Untersuchung von Hunden mit Meningitis und Meningoencephalitis unbekannter Genese auf Vektor-übertragene Mikroorganismen

Inaugural-Dissertation zur Erlangung des Grades eines Doktors der Veterinärmedizin an der Freien Universität Berlin

vorgelegt von
Kali Lazzerini
Tierärztin
aus Hamburg

Berlin 2014
Journal-Nr.: 3714
Gedruckt mit Genehmigung des Fachbereichs Veterinärmedizin der Freien Universität Berlin

Dekan: Univ.-Prof. Dr. Jürgen Zentek
Erster Gutachter: Univ.-Prof. Dr. Barbara Kohn
Zweiter Gutachter: Prof. Dr. Andrea Tipold
Dritter Gutachter: PD Dr. Jürgen Krücken

Deskriptoren (nach CAB-Thesaurus):
Anaplasma phagocytophilum, central nervous system, cerebrospinal fluid, inflammation, meningoencephalitis, meningitis, vector-borne diseases

Tag der Promotion: 10.07.2014

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über <http://dnb.ddb.de> abrufbar.

ISBN: 978-3-86387-571-8
Zugl.: Berlin, Freie Univ., Diss., 2014
Dissertation, Freie Universität Berlin
D 188

Dieses Werk ist urheberrechtlich geschützt.

Die Wiedergabe von Gebrauchsnamen, Warenbezeichnungen, usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

This document is protected by copyright law.
No part of this document may be reproduced in any form by any means without prior written authorization of the publisher.

Alle Rechte vorbehalten | all rights reserved
© Mensch und Buch Verlag 2015 Choriner Str. 85 - 10119 Berlin verlag@menschundbuch.de – www.menschundbuch.de
I. Einleitung

II. Literaturübersicht

2.1 Diagnose von Meningitis und Meningoenzephalitis (ME)

2.1.1 Diagnostische Maßnahmen

2.1.2 Bildgebende Diagnostik

2.1.3 Liquoruntersuchung

2.1.3.1 Liquorentnahme

2.1.3.2 Aufbereitung der Proben

2.1.3.3 Makroskopische Untersuchung

2.1.3.4 Quantitative Analyse

2.1.3.5 Mikroskopische Untersuchung

2.1.3.6 Weitere Tests

2.2 Kanine Vektor-übertragene Erkrankungen

2.2.1 Allgemeines

2.2.2 Rickettsiosen

2.2.2.1 Granulozytäre Anaplasmose

2.2.2.2 Monozytäre Ehrlichiose

2.2.3 Bartonellose

2.2.4 Lyme Borreliose

2.2.5 Frühsommer-Meningoenzephalitis

2.2.6 Babesiose

2.2.7 Koinfektionen

2.3 Durch andere infektiöse Erreger verursachte Meningoenzephalitiden

2.3.1 Bakterielle Enzephalitis

2.3.2 Gehirnabszesse

2.3.3 Staupe

2.3.4 Tollwut

2.3.5 Bornasche Krankheit

2.3.6 Canines Minute-Virus

2.3.7 Weitere virale Erkrankungen

2.3.8 Protozoäre Meningoenzephalomyelitis

2.3.8.1 Neosporose
2.3.8.2 Toxoplasmose ... 26
2.3.9 Kryptokokkose ... 26
2.4 Meningoenzephalitiden unbekannter Genese 27
 2.4.1 Granulomatöse Meningoenzephalitis 28
 2.4.2 Nekrotisierende Enzephalitiden 28
2.5 Steroid-Responsive Meningitis-Arteriitis (SRMA) 30

III. Material und Methoden ... 31
 3.1 Art der Studie .. 31
 3.2 Patienten, Einschluss- und Ausschlusskriterien 31
 3.3 Studienprotokoll ... 32
 3.4 Probenentnahme, -aufbewahrung, -aliquotierung und Transport 33
 3.5 Untersuchungsmethoden ... 34
 3.5.1 Real-Time-PCR .. 34
 3.5.1.1 A. phagocytophilum und E. canis 34
 3.5.1.2 Bartonella spp. ... 34
 3.5.2 Qualitative eubakterielle PCR ... 35
 3.5.3 Indirekter Immunfluoreszenzantikörpertest (IFAT) 36
 3.5.3.1 IFAT Borrelia burgdorferi sensu lato 36
 3.5.3.2 IFAT Ehrlichia canis ... 37
 3.5.4 Enzyme-linked Immunosorbent Assay (ELISA) Bartonellen 37
 3.5.5 Enzyme-linked Immunosorbent Assay (ELISA) FSME-Virus 38
 3.6 Statistische Auswertung .. 38

IV. Ergebnisse ... 40
 4.1 Beschreibung der Gruppen .. 40
 4.1.1 MUE-Gruppe (Patienten mit Meningoenzephalitis) 40
 4.1.2 SRMA-Gruppe (Patienten mit SRMA) 48
 4.1.3 Kontrollgruppe (Trauma-Gruppe) 52
 4.2 Gruppenvergleich .. 56
 4.2.1 Regionale Verteilung der Patienten 56
 4.2.2 Altersverteilung .. 56
 4.2.3 Geschlechtsverteilung .. 57
 4.2.4 Auslandsaufenthalt ... 57
 4.2.5 Dauer der Symptome .. 58
 4.2.6 Laborparameter .. 58
 4.2.7 Bartonella spp. .. 65
 4.2.8 A. phagocytophilum .. 66
 4.2.9 Borrelia burgdorferi sensu lato 67
 4.2.10 FSME-Virus ... 69
<table>
<thead>
<tr>
<th>Abkürzungenverzeichnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>16S rRNA</td>
</tr>
<tr>
<td>A. phagocytophilum</td>
</tr>
<tr>
<td>Abb.</td>
</tr>
<tr>
<td>AG</td>
</tr>
<tr>
<td>AK</td>
</tr>
<tr>
<td>ANE</td>
</tr>
<tr>
<td>Aqua dest.</td>
</tr>
<tr>
<td>AQ</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>BAPGM</td>
</tr>
<tr>
<td>BDV</td>
</tr>
<tr>
<td>B. burgdorferi s.l.</td>
</tr>
<tr>
<td>B. burgdorferi s.s.</td>
</tr>
<tr>
<td>B. henselae</td>
</tr>
<tr>
<td>B.b.s.l.</td>
</tr>
<tr>
<td>B. vinsonii ssp. berkoffii</td>
</tr>
<tr>
<td>Baso</td>
</tr>
<tr>
<td>Bzw.</td>
</tr>
<tr>
<td>CnMV</td>
</tr>
<tr>
<td>CDV</td>
</tr>
<tr>
<td>CHV-1</td>
</tr>
<tr>
<td>CT</td>
</tr>
<tr>
<td>CVBD</td>
</tr>
<tr>
<td>DD</td>
</tr>
<tr>
<td>d.h.</td>
</tr>
<tr>
<td>DNA</td>
</tr>
<tr>
<td>EAE</td>
</tr>
<tr>
<td>E. canis</td>
</tr>
<tr>
<td>EDTA</td>
</tr>
<tr>
<td>Abkürzung</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>ELISA</td>
</tr>
<tr>
<td>Eo</td>
</tr>
<tr>
<td>Ery</td>
</tr>
<tr>
<td>Evtl.</td>
</tr>
<tr>
<td>FITC</td>
</tr>
<tr>
<td>FLAIR</td>
</tr>
<tr>
<td>FSME</td>
</tr>
<tr>
<td>FKS</td>
</tr>
<tr>
<td>ggf.</td>
</tr>
<tr>
<td>GFAP</td>
</tr>
<tr>
<td>ggr</td>
</tr>
<tr>
<td>GME</td>
</tr>
<tr>
<td>GRASE</td>
</tr>
<tr>
<td>H</td>
</tr>
<tr>
<td>HAES</td>
</tr>
<tr>
<td>HCl</td>
</tr>
<tr>
<td>HEMO</td>
</tr>
<tr>
<td>hgr</td>
</tr>
<tr>
<td>HIV</td>
</tr>
<tr>
<td>IFA</td>
</tr>
<tr>
<td>IFAT</td>
</tr>
<tr>
<td>Ig</td>
</tr>
<tr>
<td>IgA</td>
</tr>
<tr>
<td>IgG</td>
</tr>
<tr>
<td>IgM</td>
</tr>
<tr>
<td>IHC</td>
</tr>
<tr>
<td>J.</td>
</tr>
<tr>
<td>k.A.</td>
</tr>
<tr>
<td>Kg</td>
</tr>
<tr>
<td>L</td>
</tr>
<tr>
<td>Abkürzung</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>L4</td>
</tr>
<tr>
<td>LIV</td>
</tr>
<tr>
<td>Lz</td>
</tr>
<tr>
<td>M</td>
</tr>
<tr>
<td>MK</td>
</tr>
<tr>
<td>Makro</td>
</tr>
<tr>
<td>ME</td>
</tr>
<tr>
<td>mgr</td>
</tr>
<tr>
<td>MHC</td>
</tr>
<tr>
<td>Min</td>
</tr>
<tr>
<td>MI</td>
</tr>
<tr>
<td>mM</td>
</tr>
<tr>
<td>MNV</td>
</tr>
<tr>
<td>Mono</td>
</tr>
<tr>
<td>MRT</td>
</tr>
<tr>
<td>MUE</td>
</tr>
<tr>
<td>NE</td>
</tr>
<tr>
<td>Nm</td>
</tr>
<tr>
<td>NLE</td>
</tr>
<tr>
<td>NME</td>
</tr>
<tr>
<td>o.b.B.</td>
</tr>
<tr>
<td>OD</td>
</tr>
<tr>
<td>OMN</td>
</tr>
<tr>
<td>Patho</td>
</tr>
<tr>
<td>PBS</td>
</tr>
<tr>
<td>PCR</td>
</tr>
<tr>
<td>Pos.</td>
</tr>
<tr>
<td>RBP</td>
</tr>
<tr>
<td>RNA</td>
</tr>
<tr>
<td>RT-PCR</td>
</tr>
</tbody>
</table>
SD Standard Abweichung
Seg Segmentkernige Granulozyten
Sek. Sekunde
SLE Systemischer Lupus Erythematodes
Spp. Spezies
Ssp. Subspezies
SRMA Steroid-Responsive Meningitis Arteriitis
Stb. Stabkernige Granulozyten
T Trauma
T1 T1 gewichtete Sequenz
T2 T2 gewichtete Sequenz
Tab. Tabelle
TBEV Tick borne encephalitis Virus
TR Trier
TSE Turbo- and Spin-Echo
TTR Transthyretin (Präalbumin)
UMN Unteres Motoneuron
U/Min Umdrehungen pro Minute
V. Vena
V.a. Verdacht auf
W Weiblich
WK Weiblich kastriert
WNV West Nile Virus
z.B. zum Beispiel
ZNS Zentrales Nervensystem
I. Einleitung

Das Auftreten der kaninen Vektor-übertragenen Erkrankungen (canine vector-borne diseases, CVBD) war bis vor einem Jahrzehnt weitgehend auf südliche Länder begrenzt. In den letzten Jahren hat sich die Lage aus klimatischen Gründen, aber auch im Zuge der Globalisierung und des Wissenszuwachses auf dem Gebiet der CVBD-Forschung verändert (Menn et al. 2010). Die Prävalenz von CVBD sowie die Aufmerksamkeit für diese Erkrankungen steigen auch in Mitteleuropa an (Hartelt et al. 2007).

Das Ziel der Doktorarbeit ist es, weitere Erkenntnisse zur Bedeutung von infektiösen Erregern, insbesondere von CVBD-Erregern bei der Ätiologie von Meningoenzephalitiden beim Hund in Deutschland zu ermitteln.
II. Literaturübersicht

Entzündungen des Zentralen Nervensystems (ZNS) werden je nach Lokalisation in Meningitiden (Hirnhautentzündungen), Enzephalitiden (Gehirnentzündungen) und Myelitiden (Rückenmarksentzündungen) eingeteilt. Aufgrund des engen Zusammenhangs zwischen Gehirnparenchym und Meningen betreffen entzündliche Prozesse oftmals beide Strukturen, sie werden dann als Meningoenzephalitis bezeichnet (Munana 1996).

2.1 Diagnose von Meningitis und Meningoenzephalitis (ME)

Die Ursache einer ME wird selten ante-mortem ermittelt. Eine Verdachtsdiagnose basiert generell auf klinischen Symptomen, bildgebenden Verfahren, Liquoruntersuchung und Untersuchung auf Infektionserreger. Auch die postmortale Diagnose kann sich als schwierig erweisen, wenn ein spezifisches histologisches Muster fehlt.

2.1.1 Diagnostische Maßnahmen

2.1.2 Bildgebende Diagnostik

Magnetresonanztomographie (MRT):
Das MRT ist der Goldstandard in der bildgebenden Diagnostik von ME. Das MRT hat der Computertomographie gegenüber den Vorteil, dass sich anatomische Details (z.B. die kaudale Fossa) deutlicher darstellen lassen und dass Bilder in verschiedenen Ebenen (sagittal, transversal, dorsal) angesehen werden können (Talarico und Schatzberg 2010). Ein MRT kann besonders nützlich sein, um zwischen den idiopathischen Meningoenzephalitiden zu unterscheiden, weil es Läsionen darstellt, die der Neuropathologie der jeweiligen Erkrankungen entsprechen. Obwohl es klinische sowie histopathologische Überlappungen zwischen den verschiedenen Meningoenzephalitiden gibt, kann die Verteilung der Läsionen (Nekrotisierende Meningoenzephalitis (NME) vs. Nekrotisierende Leukoencephalitis (NLE)) oder das Auftreten von Nekrosen (Granulomatöse Meningoenzephalitis (GME) vs. NLE) eine ante-mortem Verdachtsdiagnose ermöglichen (Talarico et al. 2010).

Computertomographie (CT):

2.1.3 Liquoruntersuchung

2.1.3.1 Liquorentnahme

2.1.3.2 Aufbereitung der Proben

Die Liquoruntersuchung muss unmittelbar nach der Punktion erfolgen. Wird die Analyse verzögert durchgeführt, können signifikante Veränderungen der Untersuchungsergebnisse auftreten. Insbesondere die Zellzahl kann aufgrund von Zelllyse falsch niedrig sein (Fry et al. 2006).

2.1.3.3 Makroskopische Untersuchung

2.1.3.4 Quantitative Analyse

Proteinkonzentration: Im Vergleich zu Serum hat Liquor einen sehr niedrigen Proteingehalt (Fishman 1992). Die Proteinkonzentration steigt von rostral nach kaudal an, daher ist in lumbal entnommenem Liquor typischerweise der Proteingehalt höher (Normbereich unter 45 mg/dl) als in Liquor, der aus der Cisterna magna entnommen wurde (Normbereich unter 30 mg/dl) (Bailey und Vernau 1997).

Es wird vermutet, dass die höhere Proteinkonzentration durch die geringere Flussgeschwindigkeit im lumbalen Bereich und der damit verbundenen lokalen Proteinansammlung (Thompson et al. 1990) entsteht. In anderen Studien wurde die Hypothese aufgestellt, dass die erhöhte Proteinkonzentration auf einer erhöhten Permeabilität der Blut-Hirn-Schanke im Lumbalbereich basiert (Fishman et al. 1958).

Der Pandy Test ist ein Screening Test für das Vorhandensein von Globulinen. Bei dem Test werden zwei Tropfen Liquor zu 1 ml Pandy Reagenz (10 %ige Karboxylsäure) zugefügt. Wird die Flüssigkeit im Reagenzglas milchig, ist der Test positiv. Globuline können mit dieser Methode ab einer Konzentration von 50 mg/dl nachgewiesen werden (Di Terlizzi und Platt 2009).

2.1.3.5 Mikroskopische Untersuchung

2.1.3.6 Weitere Tests

Liquorkultur: Es ist möglich, sowohl aerobe als anaerobe Bakterienkulturen des Liquors anzufertigen. Allerdings wurden selbst in Fällen mit definitiver Diagnose der bakteriellen Meningitis sehr selten positive Kulturen beobachtet (Tipold 1995a; Fenner 1998). Bei Hunden

In einigen Studien hat sich eine Multiplex-PCR als zusätzlicher Test bei der Diagnose der Protozoären Meningoenzephalitis als nützlich erwiesen (Schatzberg et al. 2003).

Indem man PCR Primer nutzt, die auf die konservierten Regionen der DNA zielen (sog. Universal Primer), kann man breitgefächerte PCR-Tests entwickeln, die die Identifizierung der DNA fast aller Bakterien ermöglicht (Messer et al. 2008).

Um die Identität der gefundenen Bakterien zu ermitteln, wird das PCR-Produkt sequenziert und mit bekannten Nukleotidsequenzen verglichen (Drancourt et al. 2000; Janda und Abbott 2002). In einer Untersuchung wurde bei einem Hund mit neurologischen Ausfallserscheinungen und negativer Liquorkultur eine Streptokokkeninfektion mittels eubakterieller PCR aus Liquor diagnostiziert (Messer et al. 2008).
Weitere diagnostische Maßnahmen sind ante-mortem die Gehirnbiopsie (Thomas et al. 1993) und post-mortem die pathologische Untersuchung des Gehirns.

2.2 Kanine Vektor-übertragene Erkrankungen

2.2.1 Allgemeines

2.2.2 Rickettsiosen

2.2.2.1 Granulozytäre Anaplasmose

Ätiologie:

Verbreitung:
A. phagocytophilum wurde bei vielen Säugetieren und bei Vögeln nachgewiesen. In Deutschland wurden unterschiedliche regionale Seroprävalenzen für *A. phagocytophilum* beim Hund festgestellt. So betrug die Seroprävalenz (Testmethode IFAT) im Nordwesten Deutschlands 43,2 % (n=111 Hunde) (Jensen et al. 2007a), im Nordosten Deutschlands 43 % (n= 522 Hunde) (Kohn et al. 2011). Eine Untersuchung von 5881 Hunden aus Deutschland mittels ELISA ergab eine Seroprävalenz von 21,5 % (Krupka et al. 2007). Mittels PCR-Untersuchung wurde eine Prävalenz von 6 % im Nordwesten (Jensen et al. 2007a) sowie im Nordosten (Kohn et al. 2011) Deutschlands festgestellt. Zwischen klinisch gesunden und kranken Hunden konnte in einer Studie an der Freien Universität Berlin bezüglich der Seroprävalenz kein signifikanter Unterschied festgestellt werden (Kohn et al. 2011).
Neurologische Symptome:

In einer Studie von Jäderlund et al. (2009), bei der 14 Hunde mit entzündlicher ZNS-Erkrankung untersucht wurden (10 Hunde mit SRMA, 4 Hunde mit MUE), wurde in keinem Fall *A. phagocytophilum*-DNA mittels PCR aus Liquor oder Blut nachgewiesen.

In einer Studie von Barber wurden 109 Hunde mit neurologischen Symptomen untersucht, von denen bei 75 die Diagnose GME, NME oder MUE lautete. Bei keinem Hund wurde *A. phagocytophilum*-DNA mittels PCR aus Gehirngewebe oder Liquor festgestellt (Barber et al. 2010).

Diagnose:
A. phagocytophilum bildet in Granulozyten Einschlusskörperchen (Morulae), die lichtmikroskopisch 4-14 Tage nach Infektion über ca. 4-8 Tage nachweisbar sind (Egenvall et al. 1998). In einer Studie wurde granulozytäre Anaplasmose bei 18 Hunden mittels PCR diagnostiziert. Bei 10 der 18 Hunde waren Morulae nachweisbar (Kohn et al. 2008). Der Nachweis von DNA mittels PCR aus Blut ist sensitiver als der Nachweis von Einschlusskörperchen während der aktiven Infektion (Egenvall et al. 2000a). In einer Studie wurde das Blut von 522 Hunden mittels PCR auf *A. phagocytophilum*-DNA untersucht. 30 der 522 Hunde (5,7 %) waren PCR-positiv. 20 dieser Hunde waren klinisch krank, 10 Hunde waren klinisch gesund (Kohn et al. 2011).

2.2.2.2 Monozytäre Ehrlichiose

Ätiologie:

Infektionen des Menschen mit dem Erreger kommen vor, allerdings vermutlich nur durch Übertragung durch Zecken. Eine direkte Übertragung vom Hund auf den Menschen ist unwahrscheinlich (Stich et al. 2008).

Verbreitung:
E. canis-Infektionen werden heutzutage in Deutschland als Reisekrankheit angesehen. Es wurden einzelne Fälle bei Hunden, die noch nicht im Ausland waren, beschrieben (Jensen et al. 2007b). Es ist bislang nicht geklärt, inwieweit autochthone Infektionen aufgrund der Ausbreitung der „Braunen Hundezecke“ auch in Deutschland vorkommen.

Neurologische Symptome:

In einer Studie mit 62 Hunden zeigten 5 Hunde neurologische Symptome, bei denen ein Zusammenhang mit Ehrlichiose vermutet wurde (Frank und Breitschwerdt 1999). Nur bei drei dieser Hunde schien eine primäre ZNS-Infektion die Ursache der Symptome zu sein.

Diagnose:

2.2.3 Bartonellose

Ätiologie:

Verbreitung:
Die Prävalenz von *B. vinsonii* ssp. *berkhoffii* variiert beim Hund weltweit zwischen 1 % und 38 % (Guptill 2010).

In den USA ist die Seroprävalenz in der Hundepopulation generell niedrig. Sie ist jedoch variabel: in einer Studie, in der 1920 klinisch kranke Hunde aus North Carolina und umgebenden Staaten untersucht wurden, lag sie bei 3,6 % (Pappalardo et al. 1997). In einer Studie, in der 9030 klinisch kranke Hunde aus den gesamten USA untersucht wurden, lag die Seroprävalenz bei 1,7 % (Breitschwerdt et al. 2010).

Die Seroprävalenz von *B. henselae* liegt weltweit zwischen 10 % und 35 % (Guptill 2010). In einer Studie in den USA lag sie bei gesunden Hunden bei 10,1 % und bei erkrankten Hunden bei 27,2 % (301 kranke Hunde, 99 gesunde Hunde) (Breitschwerdt et al. 2004; Solano-Gallego et al. 2004). In einer Studie, in der 9030 klinisch kranke Hunde aus den gesamten USA untersucht wurden, lag die Seroprävalenz bei 3,4 % (Breitschwerdt et al. 2010). In Großbritannien wurde eine Seroprävalenz von *B. henselae* bei Hunden von 3 % ermittelt (Breitschwerdt et al. 2010). In Deutschland und Frankreich wurde *B. henselae*-DNA in Flöhen (n=952) mittels PCR nachgewiesen. Die Gesamtprävalenz lag in dieser Studie bei 3,5 % (Just et al. 2008). Mittels Real-Time-PCR konnte 2010 eine deutlich höhere PCR-Prävalenz von *Bartonella* spp. bei Hunden in Deutschland ermittelt werden. Bei 50 von 159 untersuchten Hunden konnte *Bartonellen*-DNA im Blut nachgewiesen. *B. henselae* wurde bei 28,3 % der untersuchten Hunde, *B. elizabethae* bei 3,1 % der untersuchten Hunde isoliert (Mietze 2010). Das Vorhandensein von *Bartonella* spp. ist regional stark unterschiedlich und es sind weitere Studien notwendig, um die aktuelle Lage besser zu ermitteln (Mietze 2010).

Neurologische Symptome:

Diagnose:

Bedeutung von Bartonella spp. als Zoonoseerreger:

Es scheint, dass Bartonellen von Wildtieren und Haustieren auf den Menschen übertragen werden können. Inwiefern diese Infektionen bei Hund und Mensch zu selbstlimitierenden Erkrankungen oder chronischer Arthritis, Müdigkeit, Myalgie, Endokarditis oder gar anderen klinischen Symptomen führt, bleibt unklar (Breitschwerdt et al. 2010).

Es ist noch unklar, bis zu welchem Grad der Hund als Reservoir für eine Bartonella vinsonii ssp. berkhoffii Infektion beim Menschen dienen kann. Obwohl Hunde bei der Übertragung von B. henselae durch Kratzer und Bisse auf Menschen beteiligt waren (Schiklunger et al. 2004; Chung et al. 2005), ist dieser Übertragungsweg noch nicht eindeutig geklärt. Es sind weitere Studien notwendig, um eine Übertragung vom Tier auf den Menschen eindeutig nachzuweisen (Chomel et al. 2006).
2.2.4 Lyme Borreliose

Ätiologie:

Verbreitung:
Die Lyme Borreliose ist eine häufig diagnostizierte Vektor-übertragene Erkrankung beim Menschen. Die Verteilung der Genospezies von *B. burgdorferi* ist in Deutschland je nach Region unterschiedlich. In einer Studie, in der Zecken in der Region um Hannover untersucht wurden, lag die Prävalenz bei 26 % (Strube et al. 2011). In Hessen wurde bei 344 (9,5 %) von 3615 untersuchten Zecken *B. burgdorferi* sensu lato DNA mittel PCR nachgewiesen (Bingsohn et al. 2013). In Bayern lag die Prävalenz bei 15,8 % (599 untersuchte Zecken) (Vogel et al. 2012).
In der deutschen Hundepopulation wurden 2007 regionale Unterschiede der Seroprävalenz für *B. burgdorferi* von 1,9 % bis 10,3 % festgestellt (Krupka et al. 2007). In der Region um München wurde in einer Studie, in der 448 Hunde untersucht wurden, eine Seroprävalenz von 4,9 % (weitere 2 % der Hunde waren gleichzeitig seropositiv für *A. phagocytophilum* und *B.b.s.l.*) ermittelt (Barth et al. 2012).

Neurologische Symptome:

Eine niederländische Studie, in der 1177 Hunde serologisch auf *B. b. s.l.* untersucht wurden (davon 60 Hunde mit verschiedenen neurologischen Symptomen), fand keine Assoziation zwischen einem positiven serologischen Ergebnis für *B. b. s.l.* und der klinischen Symptomatik (Goossens et al. 2003).

Diagnose:

antigenetisch hoch konserviert (Liang et al. 2000a). Die Sensitivität und Spezifität des Tests liegen im Vergleich zum Immunoblot bei 98,8 % und 100 %. Eine quantitative Aussage über den Antikörpertiter ist möglich. Das ELISA auf das C6-Peptid ermöglicht den Nachweis von Antikörpern gegen B. burgdorferi sensu stricto, B. garinii und B. afzelii (Liang et al. 2000b).

2.2.5 Frühsommer-Meningoenzephalitis

Ätiologie:

Verbreitung:
In Deutschland ist die FSME beim Menschen seit 2001 meldepflichtig. In Risikogebieten liegt der Anteil der FSME-infizierten Zecken bei etwa 0 % bis 0,2 % (3947 untersuchte Zecken) (Bingsohn et al. 2013).

Neurologische Symptome:

Diagnose:

2.2.6 Babesiose

Ätiologie:

Verbreitung:
B. canis canis ist in Mitteleuropa am häufigsten für Erkrankungen beim Hund verantwortlich. Es wird durch die Auwaldzecke (Dermacentor reticulatus) übertragen und ist sehr pathogen (Birkenheuer 2012). B. canis vogeli kommt in Mitteleuropa selten vor und verursacht milde Krankheitsverläufe. B. canis rossi kommt in Mitteleuropa selten vor und verursacht milde Krankheitsverläufe. B. gibsoni misst 1,1-2 x 1,2-4 µm und ist vor allem in Asien und in den U.S.A. verbreitet. 2007 wurden erstmals zwei autochthone Infektionen mit dem asiatischen Genotyp in Deutschland beschrieben (Hartelt et al. 2007).

Die Seroprävalenz (IFAT) von B. canis spp. bei importierten Hunden in Deutschland lag bei 4,9 % (997 untersuchte Hunde) (Hamel et al. 2011).

Im Folgenden werden nur Infektionen mit B. canis (große Babesien) besprochen.

Neurologische Symptome:
Es wurde eine atypische Form der Babesiose (zerebrale Babesiose) beschrieben, bei der neurologische Symptome im Zusammenhang mit infizierten Erythrozyten auftreten. 1-10 % der infizierten Hunde entwickeln eine zerebrale Babesiose (Birkenheuer 2012). Die Klinik verläuft meist perakut und kann mit epileptiformen Anfällen, Bewusstseinsstörungen, Nachhandparese, Ataxie, Koma, Aggressivität, Nystagmus und anderen neurologischen Ausfallserscheinungen einhergehen (Boozer und Macintire 2003; Birkenheuer 2012). Die Pathogenese ist unzureichend geklärt. Es wurde postuliert, dass infizierte Erythrozyten in der Mikrovaskulatur des ZNS sequestriert werden, was zur Freisetzung von Entzündungsmediatoren, Gewebehypoxie und neurologischen Symptomen führt (Schetters und Eling 1999). Zerebrale Babesiose hat eine hohe Mortalitätsrate.
Es wurde ein Fall einer Infektion mit B. canis in Belgien beschrieben (Van de Maele et al. 2008): eine CT-Untersuchung des Gehirns zeigte eine generelle kortikale Atrophie, die mit Befunden bei Menschen mit ZNS-Entzündungen vergleichbar war.

Diagnose:
Die Diagnose kann über mikroskopische Darstellung der Mikroorganismen in Erythrozyten im Blutausstrich gestellt werden. Bei niedriger Parasitämie (in der Frühphase der Infektion und in den Phasen zwischen den Vermehrungsschüben im Blut) können jedoch falsch negative Befunde auftreten (Birkenheuer 2012). Die Giemsa-Färbung ist im Vergleich zu den üblichen Schnellfärbungen am zuverlässigsten. B. canis zeigt sich als paarweise oder in
größeren Gruppen rosettenförmig angeordnete, birnenförmige Gebilde in den roten Blutkörperchen.

PCR aus EDTA-Blut ist die sensitivste und spezifischste Nachweismethode für B. canis (Birkenheuer 2012).

2.2.7 Koinfektionen

In Endemiegebieten wurden Fälle beschrieben, bei denen Koinfektionen mit Babesia vogeli und E. canis mit schwerwiegenden neurologischen Symptomen in Zusammenhang gebracht wurden (Trapp et al. 2006). In der Studie hatten neurologische Symptome eine höhere Prävalenz bei Hunden, die Antikörper gegen beide Mikroorganismen aufwiesen.

In Thailand wurde ein komplizierter Fall einer Koinfektion von E. canis und Babesien (B. canis) beschrieben, bei welchem der Hund schwere neurologische Störungen zeigte (Assarasakorn und Niwetpathomwat 2007).

2.3 Durch andere infektiöse Erreger verursachte Meningoenzephalitiden

2.3.1 Bakterielle Enzephalitis

Ätiologie und Verbreitung:

Symptome:

Diagnose:
Die Befunde der Allgemeinuntersuchung und das Vorhandensein eines extraneuralen Infektionsherdes sind diagnostisch wichtig. Die Blutuntersuchung ergibt meist eine

2.3.2 Gehirnabszesse

Bei Menschen werden Gehirnabszesse oft durch Staphylokokken und Streptokokken hervorgerufen und treten meist als Folge von Hautinfektionen auf. Gehirnabszesse kommen beim Hund seltener vor als bakterielle Enzephalitiden. Dies kann daran liegen, dass das ZNS kein Narbengewebe bilden kann, das die Verbreitung von pyogenen Infektionen hemme

2.3.3 Staupe

Ätiologie und Verbreitung:

Es konnte keine Beteiligung von Staupevirus bei Greyhounds mit Greyhound-Meningoenzephalitis nachgewiesen werden (Callanan et al. 2002).

In ähnlichen Studien, in denen Malteser mit nekrotisierender Meningoenzephalitis untersucht wurden, konnte das Staupevirus ebenfalls nicht nachgewiesen werden (Stalis et al. 1995).

Symptome:
Diagnose:
Die Liquoruntersuchung ergibt bei der akuten Form keine Veränderungen der Zellzahl und des Proteingehalts (selten wird eine leichte Pleozytose beobachtet). Das Differentialzellbild ist rein mononukleär, d.h. es sind nur Lymphozyten, Plasmazellen, Monozyten und Makrophagen zu finden (Tipold 1995a). Die MRT-Veränderungen sind sehr variabel (Bathen et al. 2008).
Bei der chronischen Form der Erkrankung ergibt die Liquoruntersuchung meist eine Pleozytose und / oder einen erhöhten Proteingehalt. Das Differentialzellbild ist auch bei der chronischen Form mononukleär (Amude et al. 2007).

2.3.4 Tollwut

Ätiologie und Verbreitung:
Der Erreger der Tollwut ist das Tollwutvirus. Es ist ein RNA-Virus, das in die Familie der Rhabdoviridae eingeteilt wird. Es ist weltweit verbreitet.

Symptome:
Diagnose:

2.3.5 Bornasche Krankheit

Ätiologie und Verbreitung:

Symptome:

Diagnose:
Bei Hunden wurde die Diagnose post-mortem histologisch, immunhistochemisch sowie über Antikörper- und RNA-Nachweis im Gehirnschnitt gestellt (Weissenbock et al. 1998a; Okamoto et al. 2002).
2.3.6 Canines Minute-Virus

Ätiologie und Verbreitung:

Seroprävalenzstudien deuten darauf hin, dass CnMV in der Hundepopulation in vielen Ländern weit verbreitet ist (Italien: 13,6-24,17 %; USA: 47-89 % je nach Testmethode) (Carmichael et al. 1994).

Neurologische Symptome:

Diagnose:
Hohe Antikörpertiter können diagnostisch sein (Ohshima et al. 2010). CnMV-Infektion führt bei älteren Hunden wahrscheinlich zu Antikörperproduktion, aber selten zu Virusausscheidung (Ohshima et al. 2010).

2.3.7 Weitere virale Erkrankungen

Es wurde in verschiedenen Studien mittels Virusisolierung, Immunhistochemie oder in situ Hybridisierung versucht, einen Zusammenhang zwischen Meningoenzephalitis und viralen Erregern zu ermitteln (Schatzberg et al. 2005; Schwab et al. 2007).
induzierte GTPasen, die mit viralen und entzündlichen Prozessen assoziiert werden) in Gehirngeweben von Möpsen mit NME nachgewiesen (Porter et al. 2006). Aus diesem Grund wurden weitere virale Erreger wie das canine Herpes Virus (CHV-1), Louping ill Virus (LIV), Parainfluenza Virus, West Nile Virus (WNV) und Encephalomyocarditis Virus als Ursache für neurologische Erkrankungen beim Hund untersucht.

a) Untersuchungen bei Patienten mit nekrotisierender Meningoenzephalitis

b) Untersuchungen bei Greyhounds mit Greyhound-Meningoenzephalitis

c) Untersuchungen bei Patienten mit granulomatöser Meningoenzephalitis

Alternativ können diese Ergebnisse die Theorie unterstützen, dass GME durch eine unspezifische Entzündungsantwort auf verschiedene Antigene entsteht (von denen infektiöse Agenzien einen wichtigen Teil darstellen können).

2.3.8 Protozoäre Meningoenzephalomyelitis

2.3.8.1 Neosporose

Ätiologie:

Symptome:

In ca. 10 % der Fälle kommen extraneurale Symptome vor, wie erhöhte rektale Körpertemperatur, Atembeschwerden und Verdauungsstörungen. Spezielle Veränderungen wie protozoäre Myokarditis können ebenso wie Hepatitis und generalisierte Lymphknotenhyperplasie auftreten (Dubey et al. 2007).

Bei der Hälfte der betroffenen Tiere tritt die Erkrankung akut und mit rasch progressivem Verlauf auf, bei den übrigen Tieren verläuft die Erkrankung chronisch über mehrere Wochen oder Monate (Garosi et al. 2010).

Diagnose:

Die Diagnose wird anhand von klinischer Untersuchung, DNA-Nachweis mittels PCR (Dubey et al. 2012), serologischer Untersuchung oder histologischer Untersuchung von
Geweben gestellt. Die Befunde der Blutuntersuchung ergeben in 80 % der Fälle eine Eosinophilie (Dubey et al. 1988). Diese kann mit oder ohne Leukozytose auftreten. In ca. 70 % der Fälle ist die Kreatininkinase mittel- bis hochgradig erhöht.

Die Liquoruntersuchung ergibt in 90 % der Fälle eine Erhöhung des Proteingehtals und eine gering- bis mittelgradige Pleozytose. Das Differentialzellbild ergibt eine gemischtelellige oder mononukleäre Pleozytose (Hay et al. 1990). Bei einigen Hunden werden eosinophile Granulozyten gefunden. Es können selten Tachyzoiten in der Zytologie zu finden sein (Galgut et al. 2010).

In einer Fallserie mit 7 Hunden fiel im MRT eine geringe bis deutliche bilateral symmetrische zerebelläre Atrophie auf. Das atrophiierte Kleinhirn war von einer Region umgeben, die sich in T2-gewichteten Schnitten hyper- und in T1-gewichteten Schnitten hypointens darstellte (Garosi et al. 2010).

Zwei Antikörperbestimmungen im Serum mit ansteigendem Titer innerhalb von 2-3 Wochen sind diagnostisch ausreichend (Tipold 1995a).

2.3.8.2 Toxoplasmose

Ätiologie:

Symptome und Diagnose:
Symptome und Diagnose entsprechen denen der Neosporose. Bei der Hälfte der betroffenen Tiere tritt die Erkrankung akut und mit rasch progressivem Verlauf auf, bei den übrigen Tieren verläuft die Erkrankung chronisch über mehrere Wochen oder Monate (Dubey et al. 2012).

2.3.9 Kryptokokkose

Ätiologie und Verbreitung:

Beim Menschen ist Cr. neoformans vor allem bei immunsupprimierten Patienten von Bedeutung (6 % der HIV-Patienten weisen zusätzlich eine Cr. neoformans Infektion auf). Cr. gattii infiziert vor allem gesunde Individuen (Sykes et al. 2012). Eine Übertragung von Haustieren auf Menschen gilt als unwahrscheinlich.

Symptome:

Diagnose:

2.4 Meningoenzephalitiden unbekannter Genese

auf, weshalb sie in der Literatur zum Teil als getrennte Erkrankungen behandelt werden (Zarfoss et al. 2006; Adamo et al. 2007; Schatzberg 2007).

2.4.1 Granulomatöse Meningoenzephalitis

Ätiologie und Verbreitung:
Die Ätiologie der GME ist trotz langjähriger Forschung weiterhin unklar. Es wurden verschiedene infektiöse Trigger, sowie genetische Komponenten untersucht (Herrera et al. 2007; Schwab et al. 2007).

Symptome:

Die okuläre Form der GME äußert sich durch akute Sehveränderungen. Hunde mit okulärer GME können gleichzeitig disseminierte Läsionen aufweisen.

Diagnose:

2.4.2 Nekrotisierende Enzephalitiden

Nekrotisierende Meningoenzephalitis und nekrotisierende Leukoenzephalitis haben viele verschiedene Namen, wie z.B. Mops Enzephalitis (NME) (Cordy et al. 1989) oder nekrotisierende Enzephalitis des Yorkshire Terriers (NLE) (Ducote et al. 1999). Es sind kleine Hunderassen betroffen (Chihuahua, Pekingese, West Highland White Terrier, Boston

Ätiologie und Verbreitung:
NME tritt häufiger bei Möpsen, NLE tritt vermehrt beim Yorkshire Terrier auf. Allerdings wurde NLE auch bei Möpsen, Chihuahuas und Maltesern diagnostiziert und es wurde NME bei einem Yorkshire Terrier nachgewiesen. NME tritt meist bei jungen Tieren auf (Alter bei Beginn der Symptome von 6 Monaten bis zu 7 Jahren). Bei Beginn der Symptome einer NLE können die Tiere zwischen 4 Monate und 10 Jahre alt sein (Talarico et al. 2010).
Das Modell der autoimmunen Enzephalomyelitis (EAE) der Ratte kann mehr Informationen über die Variationen der Topographie von Läsionen bei verschiedenen Hunderassen geben. Bei Ratten mit EAE führten kleine Veränderungen der MHC Haplotypen nach experimentellem Kontakt mit Myelin-Oligodendrozyt-Glykoprotein zu unterschiedlichen, aber reproduzierbaren Entzündungsmustern (Storch et al. 2006). In einer ähnlichen Weise könnten genetische Unterschiede zwischen Rassen zu den unterschiedlichen Erscheinungsbildern der Erkrankungen führen.

Symptome:

Diagnose:
I. Bildgebung
Im CT sind bei NME und NLE fokale hypodense Läsionen im Prosencephalon in den akuten Stadien sichtbar (Thomas 1998). Die Läsionen können, müssen aber nicht Kontrastmittel anreichern.

II. Pathologische Charakteristika
Neuropathologisch stellt sich die NME als eine nicht-eitrige Meningoenzephalitis mit bilateraler, asymmetrischer zerebraler Nekrose dar. NME befallt meist die Großhirnhemisphären und die subkortikale weiße Substanz. Tiefe Entzündungen ziehen von den Leptomeningen durch das Cortex bis zu der Corona Radiata (Summers et al. 1995). Es kommt oft zu einem Demarkationsverlust zwischen grauer und weißer Substanz. Meningeale Infiltrate durch Plasmazellen, Lymphozyten und selten auch Histiozyten treten meistens in

2.5 Steroid-Responsive Meningitis-Arteriitis (SRMA)

III. Material und Methoden

3.1 Art der Studie

3.2 Patienten, Einschluss- und Ausschlusskriterien

66 Hunde wurden in die Studie aufgenommen. Die Patienten wurden an der Klinik und Poliklinik für kleine Haustiere der Freien Universität Berlin, der Klinik für Kleintiere der Stiftung Tierärztliche Hochschule Hannover und der Tierärztlichen Klinik für Kleintiere in Trier rekrutiert.

In der MUE-Gruppe wurden 22 Hunde mit Meningoenzephalitis untersucht, die folgende Einschlusskriterien erfüllen mussten:
 a) die Hunde haben neurologische Symptome im Sinne einer intrakraniellen Läsion,
 b) eine Liquoruntersuchung muss eine erhöhte Zellzahl (> 3 Zellen/µl) und eine Proteinerhöhung ergeben,
 c) in der Bildgebung wird ein entzündlicher Prozess vermutet.

Einschluss in die MUE-Gruppe bei unauffälliger Liquoruntersuchung findet statt, wenn deutliche Veränderungen in der bildgebenden Diagnostik beobachtet werden (multifokale Herde, Kontrastmittelanreicherung) und/oder das Tier schon mit Glukokortikoiden vorbehandelt ist oder eine histopathologische Untersuchung die Diagnose bestätigt.

In der SRMA-Gruppe wurden 23 Hunde mit SRMA untersucht, die folgende Einschlusskriterien erfüllen mussten:
 a) die klinische Erscheinung deutet auf SRMA hin (steife Kopf-Halshaltung, Halsbieschmerz, Fieber),
 b) eine Liquoruntersuchung muss Liquorveränderungen ergeben, die auf SRMA deuten (erhöhte Zellzahl (> 3 Zellen/µl) und Proteinerhöhung).

Eine Nichtaufnahme bzw. ein Ausschluss von potentiellen Patienten der MUE-Gruppe und der SRMA-Gruppe erfolgte, wenn
 a) die bildgebenden Verfahren ein tumoröses Geschehen oder Hinweise auf eine Anomalie anzeigten,
 b) andere Primärerkrankungen für die Symptomatik verantwortlich waren, z.B. wenn anamnestisch die Aufnahme von toxischen Substanzen als Ursache für neurologische Symptome ermittelt werden konnte,
 c) metabolische Veränderungen bei der Blutuntersuchung auffällig waren, oder
d) keine vollständige Krankengeschichte vorlag oder eine diagnostische Abklärung nicht möglich war (z.B. Liquorentnahme nicht erfolgreich oder zu wenig Material entnommen).
In der **Kontrollgruppe (Trauma)** wurden 21 Hunde mit nicht-entzündlichen ZNS-Erkrankungen (Bandscheibenvorfall - Rückenmarkstrauma) untersucht, die folgende Einschlusskriterien erfüllen mussten:

a) die Diagnostik ergibt eine eindeutige klinische Diagnose,

b) CT oder MRT mit Kontrastmittelgabe, ggf. Chirurgie bestätigen die Diagnose.

3.3 Studienprotokoll

Bei allen Hunden wurde eine klinische Allgemeinuntersuchung und eine neurologische Untersuchung durchgeführt.

Bei Patienten aus der MUE-Gruppe wurde ein CT des Gehirns mit Kontrastmittel (Berlin, Trier) oder MRT des Gehirns mit Kontrastmittel (Hannover) gemacht.

Bei verstorbenen Tieren wurde, wenn möglich, eine pathologische Untersuchung des Tierkörpers durchgeführt.

In der **Kontrollgruppe (Trauma)** wurden Hunde mit nicht-entzündlichen ZNS-Erkrankungen (Rückenmarkstrauma) untersucht. Es wurde ein CT oder MRT der Wirbelsäule und ggf. eine chirurgische Darstellung des Rückenmarks durchgeführt.

Blut-Untersuchungen:

EDTA-Blut von allen Hunden wurde auf die CVBD-Erreger *Bartonella* und *A. phagocytophilum* mittels PCR untersucht (Institut für Mikrobiologie, Zentrum für Infektionsmedizin, Stiftung Tierärztliche Hochschule Hannover, bzw. Lehrstuhl für Vergleichende Tropenmedizin und Parasitologie, Ludwig-Maximilians-Universität, München).

Bei Verdacht (Auslandsaufenthalt) wurden Untersuchungen auf Erreger, die nicht in Deutschland vorkommen, durchgeführt. Dies beinhaltete eine PCR-Untersuchung auf *Ehrlichia canis* aus EDTA-Blut und ein IFAT aus Serum (Lehrstuhl für Vergleichende Tropenmedizin und Parasitologie, Ludwig-Maximilians-Universität, München).

Liquor-Untersuchungen:

Auf das Vorhandensein von Infektionserregern im Liquor wurde mittels eubakterieller PCR (Zielgen 16S rRNA) (Institut für Mikrobiologie und Tierseuchen, Fachbereich Veterinärmedizin, Freie Universität Berlin) untersucht. In Einzelfällen wurde bei Verdacht eine PCR-Untersuchung auf *Neospora caninum* und *Toxoplasma gondii* durchgeführt.
Bei lymphozytärer Pleozytose wurde zusätzlich eine Staupe PCR (CDV, canine distemper virus) (Virologie Gießen/Hannover) eingeleitet. Der Liquor von allen Hunden wurde mittels PCR auf die Erreger Bartonella (Institut für Mikrobiologie, Zentrum für Infektionsmedizin, Stiftung Tierärztliche Hochschule Hannover) und A. phagocytophilum (Lehrstuhl für Vergleichende Tropenmedizin und Parasitologie, Ludwig-Maximilians-Universität, München) untersucht; bei Verdacht (Auslandsaufenthalt, Vaskulitis) auch mittels PCR auf Ehrlichia canis (Lehrstuhl für Vergleichende Tropenmedizin und Parasitologie, Ludwig-Maximilians-Universität, München).

Tabelle 1: Zusammenfassung der benötigten Proben und Untersuchungen bei allen Tieren mit minimal benötigten Materialvolumina

<table>
<thead>
<tr>
<th>Proben</th>
<th>EDTA-Blut</th>
<th>Serum</th>
<th>Liquor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standarduntersuchung</td>
<td>Blutbild, ggf. Differentialzellbild</td>
<td>Zellzahl, Proteingehalt, ggf. Differentialzellbild</td>
<td></td>
</tr>
<tr>
<td>Infektionserreger</td>
<td>16S rRNA</td>
<td>PCR CDV (bei lymphozytärer Pleozytose)</td>
<td></td>
</tr>
<tr>
<td>CVBD-Erreger</td>
<td>PCR A. phagocytophilum</td>
<td>PCR A. phagocytophilum</td>
<td></td>
</tr>
<tr>
<td>E. canis</td>
<td>IFAT E. canis</td>
<td>PCR E. canis</td>
<td></td>
</tr>
<tr>
<td>Bartonella spp.</td>
<td>IFAT Bartonella spp.</td>
<td>PCR Bartonella spp.</td>
<td></td>
</tr>
<tr>
<td>Borrelia burgdorferi s.l. / C6 ELISA</td>
<td>IFAT Borrelia burgdorferi s.l. / C6 ELISA</td>
<td>IFAT Borrelia burgdorferi s.l. / C6 ELISA</td>
<td></td>
</tr>
</tbody>
</table>

3.4 Probenentnahme, -aufbewahrung, -aliquotierung und Transport

Die für die Untersuchungen benötigten Proben wurden im Rahmen der Erstuntersuchung gewonnen. 5 ml venöses Blut wurde unter sterilen Kautelen aus der V.cephalica antebraehii oder aus der V. saphena mittels einer Kanülle (Sterican® 20G x1½“) entnommen. Für die Studie wurde das Blut genutzt, das nach der Routinediagnostik übrig war. Ein Teil des Blutes wurde in ein Kalium- EDTA-beschichtigtes Röhrchen (Sarstedt® 1,6 mg EDTA/ml Blut) gegeben, ein Teil wurde abzentrifugiert und das Serum aufbewahrt. Liquor wurde unter Allgemeinnarkose unter sterilen Kautelen gewonnen (siehe Literaturübersicht). Liquor, der nach der Routinediagnostik übrig war, wurde aufbewahrt und für die Studie genutzt. Proben, die nicht umgehend analysiert werden konnten (ca. 1 ml Liquor in Aliquots, 3 ml EDTA-Blut, 2 ml Serum), wurden bis zur Untersuchung tiefgefroren aufbewahrt (Temperatur -20 °C). Aufgrund der multizentrischen Natur der Studie wurden die Proben transportiert. Im Zuge des Transports oder zur Aliquotierung wurden 60 Proben aufgetaut. 17 Proben aus Hannover (7 aus der MUE-Gruppe, 10 aus der SRMA-Gruppe) wurden zweimal zur Aliquotierung aufgetaut. Die übrigen Proben wurden alle einmal aufgetaut.

33
3.5 Untersuchungsmethoden

3.5.1 Real-Time-PCR

3.5.1.1 *A. phagocytophilum* und *E. canis*

3.5.1.2 *Bartonella* spp.

Tabelle 2: Primer- und Sondensequenzen, Mischungen und Temperaturzyklen der PCR-Untersuchungen auf *A. phagocytophilum*, *E. canis* und *Bartonella* spp.

<table>
<thead>
<tr>
<th></th>
<th>Primer- und Sondensequenzen</th>
<th>Referenz</th>
<th>Mastermix</th>
<th>Temperatur-zyklen</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. phagocytophilum</td>
<td>7500 fast real time-PCR-System (Applied Biosystems, Carlsbad, CA) Zielgen: msp2</td>
<td>ApMsp2r: 5'-TTGGTCTTGAAGCGCTCGTAA-3' ApMSP2f: 5'-ATGGAAGGTAGTGTTATTATGGTATT-3' Sonde Apmsp2p: 5'FAM-TGGTGCCAGGGTTGAGCTTGAGATTG-3'TAM</td>
<td>(Courtney et al. 2004)</td>
<td>Universal fast TaqMan MMX (Applied Biosystems, Carlsbad, CA) 10 µl Primer f (10µM) 1,8 µl Primer r (10µM) 1,8 µl Sonde ApMsp2p (10 µM) 0,4 µl H2O 1 µl Proben-DNA 5,0 µl</td>
</tr>
<tr>
<td>E. canis</td>
<td>7500 real time-PCR-System (Applied Biosystems, Carlsbad, CA)</td>
<td>Ecp30-f: 5'-TGGATACTACCATGGCGTTATGG-3' Ecp30-r: 5'-GAGGAGCATCATTTAATACTACAGGAGTT-3' Sonde Ecp30-p: 5'FAM-CAGGTATCTTCTCAAATT-3'NFQ</td>
<td>(Ionita et al. 2013)</td>
<td>Gene expression Mastermix (Applied Biosystems, Carlsbad, CA) 12,5 µl Assay Mix (Applied Biosystems, Carlsbad, CA) 1,25 µl Proben DNA 11,25 µl</td>
</tr>
<tr>
<td>Bartonella spp.</td>
<td>Mx3005PTM QPCR Systems (Stratagene, Heidelberg, Germany) Zielgen: gltA</td>
<td>strat1: 5'-GGGGACCAGCTCATGGTGG-3' strat2: 5'-GCGTGATAGCAATATCAAGAGTG-3'</td>
<td>(Mietze et al. 2011)</td>
<td>2x QuantiTect® SYBR® Green PCR Master Mix (Qiagen, Hilden, Deutschland) 12.5 µl Primer (1 mM) 0,5 µl Proben DNA 10 µl ddH2O ad 25 µl</td>
</tr>
</tbody>
</table>

3.5.2 Qualitative eubakterielle PCR

Um weitere potentielle infektiöse Erreger von ZNS-Entzündungen ermitteln zu können, wurde aus Liquor eine qualitative eubakterielle PCR durchgeführt, bei der das Zielgen die konservierte 16S rRNA Genregion war (Nadkarni et al. 2002). Zur Aufreinigung der Gesamt-DNA aus dem Liquor wurde das DNeasy Blood & Tissue Kit (Qiagen, Hilden, Deutschland) verwendet.

Es wurden folgende Primer verwendet: 5’ TCCTACGGGAGGCAGCAGT 3’ (forward) und 5’ GGACTACAGCGGTATCTAATCAGT 3’ (reverse).

3.5.3 Indirekter Immunfluoreszenzantikörpertest (IFAT)

Die IFA-Tests auf *E. canis* und auf *B. burgdorferi* sensu lato wurden am Lehrstuhl für Vergleichende Tropenmedizin und Parasitologie, Ludwig-Maximilians-Universität, München durchgeführt.

3.5.3.1 IFAT *Borrelia burgdorferi* sensu lato

Der IFAT stellt eine quantitative Methode zur Serumuntersuchung auf Antikörper gegen *Borrelia burgdorferi* sensu lato dar. Dabei werden durch serielle Verdünnungen (Titration) Antikörper gegen *B. burgdorferi* s. s., *B. afzelii* und *B. garinii* nachgewiesen.

Die Untersuchung wurde mit einem Testkit durchgeführt (MegaScreen® FLUOBORRELIA canis-Testkits, megaCor GmbH, Hörbranz, AU). Das Kit beinhaltet mit Antigen beschichtete Objektträger, Eindeckmittel, Positiv- und Negativkontrollseren und Anti-dog IgG FITC-markiertes Konjugat (bei +6 °C aufbewahrt). Weitere Reagenzien waren (bei +6 °C aufbewahrt): PBS-Puffer pH 7,4 (MI 1.04 PBS-Puffer, täglich frisch angesetzt), 0,02 %ige Evans Blue-Lösung (MI 1.05) und Aqua dest. Der PBS-Puffer pH 7,4 wurde sowohl zum Waschen als auch als Verdünnungspuffer eingesetzt.

Es folgte eine Inkubation der Objektträger über 30 Minuten in einer feuchten Kammer im Wärmeschrank bei 37 °C. Nach der Inkubationsphase wurden die Objektträger mit PBS-Puffer abgespült und zweimal für mindestens 5 Minuten mit PBS-Puffer gewaschen. Im nächsten Arbeitsschritt wurden 10 μl Konjugat auf jedes beschichtete Feld der Objektträger gegeben und die Objektträger wurden erneut im Wärmeschrank bei 37 °C über 30 Minuten inkubiert. Die Objektträger wurden mit PBS-Puffer abgespült und erst zweimal für mindestens 5 Minuten in PBS-Puffer gewaschen, dann zweimal für mindestens 5 Minuten mit Aqua dest. gewaschen. Im letzten Schritt wurden die Objektträger mit Eindeckmittel blasenfrei eingedeckt und bei 400facher Vergrößerung mit dem Fluoreszenzmikroskop (495 nm) analysiert.

Die Qualitätskontrolle erfolgte über ein deutliche Fluoreszenz der Positiv-Kontrolle und keine Fluoreszenz der Negativ-Kontrolle.

3.5.3.2 IFAT *Ehrlichia canis*

Beim IFAT werden durch serielle Verdünnungen (Titration) Antikörper gegen *E. canis* nachgewiesen.

Die Untersuchung wurde mit einem Testkit (MegaScreen FLUOEHRLIChIA canis, MegaCor Diagnostik GmbH, Hörbranz, AU) durchgeführt. Das Kit beinhaltet mit Antigen beschichtete Objekträger und Eindeckmittel (bei +6 °C aufbewahrt). Weitere Reagensien waren Positiv- und Negativkontrollseren vom Hund (bei +6 °C aufbewahrt), PBS-Puffer pH 7.4 (MI 1.04 PBS-Puffer, täglich frisch angesetzt), Anti-dog IgG FITC-markiertes Konjugat (Firma Sigma; F-7884), 0,02 %ige Evans Blue-Lösung (MI 1.05) und Aqua dest. Der PBS-Puffer pH 7.4 wurde sowohl zum Waschen als auch als Verdünnungspuffer eingesetzt.

3.5.4 Enzyme-linked Immunosorbent Assay (ELISA) *Bartonella* spp.

Der *Bartonella* spp. Stamm Houston-1 wurde in einem modifizierten Schneider’s Medium bei 37,8 °C in einer 5 % CO₂ Atmosphäre bis zu einer optischen Dichte von 0,5 bei 660 nm (OD660) kultiviert (Riess et al. 2008). Das Bakterien-Pellet wurde mit PBS gewaschen. Die Bakterien wurden im nächsten Schritt in 10mM Tris–HCl (pH 8.0), 150mM NaCl und 0,025 % Sodium Deoxycholat resuspendiert und durch Schütteln extrahiert. Die Extrakte wurden erneut zentrifugiert (8000 x g für 15 Minuten bei 4,8 °C). Der Überstand wurde bei -20 °C bis zum Gebrauch gelagert. Durch diese schonende Extraktionstechnik konnte die Integrität der bakteriellen Zellwand trotz Freisetzung der antigenen Oberflächenproteine erhalten bleiben (Goethe et al. 2000).

Durchführung des ELISA:

Maxisorp Platten (Nunc, Rochester, NY) wurden über Nacht bei 8 °C mit 5 µg *B. henselae* Antigen in Carbonat Puffer beschichtet. Sie wurden zwischen den verschiedenen Inkubationsschritten dreimal mit PBST gewaschen (PBS mit 0,05 % Tween 20) und mit 5 % Magermilch in PBST für 2 Stunden bei 37,8 °C geblockt. Serumproben wurden in einer Verdünnung von 1:100 in das PBST hinzugefügt. Anschließend wurden die Platten für 1 Stunde bei 37 °C unter leichtem Schütteln inkubiert. Für die Bestimmung des Gesamt-IgG-Wertes wurden die Platten mit Peroxidase-konjugiertem goat anti-cat IgG-Fc Antiserum (Bethyl Laboratories, Inc., Montgomery, USA) in einer Verdünnung von 1:10.000 für 1 Stunde bei Raumtemperatur inkubiert. Die Platten wurden mit 2,2-azino-di-[3-ethylbenzthiazoline sulfonat] (ABTS, Boehringer, Mannheim, Germany) und 0,002 % H₂O₂ als Substrat entwickelt. Die Absorbanz wurde bei 405 nm gemessen. Proben wurden als positiv angesehen, wenn die optische Dichte (OD) höher war als die durchschnittliche OD der Negativ-Kontrolle plus eines Faktors, der auf der detektierten Standard Deviation (SD) basiert. Für IgG wurde ein Faktor von 3xSD genutzt. Eine Serum-Probe war positiv, wenn das errechnete Ratio R ≥ 1 war.

\[
R = \frac{\text{OD Probe}}{\text{durchschnittlicher OD} - \text{Wert der Negativ-Kontrolle} + \text{Faktor}}
\]

3.5.5 Enzyme-linked Immunosorbent Assay (ELISA) FSME-Virus

Der ELISA auf das FSME-Virus wurde am Institut für Tierhygiene und Öffentliches Veterinärwesen, Zentrum für Veterinary Public Health, Universität Leipzig durchgeführt.

Es wurde das Progen All Species IgG ELISA Kit (PROGEN Biotechnik GmbH, Heidelberg, Deutschland) nach Herstellerangaben eingesetzt. Seren von vakzinierten Hunden wurden als Positivkontrolle genutzt.

3.6 Statistische Auswertung

als Ausreißer und Extremwerte werden im Zusammenhang mit Boxplots solche Werte gekennzeichnet, die um mehr als das 1,5-fache der Höhe der Box ober- und unterhalb der Box liegen. Die Entfernung von Ausreißern zur Box beträgt zwischen dem 1,5-fachen und dem Dreifachen der Boxhöhe (in der Grafik als Kreise gekennzeichnet). Extremwerte liegen dagegen mehr als das Dreifache über bzw. unter der Boxhöhe (als Sternchen gekennzeichnet).

Zum Vergleich von Gruppenmittelwerten wurde die einfaktorielle Varianzanalyse (ANOVA) eingesetzt. Dieses Verfahren ermöglicht die Ermittlung des Einflusses eines Faktors (unabhängige Variable) auf eine Zielvariable (abhängige Variable). Ist die unabhängige Variable nominalskaliert und die abhängige Variable metrisch skaliert, werden die Mittelwerte der abhängigen Variablen innerhalb der, durch die Kategorien der unabhängigen Variablen definierten, Gruppen verglichen. $P \leq 0,05$ wurde als signifikant definiert.

Die Normalverteilungsannahme wurde jeweils anhand eines Histogramms überprüft. Da es bei einigen Variablen (z.B. IFAT Borrelia burgdorferi sensu lato) teilweise starke Abweichungen von dieser gab, wurde alternativ der nichtparametrische Kruskal-Wallis-Test durchgeführt. Im Falle eines signifikanten Ergebnisses des Omnibus-Tests wurden zur Ermittlung der einzelnen Gruppenunterschiede post-hoc Tests genutzt. Im Fall des Kruskal-Wallis-Test wurde der Mann-Whitney-U-Test als post-hoc Test eingesetzt.

Als statistische Software wurde SPSS 17.0 für Windows, SPPS Inc., USA verwendet.
IV. Ergebnisse

4.1 Beschreibung der Gruppen

4.1.1 MUE-Gruppe (Patienten mit Meningoenzephalitis)

22 Hunde wurden in die MUE-Gruppe eingeschlossen. 15 Hunde wurden an der Klinik für Kleintiere der Stiftung Tierärztlche Hochschule Hannover, 4 Hunde an der Klinik für kleine Haustiere der Freien Universität Berlin und 3 Hunde an der Tierärztlichen Klinik für Kleintiere in Trier vorgestellt und untersucht.

Das Vorstellungsalter von den 12 männlichen (2 kastrierte) und 10 weiblichen (3 kastrierte) Hunden lag zwischen 0,5 und 10 Jahren (Median \(M \)=2,7 Jahre). 4 Mischlinge und 15 Rassen waren vertreten (Tab. 3).

Bei 16 Patienten war bekannt, ob der Hund im Ausland gewesen war. 12 Hunde hatten zum Zeitpunkt der Vorstellung Deutschland nie verlassen. Vier Hunde waren im Ausland gewesen. Die bereisten Länder waren Polen (2), Holland (1), Schweiz (1), Österreich (1) und Italien (1).

Der Impfstatus war bei 16 Hunden bekannt. 15 Hunde waren regelmäßig geimpft, ein Hund wurde grundimmunisiert und nicht nachgeimpft (Tab. 3).

<table>
<thead>
<tr>
<th>Patient</th>
<th>Region</th>
<th>Datum der Vorstellung</th>
<th>Alter (J.)</th>
<th>Geschlecht</th>
<th>Rasse</th>
<th>Ausland</th>
<th>Impfung</th>
<th>Entwurmung</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUE1</td>
<td>H</td>
<td>16.04.2010</td>
<td>0,6</td>
<td>W</td>
<td>Labrador Retriever</td>
<td>k.A.</td>
<td>k.A.</td>
<td>k.A.</td>
</tr>
<tr>
<td>MUE2</td>
<td>B</td>
<td>04.02.2010</td>
<td>5</td>
<td>W</td>
<td>Rauhaart-Teckel</td>
<td>k.A.</td>
<td>k.A.</td>
<td>k.A.</td>
</tr>
<tr>
<td>MUE3</td>
<td>B</td>
<td>27.05.2010</td>
<td>9</td>
<td>WK</td>
<td>Basenji-Mischling</td>
<td>nein</td>
<td>ja</td>
<td>k.A.</td>
</tr>
<tr>
<td>MUE4</td>
<td>B</td>
<td>14.01.2011</td>
<td>0,6</td>
<td>MK</td>
<td>Französische Bulldogge</td>
<td>Polen</td>
<td>ja</td>
<td>ja</td>
</tr>
<tr>
<td>MUE5</td>
<td>H</td>
<td>28.12.2010</td>
<td>1</td>
<td>M</td>
<td>Deutscher Schäferhund</td>
<td>nein</td>
<td>nur erste Impfung</td>
<td>k.A.</td>
</tr>
<tr>
<td>MUE6</td>
<td>H</td>
<td>28.10.2010</td>
<td>2</td>
<td>WK</td>
<td>Mischling</td>
<td>Holland</td>
<td>ja</td>
<td>ja</td>
</tr>
<tr>
<td>MUE7</td>
<td>H</td>
<td>05.10.2010</td>
<td>0,6</td>
<td>W</td>
<td>Französische Bulldogge</td>
<td>nein</td>
<td>ja</td>
<td>ja</td>
</tr>
<tr>
<td>MUE8</td>
<td>H</td>
<td>08.02.2010</td>
<td>2,5</td>
<td>M</td>
<td>Slougli</td>
<td>Polen, Schweiz</td>
<td>ja</td>
<td>Ja</td>
</tr>
<tr>
<td>MUE9</td>
<td>TR</td>
<td>22.11.2010</td>
<td>2,8</td>
<td>W</td>
<td>Gordon Setter</td>
<td>nein</td>
<td>k.A.</td>
<td>k.A.</td>
</tr>
<tr>
<td>MUE10</td>
<td>H</td>
<td>02.10.2010</td>
<td>2</td>
<td>M</td>
<td>Berner Sennenhund</td>
<td>nein</td>
<td>ja</td>
<td>Ja</td>
</tr>
<tr>
<td>MUE12</td>
<td>H</td>
<td>02.07.2010</td>
<td>10</td>
<td>M</td>
<td>Mischling</td>
<td>Österreich</td>
<td>ja</td>
<td>ja</td>
</tr>
<tr>
<td>MUE13</td>
<td>TR</td>
<td>01.03.2011</td>
<td>2</td>
<td>W</td>
<td>Yorkshire Terrier</td>
<td>nein</td>
<td>ja</td>
<td>k.A.</td>
</tr>
</tbody>
</table>

Das Allgemeinbefinden bei Erstvorstellung war bei 5 Patienten ungestört, bei 4 Hunden mgr. gestört und bei 4 Hunden hgr. gestört. Ein Hund wurde im Anfall vorgestellt.

<table>
<thead>
<tr>
<th>Patient</th>
<th>Vorstellungsgrund</th>
<th>Dauer der Symptome (Tage)</th>
<th>Vorbehandlung</th>
<th>Antibiotische Vorbehandlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUE1</td>
<td>Zuckungen</td>
<td>2</td>
<td>Dexamethason, Diazepam</td>
<td>Enrofloxacin</td>
</tr>
<tr>
<td>MUE2</td>
<td>Erbrechen, epileptiforme Anfälle, Ataxie</td>
<td>2</td>
<td>Metoclopramid</td>
<td>X</td>
</tr>
<tr>
<td>MUE3</td>
<td>Faszikulationen, Halsbiegeschmerz</td>
<td>14</td>
<td>X</td>
<td>Metronidazol, Methyl-Penicillin</td>
</tr>
<tr>
<td>MUE4</td>
<td>Lahmheit Hintergliedmaßen, Kreisbewegung, Kopfschiefhaltung</td>
<td>14</td>
<td>Carprofen, Diazepam</td>
<td>X</td>
</tr>
<tr>
<td>MUE5</td>
<td>Lahmheit hinten rechts, nicht stehfähig, Kopfschiefhaltung</td>
<td>1</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MUE6</td>
<td>Tremor</td>
<td>4</td>
<td>Tolfenasäure, Prednisolon</td>
<td>Amoxicillin-Clavulansäure</td>
</tr>
<tr>
<td>Patient</td>
<td>Vorstellungsgrund</td>
<td>Dauer der Symptome (Tage)</td>
<td>Vorbehandlung</td>
<td>Antibiotische Vorbehandlung</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------</td>
<td>---------------------------</td>
<td>---------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>MUE7</td>
<td>progressive Gangstörung bis Lähmung Hinterhand</td>
<td>4</td>
<td>Cortison, Carprofen, Diazepam</td>
<td>X</td>
</tr>
<tr>
<td>MUE8</td>
<td>Schwäche, Schmerzhaftigkeit Hals</td>
<td>10</td>
<td>Prednisolon</td>
<td>X</td>
</tr>
<tr>
<td>MUE9</td>
<td>Kopfschiefhaltung</td>
<td>1</td>
<td>X</td>
<td>Amoxicillin-Clavulansäure</td>
</tr>
<tr>
<td>MUE10</td>
<td>Kreiswandern, Kopfschiefhaltung</td>
<td>7</td>
<td>Dexamethason</td>
<td>Marbofloxacin</td>
</tr>
<tr>
<td>MUE11</td>
<td>Lähmung hinten links, dann Paraparese</td>
<td>14</td>
<td>Prednisolon, Mestinon</td>
<td>X</td>
</tr>
<tr>
<td>MUE12</td>
<td>Gleichgewichtsstörungen</td>
<td>5</td>
<td>Phenybutazon-Prednisolon</td>
<td>Doxycyclin (vor 2 Wochen)</td>
</tr>
<tr>
<td>MUE13</td>
<td>Apathie, Kreisbewegungen</td>
<td>4</td>
<td>X</td>
<td>Cefovecin, Enrofloxacin</td>
</tr>
<tr>
<td>MUE14</td>
<td>Ataxie Hintergliedmaßen, Fazialislähmung</td>
<td>21</td>
<td>X</td>
<td>Enrofloxacin</td>
</tr>
<tr>
<td>MUE15</td>
<td>Fieber, Fliegenschmerzen, Halsbriegschmerz</td>
<td>21</td>
<td>Prednisolon</td>
<td>X</td>
</tr>
<tr>
<td>MUE16</td>
<td>Fieber, Ataxie</td>
<td>9</td>
<td>X</td>
<td>Clindamycin</td>
</tr>
<tr>
<td>MUE17</td>
<td>Schmerzhaftigkeit, Lahmheit Hintergliedmaßen nach Pferdebiß</td>
<td>1</td>
<td>X</td>
<td>Trimethoprim-Sulfadiazin</td>
</tr>
<tr>
<td>MUE18</td>
<td>Drangwandern, Verhaltensveränderung</td>
<td>1</td>
<td>X</td>
<td>Unbekanntes Antibiotikum</td>
</tr>
<tr>
<td>MUE19</td>
<td>Kreisbewegungen, Tetraparese</td>
<td>14</td>
<td>X</td>
<td>Amoxicillin-Clavulansäure</td>
</tr>
<tr>
<td>MUE20</td>
<td>Anfallsgeschehen</td>
<td>120</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MUE21</td>
<td>Anfallsgeschehen</td>
<td>1200</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MUE22</td>
<td>Anfallsgeschehen</td>
<td>2</td>
<td>X</td>
<td>Amoxicillin-Clavulansäure</td>
</tr>
</tbody>
</table>

Die Ergebnisse der Blutuntersuchung waren bei 19 Patienten bekannt. Die Leukozytenzahl lag zwischen $6,01 \times 10^9 / l$ und $21,84 \times 10^9 / l$ ($[M]= 10,77 \times 10^9 / l$), der Hämatokrit zwischen $0,36 l/l$ und $0,58 l/l$ ($[M]= 0,45 l/l$), die Thrombozytenzahl zwischen $102 \times 10^9 / l$ und $486 \times 10^9 / l$ ($[M]= 275 \times 10^9 / l$). Es wurde nur in Einzelfällen ein manuelles Differentialblutbild angefertigt, daher kann nur in wenigen Fällen eine Aussage über das Vorhandensein von Stabkernigen neutrophilen Granulozyten gemacht werden (Tab. 5).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MUE1</td>
<td>12,36</td>
<td>Lz 9,7, Seg 81, Baso 0,2, Eo 1,1, Mono 7,9</td>
<td>0,43</td>
<td>377</td>
<td>21</td>
<td>Lz 90, Mono10</td>
<td>16</td>
</tr>
<tr>
<td>MUE2</td>
<td>8,1</td>
<td>k.A.</td>
<td>0,58</td>
<td>310</td>
<td>20</td>
<td>k.A.</td>
<td>129</td>
</tr>
<tr>
<td>MUE3</td>
<td>10,21</td>
<td>k.A.</td>
<td>0,45</td>
<td>442</td>
<td>2288</td>
<td>k.A.</td>
<td>621</td>
</tr>
<tr>
<td>MUE4</td>
<td>21,07</td>
<td>Lz 9, Seg 76 (Stb 3), Eo 10, Mono 2</td>
<td>0,52</td>
<td>180</td>
<td>Viele</td>
<td>k.A.</td>
<td>k.A.</td>
</tr>
<tr>
<td>MUE5</td>
<td>7,16</td>
<td>Lz 28,9, Seg 59,7, Baso 0,5, Eo 0,8, Mono 9,9</td>
<td>0,36</td>
<td>405</td>
<td>1</td>
<td>k.A.</td>
<td>83</td>
</tr>
<tr>
<td>MUE6</td>
<td>20,11</td>
<td>Lz 9,6, Seg 77,1, Baso 0,5, Eo 0,2, Mono 12,2</td>
<td>0,45</td>
<td>271</td>
<td>33</td>
<td>Seg 2, Lz 61, Makro 37</td>
<td>10</td>
</tr>
<tr>
<td>MUE7</td>
<td>8,93</td>
<td>Lz 25,3, Seg 65,7, Baso 0,7, Eo 2,2, Mono 5,6</td>
<td>0,48</td>
<td>239</td>
<td>10</td>
<td>Seg 2, Lz 76, Mono 22</td>
<td>21</td>
</tr>
<tr>
<td>MUE8</td>
<td>11,43</td>
<td>Lz 6,5, Seg 88,9, Baso 0,2, Eo 1,0, Mono 3,3</td>
<td>0,41</td>
<td>349</td>
<td>52</td>
<td>Seg 3, Lz 81, Mono 15, Stb 1</td>
<td>52</td>
</tr>
<tr>
<td>MUE10</td>
<td>8,91</td>
<td>Lz 29, Seg 57, Eo 7, Mono 7</td>
<td>0,38</td>
<td>228</td>
<td>15</td>
<td>Seg 25, Lz 47, Mono 23, Stb 2</td>
<td>134</td>
</tr>
<tr>
<td>MUE11</td>
<td>8,82</td>
<td>Lz 6, Seg 69, Mono 25</td>
<td>0,52</td>
<td>197</td>
<td>k.A.</td>
<td>k.A.</td>
<td>k.A.</td>
</tr>
<tr>
<td>MUE12</td>
<td>6,01</td>
<td>Lz 28,5, Seg 48,9, Baso 0,3, Eo 7, Mono 15,2</td>
<td>0,49</td>
<td>486</td>
<td>129</td>
<td>Lz 90</td>
<td>120</td>
</tr>
<tr>
<td>MUE13</td>
<td>k.A.</td>
<td>k.A.</td>
<td>k.A.</td>
<td>k.A.</td>
<td>18</td>
<td>Überwiegend Lz; vereinzelt Seg</td>
<td>Pandy schwach pos.</td>
</tr>
<tr>
<td>MUE14</td>
<td>k.A.</td>
<td>k.A.</td>
<td>k.A.</td>
<td>8</td>
<td>k.A.</td>
<td>Pandy pos.</td>
<td>k.A.</td>
</tr>
<tr>
<td>MUE15</td>
<td>9,94</td>
<td>Lz 36,9, Seg 44,9, Baso 0,8, Eo 7,0, Mono 9,9</td>
<td>0,43</td>
<td>253</td>
<td>40</td>
<td>Seg 84, Lz 14, Mono 2</td>
<td>k.A.</td>
</tr>
<tr>
<td>MUE16</td>
<td>12,23</td>
<td>Lz 15,4, Seg 72,2, Baso 0,3, Eo 1,5, Mono 9,4</td>
<td>0,47</td>
<td>102</td>
<td>347</td>
<td>Seg 52, Lz 29, Makro 19</td>
<td>166</td>
</tr>
<tr>
<td>MUE17</td>
<td>21,84</td>
<td>Lz 10,1, Seg 85,8, Baso 0,3, Eo 0,3, Mono 3,4</td>
<td>0,41</td>
<td>275</td>
<td>7</td>
<td>Seg 79, Lz 3, Mono 18</td>
<td>19,9</td>
</tr>
<tr>
<td>MUE18</td>
<td>14,48</td>
<td>Lz 8,2, Seg 84,6, Baso 0,1, Eo 0,2, Mono 6,9</td>
<td>0,44</td>
<td>223</td>
<td>315</td>
<td>Seg 32, Lz 26, Makro 42</td>
<td>92,6</td>
</tr>
<tr>
<td>MUE19</td>
<td>10,77</td>
<td>Lz 11,1, Seg 80,2, Baso 0,3, Eo 0,4, Mono 8,0</td>
<td>0,55</td>
<td>279</td>
<td>3</td>
<td>k.A.</td>
<td>29,8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patient</th>
<th>CT/ MRT</th>
<th>Befunde der Bildgebung</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUE2 CT</td>
<td>Ja</td>
<td></td>
</tr>
<tr>
<td>MUE3 CT</td>
<td>Ja</td>
<td></td>
</tr>
<tr>
<td>MUE4 CT Kopf oB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUE5 MRT</td>
<td>Multiple, ca. 0,2 mm im Durchmesser große hyperintense Areale im Bereich des Hirnstamms ventral des kaudalen Kleinhirnpols, ein ca. 0,3 mm großes hyperintenses Areal im Bereich des Kleinhirns auf der rechten Seite, multiple, hyperintense Areale, bis zu 7mm groß im Bereich des Thalamus links. Multiple hyperintense Areale im Bereich der Großhirnsubstanz, die rechts und links, teilweise periventrikulär zu finden sind (T2). Sämtliche Läsionen hypointens in T1 und hyperintens in FLAIR und HEMO. Ggr. Vermehrung der Meningen nach Kontrastmittelgabe.</td>
<td></td>
</tr>
<tr>
<td>MUE6 MRT</td>
<td>Nach Kontrastmittelgabe: Ein schlecht abgrenzbares, hyperintenses Areal im Bereich des dorsalen Vermis cerebelli, multiple, inhomogene, schlecht abgrenzbare ggr. hyperintense Areale im Bereich der rostralen Kleinhirnhemisphären und im Bereich des Pons. Sonstiges Neuroparenchym oB. Meningen reichern nicht vermehrt an. V.a. ggr. Läsionen im Bereich des dorsalen Vermis (DD: Artefakt), fragliche multiple, schlecht abgrenzbare Areale, sonst oB.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MUE20</td>
<td>Lz 26,3, Seg 64,5, Baso 0,4, Eo 4,9, Mono 3,8</td>
<td>0,54</td>
<td>338</td>
<td>1</td>
<td>k.A.</td>
<td>12,4</td>
<td></td>
</tr>
<tr>
<td>MUE21</td>
<td>Lz 26,9, Seg 56,8, Baso 1,0, Eo 4,4, Mono 10,7</td>
<td>0,43</td>
<td>465</td>
<td>5</td>
<td>Lz 84, Mono 16</td>
<td>k.A.</td>
<td></td>
</tr>
<tr>
<td>MUE22</td>
<td>Lz 13, Seg 81, Eo 1, Mono 5</td>
<td>0,44</td>
<td>112</td>
<td>467</td>
<td>Seg, Lz, Mono</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>Patient</td>
<td>CT/ MRT</td>
<td>Befunde der Bildgebung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUE8</td>
<td>MRT</td>
<td>Multiple intramedulläre, mgr. hyperintense, schlecht abgrenzbare Läsionen (T2, HEMO) über gesamten Verlauf des C2 ohne Seitenbetonung; Läsionen in T1 isointens, ggr. fokale Anreicherung im Bereich der Läsion nach Kontrastmittelgabe; mgr. hyperintense, schlecht abgrenzbare Läsion (T2, HEMO) im Bereich des Hirnstamms mit deutlicher rechter Seitenbetonung; Läsionen in T1 isointens bis ggr. hypointens, mgr. multifokale Anreicherung auf einer Größe von 0,5 cm im Durchmesser im ventralen rechten Bereich der Läsion nach Kontrastmittelgabe.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUE10</td>
<td>MRT</td>
<td>Multiple diffuse, schlecht abgrenzbare, mgr. hyperintense Läsionen (T2, FLAIR, GRASE) im gesamten Hirnstamm beidseits, im Cerebellum beidseits und Großhirn auf Höhe des Thalamus beidseits, rechtsseitig auch knarial des Thalamus, Läsionen in T1 ggr. hypointens, mgr. Anreicherung nach Kontrastmittelgabe. Läsionen mit vergleichbarem Signalverhalten im Myelon nach kaudal bis Ende des Untersuchungsbereiches (C2).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUE11</td>
<td>keine Bildgebung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUE14</td>
<td>CT</td>
<td>Nach Kontrastmittelgabe weichteilhyperdenses Signal im Bereich des rechten Hirnstamms auf Höhe der Bulla tympanica, auf Höhe des Thalamus dorsal des rechten lateralen und auch lateral des linken lateralen Ventrikers ähnliches Signal, im Bereich des Lobus frontalis Deviation der Falx cerebri nach links durch im rechten Lobus frontalis gelegene weichteilhyperdene Struktur.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUE15</td>
<td>MRT</td>
<td>Im Bereich des Lobus frontalis rechts ein ca. 1,8 mm großes hyperintenses Areal (T2, GRASE), keine Anreicherung nach Kontrastmittelgabe. Restliches Neuroparenchym unauffällig. Mgr. vermehrte Anreicherung der Meningen nach Kontrastmittelgabe.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUE17</td>
<td>CT</td>
<td>Becken: zwischen L7 und dem Sacrum stellt eine knochenisodene Struktur dar, die auf Höhe des Wirbelspalts L7/S1 eine hypodense Linie zeigt. Einzelne Knochenfragmente unter 1 mm im distalen Bereich. M. psoas major in diesem Bereich ggr. hypodens und unruhig, keine vermehrte Kontrastmittelanei reichung. Kaudal der Blase, abdominal gelegen eine hgr. inhomogene, kavernöse weichteil iso- bis hypodene Masse, die bis zum Blasenhals zieht und linksseitig gelegen ist.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient</td>
<td>CT/ MRT</td>
<td>Befunde der Bildgebung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUE22</td>
<td>CT</td>
<td>T2/TSE und GRASE: im Bereich der dorsalen Großhirnhemisphären bzw. dorsal der Ventrikel links- und rechtsseitig bis zu 0,9 mm hyperintense Areale. Areale hypointens in T1 und FLAIR. Ein weiteres Areal befindet sich im linken kranialen Anteil des Bulbus olfactorius links (ca. 9 mm x 2,5 mm). Mgr-hgr Ventrikelasymmetrie mit Mittelliniendeviation nach rechts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bei zwei Patienten wurde keine bildgebende Diagnostik durchgeführt, weil die Besitzer sich zur Euthanasie entschieden hatten. Bei diesen Patienten wurde die Diagnose post-mortem gestellt. Bei insgesamt 5 Hunden wurde post-mortem eine pathologische Untersuchung des Tierkörpers durchgeführt (Tab. 7).
Tabelle 7: Ergebnisse der Neurolokalisation, pathologischen Untersuchung und Diagnose bei den Patienten der MUE-Gruppe

<table>
<thead>
<tr>
<th>Patient</th>
<th>Neurolokalisation</th>
<th>Pathologische Untersuchung</th>
<th>Diagnose</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUE1</td>
<td>Lateralisiert Großhirn, rechts</td>
<td>Nein</td>
<td>V.a. Enzephalitis im Bereich des Lobus parietalis und Kerngebieten im Di-und Mesenphalon (DD vaskulär), V.a. postiktale Veränderungen insb. im Bereich des Gyrus cingulus</td>
</tr>
<tr>
<td>MUE2</td>
<td>Intrakraniell</td>
<td>Hgr., chronische, multifokal bis konfluerende, zT betont perivaskuläre, lymphohistiozytäre und Plasmazelluläre Meningoenzephalitis, besonders im Kleinhirn</td>
<td>Granulomatöse Meningoenzephalitis</td>
</tr>
<tr>
<td>MUE3</td>
<td>Intrakraniell</td>
<td>Nein</td>
<td>Meningoenzephalitis</td>
</tr>
<tr>
<td>MUE4</td>
<td>Zentral vestibulär</td>
<td>Nein</td>
<td>Meningitis, V.a. Enzephalitis</td>
</tr>
<tr>
<td>MUE5</td>
<td>Hirnstamm rechts, Kleinhirn rechts, Thalamus links, bds. Großhirnemisphären</td>
<td>Nein</td>
<td>Multiple multifokale veränderte Areale, v.a. entzündlicher Prozess (DD: degenerativ, neoplastisch)</td>
</tr>
<tr>
<td>MUE6</td>
<td>Kleinhirn, Hirnstamm</td>
<td>Nein</td>
<td>Meningoenzephalitis (V.a. White Shaker Syndrom, DD infektiös)</td>
</tr>
<tr>
<td>MUE7</td>
<td>C1-C5 links</td>
<td>Nein</td>
<td>Multiple Läsionen mit nekrotischen Bezirken in Gehirn und Myelon, v.a. Nekrotisierende Meningoenzephalitis</td>
</tr>
<tr>
<td>MUE8</td>
<td>Hirnstamm rechts, Zervikalkmark</td>
<td>Nein</td>
<td>V.a. Myelitis, Enzephalitis</td>
</tr>
<tr>
<td>MUE9</td>
<td>Vestibulär</td>
<td>Nein</td>
<td>V.a. Enzephalitis</td>
</tr>
<tr>
<td>MUE10</td>
<td>Multiple Läsionen Hirnstamm, Kleinhirn, Großhirn</td>
<td>Hgr. chronisch eitrige Enzephalomyelitis mit akzentuierten Arealen in Hirnstammarealen und Rückenmark mit hgr. Parenchymnekrosen und prominenten Beteiligung eosinophiler Granulozyten</td>
<td>Chronisch-eitrige Enzephalomyelitis (DD bakteriell, eosinophile GME)</td>
</tr>
<tr>
<td>MUE11</td>
<td>Intrakraniell, UMN L4-S3 +- T2-3</td>
<td>Granulomatöse bis nekrotisierende Meningomyelitis und -enzephalitis sowie granulomatöse Neuritis und Perineuritis von Kopf- und Spinalnerven</td>
<td>Disseminierte idiopathische granulomatöse Meningoenzephalitis</td>
</tr>
<tr>
<td>MUE12</td>
<td>Multifokal, besonders Stamnhirn, auch Großhirn, Kleinhirn und Rückenmark betroffen</td>
<td>Mgr. lymphohistiozytäre Meningoenzephalomyelitis; fokal hgr. im Stamnhirn; vaskuläres Hamartom der Meninx im Hippocampusbereich</td>
<td>Idiopathische granulomatöse Meningoenzephalitis</td>
</tr>
<tr>
<td>MUE13</td>
<td>Linker Lobus temporalis</td>
<td>Nein</td>
<td>Meningoenzephalitis</td>
</tr>
<tr>
<td>MUE14</td>
<td>Multifokal Hirnstamm und Großhirn</td>
<td>Nein</td>
<td>V.a. granulomatöse Meningoenzephalitis, DD Neoplasie</td>
</tr>
<tr>
<td>MUE15</td>
<td>Vorberichtlich intrakraniell</td>
<td>Nein</td>
<td>Meningitis</td>
</tr>
<tr>
<td>MUE16</td>
<td>Mgr. Läsionen im Bereich der Großhirnemisphären, ggr. im Hirnstamm</td>
<td>Nein</td>
<td>V.a. Meningoenzephalitis</td>
</tr>
</tbody>
</table>
4.1.2 SRMA-Gruppe (Patienten mit SRMA)

Es wurden 23 Hunde in die SRMA-Gruppe eingeschlossen. 13 Hunde wurden an der Klinik für Kleintiere der Stiftung Tierärztliche Hochschule Hannover, 6 Hunde an der Klinik für kleine Haustiere der Freien Universität Berlin und 4 Hunde an der Tierärztlichen Klinik für Kleintiere in Trier vorgestellt und untersucht.

Das Vorstellungsalter von den 13 männlichen (2 kastriert) und 10 weiblichen (2 kastriert) Hunden lag zwischen 0,5 und 11 Jahren (\[M\]= 1,1 Jahre). Es waren 13 verschiedene Rassen vertreten (Tab. 8).

17 Hunde hatten zum Zeitpunkt der Vorstellung Deutschland nie verlassen. Bei 6 Hunden war ein Auslandaufenthalt bekannt. Die bereisten Länder waren Ungarn (2), Russland (1), Schweiz (1), Spanien (1), Belgien (1) und Frankreich (1). Der Impfstatus war bei 17 Hunden bekannt. 15 Hunde waren regelmäßig geimpft. Ein Hund (SRMA 16) hatte erst eine Impfung bekommen, ein Patient wurde 1,5 Jahre vor Vorstellung geimpft (Tab. 8).

Tabelle 8: Signalement, Auslandsaufenthalt und Impfstatus der Patienten der SRMA-Gruppe.

<table>
<thead>
<tr>
<th>Patient</th>
<th>Region</th>
<th>Vorstellungsdatum</th>
<th>Alter (J.)</th>
<th>Geschlecht</th>
<th>Rasse</th>
<th>Ausland</th>
<th>Impfung</th>
<th>Entwurmung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRMA1</td>
<td>H</td>
<td>05.02.2010</td>
<td>2</td>
<td>W</td>
<td>Barsoi</td>
<td>Russland</td>
<td>ja</td>
<td>ja</td>
</tr>
<tr>
<td>SRMA2</td>
<td>H</td>
<td>27.01.2010</td>
<td>2</td>
<td>M</td>
<td>Retriever</td>
<td>nein</td>
<td>ja</td>
<td>ja</td>
</tr>
<tr>
<td>SRMA3</td>
<td>B</td>
<td>10.05.2010</td>
<td>1</td>
<td>W</td>
<td>Boxer</td>
<td>nein</td>
<td>k.A.</td>
<td>k.A.</td>
</tr>
<tr>
<td>SRMA4</td>
<td>H</td>
<td>04.01.2010</td>
<td>1,3</td>
<td>W</td>
<td>Boxer</td>
<td>nein</td>
<td>ja</td>
<td>ja</td>
</tr>
<tr>
<td>SRMA5</td>
<td>H</td>
<td>22.02.2010</td>
<td>0,6</td>
<td>M</td>
<td>Novia Scotia Duck Tolling</td>
<td>nein</td>
<td>ja</td>
<td>nein</td>
</tr>
</tbody>
</table>

48

Tabelle 9: Vorstellungsgrund, Dauer der Symptome und Vorbehandlung der Patienten der SRMA-Gruppe. X: keine Vorbehandlung

<table>
<thead>
<tr>
<th>Patient</th>
<th>Vorstellungsgrund</th>
<th>Dauer der Symptome (Tage)</th>
<th>Vorbehandlung</th>
<th>Antibiotische Vorbehandlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRMA1</td>
<td>Feber, Schmerzhaftigkeit, torkender Gang</td>
<td>5, hatte vor 1 Jahr schon solche Episode</td>
<td>Methylprednisolon</td>
<td>X</td>
</tr>
<tr>
<td>Patient</td>
<td>Vorstellungsgrund</td>
<td>Dauer der Symptome (Tage)</td>
<td>Vorbehandlung</td>
<td>Antibiotische Vorbehandlung</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------</td>
<td>---------------------------</td>
<td>---------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>SRMA2</td>
<td>Schmerzhaftigkeit, Fieber, trippelnder Gang</td>
<td>4</td>
<td>Meloxicam, Metamizol</td>
<td>Enrofloxacin, Metronidazol</td>
</tr>
<tr>
<td>SRMA3</td>
<td>Mattigkeit</td>
<td>1</td>
<td>Carprofen</td>
<td>X</td>
</tr>
<tr>
<td>SRMA4</td>
<td>Schmerzhaftigkeit</td>
<td>2</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SRMA5</td>
<td>Mattigkeit</td>
<td>2</td>
<td>Metamizol</td>
<td>X</td>
</tr>
<tr>
<td>SRMA6</td>
<td>Fieber</td>
<td>4</td>
<td>Phenylbutazon</td>
<td>Enrofloxacin</td>
</tr>
<tr>
<td>SRMA7</td>
<td>Fieber, Mattigkeit</td>
<td>5</td>
<td>Metamizol</td>
<td>Amoxicillin-Clavulansäure, Enrofloxacin</td>
</tr>
<tr>
<td>SRMA8</td>
<td>Apathie, Fieber</td>
<td>14</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SRMA9</td>
<td>Mattigkeit, Schmerzhaftigkeit</td>
<td>6</td>
<td>Meloxicam</td>
<td>Amoxicillin-Clavulansäure</td>
</tr>
<tr>
<td>SRMA10</td>
<td>Mattigkeit, Schwerigkeiten beim Aufstehen</td>
<td>4</td>
<td>X</td>
<td>Doxycyclin</td>
</tr>
<tr>
<td>SRMA11</td>
<td>Fieber</td>
<td>1 Jahr, rezidivierend, 5 Tage akut</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SRMA12</td>
<td>Fieber</td>
<td>3</td>
<td>Metamizol, Prednisolon</td>
<td>Amoxicillin-Clavulansäure, Enrofloxacin</td>
</tr>
<tr>
<td>SRMA13</td>
<td>Schmerzhaftigkeit</td>
<td>5</td>
<td>Meloxicam</td>
<td>X</td>
</tr>
<tr>
<td>SRMA14</td>
<td>Mattigkeit, Fieber</td>
<td>2</td>
<td>Metamizol</td>
<td>Marbofloxacin</td>
</tr>
<tr>
<td>SRMA15</td>
<td>Fieber, Apathie</td>
<td>7</td>
<td>Meloxicam, Prednisolon</td>
<td>Doxycyclin</td>
</tr>
<tr>
<td>SRMA16</td>
<td>Rechtsdrall</td>
<td>3</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SRMA17</td>
<td>Fieber, Schmerzhaftigkeit</td>
<td>1</td>
<td>X</td>
<td>Penicillin-Streptomycin</td>
</tr>
<tr>
<td>SRMA18</td>
<td>Fieber</td>
<td>7</td>
<td>Meloxicam</td>
<td>Amoxicillin-Clavulansäure, Imidocarb, Doxycyclin</td>
</tr>
<tr>
<td>SRMA19</td>
<td>Schmerzhaftigkeit</td>
<td>4</td>
<td>Metamizol</td>
<td>Doxycyclin</td>
</tr>
<tr>
<td>SRMA20</td>
<td>Schmerzhaftigkeit beim Hinlegen und Aufstehen</td>
<td>30</td>
<td>Diverse</td>
<td>Diverse</td>
</tr>
<tr>
<td>SRMA21</td>
<td>Bewegungsunlust</td>
<td>2</td>
<td>Carprofen</td>
<td>Amoxicillin</td>
</tr>
<tr>
<td>SRMA22</td>
<td>Fieber, Schmerzhaftigkeit Rücken</td>
<td>Intermittierend 90</td>
<td>Metamizol</td>
<td>X</td>
</tr>
<tr>
<td>SRMA23</td>
<td>Halsbiegeschmerz</td>
<td>2</td>
<td>Meloxicam, Metamizol</td>
<td>Enrofloxacin</td>
</tr>
</tbody>
</table>

Die Ergebnisse der Blutuntersuchung waren bei 18 Patienten bekannt. Die Leukozytenzahl lag zwischen 11,07x10⁹ /l und 67,02x10⁹ /l ([M]= 27,18x10⁹ /l), der Hämatokrit zwischen 0,28 l/l und 0,58 l/l ([M]= 0,42 l/l), die Thrombozytenzahl zwischen 156x10⁹ /l und 446x10⁹ /l ([M]= 264x10⁹ /l). Es wurde bei der Blutuntersuchung nur in Einzelfällen ein manuelles Differentialzellbild angefertigt. Daher kann nur in diesen Fällen eine Aussage über das Vorhandensein von Stabkernigen neutrophilen Granulozyten gemacht werden.

22 der Hunde hatten im Liquor eine erhöhte Zellzahl und einen erhöhten Protein- und Zellgehalt (Tab. 10). Bei 1 Hund (SRMA 12) waren Protein und Zellzahl niedrig (2,7 Zellen/µl, 2 Zellen im Differentialzellbild, beide Zellen Segmentkernige Granulozyten). Der Patient wurde mit Prednisolon vorbehandelt.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SRMA1</td>
<td>11,07</td>
<td>Lz 14,5, Seg 72, Baso 0,4, Eo 4,7, Mono 8,3</td>
<td>0,58</td>
<td>259</td>
<td>17</td>
<td>gemischt</td>
<td>15</td>
</tr>
<tr>
<td>SRMA2</td>
<td>26,87</td>
<td>Lz 9,7, Seg 74,5, Baso 0,2, Eo 0,2, Mono 14,9</td>
<td>0,35</td>
<td>238</td>
<td>672</td>
<td>Lz 17, Seg 80, Mono 3</td>
<td>162</td>
</tr>
<tr>
<td>SRMA3</td>
<td>30,7</td>
<td>vereinzelt Stb</td>
<td>0,39</td>
<td>156</td>
<td>19</td>
<td>k.A.</td>
<td>23,8</td>
</tr>
<tr>
<td>SRMA4</td>
<td>31,4</td>
<td>Lz 8, Seg 83, Mono 8</td>
<td>0,44</td>
<td>441</td>
<td>1280</td>
<td>k.A.</td>
<td>145</td>
</tr>
<tr>
<td>SRMA5</td>
<td>13,85</td>
<td>Lz 15,8, Seg 71,6, Eo 1,3, Mono 9,8</td>
<td>0,4</td>
<td>306</td>
<td>1067</td>
<td>überwiegend Seg, vereinzelt Lz</td>
<td>84,1</td>
</tr>
<tr>
<td>SRMA6</td>
<td>26,63</td>
<td>Lz 25, Seg 62, Stb 1, Mono 12</td>
<td>0,28</td>
<td>324</td>
<td>1767</td>
<td>Lz 22, Seg 77, Mono 1</td>
<td>186</td>
</tr>
<tr>
<td>SRMA7</td>
<td>28</td>
<td>Lz 6,1, Seg 85,2, Baso 0,2, Eo 0,1, Mono 7,6</td>
<td>0,32</td>
<td>313</td>
<td>93</td>
<td>Lz 5, Seg 80, Mono 15</td>
<td>30</td>
</tr>
<tr>
<td>SRMA8</td>
<td>28,06</td>
<td>Lz 6, Seg 70, Eo 1, Mono 23</td>
<td>0,38</td>
<td>183</td>
<td>11</td>
<td>Seg 90, Makro 10</td>
<td>14,3</td>
</tr>
<tr>
<td>SRMA 10</td>
<td>21,19</td>
<td>Lz 6,4, Seg 86,4, Baso 0,1, Eo 0,3, Mono 6,7</td>
<td>0,48</td>
<td>198</td>
<td>9</td>
<td>überwiegend Seg</td>
<td>22</td>
</tr>
<tr>
<td>SRMA 11</td>
<td>11,96</td>
<td>Lz 35, Seg 59, Mono 6</td>
<td>0,44</td>
<td>211</td>
<td>29</td>
<td>k.A.</td>
<td>21</td>
</tr>
<tr>
<td>SRMA 12</td>
<td>13,89</td>
<td>Lz 3, Seg 87,7, Baso 0,9, Eo 0,4, Mono 7,5</td>
<td>0,47</td>
<td>194</td>
<td>3</td>
<td>Insgesamt 2 Seg</td>
<td>12,48</td>
</tr>
<tr>
<td>SRMA 14</td>
<td>29,8</td>
<td>k.A.</td>
<td>k.A.</td>
<td>k.A.</td>
<td>353</td>
<td>k.A.</td>
<td>42,6</td>
</tr>
<tr>
<td>SRMA 15</td>
<td>67,02</td>
<td>Lz 7, Seg 87 (Stb ++), Eo 5, Mono 2</td>
<td>0,44</td>
<td>287</td>
<td>647</td>
<td>k.A.</td>
<td>104,9</td>
</tr>
<tr>
<td>SRMA 16</td>
<td>14,29</td>
<td>Lz 27, Seg 61 (Stb 2), Eo 2, Mono 8</td>
<td>0,53</td>
<td>446</td>
<td>nur Ausstrich</td>
<td>Lz und Lz</td>
<td>Pandy neg.</td>
</tr>
<tr>
<td>SRMA 17</td>
<td>k.A.</td>
<td>k.A.</td>
<td>k.A.</td>
<td>k.A.</td>
<td>94</td>
<td>Lz 24, Seg 76</td>
<td>Pandy neg.</td>
</tr>
<tr>
<td>SRMA 18</td>
<td>48</td>
<td>k.A.</td>
<td>k.A.</td>
<td>1067</td>
<td>Lz 5, Seg 94, Stb 1, Blasten</td>
<td>Pandy pos.</td>
<td></td>
</tr>
<tr>
<td>SRMA 19</td>
<td>24</td>
<td>Lz 10, Seg 79, Mono 11</td>
<td>0,41</td>
<td>269</td>
<td>233</td>
<td>k.A.</td>
<td>86,6</td>
</tr>
<tr>
<td>SRMA 20</td>
<td>27,49</td>
<td>k.A.</td>
<td>k.A.</td>
<td>180</td>
<td>Lz 2, Seg 70, Makro 28</td>
<td>32,48</td>
<td>32,48</td>
</tr>
<tr>
<td>SRMA 21</td>
<td>20,78</td>
<td>Lz 19,7, Seg 69,3, Baso 0,2, Eo 2,4, Mono 8,3</td>
<td>0,42</td>
<td>217</td>
<td>1267</td>
<td>Lz 6, Seg 94</td>
<td>13,02</td>
</tr>
<tr>
<td>SRMA 22</td>
<td>29,63</td>
<td>Lz 7,4, Seg 82, Baso 0,2, Eo 1,5, Mono 8,8</td>
<td>0,42</td>
<td>274</td>
<td>155</td>
<td>Seg 71, Mono 19, Makro 10</td>
<td>117,9</td>
</tr>
<tr>
<td>SRMA 23</td>
<td>49,48</td>
<td>Lz 5, Seg 85 (Stb 3), Eo 2, Mono 5</td>
<td>0,43</td>
<td>316</td>
<td>700</td>
<td>überwiegend Seg</td>
<td>76,6</td>
</tr>
</tbody>
</table>
4.1.3 Kontrollgruppe (Trauma-Gruppe)

Es wurden 21 Hunde in die Trauma-Gruppe eingeschlossen. Zwei Hunde wurden an der Klinik für Kleintiere der Stiftung Tierärztliche Hochschule Hannover, 4 Hunde an der Klinik für kleine Haustiere der Freien Universität Berlin und 15 Hunde an der Tierärztlichen Klinik für Kleintiere in Trier vorgestellt und untersucht.

Das Vorstellungsalter der 13 männlichen (2 kastrierte) und 8 weiblichen (2 kastrierte) Hunde lag zwischen 3 und 13 Jahren ([M]= 7 Jahre). 10 verschiedene Rassen waren vertreten.

Bei 18 Patienten war bekannt, ob der Hund im Ausland gewesen war. 8 Hunde hatten zum Zeitpunkt der Vorstellung Deutschland nie verlassen. 10 Hunde waren im Ausland gewesen. Die bereisten Länder waren Frankreich (5), Holland (3), Spanien (2), Polen (1), Österreich (1), Dänemark (1), Norwegen (1), Italien (1), Belgien (1), U.S.A. (1), Tschechische Republik (1).

Der Impfstatus war nur bei 3 Hunden bekannt. Die Patienten T 4, T 31 und T 32 waren regelmäßig geimpft (Tab. 11).

<table>
<thead>
<tr>
<th>Patient</th>
<th>Region</th>
<th>Vorstellungsdatum</th>
<th>Alter (J.)</th>
<th>Geschlecht</th>
<th>Rasse</th>
<th>Ausland</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>B</td>
<td>26.06.2010</td>
<td>7</td>
<td>MK</td>
<td>Mischling</td>
<td>k.A.</td>
</tr>
<tr>
<td>T2</td>
<td>B</td>
<td>08.06.2010</td>
<td>4,5</td>
<td>WK</td>
<td>Mischling</td>
<td>k.A.</td>
</tr>
<tr>
<td>T3</td>
<td>B</td>
<td>15.01.2011</td>
<td>13</td>
<td>WK</td>
<td>Labrador Retriever</td>
<td>k.A.</td>
</tr>
<tr>
<td>T4</td>
<td>B</td>
<td>25.09.2010</td>
<td>10</td>
<td>MK</td>
<td>Labrador Retriever</td>
<td>Frankreich, Italien, Dänemark</td>
</tr>
<tr>
<td>T5</td>
<td>TR</td>
<td>21.12.2010</td>
<td>7</td>
<td>W</td>
<td>Mischling</td>
<td>nein</td>
</tr>
<tr>
<td>T6</td>
<td>TR</td>
<td>04.01.2011</td>
<td>6</td>
<td>W</td>
<td>Jack Russel Terrier</td>
<td>nein</td>
</tr>
<tr>
<td>T7</td>
<td>TR</td>
<td>29.12.2010</td>
<td>3</td>
<td>M</td>
<td>Mischling</td>
<td>nein</td>
</tr>
<tr>
<td>T8</td>
<td>TR</td>
<td>21.12.2010</td>
<td>10</td>
<td>M</td>
<td>Teckel-Mischling</td>
<td>nein</td>
</tr>
<tr>
<td>T10</td>
<td>TR</td>
<td>20.12.2010</td>
<td>6</td>
<td>W</td>
<td>Tibet Terrier</td>
<td>Polen, Spanien</td>
</tr>
<tr>
<td>T11</td>
<td>TR</td>
<td>10.01.2011</td>
<td>4</td>
<td>W</td>
<td>Jack Russel Terrier</td>
<td>Frankreich</td>
</tr>
<tr>
<td>T12</td>
<td>TR</td>
<td>26.01.2011</td>
<td>8</td>
<td>M</td>
<td>Mischling</td>
<td>Mallorca</td>
</tr>
<tr>
<td>T13</td>
<td>TR</td>
<td>13.01.2011</td>
<td>9</td>
<td>M</td>
<td>Dalmatiner</td>
<td>Frankreich, Hollande</td>
</tr>
<tr>
<td>T14</td>
<td>TR</td>
<td>04.02.2011</td>
<td>6</td>
<td>W</td>
<td>Dobermann</td>
<td>nein</td>
</tr>
<tr>
<td>T15</td>
<td>TR</td>
<td>03.05.2010</td>
<td>7</td>
<td>M</td>
<td>Alaskan Malamute</td>
<td>nein</td>
</tr>
<tr>
<td>T16</td>
<td>TR</td>
<td>16.03.2011</td>
<td>7</td>
<td>M</td>
<td>Rauhhaarkeckel</td>
<td>nein</td>
</tr>
<tr>
<td>T17</td>
<td>TR</td>
<td>01.03.2011</td>
<td>10</td>
<td>M</td>
<td>Langhaarkeckel</td>
<td>nein</td>
</tr>
<tr>
<td>T18</td>
<td>TR</td>
<td>05.04.2011</td>
<td>10</td>
<td>W</td>
<td>Coton de tulear</td>
<td>Frankreich, U.S.A., Norwegen</td>
</tr>
</tbody>
</table>
Die häufigsten Vorstellungsgründe waren Paraparese (3), Ataxie (4), Schmerzhaftigkeit (7), Hinterhandschwäche (4), Tetraparese (1), Lahmheit einer Hintergliedmaße (1), Schwierigkeiten beim Laufen (1).

<table>
<thead>
<tr>
<th>Patient</th>
<th>Vorstellungsgrund</th>
<th>Dauer der Symptome (Tage)</th>
<th>Vorbehandlung</th>
<th>Antibiotische Vorbehandlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Ataxie</td>
<td>3</td>
<td>k.A.</td>
<td>k.A.</td>
</tr>
<tr>
<td>T2</td>
<td>Schmerzhaftigkeit Hals</td>
<td>k.A.</td>
<td>Meloxicam</td>
<td>X</td>
</tr>
<tr>
<td>T3</td>
<td>Schwierigkeiten beim Aufstehen, Schwanken Hintergliedmaßen</td>
<td>30</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>T4</td>
<td>unkontrollierter Harnabsatz, Paraparese</td>
<td>3</td>
<td>Phenylbutazon-Prednisolon, Dexamethason</td>
<td>X</td>
</tr>
<tr>
<td>T5</td>
<td>Schwäche Hinterhand</td>
<td>40</td>
<td>Phenylbutazon-Prednisolon, Prednisolon, Vitamin B, Tramadol</td>
<td>X</td>
</tr>
<tr>
<td>T6</td>
<td>Paraparese</td>
<td>3</td>
<td>Dexamethason, Vitamin B, Metamizol</td>
<td>Enrofloxacin</td>
</tr>
<tr>
<td>T7</td>
<td>Lahmheit hinten links</td>
<td>1</td>
<td>Dexamethason, Meloxicam, Tramadol, Depot-Cortison</td>
<td>X</td>
</tr>
<tr>
<td>T8</td>
<td>Paraparese</td>
<td>21</td>
<td>Carprofen, Prednisolon, Metamizol, Vitamin B</td>
<td>X</td>
</tr>
<tr>
<td>T9</td>
<td>Schmerzhaftigkeit Hals</td>
<td>9</td>
<td>Meloxicam, Dexamethason, Tolfenaminsäure</td>
<td>X</td>
</tr>
<tr>
<td>T10</td>
<td>Schwierigkeiten beim Aufstehen</td>
<td>60</td>
<td>Phenylbutazon-Prednisolon, Mavacoxib</td>
<td>X</td>
</tr>
<tr>
<td>T11</td>
<td>Schmerzhaftigkeit Rücken</td>
<td>2</td>
<td>Dexamethason</td>
<td>X</td>
</tr>
<tr>
<td>T12</td>
<td>Einknicken in Vordergliedmaßen</td>
<td>365</td>
<td>Prednisolon, Metamizol</td>
<td>X</td>
</tr>
<tr>
<td>T13</td>
<td>Ataxie</td>
<td>X</td>
<td>Methylprednisolon, Acetylsalicylsäure, Propentofyllin, Vitamin B</td>
<td>X</td>
</tr>
<tr>
<td>T14</td>
<td>Ataxie</td>
<td>60</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>T15</td>
<td>Halsbiegeschmerz</td>
<td>1</td>
<td>X</td>
<td>Amoxicillin-Clavulansäure</td>
</tr>
<tr>
<td>T16</td>
<td>Paraparese</td>
<td>1</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>T17</td>
<td>Ataxie</td>
<td>4</td>
<td>Meloxicam</td>
<td>X</td>
</tr>
<tr>
<td>T18</td>
<td>Paraparese</td>
<td>3</td>
<td>Maropitant</td>
<td>X</td>
</tr>
</tbody>
</table>
Die Ergebnisse der Blutuntersuchungen waren bei 6 Patienten bekannt. Die Leukozytenzahl lag zwischen $7,18 \times 10^9/l$ und $18,05 \times 10^9/l$ ($[M]= 9,38 \times 10^9 /l$), der Hämatokrit zwischen 0,40 l/l und 0,60 l/l ($[M]= 0,45 l/l$) und die Thrombozytenzahl zwischen $123 \times 10^9 /l$ und $470 \times 10^9 /l$ ($[M]= 345 \times 10^9 /l$).

Bei 20 Hunden in der Trauma-Gruppe ergab die Liquoruntersuchung weder einen erhöhten Proteingehalt noch eine erhöhte Zellzahl im Liquor. Ein Hund hatte im Liquor eine ggr. erhöhte Zellzahl und einen ggr. erhöhten Proteingehalt (Pandy Reaktion positiv) (T13) (Tab.13).

<table>
<thead>
<tr>
<th>Patient</th>
<th>Vorstellungsgrund</th>
<th>Dauer der Symptome (Tage)</th>
<th>Vorbehandlung</th>
<th>Antibiotische Vorbehandlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T19</td>
<td>Schmerzhafteit Rücken, Paraparese</td>
<td>1</td>
<td>Methylprednisolon, Furosemid</td>
<td>X</td>
</tr>
<tr>
<td>T20</td>
<td>steifer Gang</td>
<td>80</td>
<td>Meloxicam, Prednisolon</td>
<td>X</td>
</tr>
<tr>
<td>T21</td>
<td>Schmerzhafteit Hals</td>
<td>7</td>
<td>k.A.</td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patient</th>
<th>Blut: Leukozytenzahl ($x10^{9}/l$)</th>
<th>Blut: Differentialblutbild (%)</th>
<th>Blut: Hämatokrit (l/l)</th>
<th>Blut: Thrombozytenzahl ($x10^{9}/l$)</th>
<th>Liquor: Zellzahl ($/\mu l$)</th>
<th>Liquor: Differentialzellbild (%)</th>
<th>Liquor: Proteingehalt (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>18,05</td>
<td>Lz 21,Seg 64,Eo 4,Mono 11</td>
<td>0,42</td>
<td>123</td>
<td>Wenig</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>T2</td>
<td>9,09</td>
<td>X</td>
<td>0,48</td>
<td>253</td>
<td>0</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>T3</td>
<td>7,18</td>
<td>X</td>
<td>0,45</td>
<td>410</td>
<td>1</td>
<td>X</td>
<td>22,9</td>
</tr>
<tr>
<td>T4</td>
<td>15,5</td>
<td>X</td>
<td>0,4</td>
<td>421</td>
<td>0</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>T5</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>3</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>T6</td>
<td>X</td>
<td>X</td>
<td>0,6</td>
<td>X</td>
<td>2</td>
<td>X</td>
<td>Pandy neg.</td>
</tr>
<tr>
<td>T7</td>
<td>X</td>
<td>X</td>
<td>7</td>
<td>X</td>
<td>Pandy schwach pos.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>T8</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>T9</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>T10</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>X</td>
<td>Pandy neg.</td>
<td></td>
</tr>
<tr>
<td>T11</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>3</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T12</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>4</td>
<td>X</td>
<td>Pandy neg.</td>
<td></td>
</tr>
<tr>
<td>T13</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>X</td>
<td>Pandy schwach pos.</td>
<td></td>
</tr>
<tr>
<td>T14</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>5</td>
<td>X</td>
<td>Pandy neg.</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 14: Angewandte bildgebende Verfahren, Neuroanatomische Lokalisation, und Diagnose der Patienten der Trauma-Gruppe

<table>
<thead>
<tr>
<th>Patient</th>
<th>CT/MRT</th>
<th>Neuroanatomische Lokalisation</th>
<th>Diagnose</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3</td>
<td>CT</td>
<td>C2-C3</td>
<td>Diskopathie</td>
</tr>
<tr>
<td>T4</td>
<td>CT</td>
<td>C1-C5</td>
<td>V.a.Kontusion</td>
</tr>
<tr>
<td>T5</td>
<td>CT</td>
<td>T13-L1</td>
<td>Diskopathie</td>
</tr>
<tr>
<td>T8</td>
<td>CT</td>
<td>L3-L4</td>
<td>Diskopathie</td>
</tr>
<tr>
<td>T10</td>
<td>CT</td>
<td>L6-L7</td>
<td>Diskopathie</td>
</tr>
<tr>
<td>T11</td>
<td>CT</td>
<td>T11-T12</td>
<td>Diskopathie</td>
</tr>
<tr>
<td>T13</td>
<td>CT</td>
<td>L4-L6</td>
<td>Diskopathie</td>
</tr>
<tr>
<td>T14</td>
<td>CT</td>
<td>T13-L1</td>
<td>Diskopathie</td>
</tr>
<tr>
<td>T15</td>
<td>CT</td>
<td>C6-C7</td>
<td>Diskopathie</td>
</tr>
<tr>
<td>T16</td>
<td>CT</td>
<td>L7-S1</td>
<td>Diskopathie</td>
</tr>
<tr>
<td>T18</td>
<td>CT</td>
<td>T13-L1</td>
<td>Diskopathie</td>
</tr>
<tr>
<td>T20</td>
<td>CT</td>
<td>C5-C6</td>
<td>Diskopathie</td>
</tr>
<tr>
<td>T22</td>
<td>CT</td>
<td>C5-C6</td>
<td>Diskopathie</td>
</tr>
<tr>
<td>T25</td>
<td>CT</td>
<td>C5-C6</td>
<td>Diskopathie</td>
</tr>
<tr>
<td>T26</td>
<td>CT</td>
<td>L1-L2</td>
<td>Diskopathie</td>
</tr>
<tr>
<td>T27</td>
<td>CT</td>
<td>T12-T13</td>
<td>Diskopathie</td>
</tr>
<tr>
<td>Patient</td>
<td>CT/MRT</td>
<td>Neuroanatomische Lokalisation</td>
<td>Diagnose</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>T28</td>
<td>CT</td>
<td>C5-C6</td>
<td>Diskopathie</td>
</tr>
<tr>
<td>T29</td>
<td>CT</td>
<td>L2-L3</td>
<td>Diskopathie</td>
</tr>
<tr>
<td>T30</td>
<td>CT</td>
<td>L1-L2</td>
<td>Diskopathie</td>
</tr>
<tr>
<td>T31</td>
<td>MRT</td>
<td>C5-C6</td>
<td>Diskopathie</td>
</tr>
<tr>
<td>T32</td>
<td>MRT</td>
<td>C3-C4</td>
<td>Diskopathie</td>
</tr>
</tbody>
</table>

4.2 Gruppenvergleich

4.2.1 Regionale Verteilung der Patienten

Tabelle 15: Regionale Verteilung nach Vorstellungsort

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Hannover (n/%)</th>
<th>Berlin (n/%)</th>
<th>Trier (n/%)</th>
<th>Gesamt (n/%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUE</td>
<td>15/68,2</td>
<td>4/18,2</td>
<td>3/13,6</td>
<td>22/100,0</td>
</tr>
<tr>
<td>SRMA</td>
<td>13/56,5</td>
<td>6/26,1</td>
<td>4/17,4</td>
<td>23/100,0</td>
</tr>
<tr>
<td>Trauma</td>
<td>2/9,5</td>
<td>4/19,0</td>
<td>15/71,4</td>
<td>21/100,0</td>
</tr>
<tr>
<td>Gesamt</td>
<td>30/45,5</td>
<td>14/21,2</td>
<td>22/33,3</td>
<td>66/100,0</td>
</tr>
</tbody>
</table>

4.2.2 Altersverteilung

Die Patienten aus der SRMA-Gruppe hatten ein medianes Alter von 1,1 Jahren. Das mediane Alter der Patienten der MUE-Gruppe lag bei 2,7 Jahren und das der Hunde der Trauma-Gruppe lag bei 7 Jahren (Abb. 1). Mittels Mann-Whitney-Test wurden signifikante Unterschiede bezüglich des Alters zwischen den Gruppen Trauma und MUE (p=0,00) sowie zwischen Trauma und SRMA (p=0,00) und zwischen den Gruppen MUE und SRMA (p=0,01), ermittelt.
4.2.3 Geschlechtsverteilung

Tabelle 16: Geschlechtsverteilung bei den Patienten der Gruppen MUE, SRMA und Trauma

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Weiblich intakt (n/%)</th>
<th>Weiblich kastriert (n/%)</th>
<th>Männlich intakt (n/%)</th>
<th>Männlich kastriert (n/%)</th>
<th>Gesamt (n/%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUE</td>
<td>7/31,8</td>
<td>3/13,6</td>
<td>10/45,5</td>
<td>2/9,1</td>
<td>22/100,0</td>
</tr>
<tr>
<td>SRMA</td>
<td>8/34,8</td>
<td>2/8,7</td>
<td>11/47,8</td>
<td>2/8,7</td>
<td>23/100,0</td>
</tr>
<tr>
<td>Trauma</td>
<td>6/28,6</td>
<td>2/9,5</td>
<td>11/52,4</td>
<td>2/9,5</td>
<td>21/100,0</td>
</tr>
<tr>
<td>Gesamt</td>
<td>21/31,8</td>
<td>7/10,6</td>
<td>32/48,5</td>
<td>6/9,1</td>
<td>66/100,0</td>
</tr>
</tbody>
</table>

Es wurden insgesamt 28 weibliche (42,4 %) und 38 männliche (57,6 %) Hunde vorgestellt. Bezüglich des Geschlechts konnten keine signifikanten Unterschiede zwischen den Gruppen ermittelt werden.

4.2.4 Auslandsaufenthalt

Die Aufenthaltsländer wurden geographisch in drei Gruppen eingeteilt: Mittel- und Nordeuropa (Dänemark, Norwegen, Holland, Schweiz, Österreich), West- und Südeuropa (Frankreich, Spanien, Italien), Osteuropa (Ungarn, Russland, Polen, Tschechische Republik). War ein Patient in verschiedenen Ländern, wurde er in die Gruppe mit der höheren Prävalenz für Parasiten eingeteilt (Südeuropa > Osteuropa > Mitteleuropa) (Tab. 17). Bei 7 Patienten war die Auslandsanamnese nicht bekannt.
Zum Zeitpunkt der Untersuchungen auf *E. canis* war die Auslandsanamnese bei 6 weiteren Patienten noch nicht bekannt: Serum, Liquor und Blut wurde bei diesen Patienten untersucht, obwohl zu einem späteren Zeitpunkt bekannt wurde, dass sie noch nie in einem Endemiegebiet waren. Insgesamt 17 Hunde hatten einen Auslandsaufenthalt in einem Land, in dem *E. canis* auftritt (Gruppe 2 oder 3) oder eine unbekannte Auslandsanamnese (26 %). Sieben der Hunde gehörten in die MUE-Gruppe (32 %), 5 in die SRMA-Gruppe (22 %) und 10 Hunde in die Trauma-Gruppe (48 %).

Tabelle 17: Auslandsaufenthalte der Patienten der Gruppen MUE, SRMA und Trauma

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>kein Ausland</th>
<th>Mitteleuropa</th>
<th>Osteuropa</th>
<th>Südeuropa</th>
<th>Unbekannt</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUE</td>
<td>12</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>SRMA</td>
<td>17</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Trauma</td>
<td>8</td>
<td>3</td>
<td>0</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Gesamt</td>
<td>37</td>
<td>7</td>
<td>5</td>
<td>10</td>
<td>7</td>
</tr>
</tbody>
</table>

4.2.5 Dauer der Symptome

Tabelle 18: Dauer der Symptome in Tagen bei den Gruppen MUE, SRMA und Trauma

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Minimum (Tage)</th>
<th>Maximum (Tage)</th>
<th>M (Tage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUE</td>
<td>1</td>
<td>1200</td>
<td>7</td>
</tr>
<tr>
<td>SRMA</td>
<td>1</td>
<td>90</td>
<td>4</td>
</tr>
<tr>
<td>Trauma</td>
<td>1</td>
<td>365</td>
<td>4</td>
</tr>
</tbody>
</table>

Es konnten mittels Kruskal-Wallis-Test keine signifikanten Unterschiede bezüglich der Dauer der Symptome vor Vorstellung zwischen den 3 Gruppen MUE, SRMA und Trauma (*p*=0,62) ermittelt werden.

4.2.6 Laborparameter

Bezüglich der Ergebnisse der Blutuntersuchungen lagen in der Trauma-Gruppe nur wenige Daten vor. Es wurden nur MUE- und SRMA-Gruppen mittels Mann-Whitney-Test verglichen.

Hämatologie: Leukozytenzahl

Es konnten mittels Mann-Whitney-Test signifikante Unterschiede bezüglich der Leukozytenzahl im peripheren Blut zwischen den Gruppen MUE und SRMA (*p*=0,00) ermittelt werden.
Abbildung 2: Leukozytenzahl (x10^9/l) im peripheren Blut bei den Gruppen MUE und SRMA
Hämatologie: Hämatokrit

Es lag ein signikanter Unterschied bezüglich des Hämatokrits zwischen den Gruppen MUE und SRMA ($p=0,02$) vor.

Abbildung 3: Hämatokrit (l/l) bei den Gruppen MUE und SRMA
Hämatologie: Thrombozytenzahl

Es lag kein signifikanter Unterschied zwischen beiden Gruppen vor ($p=0.44$) vor.

Abbildung 4: Thrombozytenzahl ($10^9/l$) im peripheren Blut in den Gruppen MUE und SRMA

Abbildung 4: Thrombozytenzahl ($10^9/l$) im peripheren Blut in den Gruppen MUE und SRMA
Liquoruntersuchung: Zellzahl

Es lagen statistisch signifikante Unterschiede zwischen den Gruppen MUE und SRMA ($p=0.01$), MUE und Trauma ($p=0.00$) und SRMA und Trauma ($p=0.00$) vor (Kruskal-Wallis-Test und Mann-Whitney-Test).

Abbildung 5: Logarithmus der Zellzahl (/µl) im Liquor in den Gruppen MUE, SRMA und Trauma

Abbildung 5: Logarithmus der Zellzahl (/µl) im Liquor in den Gruppen MUE, SRMA und Trauma
Liquoruntersuchung: Zytologie

Es lagen signifikante Unterschiede zwischen den Gruppen MUE und SRMA \((p=0.01)\) vor.

Abbildung 6: Anzahl an segmentkernigen Granulozyten (in %) im Liquor in den Gruppen MUE und SRMA

Es lagen signifikante Unterschiede zwischen den Gruppe MUE und SRMA \((p=0.004)\) vor.
Abbildung 7: Anzahl an mononukleären Zellen (in %) im Liquor in den Gruppen MUE und SRMA

Es lagen signifikante Unterschiede zwischen den Gruppe MUE und SRMA ($p=0,004$) vor.
Liquoruntersuchung: Proteingehalt

Es lagen keine signifikanten Unterschiede zwischen den Gruppen MUE und SRMA (p=0,65) vor.

Abbildung 8: Proteingehalt (mg/dl) im Liquor in den Gruppen MUE und SRMA

4.2.7 Bartonella spp.

PCR-Untersuchung im Blut:

Die Ergebnisse der Laboruntersuchungen waren: Blutuntersuchung: Hämatokrit 0,39 l/l, Leukozytenzahl 30,7x10⁹/l, Thrombozytenzahl 156x10⁹/l, Liquoruntersuchung: 19 Zellen/µl (kein Differentialzellbild), Proteingehalt 23,8 mg/dl. Die Untersuchungen auf weitere Infektionserreger ergaben PCR/IFAT Babesia canis aus Blut negativ, ELISA Bartonella spp. positiv.

PCR-Untersuchung im Liquor:
Bei keinem der Hunde konnte Bartonella-DNA im Liquor festgestellt werden.
Serologische Untersuchung:
Bei 61 Hunden wurde das Vorhandensein von Serum-Antikörpern gegen *Bartonella* mittels ELISA ermittelt (Tab.19). Die Gesamtseroprävalenz der Hunde aller Gruppen lag bei 83,6 %. In der MUE-Gruppe lag die Prävalenz bei 73,7 %, in der SRMA-Gruppe bei 85,7 %, in der Trauma-Gruppe bei 90,5 % (Tab.19). Es lagen keine signifikanten Unterschiede bezüglich der Seroprävalenz zwischen den 3 Gruppen vor (\(p=0,35 \)) (mittels ANOVA und Kruskal-Wallis-Test). Auch nach Gruppierung der Patienten nach Vorstellungsregion konnten mittels ANOVA und Kruskal-Wallis-Test keine signifikanten Unterschiede bezüglich der Seroprävalenzen festgestellt werden (\(p=0,51 \)). Wurden die Patienten nach Auslandsaufenthalt geteilt, so konnte kein statistisch signifikanter Unterschied zwischen den Patienten ohne Auslandsaufenthalt, den Patienten, die in Osteuropa und den Patienten, die in Südeuropa waren (\(p=0,97 \)), ermittelt werden (Kruskal-Wallis-Test).

Tabelle 19: Ergebnisse des ELISA auf *Bartonella* spp. aus Serum in den Gruppen MUE, SRMA und Trauma

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Negativ (n/%)</th>
<th>Positiv (n/%)</th>
<th>Gesamt (n/%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUE</td>
<td>5/26,3</td>
<td>14/73,7</td>
<td>19/100,0</td>
</tr>
<tr>
<td>SRMA</td>
<td>3/14,3</td>
<td>18/85,7</td>
<td>21/100,0</td>
</tr>
<tr>
<td>Trauma</td>
<td>2/9,5</td>
<td>19/90,5</td>
<td>21/100,0</td>
</tr>
<tr>
<td>Gesamt</td>
<td>10/16,4</td>
<td>51/83,6</td>
<td>61/100,0</td>
</tr>
</tbody>
</table>

4.2.8 *A. phagocytophilum*

Eine PCR auf *A. phagocytophilum*-DNA aus Liquor wurde bei 64 Hunden durchgeführt. Die Untersuchung ergab bei allen Hunden ein negatives Ergebnis (Tab. 20).
Bei 4 der 65 untersuchten Hunde ergab eine PCR auf *A. phagocytophilum*-DNA aus EDTA-Blut ein positives Ergebnis (Prävalenz 6,2 %) (Tab. 20). Alle 4 Hunde gehörten zur SRMA-Gruppe (Prävalenz 17,4 %). Die Unterschiede zwischen den Gruppen waren signifikant (\(p=0,012 \)) (Exakter Fischer-Test). Es konnten keine signifikanten Unterschiede bezüglich der PCR-Prävalenzen nach Gruppierung der Patienten nach Vorstellungsregion (Berlin, Trier und Hannover) (\(p=0,31 \)) festgestellt werden.
Wurden die Patienten nach Auslandsaufenthalt geteilt, so konnte kein statistisch signifikanter Unterschied zwischen den Patienten ohne Auslandsaufenthalt, den Patienten, die in Osteuropa und den Patienten, die in Südeuropa waren (\(p=0,57 \)), erkannt werden.

Tabelle 20: Beschreibungen der Patienten mit einem positiven PCR-Ergebnis auf *A. phagocytophilum* aus Blut

<table>
<thead>
<tr>
<th>Patient</th>
<th>SRMA 09</th>
<th>SRMA 12</th>
<th>SRMA 15</th>
<th>SRMA 19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rasse</td>
<td>Beagle</td>
<td>Mischling</td>
<td>Beagle</td>
<td>Berner Sennenhund</td>
</tr>
<tr>
<td>Alter (in Jahren)</td>
<td>0,8</td>
<td>2,5</td>
<td>0,8</td>
<td>1,5</td>
</tr>
<tr>
<td>Geschlecht</td>
<td>Männlich</td>
<td>Männlich</td>
<td>Weiblich kastriert</td>
<td>Weiblich kastriert</td>
</tr>
<tr>
<td>Ausland</td>
<td>Ungarn</td>
<td>Kein Ausland</td>
<td>Kein Ausland</td>
<td>Kein Ausland</td>
</tr>
<tr>
<td>Patient</td>
<td>SRMA 09</td>
<td>SRMA 12</td>
<td>SRMA 15</td>
<td>SRMA 19</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Vorstellungsgrund</td>
<td>Mattigkeit, Schmerzhaftigkeit</td>
<td>Fieber seit 4 Tagen</td>
<td>Fieber, Apathie seit 1 Woche</td>
<td>Schmerzhaftigkeit seit 4 Tagen</td>
</tr>
<tr>
<td>Vorbehandlung</td>
<td>Meloxicam, Amoxicillin-Clavulansäure (vermutlich nur 1 Tag), Cortisongabe unsicher</td>
<td>2 Tage Amoxicillin-Clavulansäure, 1 Tag Enrofloxacin, 1 Tag Metamizol, 1 Tag Prednisolon 1 mg/kg 2 x täglich</td>
<td>Meloxicam, Prednisolon, Doxycyclin 5 Tage oral, Dosierung unbekannt</td>
<td>Metamizol, Enrofloxacin, Amoxicillin-Clavulansäure, Doxycyclin (PCR aus Probe vor Doxycyclingabe, nach 2 Tagen Behandlung mit Enrofloxacin und Amoxicillin-Clavulansäure positiv, PCR aus Blutprobe nach 1 Tag Doxycyclin negativ)</td>
</tr>
<tr>
<td>Blutuntersuchung: Leukozytenzahl</td>
<td>Keine Angabe</td>
<td>13,9x10⁹/l</td>
<td>67x10⁹/l</td>
<td>24x10⁹/l</td>
</tr>
<tr>
<td>Blutuntersuchung: Thrombozytenzahl</td>
<td>Keine Angabe</td>
<td>194x10⁹/l</td>
<td>287x10⁹/l</td>
<td>269x10⁹/l</td>
</tr>
<tr>
<td>Blutuntersuchung: Hämatokrit</td>
<td>Keine Angabe</td>
<td>0,47 l/l</td>
<td>0,44 l/l</td>
<td>0,41 l/l</td>
</tr>
<tr>
<td>Liquoruntersuchung: Zellzahl</td>
<td>2053 Zellen/µl</td>
<td>2,7 Zellen/µl (2 Zellen im Differentialzellbild, beide Zellen Segmentkernige Granulozyten)</td>
<td>647 Zellen/µl</td>
<td>233 Zellen/µl</td>
</tr>
<tr>
<td>Liquoruntersuchung: Proteingehalt</td>
<td>Pandy Reaktion positiv</td>
<td>12,5 mg/dl</td>
<td>104,9 mg/dl</td>
<td>86,6 mg/dl</td>
</tr>
<tr>
<td>Weitere Untersuchungen</td>
<td>Neurologische Untersuchung unauffällig, MRT Kopf: Neuroparenchym unauffällig, nach Kontrastmittelgabe keine pathologische Anreicherung</td>
<td>Borrelia C6 quantitativ: 101 U/ml (positiv >10 U/ml)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.2.9 Borrelia burgdorferi sensu lato

Tabelle 21: Antikörpertiter gegen *Borrelia burgdorferi* sensu lato (IFAT) bei den Gruppen MUE, SRMA und Trauma

<table>
<thead>
<tr>
<th>Gruppe</th>
<th><1:64 (n/%)</th>
<th>1:64 (n/%)</th>
<th>1:128 (n/%)</th>
<th>1:256 (n/%)</th>
<th>1:512 (n/%)</th>
<th>1:1024 (n/%)</th>
<th>1:2048 (n/%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUE</td>
<td>13/65,0</td>
<td>0/0</td>
<td>1/5,0</td>
<td>2/10,0</td>
<td>2/10,0</td>
<td>1/5,0</td>
<td>1/5,0</td>
</tr>
<tr>
<td>SRMA</td>
<td>13/68,4</td>
<td>4/21,1</td>
<td>1/5,3</td>
<td>0/0</td>
<td>1/5,3</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>Trauma</td>
<td>16/76,2</td>
<td>0/0</td>
<td>2/9,5</td>
<td>0/0</td>
<td>2/9,5</td>
<td>1/4,7</td>
<td>0/0</td>
</tr>
<tr>
<td>Gesamt</td>
<td>42/70,0</td>
<td>4/6,7</td>
<td>4/6,7</td>
<td>2/3,3</td>
<td>5/8,3</td>
<td>2/3,3</td>
<td>1/1,7</td>
</tr>
</tbody>
</table>

67

Es konnte kein signifikanter Unterschied zwischen den 3 Gruppen ermittelt werden (*p*=0,12). Auch nach Gruppierung der Patienten nach Vorstellungsregion (Berlin, Trier und Hannover) konnten mittels Kruskal-Wallis-Test keine signifikanten Unterschiede bezüglich der Seroprävalenzen festgestellt werden (*p*=0,67) (Abb. 10).

4.2.10 FSME-Virus

65/66 Hunde wurden serologisch auf das FSME-Virus getestet. Die Untersuchungen ergaben bei allen Patienten negative Ergebnisse.

4.2.11 *E. canis*

Insgesamt 28 Hunde hatten einen Auslandsaufenthalt in einem Land, in dem *E. canis* endemisch vorkommt oder zum Zeitpunkt der Analyse eine unbekannte Auslandsanamnese (42 %). Acht der Hunde gehörten in die MUE-Gruppe (36 %), 9 in die SRMA-Gruppe (39 %) und 11 in die Kontrollgruppe (52 %). Bei diesen Patienten wurde eine PCR-Untersuchung auf *E. canis*-DNA aus EDTA-Blut und aus Liquor durchgeführt. Die PCR-Untersuchung ergab bei allen Patienten in Blut und Liquor negative Ergebnisse. Mittels IFAT konnten keine Antikörper gegen *E. canis* im Serum nachgewiesen werden.

<table>
<thead>
<tr>
<th>Patient</th>
<th>Bartonella spp.</th>
<th>A. phagocytophilum</th>
<th>Borrelia burgdorferi sensu lato</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PCR Blut</td>
<td>ELISA Serum</td>
<td>PCR Blut</td>
</tr>
<tr>
<td>MUE1</td>
<td>0</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>MUE2</td>
<td>0</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>MUE3</td>
<td>0</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>MUE4</td>
<td>0</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>MUE5</td>
<td>0</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>MUE6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MUE7</td>
<td>0</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>MUE8</td>
<td>0</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>MUE9</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MUE10</td>
<td>0</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>MUE11</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MUE12</td>
<td>X</td>
<td>+</td>
<td>X</td>
</tr>
<tr>
<td>MUE13</td>
<td>0</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>MUE14</td>
<td>0</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>MUE15</td>
<td>0</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>MUE16</td>
<td>0</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>MUE17</td>
<td>0</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>MUE18</td>
<td>0</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>MUE19</td>
<td>0</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>MUE20</td>
<td>0</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>MUE21</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MUE22</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SRMA1</td>
<td>0</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>SRMA2</td>
<td>0</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>SRMA3</td>
<td>B. henselae</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>SRMA4</td>
<td>0</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>SRMA5</td>
<td>0</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>SRMA6</td>
<td>0</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>Bartonella spp.</td>
<td>A. phagocytophilum</td>
<td>Borrelia burgdorferi sensu lato</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------</td>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td>SRMA7</td>
<td>0 + 0 0 X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRMA8</td>
<td>0 + 0 0 <1:128 X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRMA9</td>
<td>0 + + 0 <1:128 X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRMA10</td>
<td>0 X 0 0 X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRMA11</td>
<td>0 + 0 0 <1:128 X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRMA12</td>
<td>0 + + 0 <1:128 X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRMA13</td>
<td>0 + 0 0 <1:128 X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRMA14</td>
<td>0 0 0 0 <1:128 X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRMA15</td>
<td>0 + + 0 <1:128 X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRMA16</td>
<td>0 X 0 0 X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRMA17</td>
<td>0 + 0 0 <1:128 X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRMA18</td>
<td>0 + 0 0 <1:128 X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRMA19</td>
<td>0 + + 0 X 101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRMA20</td>
<td>0 0 0 0 <1:128 X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRMA21</td>
<td>0 0 0 0 <1:128 X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRMA22</td>
<td>0 + 0 0 1:512 <10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRMA23</td>
<td>X + 0 0 1:128 <10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>0 + 0 0 <1:128 X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>0 + 0 0 <1:128 X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T5</td>
<td>0 + 0 0 <1:128 X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T8</td>
<td>0 + 0 0 1:128 X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T10</td>
<td>0 + 0 0 1:512 <10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T11</td>
<td>0 + 0 0 <1:128 X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T13</td>
<td>0 + 0 0 <1:128 X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T14</td>
<td>0 + 0 0 <1:128 X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T15</td>
<td>0 + 0 0 <1:128 X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T16</td>
<td>0 + 0 0 1:1024 <10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T18</td>
<td>0 + 0 0 <1:128 X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T20</td>
<td>0 + 0 0 <1:128 X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T22</td>
<td>0 0 0 0 <1:128 X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T25</td>
<td>0 + 0 0 1:128 <10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T26</td>
<td>0 + 0 0 <1:128 X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bartonella spp. | A. phagocytophilum | Borrelia burgdorferi sensu lato
--- | --- | ---
T27 | 0 | + | 0 | 0 | <1:128 | X
T28 | 0 | + | 0 | 0 | <1:128 | X
T29 | 0 | + | 0 | 0 | <1:128 | X
T30 | 0 | + | 0 | 0 | <1:128 | X
T31 | 0 | + | 0 | 0 | 1:512 | <10
T32 | 0 | 0 | 0 | 0 | <1:128 | X

4.2.12 Ergebnisse der eubakteriellen PCR (16S rRNA)

Bei 5 Hunden wurde eine mikrobiologische Untersuchung des Liquors (Tab. 22). Bei den Hunden aller Gruppen wurde eine 16S rRNA PCR im Liquor durchgeführt. Bei 3 Hunden der Trauma-Gruppe wurden geringe Mengen an Genmaterial von *Pasteurellaceae* sp. nachgewiesen (Tab. 21, Tab. 22). Aufgrund der geringen Menge an Genmaterial war keine Speziesdifferenzierung möglich.

Tabelle 23: Beschreibung der Patienten mit positiver 16S rRNA-PCR aus Liquor

<table>
<thead>
<tr>
<th>Patient</th>
<th>T4</th>
<th>T13</th>
<th>T27</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rasse</td>
<td>Mischling</td>
<td>Cuba Hund Mischling</td>
<td>Rauhhaarteckel</td>
</tr>
<tr>
<td>Alter (in Jahren)</td>
<td>5</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Geschlecht</td>
<td>Weiblich kastriert</td>
<td>Männlich</td>
<td>Männlich</td>
</tr>
<tr>
<td>Vorstellungsort und -datum</td>
<td>Berlin, 08.06.2010</td>
<td>Trier, 29.12.2010</td>
<td>Trier, 16.03.2011</td>
</tr>
<tr>
<td>Vorstellungsgrund</td>
<td>Halsbiegeschmerz</td>
<td>Paraparese seit 1 Tag. Keine Tiefenschmerzwahrnehmung</td>
<td>Paraparese seit 1 Tag. Keine Tiefenschmerzwahrnehmung</td>
</tr>
<tr>
<td>Vorbehandlung</td>
<td>Meloxicam</td>
<td>Dexamethason, Metacam, Depot-Cortison, Tramadol</td>
<td>Keine Medikation</td>
</tr>
<tr>
<td>Blutuntersuchung: Leukozytenzahl</td>
<td>9,09x10⁹/L</td>
<td>Keine Angabe</td>
<td>Keine Angabe</td>
</tr>
<tr>
<td>Blutuntersuchung: Thrombozytenzahl</td>
<td>253x10⁹/L</td>
<td>Keine Angabe</td>
<td>Keine Angabe</td>
</tr>
<tr>
<td>Blutuntersuchung: Hämatokrit</td>
<td>0,49 l/l</td>
<td>Keine Angabe</td>
<td>Keine Angabe</td>
</tr>
<tr>
<td>Liquoruntersuchung: Zellzahl</td>
<td>0 Zellen/µl</td>
<td>21 Zellen/µl</td>
<td>3 Zellen/µl</td>
</tr>
<tr>
<td>Liquoruntersuchung: Proteingehalt</td>
<td>13,6 mg/dl</td>
<td>Pandy Reaktion schwach positiv</td>
<td>Pandy Reaktion negativ</td>
</tr>
</tbody>
</table>
4.2.13 Ergebnisse der Untersuchungen auf infektiöse Erreger

Bei Hunden der MUE- und der SRMA-Gruppe wurden im Rahmen der Diagnostik weitere Untersuchungen durchgeführt. Bei 13 Hunden wurde eine PCR auf *Toxoplasma gondii* gemacht, bei 14 Hunden eine PCR auf *Neospora caninum*. Bei 8 Patienten wurden Untersuchungen auf das Staupevirus durchgeführt. Alle Untersuchungen ergaben negative Ergebnisse.

Tabelle 24: Ergebnisse der weiteren Untersuchungen der Gruppen MUE, SRMA und Trauma (T) aus Liquor und Blut. Neg: negativ; Mibi: mikrobiologische Untersuchung (Kultur) aus Liquor; IHC: Immunhistochemie; AG: Antigennachweis; Patho: pathologische Untersuchung; SHV-1: *Suines Herpesvirus Typ 1*

<table>
<thead>
<tr>
<th>Patient</th>
<th>Mikrobiologische Untersuchung Liquor</th>
<th>16 S RNA PCR</th>
<th>Toxoplasma PCR</th>
<th>Neospora PCR</th>
<th>Staupevirus PCR</th>
<th>Weitere Untersuchungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUE1</td>
<td>X</td>
<td>neg</td>
<td>neg</td>
<td>neg</td>
<td>neg</td>
<td>Pathologie: Bornavirus, Tollwutvirus, kanines Adenovirus Typ 1, SHV-1 negativ</td>
</tr>
<tr>
<td>MUE2</td>
<td>X</td>
<td>neg</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Pathologie: SHV-1 negativ, Tollwutvirus Immunfluoreszenz negativ</td>
</tr>
<tr>
<td>MUE3</td>
<td>X</td>
<td>neg</td>
<td>X</td>
<td>neg</td>
<td>X</td>
<td>Pathologie: SHV-1 kulturell negativ, Tollwutvirus Immunfluoreszenz negativ</td>
</tr>
<tr>
<td>MUE4</td>
<td>X</td>
<td>neg</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Pathologie: Tollwutvirus Immunfluoreszenz negativ</td>
</tr>
<tr>
<td>MUE5</td>
<td>X</td>
<td>neg</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Pathologie: Tollwutvirus Immunfluoreszenz negativ</td>
</tr>
<tr>
<td>MUE6</td>
<td>X</td>
<td>neg</td>
<td>X</td>
<td>neg</td>
<td>X</td>
<td>Pathologie: Tollwutvirus Immunfluoreszenz negativ</td>
</tr>
<tr>
<td>MUE7</td>
<td>X</td>
<td>neg</td>
<td>neg</td>
<td>neg</td>
<td>X</td>
<td>Pathologie: Bornavirus, Tollwutvirus, kanines Adenovirus Typ 1, SHV-1 negativ</td>
</tr>
<tr>
<td>MUE8</td>
<td>X</td>
<td>neg</td>
<td>neg</td>
<td>neg</td>
<td>X</td>
<td>Pathologie: SHV-1 negativ, Tollwutvirus Immunfluoreszenz negativ</td>
</tr>
<tr>
<td>MUE9</td>
<td>X</td>
<td>neg</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Pathologie: SHV-1 kulturell negativ, Tollwutvirus Immunfluoreszenz negativ</td>
</tr>
<tr>
<td>MUE10</td>
<td>X</td>
<td>neg</td>
<td>Patho IHC neg</td>
<td>Patho IHC neg</td>
<td>Patho IHC neg</td>
<td>Pathologie: Bornavirus, Tollwutvirus, kanines Adenovirus Typ 1, SHV-1 negativ</td>
</tr>
<tr>
<td>MUE11</td>
<td>X</td>
<td>neg</td>
<td>Patho AG neg</td>
<td>Patho AG neg</td>
<td>Patho AG neg</td>
<td>Pathologie: SHV-1 negativ, Tollwutvirus Immunfluoreszenz negativ</td>
</tr>
<tr>
<td>MUE12</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Pathologie: ShV-1 negativ, Tollwutvirus Immunfluoreszenz negativ</td>
</tr>
<tr>
<td>MUE13</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Pathologie: SHV-1 negativ, Tollwutvirus Immunfluoreszenz negativ</td>
</tr>
<tr>
<td>MUE14</td>
<td>X</td>
<td>neg</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Pathologie: SHV-1 negativ, Tollwutvirus Immunfluoreszenz negativ</td>
</tr>
<tr>
<td>MUE15</td>
<td>X</td>
<td>X</td>
<td>neg</td>
<td>neg</td>
<td>neg</td>
<td>Pathologie: SHV-1 negativ, Tollwutvirus Immunfluoreszenz negativ</td>
</tr>
<tr>
<td>MUE16</td>
<td>Mibi neg</td>
<td>X</td>
<td>X</td>
<td>neg</td>
<td>X</td>
<td>IFAT Babesia canis negativ (Blut)</td>
</tr>
<tr>
<td>MUE17</td>
<td>X</td>
<td>neg</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Pathologie: SHV-1 negativ, Tollwutvirus Immunfluoreszenz negativ</td>
</tr>
<tr>
<td>MUE18</td>
<td>X</td>
<td>neg</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Pathologie: SHV-1 kulturell negativ, Tollwutvirus Immunfluoreszenz negativ</td>
</tr>
<tr>
<td>MUE19</td>
<td>X</td>
<td>neg</td>
<td>X</td>
<td>Patho IHC neg</td>
<td>Patho IHC neg</td>
<td>Pathologie: SHV-1 kulturell negativ, Tollwutvirus Immunfluoreszenz negativ</td>
</tr>
<tr>
<td>MUE20</td>
<td>X</td>
<td>neg</td>
<td>X</td>
<td>Patho IHC neg</td>
<td>Patho IHC neg</td>
<td>Pathologie: SHV-1 kulturell negativ, Tollwutvirus Immunfluoreszenz negativ</td>
</tr>
<tr>
<td>MUE21</td>
<td>X</td>
<td>neg</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Pathologie: SHV-1 kulturell negativ, Tollwutvirus Immunfluoreszenz negativ</td>
</tr>
<tr>
<td>Patient</td>
<td>Mikrobiologische Untersuchung Liquor</td>
<td>16 S RNA PCR</td>
<td>Toxoplasma PCR</td>
<td>Neospora PCR</td>
<td>Staupevirus PCR</td>
<td>Weitere Untersuchungen</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------------------</td>
<td>--------------</td>
<td>----------------</td>
<td>--------------</td>
<td>----------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>MUE22</td>
<td></td>
<td>X</td>
<td>neg</td>
<td>neg</td>
<td>neg</td>
<td>X</td>
</tr>
<tr>
<td>SRMA1</td>
<td></td>
<td>Mibi neg</td>
<td>neg</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SRMA2</td>
<td></td>
<td>X</td>
<td>neg</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SRMA3</td>
<td></td>
<td>X</td>
<td>neg</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SRMA4</td>
<td></td>
<td>X</td>
<td>neg</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SRMA5</td>
<td></td>
<td>X</td>
<td>neg</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SRMA6</td>
<td></td>
<td>Mibi neg</td>
<td>neg</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SRMA7</td>
<td></td>
<td>X</td>
<td>neg</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SRMA8</td>
<td></td>
<td>X</td>
<td>neg</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SRMA9</td>
<td></td>
<td>X</td>
<td>neg</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SRMA10</td>
<td></td>
<td>Mibi neg</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SRMA11</td>
<td></td>
<td>X</td>
<td>neg</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SRMA12</td>
<td></td>
<td>X</td>
<td>neg</td>
<td>neg</td>
<td>neg</td>
<td>X</td>
</tr>
<tr>
<td>SRMA13</td>
<td></td>
<td>X</td>
<td>neg</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SRMA14</td>
<td></td>
<td>X</td>
<td>neg</td>
<td>neg</td>
<td>neg</td>
<td>X</td>
</tr>
<tr>
<td>SRMA15</td>
<td></td>
<td>X</td>
<td>neg</td>
<td>neg</td>
<td>neg</td>
<td>X</td>
</tr>
<tr>
<td>SRMA16</td>
<td></td>
<td>X</td>
<td>neg</td>
<td>neg</td>
<td>neg</td>
<td>neg</td>
</tr>
<tr>
<td>SRMA17</td>
<td></td>
<td>X</td>
<td>neg</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SRMA18</td>
<td></td>
<td>X</td>
<td>neg</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SRMA19</td>
<td></td>
<td>X</td>
<td>neg</td>
<td>neg</td>
<td>neg</td>
<td>X</td>
</tr>
<tr>
<td>SRMA20</td>
<td></td>
<td>X</td>
<td>neg</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SRMA21</td>
<td></td>
<td>X</td>
<td>neg</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SRMA22</td>
<td></td>
<td>Mibi neg</td>
<td>neg</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SRMA23</td>
<td></td>
<td>X</td>
<td>X</td>
<td>neg</td>
<td>neg</td>
<td>X</td>
</tr>
<tr>
<td>T1</td>
<td></td>
<td>X</td>
<td>neg</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>T2</td>
<td></td>
<td>X</td>
<td>positiv: Pasteurellaceae sp.</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>T3</td>
<td></td>
<td>X</td>
<td>neg</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>T4</td>
<td></td>
<td>X</td>
<td>neg</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>T5</td>
<td></td>
<td>X</td>
<td>neg</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Patient</td>
<td>Mikrobiologische Untersuchung Liquor</td>
<td>16 S RNA PCR</td>
<td>Toxoplasma PCR</td>
<td>Neospora PCR</td>
<td>Staupevirus PCR</td>
<td>Weitere Untersuchungen</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------------------</td>
<td>--------------</td>
<td>----------------</td>
<td>--------------</td>
<td>----------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>T6</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T7</td>
<td>X</td>
<td>positiv: Pasteurellaceae sp.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T8</td>
<td>X</td>
<td>neg</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T9</td>
<td>X</td>
<td>neg</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T10</td>
<td>X</td>
<td>neg</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T11</td>
<td>X</td>
<td>neg</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T12</td>
<td>X</td>
<td>neg</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T13</td>
<td>X</td>
<td>neg</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T14</td>
<td>X</td>
<td>neg</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T15</td>
<td>X</td>
<td>neg</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T16</td>
<td>X</td>
<td>positiv: Pasteurellaceae sp.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T17</td>
<td>X</td>
<td>neg</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T18</td>
<td>X</td>
<td>neg</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T19</td>
<td>X</td>
<td>neg</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T20</td>
<td>X</td>
<td>neg</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T21</td>
<td>X</td>
<td>neg</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
V. Diskussion

5.1 Untersuchungen auf *Bartonella* spp.

5.1.1 PCR Untersuchungen

5.1.2 Serologische Untersuchungen

Mittels ELISA wurde auf Antikörper gegen *Bartonella* spp. untersucht. Es wurden Seroprävalenzen von 73,3 % (MUE-Gruppe) bis 90,5 % (Trauma-Gruppe) ermittelt. Die Gesamtseroprävalenz lag bei 83,6 %, wobei sie deutlich höher ist als bisher in der Literatur beschriebenen Ergebnissen (Guptill 2010).

Das Vorhandensein von *Bartonella* spp. ist regional stark unterschiedlich. Die Prävalenz von *B. vinsonii* ssp. *berkhoffii* variiert beim Hund weltweit zwischen 1 % und 38 % (Guptill 2010). Die Seroprävalenz von *B. henselae* liegt weltweit zwischen 10 % und 35 % (Guptill 2010). In einer Studie in den USA lag sie bei gesunden Hunden bei 10,1 % und bei erkrankten Hunden bei 27,2 % (301 kranke Hunde, 99 gesunde Hunde) (Solano-Gallego et al. 2004; Breitschwerdt et al. 2010). In einer Studie, in der 9030 klinisch kranke Hunde aus den „gesamten USA untersucht wurden, lag die Seroprävalenz bei 3,4 % (Breitschwerdt et al. 2010). In Großbritannien wurde eine Seroprävalenz von *B. henselae* bei Hunden von 3 % ermittelt (100 untersuchte Hunde) (Barnes et al. 2000). *B. henselae*-DNA wurde in Flöhen mittels PCR nachgewiesen (Just et al. 2008). Die Gesamtprävalenz lag in dieser Studie in Frankreich und Deutschland bei 3,5 % (Just et al. 2008).

In dieser Studie wurde die Seroreaktivität gegen verschiedene *Bartonella* spp. untersucht. Eine Speziesdifferenzierung war nicht möglich. Das so breit gefächerte Testsystem (Mietze 2010) kann die ermittelte hohe Seroprävalenz erklären. Es bleibt unklar, ob Hunde asymptomatische Träger von nicht-pathogenen Stämmen sind oder ob eine Infektion mit pathogenen Stämmen in den drei Gruppen stattgefunden haben kann. Es gab keine signifikanten Unterschiede zwischen den drei Gruppen (MUE, SRMA und Trauma) bezüglich der Seroprävalenz von *Bartonella* spp.

5.2 Untersuchungen auf *A. phagocytophilum*

Die PCR-Untersuchung auf *A. phagocytophilum*-DNA aus Liquor ergab bei allen Patienten negative Ergebnisse. In einem Fallbericht wurde beschrieben, dass intrazytoplasmatische Morulae in neutrophilen Granulozyten im Liquor eines Hundes nachgewiesen werden konnten, was dafür spricht, dass *A. phagocytophilum* die Blut-Hirn-Schanke überwinden kann (Maretzki et al. 1994). In einer Studie konnte keine *A. phagocytophilum*-DNA im Liquor isoliert werden (14 untersuchte Hunde) (Jäderlund et al. 2009).

Die PCR-Untersuchung auf *A. phagocytophilum*-DNA aus Blut ergab bei 4 von 65 Hunden ein positives Ergebnis. Alle 4 Hunde gehörten der SRMA-Gruppe an (Prävalenz 17,4 %). Die Unterschiede zwischen den Gruppen SRMA, MUE und Trauma waren statistisch signifikant.

Die Ergebnisse unserer Studie könnten darauf hindeuten, dass eine Infektion mit *A. phagocytophilum* auch eine Rolle bei der Pathogenese von immunbedingten Hirnhautentzündungen spielen könnte.

5.3 Untersuchungen auf *Borrelia burgdorferi sensu lato*

Serovalenzstudien bei Hunden in Deutschland (mittels C6-ELISA) ergaben Werte zwischen 1,9 und 10,3 % (Krupka et al. 2007). In einer Studie mit 448 untersuchten Hunden aus der Region München lag die Seroprävalenz bei 6,9 % (mittels C6-ELISA) (Barth et al. 2012).

5.4 Untersuchungen auf das FSME-Virus

5.5 Untersuchungen auf E. canis

Anhand der Ergebnisse dieser Studie konnte kein Zusammenhang zwischen Infektionen mit *E. canis* und entzündlichen ZNS-Erkrankungen festgestellt werden.

5.6 Untersuchung auf 16S rRNA

5.7 Koinfektion

5.8 CVBD-Erreger als Auslöser einer sekundären Immunantwort?

5.9 Limitationen der Studie: Vorbehandlung

Aufgrund des Status der Kliniken als Überwiesungskliniken war eine Vorbehandlung der Patienten nicht zu vermeiden. Da die Hunde oft mit Fieber, Schmerzen und neurologischen Symptomen vorgestellt wurden, waren die am häufigsten eingesetzten Wirkstoffe Glukokortikoide, Antibiotika und nicht-steroidale Antiphlogistika/Metamizol.

5.9.1 Glukokortikoide

5.9.2 Antibiotika

Die häufigsten eingesetzten Antibiotika in dieser Studie waren Amoxicillin-Clavulansäure und Enrofloxacin. Seltener verwendete Antibiotika waren Doxycyclin, Marbofloxacin, Clindamycin, Metronidazol, Methylpenicillin, Penicillin-Streptomycin, Trimethoprim-Sulfadiazin und Cefovecin.

a) Doxycyclin

Ergebnis ermittelt wurde, da die Liquorpunktion erst nach Doxycyclinegabe durchgeführt wurde.

b) Penicilline

c) Fluorochinolone

d) Metronidazol

Metronidazol ist ein synthetisches Nitroimidazolderivat. Metronidazol ist lipophil und verteilt sich in die meisten Flüssigkeiten und Geweben, unter anderem auch im ZNS (Chew et al. 2012). Es wirkt bakterizid und antiprotozoär. Es ist gegen die meisten Anaerobier wirksam, wird jedoch nicht gegen *Rickettsien* oder *Bartonella* spp. eingesetzt.

e) Clindamycin

Antibiotische Behandlung mit Penicillin-Derivaten (12), Fluorochinolonen (11) oder Clindamycin (1) vor der Liquorpunktion kann zu falsch negativen Ergebnissen der eubakteriellen PCR geführt haben.

5.10 Limitationen der Studie: Patienten

5.10.1 Regionale Unterschiede innerhalb Deutschlands

5.10.2 Auslandsaufenthalt

Insgesamt 17 Hunde hatten einen Auslandsaufenthalt in einem Land, in dem *E. canis* vorkommt (Gruppe 2 oder 3) oder eine unbekannte Auslandsanamnese (26 %). Sieben der Hunde gehörten in die MUE-Gruppe (32 %), fünf in die SRMA-Gruppe (22 %) und 10 in die Trauma-Gruppe (48 %). Es konnten keine statistisch signifikanten Unterschiede bezüglich der Ergebnisse der Untersuchungen auf *A. phagocytophilum*-DNA und *Bartonella* spp. Serologie zwischen den Hunden mit Aufenthalten in verschiedenen Regionen ermittelt werden. Allerdings fehlten Details bezüglich des Zeitpunktes und der Dauer der Aufenthalte.

5.11 Limitationen der Studie: Anzahl der Fälle

5.12 Limitationen der Studie: Diagnose von Meningoenzephalitis

In einer Studie von 2010 wurden post-mortale Diagnosen gestellt und somit die entzündlichen Erkrankungen weiter differenziert (z.B. NME und GME). 75 Fälle mit GME, NME oder MUE wurden mittels PCR (in Gehirngewebe oder Liquor) auf Vektor-übertragene Erreger hin untersucht (Barber et al. 2010).

Eine Limitation von pathologischen Studien ist, dass die Untersuchungen in späten Krankheitsstadien durchgeführt werden, in denen schon signifikante Entzündungsprozesse stattgefunden haben und eventuelle infektiöse Trigger möglicherweise schon eliminiert wurden.

In der aktuellen, klinisch orientierten Studie lag der Fokus nicht auf einer genau genauen histologischen Klassifizierung des Entzündungsgeschehens, sondern auf einer Untersuchung vor dem Endstadium der Erkrankung. In Bezug auf die „Hit-and-Run-Hypothese“ ist die Wahrscheinlichkeit, potentielle immunogene Erreger mittels PCR nachweisen zu können in einem früheren Stadium der Erkrankung größer (Courtney et al. 2004).

Aufgrund der weitesgehend negativen Ergebnisse bei lebenden und toten Tieren sind vermutlich experimentelle Studien mit Fokus auf die immunpathologischen Prozesse im Gehirn notwendig, um das immunogene Potential von Vektor-übertragenen Erregern in ZNS-Entzündungen zu klären. Trotzdem können die Ergebnisse dieser Studie darauf hinweisen, dass Vektor-übertragene Erreger Trigger einer Entzündung des ZNS sein könnten, und daher
bei der kompletten diagnostischen Abklärung eines Falls mit entzündlicher ZNS-Erkrankung in Betracht gezogen werden sollten.
VI. Zusammenfassung

Bei vielen Entzündungen des zentralen Nervensystems (ZNS) beim Hund können Erreger nicht nachgewiesen werden. Sie werden daher als Entzündungen unbekannter Genese bezeichnet. Immunpathologische Untersuchungen lassen vermuten, dass ein Antigen eine autoimmune Reaktion auslöst („Hit-and-Run-Prinzip“).

Bei Serum, Blut und Liquor cerebrospinalis wurden auf Antikörper bzw. DNA von Vektorübertragenen Erregern hin untersucht, um zu klären, inwieweit Vektor-übertragene Erreger Meningitiden und Enzephalitiden unbekannter Genese beim Hund in Deutschland auslösen oder Teil einer multifaktoriellen Ätiologie sind.

VII. Summary

Testing of dogs with meningitis and meningoencephalitis of unknown etiology for vector-transmitted microorganisms

In many cases of inflammatory diseases of the central nervous system in dogs, no aetiologial infectious agent can be found. These inflammatory conditions are thus named inflammations of unknown aetiology. Results of immunopathological studies imply that an antigen may trigger an autoimmune response (Hit-and-Run-Hypothesis).

Serum was analyzed for antibodies against vector-transmitted pathogens and blood and cerebrospinal fluid for DNA of such infectious agents in order to further define the role of CVBD-agents in the aetiology of meningitis and meningoencephalitis of unknown aetiology in dogs in Germany.

66 client-owned dogs were included in the prospective multicenter study between december 2009 and november 2011. They were classified in three groups:

a.) control-group with dogs with non-inflammatory CNS-disease (e.g. intervertebral disc disease, n=21) (trauma group)
b.) dogs with meningoencephalitis of unknown aetiology (MUE) (n=22)
c.) dogs with steroid-responsive meningitis-arteritis (SRMA) (n=23)

PCR was performed in blood and cerebrospinal fluid to detect *A. phagocytophilum*, *E. canis* (for dogs that stayed in an endemic area or dogs with unknown past, n=28) and *Bartonella* spp. Serological assays targeted *E. canis* (IFAT), TBEV (ELISA) and *Borrelia burgdorferi* sensu lato antibodies (IFAT and C6-ELISA for patients with elevated antibody titers in IFAT). Group comparison was done with non parametric tests, using the statistical software SPSS 17.0 for windows, SPSS Inc., USA.

No DNA was found in cerebrospinal fluid. In 4 dogs of the SRMA-group, DNA of *A. phagocytophilum* was found in blood. Serological and PCR analysis for *E. canis* were negative in all dogs in blood and serum. No elevated antibody-titers against TBEV were measured in any dog. *B. henselae* DNA was detected in blood of 1 dog of the SRMA-group. 14 dogs had an elevated antibody titer (≥ 1:128) against *B. burgdorferi* sensu lato (IFAT). There were no significant differences between the 3 groups. In two dogs of the SRMA-group and in one dog of the MUE-group, an elevated C6-titer was detected via C6-ELISA (> 10 U/ml). DNA of *Pasteurellaceae* was detected with eubacterial PCR in CSF of 3 dogs of the trauma group, which may be due to a contamination of the samples.

No correlation could be determined between the presence of *E. canis* DNA or elevated antibody-titers against *E. canis* or TBEV and inflammatory CNS diseases. 17 % of dogs with SRMA had positive PCR results for *A. phagocytophilum. A. phagocytophilum* may play a role as trigger of a secondary immunopathy. It remains unclear whether the positive test results for *Bartonella* DNA and *Borrelia burgdorferi* sensu lato antibodies are clinically relevant.
VIII. Literaturverzeichnis

LXXXIX

Neosporosis in Beagle dogs: clinical signs, diagnosis, treatment, isolation and genetic characterization of Neospora caninum.
Vet Parasitol. 149(3-4), 158-66.

Toxoplasmosis and neosporosis.

Computed tomography of necrotizing meningoencephalitis in 3 Yorkshire Terriers.
Vet Radiol Ultrasound. 40(6), 617-21.

The dog as a sentinel for human infection: prevalence of Borrelia burgdorferi C6 antibodies in dogs from southeastern and mid-Atlantic States.

A combined approach for the enhanced detection and isolation of Bartonella species in dog blood samples: pre-enrichment liquid culture followed by PCR and subculture onto agar plates.
Microbiol Methods. 69, 273-281.

Bartonella DNA in dog saliva.

Borna disease virus (BDV), a (zoonotic?) worldwide pathogen. A review of the history of the disease and the virus infection with comprehensive bibliography.
Zentralbl Veterinarmed B. 44(3), 147-84.

Typical and atypical manifestations of Anaplasma phagocytophilum infection in dogs.
J Am Anim Hosp Assoc. 47(6), e86-94.

Early manifestations of granulocytic ehrlichiosis in dogs inoculated experimentally with a Swedish Ehrlichia species isolate.
Vet Rec. 143(15), 412-7.

Cerebrospinal Fluid.

Foley, J. E.; Foley, P.; Madigan, J. E. (2001):
Spatial distribution of seropositivity to the causative agent of granulocytic ehrlichiosis in dogs in California.

A retrospective study of ehrlichiosis in 62 dogs from North Carolina and Virginia.

Comparison of fluoroquinolone pharmacokinetic parameters after treatment with marbofloxacin, enrofloxacin, and difloxacin in dogs.
J Vet Pharmacol Ther. 23(5), 293-302.

Fredricks, D. N.; Relman, D. A. (1999):
Application of polymerase chain reaction to the diagnosis of infectious diseases.
Clin Infect Dis. Sep;29(3), 475-86.

Freeman, R. A.; Raskin, R. E. (2001):
Cytology of the central nervous system.

Detection of canine distemper virus nucleoprotein RNA by reverse transcription-PCR using serum, whole blood, and cerebrospinal fluid from dogs with distemper.
J Clin Microbiol. 37(11), 3634-43.

Effects of time, initial composition, and stabilizing agents on the results of canine cerebrospinal fluid analysis.
Vet Clin Pathol. 35(1), 72-7.

Detection of Neospora caninum tachyzoites in cerebrospinal fluid of a dog following prednisone and cyclosporine therapy.

Neonatal meningitis: what is the correlation among cerebrospinal fluid cultures, blood cultures, and cerebrospinal fluid parameters?
Pediatrics. 117(4), 1094-100.
An inexpensive sedimentation chamber for the preparation of cytologic specimens of cerebrospinal fluid.
J Vet Diagn Invest. 16(6), 585-7.

Necrotizing cerebellitis and cerebellar atrophy caused by Neospora caninum infection: magnetic resonance imaging and clinicopathologic findings in seven dogs.

Validation of a human immunoturbidimetric assay to measure canine albumin in urine and cerebrospinal fluid.

Fatal meningitis and encephalitis due to Bartonella henselae bacteria.

Infectious causes of multiple sclerosis.

A novel strategy for protective Actinobacillus pleuropneumoniae subunit vaccines: detergent extraction of cultures induced by iron restriction.
Vaccine. 19(7-8), 966-75.

Granulocytic ehrlichiosis in dogs from North Carolina and Virginia.

Clinicopathologic findings in dogs seroreactive to Bartonella henselae antigens.

Dogs as sentinels for human Lyme borreliosis in The Netherlands.

Tijdschr Diergeneesk. 128(21), 650-7.
Granick, J. L.; Armstrong, P. J.; Bender, J. B. (2009):
Anaplasma phagocytophilum infection in dogs: 34 cases (2000-2007).

Greene, C. E. (2012):
Rabies and other Lyssavirus infections.

Borreliosis.

Greene, C. E.; Vandevelde, E. (2012b):
Canine Distemper.

Geographic, clinical, serologic, and molecular evidence of granulocytic ehrlichiosis, a likely zoonotic disease, in Minnesota and Wisconsin dogs.
J Clin Microbiol. 1(Jan;34), 44-8.

Greig, B.; Armstrong, P. J. (2012):
Canine Granulocytotropic Anaplasmosis (A. phagocytophilum Infection).

Guptill, L. (2010):
Bartonellosis.

Bartonellosis.

Halperin, J. J. (2014):
Nervous system Lyme disease.
Handb Clin Neurol. 121, 1473-83.

Canine vector-borne disease in travelled dogs in Germany--a retrospective evaluation of laboratory data from the years 2004-2008.
Vet Parasitol. 181(1), 31-6.

Ehrlichia canis Infection.

Canine Lyme disease in Belgium.
Vet Rec. 136(10), 244-7.

Ehrlichiosis and related infections.

Ehrlichiosis in a dog with seizures and nonregenerative anemia.

Cerebrospinal fluid analysis.

Alpha1-proteinase inhibitor deficiency and Bartonella infection in association with panniculitis, polyarthritis, and meningitis in a dog.

Menn, B.; Lorentz, S.; Naucke, T. J. (2010):
Imported and travelling dogs as carriers of canine vector-borne pathogens in Germany.
Parasit Vectors. 3, 34.

A case of canine streptococcal meningoencephalitis diagnosed using universal bacterial polymerase chain reaction assay.

Mietze, A. (2010):
Bartonella henselae in Katzen, Hunden und Zecken in Deutschland.
Hannover, Stiftung Tierärztliche Hochschule Hannover, PhD.

Combined MLST and AFLP typing of Bartonella henselae isolated from cats reveals new sequence types and suggests clonal evolution.

Encephalitis and meningitis.

Broadly reactive pan-paramyxovirus reverse transcription polymerase chain reaction and sequence analysis for the detection of Canine distemper virus in a case of canine meningoencephalitis of unknown etiology.

Schetters, T. P.; Eling, W. M. (1999):
Can Babesia infections be used as a model for cerebral malaria?
Parasitol Today. 15(12), 492-7.

Bartonella henselae causing severe and protracted illness in an otherwise healthy person.

Schouls, L. M.; Van De Pol, I.; Rijpkema, S. G.; Schot, C. S. (1999):
Detection and identification of Ehrlichia, Borrelia burgdorferi sensu lato, and Bartonella species in Dutch Ixodes ricinus ticks.

Prospective study of use of PCR amplification and sequencing of 16S ribosomal DNA from cerebrospinal fluid for diagnosis of bacterial meningitis in a clinical setting.
J Clin Microbiol. 42(2), 734-40.

Non-suppurative meningoencephalitis of unknown origin in cats and dogs: an immunohistochemical study.
J Comp Pathol. 136(2-3), 96-110.

Canine granulocytic ehrlichiosis in the UK.
Vet Rec. 148(23), 727-8.

Three monoclonal antibodies against measles virus F protein cross-react with cellular stress proteins.

Antinuclear antibodies can be detected in dog sera reactive to Bartonella vinsonii subsp. berkhoffii, Ehrlichia canis, or Leishmania infantum antigens.

Bartonella henselae IgG antibodies are prevalent in dogs from southeastern USA.
Vet Res. 35(5), 585-95.

Woody, B. J., McDonald (1985): Canine Ehrlichiosis Miss Vet J. 1, 2-5.

Danksagung

Frau Prof. Kohn danke ich für die Vergabe des Dissertationsthemas, die sorgfältige Korrektur dieser Arbeit sowie ihre wertvollen Ratschläge, die bei der Erstellung dieser Arbeit sehr hilfreich waren.

Frau Prof. Tipold möchte ich für die konstruktive Kritik und Hilfestellung bei der Erstellung der Arbeit sowie für die lehrreiche Zeit an der Klinik für Kleine Haustiere der TiHo Hannover herzlich danken. Desweiteren bin ich ihren Mitarbeiterinnen für ihre Unterstützung bei der Patientensammlung zu Dank verpflichtet.

Herrn Prof. Brunnberg danke ich für seine moralische Unterstützung und die klinische Erfahrung, die ich in der Klinik und Poliklinik für kleine Haustiere gewinnen durfte.

Ich danke allen Kolleginnen und Kollegen der Klinik für kleine Haustiere der FU Berlin für ihre Anwesenheit in guten wie in schlechten Zeiten.

Zudem danke ich Frau Dr. Kornberg und ihren Mitarbeitern für die Unterstützung bei der Patientensammlung.

Desweiteren danke ich Frau Dr. Silaghi und Herrn Prof. Pfister und seine Mitarbeiter aus dem Institut für Parasitologie der LMU München, Herrn Dr. Mietze aus dem Institut für Mikrobiologie der TiHo Hannover, Herrn Prof. Wieler und Frau Dr. Lübke-Becker aus dem Institut für Mikrobiologie der FU Berlin, Herrn Prof. Pfeffer und Frau Balling aus dem Institut für Tierhygiene der Universität Leipzig für die Unterstützung bei der Untersuchung der Proben und der Fertigstellung des Manuskripts.

Besonderer Dank gilt meiner Familie, die mich das kritische Denken und die Komplexität der deutschen Sprache gelehrt hat.
X. Vorabveröffentlichungen

Teile dieser Dissertation wurden vorab wie folgt veröffentlicht:

Scientific paper:
Testing of dogs with meningitis and meningoencephalitis of unknown etiology for vector-transmitted microorganisms.

Proceedings:
Testing of dogs with meningitis and meningoencephalitis of unknown etiology for vector-transmitted microorganisms.
CVBD Proceedings,
Lissabon, Portugal, 22.-25.03.2014,
KRA 320 Cv, S. 36-37

Testing of dogs with meningitis and meningoencephalitis of unknown etiology for vector-transmitted microorganisms

Meningitis und Meningoenzephalitis unbekannter Genese beim Hund – sind vektor-übertragene Erkrankungen auslösende Faktoren?

Lazzerini, K.; Tipold, A.; Kornberg, M.; Silaghi, C.; Mietze, A.; Pfister K.; Kohn, B.
Meningitis und Meningoenzephalitis unbekannter Genese beim Hund sind vektor-übertragene Erkrankungen auslösende Faktoren?
21. Jahrestagung der FG Innere Medizin und klinische Labordiagnostik der DVG (Innlab)
01./02. 02. 2013 München, Tierärztliche Praxis 01/2013 Abstracts S. 11
ISBN 1434 – 1239

Vorträge:
Lazzerini, K.; Tipold, A.; Kornberg, M.; Silaghi, C.; Mietze, A.; Pfister K.; Kohn, B.
Meningitis und Meningoenzephalitis unbekannter Genese beim Hund sind vektor-übertragene Erkrankungen auslösende Faktoren?
21. Jahrestagung der FG Innere Medizin und klinische Labordiagnostik der DVG (Innlab)
01./02. 02. 2013 München, Tierärztliche Praxis 01/2013 Abstracts S. 11
ISBN 1434 – 1239
Meningitis und Meningoenzephalitis unbekannter Genese beim Hund – sind vektorübertragene Erkrankungen auslösende Faktoren?

Poster Präsentation:
Testing of dogs with meningitis and meningoencephalitis of unknown etiology for vector-transmitted microorganisms
XI. Selbstständigkeitserklärung

Selbstständigkeitserklärung:

Hiermit bestätige ich, dass ich die vorliegende Arbeit selbständig angefertigt habe. Ich versichere, dass ich ausschließlich die angegebenen Quellen und Hilfen Anspruch genommen habe.

Berlin, den 14.03.2014

Kali Lazzerini