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Microplastic (MP) pollution poses a threat to agricultural soils and may induce a

significant loss of the soil quality and services provided by these ecosystems.

Studies in marine environments suggest that this impact is mediated by shifts in

the microbiome. However, studies on the mode of action of MP materials on

the soil microbiome are rare, particularly when comparing the effects of

different MP materials. In this study, we characterized the microbiota

colonizing two different MP materials, granules made of polypropylene (PP)

and expanded polystyrene (ePS), introduced into arable soil and incubated for

8 weeks using a molecular barcoding approach. We further assessed the

consequences on the microbiome of bulk soil. The complexity of the

bacterial communities colonizing MP materials was significantly higher on

ePS compared to PP. Many of the detected genera colonizing the MP

materials belonged to taxa, that are known to degrade polymeric

substances, including TM7a, Phenylobacterium, Nocardia, Arthrobacter and

Streptomyces. Interestingly, in bulk soil samples amended with MP materials,

microbial diversity was higher after 8 weeks compared to the control soil, which

was incubatedwithoutMPmaterials. The composition of bacterial communities

colonizing the MP materials and bulk soil differed. Mainly Acidobacteria were

mostly found in bulk soil, whereas theywere rare colonizers of theMPmaterials.

Differences in diversity and community composition between the MP affected

bulk soil samples were not found. Overall, our data indicate that MP materials

form a new niche for microbes in soil, with a specific community composition

depending on thematerials used, strongly influencing the bulk soil microbiota in

the short term. Long-term consequences for the soil microbiome and

associated functions including different soils need to be further elaborated

in the future for a proper risk assessment of the mode of action of MP materials

in terrestrial ecosystems.
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Introduction

Plastic particles < 5 mm in diameter are defined as

microplastic (MP) (Frias and Nash, 2019). MP pollution is

present all over the globe, potentially affecting all ecosystems,

including marine and freshwater environments as well as soils

(Mahon et al., 2017; Corradini et al., 2019; Rillig et al., 2019;

Oliveira et al., 2020; Rillig and Lehmann, 2020). Therefore

analyzing the impact of MP on various organisms has become

an important topic of research in the last decades. MP materials

have an impact on biota of all trophic levels and may accumulate

in the gut of animals, including mammals, as a result of the

complex food web structures (Thiel et al., 2018; Cverenkárová

et al., 2021; Ugwu et al., 2021). Recently MP has been discovered

and quantified even in human blood (Leslie et al., 2022). Many

MP materials enter the human body by consumption of food,

derived from terrestrial ecosystems. Estimates indicated that the

input of MP materials into terrestrial ecosystems might be 4- to

23-fold higher than the release into aquatic environments

(Horton et al., 2017). Especially arable soils are an important

sink for MP materials, due to the use of plastic mulch films and

sewage sludge as fertilizer (Mahon et al., 2017). Another main

source of MP contamination in terrestrial environments is tire

abrasion (Sommer et al., 2018; Luo et al., 2021). It has been

shown, that MP derived from tires supported pathogenic bacteria

in urban water environments (Wang et al., 2020). If MPmaterials

accumulate in the soil, they directly or indirectly affect the

function of soil ecosystems. They could alter the physical

properties of soil (e.g., increase water holding capacity or

decrease bulk density) (de Souza Machado et al., 2018)

influence the soil structure, soil fertility and affect soil

biodiversity and functioning (Rillig, 2012). Effects of MP on

the soil microbiome have been clearly demonstrated (Huang

et al., 2019; Zhou et al., 2020; Hou et al., 2021; Luo et al., 2022; Shi

et al., 2022; Zhu et al., 2022), affecting microbial activities and

associated important functions including nutrient turnover,

bacterial transport and the decomposition of organic matter.

MP induced microbiome composition disruption, immune

response, enzyme activity and gene expression changes

(Santos et al., 2022). Ng et al. (2021) nicely demonstrated that

MP materials act as selective niche for bacteria and fungi. The

bacterial biofilms colonizing the MPmaterials change the surface

properties of the MP. They affect its bioavailability, degradability

and mobility. However, the knowledge on the effects of MP

materials on the soil microbiome is still limited as they may

strongly vary within different polymer types, shapes, sizes and

concentrations, as well as in different soil types (Awet et al., 2018;

De Souza Machado et al., 2018; De Souza Machado et al., 2019;

Zhang et al., 2019; Rüthi et al., 2020; Sun et al., 2022). Defining

MP as a single compound, as media articles or policy reports

often did, led to confusions. Studying the fate and effects of a

single MPmaterial with a specific chemical composition, size and

shape does not tell the fate and effects of MP in general

(Rochman et al., 2019). It has been shown in the marine

environment that different MP materials are colonized by

different microorganisms (Rosato et al., 2020). In contrast to

that many studies in the soil environment were based on field

experiments of MP contaminated areas, e.g., Zhang et al., 2019;

Chai et al., 2020; Shan et al., 2022. Those studies addressed

different questions and did not focus on the microbial

colonization of defined MP materials. It is important to fully

understand the mechanism behind the colonization by

performing controlled lab experiments using defined MP

materials. To address this, a pot experiment using an

agricultural soil was established to study the colonization of

two different polymer types of MP materials by soil

microbiota and the subsequent feedback loops on the bacterial

community composition of the bulk soil. The MP materials

polypropylene (PP) and expanded polystyrene (ePS) in

granule shape were selected. PP and ePS are thermoplasts, but

differ in their backbones. PP belongs to the group of polyolefins,

is crystalline and non- polar. ePS is a non- polar, synthetic

polymer made from monomers of the aromatic hydrocarbon

styrene and it is foamed. Those polymer types are wide spread all

over the world and represent 22% of the plastic material in

Germany (Heinrich-Bo€;ll-Stiftung, 2019).2 Both of them are

frequently used as packing material and moved into almost

every household. Given the fact, they are relevant

contaminants of agricultural soils the knowledge on their

effects on soil microbial communities is limited. As MPs

concentrations in soil are increasing (Kim et al., 2020b) the

results gained in this study would enhance the understanding of

the ecological risk of PP and ePS MP contamination in

agroecosystems and will be of importance for developing

targeted mitigation and management strategies for affected

sites to maintain soil quality.

Materials and methods

Soil

Top soil (0–20 cm) was obtained from an agricultural field in

Karlskron, Southern Germany (latitude 48.658142, longitude

2 https://www.boell.de/de/2019/05/14/plastikatlas
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11.381436, 407 m above sea level) in April 2019. The field was

cultivated using principles of ecological farming. The crop

rotation included alfalfa in 2018, triticale in 2017 and potatoes

in 2016. The soil was characterized as loamy sand with a soil

texture consisting of 14% clay, 19% silt, 67% sand and pH of 7.4.

The soil contained 1.1% total carbon and 0.1% total nitrogen,

resulting in a C: N ratio of 11. Ammonia and nitrate

concentrations were 1.2 mg/g (NH4
+) and 16.6 mg/g (NO3

−)

and dissolved organic carbon (DOC) content was 64.1 ±

2.5 µg g−1 dry weight (dw) at the time point of sampling. The

soil was air-dried, sieved (2 mm mesh size) and homogenized

before the experiment.

Microplastic

Two different polymer types were used in the experiment.

The applied MP materials treatment consisted either of

polypropylene granules (PP) of 4 mm nominal granule size

(Merck, Darmstadt, Germany; item number GF63935860) or

of expanded polystyrene granules (ePS) of 1–3 mm (SitJoy®

Sitzsackfüllung, frago GmbH, Schenefeld, Germany; item

number SW10361). The MP materials were sterilized for

1 week under ultra violet light. Sterilized MP granules were

placed on LB-agar (Merck KGaA, Darmstadt, Germany) plates

to verify the success of the sterilization. MP materials where no

colony growth was observed after 1 week of incubation at room

temperature were considered as sterile and used for the

subsequent experiment.

Incubation experimental design

Five replicates, each with 100 g of sieved soil were incubated

at room temperature (RT) in seedling pots (size: 8 cm × 7 cm) for

8 weeks without MP materials, with 0.5% (w/w) pre-sterilized PP

or 0.5% (w/w) pre-sterilized ePS. A homogeneous distribution of

the MP materials granules was obtained by mixing them into the

sieved soil using a sterile spoon. Control samples received the

same amount of disturbance. Afterwards the water holding

capacity of the soil was adjusted to 50% of the maximum

water holding capacity separately for each treatment. After

8 weeks of incubation soil samples were taken. This time

point was chosen based on a previous study published by

Rüthi et al. (2020), who reported changes in the microbial

community structure in soils after 8 weeks of incubation with

MP materials. The DOC content in soil increased during the

incubation period and was 81.0 ± 1.3 µg g−1 dw for control soil

(without MP materials), 87.8 ± 10.4 µg g−1 dw for ePS soil and

198.5 ± 3.6 µg g−1 dw for PP soil after 8 weeks of MP materials

incubation.

At the time point of sampling, the MP materials were

separated from the soil using sterile tweezers (Gkoutselis

et al., 2021) and carefully washed in 50 ml sterile 1 × PBS.

The MP materials were therefore put into a sterile kitchen

strainer “Teela-Spoon 1” fine mesh (mesh size 0.5 mm,

diameter 3.5 cm) (Tee Gschwendner, Meckenheim, Germany)

and dipped into the washing buffer twice for 1 minute and

thoroughly washed by shaking. The adhering soil particles

were removed, but the biofilm on the MP materials was not

affected, that has been demonstrated in pre-experiments (data

not shown). To verify the minimal disturbance of the washing

procedure, the wash buffer was collected after use and subjected

to molecular metabarcoding, as described below. Our data

indicated that the observed number of amplicon sequence

variants (ASVs) was in the range of 1%–4% of the ASVs, that

were found on the MP and only a small overlap of taxa

(Supplementary Figure S2) was present, indicating that the

washing procedure did not affect the biofilms developed on

the MP. MP free soil samples, control soil and washed MP

materials were frozen at −80°C.

DNA extraction and library preparation

Genomic DNA was extracted from 0.5 g of soil, 0.25 g of PP,

0.15 g of ePS or 500 μl of PBS wash buffer to ensure best cell

lysing conditions for each sample type by using the NucleoSpin®

Soil Kit (Macherey-Nagel, Düren, Germany). For cell lysis of soil

and plastic- associated microbes, buffer SL1 was used. As an

extraction control (blank), an extraction without soil or MP

materials was processed. DNAwas quantified using the Quant-iT

PicoGreen dsDNA Assay Kit (Thermo Fisher Scientific,

Darmstadt, Germany). For the assessment of bacterial

communities the “16S Metagenomics Sequencing Library

Preparation” protocol (Illumina, San Diego, CA,

United States) and quality guidelines by Schöler et al. (2017)

were used. The v4 region of the 16S rRNA gene was amplified

using primer pair 515F (Parada et al., 2016) and 806R (Apprill

et al., 2015). PCR reaction mixtures contained 10 ng of DNA for

soil and 3 μl of DNA for MP materials, PBS wash and blanks,

0.5 μl of 10 pmol of each primer, 2.5 μl of 3% BSA, 12.5 μl of

NEBNext High-Fidelity 2x PCR Master Mix (New England

Biolabs, Frankfurt am Main, Germany) and DEPC- treated

water up to 25 μl. The amplification program for the 16S

rRNA gene was initiated at 98°C for 1 min, followed by

25 cycles of 98°C for 10 s, 55°C for 30 s and 72°C for 30 s, and

terminated at 72°C for 5 min. PCR products were purified using

MagSi NGSprep Plus beads (Steinbrenner, Wiesenbach,

Germany) and quantified and quality checked using the

Fragment Analyzer (Agilent Technologies, Santa Clara, CA,

United States) using the NGS Fragment Kit (1–6,000 bp)

(Agilent Technologies, Santa Clara, CA, United States).

Indexing PCR was performed in a reaction mix (25 μl)

consisting of 10 ng of the purified amplicon, 2.5 μl of each

indexing primer (Nextera® XT Index Kit v2 Set C or D;
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Illumina, San Diego, CA, United States), 12.5 μl NEBNext High-

Fidelity 2 × PCR Master Mix, and 6.5 μl DEPC-treated water.

Afterwards amplicons were purified, quantity and quality

checked as previously described. The library was diluted to

4 nM and equimolar pooled. For sequencing the MiSeq®

Reagent kit v3 (600 cycles) (Illumina, San Diego, CA,

United States) was used for paired- end sequencing on the

MiSeq® instrument (Illumina, San Diego, CA, United States).

Data processing and statistical analysis

Sequences were analyzed on the Galaxy web platform (www.

usegalaxy.org; Afgan et al., 2016). FASTQ files were trimmed

with a minimum read length of 50 using Cutadapt (Martin,

2011). Quality control was performed via FastQC (Andrews,

2010).1 For subsequent data analysis DADA2 pipeline (Galaxy

Version 1.20) (Callahan et al., 2016) was used with the following

trimming and filtering parameters: 20 bp were removed n-

terminally and reads were truncated at position 240 (forward)

and 200 (reverse), respectively, with expected error of 3 (forward)

and 4 (reverse). Resulting unique amplicon sequence variants

(ASVs) are biological sequences discriminated from errors,

allowing the detection of single-nucleotide differences over the

sequenced gene. Taxonomic analysis was performed using

SILVA v138.1 release 99%. To exclude potential

contamination, ASVs occurring in b, unassigned,

mitochondrial and chloroplast reads and singletons (ASVs

represented by only one read) were removed from the dataset.

The raw sequence data obtained in this study are deposited in

the short read archive of NCBI under accession number

PRJNA819581.

Downstream analyses were performed in R 4.0.5. Alpha

diversity was calculated using species richness based on ASV

number, Pielou evenness and Shannon diversity index. Beta

diversity was analyzed via unweighted and weighted UniFrac

distance matrix. For statistical purpose, KruskalWallis test,

Wilcoxon-rank sum test and PERMANOVA with Benjamini-

Hochberg p value correction for multiple comparison was used.

For identification of biomarker taxa, two generalized linear

models (R packages MASS and pscl) were used. Additionally,

differences between log2fold changes were calculated and LEfSe

(Linear discriminant analysis Effect Size) was used to validate the

results. Multiple test correction was performed by p value

adjustment via Benjamini-Hochberg method. Plots were

created in R using ggplot2, ggpubr and metacoder. Venn

diagrams for core microbiome analysis were created using

Venny (Oliveros, 2020), with a minimum ASV threshold of

80% (ASV must be present in 80% of the samples to be

considered for the group).

Results

16S rRNA gene sequencing of microplastic
and soil samples

Sequencing of the generated amplicons resulted in 33,108 to

95,235 reads per sample after quality filtering. To compare

samples without statistical bias, a subsampling strategy of

33,108 reads per sample was performed, reflecting the lowest

observed read number. Rarefaction analysis indicated that the

resulting sampling depth was sufficient for further analysis of all

samples (Supplementary Figure S1). Overall, alpha diversity of

bacterial communities, which developed on MP materials, was

significantly lower compared to bulk soil. However, bacterial

communities colonizing ePS showed a significantly higher alpha

diversity compared to PP, while the alpha diversity of bacterial

communities in the respective bulk soil samples did not differ

(Figure 1A). Interestingly, alpha diversity of the control soil was

lower compared to soils treated with MPmaterials. Beta diversity

confirmed different bacterial community structures colonizing

the two MP materials and indicated differences in bacterial

diversity between bulk soil and MP materials. Differences

between bulk soil samples treated with MP materials and

control soils became obvious (Figure 1B).

Amore detailed analysis of the bacterial taxa, which were able

to colonize the two different MP materials, revealed in total,

41 phyla, with most of the annotated reads in bulk soil samples

belonging to the phyla Actinobacteriota (25%), Proteobacteria

(22%), and Acidobacteriota (14%), whereas on MP materials

Proteobacteria (37%), Actinobacteriota (33%) and

Patescibacteria (9%) were dominant (Figure 1C).

Clear differences in community structure were observed

when comparing bacteria colonizing the two MP materials,

namely for Acidobacteriota, Bacteroidota, Myxococcota,

Planctomycota and Verrucomicrobiota, which were

significantly enriched on PP compared to ePS (Figures 1C,D).

On the level of genera Adhaeribacter, Bacteroides,

Ferruginibacter, Flavisolibacter and Pedobacter (Bacteroidota),

Rhizobacter (Proteobacteria) and TM7a as well as

LWQ8_unclassified (Patescibacteria) were increased in relative

abundance on PP, whereas many members of Proteobacteria

(Cavicella, Massilia, Noviherbaspirillum and Phenylobacterium),

Arthrobacter and Streptomyces (both Actinobacteriota) were

enriched on ePS (Figure 1D).

Clear consequences of the applied MP materials were

detected for the community structure of the bulk soil.

Crenarchaeota, Acidobacteriota, Chloroflexi, Myxococcota,

Gemmatimonadota, Planctomycota and Verrucomicrobiota,

were enriched in MP treated soil samples compared to the1 http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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FIGURE 1
Community structure of bacteria colonizing different MP materials (ePS, PP) after application to soil and bulk soil samples treated with MP
materials aswell as untreated control soils. (A) Box plots of different alpha diversity indices. Statistical analysis was performed using Kruskal-Wallis and
Wilcoxon Rank-Sum test with Benjamini-Hochberg correction for multiple comparisons, respectively. (B) PCoA plot of weighted Unifrac distances.
Statistical analysis was performed using PERMANOVA with Benjamini-Hochberg correction for multiple comparisons. Differences were
considered as significant with (p < 0.05). (C) Barplot showing the relative abundance of top 20 phyla on MP materials and in MP- treated and
untreated bulk soil. (D) Heat tree including genera ≥ 1% of all reads in at least one sample. The labelled tree in the middle shows the taxonomic

(Continued )

Frontiers in Environmental Science frontiersin.org05

Kublik et al. 10.3389/fenvs.2022.989267

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.989267


control soil (Figures 1C,D). Most genera enriched on MP

materials, e.g., Bacteroides, Nocardia, Rhizobacter and TM7a

showed a lower abundance in the MP treated bulk soil

samples compared to the control soil. Some genera, which

were enriched on MP materials (e.g., Streptomyces,

Aeromicrobium), were also enriched in the MP treated bulk

soil samples compared to the control soil. This result was

independent from the applied MP material, even on the level

of genera, with the exception of Arthrobacter, which showed a

response in bulk soil samples depending on the applied MP

material.

Core microbiome analysis of microplastic
colonizers and bacteria in bulk soil

A comparison between MP colonizers and bacteria in bulk

soil samples on the level of ASVs revealed 1303 ASVs in total,

with 149 ASVs shared by all groups, representing the core

microbiome (Figure 1E). While 703 ASVs were found in soil

(417 in both soils) but not on the MP materials, 292 ASVs were

observed only on MP materials and not in bulk soil samples.

Bacteria colonizing both MP materials were represented by

95 ASVs, which comprise 44 ASVs assigned to Actinobacteria

(e.g., Aeromicrobium, Nocardia, Nocardioides and Streptomyces),

14 ASVs assigned to Bacteroidota (e.g., Bacteroides and

Ferruginibacter), 8 ASVs assigned to Patescibacteria (e.g.,

TM7a) and 19 ASVs assigned to Proteobacteria (e.g., Cavicella

and Rhizobacter) (Supplementary Table S1).

Discussion

Soils are a particle-rich environment and the addition of a

surface and the increase of the available surface is proportionally

less important than in aquatic environments. Therefore it is still

under debate if data frommarine systems can be used to describe

the colonization of MP materials in soil (Rillig and Bonkowski,

2018). However MP particles have specific surfaces and shapes,

creating a new ecological niche in the soil environment for

microbiota and can easily be colonized due to their

hydrophobicity, resulting in the formation of biofilms, which

are well adapted to the surface-related lifestyle of a number of

bacterial groups (Chai et al., 2020; Zhu et al., 2022). This was

nicely demonstrated in this study. PP and ePS are common MP

materials and are wide spread over the globe. We assume that

they correspond to a huge part of the MP contamination in

agricultural soils. Nevertheless, the results of this study cannot be

extrapolated to the effects of other, than the tested MP materials

on the bacterial community composition in agricultural soils, as

they are extremely variable in their chemical composition, size

and shape. Further experiments using different MPmaterials will

be necessary to investigate those effects more in detail. Sterilized

MP materials were used in this study to follow the colonization

abilities of the materials by the soil microbiome. Further, a

random inoculation of bacteria with the plastic materials to

soil, which derive from the handling of the materials and the

storage conditions, was excluded and thus it can be considered as

reproducible. A constant water content (reflecting 50% of the

max water holding capacity) in the soil was used to ensure an

equal distribution of pores in soil with differing water content

and thus redox conditions, which allow the survival of microbiota

with differing abilities for the use of various electron acceptors.

In this study, almost half of the shared microbiome between

PP and ePS ASVs belong to Actinobacteria, indicating a possible

role of this phylum in the biodegradation of different MP

materials in soil, or the utilization of leachates of the MP

particles. Actinobacteria are present in almost all ecological

habitats, like soils, marine environments and freshwater

(Valan et al., 2012) and play an important role in the C cycle

of the soils by degrading recalcitrant C sources (Ventura et al.,

2007; Mohammadipanah and Wink, 2016). From pure culture

studies, Actinobacteria are known together with fungi as the most

active taxa amongst plastic biodegraders (Tosin et al., 2012) and

have been described as degraders for a wide range of plastic

materials including polylactic acid or polyethylene (Butbunchu

and Pathom-Aree, 2019). Especially Streptomyces and

Rhodococcus have been identified as having a high

degradation potential of low density polyethylene (LDPE)

biofilms (Soleimani et al., 2021). Nocardia and Arthrobacter

are also well known to be involved into PE degradation

(Mohan Pathak, 2017). However most studies so far regarding

the degradation of MP materials were performed in aquatic

environments (Rillig, 2012; Horton et al., 2017), where MP

materials can be considered as an additional surface in the

water body. Recently genera of Actinobacteria involved in

bioremediation and biodegradation of plastic materials in

marine environments were reported (Rathore et al., 2021).

Especially Rhodococcus, Streptomyces, Nocardioides,

Arthrobacter, and Aeromicrobium are major drivers for the

FIGURE 1
information (domain to genus) and is the key for the unlabelled smaller trees. Smaller trees represent a comparison between MP and soil in the
columns and rows. Coloured taxa are more abundant (based on log2-transformed ratio of median proportions) in the samples indicated in the
respective column or row. Only significant changes (p < 0.05) are coloured according to the legend. Statistical analysis was performed using
Wilcoxon Rank-Sum test with Benjamini-Hochberg correction for multiple comparisons. (E) Venn diagram of shared ASVs between MP
materials and MP treated bulk soil.
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biodegradation. Interestingly we detected all of these genera as

colonizers of the MP materials in our study, with Arthrobacter

and Streptomyces being significantly higher abundant on ePS

than on PP. However it must be taken into account that marine

Actinobacteria are effective in using polymers as sole carbon

source (Oliveira et al., 2020), which might be different in soils, as

MP materials are not the only available carbon source present.

Proteobacteria were the most abundant bacterial phylum

detected on the MP materials in our study. 19 ASVs were found

on both materials. Same trends were already reported for the

“plastisphere” of polybutylene adipate terephthalate, polylactic

acid and polyethylene (Rüthi et al., 2020) as well as polyvinyl

chloride, polyamide, and polystyrene (Zhu et al., 2022). We

observed Rhizobacter in higher abundances on PP than on

ePS, while on ePS Cavicella, Massilia, Noviherbaspirillum and

Phenylobacterium were higher abundant. Of most interest

Rhizobacter has been described recently as an important

bacterial genus involved in the mobilization of macro- and

micronutrients in the rhizosphere soil of Zea mays (Fu et al.,

2022), which may indicate an indirect influence of MP materials

in soil on plant growth mediated by the microbiome associated to

MP materials. For other proteobacterial groups the link to the

degradation of MP materials has been described. For example,

Massilia was positively associated with unknown polymer

particles in the Rhine river (Mughini-Gras et al., 2021).

Members of the genus Phenylobacterium were found to be

enriched in soil after plastic mulching treatments (Luo et al.,

2022) and these bacteria are capable of degrading polycyclic

aromatic hydrocarbons (Yang et al., 2014). Only for Cavicella a

link toMPmaterials in soils has not be described, but the genus is

known as hydrocarbonoclastic (Assil et al., 2021) and has at least

the potential to utilize the carbon of the MP materials.

Patescibacteria were the third most abundant phylum onMP

materials in our study. TM7a and LWQ8_unclassified were

significantly higher abundant on PP. Patescibacteria seem to

be an important phylum interacting with MP materials in soils

and were recently reported in two studies (Rüthi et al., 2020; Sun

et al., 2022). It has been proposed that these bacteria live in close

interaction with other microorganisms depending on their co-

metabolism on the MP materials (Lemos et al., 2019). In the

TM7 cluster strain for RAAC3 and other Saccharibacteria genes

involved in the catabolism of complex carbon sources were

identified and metagenomics data indicate that representatives

of the phylum are able to degrade a variety of polymers (Kantor

et al., 2013; Starr et al., 2018). TM7 ASVs has been described as

associated to different MP materials and were are also reported

on MP materials from different studies of marine environments

(Scales et al., 2021). For TM7a a positive correlation between

relative abundance and MP concentration in soil was recently

reported, which indicates that this group of bacteria is very

effective in growing on MP surfaces (Li et al., 2022) and may

induce biofilm formation.

Bacterial communities in bulk soil samples of MP treated and

control soil were dominated by Actinobacteria, Proteobacteria

and Acidobacteria representing common soil microbiota (Fierer,

2017). Sun et al., 2022 reviewed 14 studies on the effects of MP

materials on the microbial alpha diversity of terrestrial

environments and only three of them reported that MP

materials could significantly increase or decrease the alpha

diversity of soil bacteria. We could not confirm this trend, as

in our study the amendment of MP materials significantly

increased the alpha diversity of bacterial communities in soil.

One reason might be the amendment of MP materials as an

additional carbon source to the soil samples without plants,

generating a new microbial hotspot (Zhou et al., 2021) due to

missing rhizodeposits and root exudates. Rillig et al. (2021)

additionally discussed that changes in microbial activity,

which subsequently may induce also changes in microbial

community structure can be linked to altered physiochemical

soil properties (De Souza Machado et al., 2019), direct toxic

effects of MP materials, its additives, or sorbed contaminants.

Another reason might be the leaching of additives of MP

materials, which occurs in relative short time scales (Kim

et al., 2020a). Additives are potentially toxic to microbes and

can affect soil aggregation processes, as microbial

exopolysaccharides function as “glue” and promote soil

stability (Dorioz et al., 1993; Caesar-Tonthat, 2002; Tisdall

et al., 2012). For marine environments it was shown that the

additives associated toMPmaterials can be beneficial, deleterious

or both to bacteria. The responses are highly species-specific and

are depending on the type and concentration of the additives

(Fernández-Juárez et al., 2021). Interestingly, we could not

observe significant differences in the alpha diversity between

the ePS- and the PP- soil, indicating that the effect was not

depending on the polymer type.

In our experiment, Gemmatimonadates were more abundant

in MP- soils compared to the control soil. This phylum is known

for its catalytic ability and the decomposition of complex organic

matters. Furthermore, bacteria of this taxa are involved in the C

and N turnover and in the transformation of phosphorus

(Cesarano et al., 2017; Li et al., 2017; Chee-Sanford et al.,

2019; Hou et al., 2021), which might influence plant growth.

Gemmatimonadates and Chloroflexi were recently considered as

keystone species in soils contaminated withMPmaterials (Zhang

et al., 2019). Our data confirmed these findings, as we found them

in higher abundance in the MP treated soils than in the control

soil. Chloroflexi play a role in the chlorine cycle and can

metabolize organohalides (Krzmarzick et al., 2012).

Of interest might be Acidobacteria, which we found in

significantly higher abundance in MP treated soil than in the

control soil. Acidobacteria are known to have a beneficial role

during the recovery of soils from pollution (Huang et al., 2015)

and thus might support the recovery of soils after MP

contamination.
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Other bacterial taxa like Bacteroidota, Patescibacteria and

Proteobacteria were reduced in their relative abundance as a

result of the MP addition in bulk soil. Mainly for Bacteroidota

this observation is quite surprising as they are usually more

abundant in soils with high carbon content. They are considered

to be specialized in degrading complex organic matter in the

biosphere (Fierer, 2017; Wolińska et al., 2017). Apparently, the

quality of the DOC, which includes also potentially toxic

compounds and leachates, in soils contaminated with MP

materials interferes negatively with Bacteroidota. However,

this needs further mechanistic studies using also pure cultures

to clarify the role of DOC released fromMPmaterials for selected

bacterial taxa.

Conclusion

The microbiome, which colonized PP and ePS MP materials

introduced in an arable soil, was characterized in this study. Clear

differences between the bacterial community structure on theMP

materials as well as in bulk soil were detected. The results suggest

that MP materials form a new habitat for microbial assemblages

distinct from bulk soil. Most likely, the microbes colonizing the

MP materials have their own metabolic pathways and lifestyles

and might interact with other microorganisms like fungi. Some

phyla were enriched on both MP materials (Actinobacteria,

Proteobacteria and Patescibacteria) and might be considered

as core microbiome of the “plastisphere”. We found several

candidates, which might be able to degrade plastics like

TM7a, Phenylobacterium, Nocardia, Arthrobacter and

Streptomyces. Nevertheless, future studies must take into

account how agricultural management influences the observed

pattern of colonization of MP materials. This needs to be

considered for the development of further management

strategies, as some of the identified bacterial taxa enriched on

MP materials might influence plant growth and ecosystem

services provided by soils.
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