (t′)e−(t−t′)L0ρ0Ȧ. (E.31)

Next the perturbation of another arbitrary observable ∆B(t) is expressed in terms of
the perturbed distribution ∆ρ(t)

∆B(t) =

∫
dq3N

∫
dp3NB(q, p)∆ρ(t) (E.32)

=
1

kBT

∫
dq3N

∫
dp3NB

∫ t

−∞
dt′F (t′)e−(t−t′)L0ρ0Ȧ (E.33)

=
1

kBT

∫ t

−∞
dt′F (t′)

∫
dq3N

∫
dp3NBe−(t−t′)L0ρ0Ȧ, (E.34)

where the inner integrand is identified to be the correlation function in an unperturbed
equilibrium ensemble

⟨B(t− t′)Ȧ(t)⟩ =
∫

dq3N
∫

dp3NBe−(t−t′)L0ρ0Ȧ, (E.35)

leaving us with the expression

∆B(t) =
1

kBT

∫ t

−∞
dt′F (t′)⟨B(t− t′)Ȧ(t)⟩. (E.36)

Comparison of eq. (E.36) with eq. (E.3) allows to relate the linear response function
χBA(t− t′) to the correlation function in an equilibrium ensemble

χBA(t− t′) =
1

kBT
⟨B(t− t′)Ȧ(t)⟩, (E.37)

or equivalently

χBA(t) =
1

kBT
⟨B(t)Ȧ(0)⟩. (E.38)

χBA(t) = − 1

kBT

d

dt
⟨B(t)A(0)⟩. (E.39)
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