
Symmetry Groupoids
in Dynamical Systems

Spatio-temporal Patterns and a Generalized
Equivariant Bifurcation Theory

H A B I L I T A T I O N S S C H R I F T

zur Erlangung der Lehrbefähigung
für das Fach Mathematik

eingereicht am
Fachbereich Mathematik und Informatik

der Freien Universität Berlin

vorgelegt von

ISABELLE Anne Nicole SCHNEIDER

Berlin, Oktober 2022



Gutachter
Prof. Dr. Angela Stevens, Universität Münster, Deutschland
Prof. Dr. Sjoerd M. Verduyn Lunel, Universiteit Utrecht, Niederlande

Datum des öffentlichen Vortrags:
25. Mai 2023



quia ex hoc pene Nihilo pene Mundum
ipsum, in quo omnia, efformaui: . . .
iam ter maximi Animalis, globi telluris,
animam in Niuis Atomo exhibeo?

Kepler, De Niue Sexangula, 1611





Contents

1. Introduction 1
1.1. A brief historical introduction to symmetry . . . . . . . . 3
1.2. Review on group symmetry and equivariance . . . . . . . 8
1.3. Main goal and guiding questions of this thesis . . . . . . . 11
1.4. Grasshopper’s guide . . . . . . . . . . . . . . . . . . . . . 13

2. Groupoid symmetries in ordinary differential equations 17
2.1. The new generalized definition of symmetry . . . . . . . . 17
2.2. Equivaroid systems . . . . . . . . . . . . . . . . . . . . . . 26
2.3. Vertex groups — the building blocks of symmetry . . . . 31
2.4. Conjugating symmetries — connecting the building blocks 38

3. General theory of equivaroid maps 43
3.1. Equivaroid maps . . . . . . . . . . . . . . . . . . . . . . . 44
3.2. Subequivaroid maps and invaroid subspaces . . . . . . . . 47
3.3. Properties of the linearization of an equivaroid system . . 53
3.4. Application to infinite-dimensional dynamical systems . . 60

4. Steady-state bifurcation in equivaroid systems 65
4.1. Equivaroid Lyapunov–Schmidt reduction . . . . . . . . . . 66
4.2. The equivaroid branching lemma . . . . . . . . . . . . . . 75
4.3. The iterated equivaroid branching lemma . . . . . . . . . 83



Contents

5. Spatio-temporal patterns and equivaroid Hopf bifurcation 95
5.1. Functional analytic setting . . . . . . . . . . . . . . . . . . 96
5.2. Spatio-temporal groupoid symmetries . . . . . . . . . . . 97
5.3. Equivaroid Hopf bifurcation . . . . . . . . . . . . . . . . . 110
5.4. Iterated equivaroid Hopf bifurcation . . . . . . . . . . . . 113

6. Rational design of dynamical systems with groupoid symme-
tries 119
6.1. Network Setting . . . . . . . . . . . . . . . . . . . . . . . 119
6.2. Designing patterns with a prescribed vertex isotropy group121
6.3. Designing patterns with a nontrivial vertex quotient group 133

7. Conclusion and discussion 139
7.1. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.2. Discussion of quiver symmetries and the groupoid formalism141
7.3. Open questions and work for the future . . . . . . . . . . 143

A. A short introduction to groupoids 147
A.1. Groupoid — Definition . . . . . . . . . . . . . . . . . . . . 147
A.2. Vertex groups, conjugating morphisms, and orbits . . . . 153
A.3. Groupoid representation theory . . . . . . . . . . . . . . . 157



1. Introduction

Going back to Henri Poincaré, the main concern of the theory of dynam-
ical systems for differential equations is the qualitative characterization
of solutions. Symmetries, described by group transformations, help im-
mensely in this quest — providing that they exist, which is often the
case only in very special dynamical systems.

In this thesis, we significantly enlarge the class of dynamical systems
which can be studied by symmetry methods, moving our focus from
groups to groupoids as the underlying algebraic structure describing
symmetry. Building on the groupoid framework, we fundamentally gen-
eralize the notion of equivariance and equivariant bifurcation theory. In
summary, we present a new unified theory of symmetric spatio-temporal
patterns.

There are three main conceptual novelties in this thesis.

First, we redefine symmetry in dynamical systems and differential equa-
tions. Roughly speaking, symmetries are described by linear isomorphisms
on flow-invariant linear subspaces which map solutions of dynamical sys-
tems to solutions. In contrast to the previous literature, we do not require
that the linear isomorphisms map all solutions to solutions. Instead,
we only ask for this property in certain linear subspaces, whose crucial
property is their flow-invariance. Building upon this new definition, we
find that the underlying algebraic structure of symmetries is a groupoid.



1. Introduction

The main difference between a group and a groupoid is that not all
(iso-)morphisms need to be composable, making the groupoid a more
general algebraic object. The critical notions of identity, invertibility and
less strict composition rules are preserved in groupoids, allowing us to
construct a generalized equivariant bifurcation theory. In particular, we
prove equivaroid (i.e., groupoid-equivariant) versions of the equivariant
branching lemma and the equivariant Lyapunov–Schmidt reduction, as
well as an extension of the equivaroid branching lemma which allows
higher dimensional kernels.

Second, we take a new perspective on spatio-temporal patterns of time-
periodic solutions of differential equations. Specifically, we define spatio-
temporal patterns as a groupoid acting directly on the space of periodic
solutions, more precisely as a pair (γ, ϑ), where γ is a linear isomor-
phism which acts on the phase space of the dynamical system and ϑ is
a component-wise time-shift. This construction gives us a new classifi-
cation of spatio-temporal patterns beyond rotating and discrete waves.
To prove the existence of such patterns, we generalize the equivariant
Hopf bifurcation theorem, including a version which allows for higher
dimensional kernels and thereby multi-frequency patterns.

Lastly, we ask to construct dynamical systems with groupoid symme-
tries, where we focus on the rational design of networks with prescribed
symmetries. Here we find that the relevant algebraic object is in fact
the symmetry monoid paired to a given flow-invariant subspace. The
elements of the symmetry monoid are then used as coupling matrices to
generate networks with prescribed patterns and groupoid symmetries.

This introductory chapter is organized as follows: In Section 1.1 we give
a short historical overview on symmetry in general aspects. It is the
aim of this section to show that the concept of symmetry has been in
constant change over the last two millennia. With this thesis, we intend
to change and broaden the meaning of symmetry once more; namely
in the context of dynamical systems and equivariance, where symmetry
and group theory are nowadays mostly used as synonyms. To give us the
necessary background knowledge, Section 1.2 contains a brief summary
of group symmetry, group representations and equivariance in dynamical
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1.1. A brief historical introduction to symmetry

systems. These are immensely powerful tools in the qualitative study of
dynamical systems. However, we also find patterns in systems which do
not show any group symmetry, and additionally, we even find patterns
which are not predicted by group theory in symmetric systems. This
prompts us to search for a more general theory which includes these
phenomena. The aims and goals as well as the guiding questions of
this thesis are formulated in Section 1.3. We close Chapter 1 with a
grasshopper’s guide in Section 1.4.

1.1. A brief historical introduction to symmetry

What is symmetry? Going back to its roots in antiquity, we find two
different meanings of symmetry, both of which differ from our use of the
word today.

In mathematics, we are familiar with Euclid of Alexandria’s (around
325 – 270 BC) use of the word symmetry in his monumental “Elements”
(Book X, Definition 1) [4, 31]:

Σύµµετρα µεγέθη λέγεται τὰ τῷ αὐτῷ µετρῳ µετρούµενα,
ἀσύµµετρα δέ, ὧν µηδὲν ἐνδέχεται κοινὸν µέτρον γενέσθαι.

Those magnitudes measured by the same measure are said to
be commensurable, but those of which no magnitude admits
to be a common measure are said to be incommensurable.

While Euclid employs the greek word symmetry “σύµµετρα” (as well as
asymmetry), it is nowadays usually translated with the latin equivalent
commensurable (where “σύµ” is translated by “com” and “µετρα” by
“mensurable”), and the same meaning still applies to “commensurable”
to this day.

In arts and descriptions of natural phenomena however, symmetry had a
different meaning which could best be translated with “well proportioned”,
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1. Introduction

as we can read from Vitruvius (ca. 80/70 BC – ca. 15 BC) in his
influential work “De Architectura Libri Decem” [31, 54]:

Item symmetria est ex ipsius operis membris conveniens con-
sensus ex partibusque separatis ad universae figurae speciem
ratae partis responsus. Uti in hominis corpore a cubito, pede,
palmo, digito ceterisque particulis symmetros est eurythmiae
qaalitas, sic est in operum perfectionibus.

Symmetry is proportioned correspondence of the elements
of the work itself, a response, in any given part, of the sepa-
rate parts to the appearance of the entire figure as a whole.
Just as in the human body there is a harmonious quality
of shapeliness expressed in terms of the cubit, foot, palm,
digit, and other small units, so it is in completing the work
of architecture.

Vitruvius’ definition of symmetry survived until the Renaissance, in fact,
it is best known to us through the famous drawing “Le proporzioni del
corpo umano secondo Vitruvio” by Leonardo da Vinci (1452 – 1519).

The first change in the concept of symmetry towards the modern meaning
is seen in the following text by Claude Perrault (1613 – 1688), who is
famous for designing the east facade of the Louvre in Paris [31, 50]:

Symmetrie en François signifie seulement un rapport de parité
& d’égalité [. . . ]. Symmetrie en François est le rapport par
exemple que des fenestres ont les unes aux autres quand elles
sont toutes de hauteur & de largeur égale, & que leur nombre
& leurs espaces sont pareils à droit & à gauche, en sorte que
si les espaces sont inégaux d’un costé, une pareille inégalité
se rencontre en l’autre.
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1.1. A brief historical introduction to symmetry

Symmetry, in French, signifies only, a relation of parity and
equality [. . . ]. Symmetry, in French, signifies the relation,
for example, that windows have one to another, when they
are all of an equal height and equal breadth; and that their
number and distances are equal to the right and the left; so
that if the distances be unequal of one side, the like inequality
is to be found in the other.

To distinguish this new meaning of symmetry from the old one by
Vitruvius, Perrault referred to the latter as “proportion”. One could
interpret Perrault’s new definition already as what is known to us as
“bilateral symmetry”.

In the 17th century, the use of the word symmetry was mostly restricted
to architecture [31]. We do not find it in the natural sciences; even
Kepler, whose famous description of the snowflake has become one of
the prime examples of a symmetric object in nature [65], does not use
the word symmetry. This changed in the 18th century, when symmetry
became a term employed in botany, zoology and cristallography.

In his Élements de géométrie from 1794 (a work still in sale today!),
Adrien-Marie Legendre (1752 – 1833) introduces symmetry as a term in
the discussion of solid angles [40, 39]:

Cette sorte d’égalité, qui n’est pas absolue ou de superposition,
mérite d’être distinguée par une dénomination particulière :
nous l’appellerons égalité par symétrie. Ainsi les deux angles
solides dont il s’agit, qui sont formés par trois angles plans
égaux chacun à chacun, mais disposés dans un ordre inverse,
s’appelleront angles égaux par symétrie, ou simplement angles
symétriques.

This kind of equality, which is not absolute, or does not
admit of superposition, deserves to be distinguished by a
particular denomination; we shall call it equality by symmetry.
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Thus the two solid angles under consideration, which are
respectively contained by three plan angles equal, each to
each, but disposed in a contrary order in the one from what
they are in the other, we shall call angles equal by symmetry,
or simply symmetrical angles.

In his text, Legendre allowed the order of the planes constituting solid
angles to be switched. Contrary to previous works, he found that such
a switching yields essentially the same solid angle and he treated it as
such, resulting in his famous theory on symmetrical polyhedra.

The next milestone was the introduction of symmetrical functions by
Sylvestre François Lacroix (1765 – 1843). In his Traité du calcul différen-
tiel et du calcul intégral from 1797, we find the first mention of symmetry
beyond geometry, as well as a notion of invariance under pemutations
[31, 37]:

Cependant certaines fonctions des racines d’une équation
quelconque peuvent s’exprimer d’une manière rationnelle
au moyen de ses coefficiens, et s’obtiennent par conséquent
par des équations du premier degré; les fonctions dont je
parle, sont celles qui renferment toutes les racines combinées
d’une manière semblable, soit entr’elles, soit avec d’autres
quantités, et que pour cela je nommerai fonctions symétriques:
la somme des racines, celle de leurs produits deux à deux, trois
à trois, etc. respectivement égales aux coefficiens du second,
du troisième, du quatrième, etc. termes, sont de ce genre.
[. . . ] En effect, il est facile de voir qu’aucune des fonctions
symétriques . . . ne peut changer de valeur, de quelque manière
qu’ on permute entr’elles les lettres α, β, γ, δ, etc., et cette
invariabilité est, comme nous l’avons fait remarquer plus haut,
le caractère essentiel des fonctions symétriques.

However, certain functions of an arbitrary equation may be
expressed in a rational manner by means of its coefficients, and
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1.1. A brief historical introduction to symmetry

consequently they can be obtained by equations of the first
degree; the functions of which I speak are those which contain
all the roots combined in a similar manner, either among
themselves or with other quantities, and for this [reason] I will
call them symmetrical functions: the sum of the roots, those
of their products taken two at a time, three at a time, etc.,
[which are] equal respectively to the coefficients of the second,
third, or fourth, etc. terms [of the equation], are [also] of this
kind. [. . . ] None of the symmetrical functions . . . changes its
value no matter how one permutes the letters α, β, γ, δ, etc.,
and this invariability is, as we had occasion to remark above,
the essential character of symmetrical functions.

The symmetries are expressed as permutations for Lacroix, and other
mathematicians such as Lagrange, Abel, and Ruffini [8]. The main
breakthrough was achieved by Évariste Galois (1811 – 1832), who classi-
fied the permutation operations into what we now call groups, (normal)
subgroups and conjugated subgroups [8, 22, 23]:

Grouper les opérations, les classer suivant leurs difficultés et
non suivant leurs formes; telle est, suivant moi, la mission
des géomètres futurs; telle est la voie où je suis entré dans
cet ouvrage.

Put operations into groups, class them according to their
difficulty and not according to their form; that is, according
to me, the mission of future geometers, that is the path that
I have entered in this work.

Since then, automorphism groups and symmetry are virtually the same
[65]. In recent years, however, the mathematical focus has started to
shift to groupoids instead of groups, because, as Alan Weinstein (*1943)
puts it [64],
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There are plenty of objects which exhibit what we clearly
recognize as symmetry, but which admit few or no nontrivial
automorphisms. It turns out that the symmetry, and hence
much of the structure, of such objects can be characterized
algebraically, if we use groupoids and not just groups.

In this thesis, we will encounter many dynamical systems which are not
symmetric under any group automorphism (or equivariant, see below
for a precise definition) but which clearly have some form of additional
structure or symmetry, or which exhibit clear spatio-temporal patterns
that are normally associated with equivariant systems, only. It seems
that to study these phenomena we need to broaden our view on symmetry
in the context of dynamical systems and differential equations.

1.2. Review on group symmetry and equivariance

But first, before offering a generalized viewpoint on symmetry, let us
very briefly review the current treatment of symmetry and groups in
dynamical systems.

Definition 1.2.1 (Group, [61]). A set G of elements g, h, k, . . . together
with a binary operation · : G×G→ G is called a group if the following
conditions hold:

i) Associativity: (g · h) · k = g · (h · k) if g, h, k are in G;

ii) Identity element: There exists an element e ∈ G such that for
all g ∈ G, e · g = g · e = g holds;

iii) Inverse element: For all g ∈ G, there exists an element g′ ∈ G
such that g′ · g = g · g′ = e.

The connection between the abstract algebraic group structure and those
dynamical systems which are given by differential equations on a vector
space is as follows: The groups are represented on vector spaces via group
homomorphisms.
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1.2. Review on group symmetry and equivariance

Definition 1.2.2 (Group representation, [12]). Given a group G and
a Banach space X, a linear representation of G on X is a continuous
group homomorphism ρ : G→ GL(X) from G to the group of invertible
linear maps in X.

Unless otherwise noted, all representations in this thesis are assumed to
be bounded linear as well as strongly continuous, i.e., we require that
the map

G×X → X

(γ, x) 7→ ρ(γ)x
(1.1)

is continuous.

In the following, let X,Y be Banach spaces, and let f : X → Y . Let G
be a group whose elements γ are represented by ρX(γ) on the space X,
and by ρY (γ) on the space Y .

Definition 1.2.3 (Group symmetry, [20, 27]). The group element γ ∈ G
is a group symmetry of

ẋ = f(x) (1.2)
if for every solution x(t) of (1.2), ρX(γ)x(t) is also a solution of (1.2).

Often, group symmetries are simply called symmetries. We will keep the
more precise name “group symmetry” in order to avoid confusion with
the groupoid symmetries introduced in later chapters.

It turns out that all γ ∈ G are group symmetries if and only if f is
G-equivariant.

Definition 1.2.4 (Equivariant dynamical system, [12, 20, 27]). We say
that a dynamical system generated by

ẋ = f(x) (1.3)

is G-equivariant if for all γ ∈ G and all x ∈ X the following holds:

f(ρX(γ)x) = ρY (γ)f(x). (1.4)
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1. Introduction

To see the connection between Definitions 1.2.3 and 1.2.4, let x(t) be a
solution of ẋ = f(x) and let γ ∈ G be a group symmetry of system (1.3).
By Definition 1.2.3, z(t) := ρX(γ)x(t) is also a solution of (1.3). Then

ż = f(z) = f (ρX(γ)x) and (1.5)
ż = ρY (γ)ẋ = ρY (γ)f(x) (1.6)

holds. Conversely, suppose that f is G-equivariant and let x(t) be a
solution of ẋ = f(x). Then

ρY (γ)ẋ = ρY (γ)f(x) = f(ρX(γ)x)), (1.7)

which implies that z(t) := ρX(γ)x(t) is also a solution.

Last, we introduce the following concepts, which — in their generalized
versions in the context of symmetry groupoids instead of groups — will
play a central role in this thesis.

Definition 1.2.5 (Space of K-fixed vectors, isotropy subgroup, [12, 20,
27]). Let ρX be a representation of the group G on the space X.

i) Let K be a subgroup of G. Then we call

XK := {x ∈ X | ρX(γ)x = x for all γ ∈ K} (1.8)

the space of K-fixed vectors in X.

ii) We call the subgroup

Gx := {γ ∈ G | ρX(γ)x = x} ⊆ G (1.9)

the isotropy subgroup of x ∈ X.

Note that x ∈ XK if and only if K ⊆ Gx. Moreover, we find the following
conjugacy between the fixed vectors, ρX(γ)XK = XγKγ−1 , and the
isotropy subgroups, GρX(γ)x = γGxγ

−1. Another important consequence
is that the space of K-fixed vectors is invariant under G-equivariant
nonlinearities f . More precisely, let f : X → Y be G-equivariant, then
f : XK → YK .
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Symmetry and equivariance occur throughout the natural sciences: To
only name a few, the motion of free rigid bodies in Newtonian mechanics
is usually described by an SO(3)-equivariant system; most animals are
(roughly) axisymmetric (or more: the starfish is a striking Z5-equivariant
example); snowflakes possess a D6-symmetry; and the different gaits of
four-legged animals can be associated to different isotropy subgroups
of the symmetry group D4. There is an immense body of research on
symmetry and symmetric solutions (“patterns”). We can not possibly
attempt to mention all results here, instead we refer to the classical
textbooks and reviews [12, 17, 27, 25, 33].

1.3. Main goal and guiding questions of this thesis

The theory of equivariant dynamical systems usually works under the
assumption that a dynamical system is equivariant under a specific group
action. Then the patterns are distilled from the isotropy subgroups.

But what if a system is not fully equivariant? Does that mean that
pattern formation is impossible? Of course not! Or what if a system
shows more intricate patterns than the equivariance suggests? Does that
mean that the theory fails completely? Again, of course not!

However, the current theory of equivariant dynamical systems is not
equipped to deal with such cases. This is mainly due to the limitations
that groups offer as a rather simple algebraic object. This is not to say
that we should dismiss groups entirely — on the contrary!

We should nevertheless review the old definitions of symmetry in dynam-
ical systems with a fresh mind and see where that leads us.

It is our main goal to generalize
the existing definition of symmetry in dynamical systems

and create a refined but much more widely applicable theory
of symmetric dynamical systems.
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1. Introduction

From this goal the following guiding questions arise:

• What is an appropriate generalized definition of symmetry in dy-
namical systems which captures the occurring patterns in systems
without group symmetry?
In our minds, symmetry is so strongly linked to groups that it is
easy to neglect that symmetry is also tightly linked to the existence
of linear flow-invariant subspaces, as we have seen above. To free
ourselves, just for a moment, from the group structure, we suggest
to start with linear flow-invariant subspaces as the main building
blocks of our new symmetry definition.

• What is the algebraic structure implied by the new, generalized
symmetry?
As we will see later on, our definition of symmetry will lead us
to groupoids, which we can interpret as a collection of groups,
each tied to a linear flow-invariant subspace, and connected via
conjugating morphisms.

• How can spatio-temporal patterns be described in terms of the
generalized symmetry?
Such a definition should include frequently discussed phenomena,
such as multi-frequency patterns, and also include patterns such as
discrete and rotating waves for which a comprehensive bifurcation
theory exists.

• Is it possible to rationally design dynamical systems with prescribed
symmetries of groupoid type?
To answer this question at least partially, we will stay in the
realm of networks of coupled oscillators and study their coupling
matrices. Interestingly, the algebraic object behind the design of
such networks is a monoid, that is, while we use invertibility of
symmetries in the main description and in bifurcation theory, it is
not necessary for the construction of symmetric systems.
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1.4. Grasshopper’s guide

To answer the questions raised in the previous subsection, we will proceed
as follows:

In Chapter 2 we will first present the new definition of symmetry in the
context of ordinary differential equations (ODEs). We will show that the
set of symmetries possesses the algebraic structure of a groupoid and we
will formulate a generalized notion of equivariance. We purposely con-
centrate on ODEs here in order to focus entirely on groupoid symmetry
without the technical difficulties which could arise in infinite-dimensional
systems. Moreover, we illustrate each new concept with one or two exam-
ples which are as simple as possible but also instructive. These examples
are also designed to demonstrate the ubiquity of the new generalized
concept of groupoid symmetry as well as the fact that standard group
symmetry has little or even nothing to say in these situations.

It is clear by now that we are dealing with symmetries which possess the
underlying structure of a groupoid. This leads us to Chapter 3 where
we will first study equivaroid maps (a newly coined term generalizing
equivariant maps) between two Banach spaces. Compared to the case
of standard group equivariance, there are new difficulties associated
with restricting a system to a given subspace: In which sense is the
restricted system still equivaroid? Which subspaces are left invariant
under the groupoid action? To answer these questions, we also newly
introduce the terms subequivaroid and invaroid. As a preparation for the
bifurcation theory in the following chapters, we will collect properties of
the linearization of equivaroid maps. Lastly, we will show how equivaroid
generators imply groupoid symmetries on the level of the semigroup of a
dynamical system. Again, all of these concepts are illustrated by simple
and instructive examples highlighting the main features and novelties of
groupoid symmetries.

Chapter 4 deals with steady-state bifurcation from the trivial equilibrium.
We first prove equivaroid Lyapunov–Schmidt reduction, here the main
question is: How is the groupoid inherited by the reduced bifurcation

13
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equation? Using the theorem of Crandall and Rabinowitz, we are then
able to state and prove the equivaroid branching lemma. We are therefore
able to prove bifurcation of patterns even if systems are not fully equiv-
ariant. In addition, we also find that the equivaroid branching lemma
gives more precise information on the nature of the pattern than the
equivariant branching lemma even if the system is fully equivariant. This
is also shown in examples. But even though the equivaroid branching
lemma is both more general and more precise than previous works, it
does not explain all patterns. We therefore go one step further and prove
the iterated equivaroid branching lemma, which allows higher dimensional
kernels within flow-invariant subspaces which cannot be divided into
smaller flow-invariant subspaces.

In Chapter 5 we prove Hopf bifurcation in equivaroid systems. We rely
on the abstract Hopf bifurcation setting by Vanderbauwhede, and then
define groupoid spatio-temporal patterns. To this end, we introduce an
action of the N -dimensional torus as a componentwise time-shift, as a
generalization of time-shifts on the circle S1. We then state and prove
equivaroid Hopf bifurcation. Last, as an extension, we prove iterated equiv-
aroid Hopf bifurcation, which allows existence proofs of periodic orbits
with even more elaborate spatio-temporal patterns than the equivaroid
Hopf bifurcation allows, such as multi-frequency patterns.

In Chapter 6 we ask the question which dynamical systems allow for such
groupoid symmetries and we deal with the rational design of dynamical
systems with prescribed groupoid symmetries. We focus on the design of
finite networks. The relevant algebraic objects used for the coupling be-
tween the cells of the network will be monoids, whose invertible elements
double as symmetries of the network.

We close this thesis with a conclusion and short discussion in Chapter
7. We first present a summary of our aims, methods, and results. We
then compare the symmetry groupoid to other recent generalizations of
symmetry groups, in particular to quiver symmetries and the groupoid
formalism. We end with an overview on open problems and further
research.

14
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As we cannot assume that the readers are familiar with groupoids, we also
include a chapter in the Appendix on this topic, Chapter A. The first part
of this chapter is dedicated to the definition of groupoids, and we give a
total of nine examples to illustrate the variety of structures covered by the
definition. We then turn to vertex groups and conjugating morphisms,
both of which play a central role in our discussion of symmetry. We close
with a short summary on groupoid representation theory.

15





2. Groupoid symmetries in ordinary
differential equations

In this chapter we first introduce a new generalized definition of symmetry.
For the sake of clarity, we restrict ourselves to the finite-dimensional case
of ordinary differential equations here and postpone the more general
discussion to Chapter 3.

This chapter is organized as follows: In Section 2.1 we redefine symmetry
for ordinary differential equations. We investigate the underlying alge-
braic structure of symmetries, and note that it forms a groupoid. For the
reader not familiar with groupoids, more information can be found in the
appendix. In the following Section 2.2 we formulate the new symmetry
definition in terms of a generalized equivariance — this provides us with
a convenient condition for the generalization to the infinite-dimensional
case and the bifurcation theorems in later chapters. Sections 2.3 and 2.4
contain a detailed exposition of the different types of symmetries within
the groupoid framework.

2.1. The new generalized definition of symmetry

In this section we present a new generalized definition of symmetry in the
context of dynamical systems, discuss its algebraic structure as well as its



2. Groupoid symmetries in ordinary differential equations

connections to the existing literature, and end with some examples with
generalized symmetries but without group symmetries. Through our
definition, we are able to vastly generalize the study of pattern formation
beyond standard group symmetry.

For pedagogical reasons, we focus on the finite-dimensional case in this
introduction in order not to be hindered by technical difficulties at first.
We will treat the general case from Chapter 3 onwards.

Contrary to the case of group symmetry discussed above, we start with a
definition of symmetry based on linear isomorphisms, that is, we do not
assume any abstract algebraic conditions behind such an isomorphism or
even assume that there exists more than one such isomorphism which
meets the definition. This careful approach allows us to extract the main
algebraic structure which we can henceforth use. At this point, it is
extremely important not to be prejudiced about the type of algebraic
structure behind the word “symmetry”, but to see symmetry purely as
the phenomenon that we want to describe, namely mapping solutions to
solutions.

Definition 2.1.1 ((Xj , Xk)-symmetry in Rn). Consider

ẋ = f(x), (2.1)

with f : Rn → Rn. Let Xj , Xk be linear flow-invariant subspaces of
X = Rn, that is, f(Xj) ⊆ Xj , f(Xk) ⊆ Xk.

We call a linear isomorphism

γ : X → X with γXj = Xk (2.2)

an (Xj , Xk)-symmetry of system (2.1) if the following holds:

x(t) is a solution of (2.1) in Xj if and only if
γx(t) is a solution of (2.1) in Xk.
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2.1. The new generalized definition of symmetry

Let us compare this definition to the existing definition of symmetry in
dynamical systems, Definition 1.2.3.

First, note that we have lifted the restriction that a symmetry needs to
hold for all elements x ∈ X. The new Definition 2.1.1 thereby enables
us to study a much greater number of patterns in dynamical systems
via the symmetry methods than Definition 1.2.3; see the examples below
and throughout the thesis. On the other hand, in the special case
Xj = Xk = X, Definition 2.1.1 reduces to Definition 1.2.3.

Second, as we have discussed in the introduction, the set of symmetries
γ from Definition 1.2.3 forms a group [27]. This is not the case for the
(Xj , Xk)-symmetries, as not all (Xj , Xk)-symmetries can be composed
with one another. We will now explore their algebraic structure in
detail.

As the new definition of symmetry is strongly dependent on the flow-
invariant subspaces, it is to be expected that they play an important role
in our further analysis. This motivates the need for a specific name for
these spaces.

Definition 2.1.2 (Vertex space). Let Xj ⊆ X = Rn be a linear flow-
invariant subspace of the system ẋ = f(x), that is, Xj ⊆ X is linear and
f(Xj) ⊆ Xj . Then we call Xj a vertex space of ẋ = f(x).

We index the vertex spaces to obtain a family {Xj}j∈I with an index
set I (not necessarily finite). For any fixed indexing, it is sometimes
convenient to abbreviate “(Xj , Xk)-symmetry” by “(j, k)-symmetry”. We
also denote the set of (j, k)-symmetries by Hjk.

Next, we collect the following algebraic properties of (j, k)-symmetries.

Proposition 2.1.3 (Properties of (j, k)-symmetries).

i) Identities for each vertex space: For every vertex space Xj ⊆
X, the identity on X is a (j, j)-symmetry.
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2. Groupoid symmetries in ordinary differential equations

ii) Inverses of symmetries are symmetries: Let γ : X → X be a
(j, k)-symmetry, then its inverse γ−1 : X → X is a (k, j)-symmetry.

iii) Composing symmetries: Let γ1 : X → X be a (j, k)-symmetry,
and γ2 : X → X be a (k,m)-symmetry. Then the linear isomor-
phism γ3 := γ2 ◦ γ1 : X → X is a (j,m)-symmetry.

Remark 2.1.4. A word of caution: As Proposition 2.1.3 shows, it does
not suffice to say “γ = Id is a symmetry” in the context of Definition
2.1.1. This is because the same linear isomorphism γ can give rise to
distinct (Xj , Xk)-symmetries, such as in the case of the identities. We
will very carefully distinguish the isomorphisms from the symmetries in
the remainder of this thesis.

Proof. Item (i) is trivial. Concerning item (ii), since γ is an isomorphism,
its inverse exists, and Xj = γ−1Xk. Let x̃(t) be a solution in Xk. Then,
by definition, x(t) := γ−1x̃(t) is a solution inXj if and only if γx(t) = x̃(t)
is a solution in Xk.

For the last point, let γ1 : X → X be a (j, k)-symmetry, then any x(t) is
a solution in Xj if and only if γ1x(t) is a solution in Xk. Similarly, let
γ2 : X → X be a (k,m)-symmetry, then any solution x̃(t) is a solution
in Xk if and only if γ2x̃(t) is a solution in Xm. In particular, this last
statement holds if x̃(t) := γx(t) ∈ Xk, which implies item (iii).

It turns out that the properties of the composable symmetries that we
just showed are indeed characteristic for groupoids. We will now first
review the definition for groupoids, and then apply this definition to the
set of (j, k)-symmetries, j, k ∈ I, as defined above.

Definition 2.1.5 (Groupoid, [34, 38, 43, 47, 64]). Let B be a set. A
groupoid is a set Γ of morphisms γ : B → B, γ ∈ Γ, equipped with the
following maps:

• a surjective source map s : Γ→ B, γ 7→ s(γ),

• a surjective target map t : Γ→ B, γ 7→ t(γ),

20



2.1. The new generalized definition of symmetry

• an injective identity map e : B → Γ, b 7→ e(b) =: eb,

• a partial binary composition operation defined on the set of com-
posable morphisms Γ ? Γ := {(γ2, γ1) ∈ Γ× Γ | t(γ1) = s(γ2)}:

◦ : Γ ? Γ→ Γ
(γ2, γ1) 7→ γ2 ◦ γ1,

(2.3)

which satisfy the following properties:

i) the partial binary operation is associative, that is, for all (γ3, γ2),
(γ2, γ1) ∈ Γ ? Γ, the identity (γ3 ◦ γ2) ◦ γ1 = γ3 ◦ (γ2 ◦ γ1) holds;

ii) the identity map defines a family of identity morphisms in the
following sense:

a) for all b ∈ B it holds that s(eb) = t(eb) = b,

b) for all γ such that s(γ) = b it holds that γ ◦ eb = γ,

c) for all γ such that t(γ) = b it holds that eb ◦ γ = γ;

iii) each morphism γ ∈ Γ has a two-sided inverse γ−1 ∈ Γ such that

s(γ) = t(γ−1), t(γ) = s(γ−1), and
γ−1 ◦ γ = es(γ), γ ◦ γ−1 = et(γ).

(2.4)

We denote such a groupoid by Γ ⇒ B. The set B is called the base, and
its elements are called objects or vertices. We call the object s(γ) ∈ B
the source of the morphism γ, and the object t(γ) ∈ B its target.

For more details on groupoids and many examples see Appendix A.

Our goal is to see how the new Definition 2.1.1 of symmetry is related
to the abstract algebraic groupoid structure. To this end, we define the
symmetry groupoid.
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2. Groupoid symmetries in ordinary differential equations

Definition 2.1.6 (The symmetry groupoid). The (abstract) symmetry
groupoid

Γ := HI∗I :=
⋃
j∈I

⋃
k∈I

Hjk. (2.5)

of the system ẋ = f(x) is defined as follows:

• The base of the symmetry groupoid is given by the index set I of
the vertex spaces.

• To each γ ∈ Hjk, γ : X → X, we faithfully associate an (abstract)
morphism γ̃ : j → k. The source of a morphism γ̃ : j → k is given
by the index j, while its target is given by the index k.

• For each index k ∈ I, the identity matrix is a (k, k)-symmetry for
all k ∈ I, to which we associate the abstract morphism ek.

• The partial binary operation ◦ is defined on the set

Γ ? Γ = {(γ̃2, γ̃1) | (γ2, γ1) ∈ H ?H} (2.6)

with γ̃2 · γ1 = γ̃2 ◦ γ̃1, where

H ?H := {(γ1, γ2) ∈HI∗I ×HI∗I | γ1 ∈ Hjk, γ2 ∈ Hkm for
j, k,m ∈ I with Hjk 6= Ø, Hkm 6= Ø}.

(2.7)

Theorem 2.1.7 (The symmetry groupoid is indeed a groupoid). The
set Γ = HI∗I over the base {Xk}k∈I together with composition of linear
isomorphisms on H ?H as in Proposition 2.1.3 forms a groupoid.

Proof. The basic structure of the groupoid has been established in Propo-
sition 2.1.3 and associativity is given through the general associativity of
composition of functions.

To close this section, let us consider two network examples which possess
groupoid symmetries but no standard group symmetries. To see this,
we will find the vertex spaces, and the symmetry groupoid for each
example.
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2.1. The new generalized definition of symmetry

Figure 2.1.: A simple network of two coupled cells (left) and its symmetry
groupoid (right). a) Sketch of system (2.8), the arrows depict
the coupling between the individual cells x1, x2. b) Graphical
representation of the symmetry groupoid of system (2.8).
Here, the circles denote the objects (vertices), and the arrows
denote the morphisms. For simplicity all the sets Hj := Hjj

are drawn with one arrow only.

Example 2.1.8 (Two coupled cells, I). Let us consider the network
given by the ordinary differential equations

ẋ1 = f(x1, x1)
ẋ2 = f(x2, x1),

(2.8)

with f : R × R → R, f(0, 0) = 0 and cells x1, x2. The network may be
graphically represented as in Fig. 2.1.

This network does not possess any symmetries described by a
group. However, it does possess symmetries in the groupoid
sense.

Searching for linear flow-invariant subspaces, we find that the vertex
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2. Groupoid symmetries in ordinary differential equations

Vertex pair (j, k) Set of (j, k)-symmetries

(1, 1) H11 =
{(

1 0
0 1

)}
= {Id}

(2, 2) H22 =
{(

a 1− a
b 1− b

) ∣∣∣∣∣ a, b ∈ R, a 6= b

}

(3, 3) H33 =
{(

a 0
b 1

) ∣∣∣∣∣ a, b ∈ R, a 6= 0
}

(4, 4) H44 =
{(

a b
c d

) ∣∣∣∣∣ a, b, c, d ∈ R, ad− bc 6= 0
}

(j, k), j 6= k Hjk = Ø

Table 2.1.: The symmetry groupoid of system (2.8).

spaces Xk ⊆ R2, k = 1, 2, 3, 4, are given by

X1 = R2, X2 = {(x1, x2) |x1 = x2},
X3 = {(x1, x2) |x1 = 0}, X4 = {(0, 0)}.

(2.9)

For a clearer overview, we collect the (j, k)-symmetries in Table 2.1. For
the one-dimensional subspaces X2 and X3, the set of (j, j)-symmetries
consists of all the invertible matrices for which the invariant subspace
Xj , j = 2, 3, is an eigenvector with eigenvalue 1. In other words, the
symmetries in this specific example are all pointwise, but still encode
the system structure. Finally, note that the sets Hjj form subgroups of
GL(2).

Moreover, in this example, symmetries from different sets Hjk can not
be composed, i.e., while it is of course technically possible to perform a
matrix multiplication, we will not necessarily obtain another groupoid-
symmetry from this operation. Schematically, the symmetry groupoid

24



2.1. The new generalized definition of symmetry

HI∗I of the system (2.8) is drawn in Fig. 2.1 b). We see that it consists
not of one, but of four individual groups!

In the following example, we illustrate that a symmetry groupoid can
also contain conjugating morphisms.

Example 2.1.9 (Two coupled cells, II). Next, we consider the following
two-cell network with nonlinear, nonidentical coupling between the cells:

ẋ1 = f(x1) + x1x2

ẋ2 = f(x2) + 2x1x2,
(2.10)

with f : R→ R, f(0) = 0, x1, x2 ∈ R. System (2.10) does not possess
any group symmetries, but it exhibits a surprisingly rich set of
groupoid symmetries.

The vertex spaces of system (2.10) are given by

X1 = R2, X2 = {(x1, x2) |x1 = 0},
X3 = {(x1, x2) |x2 = 0}, X4 = {(0, 0)}.

(2.11)

The symmetry sets Hjk can be found in Table 2.2. Note that this two-cell
network also possesses conjugating symmetries, that is, symmetries which
conjugate between the two one-dimensional subspaces X2 and X3. In this
specific example, the conjugating symmetries occur due to the fact that
the nonidentical coupling vanishes on the subspaces X2, X3. Therefore,
the existence of a solution in one of these subspaces implies the existence
of the corresponding solution in the other subspace.

It is worthwhile noting that the inverse of each matrix in the set H23 is
an element of H32 and vice versa. Neither H23 nor H32 are groups! In
particular, they do not contain the identity operation. A composition of
symmetries from Hjk and Hlm gives a symmetry element from Hjm if
k = l. Schematically, the set of symmetries HI∗I of the system (2.8) is
drawn in Fig. 2.2.
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2. Groupoid symmetries in ordinary differential equations

Figure 2.2.: A simple network of two coupled cells (left) and its sym-
metry groupoid (right). a) Sketch of system (2.10), the ar-
rows depict the coupling between the individual cells x1, x2.
Nonidentical coupling is indicated by the dotted arrow. b)
Graphical representation of the symmetry groupoid of sys-
tem (2.10). Here, the circles denote the objects (vertices),
and the arrows denote the morphisms. For simplicity all the
sets Hj := Hjj < are drawn with one arrow only.

2.2. Equivaroid systems

So far, we have analyzed a system and then collected the groupoid
symmetries. But what does that mean for the dynamical system? Can we
find a condition on the level of the differential equations that characterizes
the symmetries, similar to the condition of equivariance? As an answer
this question, we need to introduce two new terms: source equivariance,
and equivaroid.

To see how these terms emerge, let x∗ be a solution of the ordinary
differential equation

ẋ = f(x), (2.12)
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2.2. Equivaroid systems

Vertex pair (j, k) Set of (j, k)-symmetries

(1, 1) H11 =
{(

1 0
0 1

)}
= {Id}

(2, 2) H22 =
{(

a 0
b 1

) ∣∣∣∣∣ a 6= 0
}

(3, 3) H33 =
{(

1 a
0 b

) ∣∣∣∣∣ b 6= 0
}

(4, 4) H44 =
{(

a b
c d

) ∣∣∣∣∣ ad− bc 6= 0
}

(2, 3) H23 =
{(

a 1
b 0

) ∣∣∣∣∣ b 6= 0
}

(3, 2) H32 =
{(

0 a
1 b

) ∣∣∣∣∣ a 6= 0
}

else Hjk = Ø

Table 2.2.: The symmetry groupoid of system (2.10). Here a, b, c, d ∈ R.

and assume that x∗ is confined to the flow-invariant subspace (vertex
space) Xj ⊆ RN . Note that such a vertex space always exists. In the case
that Xj is not a proper subspace but Xj = RN , the following argument
reduces to the standard procedure in group symmetry; see e.g., [27]. In
all other cases, we should pay special attention to the involved vertex
spaces.

Suppose that x∗(t) ∈ Xj for all t ≥ 0 and let γ be a (j, k)-symmetry.
Then for all t ≥ 0, z(t) := γx(t) lies in the vertex space Xk. Moreover,
z(t) is also a solution of (2.12), more precisely,

ż = f(z) = f(γx). (2.13)
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2. Groupoid symmetries in ordinary differential equations

On the other hand,
ż = γẋ = γf(x). (2.14)

It follows that a necessary condition for γ to be a (j, k)-symmetry of
ẋ = f(x) is the commutativity of f and γ, but only on the subspace Xj .
This is different from the well-known concept of equivariance, where the
commutativity of f and γ is required to hold for all x ∈ X. In other
words, we find that

f(γx) = γf(x) for all x ∈ Xj , γ ∈ Hjk. (2.15)

In general, the commutativity of f and γ does not hold for all x ∈ X =
RN . This necessary condition for the existence of groupoid symmetries
is therefore much less strict than the usual equivariance condition for
group symmetries which implies that many more dynamical systems will
fulfill it.

Definition 2.2.1 (Source equivariance). We say that the system ẋ =
f(x) is Xj-source equivariant with respect to HjI := ⋃

k∈I Hjk if

γf(x) = f(γx) (2.16)

holds for all x ∈ Xj and for all γ ∈ HjI .

The naming “source equivariance” is influenced by the groupoid termi-
nology: j is the source object for all morphisms γ ∈ HjI , that is, all
morphisms with source j.

But is the source equivariance of f and γ also a sufficient condition?
Suppose that f(γx) = γf(x) holds on a flow-invariant subspace Xj for a
(j, k)-symmetry γ. Then, if γx is a solution, x is also a solution:

γẋ = f(γx) = γf(x). (2.17)

By Proposition 2.1.3, γ is invertible, and it follows that the equivariance
of f and γ on the vertex space Xj is also a sufficient condition. In
summary, we have proven the following Proposition.
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2.2. Equivaroid systems

Proposition 2.2.2 (Source equivariance versus (j, k)-symmetries).

i) Let γ : X → X be a (j, k)-symmetry. Then, for all x ∈ Xj, the
following equality holds:

γf(x) = f(γx). (2.18)

ii) Let Xj , Xk be flow-invariant subspaces of ẋ = f(x). Let γ : X → X
be a linear isomorphism which additionally fulfills γXj = Xk. If
source equivariance

γf(x) = f(γx), (2.19)

holds for all such γ and for all x ∈ Xj, then γ is a (j, k)-symmetry.

Remark 2.2.3. Note that the equations (2.18) and (2.19) are equalities
in the vertex space Xk: Although x ∈ Xj , both γf(x) and f(γx) are
elements of Xk.

The last proposition inspires the following new definition which is a
generalization of group equivariance, now formulated for groupoids.

Definition 2.2.4 (Equivaroid systems). Consider ẋ = f(x), f : X → X,
X = Rn. Let {Xj}j∈I be an indexed family of linear flow-invariant
subspaces of X, i.e., f(Xj) ⊆ Xj for all j ∈ I.

Let (Γ ⇒ I) be a groupoid Γ over the base I.

We say that the dynamical system generated by ẋ = f(x) is (Γ ⇒ I)-
equivaroid if the following holds:

There exists a faithful representation ρ of the groupoid Γ ⇒ I on the
space X, i.e., ρ(j) = X for all j ∈ I and ρ(γ̃) : X → X for all γ̃ ∈ Γ,
such that

i) for all γ̃ ∈ Γ with γ̃ : j → k, we have ρ(γ̃)Xj = Xk.
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2. Groupoid symmetries in ordinary differential equations

ii) for all x ∈ Xj and for all morphisms γ̃ : j → k, source equivariance
holds,

ρ(γ̃)f(x) = f(ρ(γ̃)x). (2.20)

Note that the groupoid (Γ ⇒ I) is not necessarily identical to the symme-
try groupoid, that is, it does not need to cover all groupoid symmetries
in the sense of Definition 2.1.1. This leaves us some degree of freedom:
It is possible to treat only a subgroupoid of the symmetry groupoid, if
that is feasible from an application point of view. Additionally, since any
group is a groupoid with only one object, it also means that a system
which is equivariant with respect to a group G is also equivaroid. That is,
Definition 2.2.4 covers both the well known case of equivariant systems,
as well as many additional systems which are not equivariant but still
possess a symmetry groupoid.

In the following example, we will check the source equivariance condition
for a specific system, and we will see clearly how it distinguishes from
standard equivariance.

Example 2.2.5 (Two asymmetrically, nonlinearly coupled cells II, con-
tinued from Example 2.1.9). We consider again the dynamical system
of

ẋ1 = f(x1) + x1x2

ẋ2 = f(x2) + 2x1x2,
(2.21)

where f : R → R, f(0) = 0. This system is not equivariant with
respect to any group, but it is equivaroid with respect to its
symmetry groupoid.

The source equivariance on the space X2 = {(x1, x2) ∈ R | x1 = 0} for
the elements of H22,

H22 =
{(

a 0
b 1

) ∣∣∣∣∣ a, b ∈ R, a 6= 0
}
, (2.22)
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holds because each element of H22 fixes the space X2, pointwise. More
interesting is the source equivariance for the conjugating (X2, X3)-sym-
metries

H23 =
{(

a 1
b 0

) ∣∣∣∣∣ a, b ∈ R, b 6= 0
}
. (2.23)

Application of the elements of H23 to both sides of the equation (2.21)
and all (x1, x2) ∈ R2 yields:

aẋ1 + ẋ2 = f(ax1 + x2) + (ax1 + x2)x1

bẋ1 = f(bx1) + 2(ax1 + x2)x1.
(2.24)

Obviously, this is not true for all (x1, x2) ∈ R2. It is, however, true on
the vertex space X2: Plugging in (x1, x2) = (0, x2) ∈ X2 gives

ẋ2 = f(x2)
0 = 0,

(2.25)

i.e., a true statement in the subspace X3 and therefore, source equivari-
ance on the subspaceX2 holds. The other cases can be shown analogously,
for brevity, we will omit the calculations. In conclusion, the system (2.21)
is (HI∗I ⇒ I)-equivaroid.

2.3. Vertex groups — the building blocks of
symmetry

To underline the connections between symmetries and groupoids, in the
following two Sections 2.3 and 2.4, we investigate the most elementary
properties and the algebraic structure of the symmetry groupoid. Now,
in Section 2.3, we concentrate on those symmetries of the symmetry
groupoid which act only on one vertex space, and will proceed with those
symmetries which connect to vertex spaces in the following Section 2.4.

Throughout, consider ẋ = f(x), f : Rn → Rn, with an indexed family of
vertex spaces {Xj}j∈I , and let (HI∗I ⇒ I) be its symmetry groupoid.
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2. Groupoid symmetries in ordinary differential equations

Proposition 2.3.1 (Group structure of (j, j)-symmetries). The set Hjj

of all (j, j)-symmetries together with composition of linear maps forms a
group.

Proof. First, the set of (j, j)-symmetries is closed under composition;
see Proposition 2.1.3. The other group axioms are also fulfilled since we
already proved that (HI∗I ⇒ I) forms a groupoid.

Proposition 2.3.1 suggests the following definition.

Definition 2.3.2 (Vertex symmetry group). The group Hj := Hjj of
all (j, j)-symmetries is called the vertex symmetry group of Xj .

Proposition 2.3.3 (Invariance of Xj , as a set). The vertex symmetry
group Hj leaves the vertex space Xj invariant, as a set, i.e., γXj = Xj

holds for all γ ∈ Hj.

This proposition is clear by definition. The setwise invariance under
the vertex symmetry group immediately raises the question of pointwise
invariance.

Definition 2.3.4 (Vertex isotropy group). We denote by Kj the set
of all linear invertible isomorphisms κ : X → X which leave the vertex
space Xj invariant, pointwise, i.e.,

Kj := {κ : X → X linear isomorphism |κx = x for all x ∈ Xj}. (2.26)

Together with composition of isomorphisms, we callKj the vertex isotropy
group of Xj .

This definition is justified by the following proposition which tells us that
the elements κ of Kj are indeed (j, j)-symmetries:

Proposition 2.3.5 (The vertex isotropy group is a subgroup of the
vertex symmetry group). The vertex isotropy group Kj is a group. In
particular, it is a subgroup of the vertex symmetry group Hj.
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Proof. First, note that all elements of the vertex isotropy group are ele-
ments of the vertex symmetry group, by definition. Moreover, the vertex
isotropy group is trivially closed under composition, and associativity
is also given. To see that the inverse is an element of Kj , multiplying
κx = x by κ−1 on both sides yields x = κ−1x. Lastly, Kj trivially
contains the identity element.

Corollary 2.3.6 (Flow-invariance implies symmetry). Let Xj ⊆ X = Rn
be a vertex space of a system ẋ = f(x). Then those linear isomorphisms
which leave Xj invariant, pointwise, form (j, j)-symmetries.

We now describe the relation between the vertex symmetry and the
vertex isotropy group. To this end, we define the group homomorphism
to the general linear group on the space Xj ,

Φ: Hj → GL(Xj) (2.27)
h 7→ Φ(h), (2.28)

via the identity

Φ(h)(x|Xj ) := (hx) |Xj for all x ∈ Xj . (2.29)

The kernel of this homomorphism is given by the group Kj , i.e., ker Φ =
K. Remember that Kj leaves all x ∈ Xj invariant, pointwise, therefore
it acts as the identity on the vertex space Xj .

Then, by the homomorphism theorem [61], Kj is a normal subgroup of
the group Hj and

Hj/Kj
∼= Im Φ. (2.30)

This motivates the following definition.

Definition 2.3.7 (Vertex quotient group). We define the quotient

Qj := Hj/Kj (2.31)

as the vertex quotient group.
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2. Groupoid symmetries in ordinary differential equations

It depends on the context whether it is more useful to let the vertex
quotient group act on the full space X or on the smaller space Xj . The
importance of the vertex quotient group can easily be seen from the
following lemma.

Lemma 2.3.8 (Qj-equivariance). The system ẋ = f(x) restricted to the
space Xj,

ẋj = f(xj), (2.32)

where we abbreviate xj := x|Xj , is Qj-equivariant, i.e., for all xj ∈ Xj

and for all q ∈ Qj, we have

f(qxj) = qf(xj). (2.33)

Proof. Note that q defines a standard symmetry of the restricted system
(2.32) for all q ∈ Qj . Since Qj defines a group, source equivariance (2.33)
follows from standard arguments; see e.g., [27].

As the last part of this section, we discuss the following question: If there
exist several vertex spaces, can we conclude the existence of others?

Proposition 2.3.9. Let X1, X2, . . . , Xk be arbitrary vertex spaces of a
system ẋ = f(x). Then

Xm :=
k⋂
i=1

Xi ⊆ X (2.34)

is a nonempty flow-invariant linear subspace and hence a vertex space
with a vertex isotropy group Km, defined as in Definition 2.3.4, where

Ki ⊆ Km (∀i = 1, . . . , k). (2.35)

Proof. For all i ∈ {1, . . . , k}, the flow-invariance of the vertex spaces Xi

implies

f

(
k⋂
i=1

Xi

)
⊆ Xi. (2.36)
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Therefore,

f
(
Xm

)
= f

(
k⋂
i=1

Xi

)
⊆

k⋂
i=1

Xi = Xm. (2.37)

To prove the symmetry claim, note that Xm is a subspace of all Xi,
i = 1, . . . , k. Therefore, all elements of the vertex isotropy groups Ki of
the spaces Xi must also be in the vertex isotropy group Km of Xm.

In the following examples, we will see that indeed two cases can happen:
Vertex isotropy groups can either be equal to vertex symmetry groups or
they can be true subgroups and lead to vertex quotient groups.

Example 2.3.10 (Two coupled cells I, continued from Example 2.1.8).
Note that the set of (j, j)-symmetries forms a groupHj for all j = 1, 2, 3, 4.
These vertex isotropy groups Kj are equal to the vertex symmetry groups
Hj (remember that the symmetries are all pointwise), and consequently,
the vertex quotient groups are all trivial. In other words, the symmetries
all act as the identity on the respective vertex spaces.

Moreover, in accordance with Proposition 2.3.9, we note that the intersec-
tion of the vertex spaces X2 and X3 forms the smaller vertex space X4,
whose vertex isotropy group is K4 = GL(2). In particular, it contains
the smaller vertex isotropy groups K2 and K3.

Example 2.3.11 (Three coupled cells, I). Let us consider the network
given by

ẋ1 = f(x1, x2)
ẋ2 = f(x2, x1)
ẋ3 = f(x3, x2),

(2.38)

with f : R2 → R and no additional requirements on the nonlinearity f .
The network is graphically represented in Fig. 2.3.

This is yet another example of a network which does not pos-
sess any symmetries described by a group, but plenty of (j, k)-
symmetries. We list all groupoid symmetries in Table 2.3.
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2. Groupoid symmetries in ordinary differential equations

Figure 2.3.: A simple network of three coupled cells (top), its symmetry
groupoid (bottom left) as well as its quotient groups (bottom
right). a) Sketch of system (2.38), the arrows depict the
coupling between the individual cells x1, x2, x3. b) Graphical
representation of the symmetry groupoid of system (2.38).
Here, the gray dots denote the objects (vertices), and the
arrows denote the morphisms. For simplicity all the sets
Hj are drawn with one arrow only. c) Groupoid of system
(2.38), reduced to the vertex quotient groups.

In this example not all vertex symmetry and isotropy groups are equal:
Specifically, the vertex isotropy group of X2 is given by

K2 =

h =

a 0 1− a
b 1 −b
c 0 1− c


∣∣∣∣∣∣∣ deth 6= 0

 ⊂ H2, (2.39)
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2.3. Vertex groups — the building blocks of symmetry

j Vertex spaces Xj ⊂ R3 Vertex symmetry groups Hj

1 R3 {Id}

2 {(x1, x2, x3) | x1 = x3}


a 1 −a
b 0 1− b
c 1 −c


∣∣∣∣∣∣∣ a 6= −c


⋃

a 0 1− a
b 1 −b
c 0 1− c


∣∣∣∣∣∣∣ a 6= c


3 {(x1, x2, x3) | x1 = x2}


a 1− a 0
b 1− b 0
c −c 1


∣∣∣∣∣∣∣ a 6= b


4 {(x1, x2, x3) | x1 = x2 = x3}


a b 1− a− b
c d 1− c− d
e f 1− e− f


∣∣∣∣∣∣∣ det 6= 0,


Table 2.3.: The symmetry groupoid of system (2.38).

which is a strict subgroup of H2. Therefore, the corresponding vertex
quotient group is given by Q2 = Z2, acting on R2. Calculating the system
restricted to X2, we obtain

ẋ1 = f(x1, x2)
ẋ2 = f(x2, x1),

(2.40)

where we have omitted the redundant (third) equation. The system
(2.40) is indeed Z2-equivariant. This means that, surprisingly, whenever
a solution is of the form (x∗1, x∗2, x∗1), then also (x∗2, x∗1, x∗2) is a solution.
The vertex spacesX1, X3, X4 all haveKj = Hj . It follows that Qj = {Id}
for j = 1, 3, 4.

Last, note that the intersection of the two vertex spaces X2 and X3 gives
the smaller vertex space X4 and that both K2 ⊂ K4 and K3 ⊂ K4.
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2. Groupoid symmetries in ordinary differential equations

2.4. Conjugating symmetries — connecting the
building blocks

In this section we continue our quest to find out about the algebraic
structure of the groupoid-symmetries. Here, we focus on (j, k)-symmetries
which conjugate between different subspaces, i.e., j 6= k. As before, we
denote the set of (j, k)-symmetries by Hjk.

Definition 2.4.1 (Conjugate vertex spaces). Two vertex spaces Xj , Xk,
j 6= k, are called conjugate if there exists a (j, k)-symmetry γ.

In other words, we say that Xj and Xk are conjugate if Hjk is nonempty.
Then, also the set Hkj is nonempty and in particular, it contains the
inverses of the elements of Hjk.

Proposition 2.4.2 (Inverse of conjugating symmetries). Let γ ∈ Hjk.
Then γ−1 ∈ Hkj.

By definition, all the symmetries are isomorphisms, which proves the
following proposition.

Proposition 2.4.3 (Conjugate vertex spaces and symmetry groups).

i) Conjugate vertex spaces are isomorphic. In particular, they have
the same dimension.

ii) Let Xj and Xk be conjugate vertex spaces. Then for all γ ∈ Hjk

and for the associated vertex symmetry groups it holds that

γHjγ
−1 = Hk, (2.41)

i.e., conjugate vertex spaces lead to conjugated vertex symmetry
groups.

Remark 2.4.4. Not all isomorphic vertex spaces are conjugate; see
Example 2.1.8 above.
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2.4. Conjugating symmetries — connecting the building blocks

There is one type of conjugating symmetries that deserves particular
attention, as it might happen that some of the conjugating symmetries
are also elements of vertex groups for a differerent vertex space.

Definition 2.4.5 (Inherited vertex conjugacy). Let Xj be a vertex space
with a nontrivial vertex quotient group Qj . Let Xk, Xm ⊂ Xj be two
conjugate vertex spaces. We call those γ ∈ Hkm, which are also elements
of Qj , j-inherited (k,m)-conjugating symmetries. We define

Qjkm := Qj ∩Hkm. (2.42)

We also define the set of inherited (k,m)-conjugating symmetries

Qkm := {γ ∈ Hkm | ∃ j ∈ I with Xk, Xm ⊆ Xj such that γ ∈ Qj}.
(2.43)

Proposition 2.4.6 (Conjugated vertex quotient groups). Let Xk and
Xm be conjugate vertex spaces. If there exists j such that for all inherited
conjugating symmetries Qjkm 6= Ø, then for all γ ∈ Qjkm and for the
associated vertex quotient groups, the following holds:

γQmγ
−1 = Qk, (2.44)

i.e., inherited conjugacy leads to conjugated vertex quotient groups.

We now consider two contrasting examples concerning inheritance in
conjugating symmetries: In Example 2.4.7, the conjugating symmetries
are also inherited. This is not the case in Example 2.4.8.

Example 2.4.7 (Three coupled cells II). Let us consider the following
system:

ẋ1 = f(x1, x2)
ẋ2 = f(x2, x2)
ẋ3 = f(x3, x2).

(2.45)
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2. Groupoid symmetries in ordinary differential equations

Figure 2.4.: A simple network of three coupled cells (top), its symmetry
groupoid (bottom left) as well as its inherited subgroupoid
(bottom right). a) Sketch of system (2.45), the arrows depict
the coupling between the individual cells x1, x2, x3. b) and
c) Graphical representation of the symmetry groupoid and
inherited subgroupoid of system (2.45), respectively. Here,
the gray dots denote the objects (vertices), and the arrows
denote the morphisms. For simplicity all the sets Hj are
drawn with one arrow only.

Here f : R2 → R. This system is Z2-equivariant, where Z2 acts
by permutation on the variables x1 and x3. Moreover, system
(2.45) possesses five vertex spaces Xk with corresponding vertex
symmetry groups Hk, k = 1, . . . , 5; see Table 2.4, as well as
some conjugating symmetries; see Table 2.5. The only nontrivial
quotient groups are Q1 = Z2, which reflects the Z2-equivariance of (2.45),
and Q3 = Z2, which corresponds to the subspace X3 where the
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2.4. Conjugating symmetries — connecting the building blocks

j Vertex spaces Xj ⊂ R3 Vertex symmetry groups Hj

1 R3


0 0 1

0 1 0
1 0 0

 ,
1 0 0

0 1 0
0 0 1


 = Z2

2 {(x1, x2, x3) |x1 = x2}


a 1− a 0
b 1− b 0
c −c 1


∣∣∣∣∣∣∣ a 6= b


3 {(x1, x2, x3) |x1 = x3}


a 0 1− a
b 1 −b
c 0 1− c


∣∣∣∣∣∣∣ a 6= c


4 {(x1, x2, x3) |x2 = x3}


1 a −a

0 b 1− b
0 c 1− c


∣∣∣∣∣∣∣ b 6= c


5 {(x1, x2, x3) |x1 = x2 = x3}


a b 1− a− b
c d 1− c− d
e f 1− e− f


∣∣∣∣∣∣∣ det 6= 0


Table 2.4.: Vertex spaces and vertex groups of system (2.45) with

a, b, c, d, e, f ∈ R. They form part of the symmetry groupoid,
together with Table 2.5.

equivariance is not broken. In contrast, the Z2-equivariance has been
broken in the vertex spaces X2 and X4, but the subspaces are now
conjugated; see Table 2.5.

Example 2.4.8 (Two coupled cells II, continued from Example 2.1.9).
As an example where none of the conjugating morphisms are inherited,
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2. Groupoid symmetries in ordinary differential equations

(Xj , Xk) (Inner) Conjugating (Xj , Xk)-symmetries Hjk, Qjk

(X2, X4) H24 =


a −a 1
b 1− b 0
c 1− c 0


∣∣∣∣∣∣∣ b 6= c


Q1

24 =


0 0 1

0 1 0
1 0 0




(X4, X2) H42 =


0 a 1− a

0 b 1− b
1 c −c


∣∣∣∣∣∣∣ a 6= b


Q1

42 =


0 0 1

0 1 0
1 0 0




Table 2.5.: (Inner) Conjugating symmetries of system (2.45) with a, b, c ∈
R. They form part of part of the symmetry groupoid, together
with Table 2.4.

consider again the following two-cell network:

ẋ1 = g(x1) + x1x2

ẋ2 = g(x2) + 2x1x2,
(2.46)

with g : R → R, g(0) = 0. From the vertex spaces and their vertex
symmetry groups Hj , and the conjugating symmetries Hjk, already
determined in Example 2.1.9, we obtain the groupoid. None of the
conjugated morphisms is inherited, since there does not exist any j (in
this case only j = 1 would be possible) such that any of the conjugating
morphisms is an element of Hj .
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3. General theory of equivaroid
maps

After the finite-dimensional introduction to groupoid symmetries, we
now set the ground for a general theory applicable to dynamical systems
on Banach spaces and equivaroid mappings between non-equal spaces.

This chapter is organized as follows: We start in Section 3.1 with newly
defining the concept of equivaroid maps on Banach spaces and illustrating
it by some examples. In Section 3.2 we will see that particular care is
necessary if an equivaroid system is restricted to a subspace: In which
sense is it still equivaroid with respect to the same groupoid? To answer
this question, we introduce the term subequivaroid. We also introduce
invaroid subspaces, that is, special subspaces which are left invariant
under the action of the full groupoid. Section 3.3 is devoted to the
study of the linearization of an equivaroid map as a preparation for the
equivaroid bifurcation theory in the following chapters. In Section 3.4
we define groupoid symmetries for strongly continuous semigroups and
we show that an equivaroid infinitesimal generator implies symmetries
on the semigroup and vice versa.



3. General theory of equivaroid maps

3.1. Equivaroid maps

After introducing the concept of equivaroid maps in the previous chapter,
we need to generalize the term to the general case F : X → Y , whereX,Y
are Banach spaces. This allows for a broader applicability, particularly
in the context of partial differential equations.

Definition 3.1.1 (Equivaroid maps on Banach spaces). Consider the
map F : X → Y , X,Y Banach spaces. Let {Xj}j∈I , {Yj}j∈I be indexed
families of linear closed subspaces (“vertex spaces”) of X,Y , such that
F(Xj) ⊆ Yj for all j ∈ I.

Let (Γ ⇒ I) be a groupoid Γ over the base I. We say that F is (Γ ⇒ I)-
equivaroid if the following holds:

There exist two representations ρX , ρY of the groupoid (Γ ⇒ I) on the
spaces X,Y such that

i) for all γ ∈ Γ with γ : j → k, we have

ρX(γ)Xj = Xk, ρY (γ)Yj = Yk; (3.1)

ii) for all x ∈ Xj and for all morphisms γ : j → k, source equivariance
holds, i.e.,

ρY (γ)F(x) = F(ρX(γ)x). (3.2)

There are two main situations where we use the above definition: First,
we use it for examples of equivaroid partial differential equations, where
we interpret F as the generator of a strongly continuous semigroup T (t),
t ≥ 0, on Y with dense domain X. We will treat this case in detail in
Section 3.4.

Second, we will use this setting for the proof of the equivaroid Hopf
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3.1. Equivaroid maps

Vertex spaces X0 = Y0, Xj,i = Yj,i, j ∈ N, i = 1, 2

Y0 =
{
x(t) =

∞∑
k=0

ak sin(kt)
∣∣∣∣ ∀ k ∈ N : ak = 0

}
= {0}

Yj,1 =
{
x(t) =

∞∑
k=0

ak sin(kt)
∣∣∣∣ ∀ k 6= nj, n ∈ N : ak = 0

}

Yj,2 =
{
x(t) =

∞∑
k=0

ak sin(kx)
∣∣∣∣ ∀ k 6= nj, n ∈ N odd : ak = 0

}

Table 3.1.: Vertex spaces of the shift operator (3.3) (neglecting conditions
on the coefficients ak which ensure appropriate convergence).

bifurcation theorem; see Chapter 5, where X and Y are spaces of 2π-
periodic functions.

Example 3.1.2 (Shift operators). Consider the map

F : X → Y

x(·) 7→ x(· − π) + f(x(·))
(3.3)

with f : R → R as an odd polynomial, and X = Y = L2
0 := {u(·) ∈

L2([0, π],R) | u(0) = u(π) = 0}. Whenever necessary for the calculations,
we consider the 2π-periodic continuation u(−x) := −u(x), u(x+ 2π) :=
u(x) to x ∈ R. We find the vertex spaces as in Table 3.1 and consider
groupoid symmetries as in Table 3.2, acting by convolution, where
h : R→ R has finite L1-norm:

(h ∗ x) (t) := 1
π

π∫
0

h(t− s)x(s)ds. (3.4)

Example 3.1.3 (Differential operators). Consider the map

F : X → Y

u 7→ uxx + f(u)
(3.5)
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3. General theory of equivaroid maps

Vertex groups H0, Hj,i, j ∈ N, i = 1, 2

H0 =
{
h(t) =

∞∑
k=0

bk cos(kt)
}

Hj,1 =
{
h(t) = ±

∞∑
k=0

bk cos(kt)
∣∣∣∣ ∀ k = nj, n ∈ N : bk = 1

}

Hj,2 =
{
h(t) = ±

∞∑
k=0

bk cos(kt)
∣∣∣∣ ∀ k = nj, n ∈ N odd : bk = 1

}

Table 3.2.: Vertex groups of the shift operator (3.3). Strictly speaking,
to obtain vertex symmetry groups, we would need to check
invertibility as well as integrability, which sets additional
conditions on the coefficients bk. We will not get lost in these
technical difficulties here.

with f : R→ R as an odd polynomial, and

Y = L2
0 := {u(·) ∈ L2([0, π],R) |u(0) = u(π) = 0},

X = H̃2
0 := L2

0 ∩H2.
(3.6)

The vertex spaces are given in Table 3.3, and the vertex groups in
Table 3.4, where the groupoid symmetries act by convolution, and where
h : R→ R has finite L1-norm:

(h ∗ u) (x) := 1
π

π∫
0

h(x− y)u(y)dy. (3.7)

It is also worth noting that the vertex spaces and symmetry groups in
those last two examples are essentially the same. This can be used to
control dynamical systems and obtain stable solutions with a desired
spatio-temporal control as has been done by this author previously [56,
57].
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3.2. Subequivaroid maps and invaroid subspaces

Vertex spaces X0 = Y0, Xj,i = Yj,i, j ∈ N, i = 1, 2

Y0 =
{
u(x) =

∞∑
k=0

ak sin(kx)
∣∣∣∣ ∀ k ∈ N : ak = 0

}
= {0}

Yj,1 =
{
u(x) =

∞∑
k=0

ak sin(kx)
∣∣∣∣ ∀ k 6= nj, n ∈ N : ak = 0

}

Yj,2 =
{
u(x) =

∞∑
k=0

ak sin(kx)
∣∣∣∣ ∀ k 6= nj, n ∈ N odd : ak = 0

}

Table 3.3.: Vertex spaces of the differential operator (3.5) (again ne-
glecting the conditions on the coefficients ak which ensure
appropriate convergence).

3.2. Subequivaroid maps and invaroid subspaces

As our goal is the development of an equivaroid bifurcation theory, we
will often want to reduce a system to a smaller system. This raises the
question whether some subspaces are invariant under the action of the
groupoid. We will first introduce subequivaroid maps on subspaces, i.e.,
maps which are also equivaroid with respect to the same groupoid, but
on smaller subspaces. This usually gives new vertex spaces and new
representations.

Definition 3.2.1 (Subequivaroid maps). Let F : X → Y be (Γ ⇒ I)-
equivaroid. We say that F is subequivaroid on the closed linear spaces
U ⊆ X, V ⊆ Y if the following conditions hold:

i) Uj := Xj ∩ U , Vj := Yj ∩ V are vertex spaces of F : U → V for all
j ∈ I;

ii) There exist projections ΠU : X → U , ΠV : Y → V to the subspaces
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3. General theory of equivaroid maps

Vertex groups H0, Hj,i, j ∈ N, i = 1, 2

H0 =
{
h(x) =

∞∑
k=0

bk cos(kx)
}

Hj,1 =
{
h(x) = ±

∞∑
k=0

bk cos(kx)
∣∣∣∣ ∀ k = nj, n ∈ N : bk = 1

}

Hj,2 =
{
h(x) = ±

∞∑
k=0

bk cos(kx)
∣∣∣∣ ∀ k = nj, n ∈ N odd : bk = 1

}

Table 3.4.: Vertex groups of the differential operator (3.5) (also neglect-
ing conditions on the coefficients bk to ensure appropriate
convergence, integrability, and invertibility).

U, V with xU := ΠUX and yV := ΠV y such that

ρU (γ)xU := ΠUρX(γ)x
ρV (γ)xV := ΠV ρV (γ)y

(3.8)

define subrepresentations on U and V , respectively, i.e., for all
morphisms γ ∈ Γ with γ : j → k, we have

ρU (γ)Uj = Uk, ρV (γ)Vj = Vk. (3.9)

iii) for all xU ∈ Uj and for all morphisms γ : j → k, source equivariance
holds, i.e.,

ρV (γ)F(xU ) = F(ρU (γ)xU ). (3.10)

Remark 3.2.2. Note that, in the above definition, some vertex spaces
Uj , Vj might be the trivial zero space. This does not contradict the
definition, as the zero space has arbitrary symmetry.

As a preparation for the equivaroid bifurcation theory which we will
develop in the following chapters, we are also interested whether some

48



3.2. Subequivaroid maps and invaroid subspaces

specific subspaces are invariant under the action of the groupoid. To
understand this concern, it is important to notice that a morphism
γ : j → k will map a vertex space Xj to a different vertex space Xk. A
vertex space Xj is therefore not necessarily invariant by the action of the
full groupoid.

Definition 3.2.3 (Invaroid subspaces). We consider a linear closed
subspace X of a Banach space X. Let {Xj}j∈I be an indexed family
of linear closed subspaces (“vertex spaces”) of X and let (Γ ⇒ I) be a
groupoid Γ over the base I with representation ρX . We say that the
subspace X is (Γ ⇒ I)-invaroid if the following holds:

For all j ∈ I and for all morphisms γ : j → k,

ρX(γ)
(
X ∩Xj

)
⊆
(
X ∩Xk). (3.11)

We will use the following example to illustrate the new concepts invaroid
and subequivaroid.

Example 3.2.4 (Three coupled cells, continued from Example 2.4.7).
We reconsider the following three-cell network:

ẋ1 = f(λ, x1) + x2

ẋ2 = f(λ, x2) + x2

ẋ3 = f(λ, x3) + x2,

(3.12)

Here x1, x2, x3 ∈ R, f : R × R → R, f(λ, 0) = 0 for all λ ∈ R. We
additionally assume L := Dx f(λ, 0) = λ. The symmetry groupoid is
found in Tables 3.5 and 3.6. Note that the symmetry groupoid is larger
compared to that of system (2.45) in Tables 2.4 and 2.5 because of
the additional assumption f(λ, 0) ≡ 0 (apart from that, it is the same
network structure).

The linearization at the trivial equilibrium x = 0 is given by

L :=

λ 1 0
0 λ+ 1 0
0 1 λ

 . (3.13)
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3. General theory of equivaroid maps

j Vertex spaces Xj ⊂ R3 Vertex symmetry groups Hj

1 R3


0 0 1

0 1 0
1 0 0

 ,
1 0 0

0 1 0
0 0 1


 = Z2

2 {(x1, x2, x3) |x1 = x2}


a 1− a 0
b 1− b 0
c −c 1


∣∣∣∣∣∣∣ a 6= b


3 {(x1, x2, x3) |x1 = x3}


a 0 1− a
b 1 −b
c 0 1− c


∣∣∣∣∣∣∣ a 6= c


4 {(x1, x2, x3) |x2 = x3}


1 a −a

0 b 1− b
0 c 1− c


∣∣∣∣∣∣∣ b 6= c


5 {(x1, x2, x3) |x1 = x2 = x3}


a b 1− a− b
c d 1− c− d
e f 1− e− f


∣∣∣∣∣∣∣ det 6= 0


6 {(x1, x2, x3) |x1 = x2 = 0}


a b 0
c d 0
e f 1


∣∣∣∣∣∣∣ det 6= 0


7 {(x1, x2, x3) |x2 = x3 = 0}


1 a b

0 c d
0 e f


∣∣∣∣∣∣∣ det 6= 0


8 {(0, 0, 0)}


a b c
d e f
g h i


∣∣∣∣∣∣∣ det 6= 0


Table 3.5.: Vertex spaces and symmetry groups of system (3.12), with

a, b, c, d, e, f, g, h, i ∈ R. Note that H2 ⊂ H6 and X6 ⊂ X2,
as well as H4 ⊂ H7 and X7 ⊂ X4.
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3.2. Subequivaroid maps and invaroid subspaces

(Xj , Xk) Conjugating (Xj , Xk)-symmetries Hjk

(X2, X4)


a −a 1
b 1− b 0
c 1− c 0


∣∣∣∣∣∣∣ b 6= c


(X4, X2)


0 a 1− a

0 b 1− b
1 c −c


∣∣∣∣∣∣∣ a 6= b


(X6, X7)


a b 1
c d 0
e f 0


∣∣∣∣∣∣∣ det 6= 0


(X7, X6)


0 a b

0 c d
1 e f


∣∣∣∣∣∣∣ det 6= 0


Table 3.6.: Conjugating symmetries of system (3.12), with a, b, c, d, e, f ∈

R. Neither of the sets Hjk are groups.

At λ = 0, L is clearly not invertible. In particular, we find the kernel

kerL = span{(1, 0, 0)T , (0, 0, 1)T }, (3.14)

and it turns out that kerL is a good choice for a (Γ ⇒ I)-invaroid
subspace, that is, for all j ∈ I and for all morphisms γ : j → k,

ρX(γ)
(

kerL ∩Xj
)
⊆
(

kerL ∩Xk). (3.15)

We start with the vertex groups:

i) j = 1. We only need to check0 0 1
0 1 0
1 0 0

 kerL ⊆ L, (3.16)

and this is obviously true.
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3. General theory of equivaroid maps

ii) j = 2 and j = 6. All elements of the spaces kerL∩X2 = kerL∩X6
are of the form (0, 0, x)T with x ∈ R. Since H2 ⊂ H6, it is sufficient
to do the calculations for j = 6:a b 0

c d 0
e f 1


0

0
x

 =

0
0
x

 ∈ kerL ∩X6 = kerL ∩X2. (3.17)

iii) j = 3. In this case, all elements of the space kerL ∩X3 are of the
form (x, 0, x)T with x ∈ R and we find thata 0 1− a

b 1 −b
c 0 1− c


x0
x

 =

x0
x

 ∈ kerL ∩X3. (3.18)

iv) j = 4 and j = 7. The calculation is similar: All elements of the
spaces kerL∩X4 = kerL∩X7 are of the form (x, 0, 0)T with x ∈ R
and we find that1 a b

0 c d
0 e f


x0

0

 =

x0
0

 ∈ kerL ∩X7 = kerL ∩X4. (3.19)

v) j = 5 and j = 8. There is nothing left to prove, since kerL∩X5 =
kerL ∩X8 = (0, 0, 0)T .

Last, we need to see how the conjugating morphisms act on kerL:

vi) j = 2, k = 4 and j = 6, k = 7 :a b 1
c d 0
e f 0


0

0
x

 =

x0
0

 ∈ kerL ∩X7 = kerL ∩X4. (3.20)

vi) j = 4, k = 2 and j = 7, k = 6:0 a b
0 c d
1 e f


x0

0

 =

0
0
x

 ∈ kerL ∩X6 = kerL ∩X2. (3.21)

52



3.3. Properties of the linearization of an equivaroid system

It follows from the same calculations that system (3.12) is subequivaroid
with respect to the subspace kerL ⊆ X = Y = R3.

3.3. Properties of the linearization of an equivaroid
system

In this section we will look at the linearization of an equivaroid sys-
tem from the groupoid point of view. In particular, we will study the
linearization in different vertex spaces and find that each derivative
is itself equivaroid with respect to a different groupoid. Surprisingly,
even derivatives in vertex spaces which are completely void of internal
symmetries often possess a nontrivial groupoid. We prove that the lin-
earization around the trivial equilibrium of a Γ-equivaroid system is again
Γ-equivaroid. These results have immediate consequences for bifurcation
theory and pattern formation.

Lemma 3.3.1 (Properties of the linearization in equivaroid systems). Let
F : X → Y be continuously differentiable as well as (Γ ⇒ I)-equivaroid.
Let Lx0 := DxF(x0) for some x0 ∈ Xj for some j ∈ I.

Then the following hold for all v ∈ Xj:

i) Isotropy: For all γ : j → j such that ρX(γ)x0 = x0 and for all
v ∈ Xj, commutativity holds:

ρY (γ)Lx0v = Lx0ρX(γ)v. (3.22)

ii) Conjugacy: For all γ : j → k and for all v ∈ Xj, the linearizations
Lx0 and LρX(γ)x0 are conjugated as follows:

ρY (γ)Lx0v = LρX(γ)x0ρX(γ)v. (3.23)

iii) Inheritance: Let Y `
j be a vertex space of the map Lx0 : X → Y ,

i.e., let
ρY (γ)Lx0v = Lx0ρX(γ)v. (3.24)
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3. General theory of equivaroid maps

hold for x0 ∈ Xj, v ∈ X`, with γ : `→ `. Then for all k with Xk ⊆
Xj, Y `

k is a vertex space of Lxk : X → Y where xk ∈ Xk ⊆ Xj.

Moreover, in the special case that {0} is a vertex space of F , the map
L0 = DxF(0) : X → Y is (Γ ⇒ I)-equivaroid.

Proof. i) Isotropy: Let x0 ∈ X0, γ ∈ K0. Then by equivariance,

ρY (γ)F(x0) = F(ρX(γ)x0), (3.25)

the Gateaux derivative at x0 in the direction v ∈ Xj combined
with isotropy yields

ρY (γ) Dv F(x0)v = Dv F(ρX(γ)x0)ρX(γ)v
= Dv F(x0)ρX(γ)x.

(3.26)

ii) Conjugacy: This is basically the same proof as for the isotropy.
Linearizing (3.25) at x0 in the direction v ∈ Xj , we obtain

ρY (γ) DxF(x0)x = DxF(ρX(γ)x0)ρX(γ)x. (3.27)

iii) Inheritance: We linearize on a smaller subspace Xk. Therefore the
claim is less than the assumption. In spite of this result looking
trivial, its explicit formulation is useful for bifurcation purposes.

Linearization at zero: Note that ρX(γ)0 = 0 for all γ ∈ Γ. Thus,
combining the points on isotropy and conjugacy, we obtain

ρY (γ)L0x = L0ρX(γ)x. (3.28)

This concludes the proof.

We are now ready to prove the following.
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3.3. Properties of the linearization of an equivaroid system

Lemma 3.3.2 (Invaroid kernel, range and eigenspaces). Let L : X → Y
be a (Γ ⇒ I)-equivaroid closed linear operator.

Then kerL and rangeL as well as their complements (kerL)c and (rangeL)c
are (Γ ⇒ I)-invaroid subspaces of X and Y , respectively.

Moreover, the (generalized) eigenspaces of L are also (Γ ⇒ I)-invaroid.

Proof. We first show the invariance-property of the kernel: Let x ∈
kerL ⊆ X, and suppose additionally that x lies in a vertex space Xj .
Let γ : j → k, then

LρX(γ)x = ρY (γ)Lx = ρY (γ)0 = 0. (3.29)

It follows that ρX(γ)x ∈ kerL, which proves the claim. Note that ρX(γ)x
might lie in a different vertex space of L.

Next, let x ∈ (kerL)c ⊆ X, and again suppose additionally that x lies in
a vertex space Xj . Let γ : j → k, then

LρX(γ)x = ρY (γ)Lx 6= 0. (3.30)

It follows that ρX(γ)x ∈ (kerL)c, which proves the claim. As before,
note that ρX(γ)x might lie in a different vertex space of L.

We proceed with the invariance property of the range: Let y ∈ rangeL ⊆
Y , and now suppose that y lies in a vertex space Yj . Then there exists
x ∈ Xj such that

y = Lx. (3.31)

Applying γ : j → k to both sides yields

ρY (γ)y = ρY (γ)Lx. (3.32)

Since L is equivaroid, we find

ρY (γ)y = LρX(γ)x. (3.33)

It follows that ρY (γ)y ∈ rangeL which proves the claim. Again, note
ρY (γ)Y might lie in a different vertex space of L.
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3. General theory of equivaroid maps

The claim on (rangeL)c is proven via contradiction. Let y ∈ (rangeL)c ⊆
Y , and now suppose that y lies in a vertex space Yj . Then there does
not exist any x ∈ X such that y = Lx. Let γ : j → k and assume that
ρY (γ)y ∈ (rangeL)c. Then there exists x ∈ Xk such that

ρY (γ)y = Lx. (3.34)

Applying γ−1 : k → j to both sides implies

y = ρY (γ−1)Lx. (3.35)

By the source equivariance on the vertex space Xk, we find

y = LρX(γ−1)x, (3.36)

which contradicts the assumption that y ∈ (rangeL)c.

The claims on the generalized eigenspaces follow analogously by consid-
ering the operator L − λ Id instead, where λ is an eigenvalue of L.

At the end of this section, we examine the linearization and its symmetry
groupoid of an example in more detail.

Example 3.3.3 (Three coupled oscillators). We consider the dynamical
system of three coupled oscillators

ẋ1 = f(x1) + κx2

ẋ2 = f(x2) + κx1

ẋ3 = f(x3) + κx2,

(3.37)

where x1, x2, x3 ∈ R, f : R → R is a C1-function, and κ ∈ R\{0}. We
additionally assume f(0) = 0 to allow for the trivial equilibrium. The
vertex spaces and vertex symmetry groups of this system are listed in
Table 3.7. There are six vertex spaces, but no conjugating symmetries.

Throughout, we denote the Jacobian at an equilibrium (xj , yj , zj) ∈ Xj ,
j = 1, . . . , 6, by Lj .
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3.3. Properties of the linearization of an equivaroid system

j Vertex spaces Xj ⊆ R3 Vertex symmetry groups Hj

1 R3 {Id}

2 {(x1, x2, x3) | x1 = x3}


a 1 −a
b 0 1− b
c 1 −c


∣∣∣∣∣∣∣ a 6= c


⋃

a 0 1− a
b 1 −b
c 0 1− c


∣∣∣∣∣∣∣ a 6= −c



3 {(x1, x2, x3) | x1 = x2}


a 1− a 0
b 1− b 0
c −c 1


∣∣∣∣∣∣∣ a 6= b



4 {(x1, x2, x3) | x1 = x2 = x3}


a b 1− a− b
c d 1− c− d
e f 1− e− f


∣∣∣∣∣∣∣ det 6= 0



5 {(x1, x2, x3) | x1 = x2 = 0}


a b 0
c d 0
e f 1


∣∣∣∣∣∣∣ ad− bc 6= 0


6 {(0, 0, 0)} GL(3)

Table 3.7.: Vertex spaces and vertex symmetry groups of the network
(3.37). All parameters a, b, c, d, e, f ∈ R.

Let us start with the three-dimensional vertex space X1 = R3 as it will
have the smallest symmetry groupoid of all linearizations. A linearization
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3. General theory of equivaroid maps

from this space is of the general form

L1 =

F1 κ 0
κ F2 0
0 κ F3

 , (3.38)

where F1, F2, F3 ∈ R. The groupoid for this linearization is given in
Table 3.8. Note that the symmetry of the space X1 is trivial, but the
symmetry groupoid of its linearization is far from trivial. We obtain
eight (!) vertex spaces, three of which coincide with vertex spaces of
the original symmetry groupoid. The vertex groups of the linearization
contain more elements even for the same vertex space, since linear systems
automatically allow for scaling symmetries.

Next, we consider the linearization L2 of the vertex space X2 to illustrate
the inheritance principle. The general form of the linearization is given
by

L2 =

F1 κ 0
κ F2 0
0 κ F1

 . (3.39)

The symmetry groupoid of this vertex space is quite large (remember
that, by the inheritance principle, it will at least contain the symmetry
groupoid of L1) and we will not do the full calculations here. Instead, let
us focus on the isotropy, as X2 is itself a vertex space with a nontrivial
vertex group. In fact the vertex group of Y 2

2 = X2 is given by

H2
2 =

h =

a 0 d− a
b d −b
c 0 d− c


∣∣∣∣∣∣∣ deth 6= 0

 . (3.40)

The vertex isotropy group of X2, on the other hand, is given by

H2 =

h =

a 0 1− a
b 1 −b
c 0 1− c


∣∣∣∣∣∣∣ deth 6= 0

 , (3.41)

which is clearly a subgroup of H2, as claimed in Lemma 3.3.1.
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3.3. Properties of the linearization of an equivaroid system

Vertex spaces Y `
1 ⊆ R3 Vertex symmetry groups H`

1

Y 1
1 = X1 = R3 {a Id | a 6= 0}

Y 2
1 = {(x1, x2, x3) |

x1 = x3 = 0)}


a 0 0
b a −b
c 0 a− c


∣∣∣∣∣∣∣ a(a− c) 6= 0

⋃
a 0 b

0 a+ b 0
c 0 a+ b− c


∣∣∣∣∣∣∣ (a+ b)(a− c) 6= 0



Y 3
1 = {(x1, x2, x3) |

x2 = 0}


a 0 0

0 a 0
0 0 b


∣∣∣∣∣∣∣ ab 6= 0


Y 4

1 = {(x1, x2, x3) |
x2 = x3 = 0}


a 0 b

0 a c
0 0 d


∣∣∣∣∣∣∣ ad 6= 0


Y 5

1 = X5 =
{(x1, x2, x3) |
x1 = x2 = 0}


a b 0
c d 0
e f g


∣∣∣∣∣∣∣ ad− bc 6= 0, g 6= 0



Y 6
1 = {(x1, x2, x3) |

x1 = x2, x3 = 0}


a 0 b

0 a+ b −b
0 0 a+ b


∣∣∣∣∣∣∣ a(a+ b) 6= 0


Y 7

1 = {(x1, x2, x3) |
x1 = 0}


a 0 0

0 a 0
b 0 a− b


∣∣∣∣∣∣∣ a(a− b) 6= 0


Y 8

1 = X6 = {(0, 0, 0)} GL(3)

Table 3.8.: Symmetry groupoid of the linearization L1. Far from being
trivial, we find eight vertex spaces. Comparing with the sym-
metry groupoid from the full system (3.37), note in particular
that Y 1

1 = X1, Y
5

1 = X5, Y
8

1 = X6.
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3. General theory of equivaroid maps

3.4. Application to infinite-dimensional dynamical
systems

In this section we apply Definition 3.1.1 to generators of strongly contin-
uous semigroups and prove that they yield again groupoid symmetries
on the semigroup in the following sense.

Definition 3.4.1 (Groupoid symmetry for strongly continuous semi-
groups). Consider a strongly continuous semigroup (T (t))t≥0 on a Banach
space Y . Let {Yj}j∈I be an indexed family of linear closed subspaces
(“vertex spaces”) of Y such that T (t)Yj ⊆ Yj for all t ≥ 0 and for all
j ∈ I. Let (Γ ⇒ I) be a groupoid Γ over the base I.

We say that γ : j → k, γ ∈ Γ, is a (Yj , Yk)-symmetry of the semigroup
(T (t))t≥0 if the following holds:

There exists a representation ρY of the groupoid (Γ ⇒ I) on the space
Y such that

ρY (γ) : Y → Y with ρY (γ)Yj = Yk (3.42)

and
T (t)ρY (γ)y0 = ρY (γ)T (t)y0 (3.43)

holds for all y0 ∈ Yj and for all t ≥ 0.

In this setting we adopt the terms vertex symmetry/isotropy/quotient
groups, for bounded linear operators ρY (γ) on the space Y which pos-
sess an inverse. The same goes for (inherited) vertex conjugacy and
conjugating symmetries.

Let us now assume that A : D(A)→ Y is the infinitesimal generator of
the semigroup T (t). Furthermore, assume that A is (Γ ⇒ I)-equivaroid.
Are the invariance of the generator A(D(A)∩Yj) ⊆ Yj and flow-invariance
T (t)Yj ⊆ Yj equivalent?
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3.4. Application to infinite-dimensional dynamical systems

First, suppose that Yj is a closed linear subspace of Y such that T (t)Yj ⊆
Yj for all t ≥ 0, in other words, Yj is flow-invariant. Then the restric-
tions

T (t)|j := T (t)|Yj (3.44)

form a strongly continuous semigroup (T (t)|j)t≥0 on the Banach space
Yj ; see [19]. Its generator is constructed as follows.

Definition 3.4.2 (Part of a generator, [19]). The part of A in Yj is the
operator A|j defined by

A|jy := Ay (3.45)

with domain
D(A|j) := {y ∈ D(A) ∩ Yj | Ay ∈ Yj}. (3.46)

Then the partA|j coincides with the generator of the semigroup (T (t)|j)t≥0
on the subspace Yj and invariance of the generator follows.

Proposition 3.4.3 (Generator of the restricted semigroup, [19]). Let
(A,D(A)) be the generator of a strongly continuous semigroup (T (t))t≥0
on Y . If the restricted semigroup (T (t)|j)t≥0 is strongly continuous on
some closed flow-invariant Banach space Yj ⊆ Y , then the generator of
(T (t)|j)t≥0 is the part (A|j ,D(A|j)) of A in Yj.

Moreover, to see that groupoid symmetry implies source equivariance,
let T (t)y0 be the orbit of y0 generated by A with y0 ∈ Yj ⊆ Y . Suppose
that T (t)y0 ∈ Yj for all t ≥ 0, and let ρY (γ) be the action of a (j, k)-
symmetry. Then for all t ≥ 0, ρY (γ)T (t)y0 is in the vertex space Yk. But
ρY (γ)T (t)y0 is an orbit generated by A and therefore [48]:

d
dtT (t)ρY (γ)y0 = AT (t)ρY (γ)y0. (3.47)

On the other hand,

d
dtT (t)ρY (γ)y0 = ρY (γ) d

dtT (t)y0 = ρY (γ)AT (t)y0. (3.48)
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3. General theory of equivaroid maps

Since this holds for all t ≥ 0 and in particular for t = 0 we conclude
that

A ρY (γ)y0 = ρY (γ)A y0 (3.49)

follows, as desired.

For the converse, let the part of A in Yj be invariant, i.e., A(D(A)∩Yj) ⊆
Yj . Then the semigroup that it generates is indeed (T (t)|j)t≥0, for which
the flow-invariance of the space Yj follows.

To see this in more detail, let

Aj := A|Yj : D(A) ∩ Yj → Yj . (3.50)

Then Aj generates a C0-semigroup

Tj(t) : Yj → Yj . (3.51)

Next, we fix y0 ∈ Yj and define

f(s) := T (t− s)Tj(s)y0. (3.52)

Then f(0) = T (t)y0, f(t) = Tj(t)y0 and, by the product rule,

f ′(s) = −T (t− s)ATj(s)y0 + T (t− s)Aj Tj(s)y0. (3.53)

But note that Tj(s)y0 ∈ Yj and hence

ATj(s)x = Aj Tj(s)y0 (3.54)

holds. This implies that f ≡ 0 and f(0) = f(t) and thereby Tj(t)y0 =
T (t)y0. Since Tj(t) leaves Yj invariant, so does T (t).

Now suppose that A ρY (γ)y0 = ρY (γ)A y0 holds for y0 ∈ Yj and γ : j → k.
We want to prove that this implies T (t)ρY (γ)y0 = ρY (γ)T (t)y0. To this
end, we define

g(t) := T (t)ρY (γ)y0 − ρY (γ)T (t)y0. (3.55)

Then
d
dtg(t) := d

dtT (t)ρY (γ)y0 − ρY (γ) d
dtT (t)y0, (3.56)
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and it follows that
d
dtg(t) = T (t)A ρY (γ)y0 − ρY (γ)T (t)A y0 (3.57)

= T (t)ρY (γ)A y0 − ρY (γ)T (t)A y0 (3.58)
= 0. (3.59)

Since g(0) = 0, the claim follows.

In the following example, we apply the symmetries from a generator that
we already know (see Example 3.1.3) to its semigroup.

Example 3.4.4 (Odd scalar-reaction-diffusion equations, continued from
Example 3.1.3). We consider the scalar reaction-diffusion equation of the
form

ut = uxx + f(u) (3.60)

u ∈ R, x ∈ [0, π], t ≥ 0, with Dirichlet boundary conditions u(t, 0) =
u(t, π) = 0 for all t ≥ 0. We assume that f is an odd polynomial.

This defines a global C0-semiflow, for example on the Sobolev space
Y = H2

0 ([0, π],R); see [30]:

(t, u0) 7→ u(t) := T (t)u0 ∈ Y. (3.61)

The symmetries of the Chafee–Infante equation are acting by convolution,
where h : R→ R has finite L1-norm:

(h ∗ u) (x) := 1
π

π∫
0

h(x− y)u(y)dy (3.62)

By the theory above, we can recycle the vertex spaces and groupoid
symmetries from Example 3.1.3, so we will not list them here.

Indeed, all equilibria of e.g., the Chafee–Infante equation; see [11], can be
associated to one of the vertex spaces Yj,2 ⊆ Yj,1 or Y0. Moreover, note
the somewhat hidden but well-known property that for every solution
u∗, −u∗ is also a solution.
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4. Steady-state bifurcation in
equivaroid systems

So far, we have explored general properties of equivaroid systems. Now
we want to prove the existence of equilibrium solutions with a given ver-
tex isotropy group, which leads us to the generalization of the equivariant
branching lemma to equivaroid systems. We first generalize equivariant
Lyapunov–Schmidt reduction to equivaroid systems. This requires partic-
ular care, as the resulting bifurcation equation is not (Γ ⇒ I)-equivaroid,
but (Γ ⇒ I)-subequivaroid with respect to the kernel and the range of the
linearization. We then apply the theorem by Crandall and Rabinowitz
on bifurcation from simple eigenvalues to the vertex space with said
isotropy. In equivaroid systems, additional solutions might bifurcate
within a vertex space if more than one eigenvalue crosses zero. We
therefore additionally present the iterated equivaroid branching lemma,
which provides the existence of solutions via an iterative process.

This chapter is organized as follows: In Section 4.1 we extend the
classical equivariant Lyapunov–Schmidt reduction to equivaroid systems.
In Section 4.2 we formulate and prove the equivaroid branching lemma. In
addition to the steady-state solutions found with the equivaroid branching
lemma, there might exist additional nontrivial branches of solutions, we
will present a first result in this direction in Section 4.3. As always, the
theory is accompanied by illustrative examples.



4. Steady-state bifurcation in equivaroid systems

4.1. Equivaroid Lyapunov–Schmidt reduction

The Lyapunov–Schmidt reduction, which goes back to Lyapunov [42]
and Schmidt [55], is a variant of the implicit function theorem: It
decomposes and reduces a possibly infinite-dimensional equation to a
finite-dimensional part which contains the solutions of the equation.

Let us start with the usual setting; see e.g., [12]. Throughout, let X,Y,Λ
be real Banach spaces and let

F : Λ×X → Y (4.1)

be a Ck-map, k ≥ 1. Suppose that F(0, 0) = 0. We are interested in
bifurcation theory and hence we want to find solutions of

F(λ, x) = 0 (4.2)

near the origin λ = 0, x = 0. Here λ ∈ Λ is the bifurcation parameter.

Let L := DxF(0, 0). Then there are two possibilities: Either L is
invertible, in which case we can simply apply the implicit function
theorem to find the solutions in a neighbourhood of the origin [66]. Or L
is not invertible, in which case we will usually find a bifurcation. To this
end, the standard Lyapunov–Schmidt reduction decomposes equation
(4.2) into a possibly infinite-dimensional part where the implicit function
theorem holds and into another, finite-dimensional part, which we call
the bifurcation equation.

We now additionally assume that F is (Γ ⇒ I)-equivaroid, as a gen-
eralization to the equivariant case as treated in [12]. The aim of this
section is to extend the Lyapunov–Schmidt reduction to the equivaroid
case. In particular, we want to find out how the groupoid symmetries
are inherited by the bifurcation equation.

By Lemma 3.3.1, the linearization L := DxF(0, 0) at the origin is at least
(Γ ⇒ I)-equivaroid. Hence its kernel and range are (Γ ⇒ I)-invaroid
subspaces of X and Y , respectively; see Lemma 3.3.2. These facts allow
us to construct an equivaroid Lyapunov–Schmidt reduction as follows.
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4.1. Equivaroid Lyapunov–Schmidt reduction

Suppose that L is a Fredholm operator, i.e., L is closed, and both kerL
and the complement of rangeL are finite-dimensional [66]. In paral-
lel to the standard Lyapunov–Schmidt reduction we define continuous
projections

P : X → kerL =: U, (4.3)
(Id−P ) : X → (kerL)c =: V, (4.4)

Q : Y → rangeL =: W, (4.5)
(Id−Q) : Y → (rangeL)c =: T, (4.6)

and use the notation

u := Px, v := (Id−P )x, w := Qy, t := (Id−Q)y. (4.7)

For now, let us assume that it is possible to choose the projections P
and Q such that they induce (Γ ⇒ I)-subequivaroid equations on the
subspaces U and W . In other words, we request

ρU (γ)Px = PρXx, ρW (γ)Qy = QρY (γ)y, (4.8)

i.e., that the projections commute with the actions of the groupoid. Such
a choice of projections is often possible, we will discuss the details at the
end of this section.

Following [12], the original equation F(λ, x) = 0 is equivalent to the
system

QF(λ, u+ v) = 0 (4.9)
(Id−Q)F(λ, u+ v) = 0. (4.10)

To see this, note that u + v = Px + (1 − P )x = x and QF(λ, u + v) +
(Id−Q)F(λ, u+ v) = F(λ, u+ v).

Next, we write
F(λ, x) = Lx+N (λ, x), (4.11)

where N denotes the nonlinear part of F with DxN (0, 0) = 0, which
implies that N is (Γ ⇒ I)-equivaroid.
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4. Steady-state bifurcation in equivaroid systems

We treat the invertible, possibly infinite-dimensional part first: Since
u = Px is in the kernel of L, we can rewrite equation (4.9) as

QLv +QN (λ, u+ v) = 0. (4.12)

The operator QL is invertible in rangeL and its inverse is bounded.
Therefore, the implicit function theorem can be applied at u = v = 0,
λ = 0, and we obtain that for every (x, λ) in a neighborhood of (0, 0) in
Λ×X, equation (4.9) has a unique solution v(λ, u) such that v(0, 0) = 0
and v is also a Ck-function.

The important point is that QLv +QN (λ, u+ v) : Λ× U × V → W is
subequivaroid with respect to the spaces (U, V ) andW . This implies that
ρV (γ)v(λ, u) is a solution of equation (4.12) if and only if v(λ, ρU (γ)u)
is a solution of equation (4.12) with (u, v) ∈ (Uj , Vj) = Xj a vertex
space:

0 = QLρV (γ)−1v(λ, ρU (γ)u)
+QN (λ, u+ ρV (γ)−1v(λ, ρU (γ)u))

= ρW (γ)QLρV (γ)−1v(λ, ρU (γ)u)
+ ρW (γ)QN (λ, u+ ρV (γ)−1v(λ, ρU (γ)u))

= QρW (γ)LρV (γ)−1v(λ, ρU (γ)u)
+QρY (γ)N (λ, u+ ρV (γ)−1v(λ, ρU (γ)u))

= QLρV (γ)ρV (γ)−1v(λ, ρU (γ)u)
+QN (λ, ρU (γ)u+ ρV (γ)ρV (γ)−1v(λ, ρU (γ)u))

= QLv(λ, ρU (γ)u) +QN (λ, ρU (γ)u+ v(λ, ρU (γ)u)).

(4.13)

By uniqueness of the solution from the implicit function theorem, we
can thereby conclude that ρV (γ)v(λ, u) = v(λ, ρU (γ)u), i.e., v : U → V
is (Γ ⇒ I)-(sub)equivaroid with respect to the spaces U and V .

It remains to study the second equation (4.10), which has a new form
by the implicit function theorem, in the neighbourhood of u = v = 0,
λ = 0:

(1−Q)N (λ, u+ v(λ, u)) := g(λ, u) = 0, (4.14)
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4.1. Equivaroid Lyapunov–Schmidt reduction

with g : Λ×kerL = U → (rangeL)c = T ; note that this is indeed a finite-
dimensional problem. We need to show that equation (4.14) is (Γ ⇒ I)-
subequivaroid with respect to the spaces U = kerL, T = (rangeL)c.

Suppose that (uj , vj) is an element of some vertex space Xj and let
γ : j → k. Then subequivariance with respect to U and T follows from

ρT (γ)g(λ, uj) = ρT (γ)
(
(Id−Q)N (λ, uj + vj(λ, uj))

)
= (Id−Q)ρY (γ)N (λ, uj + vj(λ, uj))
= (Id−Q)N (λ, ρU (γ)uj + ρV (γ)vj(λ, uj))
= (Id−Q)N (λ, ρU (γ)uj + vj(λ, ρU (γ)uj))
= g(λ, ρU (γ)uj).

(4.15)

Note that, in contrast to the equivariant case, the morphism γ : j → k
takes us out of the space Xj and into the space Xk.

In summary, we have proven the following theorem, as a direct general-
ization of the equivariant Lyapunov–Schmidt reduction [12] which now
also allows for the equivaroid case.

Theorem 4.1.1 (Equivaroid Lyapunov–Schmidt reduction). Let X,Y,Λ
be real Banach spaces and let

F : Λ×X → Y (4.16)

be a Ck-map, k ≥ 1. Suppose that F(0, 0) = 0 and that the linearization
L := DxF(0, 0) is a Fredholm operator. Moreover, suppose that F is
(Γ ⇒ I)-equivaroid, and that the projections P : X → kerL =: U and
Q : Y → rangeL =: W fulfill

ρU (γ)Px = PρXx, ρW (γ)Qy = QρY (γ)y. (4.17)

Then the following holds:

i) The subspaces kerL and rangeL are (Γ ⇒ I)-invaroid.

ii) the local solutions of the equation F(x, λ) = 0 have the form x(λ) =
u(λ) + v(λ, u(λ)). Here, v : Λ× U → V is (Γ ⇒ I)-subequivaroid
with respect to the spaces U and V , i.e., ρV (γ)v(λ, u) = v(λ, ρU (γ)u).
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4. Steady-state bifurcation in equivaroid systems

iii) the bifurcation equation (1−Q)N (λ, u+ v(λ, u)) = 0 is (Γ ⇒ I)-
subequivaroid with respect to U and T .

In words, the equivaroid Lyapunov–Schmidt reduction states that such
a reduction can be performed in such a way that the reduced equation
is subequivaroid. We illustrate this with the following example, which
is modified from [12] to the equivaroid situation. Note that we consider
the same equation but are able to describe a much finer structure in the
framework of groupoid symmetries.

Example 4.1.2 (The pendulum equation). We consider

F(x) = ẍ+ µ sin(x) = 0, (4.18)

with boundary conditions

ẋ(0) = ẋ(1) = 0, (4.19)

and bifurcation parameter µ, which we redefine with λ = µ−µk ∈ Λ = R,
where µk = k2π2 are the bifurcation points, k ∈ N. We have

X =
{
x ∈ C2[0, 1] | ẋ(0) = ẋ(1) = 0

}
, (4.20)

with the usual additive sup-norm on x, ẋ and ẍ, and Y = C0[0, 1], with
the standard sup-norm. Using the identities

sin
( ∞∑
i=1

θi

)
=

∑
odd k≥1

(−1)
k−1

2
∑
A⊆N
|A|=k

∏
i∈A

sin θi
∏
i 6∈A

cos θi

, (4.21)

sin(am cosmπt) = 2
∞∑
k=0

(−1)kJ2k+1(am) cos
(
(2k + 1)mπt

)
, (4.22)

cos(am cosmπt) = J0(am) + 2
∞∑
k=1

(−1)kJ2k(am) cos(2kmπt), (4.23)
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4.1. Equivaroid Lyapunov–Schmidt reduction

Vertex spaces X0 = Y0, Xj,i = Yj,i, j ∈ N, i = 1, 2

X0 =
{
x(t) =

∞∑
k=0

ak cos(kπt)
∣∣∣∣ ∀ k ≥ 1 : ak = 0

}

Xj,1 =
{
x(t) =

∞∑
k=0

ak cos(kπt)
∣∣∣∣ ∀ k 6= nj, n ∈ N0 : ak = 0

}

Xj,2 =
{
x(t) =

∞∑
k=0

ak cos(kπt)
∣∣∣∣ ∀ k 6= nj, n ∈ N odd : ak = 0

}

Table 4.1.: The vertex spaces of the pendulum equation (4.18) (conver-
gence conditions are ignored for simplicity).

where
Jα(z) =

∞∑
m=0

(−1)m
m!Γ(m+ α+ 1)

(
z

2

)2m+α
(4.24)

denotes the Bessel functions, as well as
n∏
k=1

cos θk = 1
2n
∑
e∈S

cos(e1θ1 + · · ·+ enθn) (4.25)

where e = (e1, . . . , en) ∈ S = {1,−1}n, all from [1], we find the vertex
spaces of F : X → Y as in Table 4.1. The corresponding vertex sym-
metry groups are listed in Table 4.2. The groupoid symmetries act by
convolution, where h : R→ R has finite L1-norm:

(h ∗ u) (t) :=
1∫

0

h(t− s)u(s) ds. (4.26)

We write
F(x, λ) = ẍ+ µ sin(x) = Lx+N (λ, x), (4.27)

where we define

Lkx := ẍ+ µkx (4.28)
Nk(λ, x) = µk(sin x− x) + λ sin(x), (4.29)
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4. Steady-state bifurcation in equivaroid systems

Vertex groups H0, Hj,i, j ∈ N, i = 1, 2

H0 =
{
h(t) = ±

∞∑
k=0

bk cos(kπt)
∣∣∣∣ b0 = 1

}

Hj,1 =
{
h(t) = ±

∞∑
k=0

bk cos(kπt)
∣∣∣∣ ∀ k = nj, n ∈ N0 : bk = 1

}

Hj,2 =
{
h(t) = ±

∞∑
k=0

bk cos(kπt)
∣∣∣∣ ∀ k = nj, n ∈ N odd : bk = 1

}

Table 4.2.: The vertex symmetry groups of the pendulum equation (4.18)
(conditions on convergence and invertibility are ignored for
simplicity).

for the linear and the nonlinear part of F , with λ = µ − µk. At the
bifurcation points µk = k2π2, a nontrivial kernel exists:

kerLk = {x(t) = ak cos(kπt) | ak ∈ R} =: U,
rangeLk = Y \ kerLk =: W.

(4.30)

Hence, Lk is indeed a Fredholm operator at the bifurcation point µk.
Next, we note that the subspace Lk is a subspace of Xk,1, Xk,2 and of
no other vertex space. We define Uk,1 := PXk,1 and Uk,2 := PXk,2, as
well as Vk,1 := (1− P )Xk,1 and Vk,2 := (1− P )Xk,2.

As the next step, we set x(t) = ak cos(kπt) + v(t) and obtain from
Lk(v) = −Nk(λ, ak cos(kπt) + v):

Lkv = −λ sin(ak cos(kπt)+v)−µk(sin(ak cos(kπt)+v)−ak cos(kπt)−v).
(4.31)

Projecting this last equation to the space W = rangeLk, we find that
the local solutions are subequivaroid with respect to the spaces U
and V as follows: Indeed ρV (h)v(λ, u) ∈ Vk,1 or Vk,2 with u ∈ Uk,1 or
Uk,2 is a solution of equation (4.31) if and only if v(λ, ρU (h)u) ∈ Vk,1 or
Vk,2 is a solution of equation (4.31) with h as in Table 4.2. Notice that
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4.1. Equivaroid Lyapunov–Schmidt reduction

this property does not hold for the entire spaces X and Y , but only on
(Uk,1, Vk,1) and (Uk,2, Vk,2).

As the last step, we check that the bifurcation equation is sube-
quivaroid: the bifurcation equation (1 − Q)Nk(λ, u + v(λ, u)) = 0 is
(Γ ⇒ I)-subequivaroid with respect to the spaces U and T . This is
indeed the case, because the bifurcation equation is indeed odd with
respect to the coefficient ak (remember that v is also subequivaroid).

(1−Q)Nk(λ, u+ v(λ, u))

= (1−Q)
(
λ sin(ak cos(kπt) + v)

+ µk(sin(ak cos(kπt) + v) + ak cos(kπt) + v)
)
.

(4.32)

As a conclusion of this example, we have seen how the groupoid symme-
tries are inherited by the Lyapunov–Schmidt reduction. It is indeed a
much finer structure than shown in the previous treatment of this specific
example in [12], where the only studied property was even/oddness of
solutions due to the Z2-group equivariance.

We conclude this section by a discussion on a situation where the projec-
tions P and Q can indeed be chosen to commute with the action of the
groupoid. In the following, suppose that the groupoid is compact [52]
and possesses an isometric representation. In this context we adapt the
arguments from [63] from groups to groupoids.

More precisely, we suppose that X,Y are real Banach spaces and that
there exist continuous, symmetric and positive definite bilinear forms

〈·, ·〉X : X ×X → X, 〈·, ·〉Y : Y × Y → Y (4.33)

on the spaces X and Y , respectively. We require the representations ρX
and ρY to fulfill

〈ρX(γ)x1, ρX(γ)x2〉X = 〈x1, x2〉X , for all γ : j → k, x1, x2 ∈ Xj

〈ρY (γ)y1, ρY (γ)y2〉Y = 〈y1, y2〉Y , for all γ : j → k, y1, y2 ∈ Yj .
(4.34)
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4. Steady-state bifurcation in equivaroid systems

Recall once more that the spaces U := kerL ⊆ X andW := rangeL ⊆ Y
as well as their complements are (Γ ⇒ I)-invaroid. Moreover, since L
is a Fredholm operator, U and T are finite-dimensional. Hence there
exist bases {eUi | i = 1, . . . , nU} and {eTi | i = 1, . . . , nT } which are
orthonormal with respect to the bilinear forms above. Here nU := dimU ,
nT := dimT . Then we define the specific projection

P : X → U

x 7→
nU∑
i=1
〈x, eUi 〉X ,

(4.35)

as well as the specific projection

(Id−Q) : Y → T

y 7→
nT∑
i=1
〈x, eTi 〉Y .

(4.36)

We then define

U⊥ := {x ∈ X | 〈x, u〉X = 0 for all u ∈ U},
T⊥ := {y ∈ Y | 〈y, t〉Y = 0 for all t ∈ T},

(4.37)

and note that Px = 0 is equivalent to x ∈ U⊥, as well as (Id−Q)y = 0
is equivalent to y ∈ T⊥.

Now U is (Γ ⇒ I)-invaroid, that is, for all j ∈ I such that U ∩Xj 6= Ø
and for all morphisms γ : j → k,

ρX(γ)
(
U ∩Xj

)
⊆
(
U ∩Xk). (4.38)

The same goes for the space T : For all j ∈ I such that T ∩Xj 6= Ø and
for all morphisms γ : j → k,

ρX(γ)
(
T ∩ Yj

)
⊆
(
T ∩ Yk). (4.39)

Since both U and T are finite-dimensional and γ : j → k acts as an
isomorphism, we conclude that equality holds in both (4.38) and (4.39).

74



4.2. The equivaroid branching lemma

Last, we show that also the spaces U⊥ and T⊥ are invaroid under the
same groupoid actions as the spaces U and T (notice that this does not
mean that U⊥ and T⊥ are (Γ ⇒ I)-invaroid!): To see this, note that for
all γ : j → k, u ∈ U ∩Xk, x ∈ U⊥ ∩Xj we have

〈u, ρX(γ)x〉X = 〈ρ−1(γ)Xu, x〉X = 0, (4.40)

Analoguosly, we obtain for all γ : j → k, t ∈ T ∩ Yk, y ∈ T⊥ ∩ Yj :

〈t, ρY (γ)y〉Y = 〈ρ−1(γ)Y t, y〉Y = 0. (4.41)

We conclude

ρX(γ)x = ρX(γ)Px+ ρX(γ)(Id−P )x. (4.42)

Applying the projection P to both sides, we obtain

PρX(γ)x = ρX(γ)Px = ρU (γ)u, (4.43)

as desired. For the projection (Id−Q), on the other hand, we conclude

ρY (γ)x = ρY (γ)(Id−Q)x+ ρX(γ)Qy, (4.44)

implying
(Id−Q)ρY (γ)y = ρY (γ)(Id−Q)y = ρT (γ)t. (4.45)

4.2. The equivaroid branching lemma

In this section we generalize the equivariant branching lemma by Van-
derbauwhede [63] and Cicogna [13] to equivaroid equations. This is the
first existence result of patterns generated by groupoid symmetries.

The setting of the equivaroid bifurcation theory is as follows: We consider
Ck-maps, k ≥ 2, F : R × X → Y , where X and Y are Banach spaces.
Our goal is to solve

0 = F(λ, x), (4.46)
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4. Steady-state bifurcation in equivaroid systems

where F is (Γ ⇒ I)-equivaroid. Again, we call λ ∈ R the bifurcation
parameter. Suppose that there is a trivial solution x = 0 for all λ ∈ R:

0 = F(λ, 0). (4.47)

We are interested in nontrivial solutions x(λ) and their groupoid sym-
metries. Next to the equivaroid Lyapunov–Schmidt reduction, our main
tool is the following theorem by Crandall & Rabinowitz.

Theorem 4.2.1 (Bifurcation from simple eigenvalues, cited from [15]
without proof). Consider 0 = F(λ, x), x ∈ X, F : R × X → Y , X,Y
Banach spaces, F ∈ Ck, k ≥ 2. In addition, assume that L := DxF(0, 0)
is a Fredholm operator of index 0, F(λ, 0) = 0 for all λ ∈ R and that

i) dim kerL = 1;

ii) Dλ DxF(0, 0)|kerL /∈ rangeL (“eigenvalue crossing condition”).

Then there exists a unique Ck−1-branch (λ(s), x(s)) of nontrivial zeros
of F in the neighbourhood of λ = 0, x = 0, and moreover,

0 6= ẋ(0) ∈ ker DxF . (4.48)

While the condition dim kerL = 1 holds generically, eigenvalues of equiv-
aroid operators often have higher multiplicities; see some of the examples
below. This is similar to the standard equivariant setting.

The main idea is to restrict the equation (4.46) to a vertex space Xj ,
which is flow-invariant by construction (either before or after reducing
via Lyapunov–Schmidt). The theorem of Crandall and Rabinowitz then
applies to the restricted equation, which implies that we can prove bifur-
cation from the trivial equilibrium into the vertex space Xj . Additionally,
we then obtain the bifurcation of a conjugated solution in any vertex
space Xk which is conjugated to Xj .

Theorem 4.2.2 (Equivaroid branching lemma). Consider 0 = F(λ, x),
x ∈ X, F : R×X → Y , X,Y Banach spaces, F ∈ Ck, k ≥ 2 and let F
be (Γ ⇒ I)-equivaroid for all λ ∈ R.
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4.2. The equivaroid branching lemma

Let Xj ⊆ X be a vertex space with vertex isotropy group Kj, such that
Fj := F|Xj : R×Xj → Yj, and suppose that F(λ, 0) = 0 for all λ ∈ R.

Assume that at λ = 0 the following conditions are fulfilled:

i) L := DxFj(0, 0) : X → Y is a Fredholm operator of index 0;

ii) dim kerL|Xj = 1;

iii) Dλ DxFj(0, 0)|kerL /∈ rangeL|Xj .

Then the zero set of F near (0, 0) consists of the trivial branch and a
nontrivial Ck−1-branch (λ(s), x(s)), through λ(0) = 0, x(0) = 0 and
ẋ(0) ∈ kerL|Xj . The branch is unique up to reparametrization.

Moreover, x(s) ∈ Xj, i.e., x(s) has isotropy Kj.

Proof. Consider the restricted map Fj : R ×Xj → Yj . The conditions
of the theorem by Crandall & Rabinowitz are fulfilled. The isotropy is
clear since we have reduced to the vertex spaces Xj , Yj . Alternatively,
if suitable projections P and Q exist, we can perform the equivaroid
Lyapunov–Schmidt reduction first. The key point is to remember that
by Lemma 3.3.1, the linearization L at the origin is at least (Γ ⇒ I)-
equivaroid. Hence its kernel and range are (Γ ⇒ I)-invaroid subspaces
of X and Y , respectively; see Lemma 3.3.2. The Lyapunov–Schmidt
reduction then gives us a subequivaroid bifurcation equations, on which
we can restrict to the vertex space with index j, in this case Uj . The
full isotropy of the solution x(λ) = u(λ) + v(λ, u(λ)) holds because v is
subequivaroid.

In the following, we will consider an example where standard and equiv-
ariant steady-state bifurcations fail, but the equivaroid branching lemma
gives precise information on the bifurcating branches and their isotropy.

Example 4.2.3 (Two coupled cells II, continued from Example 2.1.9).
We consider again the dynamical system

ẋ1 = f(λ, x1) + x1x2

ẋ2 = f(λ, x2) + 2x1x2,
(4.49)
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4. Steady-state bifurcation in equivaroid systems

where f : R × R → R, f(λ, 0) = 0 for all λ = 0. We assume Lf :=
Dx f(λ, 0) = λ. Then the linearization at the trivial equilibrium x1 =
x2 = 0,

L :=
(
λ 0
0 λ

)
(4.50)

has a double eigenvalue zero for λ = 0. Consequently, the standard
bifurcation from simple eigenvalues fails. In addition, also the equivariant
bifurcation theory fails because system (4.49) is not equivariant with
respect to any nontrivial group.

However, we know that the system (4.49) is equivaroid, and we have
calculated the vertex spaces as well as vertex symmetry groups in Example
2.1.9. The relevant vertex spaces are X2 = {(x1, x2) ∈ R2 |x1 = 0} and
X3 = {(x1, x2) ∈ R2 |x2 = 0}.

The important point is that the kernel of L|Xj , j = 2, 3, is one-dimensional
as we restrict it to the vertex spaces X2, X3. This implies equivaroid
steady-state bifurcation with the isotropies K2 and K3, respectively.
Indeed, the system

ẋ = f(λ, x) (4.51)

(as it looks both within X2 and X3) shows a bifurcation from a simple
eigenvalue zero at λ = 0.

Moreover, the vertex spaces X2 and X3 are conjugated, and it therefore
suffices to prove bifurcation in one of these spaces to find it in the other
space as well.

The following example is Z2-equivariant in the standard group sense,
but, as we remember from our previous discussion, it also possesses
a symmetry groupoid which is much larger than the symmetry group
Z2. This gives us an opportunity to compare the conclusions from the
equivariant and the equivaroid branching lemmata.
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4.2. The equivaroid branching lemma

Example 4.2.4 (Three coupled cells II, continued from Example 2.4.7).
We reconsider

ẋ1 = f(λ, x1) + x2

ẋ2 = f(λ, x2) + x2

ẋ3 = f(λ, x3) + x2,

(4.52)

where x1, x2, x3 ∈ R, f : R × R → R, f(λ, 0) = 0 for all λ ∈ R. We
assume Lf := Dx f(λ, 0) = λ. The linearization at the trivial equilibrium
x1 = x2 = x3,

L :=

λ 1 0
0 λ+ 1 0
0 1 λ

 (4.53)

has a double eigenvalue zero for λ = 0 and thus standard bifurcation
from simple eigenvalues fails. There is also a bifurcation from a one-
dimensional kernel at λ = −1 for which the Theorem 4.2.1 provides the
existence of nontrivial solutions but no information on their isotropy.

What does the equivariant bifurcation theory tell us here? The system
(4.52) is Z2-equivariant, where Z2 acts by permutation of the variables
x1 and x3. The corresponding fixed-point subspace is given by

Σ = {(x1, x2, x3) | x1 = x3}. (4.54)

The kernel of L at λ = 0 is given by kerL = {(x1, x2, x3) | x2 = 0}.
Hence dim kerL|Σ = dim{(x1, x2, x3) | x2 = 0, x1 = x3} = 1 and the
conditions for the equivariant branching lemma are fulfilled. We conclude
the existence of nontrivial solutions within the fixed-point space Σ.

At λ = −1, the kernel is given by kerL = {(x1, x2, x3) | x1 = x2 = x3}
and hence one-dimensional, as is its restriction to the fixed-point space
Σ. Once more, we conclude the existence of nontrivial solutions within
Σ.

Now let us turn to the equivaroid analysis. For the convenience of the
reader, the vertex spaces are given in Tables 4.3 and 4.4. Conjugating
symmetries exist between the spaces X2 and X4 as well as the vertex
spaces X7 and X8; see Table 4.5.
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4. Steady-state bifurcation in equivaroid systems

j Vertex spaces Xj ⊂ R3 Vertex symmetry groups Hj

1 R3


0 0 1

0 1 0
1 0 0

 ,
1 0 0

0 1 0
0 0 1


 = Z2

2 {(x1, x2, x3) |x1 = x2}


a 1− a 0
b 1− b 0
c −c 1


∣∣∣∣∣∣∣ a 6= b


3 {(x1, x2, x3) |x1 = x3}


a 0 1− a
b 1 −b
c 0 1− c


∣∣∣∣∣∣∣ a 6= c


4 {(x1, x2, x3) |x2 = x3}


1 a −a

0 b 1− b
0 c 1− c


∣∣∣∣∣∣∣ b 6= c


5 {(x1, x2, x3) | x2 = 0}


1 a 0

0 b 0
0 c 1


∣∣∣∣∣∣∣ b 6= 0


⋃

0 a 1
0 b 0
1 c 0


∣∣∣∣∣∣∣ b 6= 0


6 {(x1, x2, x3) |

x1 = x2 = x3}


a b 1− a− b
c d 1− c− d
e f 1


∣∣∣∣∣∣∣ det 6= 0


Table 4.3.: Vertex spaces and vertex symmetry group of the system (4.52),

part 1. Here a, b, c, d, e, f ∈ R.
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4.2. The equivaroid branching lemma

j Vertex spaces Xj ⊂ R3 Vertex symmetry groups Hj

7 {(x1, x2, x3) | x1 = x2 = 0}


a 0 b
c 1 d
e 0 f


∣∣∣∣∣∣∣ det 6= 0


8 {(x1, x2, x3) | x2 = x3 = 0}


1 a b

0 c d
0 e f


∣∣∣∣∣∣∣ det 6= 0


9 {(0, 0, 0)}


a b c
d e f
g h i


∣∣∣∣∣∣∣ det 6= 0


Table 4.4.: Vertex spaces and vertex symmetry group of the system (4.52),

part 2. Here a, b, c, d, e, f, g, h, i ∈ R.

The kernel kerL = {(x1, x2, x3) | x2 = 0} of the linearization at λ = 0 is
one-dimensional if restricted to the vertex spaces X2, X3, X4, X7, X8.
Since X7 ⊆ X2, X8 ⊆ X4, the equivaroid branching lemma guarantees
us the existence of three nontrivial solutions into the vertex spaces X7,
X8, X3.

For the specific dynamics f(λ, x) = λx + x2, we get the explicit bifur-
cating solutions (0, 0,−λ), (−λ, 0, 0), (−λ, 0,−λ), in accordance with the
theoretical results on equivaroid branching.

The equivaroid bifurcation at λ = −1 leads to solutions within the vertex
space X6 and it could also have been treated by equivariant bifurcation
theory. This would not have been as effective, though: The equivariant
branching lemma guarantees a bifurcating solution into the fixed-point
subspace Σ of the Z2-action, which is at the same time the vertex space
X3. Since X6 ⊂ X3, the equivaroid branching lemma is more precise,
here.

Looking once more at the specific dynamics f(λ, x) = λx+ x2, we find
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4. Steady-state bifurcation in equivaroid systems

(Xj , Xk) Conjugating (Xj , Xk)-symmetries Hjk

(X2, X4) H24 =


a −a 1
b 1− b 0
c 1− c 0


∣∣∣∣∣∣∣ b 6= c



(X4, X2) H42 =


0 a 1− a

0 b 1− b
1 c −c


∣∣∣∣∣∣∣ a 6= b



(X7, X8) H78 =


a b 1
c d 0
e f 0


∣∣∣∣∣∣∣ det 6= 0



(X8, X7) H87 =


0 a b

0 c d
1 e f


∣∣∣∣∣∣∣ det 6= 0



Table 4.5.: Conjugating morphisms of the system (4.52) with
a, b, c, d, e, f ∈ R.
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4.3. The iterated equivaroid branching lemma

the explicit bifurcating solution (−1− λ,−1− λ,−1− λ), in accordance
with the theoretical results on equivaroid branching.

In the last example, we continue the analysis of the pendulum equation
from the Lyapunov–Schmidt reduction.

Example 4.2.5 (The pendulum equation, continued from Example
4.1.2). We reconsider

F(x) = ẍ+ µ sin(x) = 0, (4.55)

with boundary conditions

ẋ(0) = ẋ(1) = 0, (4.56)

and bifurcation parameter µ where µk = k2π2 is the bifurcation point,
k ∈ N. We find the vertex spaces of F : X → Y as in Table 4.1. The
corresponding vertex symmetry groups are listed in Table 4.2.

Using our previous analysis from Example 4.1.2, at each bifurcation point
µk, k ∈ N we find bifurcation of a nontrivial solution into each of the
subspaces Yk,2. As a conclusion of this example, we have seen a much
finer bifurcation structure than shown in the previous treatment in [12],
where only even/oddness of solutions due to the Z2-group equivariance
could be predicted. Now we can precisely tell by symmetry arguments
alone which Fourier modes are present in the bifurcating solution.

4.3. The iterated equivaroid branching lemma

Equivaroid systems will often exhibit multiple eigenvalues crossing zero.
Not all of these cases can be treated with the equivaroid branching lemma.
This is because it essentially needs a one-dimensional eigenspace within
the vertex space. In this section we will present a result on algebraically
double or multiple eigenvalues crossing the imaginary axis where the
dimensionality condition does not hold.
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4. Steady-state bifurcation in equivaroid systems

We will first state the relevant conditions and the new theorem. Then
we demonstrate the way it can be used in two examples, and close with
a short discussion.

Let Xj be the vertex space into which we want to prove the existence
of a bifurcating steady-state solution. We can reduce to F(λ, x) = 0,
F : R × Xj → Yj . To compensate for the missing condition of a one-
dimensional kernel, we assume that within the vertex space Xj , there
exist nonempty subspaces Mj , Nj ⊂ Xj such that Mj⊕Nj = Xj and any
solution x ∈ Xj of F(λ, x) = 0 can be written in the form x = µ+ ν(µ)
where µ ∈Mj and ν ∈ Nj . Importantly, we also suppose that µ solves
F(λ, µ) = 0, F : R×Mj → Yj , and can be written in the form µ(λ). It
remains to solve the equation F(λ, µ(λ) + ν) = 0, F : R×Nj → Yj .

In fact there exist many dynamical systems which fulfill this require-
ment. It is for example often met in feed-forward networks [28], or in
networks where a vertex space possesses a feed-forward structure (it is
not necessarily for the full network to possess such a structure). Also
we emphasize that we do not require flow-invariance of the subspaces
Mj , Nj .

The main idea is to apply the standard equivariant branching lemma to
the subsystem F(λ, µ) = 0, F : R×Mj → Yj and then apply it to the
space Nj one more time. The condition is therefore a one-dimensional
kernel on Mj first, and then in the next step, a one-dimensional kernel
on Nj .

Theorem 4.3.1 (Iterated equivaroid branching lemma). Consider F(λ, x)
= 0, x ∈ X, F : R×X → Y , X,Y Banach spaces, F ∈ Ck, k ≥ 2 and
let F be (Γ ⇒ I)-equivaroid for all λ ∈ R. Let Xj ⊆ X be a vertex
space with vertex isotropy group Kj, and suppose that F(λ, 0) = 0 for all
λ ∈ R.

Suppose that Xj = Mj⊕Nj such that any solution x ∈ Xj of F(λ, x) = 0,
F : R×Xj → Yj can be written in the form x = µ+ ν(µ) where µ = µ(λ)
is a nonzero solution of F(λ, µ) = 0, F : R ×Mj → Yj obtained by
bifurcation from simple eigenvalues at λ = 0, and ν ∈ Nj.
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4.3. The iterated equivaroid branching lemma

Assume that at λ = 0 the following conditions are fulfilled:

i) L := DxF(λ, x)|λ=0,x=0 : Xj → Yj is a Fredholm operator of index
0;

ii) LNj := Dν F(λ, µ(λ) + ν)|λ=0,ν=0 : Nj → Yj, dim kerLNj = 1,
where µ(λ) is a solution of F(λ, µ) = 0, F : R×Mj → Yj obtained
by bifurcation from simple eigenvalues at λ = 0;

iii)
(

Dλ Dν F(λ, µ(λ) + ν)|λ=0,ν=0
)
|kerLNj /∈ rangeLNj .

Then the zero set of F near (0, 0) consists of the trivial branch and a
nontrivial Ck−1-branch (λ(s), x(s)) = (λ(s), µ(s) + ν(s, µ(s))), through
λ(0) = 0, x(0) = 0 and µ̇(0) ∈ kerL|Mj , ν̇(0, 0) ∈ LNj .

Moreover, x(s) ∈ Xj, i.e., x(s) possesses isotropy Kj.

Proof. By assumption, the theorem of bifurcation from simple eigenvalues
theorem by Crandall & Rabinowitz gives a nontrivial solution (λ(s), µ(s))
of F(λ, µ) = 0, F : R ×Mj → Yj with λ(0) = 0, µ(0) = 0 and µ̇(0) ∈
kerL|Mj . The other conditions then assure another bifurcation of simple
eigenvalues for the equation F(λ, µ(λ) + ν) = 0 with F : R ×Nj → Yj
where ν(0, 0) = 0, ν̇(0, 0) ∈ LNj . Putting this together, any solution
x ∈ Xj of F(λ, x) = 0, F : R × Xj → Yj can be written in the form
(λ(s), x(s)) = (λ(s), µ(s) + ν(s, µ(s))), which proves the theorem.

Remark 4.3.2. The iterated equivaroid branching lemma can be applied
in situations with higher dimensional kernels as well. The procedure
outlined in the proof then needs to be carried out multiple times. We
have chosen to present only the two-dimensional case here in order to
keep notation clean.

As we will see in the following two examples, the iterated equivaroid
branching lemma allows us to prove the existence of nontrivial steady
states where multiple eigenvalues cross zero within the same vertex space
which cannot be divided into smaller vertex spaces.
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4. Steady-state bifurcation in equivaroid systems

Example 4.3.3 (A feed-forward network). To see the iterated equivaroid
branching lemma in action, let us consider the following two-cell network
with feed-forward structure:

ẋ1 = f(λ, x1)
ẋ2 = f(λ, x2) + x1x2,

(4.57)

with f : R × R → R, f(λ, 0) = 0, Dx f(λ, 0) = λ, where λ ∈ R is the
bifurcation parameter, and x1, x2 ∈ R. Note that system (??) does not
possess any group symmetries, but it exhibits a surprisingly rich set of
groupoid symmetries from which we can deduce the bifurcation structure.

The vertex spaces of system (??) are given by

X1 = R2, X2 = {(x1, x2) |x1 = 0},
X3 = {(x1, x2) |x2 = 0}, X4 = {(0, 0)}.

(4.58)

The symmetry sets Hjk can be found in Table 4.6. The linearization at
the trivial equilibrium is given by

L =
(
λ 0
0 λ

)
, (4.59)

which implies that there are two eigenvalues crossing zero at λ = 0. With
the help of the equivaroid branching lemma, we see the existence of two
branches of solutions into the subspaces X2 and X3, as the kernel of the
linearization restricted to these spaces is one-dimensional and all other
conditions are fulfilled.

In addition to those two branches, there is a third branch of solutions
bifurcating from the trivial equilibrium at λ = 0. To see this, we divide
R2 = X = M ⊕N , where M = {x1 ∈ R} and N = {x2 ∈ R}.

In the space M , the steady-state solution µ(λ) of µ̇ = f(λ, µ) can be
found by bifurcation of simple eigenvalues. We therefore only need to
solve for steady state solutions of

ν̇ = f(λ, ν) + µ(λ)ν. (4.60)
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4.3. The iterated equivaroid branching lemma

Vertex pair (j, k) Set of (j, k)-symmetries

(1, 1) H11 =
{(

1 0
0 1

)}
= {Id}

(2, 2) H22 =
{(

a 0
b 1

) ∣∣∣∣∣ a 6= 0
}

(3, 3) H33 =
{(

1 a
0 b

) ∣∣∣∣∣ b 6= 0
}

(4, 4) H44 =
{(

a b
c d

) ∣∣∣∣∣ ad− bc 6= 0
}

(2, 3) H23 =
{(

a 1
b 0

) ∣∣∣∣∣ b 6= 0
}

(3, 2) H32 =
{(

0 a
1 b

) ∣∣∣∣∣ a 6= 0
}

else Hjk = Ø

Table 4.6.: The symmetry groupoid of system (4.57). Here a, b, c, d ∈ R.

This equation has again a solution by the theorem by Crandall and
Rabinowitz, which proves the existence of a solution (µ(λ), ν(λ, µ(λ))) ∈
R2 of (4.57), outside of the vertex spaces X2, X3.

Note that this solution does not necessarily grow as
√
λ on both coor-

dinates. This unusual behaviour should be investigated more closely in
the future. For networks of feed-forward structure it has been discussed
under the name of amplitude amplification; see e.g., [28].

To see this phenomenon in an example, we consider the specific nonlin-
earity f(λ, x) = λx− x3. Then, apart from the trivial solution, we find
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4. Steady-state bifurcation in equivaroid systems

the following nontrivial equilibrium solutions:

(x∗1, x∗2) =
(
0,±
√
λ
)
,

(x∗1, x∗2) =
(
±
√
λ, 0

)
,

(x∗1, x∗2) =
(√

λ,±
√
λ+
√
λ

)
,

(x∗1, x∗2) =
(
−
√
λ,±

√
λ−
√
λ

)
.

(4.61)

Let us also note that the subspaces X2 and X3 behave differently in the
subequivaroid bifurcation, although they are conjugated vertex spaces.
Indeed, it is not important that X2 is a vertex space (it just becomes
somewhat easier to see the bifurcation).

Example 4.3.4 (Another feed-forward network). Let us consider the
following two-cell network with feed-forward structure:

ẋ1 = f(λ, x1)
ẋ2 = f(λ, x2) + x1,

(4.62)

with f : R × R → R, f(λ, 0) = 0, Dx f(λ, 0) = λ, where λ ∈ R is the
bifurcation parameter, and x1, x2 ∈ R.

The vertex spaces of system (4.62) are given by

X1 = R2, X2 = {(x1, x2) |x1 = 0}, X3 = {(0, 0)}. (4.63)

The symmetry sets Hjk can be found in Table 4.7. The linearization at
the trivial equilibrium solution is given by

L =
(
λ 0
1 λ

)
, (4.64)

which implies that there are two eigenvalues crossing zero at λ = 0. With
the help of the equivaroid branching lemma, we see the existence of a
nontrivial branch of solutions into the subspace X2, as the kernel of the
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Vertex pair (j, k) Set of (j, k)-symmetries

(1, 1) H11 =
{(

1 0
0 1

)}
= {Id}

(2, 2) H22 =
{(

a 0
b 1

) ∣∣∣∣∣ a 6= 0
}

(3, 3) H33 =
{(

a b
c d

) ∣∣∣∣∣ ad− bc 6= 0
}

else Hjk = Ø

Table 4.7.: The symmetry groupoid of system (4.62). Here a, b, c, d ∈ R.

linearization restricted to this space is one-dimensional and all other
conditions are fulfilled.

Now note that the algebraic multiplicity of λ is two, but the geometric
multiplicity is one. We find that every solution (x∗1, x∗2) ∈ R2 of (??)
gives a solution x∗1 of 0 = f(λ, x∗1). It remains to solve the equation

0 = f(λ, x1). (4.65)

This existence of the bifurcating solution x∗1(λ) is easily seen by the
theorem of Crandall and Rabinowitz. Now, all we have to do is solve the
equation

0 = f(λ, x2) + x∗1(λ). (4.66)

The solution of this last equation can again be found by the theorem
by Crandall and Rabinowitz. This proves the existence of a solution
(x∗1, x∗2) ∈ R2 of (4.62), outside the vertex spaces X2, X3 but along the
same eigenvector as the bifurcation into the subspace X2.

Also in this case, the solution does not grow as
√
λ on both coordinates;

see Fig. 4.2 for an explicit example.
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4. Steady-state bifurcation in equivaroid systems

Example 4.3.5 (A circular network with nonlinear coupling). It is
not necessary to have a feed-forward structure to apply the iterated
equivaroid branching lemma, as we will show with the following example:

ẋ1 = f(λ, x1) + x1x3

ẋ2 = f(λ, x2) + 2x2x1

ẋ3 = f(λ, x3) + 3x3x2,

(4.67)

with f : R × R → R, f(λ, 0) = 0, Dx f(λ, 0) = λ, where λ ∈ R is the
bifurcation parameter, and x1, x2, x3 ∈ R. Note that system (4.67) does
not possess any group symmetries due to the nonidentical coupling, but
it exhibits a surprisingly rich set of groupoid symmetries from which we
can deduce the bifurcation structure.

Indeed, the vertex spaces of system (4.67) are given by

X1 = R3, X2 = {(x1, x2, x3) |x1 = 0},
X3 = {(x1, x2, x3) |x2 = 0}, X4 = {(x1, x2, x3) |x3 = 0},
X5 = {(x1, x2, x3) |x1 = x2 = 0}, X6 = {(x1, x2, x3) |x2 = x3 = 0},
X7 = {(x1, x2, x3) |x3 = x1 = 0}, X8 = {(0, 0, 0)}.

(4.68)

The linearization at the trivial equilibrium is given by

L =

λ 0 0
0 λ 0
0 0 λ

 , (4.69)

which implies that there are three eigenvalues crossing zero at λ = 0.
With the help of the equivaroid branching lemma, we can prove the
existence of three branches of solutions into the subspaces X5, X6, and
X7, as the kernel of the linearization restricted to these vertex spaces is
one-dimensional and all other conditions are fulfilled.

In this system, we find other branches as well, and we will now exemplarily
treat iterated equivaroid bifurcation from the trivial equilibrium at λ = 0
into the two-dimensional X4. To see this, we divide X4 = M4 ⊕ N4,
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4.3. The iterated equivaroid branching lemma

where M4 = {x1 ∈ R} and N4 = {x2 ∈ R}. Note that the third variable
is identically zero in the vertex space X4.

Then we can proceed as before: In the spaceM4, the steady-state solution
µ(λ) of µ̇ = f(λ, µ) can be found by bifurcation of simple eigenvalues.
We therefore only need to solve for steady state solutions of

ν̇ = f(λ, ν) + µ(λ)ν. (4.70)

This equation has again a solution by the theorem by Crandall and Rabi-
nowitz, which proves the existence of a solution (µ(λ), ν(λ, µ(λ)), 0) ∈ X4
of (??), within the vertex space X4. By the same reasoning, or by notic-
ing that X2, X3, X4 are indeed conjugated vertex spaces, we can find
conjugated solutions into the subspaces X2 and X3 as well.
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4. Steady-state bifurcation in equivaroid systems

Figure 4.1.: Steady-state solutions of system (??) with f(λ, x) = λx−x3.
a) Amplification of the amplitude growth depending on the
bifurcation parameter λ > 0. The red and the green branches
are obtained by the equivaroid branching lemma, and their
quadratic growth is linear, as expected. The blue branch
is obtained by the iterated equivaroid branching lemma,
and its quadratic growth is superlinear. b) Steady-state
solutions in the (x1, x2)-plane. The green branch lies in the
vertex space X3 and the red branch in the vertex space X2
(both obtained by the equivaroid branching lemma), the blue
branch (as obtained by the iterated equivaroid branching
lemma) bifurcates tangentially to X2, but into the full space
X1 = R2.
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Figure 4.2.: Steady-state solutions of system (4.62) with f(λ, x) =
λx−x3. a) Amplification of the amplitude growth depending
on the bifurcation parameter λ > 0. The red branch is ob-
tained by the equivaroid branching lemma, and its quadratic
growth is linear, as expected. The blue branch is obtained by
the iterated equivaroid branching lemma, and its quadratic
growth is no longer linear. b) Steady-state solutions in the
(x1, x2)-plane. The red branch (as obtained by the equiv-
aroid branching lemma) lies in the vertex space X2, and the
blue branch (as obtained by the iterated equivaroid branch-
ing lemma) bifurcates tangentially, but into the full space
X1 = R2.
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5. Spatio-temporal patterns and
equivaroid Hopf bifurcation

The goal of this chapter is to prove (iterated) Hopf bifurcation in equiv-
aroid systems. To this end, we generalize the notion of spatio-temporal
patterns, introducing an action of the N -dimensional torus as a compo-
nentwise time-shift. This allows us to describe elaborate spatio-temporal
patterns.

We proceed as follows. In Section 5.1 we recall the abstract functional
analytic setting for Hopf bifurcation, following the construction of Van-
derbauwhede [62, 63]. Readers familiar with these works can directly skip
ahead to Section 5.2: Here we give a new definition of spatio-temporal
patterns in the sense of groupoids and show its potential in applications
with some examples. We then state and prove equivaroid Hopf bifurcation
in Section 5.3. Last, as an extension, we prove iterated equivaroid Hopf
bifurcation in Section 5.4, which allows existence proofs of periodic orbits
with even more elaborate spatio-temporal patterns than the equivaroid
Hopf bifurcation allows.



5. Spatio-temporal patterns and equivaroid Hopf bifurcation

5.1. Functional analytic setting

In this section we first recall the general S1-equivariant formulation of the
Hopf bifurcation problem, following an argument by Vanderbauwhede
[62, 63] and loosely following the presentation of [12].

To find p-periodic solutions x̃(t+ p) = x̃(t) of the ordinary differential
equation

˙̃x = f(λ, x̃(t)), (5.1)
where f : R × RN → RN is a Ck-function, k ≥ 2, we first rescale time
such that the minimal period p > 0 becomes a fixed period 2π and then
define

x(t) := x̃
( p

2π t
)
. (5.2)

It follows that the periodic solutions x̃(t) of (5.1) are in fact equilibrium
solutions x of the equation

F(λ, p, x) := ẋ− p

2πf(λ, x) = 0, (5.3)

where F : R × R × X → Y, with X and Y being Banach spaces of 2π-
periodic functions, more precisely

Y := C̃0 :=
{
x ∈ C0(R,RN )

∣∣∣ x(t+ 2π) = x(t) for all t ∈ R
}
, (5.4)

X := C̃1 := C̃0 ∩ C1. (5.5)

Note that equation (5.3) is S1-equivariant, where S1 acts on X,Y as a
time-shift (

ρ(ϑ)x
)
(t) := x(t+ ϑ), (5.6)

with ϑ ∈ S1, x ∈ X or Y, and t ∈ R. Indeed,(
ρ(ϑ)F(λ, p, x)

)
(t) = F(λ, p, x)(t+ ϑ)

= ẋ(t+ ϑ)− p

2πf(λ, p, x(t+ ϑ))

= F(λ, p, ρ(ϑ)x)(t).

(5.7)

Thus, if x(t) is a solution of equation (5.3), then also x(t+ϑ) is a solution
for all ϑ ∈ S1.
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5.2. Spatio-temporal groupoid symmetries

Technically, we will treat Hopf bifurcation as a steady-state bifurcation
in the setting (5.3). This is possible because the linearization on the
trivial equilibrium,

L(λ, p)y := DxF(λ, p)y

= d

dt
y − p

2π Dx f(λ, 0)y

= ẏ −A(λ)y,

(5.8)

with A(λ) := Dx f(λ, 0), is a Fredholm operator [62], which allows us to
invoke Lyapunov–Schmidt reduction.

One possibility (which we will not pursue further in this thesis) is to
treat the operator

F(λ, p, x) := ẋ− p

2πf(λ, x) (5.9)

as an equivaroid mapping of its own right, with vertex spaces, vertex
symmetry and isotropy groups as well as conjugating morphisms. Then
one could invoke the equivaroid branching lemma. While this procedure
would yield rather general symmetries, it would also hide the interplay
between space and time. We will therefore choose a different route, which
we will outline in the following.

5.2. Spatio-temporal groupoid symmetries

With the setting of the previous section in mind, we now define groupoid
spatio-temporal patterns. It turns out that these patterns are vastly more
general than those discussed and predicted by equivariant bifurcation
theory.

It is our goal to describe the groupoid symmetries of a periodic orbit
(or more precisely: a set of periodic orbits). Contrary to the previous
chapters, we will not describe the symmetries of the dynamical system.
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5. Spatio-temporal patterns and equivaroid Hopf bifurcation

To this end, let us introduce the following action of the N -dimensional
torus TN ∼= (S1)N as a componentwise time-shift on X and Y via(

ρ(ϑ)x
)
(t) := x(t+ ϑ) :=

(
x1(t+ ϑ1), . . . , xN (t+ ϑN )

)
, (5.10)

where ϑ = (ϑ1, . . . , ϑN ) ∈ TN and x = (x1, . . . , xN ). Moreover, let
γ ∈ GL(N) be a linear invertible isomorphism on X = RN acting as a
matrix. Then we define the groupoid symmetry of a periodic orbit as
follows.

Definition 5.2.1 (Spatio-temporal groupoid symmetries). Consider a
solution x ∈ C̃1 of

F(λ, p, x) := ẋ− p

2πf(λ, x) = 0, (5.11)

with F : R× R× C̃1 → C̃0.

We call a pair (γ, ϑ) a spatio-temporal groupoid symmetry of the periodic
orbit x(t) if (γ, ϑ)x ∈ C̃1 is also a solution of (5.11).

Then the set of spatio-temporal groupoid symmetries forms a groupoid,
hence the name. This deserves some explanation:

First of all, the vertices of the groupoid are given by the periodic orbit
themselves. In particular, we regard those orbits who are simple time-
shifted versions of each other as individual vertices. This means that the
groupoid vertices for periodic orbits of autonomous systems are never
isolated, there is always at least a ring of vertices (unless of course, the
periodic orbit is actually an equilibrium).

Next, the vertex group of the periodic orbit x is defined by

(H,Θ)x := {(γ, ϑ) | γx(t+ ϑ) = x(t) for all t ∈ R}, (5.12)

that is, by all combinations of spatial transformations γ and component-
wise time-shifts ϑ which leave the orbit unchanged. Why is the vertex
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5.2. Spatio-temporal groupoid symmetries

group a group? Obviously, (Id, 0) acts as the identity, and (γ−1,−ϑ) as
the inverse element to (γ, ϑ).

An important subgroup of the vertex group is given by the spatial vertex
isotropy group of the periodic orbit x,

Kx := {(γ, 0) | γx(t) = x(t) for all t ∈ R}, (5.13)

i.e., by those spatial actions (γ, 0) which fix the the periodic orbit point-
wise.

Another important subgroup of the vertex group is given by the temporal
vertex isotropy group

Jx := {(Id, ϑ) | x(t+ ϑ) = x(t) for all t ∈ R}, (5.14)

i.e., by those temporal actions (Id, ϑ) which fix the periodic orbit point-
wise.

Moreover, the set of conjugating morphisms between different periodic
orbits x1, x2 of the same equation is defined as follows:

(H,Θ)x1,x2 := {(γ, ϑ) | γx1(t+ ϑ) = x2(t) for all t ∈ R}. (5.15)

For example, as indicated above, all time-shifted versions of “the same”
periodic orbit are conjugated, in this setting. As before, (H,Θ)x1,x2 is
not a group. It does not contain an identity element. Its inverse elements
are contained in the set (H,Θ)x2,x1 .

We call the set of all spatio-temporal groupoid symmetries of all periodic
orbits of a dynamical system the twisted symmetry groupoid (G ⇒ I).
This is in accordance with the previous literature on equivariant systems,
compare the twisted symmetry group, e.g., in [20, 27].

Let us now describe the relation between the vertex group and the two
different isotropy groups. We start with the spatial vertex isotropy group
Kx. Here we define the group homomorphism to the N -dimensional
torus,

Ω : (H,Θ)x → TN (5.16)
(γ, ϑ) 7→ ϑ. (5.17)
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5. Spatio-temporal patterns and equivaroid Hopf bifurcation

The kernel of this homomorphism is given by the group Kx, i.e., ker Ω =
Kx, and using the group homomorphism theorem [61], we find that

range Ω ∼= (H,Θ)x/Kx. (5.18)

To see that this is indeed a group homomorphism, note that (γ1, ϑ1) ◦
(γ2, ϑ2) = (γ1γ2, ϑ1 + ϑ2) and that we have

x(t+ Ω(γ1γ2, ϑ1 + ϑ2)) = x(t+ ϑ1 + ϑ2)
= γ−1

2 γ−1
1 x(t)

= γ−1
1 x(t+ Ω(γ2, ϑ2))

= x(t+ Ω(γ1, ϑ1) + Ω(γ2, ϑ2)),

(5.19)

and therefore

Ω(γ1γ2, ϑ1 + ϑ2) = Ω(γ1, ϑ1) + Ω(γ2, ϑ2) mod 2π, componentwise.
(5.20)

We now turn to the temporal vertex isotropy group. In this case we
define the group homomorphism

Ξ : (H,Θ)x → GL(N) (5.21)
(γ, ϑ) 7→ γ. (5.22)

Its kernel is given by Jx, and therefore Jx is a normal subgroup of (H,Θ)
and the range of Ξ satisfies

range Ξ ∼= (H,Θ)x/Jx. (5.23)

Again, this is obviously a group homomorphism satisfying

Ξ(γ1γ2, ϑ1 + ϑ2) = Ξ(γ1, ϑ1) · Ξ(γ2, ϑ2). (5.24)

These considerations give us the opportunity to classify periodic or-
bits according to their symmetry groupoid. We start with a temporal
classification, which revolves around the subgroups of a torus.
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5.2. Spatio-temporal groupoid symmetries

Definition 5.2.2 (Temporal classification of periodic orbits). We call
x(t)

i) a rotating wave if range Ω ∼= S1 [20];

ii) a discrete wave if there exists n ∈ N such that range Ω ∼= Zn [20];

iii) a concentric wave if range Ω ∼= Id [20];

iv) a multi-frequency wave if there exist n1 6= . . . 6= nk ∈ N such that
range Ω ⊆ Zn1 × · · · × Znk ;

v) a toroidal wave if there exists n ∈ N, n ≥ 1, such that range Ω = Tn;

vi) a mixed wave if there exist n1 6= . . . 6= nk ∈ N and n ∈ N such that
range Ω ⊆ Zn1 × · · · × Znk × Tn;

The names rotating, discrete and concentric wave were chosen from [20]
and they carry over to the groupoid context. However, since we have
introduced the component-wise time-shifts, the theory now include more
complex patterns as well, namely multi-frequency, toroidal, and mixed
waves.

We proceed with a spatial classification.

Definition 5.2.3 (Spatial classification of periodic orbits). Let G ⊆
GL(n). Then we say that a periodic orbit is of G-type, if range Ξ ∼= G.

Before we turn to some examples, let us ask the question question: Which
spatio-temporal symmetries do we find if ẋ = f(x) is (Γ ⇒ I)-equivaroid?
Then each periodic orbit x which lies in a vertex space Xj gives rise to a
vertex of the symmetry groupoid and a subgroup (H̃j ,Θj) of the vertex
group (H,Θ)x, where

(H̃j ,Θj) :=
{
(γ, ϑ) | γ ∈ Hj such that there exists ϑ ∈ S1

with γx(t+ ϑ) = x(t) for all t ∈ R
}
.

(5.25)

Note that this does not completely describe the spatio-temporal symmetry
of the periodic orbit. The group (H̃j ,Θj) will nevertheless be very useful
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5. Spatio-temporal patterns and equivaroid Hopf bifurcation

Figure 5.1.: Graphical depiction of the network (5.26), omitting the iden-
tical self coupling through f . The coupling k1 is drawn black
and solid, k2 solid blue, and −k2 dotted blue.

for describing the symmetries emerging at Hopf bifurcation, as we will
do in the following section.

We will now proceed with several examples. In this way, we illustrate the
vastness of possible spatio-temporal patterns. The simulations are per-
formed with Mathematica using NDSolve and merely serve illustrational
purposes.

Example 5.2.4 (A concentric wave of Z2-type with a 2-torus of conjugat-
ing spatio-temporal symmetries). We choose the rather simple network

ẋ1 = f(x1) + k1 g(x2)
ẋ2 = f(x2) + k1 g(x1)
ẋ3 = f(x3) + k1 g(x3) + k2 g(x1)− k2 g(x2),

(5.26)

with oscillators x1, x2, x3 ∈ RN , f, g : RN → RN , k1, k2 ∈ RN×N ; see Fig.
5.1. We find the invariant subspaces

Xθ = {(x1, x2, x3) | x1(t) ≡ x2(t), x3(t− θ) ≡ x1(t)} ⊂ X for all θ ∈ S1.
(5.27)

Note that these spaces are not vertex spaces of the original symmetry
groupoid of the dynamical system, but they are still relatively easy to
find and produce interesting patterns and symmetry groupoids.

102



5.2. Spatio-temporal groupoid symmetries

Figure 5.2.: Numerical simulations of (5.26). We use N = 2, that is,
two-dimensional oscillators and depict the first component,
respectively; red: x1,1, blue: x2,1, green: x3,1) While x1
and x2 become indistinguishable after a short time, x3
remains a shifted version, with the time-shift depending
on the initial conditions. We approach a periodic orbits
in Xθ. The two periodic orbits are conjugated through a
component-wise time-shift in the space Xθ. The following ex-
plicit dynamics were used: f = (f1, f2), f1(xi,1, xi,2) = 4xi,1+
xi,2−10

(
x2
i,1 + x2

i,2

)
xi,1−2

(
x3
i,1 + x3

i,2

)
xi,1, f2(xi,1, xi,2) =

−xi,1+xi,2−10
(
x2
i,1 + x2

i,2

)
xi,2−2

(
x3
i,1 + x3

i,2

)
xi,2, g(xi) =

xi, k1 = 0.8, k2 = −0.08. Initial conditions: x0
1,1 =

0.3, x0
1,2 = 2.0, x0

2,1 = −1.0, x0
2,2 = −1.0, in the case a) x0

3,1 =
0.0, x0

3,2 = 2.0, in the case b) x0
3,1 = −1.0, x0

3,2 = −0.4).
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5. Spatio-temporal patterns and equivaroid Hopf bifurcation

On each periodic orbit (that is, vertex!) in Xθ, we find that the vertex
symmetry group is equal to the spatial isotropy group (H,Θ)x ∼= Kx

∼= Z2,
acting as a permutation of oscillators x1 and x2. The temporal isotropy
group is given by JΘ

x = Id. We therefore find range Ξ = Z2, which makes
this a wave of Z2-type.

In this example, there exists a 2-torus of conjugated periodic solutions.
Symmetry-wise, the periodic orbits in this example are connected via
conjugating morphisms which act by component-wise delays as follows.

(ρ(Id, ϑ)x)(t) :=
(
x1(t), x2(t), x3(t+ ϑ)

)
.

(ρ(Id, ϕ)x)(t) :=
(
x1(t+ ϕ), x2(t+ ϕ), x3(t+ ϕ)

)
.

(5.28)

Here ϑ represents the conjugation between the invariant subspaces Xθ
whereas ϕ represents the S1-equivariance established by Vanderbauwhede.
We therefore find a torus T2 of periodic solutions; see Fig. 5.2 for a specific
example.

Example 5.2.5 (A rotating wave in a finite-dimensional subspace where
the conjugating morphisms contain an extended singleton). In some cases,
it pays to look at finite-dimensional subspaces of X. An example can
be found in [53], by Röhm, Lüdge and this author, where the following
system of coupled Stuart–Landau oscillators was considered:

ż1 = (λ+ iω + γ |z1|2)z1 + κeiφ(z2 − z1)
ż2 = (λ+ iω + γ |z2|2)z2 + κeiφ(z1 − z2),

(5.29)

where z1, z2 ∈ C, λ, ω, κ ∈ R, γ ∈ C, φ ∈ S1. The system is obviously
Z2 × S1-equivariant, which usually implies the search for in-phase and
anti-phase rotating-wave solutions. But there is more to the story and
we will show another spatio-temporal pattern which can be found.

The linear subspace

X1 := {(z1, z2) | z1 = a1e
iωt, z2 = a2e

iωt, a1, a2 ∈ C} ⊂ X (5.30)

is invariant. On each such periodic orbit x, we find the vertex symmetry
group

(H,Θ)x = (S1, S1), (5.31)
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5.2. Spatio-temporal groupoid symmetries

Figure 5.3.: Numerical simulations of (5.29) for λ = 0.07, γ = −0.1 +
0.5i, κ = 0.1, φ = 0.2π (red: x1,1, blue: x2,1) with initial
conditions x0

1,2 = 2.0, x0
2,1 = −1.0, x0

2,2 = −1.0. The two
oscillators are both rotating waves with different (complex)
amplitude.

which corresponds to the fact that the periodic solutions are rotating
waves.

Both the spatial and the temporal vertex isotropy groups are trivial.
Moreover, if (a1e

ωit, a2e
ωit) is a periodic solution, then (due to the Z2-

equivariance), also (a2e
ωit, a1e

ωit) is a periodic solution. This gives rise
to conjugating symmetries in the form of an extended singleton; see
Example A.1.5. See also [53] for the detailed calculations and the explicit
periodic solutions which arise in this four-dimensional invariant subspace
(without the groupoid-theoretical explanation).

Example 5.2.6 (A (mixed) multi-frequency wave of S1 ×Z2-type). We
consider the following network:

ẋ1(t) = f(x1) + k x1

ẋ2(t) = f(x2) + k (x1,1x2,1 + ix1,2x2,2)
ẋ3(t) = f(x3) + k (x2,1x3,1 + ix2,2x3,2),

(5.32)

x1 = x1,1 +ix1,2, x2 = x2,1 +ix2,2, x3 = x3,1 +ix3,2, x1, x2, x3 ∈ C, k ∈ C.
For simplicity, we use an S1-equivariant Stuart–Landau-nonlinearity
f : C→ C. Let us look for periodic solutions in the invariant subspace

X4,2,1 = {(x1, x2, x3) ∈ X | x1(t+ p/4) = x1, x2(t+ p/2) = x2}. (5.33)
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5. Spatio-temporal patterns and equivaroid Hopf bifurcation

Note that, at this point, we only know that this subspace of the p-periodic
solutions is invariant; we do not know whether it contains more than the
trivial equilibrium. Existence of periodic orbits from such subspaces will
be tackled in the next two subsections when we present the main results
of this chapter — (iterated) equivaroid Hopf bifurcation. For now, we
leave it at a numerical example.

Within the subspace X4,2,1, we find the following symmetries:

x1(t) = e−iφτx1(t+ τ),
x1(t) = x1(t+ p/4),
x1(t) = −x1(t+ p/8),
x2(t) = x2(t+ p/2),
x2(t) = −x2(t+ p/4),
x3(t) = x3(t+ p),
x3(t) = −x3(t+ p/2).

(5.34)

The oscillator x1 is of Stuart–Landau type and its periodic solution is
therefore of the form x1(t) = aeiφt. The spatial vertex isotropy group is
trivial. Therefore, we find a mixed multi-frequency wave.

The temporal vertex isotropy group is generated by

x1(t) = x1(t+ p/4),
x2(t) = x2(t+ p/2),
x3(t) = x3(t+ p).

(5.35)

This implies that we find waves of S1 × Z2 × Z2 type.

Example 5.2.7 (A mixed wave of S1 × Z4-type). We consider the
following network:

ẋ1 = f(x1) + k x1

ẋ2 = f(x2) + k x2 (x2
1,2 + ix2

1,1),
(5.36)

with x1 = x1,1 + ix1,2, x2 = x2,1 + ix2,2, x1, x2 ∈ C, f : C → C is S1-
equivariant, k ∈ R. In standard equivariant bifurcation theory, this
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5.2. Spatio-temporal groupoid symmetries

Figure 5.4.: Numerical simulations of (5.32) for λ = 4, γ = −5, k = 3
(red: x1,1, blue: x2,1, green: x3,1) with initial condi-
tions x0

1,1 = 0.5, x0
1,2 = 1.0, x0

2,1 = 0.1, x0
2,2 = 1.0, x3,1 =

0.1, x3,2 = −1.0 show a multi-frequency wave. Closed
curves in the phase-space plots (x`,1, x`,2), ` = 1, 2, 3, and
(x`,1, x`+1,1), ` = 1, 2 indicate a periodic orbit, the latter also
shows the 1 : 2 frequency relations (orange: x1 vs. x2, violet:
x2 vs. x3).
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5. Spatio-temporal patterns and equivaroid Hopf bifurcation

system would be considered as an odd system, which would trigger us to
look for odd periodic orbits of the form

(
x1, x2

)
(t+ p/2) = −

(
x1, x2

)
(t). (5.37)

Let us see what more groupoid symmetries we can find.

Due to the S1-equivariance of the nonlinearity f , we search for periodic
orbits of (5.36) with x1(t) = aeiφt. That is, the first oscillator x1 describes
a rotating wave,

x1(t) = e−iφτx1(t+ τ). (5.38)

Moreover, switching real and imaginary parts, we also find that for each
individual oscillator a rotation by π/2 corresponds to a phase-shift by
1/4, i.e.,

x2(t) = ix2(t+ p/4). (5.39)

We therefore find the vertex group of the periodic orbit x to be

(H,Θ)x =
(
S1 × Z4, S

1 × Z4
)
. (5.40)

Both the spatial and the temporal vertex isotropy groups are trivial.

Due to the form of the coupling, the input on x2 has double the frequency
of x1, and we find the following conjugating morphisms:

(
ρ(Id, (p/2, 0))x

)
(t) :=

(
x1(t+ p/2), x2(t)

)
,(

ρ(Id, (0, p/2))x
)
(t) :=

(
x1(t), x2(t+ p/2)

)
,(

ρ((−1, 1), (0, 0)x
)
(t) :=

(
− x1(t), x2(t)

)
,(

ρ((1,−1), (0, 0)x
)
(t) :=

(
x1(t),−x2(t)

)
,(

ρ(Id, ϕ)x
)
(t) :=

(
x1(t+ ϕ), x2(t+ ϕ)

)
.

(5.41)

We will discuss more examples of periodic orbits in Chapter 6.
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Figure 5.5.: Numerical simulations of (5.36) for λ = 4, γ = −5, k = 10
(red: x1,1, blue: x2,1) with initial conditions x0

1,1 = 0.5, x0
1,2 =

−1.0, x0
2,1 = −0.1, x0

2,2 = 1.0 show a mixed wave of S1 × Z4-
type. a) + b) Time plots of the two conjugated waves. c)
Closed curves in the phase-space (x`,1, x`2), ` = 1, 2 indicate
a periodic orbit of S1 × Z4-type. d) A different phase-plot
shows that the conjugating morphisms also give rise to solu-
tions of the same system.
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5.3. Equivaroid Hopf bifurcation

In this section we will state and prove the main result of this chapter
which is equivaroid Hopf bifurcation. Standard Hopf bifurcation goes
back to Poincaré (1892) [51] and Andronov (1937) [5], as well Hopf (1942)
[32]. We will use here the infinite-dimensional version due to Crandall
and Rabinowitz (1977) [16], as well as the idea of proof going back to
Vanderbauwhede (1980) [62].

Before proceeding to the main theorem, let us treat the linear part first,
that is, for any system

ẋ = f(λ, x) = A(λ)x+N(λ, x), (5.42)

where A(λ) = Dx f(λ, 0) and N(λ, x) ∈ O(|x|2), we now only look at

ẏ = A(0)y, y ∈ RN , y(0) = y0. (5.43)

Then we know from Chapter 3 that the linearization at the trivial
equilibrium of a (Γ ⇒ I)-equivaroid system is at least (Γ ⇒ I)-equivaroid.
In particular, all vertex spaces Xj of (5.42) are also vertex spaces of
(5.43) with vertex symmetry groups Hj .

Now assume that A(0) possesses complex conjugated eigenvalues ±i and
a corresponding complex geometric eigenspace E. Then any y(t) ∈ E,
y(t) 6= 0, possesses minimal period p = 2π. Similar to the equivariant
case, the flow exp(A(0)t) itself defines an S1-action on E:

ϑy0 := e−2πiϑy0 (5.44)

Note that we will only treat the torus in the following section and stay
with the S1-action here. Now, for any y0 ∈ Xj , where Xj is a vertex space
of (5.42), and corresponding vertex symmetry group Hj , this defines an
action of the twisted spatio-temporal symmetry group (Hj ,Θj) on E, as
follows. Let (γ, ϑ) ∈ (Hj ,Θj) and y0 ∈ Xj , then

(γ, ϑ)y0 := γe−2πiϑy0 = γy(−ϑ). (5.45)
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In this way, we see that

(H̃j ,Θj) := {(γ, θ) | γy(t− ϑ) = y(t) for all t} (5.46)

is indeed a subgroup of the vertex isotropy group of y(t) defined by
(5.43), seen as an element of the space X of 2π-periodic functions.

We are now ready to formulate equivaroid Hopf bifurcation.

Theorem 5.3.1 (Equivaroid Hopf bifurcation). Let f : R× RN → RN
be a Ck-vectorfield, k ≥ 2, with f(λ, 0) = 0 for all λ ∈ R. Let f be
(Γ ⇒ I)-equivaroid for all λ ∈ R. Let Xj ⊆ X be a vertex space with
vertex symmetry group Hj and corresponding twisted symmetry group
(H̃j ,Θj).

Let
ẋ = f(λ, x) = A(λ)x+N(λ, x), (5.47)

where A(λ) = Dx f(λ, 0) and N(λ, x) ∈ O(|x|2). Assume

i) purely imaginary eigenvalues: ±i ∈ specA(0) are eigenvalues
with equal algebraic and geometric multiplicity;

ii) symmetry: dimRE(H̃j ,Θj) = 2;

iii) nonresonance: ±ni /∈ specA(0) for n ∈ Z\{±1};

iv) transverse crossing: the continuation η(λ) ∈ specA(λ) of η(0) =
±i crosses the imaginary axis transversely at λ = 0, i.e., Re η′(0) 6=
0.

Then there exists a local Ck−1-branch, parametrized by s,

s 7→ (λ(s), p(s), x̃(t, s)) (5.48)

of periodic solutions x̃(·, s) of (5.47) with minimal period p(s) for s 6=
0. At s = 0, bifurcation occurs from (λ, p, x) = (0, 2π, 0), with 0 6=
∂sx̃(t, 0) ∈ E(H̃j ,Θj)\{0}. The branch is unique up to reparametrization
of s and shifting time t. Moreover, the spatio-temporal symmetry of
x̃(s, ·) ∈ Xj is at least (H̃j ,Θj), for all s 6= 0.
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5. Spatio-temporal patterns and equivaroid Hopf bifurcation

Proof. We use the functional setting in Section 5.1. The equation
F(λ, p, x) = ẋ− p

2πf(λ, x) = 0 on the spaces X,Y is then equivaroid with
vertex spaces Xj ,Yj and the vertex isotropy groups (H̃j ,Θj). We there-
fore first reduce to Xj , Yj . Next, we apply standard Hopf bifurcation [25]
to the restricted system, which provides us with a branch of nontrivial
solutions which lie in Xj and whose spatio-temporal symmetry is at least
given by (H̃j ,Θj), for all s 6= 0.

The new equivaroid Hopf bifurcation theorem gives rise to those spatio-
temporal patterns discussed in the previous section which can be de-
scribed by an S1-time shift. We will close this section with an example,
before we move on to multi-frequency and toroidal waves in the following
section.

Example 5.3.2 (Turing ring of four oscillators, inspired by [2], giving
rise to a mixed wave of non-orthogonal type). We consider

ż1 = f(λ, z1) + k(z4 + z2)
ż2 = f(λ, z2) + k(z1 + z3)
ż3 = f(λ, z3) + k(z2 + z4)
ż4 = f(λ, z4) + k(z3 + z1),

(5.49)

where f : C→ C is an odd function, Dx f(λ, 0) = λ+ i, and k ∈ C. Then
we find the (flow-invariant) subspace

X0 = {(z1, z2, z3, z4) | z1 ≡ z3 ≡ 0, z2 ≡ −z4}. (5.50)

Linearization of (5.49) at zero yields the system
ż1
ż2
ż3
ż4

 =


λ+ i k 0 k
k λ+ i k 0
0 k λ+ i k
k 0 k λ+ i



z1
z2
z3
z4

 . (5.51)

At λ = 0, we find a geometrically and algebraically double eigenvalue
±i, and no other eigenvalues on the imaginary axis. The eigenspace is
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5.4. Iterated equivaroid Hopf bifurcation

spanned by the eigenvectors (0,−z, 0, z)T and (−z, 0, z, 0)T . It has four
dimensions. Restricted to the subspace X0, it is two-dimensional. As
the eigenvalues cross the imaginary axis with non-zero speed, we find
Hopf bifurcation into the subspace X0. Unfortunately, the bifurcating
solution in this case is unstable, so we do not perform any simulation.
See however Example 6.2.8 for the same pattern generated by a wider
range of coupling matrices where this pattern is in effect stable.

5.4. Iterated equivaroid Hopf bifurcation

Similar to the case of steady-state bifurcation, the equivaroid Hopf
bifurcation theorem does not always give us all periodic solutions near a
bifurcation point. Some of these solutions can be found through iterated
equivaroid Hopf bifurcation. This includes e.g., multi-frequency solutions
but also other patterns with more complicated temporal structures.

Theorem 5.4.1 (Iterated equivaroid Hopf bifurcation). Let f : R×RN →
RN be a Ck-vectorfield, k ≥ 2, with f(λ, 0) = 0 for all λ ∈ R. Let f be
(Γ ⇒ I)-equivaroid for all λ ∈ R. Let Xj ⊆ RN be a vertex space with
vertex symmetry group Hj and corresponding twisted symmetry group
(H̃j ,Θj).

Suppose that Xj = Mj⊕Nj, such that any solution x ∈ Xj of F(λ, x) = 0,
F : R×Xj → Xj can be written in the form x = µ+ν(µ) where µ = µ(λ)
is a solution of µ̇ = f(λ, µ) with (not necessarily minimal) period 2π,
f : R×Mj → Xj, obtained by standard Hopf bifurcation of eigenvalues
±m1i at λ = 0, and ν ∈ Nj. Assume that ν̇ = f(λ, µ + ν(µ)) is S1-
equivariant in the sense of equation (5.6).

Let
ẋ = f(λ, x) = A(λ)x+N(λ, x), (5.52)

where A(λ) = Dx f(λ, 0) and N(λ, x) ∈ O(|x|2). Assume
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5. Spatio-temporal patterns and equivaroid Hopf bifurcation

i) purely imaginary eigenvalues: ±m1i ∈ specA(0)|Mj and ±m2i
∈ specA(0)Nj are eigenvalues with algebraic multiplicity one in the
restricted spaces, m1,m2 ∈ N and either m1 = 1 or m2 = 1. Here
A(λ)Nj := Dν f(λ, µ(λ) + ν)|λ=0,ν=0 : Nj → Xj;

ii) symmetry: dimRENj = 2, where ENj denotes the complex geo-
metric eigenspace to the eigenvalue ±m2i of A(λ)Nj ;

iii) nonresonance: ±ni /∈ specA(0) for n ∈ Z\{±m1,±m2};

iv) transverse crossing: the continuation η(λ) ∈ specA(λ)Nj of
η(0) = ±m2i crosses the imaginary axis transversely at λ = 0, i.e.,
Re η′(0) 6= 0.

Then there exists a local Ck−1-branch, parametrized by s,

s 7→ (λ(s), p(s), x̃(t, s)) (5.53)

of periodic solutions x(·, s) of (5.52) with minimal period p(s) for s 6=
0. There is a 2-torus of solutions. At s = 0, bifurcation occurs from
(λ, p, x) = (0, 2π, 0). Moreover, x(t, s) ∈ Xj, and the minimal period on
the components µ, ν is given by 2π/m1, and 2π/m2, respectively.

Remark 5.4.2.

i) It seems that the condition on S1-equivariance on the space Nj is
not necessary, which means that the existence of many more spatio-
temporal patterns could be proven with a similar construction.
However, this is beyond the scope of this thesis and should be
addressed in future research.

ii) As in the case of the iterated equivaroid branching lemma, we
can apply iterated equivaroid Hopf bifurcation multiple times with
multiple pairs of eigenvalues. We have chosen to present the version
with a “double” Hopf bifurcation here to keep notation clean.

Proof. By assumption, the standard Hopf bifurcation Theorem by Cran-
dall and Rabinowitz [16] gives a nontrivial solution (λ(s), µ(s)) of µ̇ =
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5.4. Iterated equivaroid Hopf bifurcation

f(λ, µ) = 0, f : R ×Mj → Yj with λ(0) = 0, µ(0) = 0. The other con-
ditions then assure another standard Hopf bifurcation for the equation
ν̇ = f(λ, µ(λ) + ν) = 0 with f : R ×Nj → Yj where ν(0) = 0. Putting
this together, any solution x ∈ Xj of ẋ = f(λ, x) = 0, F : R×Xj → Yj
can be written in the form (λ(s), x(s)) = (λ(s), µ(s) + ν(s, µ(s))), which
proves the theorem.

Let us end our discussion on iterated Hopf bifurcation with two examples.
The first example gives rise to a multi-frequency wave.

Example 5.4.3 (Hopf-bifurcation of a multi-frequency wave). We con-
sider the following system

ẋ1 = (λ+ 2i + γ|x2
1|)x1

ẋ2 = (λ+ i + γ|x2
2|)x2 + k

(
|x1|2 − |x2|2

)
x2,

(5.54)

where x1, x2 ∈ C, λ ∈ R is the bifurcation parameter, γ ∈ R is the cubic
coefficient, γ 6= 0, and k ∈ R denotes the coupling strength, k 6= γ. In
this case the relevant vertex space is the full space X = C2, which we
divide into M = {x1 ∈ C} and N = {x2 ∈ C}. Linearization at the
trivial zero equilibrium yields

ż1 = (λ+ k + 2i)z1

ż2 = (λ+ k + i)z2.
(5.55)

Consequentially, for λ = 0, we find the two purely imaginary pairs of
eigenvalues ±i,±2i. OnM we have the normal form of a Hopf bifurcation,
which gives rise to periodic solutions with |x1(t)|2 ≡ −λ/γ. The equation
on N is therefore given by

ẋ2 = (λ+ i + γ|x2
2|)x2 + k

(
−λ
γ − |x2|2

)
x2

=
(
λ
(
1− k

γ

)
+ i + (γ − k)|x2

2|
)
x2,

(5.56)

which again corresponds to the normal form of a Hopf bifurcation. We
therefore find a periodic solution with |x2(t)|2 = −λ(1− k/γ)/(γ − k) =
−λ/γ. We therefore find a Hopf bifurcation to a multi-frequency pattern.
There is a torus of such solutions.
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5. Spatio-temporal patterns and equivaroid Hopf bifurcation

Figure 5.6.: Numerical simulations of (5.54) for λ = −10, γ = −0.5,
k = 10 (red: x1,1, blue: x2,1) with initial conditions x0

1,1 =
0.0, x0

1,2 = 1.0, x0
2,1 = 0.0, x0

2,2 = 2.0 show a multi-frequency
wave. a) Time-plot. b) Phase-plot: Closed curves in the
phase-space (x1,1, x2,1) indicate a periodic orbit, the loop-like
form also supports the 2 : 1-frequency relation. c) Phase-
plot, but with different initial conditions, x0

1,1 = −1.0, x0
1,2 =

1.0, x0
2,1 = 0.0, x0

2,2 = 2.0. There is a torus of multi-frequency
solutions.
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5.4. Iterated equivaroid Hopf bifurcation

In the following example we see that iterated equivaroid Hopf bifurcation
can be useful also if both pairs of imaginary eigenvalues are ±i.

Example 5.4.4 (A concentric wave of Z2-type with a 2-torus of conju-
gating spatio-temporal symmetries, continued from Example 5.2.4). We
reconsider the network

ẋ1 = f(λ, x1) + k1 g(x2)
ẋ2 = f(λ, x2) + k1 g(x1)
ẋ3 = f(λ, x3) + k1 g(x3) + k2 g(x1)− k2 g(x2),

(5.57)

with x1, x2, x3 ∈ RN , f : R × RN → RN , g : RN → RN , k1, k2 ∈ RN×N ,
and λ ∈ R is the bifurcation parameter. We also suppose that f(λ, 0) = 0,
Dx f(λ, 0) = λ+ i, g(0) = 0, and g′(0) = α+ iβ. The Jacobi matrix L at
the trivial equilibrium is then given by

L =

 λ+ i k1α+ ik1β 0
k1α+ ik1β λ+ i 0
k2α+ ik2β −k2α− ik2β λ+ k1α+ i + ik1β

 , (5.58)

which means that there is a double pair of eigenvalues ±i(1 + k1β) at
λ = −k1α. Each of these yields an equivaroid Hopf bifurcation into the
vertex spaces X1 = {(x1, x2, x3) | x1 = x2 = 0} and X2 = {(x1, x2, x3) |
x3 = 0}. This is however not all that happens, and we can indeed observe
iterated equivaroid Hopf bifurcation. To do this, we first need to find a
suitable vertex space, and then a decomposition of that vertex space. The
space that we are looking for is given by X1 = {(x1, x2, x3) | x1 = x2}.
Identifying x := x1 = x2, the network reduces to

ẋ = f(λ, x) + k1 g(x)
ẋ3 = f(λ, x3) + k1 g(x3).

(5.59)

We can now splitX1 = M1⊕N1 whereM1 = {x ∈ R} and N1 = {x3 ∈ R}
and we can perform standard Hopf bifurcation in either of these spaces,
and then in the other, obtaining a 2-torus of bifurcating periodic solutions
as discussed in Example 5.2.4. Note that in this specific example, there
is no amplitude amplification because the system decouples completely.
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6. Rational design of dynamical
systems with groupoid
symmetries

After introducing the notion of groupoid symmetries in the previous
chapters, the next questions are: Which dynamical systems allow for
such groupoid symmetries? How can we design dynamical systems with
prescribed symmetries? Consequentially, in this chapter, we will address
the theoretical background for the rational design of networks, moreover,
we present explicit examples. These results also clearly illustrate the
many different types of spatio-temporal patterns captured by the new
groupoid approach.

In Section 6.1 a convenient notation of networks is introduced. In Section
6.2 we will design patterns defined purely by a vertex isotropy group.
Section 6.3 deals with the design of networks where we prescribe not
only the vertex isotropy group, but also the vertex quotient group.

6.1. Network Setting

In this chapter we deal exclusively with patterns in finite dimensions.
This will help us concentrate on the patterns and avoid technical problems
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such as existence of uniqueness of solutions which could arise in infinite-
dimensional systems. Note, however, that the general principle can and
should be transferred to larger classes of dynamical systems.

Our focus lies on ordinary differential equations
ẋ = f(x), (6.1)

with x ∈ RnN , f : RnN → RnN , and we assume that equation (6.1) can
be rewritten in network form, that is, x consists of n components of
N -dimensional vectors,

x = (x1, . . . , xn), x` ∈ RN . (6.2)
Depending on the context, the individual components x` ∈ RN are called
oscillators, cells, or nodes [26, 27]. Generalizations to oscillators with
different dimensions are certainly possible but would lead us too far
astray.

The individual oscillators xi are coupled via M coupling matrices γi ∈
RnN×nN , i = 1, . . . ,M , which are notated in block matrix form

γi = (γi`m)`,m=1,...,n, (6.3)
with γi`m ∈ RN×N for all `,m = 1, . . . , n. We allow for nonlinear, but
diagonal coupling functions

gi : RnN → RnN

(x1, . . . , xn) 7→ (gi(x1), . . . , gi(xn)),
(6.4)

which act on each oscillator x`, ` = 1, . . . , n, separately. In other words,
in this notation we separate the nonlinear part gi of the coupling from
its nondiagonal part γi. In total, we consider networks of the form

ẋ = F
(
γ1g1(x), . . . , γMgM (x)

)
, (6.5)

where F : RnN → RnN . All involved functions are assumed to be suffi-
ciently well-behaved to guarantee existence and uniqueness of solutions.
This network class contains many examples studied in the literature,
including e.g., [6, 9, 58, 60]. In particular, note that the oscillators are
not required to possess the same internal dynamics.

Throughout the chapter, let X̃ be a linear subspace of X = RnN .
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6.2. Designing patterns with a prescribed vertex isotropy group

6.2. Designing patterns with a prescribed vertex
isotropy group

In this section we prescribe a vertex space, or alternatively, its corre-
sponding vertex isotropy group. It is our task to design a network of the
form outlined in Section 6.1 which contains the desired vertex space and
isotropy group.

It turns out that the coupling matrices γi of the network can be chosen
out of the following monoid (a monoid fulfills all conditions of a group
except invertibility).

Definition 6.2.1 (Full symmetry monoid of a vertex space X̃). We call
the set

M := {γ ∈ RnN×nN | γx ∈ X̃ for all x ∈ X̃}, (6.6)

together with matrix multiplication, the full symmetry monoid of X̃.

Why does the setM form a monoid? First, note that γ = Id is an element
of M. Second, for all γ1, γ2 ∈ M, also γ1γ2 ∈ M, and associativity
follows by the standard associativity of matrix multiplication. On the
other hand, we do not require invertibility of the elements γ ∈M, which
implies thatM does not form a group, but a monoid.

Remark 6.2.2. The setM is a linear subspace of RnN×nN . Its crucial
property is that its monoid action leaves the space X̃ invariant.

Together with the notation above, we obtain the following pattern de-
sign.

Theorem 6.2.3 (Designing patterns using the full symmetry monoid).
Let the coupling matrices γi ∈ RnN×nN , i = 1, . . . ,M , be elements of the
full symmetry monoidM of X̃.

Let a family of coupling functions gi : RnN → RnN with g(X̃) ⊆ X̃ be
defined as in (6.4), and let F (X̃, . . . , X̃) ⊆ X̃.
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6. Rational design of dynamical systems with groupoid symmetries

Then X̃ is a vertex space of the following type of networks,

ẋ = F
(
γ1g1(x), . . . , γMgM (x)

)
. (6.7)

Moreover, the vertex isotropy group of X̃ is given by

K̃ = {γ ∈ RnN×nN | γx = x for all x ∈ X̃, γ invertible}. (6.8)

Proof. The linear subspace X̃ is flow-invariant by construction: First,
we require g(X̃) ⊆ X̃, then γiX̃ ⊆ X̃ and lastly F (X̃, . . . , X̃) ⊆ X̃. The
vertex isotropy group follows immediately from Corollary 2.3.6.

Remarks 6.2.4.

i) In particular, there always exist networks with the vertex space
and vertex isotropy group. It is possible to construct any linear
subspace, also prescribing seemingly exotic conditions like x1 = 3x2
or similar. The difficulty mostly lies in finding nonlinear F and
gi’s which satisfy the flow-invariance conditions.

ii) We do not claim that all networks with a vertex space X̃ are
of the form constructed in Theorem 6.2.3. This point should be
investigated in future research.

iii) Note that such network constructions only yield information on
the vertex isotropy groups, and none on the symmetry or quotient
groups. In the next section we will discuss which γ ∈M should be
used to design networks with given vertex symmetry and quotient
groups.

iv) Networks with more than one vertex space can be constructed
by choosing coupling matrices which lie simultaneously in the full
symmetry monoids of all the desired spaces. At this point, we
do not know whether the intersection of two or more prescribed
symmetry monoids contains more than the identity matrix. It
remains to be studied which combinations of vertex spaces are
readily realizable.
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v) Conversely, constructions as in Theorem 6.2.3 will often yield more
than one vertex space, since a chosen coupling matrix often belongs
to the full symmetry monoid of another linear subspace of X as
well.

vi) To obtain conjugating symmetries, it suffices to construct two
distinct vertex spaces with the same dynamics on each vertex
space.

Let us discuss a case which merits special attention: full synchrony. This
corresponds to the subspace

XS := {(x1, . . . , xn) | x1 = · · · = xn}. (6.9)

We will consider here a relatively easy network type, with n identical
oscillators x`, ` = 1, . . . , n, and simple additive coupling, for which we
formulate a precise version of the folklore theorem: “Coupling matrices
with constant row sums yield synchrony”; see e.g., [49].

Corollary 6.2.5 (Networks with full synchrony). Consider the syn-
chrony subspace XS. Choose a coupling matrix γ ∈ RnN×nN from its full
symmetry monoidMS, which is given by

MS =
{
γ ∈ RnN×nN

∣∣∣∣∣
n∑

m=1
γ1m = · · · =

n∑
m=1

γnm =: γ̂
}
. (6.10)

Then XS is a vertex space of the network

ẋ` = f(x`) +
n∑

m=1
γ`m g(xm), ` = 1, . . . , n, (6.11)

with vertex isotropy group

KS = {γ ∈Ms | γ invertible, γ̂ = Id}, (6.12)

and the reduced dynamics on XS is given by

ẋ = f(x) + γ̂ g(x). (6.13)
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6. Rational design of dynamical systems with groupoid symmetries

Here, reduced dynamics means that all synchronized oscillators are iden-
tified.

Proof. The full symmetry monoid can be obtained by direct calculation.
The remaining claims are an immediate corollary of Theorem 6.2.3.

Let us discuss another special case, namely partial synchrony, or as it
is also called, balanced colourings [26]. Partial synchrony is a partition
P on the set of oscillators (more precisely: on its index set {1, . . . , n})
such that the oscillators x` are identical on each cell in the partition; see
also [26]. We define ∼P to be the equivalence relation with respect to
the partition P , denote by [`] the representative of the equivalence class
containing `, and its cell by

C` := {k ∈ {1, . . . .n} | k ∼P `}. (6.14)

We denote the partial synchrony subspace by

XP = {(x1, . . . , xn) | ` ∼P m implies x` = xm for all `,m = 1, . . . , n}.
(6.15)

Corollary 6.2.6 (Networks with partial synchrony). Consider a parti-
tion P on the set of oscillators and its corresponding partial synchrony
subspace XP . Let the coupling matrix γ ∈ RnN×nN be an element of the
full symmetry monoidMP of the subspace XP , which is given by

MP =

γ ∈ RnN×nN
∣∣∣∣∣∣
∑
`∈C`

γp` =
∑
`∈C`

γp̃` =: γ[m][`],

p, p̃ ∈ Cm, form, ` = 1, . . . , n
}
.

(6.16)

Then XP is a vertex space of the network

ẋ` = f(x`) +
n∑
k=1

γ`k g(xk), ` = 1, . . . , n, (6.17)
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with vertex isotropy group

KP =

γ ∈MP

∣∣∣∣∣∣ γ invertible,
∑
`∈Cj

γp` = Id, p ∈ Cj ,

∑
`∈Ck

γp` = 0, p ∈ Ck, k �P j, j, k = 1, . . . , n

 .
(6.18)

The reduced network is given by

ẋ[m] = f
(
x[m]

)
+

M∑
`=1

γ[m][`] g
(
x[m]

)
, m = 1, . . . ,M, (6.19)

where we choose one representative [m] of each equivalence class.

Proof. The proof is completely analogous to the proof of Corollary 6.2.5.

How robust are our results with respect to pertubations? This question
concerns both the coupling matrices from the full symmetry monoid, as
well as the invariance conditions on the nonlinearities. As a very first step
towards an answer, each of the examples below includes also a perturbed
version. We observe that the prescribed patterns are surprisingly robust.
Further research needs to be conducted in this direction.

We present here three examples, which should illustrate the vastness of
possible patterns even in very small networks. The simulations are per-
formed with Mathematica using NDSolve and merely serve illustrational
purposes.

Example 6.2.7 (Partial synchrony for three oscillators). We prescribe
the linear subspace X1 = {(x1, x2, x3) | x1 = x2} ⊂ R3N where x` ∈ RN
for ` = 1, 2, 3 and want to construct a class of networks which possesses
X1 as a vertex space. As this is only a pattern of partial synchrony, there
are no requirements on the nonlinearities f, g. In other words, the results
are model-independent.
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Figure 6.1.: Schematic depiction of the network (6.22). The coupling γ12
is drawn black and solid, γ31 solid blue, −γ31 dotted blue,
γ33 dashed black. The identical self coupling through f is
omitted.

First, we determine the full symmetry monoid,

M1 =

 γ ∈ R3N×3N

∣∣∣∣∣∣∣ γ =

γ11 γ12 γ13
γ21 γ11 + γ12 − γ21 γ13
γ31 γ32 γ33


 , (6.20)

where γ`m ∈ RN×N . Choosing any coupling matrix out of the setM1,
we should be able to observe two synchronous oscillators x1 and x2,
and one non-synchronous oscillator x3, according to the results in this
section. “Should”, because we have not discussed stability yet. It turns
out however, that it is easy to find a dynamical system with stable
solutions within the subspace X1, as we have many free parameters at
our disposal: There are indeed seven matrices γ`m which can be chosen
freely, and each matrix contains N2 free parameters.

For the simulations, we choose the following set of coupling matrices,

H1 =

 γ ∈ R3N×3N

∣∣∣∣∣∣∣ γ =

 0 γ12 0
γ12 0 0
γ31 −γ31 γ33


 , (6.21)
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Figure 6.2.: a) Numerical simulation of the network (6.22) (red: x1,1,
blue: x2,1, green: x3,1). Here x`,1, x`,2 denote the first
and the second component of x`, respectively. Initial con-
ditions outside X1 (x0

1,1 = 0.3, , x0
1,2 = 2, x0

2,1 = −1.0, x0
2,2 =

−1, x0
3,1 = 0, x0

3,2 = 2) indicate a large region of stabil-
ity for a periodic orbit in X1. The oscillators x1 and
x2 synchronize after a short transient while x3 follows
a different trajectory, as prescribed. The example uses
no additional symmetries on f and g, specifically, the
following dynamics were used: f1(x`,1, x`,2) = 4x`,1 +
x`,2−10

(
x2
`,1 + x2

`,2

)
x`,1−2

(
x3
`,1 + x3

`,2

)
x`,1, f2(x`,1, x`,2) =

−x`,1 + x`,2 − 10
(
x2
`,1 + x2

`,2

)
x`,2 − 2

(
x3
`,1 + x3

`,2

)
x`,2,

g(x`) = x`, γ12 = 0.8, γ13 = −0.08, γ33 = −0.02. b)
Perturbation of (6.22). Specifically, different γ12 = 1.0,
γ21 = 0.8 for the coupling of the first and the second
equation were used, and f1(x1,1, x1,2) = 4x1,1 + x1,2 −
10
(
(x1,1 − 0.1)2 + x2

1,2

)
x1,1 − 2

(
x3

1,1 + x3
1,2

)
x1,1. The pat-

tern is still clearly visible.
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6. Rational design of dynamical systems with groupoid symmetries

which falls into the above category and yields the rather simple network

ẋ1 = f(x1) + γ12 g(x2)
ẋ2 = f(x2) + γ12 g(x1)
ẋ3 = f(x3) + γ31 g(x1)− γ31 g(x2) + γ33g(x3),

(6.22)

with x1, x2, x3 ∈ R2, f, g : R2 → R2, γ`m ∈ R2×2, `,m = 1, 2, 3. Graph-
ically, the network is depicted in Fig. 6.1. The numerical simulations
in Fig. 6.2 confirm a successful design of the prescribed pattern. The
pattern is still clearly visible when a pertubation is included.

Last, the reduced network on the subspace X1 is given by

ẋ[1] = f(x[1]) + γ12 g(x[1])
ẋ[2] = f(x[2]) + γ31g(x[2]).

(6.23)

To finish this example, we find the vertex isotropy group as

K1 =

 γ ∈ R3N×3N

∣∣∣∣∣∣∣ γ =

γ11 Id−γ11 0
γ21 Id−γ21 0
γ31 −γ31 Id

 , det γ 6= 0

 , (6.24)

where Id denotes the N -dimensional identity matrix, and 0 the N -
dimensional zero matrix.

Example 6.2.8 (Partial amplitude death combined with algebraic con-
ditions). We prescribe the linear subspace

X2 = {(x1, x2, x3, x4) | x1 = −x3, x2 = x4 = 0} ⊂ R4N , (6.25)

where x` ∈ RN for ` = 1, 2, 3, 4. We find the full symmetry monoid as

M2 =

 γ ∈ R4N×4N

∣∣∣∣∣∣∣∣∣ γ =


γ11 γ12 γ13 γ14
γ21 γ22 γ21 γ24
γ31 γ32 γ11 − γ13 + γ31 γ34
γ41 γ42 γ41 γ44


 .
(6.26)
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6.2. Designing patterns with a prescribed vertex isotropy group

Next, to design X2, we further suppose that f, g are odd functions. This
ensures the invariance conditions, more precisely that f(0) = 0, g(0) = 0
and also allows for the condition x1 = −x3. We restrict ourselves to
networks of the form

ẋ` = f(x`) +
n∑

m=1
γ`k g(xk), ` = 1, . . . , n. (6.27)

For the simulations in Fig. 6.3, we choose the Stuart–Landau oscillator
for the local dynamics and the coupling matrix

γ = 3


0 −10 −1 −1
5 2 5 1
3 −1 4 3
2 −6 2 −10

 . (6.28)

The reduced network on the subspace X2 is given by
ẋ[1] = f

(
x[1]
)

+ 3 g
(
x[1]
)

x[2] = 0.
(6.29)

Note that the often used diffusive coupling of the form

γ =


−2 1 0 1
1 −2 1 0
0 1 −2 1
1 0 1 −2

 (6.30)

is an element of the full symmetry monoid as well, this explicit example
and this specific subspace have been extensively discussed, since the
invariant subspace does not correspond to a fixed-point subspace of the
symmetry group; see e.g., in [2] about the Turing ring with four cells.
Last, we find the vertex isotropy group as

K2 =

 γ ∈ R4N×4N

∣∣∣∣∣∣∣∣∣ γ =


γ11 γ12 γ11 − Id γ14
γ21 γ22 γ21 γ24
γ31 γ32 γ31 + Id γ34
γ41 γ42 γ41 γ44

 , det γ 6= 0

 ,
(6.31)

where γ`m ∈ RN×N . The desired dynamics are clearly visible, also for a
randomly perturbed coupling matrix.
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6. Rational design of dynamical systems with groupoid symmetries

Figure 6.3.: a) Numerical simulation of (6.27) (red: x1,1, blue: x2,1, ma-
genta: x3,1, green: x4,1). Here x`,1, x`,2 denote the first
and the second component of x`, respectively. Initial condi-
tions outside X2 (x0

1,1 = −2.0, x0
1,2 = 2.0, x0

2,1 = 1.0, x0
2,2 =

−0.2, x0
3,1 = 1.0, x0

3,2 = −3.0, x0
4,1 = −0.1, x0

4,2 = 0.1) in-
dicate a large region of stability for an equilibrium in X2.
Specifically, the following dynamics were used: f(x`,1, x`,2) =
4x`,1 + xi,2 − 1.5

(
x2
i,1 + x2

i,2

)
xi,1, f2(x`,1, x`,2) = −x`,1 +

4x`,2−1.5
(
x2
`,1 + x2

`,2

)
x`,2, g(x`,1, x`,2) = (x`,1, x`,2), γ as in

equation (6.28). b) Pertubation of (6.27), random additions
of 0,±0.22 to each element of the coupling matrix. The
pattern is still visible.

Example 6.2.9 (Algebraic relations between oscillators). As a final
example, we now consider a two-oscillator network with x1, x2 ∈ C and
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6.2. Designing patterns with a prescribed vertex isotropy group

the prescribed subspace

X3 =
{

(x1, x2) | x1 = e−
2πi
3 x2

}
. (6.32)

The full symmetry monoid of X3 is given by

M3 =
{
γ ∈ C2×2

∣∣∣∣∣ γ =
(
γ11 γ12

γ21 γ11 + γ12e
2πi
3 − γ21e

− 2πi
3

)}
. (6.33)

We consider the following explicit example,

ẋ1 = f(x1) + κ e−
2πi
3 x2

ẋ2 = f(x2) + κ e+ 2πi
3 x1,

(6.34)

where x1, x2 ∈ C, κ ∈ C. Note that the coupling is an element ofM3.
To fulfill the invariance conditions, we additionally assume that f is
Z3-equivariant, i.e.,

f
(
e−

2πi`
3 x

)
= e−

2πi`
3 f(x) for all x ∈ C and for ` = 0, 1, 2. (6.35)

The reduced network on the subspace X3 is given by

ẋ[1] = f
(
x[1]
)

+ κx[1]. (6.36)

Last, we determine the vertex isotropy group as

K3 =
{
γ ∈ C2×2

∣∣∣∣∣ γ =
(
γ11 e−

2πi
3 (1− γ11)

γ21 1− γ21e
− 2πi

3

)
, det γ 6= 0

}
. (6.37)

The pattern is clearly visible, also in the perturbed case; see Fig. 6.4.
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6. Rational design of dynamical systems with groupoid symmetries

Figure 6.4.: a) Numerical simulation of (6.34) (red: x1,1, blue: x2,1,
magenta: x3,1, green: x4,1). Here x`,1, x`,2 denote the first
and the second component of x`, respectively. Initial condi-
tions outside X2 (x0

1,1 = −2.0, x0
1,2 = 2.0, x0

2,1 = 1.0, x0
2,2 =

−1.0, x0
3,1 = 1.0, x0

3,2 = −3.0, x0
4,1 = −0.5, x0

4,2 = 1)
indicate a large region of stability for an equilibrium
in X2. Specifically, the following dynamics were used:
f(x`,1, x`,2) = x`,1−x`,2−

(
x2
`,1 + x2

`,2

)
x`,1+0.4

(
x2
`,1 + x2

`,2

)
,

f2(x`,1, x`,2) = x`,1 + x`,2 −
(
x2
`,1 + x2

`,2

)
x`,1 −

0.8
(
x2
`,1 + x2

`,2

)
, κ = 1.4. b) Pertubation of (6.34),

f is no longer Z3-equivariant: f(x`,1, x`,2) = x`,1 − x`,2 −
1.2

(
x2
`,1 + x2

`,2

)
x`,1 + 0.4

(
x2
`,1 + x2

`,2

)
, f2(x`,1, x`,2) =

x`,1 + x`,2 − 0.8
(
x2
`,1 + x2

`,2

)
x`,1 − 0.8

(
x2
`,1 + x2

`,2

)
. The

pattern is distorted yet still clearly visible.
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6.3. Designing patterns with a nontrivial vertex quotient group

6.3. Designing patterns with a nontrivial vertex
quotient group

In this section we design networks with a prescribed vertex space as well
as a prescribed nontrivial vertex quotient group. To this end, let us start
with the following two definitions.

Definition 6.3.1 (Isotropy monoid of a linear subspace X̃ ⊆ X = RnN ).
We call the set

K :=
{
γ ∈ RnN×nN | γx = x for all x ∈ X̃

}
, (6.38)

together with matrix multiplication, the isotropy monoid of X̃.

Note that the elements γ ∈ K need not be invertible, but that the vertex
isotropy group K̃ is a subset of K. We are dealing with a monoid since the
identity is clearly an element of K and all elements can be composed.

Let us suppose that we want to prescribe a finite vertex quotient group
Q = {q1, . . . , qm} on the space X̃. Then for each x ∈ X̃, the vertex
quotient group reaches a finite number of points qjx ∈ X̃, j = 1, . . . ,m.

Definition 6.3.2 (Symmetry monoid with a given quotient). Let X̃ ⊆ X
be a linear subspace of X = RnN . Let Q be a prescribed vertex quotient
group of X̃, acting on the full space X. Let K be the isotropy monoid of
the space X̃. We call the set

H := {γ ∈ RnN×nN | for all x ∈ X̃ there exists a
j ∈ {1, . . . ,m} such that γx = qjx},

(6.39)

together with matrix multiplication, the symmetry monoid of X̃ with
quotient group Q.

Let us reflect shortly on this definition. First, we are again dealing with
a monoid: The identity is clearly an element of H, and all elements may
be composed. Second, note that H leaves the space X̃ invariant.
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6. Rational design of dynamical systems with groupoid symmetries

The symmetry monoid with a given quotient group can give rise to the
prescribed pattern as described in the following theorem.

Theorem 6.3.3 (Patterns via the symmetry monoid with quotient
group Q). Let the coupling matrices γi ∈ RnN×nN , i = 1, . . . ,M , be
elements of the symmetry monoid H of X̃ with quotient group Q. Let
H̃ = {γ ∈ H | γ invertible}.

Let a family of coupling functions gi : RnN → RnN with g(X̃) ⊆ X̃ be
defined as above and let F (X̃, . . . , X̃) ⊆ X̃. Additionally, for all h ∈ H̃
and for all x, x1, . . . , xM ∈ X̃, suppose that hg(x) = g(hx), hγi = γih
and F (hx1, . . . , hxM ) = hF (x1, . . . , xM ).

Then X̃ is a vertex space of the following type of networks,

ẋ = F
(
γ1g1(x), . . . , γMgM (x)

)
. (6.40)

Moreover, the vertex isotropy group of X̃ is given by

K̃ = {γ ∈ RnN×nN | γx = x for all x ∈ X̃, γ invertible}, (6.41)

and its vertex symmetry group is given at least by H̃.

Proof. The linear subspace X̃ is flow-invariant by construction, as before.
Moreover, F is (H̃ ⇒ X̃)-equivaroid.

Remarks 6.3.4.

i) Again, we do not claim that all networks with a vertex space X̃
are of the above form and suggest this as a topic of future research.

ii) Compared to Theorem 6.2.3, the set of possible coupling matrices
is notably smaller.

iii) The condition F (hx1, . . . , hxM ) = hF (x1, . . . , xM ) is automatically
fulfilled for additive coupling terms.

134



6.3. Designing patterns with a nontrivial vertex quotient group

iv) To obtain inherited conjugating symmetries, it is useful to construct
first the vertex space with the quotient group which should be
inherited to smaller vertex spaces as conjugated morphisms.

In the following example, we will construct a class of networks which
contains a specific vertex space, combined with a prescribed vertex
quotient group. We will also comment on the spatio-temporal pattern
that we would expect in this case and provide a simulation.

Example 6.3.5. We prescribe the linear subspace X3 = {(x1, x2, x3) |
x1 = x3} ⊂ R3N where x` ∈ RN for ` = 1, 2, 3, 4. In this case, the
isotropy monoid is given by

K3 =

γ ∈ R3N×3N

∣∣∣∣∣∣∣ γ =

γ11 0 Id−γ11
γ21 Id −γ21
γ31 0 Id−γ31


 , (6.42)

where γ`m ∈ RN×N , `,m = 1, 2, 3.

Moreover, we prescribe the vertex quotient group, as it acts on R3N as

Q3 =


Id Id − Id

0 0 Id
0 Id 0

 ,
Id 0 0

0 Id 0
0 0 Id


 . (6.43)

Note that this group is isomorphic to Z2 and that it exchanges oscillators
x1 and x3 with oscillator x2.

From this, let us determine the symmetry monoid with the given quotient,

H3 =

γ ∈ R3N×3N

∣∣∣∣∣∣∣ γ =

γ11 Id −γ11
γ21 0 Id−γ21
γ31 Id −γ31

 ,
γ11 0 Id−γ11
γ21 Id −γ21
γ31 0 Id−γ31


 .

(6.44)
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6. Rational design of dynamical systems with groupoid symmetries

Figure 6.5.: The two different network types which allow for the vertex
space X3 in combination with the vertex quotient group Q3.

As we choose additive coupling, there are no further conditions on
commutativity. For the simulations, we now choose the following system:

ẋ1 = f(x1) + κg(x2)
ẋ2 = f(x2) + κg(x1)
ẋ3 = f(x3) + κg(x2).

(6.45)

Specifically, we choose N = 2 and κ ∈ R. Its coupling matrix is given by

γ∗ =

 0 κ Id 0
κ Id 0 0

0 κ Id 0

 , (6.46)

which makes it an element of the symmetry monoid H3. Theorem 6.3.3
states that the network indeed possesses the prescribed vertex space,
vertex isotropy, symmetry and quotient groups.

The vertex quotient group tell us that whenever there is a solution of
(6.45) of the form (ξ1, ξ2, ξ1), there is also a solution of the form (ξ2, ξ1, ξ2),
that is, the system restricted to the vertex spaceX3 is Z2-equivariant. For
periodic orbits we can therefore reasonably expect anti-phase patterns of
the form ξ1(t)

ξ2(t)
ξ1(t)

 =

ξ2(t− p/2)
ξ1(t− p/2)
ξ2(t− p/2)

 , (6.47)

where p > 0 denotes the minimal period of said periodic orbit. For a
specific example, such a periodic orbit can be found in Fig. 6.6 .
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6.3. Designing patterns with a nontrivial vertex quotient group

50

Figure 6.6.: a) and b) Numerical simulation of (6.45) for N = 2 (red:
x1,1, blue: x2,1, green: x3,1). Initial conditions far out-
side X3 (for a) x0

1,1 = 0.0, x0
1,2 = −1.0, x0

2,1 = 1.0, x0
2,2 =

−2.0, x0
3,1 = −0.5, x0

3,2 = −2.0, for b) x0
1,1 = 1.0, x0

1,2 =
−2.0, x0

2,1 = 0.0, x0
2,2 = −1.0, x0

3,1 = −0.5, x0
3,2 = −2.0) in-

dicate a large region of stability for a periodic orbit in X3.
While x1 and x3 become indistinguishable after a short time,
x2 is time-shifted by half the minimal period. We see both
solutions of the form (ξ1, ξ2, ξ1) and (ξ2, ξ1, ξ2) (compare
a) and b)). The example uses no additional symmetries
on f and g, as this is not required. Specifically, the fol-
lowing dynamics were used: f1(xi,1, xi,2) = 4xi,1 + xi,2 −
5
(
x2
i,1 + x2

i,2

)
xi,1 −

(
x3
i,1 + x3

i,2

)
xi,1,f2(xi,1, xi,2) = −xi,1 +

xi,2 − 5
(
x2
i,1 + x2

i,2

)
xi,2 −

(
x3
i,1 + x3

i,2

)
xi,2, g(xi) = 0.4xi.
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7. Conclusion and discussion

To conclude this thesis on a new theory of symmetric dynamical systems
which allows both a more general and a more refined investigation of
spatio-temporal patterns, we comment on the symmetry groupoid and on
equivaroid dynamical systems from a variety of perspectives. What have
we achieved in this thesis? How does our work compare to other recent
generalizations of symmetry groups? And which research questions will
need to be answered in the future?

We present a short overview of our aims, methods, and results in Section
7.1. In Section 7.2 we discuss quiver symmetries and the groupoid
formalism in comparison to the symmetry groupoid as presented in this
thesis. In Section 7.3 we indicate open problems and give an outlook on
further research.

7.1. Conclusion

It is the main goal of this dissertation to generalize the existing definition
of symmetry and dynamical systems and create a refined but much more
widely applicable theory of symmetric dynamical systems. In particular,
we want to describe patterns in systems without group symmetry.

To this aim, we redefine symmetry on the basis of linear flow-invariant
subspaces. Any linear isomorphism which maps a solution from one
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subspace to another solution, which might lie in the same subspace or in
a different one, is defined to be a symmetry. In this way, we break down
symmetry to the phenomenon that we want to describe: Solutions are
mapped to solutions. In contrast to group symmetry, we do not require
that all solutions are mapped to solutions, but only that all solutions in
a given linear flow-invariant subspace are mapped to solutions. In view
of their central importance, the linear flow-invariant subspaces are called
vertex spaces.

It turns out that the algebraic structure of symmetries defined in this
way is given by a groupoid and we define the set of all symmetries as
the symmetry groupoid. This gives rise to notions such as vertex spaces,
vertex symmetry, isotropy and quotient groups as well as conjugating
symmetries.

We formulate the new symmetry definition in terms of a generalized
equivariance — this provides us with equivaroid maps as well as a
convenient condition for the generalization to the infinite-dimensional
case and the bifurcation theorems.

On a more technical note, an equivaroid system restricted to a certain
linear subspace is called subequivaroid, a term describing the particular
way in which vertex spaces as well as symmetries are inherited to the
restricted system. We also introduce invaroid subspaces, that is, special
linear subspaces which are left invariant under the action of the full
groupoid.

The equivaroid setting allows for a significant generalization of the
well-known equivariant bifurcation theory. In particular, we prove an
equivaroid version of the Lyapunov–Schmidt reduction and from this,
two generalizations of steady-state bifurcation in equivaroid systems.

Moreover, the treatment of spatio-temporal patterns can be vastly gener-
alized in the setting of equivariant systems: Going beyond discrete and
rotating waves, we are now able to incorporate e.g. multi-frequency pat-
terns into the theory. Existence of these patterns is established through
the new (iterated) equivaroid Hopf bifurcation theorem.
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Lastly, we have shown how to rationally design dynamical systems that
allow for prescibed groupoid symmetries. In the context of networks, we
find that the main algebraic objects in this context are the symmetry and
the isotropy monoids of the prescribed vertex space. The corresponding
results also illustrate the many different types of spatio-temporal patterns
captured by the new groupoid approach.

7.2. Discussion of quiver symmetries and the
groupoid formalism

The need to establish a theory of symmetry in dynamical systems which
is more general than symmetry groups has been identified before. Most
notably, the concept of quiver symmetries [46] and the groupoid formalism
[26] have been developed over the past years. We will now shortly discuss
both of these theories and compare them to the symmetry groupoid as
developed in this thesis.

Let us start with the theory of quiver symmetries [46] by Nijholt, Rink
and von der Gracht. Roughly speaking, quivers are algebraic structures
similar to groupoids. They also consist of a set V of objects or vertices
and of a set A of morphisms between those vertices with source and
target maps.

As algebraic objects, quivers require less structure than groupoids: In
particular, no inverse and no identity are required and there are no
restrictions concerning any (partial) composition of morphisms. Therefore
quivers are interpreted or even defined as directed multigraphs. For
their use in the context of finite-dimensional dynamical systems, quivers
are represented as follows: Each vertex v is represented by a finite-
dimensional vector space Ev, and each morphism a is represented by a
linear map Ra : Es(a) → Et(a) between those vector spaces, where s(a)
and t(a) denote source and target of the morphism a.
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Then a map F is called quiver-equivariant if it consists of a collection of
maps Fv : Ev → Ev, v ∈ V , such that

Ft(a) ◦Ra = Ra ◦ Fs(a) for all a ∈ A. (7.1)

Comparing the symmetry quiver and the symmetry groupoid, we find
that these objects share a subset of their morphisms, namely what we
call the vertex quotient groups Qj in this thesis. The other morphisms
are either only found in the symmetry groupoid, e.g., the morphisms
which form the vertex isotropy groups, or they are only found in the
quiver, in this case the noninvertible morphisms between vertex spaces
of different dimensions. This is because the definitions of symmetry and
equivariance in the two contexts differ, and while the quiver requires less
structure on the algebraic object, the groupoid symmetries require less
structure on the dynamical system.

Both definitions of symmetry share that they are preserved by the
Lyapunov–Schmidt reduction. Further similarities and differences will
need to be examined in the future, as well as the possibility of an even
more general theory which encompasses both definitions of symmetry.

Another theory which generalizes symmetry is the groupoid formalism
by Golubitsky and Stewart [26]. It is explicitly intended to describe
the symmetries in networks of coupled dynamical systems. As such,
their symmetry groupoid only uses morphisms which can be described
as permutations between different cells.

More precisely, in a directed network consisting of a finite set C of coupled
cells, and a finite set E of arrows (“couplings”) between them, the input
set of c ∈ C is defined as

I(c) = {e ∈ E | e points towards c}. (7.2)

Then an equivalence relation ∼I on C is defined by

c1 ∼I c2 ⇐⇒ β : I(c1)→ I(c2) is an arrow-preserving bijection, (7.3)

where we call β an input isomorphism. Let B(c1, c2) denote the set of all
input isomorphisms from cell c1 to cell c2. Then the symmetry groupoid
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of a network in the context of the groupoid formalism is defined as

B =
⋃

cj ,ck∈C
B(cj , ck). (7.4)

From this, the authors construct polydiagonals, that is, flow-invariant
subspaces of partial synchrony. The advantage is that these subspaces can
be found directly by simply “colouring” the cells (“balanced colouring”).

Comparing with the symmetry groupoid as defined in this thesis, we
find that it consists only of a subset of the groupoid we discussed in
this thesis, namely of those morphisms which act as permutations. The
groupoid formalism by Golubitsky and Stewart is therefore not able to
describe and predict patterns which go beyond partial synchrony and
rigid rotating waves.

7.3. Open questions and work for the future

In this thesis, we have introduced a new theory of symmetric dynamical
systems which allows both a more general and a more refined investigation
of spatio-temporal patterns. The new theory leaves many open questions
as well as prospective research topics, some of which we will discuss
in the following. Here we present a selection of questions which arise
directly from the results of this thesis.

We order the questions according to topic.

On groupoid symmetries in general

• Is there a systematic way to find all vertex spaces and groupoid
symmetries of a given dynamical system?
This is of course a central question as groupoid symmetries get
used in applications and should be given a high priority, especially
in the context of high- or infinite-dimensional dynamical systems,
where the symmetries are far from obvious. In finite networks, the
patterns of partial synchrony can be partly covered by the balanced
colorings from [26, 36]. However, they cover only a very small
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subset of the dynamical systems and patterns presented in this
thesis.

• Is there a feasible way to unify the theories of quiver and groupoid
theories?
In this thesis, we have focused on invertible morphisms as sym-
metries; thus excluding quivers as the algebraic structure behind
symmetries. As we discussed in the previous section, there is an
overlap with the quiver symmetries. Comparing bifurcation sce-
narios would be highly interesting, however, to date, there is no
general quiver-equivariant bifurcation theory.

• How do the symmetries persist when a system is only approximately
equivaroid?
This question is aimed at applications in the natural sciences, where
perfectly equivaroid systems are an unrealistic scenario. First
numerical examples indicate that the patterns are quite robust; see
Chapter 6 for some examples, but this is of course no evidence and
the question needs to be addressed in future research.

• How can we find symmetries when the corresponding flow-invariant
subspaces are not linear?
The choice of coordinates is an important question even for group-
symmetric systems, and sometimes a better choice of coordinates
can make more symmetries visible (such as in the Kepler problem
or the hydrogen atom [7, 21, 45]). In equivaroid systems, this
problem becomes even more evident as some of the vertex spaces
and their corresponding symmetries can be “overlooked” due to an
unfortunate choice of coordinates.

On equivaroid bifurcation theory

• Is it possible to obtain global bifurcation results?
In the spirit of global bifurcation results such as in [3, 20] it will
be a future challenge to extend the local results from this thesis to
global bifurcation theorems.

144
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• Do certain bifurcations in their normal form imply more groupoid
symmetries?
To finite order, Hopf bifurcations are S1-equivariant. Can a similar
phenomenon occur in different bifurcation scenarios, but then show
groupoid symmetries instead? Such a scenario seems to be given in
the situation of bifurcation without parameters [41], for example
in the case of transcritical bifurcation with and without additional
reflection symmetry.

• Can we find different reversible Hopf bifurcation patterns in equiv-
aroid systems?
In this thesis, we have focused on an equivaroid generalization of
the equivariant Hopf bifurcation theorem. Consequently, we have
neglected reversible Hopf bifurcation. It should however be very
well possible to find spatio-temporal patterns which possess more
than one reflection symmetry in time.

• Which mode-interactions can occur in equivaroid systems?
This is a research topic which has been extensively discussed in
the context of equivariant dynamical systems. Obviously, since all
equivariant systems are also equivaroid, the known theory extends
to our case as well. It should however be possible to find many more
interesting examples due to the extended notion of patterns and
isotropy. Mode-interactions from equivaroid systems are therefore
a research topic which should be discussed in the future.

• Which secondary bifurcations are possible in equivaroid systems?
So far, our results on bifurcation prove only bifurcation from the
trivial equilibrium. Especially in the groupoid case, however, where
the trivial equilibrium is seen as its own vertex space, we should be
concerned with secondary bifurcation from nontrivial equilibria and
periodic orbits. Our goal could be the construction of a bifurcation
tree, similar to [18, 24].
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7. Conclusion and discussion

On the rational design of equivaroid dynamical systems

• Is it possible to generalize our results on the rational design of
dynamical systems with prescribed vertex spaces to systems which
are not of finite-network type?
The precise network form of the dynamical system that we have
chosen in Chapter 6 is definitely not necessary for the construction,
however, it simplifies matters and gives first insights. In the future,
these results should be generalized.

• How can we design spatio-temporal patterns not induced by a given
vertex space?
To design spatio-temporal patterns not related to a given vertex
quotient group of the symmetry group, we need to focus specifi-
cally on the nonlinearities. First examples of such constructions
(although not yet in a systematic way) can be found in Chapter 5;
see in particular Examples 5.2.6 and 5.2.7.

*****

In summary, we have set out to explore symmetries in dynamical sys-
tems form a new point of view. Based on their description as linear
isomorphisms between linear flow-invariant subspaces and subsequently
their algebraic groupoid structure, we have successfully developed an
equivaroid bifurcation theory as well as a method to design systems
with given symmetries. Many examples have shown an abundance of
spatio-temporal patterns which can be studied with our new methods as
well as a broad applicability in all the natural sciences.
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A. A short introduction to
groupoids

In this appendix we review the definition and some of the standard facts
on groupoids without proofs. Moreover, we give a brief introduction to
the representation theory of groupoids. As for prerequisites, the reader
is assumed to be familiar with groups and their representation theory.

We proceed as follows: In Section A.1 we give the basic definition of a
groupoid as well as several examples. In Section A.2 we proceed with
the study the inner structure of a groupoid, focussing on vertex groups,
conjugating morphisms and orbits. In Section A.3 we summarize without
proof the relevant material on representation theory of groupoids.

A.1. Groupoid — Definition

The word groupoid consists of two parts: group and -oid. The suffix -oid
comes from the greek ε̂ιδος meaning likeness, form [35, 59].

Definition A.1.1 (Groupoid, [34, 38, 43, 47, 64], repetition of Def.
2.1.5). Let B be a set. A groupoid is a set Γ of morphisms γ : B → B,
γ ∈ Γ, supplemented with the following maps:

• a surjective source map s : Γ→ B, γ 7→ s(γ),



A. A short introduction to groupoids

• a surjective target map t : Γ→ B, γ 7→ t(γ),

• a partial binary operation defined on the set of composable mor-
phisms Γ ? Γ := {(γ2, γ1) ∈ Γ× Γ | t(γ1) = s(γ2)}:

◦ : Γ ? Γ→ Γ
(γ2, γ1) 7→ γ2 ◦ γ1,

(A.1)

• an injective identity map e : B → Γ, b 7→ e(b) =: eb,

which satisfy the following properties:

i) the partial binary operation is associative, that is, for all (γ3, γ2),
(γ2, γ1) ∈ Γ ? Γ, the identity (γ3 ◦ γ2) ◦ γ1 = γ3 ◦ (γ2 ◦ γ1) holds;

ii) the identity map defines a family of identity morphisms in the
following sense:

a) for all b ∈ B: s(eb) = t(eb) = b,

b) for all γ such that s(γ) = b: γ ◦ eb = γ,

c) for all γ such that t(γ) = b: eb ◦ γ = γ;

iii) each morphism γ ∈ Γ has a two-sided inverse γ−1 ∈ Γ such that

s(γ) = t(γ−1), t(γ) = s(γ−1), and (A.2)

γ−1 ◦ γ = es(γ), γ ◦ γ−1 = et(γ). (A.3)

We denote such a groupoid by Γ ⇒ B. The set B is called the base, and
its elements are called objects. Moreover, we call s(γ) the source of the
morphism γ, and t(γ) its target.

Remarks A.1.2.

i) A groupoid is sometimes called a Brandt groupoid or a virtual
group.

148



A.1. Groupoid — Definition

Figure A.1.: Graphical depiction of a group with four elements or mor-
phisms eb, γ, η, κ from the groupoid viewpoint. It has one
object b which is the source and target of all morphisms.

ii) In the language of category theory, a groupoid corresponds to
a small category where every morphism is invertible [34]. This
amounts to the same, since a category, by definition, consists of two
classes, the objects and the morphisms, with two objects associated
to every morphism, the source and the target.

Groupoids can come in surprisingly many forms, we will outline a few
examples here.

Example A.1.3 (Groups, [34]). The simplest example of groupoids are
groups. A group is a groupoid which only has one object, let us call
it b. The morphisms of the groupoid are simply the elements of the
group. They all have the same source and target object b. In this way all
morphisms of the group under the groupoid viewpoint can be composed.
Therefore, the source and target maps are usually omitted.

Example A.1.4 (Disjoint union of groups, [10]). Let Gk be groups, k
in some index set K. Then any disjoint union Γ = ⋃

kGk is a groupoid:
In this case we assign to each group Gk a base point k ∈ K, the partial
binary operation g2 ◦ g1 of two morphisms g1, g2 is defined if and only if
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A. A short introduction to groupoids

Figure A.2.: Graphical depiction of the extended singleton A2 as an
example of a groupoid which is not a group. It has two
objects b1 and b2 as well as four morphisms γ1, γ2, eb1 , eb2 .

the morphisms belong to the same group Gk, in which case g2 ◦ g1 is the
product within the group Gk.

Example A.1.5 (The extended singleton, [34]). The extended singleton
A2 is the first example of a groupoid which is not a group (or multiple
groups): It consists of two objects b1, b2 and four morphisms

eb1 : b1 → b1, eb2 : b2 → b2, γ1 : b1 → b2, γ2 : b2 → b1, (A.4)

where γ1, γ2 are invertible and

γ2 ◦ γ1 = eb1 , γ2 ◦ γ1 = eb2 . (A.5)

The extended singleton is not a group since γ1 ◦ γ1 as well as γ2 ◦ γ2 are
not defined. Moreover, there exist two different identity elements, which
is not permitted in a group.

Example A.1.6 (Groupoid of objects, [34]). On the other end of the
spectrum, we can trivially associate a groupoid to any set B. Its objects
are the elements b ∈ B and its morphisms are the identity elements eb.
The sources and targets are given as follows:

s(eb) = t(eb) = b, b ∈ B. (A.6)

Example A.1.7 (Groupoid of ordered pairs, [34]). Let B be a set, and
let Γ := B ×B. Define the objects as the individual elements of B, and
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its morphisms are given by the pairs (b2, b1) ∈ B ×B. The sources and
targets are given by

s(b2, b1) = b1, t(b2, b1) = b2. (A.7)

Multiplication of these pairs is defined by

(b3, b2) ◦ (b2, b1) = (b3, b1), (A.8)

the left and right identity elements of (b2, b1) are given by (b2, b2) and
(b1, b1), respectively:

(b2, b2) ◦ (b2, b1) ◦ (b1, b1) = (b2, b1), (A.9)

inverses are given by (b2, b1)−1 = (b1, b2).

Example A.1.8 (The action groupoid, [47, 34]). Let G be a group acting
on a set B. Then we denote by Γ(G,B) ⇒ B the groupoid associated to
the action of the group G on B. Its objects are the elements of B and
whose morphisms are given by triples (b2, g, b1) ∈ B ×G×B such that
b2 = gb1. The sources and targets are

s(b2, g, b1) = b1, t(b2, g, b1) = b2, (A.10)

and the composition law is

(b3, g′, b2) ◦ (b2, g, b1) = (b3, g′g, b1). (A.11)

Example A.1.9 (Equivalence relations, [64]). Let B be a set with an
equivalence relation ∼ which we interpret as follows under the groupoid
viewpoint: The objects of the groupoid are the elements of B, and for
any two elements b1, b2 ∈ B, there is a (single) morphism from b1 to b2
if and only if b1 ∼ b2.

Example A.1.10 (Lie groupoids, [38, 43, 44]). Building on Lie groups,
which are groups that are also smooth manifolds, we define Lie groupoids
[43, 44]: A groupoid Γ ⇒ B is called a Lie groupoid if Γ and B are
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smooth manifolds, the map e (identity), the inverse and the partial
multiplication are all smooth and the maps s (source), and t (target) are
subjective submersions.

Suppose B is a smooth manifold. Both the groupoid of objects on B and
the pair groupoid are examples of Lie groupoids. Moreover, if G is a Lie
group acting smoothly on B, then the corresponding action groupoid
Γ(G,B) ⇒ B is a Lie groupoid.

Example A.1.11 (The hydrogen spectrum, [14, 29]). Last we consider
a fascinating example from physics, the hydrogen spectrum. The lines
of the hydrogen spectrum can be organized into a series of discrete
wavelengths λmn indexed by m,n, each having the form

1
λmn

= R

m2 −
R

n2 , (A.12)

wherem,n ∈ N, n > m, and R is the Rydberg constant. Let c be the wave
speed. Now if we consider frequencies ν = c/λ instead of wavelengths,
then the measured spectrum can by defined as a set of differences of
frequencies. To this end, we introduce a set N of auxiliary frequencies
νi = Rc

i2 .

It follows that the spectrum of the hydrogen atom is the set of differences
νij = νi − νj , where νi, νj ∈ N, j > i. To see the groupoid structure, we
note that for two frequencies νij and νjk in the spectrum, νik = νij+νjk is
also in the spectrum. This is indeed a partially defined law of composition;
in order to be combined, the frequencies must share the index j.

Formally, the groupoid is constructed as follows:

• base B = N ,

• morphisms Γ = {(i, j) ∈ N× N | j > i},

• source s(i, j) = νj ,

• target t(i, j) = νi,
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• binary operation defined if s(i, j) = t(j, k):

(i, j) ◦ (j, k) = (i, k). (A.13)

The connection of the abstract groupoid to the spectrum is given by
(i, j) 7→ νij . Note that this is a groupoid of pairs; see Example A.1.7.

A.2. Vertex groups, conjugating morphisms, and
orbits

In this section we look more closely at the inner structure of a groupoid,
focussing in particular on those notions are needed in order to develop
the theory of symmetry of dynamical systems.

Definition A.2.1 (Vertex group [34, 43]). Let Γ ⇒ B be a groupoid
and b ∈ B. The set of all morphisms γ : b→ b, with source and target b,
is denoted by Γb and called the vertex group of b, i.e.,

Γb := Γ(b) := Γ(b, b) = {γ ∈ Γ | s(γ) = b, t(γ) = b}. (A.14)

Remarks A.2.2.

i) In the literature, vertex groups are also called isotropy groups. We
avoid this terminology because it is easily confused with “isotropy
subgroups” from equivariant bifurcation theory.

ii) The vertex groups Γb, b ∈ B, of the groupoid Γ ⇒ B are indeed
groups: To see this, note that every pair of morphisms in the set
Γb is in the set of composable morphisms Γ ? Γ, since all elements
of Γb have the same source and target.

The vertex group is a collection of morphisms from one base point to
itself. A groupoid also allows for morphisms between different base
points, which we call conjugating morphisms.
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A. A short introduction to groupoids

Definition A.2.3 ((bj , bk)-conjugating morphisms). Let bj , bk ∈ B. We
denote by Γ(bk, bj) the set of morphisms between bj to bk, i.e.,

Γ(bk, bj) := {γ ∈ Γ | s(γ) = bj , t(γ) = bk}. (A.15)

We call such morphisms conjugating if bj 6= bk.

Note that the vertex group of the base point b is simply given by Γ(b, b).

It turns out that vertex groups are isomorphic if there exist conjugating
morphisms between them, a fact that we will extensively use.

Proposition A.2.4 (Isomorphic vertex groups, [34]). Let bj , bk ∈ B and
bj 6= bk. If there exist conjugating morphisms between two objects bj , bk,
i.e., if Γ(bk, bj) 6= Ø, then the vertex groups Γbj and Γbk are isomorphic.

Proof. Let γ : bj → bk belong to Γ(bk, bj). Then

Φγ : Γbj → Γbk (A.16)
γbj → γbk = γ ◦ γbj ◦ γ

−1 (A.17)

is a group homomorphism.

An important notion for groupoids are orbits.

Definition A.2.5 (Groupoid orbit, [34]). Given an object b∗ ∈ B, the
orbit Ob∗ of the groupoid Γ ⇒ B through b∗ is the set of objects bk
corresponding to the target objects of morphisms starting at b∗. In other
words, bk ∈ Ob∗ if and only if there exists a morphism γ ∈ Γ such that
γ : b∗ → bk.

Note that the orbits Ob define a partition of the base B into disjoint
sets.

Definition A.2.6 (Connected groupoids, [43]). We say that a groupoid
is connected or transitive if it has just one orbit, i.e., if all objects are
connected via morphisms.
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We finish this section by revisiting the groupoid examples from above
and determining the vertex groups, conjugating morphisms, and the
orbits, each.

Example A.2.7 (Groups, continued from Example A.1.3). A group
G has only one base point b for the vertex group Γb equals G, i.e., the
group. As a consequence, there are no conjugating morphisms, and only
one orbit, consisting of the only object b. Thus a group is a connected
groupoid.

Example A.2.8 (Disjoint union of groups, continued from Example
A.1.4). In a disjoint union Γ = ⋃

kGk of groups Gk, k in some index
set K, we allocate a base point bk to each group. Then the vertex
group of the base point bk is given by the group Γbk = Gk. There are
no conjugating morphisms between the groups. The groupoid orbits
are given by the individual objects O(bk) = {bk}, and the groupoid is
therefore not connected (unless of course, the disjoint union of groups
consists of exactly one group; see Example A.2.7 above).

Example A.2.9 (The extended singleton, continued from Example
A.1.5). The extended singleton has two base points whose vertex groups
are as follows:

Γb1 = {eb1} , Γb2 = {eb2} . (A.18)
The conjugating morphisms of the groupoids are of two types, from b1
to b2 and vice versa:

η : b1 → b2, γ : b2 → b1. (A.19)

There is only one orbit: Ob1 = Ob2 = {b1, b2}. Hence, the extended
singleton is connected.

Example A.2.10 (Groupoid of objects, continued from Example A.1.6).
In this groupoid, where objects are the base points b ∈ B and the only
morphisms are the identity elements eb, the vertex groups are Γb = {eb}.
There are no conjugating morphisms. Consequentially, the groupoid
of orbits is totally disconnected, that is, Ob = {b} holds for all objects
b ∈ B.
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Example A.2.11 (Groupoid of pairs, continued from Example A.1.7).
Recall that the groupoid of pairs is given by Γ = B ×B on a set B. The
vertex group corresponding to a base point b ∈ B is given by Γb = {(b, b)}.
Moreover, the conjugating morphisms between two distinct objects b1, b2
are given by (b2, b1) as well as its inverse (b1, b2). As all objects are
connected via morphisms, it follows that Ob = B for any b ∈ B, implying
that the groupoid of pairs is connected.

Example A.2.12 (The action groupoid, continued from Example A.1.8).
The groupoid Γ(G,B) ⇒ B associated to the action of the group G on B
explains the double use of “isotropy groups” (which we call vertex groups
in the groupoid context to avoid confusion; see Remark A.2.2). Indeed,
the vertex groups Γ(G,B)b of the action groupoid coincide with the
isotropy subgroups Gb of the group G acting on the set B. There is one
more analogy that we should note: There is a one-to-one correspondence
between the orbit Ob through b of the action groupoid and the orbit Gb
of the group action. As a consequence, the action groupoid is connected
if and only if the group action is transitive.

Example A.2.13 (Equivalence relations, continued from Example A.1.9).
Let B be a set with an equivalence relation. Then B with this equivalence
relation forms a subgroupoid of the groupoid of pairs. It is therefore
straightforward to conclude the following: The set B with an equivalence
relation ∼ has the vertex groups Γb = {(b, b)} for each element b. The
conjugating morphisms between two disjoint objects b1, b2 is given by
(b2, b1) as well as its inverse (b1, b2) if and only if b1 ∼ b2. The inter-
esting assertion is that the orbits of the equivalence relation groupoid
correspond directly to the equivalence classes. The groupoid is therefore
connected if and only if there is only a single equivalence class, and
disconnected otherwise.

Example A.2.14 (Lie groupoids, continued from Example A.1.10). The
theory of Lie groupoids has been developed extensively [38, 43, 44]. In
particular, the following holds: The vertex groups Γb of a Lie groupoid
are Lie groups. The set of composable morphisms Γ ? Γ is a closed
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submanifold of Γ× Γ. For each b ∈ B, the fibers s−1(b) and t−1(b) are
submanifolds of Γ. Moreover, the orbits Ob are immersed submanifolds
of the set B.

A.3. Groupoid representation theory

For our purposes, it will be useful to represent the base points of a
groupoid by vector spaces and the morphisms of a groupoid by linear
operators between these vector spaces. In this way we can connect
groupoids and dynamical systems. Let us start off with the definition of
a linear representation of a groupoid.

Definition A.3.1 (Linear groupoid representation, [34, 38]). A linear
representation ρ of a groupoid Γ ⇒ B consists of a family {Xb}b∈B of
vector spaces assigned to the base B, i.e., Xb := ρ(b), and a collection
{ρ(γ)}γ∈Γ of invertible linear maps ρ(γ) : ρ(b1)→ ρ(b2) assigned to each
morphism γ : b1 → b2 such that

i) for all base points b ∈ B, the identity elements are represented by
the identity operation on the space Xb, i.e., ρ(eb) = IdXb ,

ii) the representation preserves the partial binary operation of the
groupoid, i.e., ∀(γ, η) ∈ Γ ? Γ, ρ(η ◦ γ) = ρ(η)ρ(γ) holds,

iii) the representation of the inverse element is the inverse of the
representation, i.e., for all γ ∈ Γ, ρ(γ−1) = ρ(γ)−1 holds.

A particularly useful property of groupoid representations is given in the
following proposition.

Proposition A.3.2 (Connected components have isomorphic represen-
tation spaces, [34]). Let ρ be a linear representation of the groupoid
Γ ⇒ B. Then, on each connected component of the groupoid, the linear
spaces Xb are isomorphic. In particular, if the groupoid is connected, all
linear spaces Xb are isomorphic.
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As we have seen in the previous section, the vertex groups form the
“building blocks” of the groupoid. We therefore introduce the notion
of the vertex representation, which is the restriction of the groupoid
representation to a single vertex group. Here GL(X) denotes the general
linear group on the space X.

Definition A.3.3 (Vertex representation, [34]). Let ρ be a linear repre-
sentation of the groupoid Γ ⇒ B. By the vertex representation ρb of ρ
of the vertex group Γb we denote the subset ρb := {ρ : Γb → GL(Xb)},
and we define ρb(γ) := ρ(γ) : Xb → Xb for all γ ∈ Γb.

Note in particular that the vertex representation is simply a group
representation. Inspired by Proposition A.3.2, we can therefore ask
whether the vertex group representations are equivalent (in the standard
group sense). In fact, this is the case in connected components:

Proposition A.3.4 (Equivalence of vertex representations in connected
components, [34]). Let R be a linear representation of the groupoid Γ ⇒ B
and let b1, b2 be two objects in the same connected component. Then the
vertex representations ρb1 , ρb2 of the vertex groups Γb1 ,Γb2 are equivalent.

For our purposes, the concept of irreducibility of a representation is of
high importance, as it is needed in equivariant bifurcation theory, which
we strive to generalize.

Definition A.3.5 (Internally irreducible groupoid representations, [34]).
A representation ρ of a groupoid Γ ⇒ ρ is called internally irreducible, if
all its vertex representations are irreducible.

Example A.3.6 (Groups and disjoint union of groups, continued from
Examples A.1.3, A.1.4, A.2.7, A.2.8). In this case, the linear representa-
tion ρ of the groupoid becomes the standard linear representation of the
group(s).
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Example A.3.7 (The extended singleton, continued from Example
A.1.5, A.2.9). Let us find a simple representation here: The extended
singleton has two base points b1, b2 to which we associate the spaces
Xb1 = Xb2 = R, each. Then the representation of the identities is the
unit in R,

ρ(eb1) = ρ(eb2) = 1 ∈ R. (A.20)

The conjugating morphism γ1 : b1 → b2, can be represented by any
number c ∈ R\{0}, and then its inverse γ2 : b2 → b1 must be represented
by c−1:

ρ(η) = c ∈ R\{0} ρ(γ2) = ρ(γ−1
1 ) = ρ(γ1)−1 = c−1 ∈ R\{0}. (A.21)

Note that indeed, for the representation of this connected groupoid found
here, the spaces Xb1 , Xb2 are isomorphic and the representations of the
vertex groups are equivalent.

Example A.3.8 (Groupoid of objects, continued from Example A.1.6,
A.2.10). In this groupoid, we assign an arbitrary vector space Xb to each
of the base points b ∈ B and the identity on the respective space to the
morphisms, ρ(eb) = IdXb .

Example A.3.9 (Groupoid of pairs and equivalence relations, continued
from Examples A.1.7, A.1.9, A.2.11, A.2.13). A simple, albeit maybe not
so useful, representation of the groupoid of pairs can be constructed as
follows: To each base point b ∈ B, we assign the vector space Xb := X
(since by Proposition A.3.2, all spaces Xb must be isomorphic, we may
as well choose them identical). Then to any pair (bj , bk), we assign
the identity operator. The same construction can be used on every
equivalence class for the representation of an equivalence relation as a
groupoid.
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