
LazyFox: fast and parallelized overlapping
community detection in large graphs
Tim Garrels1,2, Athar Khodabakhsh1, Bernhard Y. Renard1,2,3 and
Katharina Baum1,2,4,5

1 Hasso Plattner Institute for Digital Engineering gGmbH, Potsdam, Germany
2 Digital Engineering Faculty, University of Potsdam, Potsdam, Germany
3 Department of Mathematics and Computer Science, Free University Berlin, Berlin, Germany
4Windreich Department of Artificial Intelligence and Human Health, Icahn School of Medicine at
Mount Sinai, New York, USA

5 Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount
Sinai, New York, USA

ABSTRACT
The detection of communities in graph datasets provides insight about a graph’s
underlying structure and is an important tool for various domains such as social
sciences, marketing, traffic forecast, and drug discovery. While most existing
algorithms provide fast approaches for community detection, their results usually
contain strictly separated communities. However, most datasets would semantically
allow for or even require overlapping communities that can only be determined at
much higher computational cost. We build on an efficient algorithm, FOX, that
detects such overlapping communities. FOX measures the closeness of a node to a
community by approximating the count of triangles which that node forms with that
community. We propose LAZYFOX, a multi-threaded adaptation of the FOX algorithm,
which provides even faster detection without an impact on community quality. This
allows for the analyses of significantly larger and more complex datasets. LAZYFOX
enables overlapping community detection on complex graph datasets with millions
of nodes and billions of edges in days instead of weeks. As part of this work,
LAZYFOX’s implementation was published and is available as a tool under an MIT
licence at https://github.com/TimGarrels/LazyFox.

Subjects Algorithms and Analysis of Algorithms, Distributed and Parallel Computing, Network
Science and Online Social Networks
Keywords Overlapping community detection, Large networks, Weighted clustering coefficient,
Heuristic triangle estimation, Parallelized algorithm, C++ tool, Runtime improvement, Open source,
Graph algorithm, Community analysis

INTRODUCTION
Graphs, also called networks, are present in many fields as they capture the interaction of
entities as edges between nodes representing those entities. Communities (or clusters, or
modules) are considered to be important network structures (Fortunato & Newman, 2022)
as they describe functionally similar groups within networks. The identification of such
groups is relevant in various domains such as biology (Barabasi & Oltvai, 2004; Regan
et al., 2002; Boccaletti et al., 2006; Guimerà & Amaral, 2005; Ahn, Bagrow & Lehmann,
2010), medicine (Barabasi, Gulbahce & Loscalzo, 2011; Gavin et al., 2006) and technical
infrastructure (Regan & Barabasi, 2003; Guimerà et al., 2005). In social networks,

How to cite this article Garrels T, Khodabakhsh A, Renard BY, Baum K. 2023. LazyFox: fast and parallelized overlapping community
detection in large graphs. PeerJ Comput. Sci. 9:e1291 DOI 10.7717/peerj-cs.1291

Submitted 28 November 2022
Accepted 20 February 2023
Published 20 April 2023

Corresponding author
Katharina Baum,
katharina.baum@hpi.de

Academic editor
Muhammad Aleem

Additional Information and
Declarations can be found on
page 25

DOI 10.7717/peerj-cs.1291

Copyright
2023 Garrels et al.

Distributed under
Creative Commons CC-BY 4.0

https://github.com/TimGarrels/LazyFox
http://dx.doi.org/10.7717/peerj-cs.1291
mailto:katharina.�baum@�hpi.�de
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1291
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

communities can identify common interest groups or friend circles (Mcauley & Leskovec,
2014). In drug research, new, targetable proteins can be discovered by clustering proteins
into functionality groups (Ma et al., 2019). Similar products of an online shop can be
grouped together to derive product recommendations (Basuchowdhuri, Shekhawat &
Saha, 2014).

While community itself is a term whose precise definition is highly context dependent
(Kelley et al., 2012; Fortunato & Newman, 2022), various algorithms have been developed
to detect such structures (Fortunato, 2010). In this work, we focus on communities of
bond. These are communities where the membership of a community is based on the
relation to other members—their connectivity in the network—rather than an affinity to
the identity of that group as a whole. This naturally leads to more interconnections
between group members (Ren, Kraut & Kiesler, 2007). Algorithms detecting such
communities typically exploit this property by optimizing communities so that nodes of
one group are more densely connected with each other than with nodes outside of that
group.

Disjoint community detection
Disjoint communities capture structural node clusters within a network where each node
belongs to exactly one community. Multiple different algorithms for disjoint community
detection have been proposed, that have been categorized into cut-based (minimize edges
between communities), cluster-based (communities of bond, maximal connectivities),
structure-based (e.g., stochastic block models), and dynamic-based (e.g., random walk,
diffusion) methods (Schaub et al., 2017). Alternatively, a simpler classification into
bottom-up, top-down and structure-based approaches has been suggested (Souravlas et al.,
2021). The performance of multiple of these algorithms particularly in terms of
community structure on 100 real-world datasets has been compared recently by Dao,
Bothorel & Lenca (2020).

One of the most common approaches for community detection is to define a metric that
measures desired structural properties of a community (Lancichinetti et al., 2011; Yang &
Leskovec, 2012; Newman, 2006; Prat-Pérez et al., 2012). By choosing communities that
increase the metric over communities that decrease it, the communities are optimized to
display that structural property. This way a clear community definition (groups of nodes
that result in the highest value of the metric) is created and detected communities are to
some degree controllable in their structure.

Overlapping community detection
While disjoint communities yield valuable information, most real world datasets contain
functional groups that are overlapping (Reid, McDaid & Hurley, 2013; Lancichinetti,
Fortunato & Kertész, 2009). People can belong to multiple social circles, proteins can have
various biological functions or be target of multiple drugs, and products rarely fall into
exactly one category. Therefore, traditional community detection algorithms have been
adapted and new algorithms have been proposed to detect overlapping communities
(Fortunato, 2010). Comparative studies of these algorithms focusing on different

Garrels et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1291 2/30

http://dx.doi.org/10.7717/peerj-cs.1291
https://peerj.com/computer-science/

performance estimations have been proposed on synthetic (Xie, Kelley & Szymanski, 2013)
as well as real-world networks (Jebabli et al., 2018; Vieira, Xavier & Evsukoff, 2020).
However, overlapping community detection is a computationally more expensive problem
than regular (disjoint) community detection. Long runtimes of days or even weeks make
community detection unfeasible in large datasets, which is especially true for overlapping
community detection (Lancichinetti & Fortunato, 2009; Danon et al., 2005). This limits the
usability of most algorithms to smaller sized networks with edge counts in the lower
millions.

Enabling large scale community detection
Various approaches can be used to improve runtime and enable the use of (overlapping)
community detection algorithms on large datasets. Parallelization can leverage modern
multi-core CPUs, and algorithms with independent computation steps can profit from
parallelization directly (Liu & Chamberlain, 2018; Lu, Halappanavar & Kalyanaraman,
2015). Other algorithms cannot be parallelized without changes to computation logic,
however, small alterations often do not influence the results substantially (Prat-Pérez,
Dominguez-Sal & Larriba-Pey, 2014). Such parallelized approaches can also be distributed
to a multi-machine computing cluster, enabling the use of even more computational
resources (Saltz, Prat-Pérez & Dominguez-Sal, 2015). Finally, algorithms relying on metric
optimization can also be improved in runtime by replacing the metric with an estimator,
an approximation or a related metric that is less computationally expensive. This reduces
computational effort and speeds up the community detection.

Weighted community clustering score

The weighted community clustering (WCC) score (Prat-Pérez et al., 2012) is a metric that
has been successfully used to detect communities (Saltz, Prat-Pérez & Dominguez-Sal,
2015; Song, Bressan & Dobbie, 2015; Prat-Pérez, Dominguez-Sal & Larriba-Pey, 2014). It
measures structural closeness by counting the number of triangles a node forms with a
community to determine the membership of that node to that community. Thereby, it is
closely related to the general concept of clustering coefficients and has multiple areas of
application, e.g., the analysis of protein-protein interaction networks (Omranian,
Angeleska & Nikoloski, 2021; Wang et al., 2021), for systemic risk measure in finance
(Cerqueti, Clemente & Grassi, 2021), or in trade networks (Bartesaghi, Clemente & Grassi,
2023). In the ‘Methods’ section, we explain this metric in more detail. Community
detection algorithms based on this metric optimize communities to maximize the global
WCC score by allowing nodes to individually join or leave communities. Such algorithms
can yield disjoint or overlapping communities depending on whether nodes are allowed to
join multiple communities.

Efficient WCC-based large scale overlapping community detection
WCC-based overlapping community detection approaches also suffer from computational
complexity issues when dealing with large scale datasets. Thus, parallelized (Prat-Pérez,
Dominguez-Sal & Larriba-Pey, 2014) and distributed (Saltz, Prat-Pérez & Dominguez-Sal,
2015) WCC versions have been proposed that allow multiple nodes at the same time to

Garrels et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1291 3/30

http://dx.doi.org/10.7717/peerj-cs.1291
https://peerj.com/computer-science/

decide for changes to the community partition, so those decisions can be computed on
separate threads or machines. Furthermore, computationally less expensive estimations of
theWCC score have been suggested (Prat-Pérez, Dominguez-Sal & Larriba-Pey, 2014; Lyu
et al., 2020) to further improve runtime. Thereby, Lyu et al. (2020) have found that aWCC-
derived metric, dWCC, that particularly employs approximations of triangle counts in an
algorithm they call FOX yields results very similar to calculating the exact count. While
their proposed dWCC metric allows FOX to compute overlapping communities on large
networks with millions of edges, the implementation of FOX was not published making it
hard to reproduce the results or to use them for further applications.

LAZYFOX-parallelized large scale overlapping community detection

We here propose our tool for overlapping community detection, LAZYFOX, that contains an
implementation of the FOX algorithm. In addition, we extend the work of Lyu et al. (2020)
and combine it with ideas from Prat-Pérez, Dominguez-Sal & Larriba-Pey (2014) by
introducing parallelism to leverage the advantage of modern multiprocessor systems to
even further accelerate the algorithm.

We show that LAZYFOX produces extremely similar results to FOX in a fraction of FOX’s
runtime, making it more efficient to work with. This also enables the usage of the approach
on large scale graphs like the social media network Friendster with millions of nodes and
billions of edges (Leskovec & Krevl, 2014). We analyze the impact of hyper-parameters of
the FOX and LAZYFOX algorithm on real-world examples and compare the performance in
terms of community quality with other community detection methods. The C++
implementation of LAZYFOX (which also includes a FOX implementation) is published as
open-source under MIT licence (https://github.com/TimGarrels/LazyFox).

In the following sections we introduce the datasets, the algorithmic details of FOX and
LAZYFOX, and the methods used to evaluate them. We describe the impact of our LAZYFOX
contribution on the runtime and community quality of three datasets of different scales
and compare it with three other community detection methods. We include the analysis of
a fourth dataset to illustrate the ability of LAZYFOX to handle large scale datasets in contrast
to FOX. Finally, we summarize and discuss our results.

RELATED WORK
Methods for disjoint community detection
While algorithms based on label propagation (Raghavan, Albert & Kumara, 2007),
stochastic blockmodels (Hofman &Wiggins, 2008;Wang &Wong, 1987) and game theory
(Bu et al., 2017) for disjoint community detection exist, the most common approach is to
define a metric that measures desired structural properties of a community such as
modularity or clustering scores. The latter class contains algorithms such as the well-
known Louvain method that performs modularity optimization (Blondel et al., 2008), and
algorithms relying on clustering scores such as the work introducing theWCC (Prat-Pérez
et al., 2012). A newer approach that has been proposed for disjoint community detection is
for example core expansion in that center nodes of communities are determined and then
expanded upon (Choumane, Awada & Harkous, 2020). A community detection method

Garrels et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1291 4/30

https://github.com/TimGarrels/LazyFox
http://dx.doi.org/10.7717/peerj-cs.1291
https://peerj.com/computer-science/

based on path analysis and threaded binary trees has been proposed in Souravlas, Sifaleras
& Katsavounis (2019).

Methods for overlapping community detection
Algorithms which detect overlapping communities can use other approaches than disjoint
community detection algorithms such as clique expansion (Lee et al., 2010; Palla et al.,
2005), matrix factorization in methods such as BigClam (Yang & Leskovec, 2013), other
decompositions (Psorakis et al., 2011; Ding et al., 2016), link clustering or partitioning (Shi
et al., 2013; Ahn, Bagrow & Lehmann, 2010; Evans & Lambiotte, 2009; Ponomarenko,
Pitsoulis & Shamshetdinov, 2021). Some approaches also propose post-processing steps to
create overlapping communities from pre-existing disjoint communities (Chakraborty,
2015).

Moreover, approaches that have been proposed to detect disjoint communities can also
be adjusted to directly yield overlapping communities. Label propagation based algorithms
have been proposed that can allow nodes to hold multiple labels at the same time, thereby
creating overlapping communities (Xie & Szymanski, 2012; Gregory, 2010). Stochastic
blockmodels supporting mixed memberships have been developed (Airoldi et al., 2008;
Gopalan & Blei, 2013). And if an algorithm is based on the optimization of a metric
measuring structural properties, allowing nodes to join multiple communities during the
optimization can also change the result from disjoint to overlapping communities
(Lancichinetti & Fortunato, 2009), for example optimizing the local statistical significance
of communities according to a global null model in the OSLOM algorithm (Lancichinetti
et al., 2011).

WCC—clustering and adaptations for community detection
Communities of bond that we focus on in this work benefit from optimizing connectivity
between nodes within a community. Such connectivity is expressed in terms of triangles
and clustering scores. These components are the core of the WCC score (Prat-Pérez et al.,
2012).

Adaptations of the WCC score have been suggested by Midoun, Wang & Talhaoui
(2021) for formation of initial complexes that are then merged, and by Pan et al. (2019) in
that adjacent node similarity has been optimized for disjoint community detection.
Modularity optimization as in the Louvain algorithm has been combined with the WCC
score to create a weighted overlapping community clustering metric to detect overlapping
communities (Cohen, Hendler & Rubin, 2016). Bartesaghi, Clemente & Grassi (2023)
generalized the clustering coefficient to multiplex networks but without using it for
community detection.

Closed triangle counting and WCC were combined with node features for community
detection in Gao, Sun & Gu (2022). Inuwa-Dutse, Liptrott & Korkontzelos (2021) have
developed a method for community detection that, in addition to structural properties
from connections between nodes, also exploits textual information from nodes and that is
therefore dedicated to social networks with their particular type of node features.

Garrels et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1291 5/30

http://dx.doi.org/10.7717/peerj-cs.1291
https://peerj.com/computer-science/

Enabling large scale community detection
Recently, there has been improvement in the computation time for triangle counting
(Huang et al., 2022; Yasar et al., 2020), but it has not been adapted to and optimized for the
task of community detection yet.

The WCC score has been adapted by Lyu et al. (2020) in their FOX algorithm to enable
faster overlapping community detection. This is the approach that LAZYFOX is based on and
we describe it in more detail in the ‘Methods’ section. Also, Prat-Pérez, Dominguez-Sal &
Larriba-Pey (2014) suggested a computationally faster estimation of the WCC score for
runtime improvement that does not require counting all triangles explicitly.

On a different track, the parallel Louvain method with refinement (PLMR) and parallel
label propagation for disjoint community detection have been proposed for improved
runtime (Staudt & Meyerhenke, 2016). Several heuristics for parallelization of community
detection have been suggested (Lu, Halappanavar & Kalyanaraman, 2015). Based on the
WCC score, a distributed community detection method in Spark has been implemented
(Abughofa et al., 2021). While the authors demonstrated an improvement in runtime of the
single steps, their focus remained on the problem of dynamic graphs in that edges are
added over time and their largest dataset contains only few million nodes.

METHODS
We introduce LAZYFOX, with its required input data and preprocessing, the employed
metric dWCC, and the performed steps in the algorithm. We describe the parallelization
that sets LAZYFOX apart from FOX (Lyu et al., 2020) and allows LAZYFOX to scale across
multiple CPU cores, and finally the performance measures employed here.

Input data
Our algorithm LAZYFOX takes the edge list of an undirected, unweighted graph GðV; EÞ as
input, V denoting the nodes and E the edges of the graph. We assume this graph to be
connected for the theoretical discussions, however, LAZYFOX will still work on a graph with
multiple connected components.

Preprocessing
LAZYFOX performs the following preprocessing steps on the input edge list of G:

Remove multi-edges
In graphs a pair of nodes can be connected via multiple edges. Since our research on FOX
and LAZYFOX works on “by-bond” communities, we regard multiple connections between
two entities as one. Therefore, we remove such duplicated edges, turning any input multi-
graph into a simple graph.

Dense node labels
The node identifiers (IDs) in edge lists are not necessarily consecutive due to preprocessing
(this is the case in most datasets introduced in the ‘Datasets’ section). We apply a shift to
the node IDs to restore their consecutive nature. This allows both FOX and LAZYFOX to use
the node IDs directly as data-structure indices which speeds up computation.

Garrels et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1291 6/30

http://dx.doi.org/10.7717/peerj-cs.1291
https://peerj.com/computer-science/

Node order
As LAZYFOX computes communities by gradually improving node memberships, there
needs to be a well defined order in which the nodes are being processed. We define this
order by sorting the nodes by decreasing clustering coefficient (CC):

CCðiÞ ¼
ki

di�ðdi�1Þ=2 ; if di . 1;

0; else

(
(1)

ki denotes the number of triangles containing node i (equal to the number of edges
between two neighbors of node i), while di denotes the degree of node i. A higher CC
indicates that a node is central in its neighborhood, and we process more central nodes
first. Ties are resolved by node degrees in decreasing order. This order ensures that nodes
with less connectivity and thus less influence adapt to changes in memberships of more
important, connected nodes and not vice versa, resulting in a more coherent community
structure at the end of one iteration. If a tie cannot be resolved by CC or node degree, the
node ID is used to break the tie.

Initial clustering
To initiate the clustering process LAZYFOX computes a greedy, non-overlapping
community decomposition using the above node order. A node that is not yet part of a
community is assigned to a new community. Then all its not yet assigned neighbors join
this community.

This process allows for self-initialization on any given network. LAZYFOX derives the
initial community count and the initial clustering from the structure of the underlying
network. On the other hand, LAZYFOX is, just like FOX (Lyu et al., 2020), also able to
improve upon an existing division into communities by replacing the initial clustering step
by inserting those existing divisions. Therefore, known structural properties can be taken
into account. This way LAZYFOX can be used to generate overlapping community structure
from partitions, i.e., from non-overlapping community structure. See Lyu et al. (2020) for a
discussion and examples.

dWCC—a metric to optimize for
Lyu and colleagues introduced dWCC as an advanced metric to assess the quality of a
partition into communities. This metric forms the core of both the FOX and the LAZYFOX
algorithm as they use dWCC to decide on the necessary local optimization steps. To provide
a better understanding of dWCC we will first describe WCC.

WCC
The weighted clustering coefficientWCC as introduced by Prat-Pérez et al. (2012) is a score
that rates a community decomposition as the sum of its community ratings. We denote
such a rating of a community decomposition P ¼ fC1; . . . ;Ckg as

Garrels et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1291 7/30

http://dx.doi.org/10.7717/peerj-cs.1291
https://peerj.com/computer-science/

WCCðPÞ ¼
Xk
i¼1

WCCðCiÞ (2)

This rating of an individual community Ci in Eq. (2) can be again decomposed into how
well the individual nodes of that community fit into the community:

WCCðCiÞ ¼
X
x2Ci

WCCðx;CiÞ (3)

Such a fit of a node x into its community C is assessed by the ratio of tðx;CÞ to tðx;VÞ:
The number of triangles that the node forms within its community to the number of
triangles that it forms within the whole graph. The assessment also uses vtðx;VÞ, the
number of nodes that form triangles with node x. Furthermore, vtðx;VnCÞ, the number of
nodes outside of the community C that form triangles with node x, influences this
assessment:

WCCðx;CÞ ¼
tðx;CÞ
tðx;VÞ � vtðx;VÞ

jCnfxgjþvtðx;VnCÞ ; if tðx;VÞ. 0;
0 else

�
(4)

Fast counting of triangles

The counting of triangles for the WCC computation is expensive. To accelerate the
evaluation of a new community decomposition, Lyu and colleagues replaced the exact
counts of t and vt in Eq. (4) by approximations and related quantities, respectively,
creating the new,WCC-inspired metric dWCC (Lyu et al., 2020). First, rather than counting
the triangles t a node forms with the nodes of a community C and all other nodes, dWCC
approximates this by using the number of edges instead.

Assuming that the edges inside a community are homogeneously distributed between
the nodes, a mean-field approximation can be performed. This delivers the expected
triangle count depending on the density p of the community and the degree degðx;CÞ,
which is the count of edges between node x and all nodes within community C:

E½tðx;CÞ� ¼ degðx;CÞ
2

� �
� p (5)

Analogously, one can also define an estimator for the average number of triangles in the
whole graph. It uses the global clustering coefficient cc (Watts & Strogatz, 1998), the
average of all local clustering coefficients (CC):

E½tðx;VÞ� ¼ degðx;VÞ
2

� �
� cc (6)

To further decrease the computational cost, the exact values of vtðx;VÞ and vtðx;VnCÞ
are replaced by their respective upper bound: If all neighbours of x form a triangle with x,
the upper bound of vtðx;VÞ is reached—it is exactly degðx;VÞ. The same holds for all

Garrels et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1291 8/30

http://dx.doi.org/10.7717/peerj-cs.1291
https://peerj.com/computer-science/

neighbors of the vertices VnC, so that the upper bound of vtðx;VnCÞ is degðx;VnCÞ. Note
that the replacements of vt by upper bounds, however, do not allow to control the
deviation of the ratio vtðx;VÞ

jCnfxgjþvtðx;VnCÞ that forms the second factor of the WCC in Eq. (4).

Thus, a new metric dWCC can be derived from the weighted clustering coefficientWCC,
using Eqs. (5) and (6) and the discussed upper bounds of vt:

dWCCðx;CÞ ¼
E½tðx;CÞ�
E½tðx;VÞ�

degðx;VÞ
jCnfxgjþdegðx;VnCÞ ; if E½tðx;VÞ�. 0;

0; else

�
(7)

Eq. (7) can then be used to replace the usage ofWCCðx;CÞ in Eq. (3), defining dWCC for
whole communities CidWCCðCiÞ ¼

X
x2Ci

dWCCðx;CiÞ (8)

Furthermore, Eq. (8) can replace the usage of WCCðCiÞ in Eq. (2), defining dWCC for
community decompositions P ¼ fC1; . . . ;Ckg:

dWCCðPÞ ¼
Xk
i¼1

dWCCðCiÞ (9)

Both FOX (Lyu et al., 2020) and LAZYFOX use dWCC as defined in Eq. (9) to compute the
optimization steps, as it is faster than the WCC metric.

Node changes
Starting with the initial, non-overlapping community decomposition obtained by the
preprocessing step, FOX and LAZYFOX process the nodes of our graph in multiple iterations.
One iteration here is equivalent to computing and applying changes for each node once,
described in Algorithms 1 and 2. Before deciding on changes, LAZYFOX gathers dWCCðPÞ,
the quality rating of the current decomposition P. The LAZYFOX algorithm then computes a
potential join- and a potential leave-action for the node.

Joining a community
For the current node x, LAZYFOX finds all communities that x is currently not part of but
any of x’s neighbors are. Each of these communities Ck is then evaluated by creating a
decomposition P′ that differs from the current decomposition P by adding x to Ck and then
computing the, potentially negative, improvement in dWCCðP0Þ compared to dWCCðPÞ. If
any of these changes yields a positive improvement, we choose the community with the
highest increase in dWCC as the current join-action. This is described in lines two to six in
Algorithm 1.

Leaving a community
Similarly LAZYFOX checks all communities Ck of the current node x and evaluates the gain
in dWCC if x leaves that community. Therefore, we again form a P′ per community by
removing x from Ck and gather the improvement in dWCC compared to the old

Garrels et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1291 9/30

http://dx.doi.org/10.7717/peerj-cs.1291
https://peerj.com/computer-science/

Algorithm 1 FOX (Lyu et al., 2020)

1: for node x 2 Graph do

2: bestJoin = undefined

3: for community c that does not contain x and is a neighbor of x do

4: join = partition if x joined c

5: update bestJoin if the join partition has a higher dWCC score

6: end for

7: bestLeave = undefined

8: for community c that contains x do

9: leave = partition if x left c

10: update bestLeave if the leave partition has a higher dWCC score

11: end for

12: apply bestLeave and bestJoin to the partitioning

13: end for

Algorithm 2 LAZYFOX

1: nodeQueue = EmptyList()

2: for node x ∈ Graph do

3: nodeQueue.insert(x)

4: if nodeQueue.size == queueSize or x is last node then

5: for node q ∈ nodeQueue do

6: run on separate thread

7: bestJoin = undefined

8: for community c that does not contain x and is a neighbor of x do

9: join = partition if x joined c

10: update bestJoin if the join partition has a higher dWCC score

11: end for

12: bestLeave = undefined

13: for community c that contains x do

14: leave = partition if x left c

15: update bestLeave if the leave partition has a higher dWCC score

16: end for

17: end run

18: end for

19: collect bestLeaves and bestJoins as nodeChanges from threads

20: apply nodeChanges to the partitioning

21: nodeQueue = EmptyList()

22: end if

23: end for

Garrels et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1291 10/30

http://dx.doi.org/10.7717/peerj-cs.1291
https://peerj.com/computer-science/

decomposition. If any of these improvements is positive, we again choose the community
with the highest increase in dWCC as the current leave-action. This is described in lines
seven to eleven in Algorithm 1.

After determining the best join-action and leave-action for a node, these are executed
yielding a new decomposition as the new P before calculating change actions for the next
node. This is described in line twelve.

Removing degenerated communities
As these node changes allow nodes to leave communities, communities can degenerate to
having less than two members. This means that no triangle can be formed with that
community anymore. This makes the community un-joinable: A potential joining node j is
a node connected to any node in the community C. As the community contains only one
node i, the in-going degree to the community is exactly one. This means that the quantity

in Eq. (5) becomes zero

�
as degðj;CÞ is one, making

degðj;CÞ
2

� �
¼ 1

2

� �
¼ 0

�
, making

dWCCðj;CÞ zero. So joining C never improves dWCC, which means j will not join C. This
happens both in FOX and LAZYFOX. While Lyu and colleagues do not explicitly address this
in their article, we assume they remove such degenerated communities after each iteration,
as they cannot be joined anymore and therefore do not influence the final result. Based on
this assumption, we also remove communities with less than two members (meaning they
are degenerated) after each iteration. Note that removing a single-node community does
not imply removing the node itself.

In FOX, the steps of one iteration are sequential and executed on one single thread,
visualized in Fig. 1A.

Apply
All

Apply
All

Find
Join & Leave

Find
Join & Leave

Apply
All

Find
Join & Leave

Find
Join & Leave

Find
Join & Leave

Find
Join & Leave

Nodes , ...,

Queue
Size

Nodes , ..., Nodes , ...,

Total of Steps
per Iteration

Apply
Find

Join & Leave
Apply

Find
Join & Leave

Apply
Find

Join & Leave

Node Node Node

Total of Steps
per Iteration

A

B

Figure 1 Program control flows of a FOX (A) and LAZYFOX (B) iteration. Each color denotes a separate
thread. While FOX (A) is computed sequentially on one thread, LAZYFOX (B) can leverage up to queue size
many threads that are synchronized by applying their respective node changes. Queue size is denoted as
q. Note that each Find-Apply-Block in LAZYFOX contains q nodes, except for the last one, as the total
number of nodes of the graph, n, might not be a multiple of q.

Full-size DOI: 10.7717/peerj-cs.1291/fig-1

Garrels et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1291 11/30

http://dx.doi.org/10.7717/peerj-cs.1291/fig-1
http://dx.doi.org/10.7717/peerj-cs.1291
https://peerj.com/computer-science/

Parallelism on node change computations
To leverage the advantage of modern multi-core computer systems, LAZYFOX is capable of
parallelizing the computations for the join and leave-actions for a queue of nodes.
Figure 1B visualizes the parallel nature of a LAZYFOX iteration. Every compute thread
fetches a node from the node queue and computes the best actions independently. After
the queue is emptied, LAZYFOX gathers all the computed join-actions and leave-actions and
applies all of them before re-filling the queue with the next set of nodes of the current
iteration.

The core process for calculating node changes in LAZYFOX is the same as in FOX (see
Algorithm 2): The lines seven to 16 of Algorithm 2 are the same as the lines three to eleven
of Algorithm 1. The difference is the parallel computation of queueSize many nodes in
LAZYFOX (lines one to six) and the bulk apply of node changes in lines 19 to 21.

The parallel computation introduces the first hyper-parameter of LAZYFOX—the queue
size. The parallelization is what sets LAZYFOX apart from FOX.

Stopping criteria
While computing and applying the join-actions and leave-actions, LAZYFOX updates thedWCC of the partition. At the end of each iteration, the current dWCC is compared to thedWCC of the partition an iteration earlier. If the total relative improvement of dWCC is
below a dWCC-threshold—a second hyper-parameter—LAZYFOX stops. The first iteration of
LAZYFOX is compared to the dWCC of the initial node clustering described in the
Preprocessing paragraph.

Post-processing
In LAZYFOX’ final result, individual communities can not only overlap but also contain each
other. The overlap can also lead to duplicated communities. Depending on the use-case,
such duplicated or contained communities can be unwanted and have to be removed as
part of the post-processing. While we provide an API to include custom post-processing of
the final result, LAZYFOX defaults to not post-process the results.

Evaluation criteria
LAZYFOX improves the runtime of the community detection via the FOX approach. To
evaluate the quality of the results from LAZYFOX we utilize overlapping normalized mutual
information (ONMI) distance1 and an appropriate F1-Score2, two quality measurements
that are widely adopted in the field of overlapping community detection.

Overlapping NMI distance

We use a recent variation of the common NormalizedMutual Information to enable its use
for overlapping clusterings: Overlapping Normalized Mutual Information (ONMI)
(McDaid, Greene & Hurley, 2011). The core idea of the ONMI score is to compare each
combination of a community from the LAZYFOX output with each community in the
ground truth. We then select for each output community the closest community in the
ground truth leveraging lack of information as our distance function. Then the sum over

1 OverlappingNMIDistance, https://
networkit.github.io/dev-docs/python_
api/community.html?
highlight=overlappingnmi#networkit.
community.OverlappingNMIDistance,
retrieved 15.09.2021.

2 CoverF1Similarity, https://networkit.
github.io/dev-docs/python_api/
community.html?
highlight=coverf1similarity#networkit.
community.CoverF1Similarity, retrieved
15.09.2021.

Garrels et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1291 12/30

https://networkit.github.io/dev-docs/python_api/community.html?highlight=overlappingnmi#networkit.community.OverlappingNMIDistance
https://networkit.github.io/dev-docs/python_api/community.html?highlight=overlappingnmi#networkit.community.OverlappingNMIDistance
https://networkit.github.io/dev-docs/python_api/community.html?highlight=overlappingnmi#networkit.community.OverlappingNMIDistance
https://networkit.github.io/dev-docs/python_api/community.html?highlight=overlappingnmi#networkit.community.OverlappingNMIDistance
https://networkit.github.io/dev-docs/python_api/community.html?highlight=overlappingnmi#networkit.community.OverlappingNMIDistance
https://networkit.github.io/dev-docs/python_api/community.html?highlight=coverf1similarity#networkit.community.CoverF1Similarity
https://networkit.github.io/dev-docs/python_api/community.html?highlight=coverf1similarity#networkit.community.CoverF1Similarity
https://networkit.github.io/dev-docs/python_api/community.html?highlight=coverf1similarity#networkit.community.CoverF1Similarity
https://networkit.github.io/dev-docs/python_api/community.html?highlight=coverf1similarity#networkit.community.CoverF1Similarity
https://networkit.github.io/dev-docs/python_api/community.html?highlight=coverf1similarity#networkit.community.CoverF1Similarity
http://dx.doi.org/10.7717/peerj-cs.1291
https://peerj.com/computer-science/

minimal distances is averaged across all output clusters yielding one score, the ONMI
distance, ranging from 0 (best) to 1 (worst). We employ its implementation via the
OverlappingNMIDistance function in Networkit (Staudt, Sazonovs & Meyerhenke, 2014).

F1-score for overlapping communities

To enable the use of the common F1-Score for community partitions we use the approach
proposed by Epasto, Lattanzi & Paes Leme (2017) and implemented as CoverF1Similarity
function in Networkit (Staudt, Sazonovs & Meyerhenke, 2014). Every community is
matched to its best ground truth community, and the resulting F1-Scores are then
averaged to form the final F1-Score, ranging from 0 (worst) to 1 (best). A single
overlapping community C′ out of the detected partition P′ is compared with the regular
F1-Score to all ground truth communities C out of the ground truth partition P. The
maximum F1-Score is then chosen as the F1-Score for C′:

F1ðP0;PÞ ¼ 1
jP0j

X
C02P0

max
C2P

F1ðC0;CÞ (10)

The F1-Score for comparing a detected community C′ and a ground truth community C

is defined via the precision pðC0;CÞ ¼ jC\C0j
jC0j and recall rðC0;CÞ ¼ jC\C0j

jCj :

F1ðC0;CÞ ¼ 2 � pðC
0;CÞ � rðC0;CÞ

pðC0;CÞ þ rðC0;CÞ (11)

Alternative community detection methods
To gain a better understanding of the performance of LAZYFOX we chose three alternative
community detection methods to compare LAZYFOX’ results with.

BigClam
The BigClam algorithm (Yang & Leskovec, 2013) is an overlapping community detection
approach based on a cluster affiliation model. Given a network G, BigClam estimates the
number of communities and creates an affiliation network, optimizing the model with a
matrix factorization approach.

OSLOM
OSLOM (Lancichinetti et al., 2011) optimizes communities by comparing to network null
models. Generally, membership of a vertex i to a community C is determined by the
number of edges i has with nodes of C, and whether there are significantly more edges than
expected according to the null model. This algorithm supports hierarchical clustering,
where the detected communities can be used to find new communities on a higher
hierarchical level.

Core expansion
The Core Expansion algorithm (Choumane, Awada & Harkous, 2020) does not use
modularity optimization, but instead uses the neighborhood overlap metric. Core
Expansion uses nodes with a locally maximal neighborhood overlap score as initial

Garrels et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1291 13/30

http://dx.doi.org/10.7717/peerj-cs.1291
https://peerj.com/computer-science/

community cores. All other nodes iteratively join their closest and strongest community
core, until all nodes are assigned to a community.

In the original Core Expansion algorithm, unassigned nodes can have multiple strongest
cores, in which case they are left unassigned. In the adapted cdlib implementation3 such
nodes join all strongest cores, making this an overlapping community detection algorithm.

DATASETS
To validate both our FOX and LAZYFOX implementation we collected a set of well-known
“by bond” (Ren, Kraut & Kiesler, 2007) networks and ran the algorithms on them to either
benchmark their performance or test whether our implementations are capable of dealing
with the respective input sizes.

All of our datasets were obtained from the SNAP-datasets collection (Leskovec & Krevl,
2014) (see Table 1 for an overview). The networks are provided in an edge list format. In
the following subsections, we present the specific datasets that we used with both their
semantic and structural properties.

Eu-core
Eu-core (https://snap.stanford.edu/data/email-Eucore.txt.gz, retrieved 15.09.2021;
Leskovec & Krevl, 2014) is our first and smallest benchmarking dataset. It consists of
anonymized email data between members of a large European research institution. An
edge exists between two members if at least one email has been sent between these
members. The Eu-core graph consists of 1,005 nodes and 25,571 edges. The network is
very dense with a diameter of length 7 and a 90-percentile effective diameter of 2:9. This
can be expected from any cooperation, as people working with each other are likely to
communicate.

Each member of the research institution belongs to exactly one of the 42 institution’s
departments, which provides the ground truth communities of this dataset.

DBLP
The Digital Bibliography & Library Project (DBLP) is a computer science publication
database provided by the DBLP Organisation. The Library consists of more than 5.4
million publications from different journals and conference articles. The DBLP dataset
(https://snap.stanford.edu/data/bigdata/communities/com-dblp.ungraph.txt.gz, retrieved
15.09.2021; Leskovec & Krevl, 2014), the second of our benchmarking datasets, is the co-

Table 1 Dataset size overview.

Dataset Short identifier Node count Edge count Average degree

Eu-core eu 1,005 25,571 25.4

DBLP dblp 317,080 1,049,866 3.3

LiveJournal lj 3,997,962 34,681,189 8.7

Friendster friendster 65,608,366 1,806,067,135 27.5

3 Core Expansion Algorithm, https://cdlib.
readthedocs.io/en/latest/reference/cd_
algorithms/algs/cdlib.algorithms.core_
expansion.html, retrieved 05.01.2023.

Garrels et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1291 14/30

https://snap.stanford.edu/data/email-Eu-core.txt.gz
https://snap.stanford.edu/data/bigdata/communities/com-dblp.ungraph.txt.gz
https://cdlib.readthedocs.io/en/latest/reference/cd_algorithms/algs/cdlib.algorithms.core_expansion.html
https://cdlib.readthedocs.io/en/latest/reference/cd_algorithms/algs/cdlib.algorithms.core_expansion.html
https://cdlib.readthedocs.io/en/latest/reference/cd_algorithms/algs/cdlib.algorithms.core_expansion.html
https://cdlib.readthedocs.io/en/latest/reference/cd_algorithms/algs/cdlib.algorithms.core_expansion.html
http://dx.doi.org/10.7717/peerj-cs.1291
https://peerj.com/computer-science/

authorship network calculated for these publications. Each of the 1,049,866 edges in this
dataset represents co-authorship on a publication between two of the 317,080 authors.

Each publication venue provides a ground truth community for this dataset, where
authors who published in the same venue belong to the same community. If a publication
venue contains connected components, each connected component provides another
ground truth community. Ground truth communities with less than three nodes were
removed.

LiveJournal
The LiveJournal dataset is derived from the LiveJournal social network. In this social
network, users can assign mutual friendship and join user-defined groups. For the dataset
(https://snap.stanford.edu/data//bigdata/communities/com-lj.ungraph.txt.gz, retrieved
15.09.2021; Leskovec & Krevl, 2014) the 3,997,962 nodes represent users and the 34,681,189
edges are formed from the friendship relations between these nodes.

Each user-defined group provides a ground truth community for this dataset, where
users in the same group belong to the same community. If a user-defined group contains
connected components, each connected component provides another ground truth
community. Ground truth communities with less than three nodes were removed.

Friendster
Like the LiveJournal dataset, the Friendster dataset (https://snap.stanford.edu/data//
bigdata/communities/com-friendster.ungraph.txt.gz, retrieved 15.09.2021; Leskovec &
Krevl, 2014) is also derived from the social network bearing the same name. Yet, the
Friendster dataset is an order of magnitude larger bringing in 65,608,366 nodes and
1,806,067,135 edges and 8.7 GB of compressed edges. While this scale makes it unattractive
for benchmarking FOX and LAZYFOX, it serves us as a feasibility test for the algorithm and its
implementation on large scale.

RESULTS
The implementation of the LAZYFOX algorithm enables us to evaluate the runtime
improvements and the impact on overlapping community quality of a multi-threaded
approach. Note that running LAZYFOX with a queue size of one is equivalent to the original
FOX algorithm.

During the evaluation, the queue size was always equal to the threadcount. The results
of this section were computed with the threadcounts in f1; 2; 4; 8; 16; 32; 64; 128; 256g and
a fixed dWCC threshold of 0.01. The computations were made on an HPE XL225n Gen10
machine with 512 GB RAM, and two AMD EPYC 7742 CPUs with 64 cores each.

Runtime improvements
The main goal of any multi-threaded approach is to improve the runtime. LAZYFOX enables
the parallel calculation of node changes, speeding up this step. The execution of these
changes, however, has to be done sequentially, which is the main non-parallelizable part of
the algorithm. The runtime measurements were taken without saving the results of the
computation to disk to remove the very volatile I/O operation bottleneck from the

Garrels et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1291 15/30

https://snap.stanford.edu/data//bigdata/communities/com-lj.ungraph.txt.gz
https://snap.stanford.edu/data//bigdata/communities/com-friendster.ungraph.txt.gz
https://snap.stanford.edu/data//bigdata/communities/com-friendster.ungraph.txt.gz
http://dx.doi.org/10.7717/peerj-cs.1291
https://peerj.com/computer-science/

benchmarks. The preprocessing steps described in the ‘Methods’ section are part of the
measurement.

We find significant improvements of runtime with the multi-threaded approach on the
Eu-core, DBLP and LiveJournal datasets (see Table 2, Fig. 2). Even the use of two threads
instead of one reduces the original runtime of the FOX algorithm by about 20%.While extra
threads improve the runtime, the improvement rate does not stay the same.

The relative runtime improvements in the DBLP and the LiveJournal datasets are
roughly the same, despite the fact that the LiveJournal dataset has orders of magnitude
more nodes than the DBLP dataset. The original runtime on the Eu-core dataset is reduced
massively. With 256 threads LAZYFOX takes just 4% of the original FOX runtime. However,
this extreme improvement is an exception to the overall results, due to the small scale of

Table 2 Runtimes of LAZYFOX with different threadcounts. The runtimes of LAZYFOX on three
different datasets Eu-core, DBLP, and LiveJournal and different threadcounts relative to the non-
parallelized runtime (threadcount 1, Fox algorithm).

Threadcount Eu-core DBLP LiveJournal

1 1.0 (13.8 s) 1.0 (47.2 s) 1.0 (262.0 min)

2 0.58 0.87 0.80

4 0.39 0.60 0.65

8 0.30 0.41 0.51

16 0.19 0.32 0.40

32 0.15 0.25 0.30

64 0.09 0.21 0.23

128 0.06 0.17 0.18

256 0.04 0.19 0.16

Figure 2 LAZYFOX runtime comparison. Visualization of the runtimes of LAZYFOX relative to the non-
parallelized runtime (threadcount 1, FOX algorithm) on the three datasets Eu-core, DBLP, and Live-
Journal and different threadcounts using data from Table 2. Full-size DOI: 10.7717/peerj-cs.1291/fig-2

Garrels et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1291 16/30

http://dx.doi.org/10.7717/peerj-cs.1291/fig-2
http://dx.doi.org/10.7717/peerj-cs.1291
https://peerj.com/computer-science/

the Eu-core dataset (�1,000 nodes spread on 256 threads). Overall, we observe consistent
runtime improvements also for larger scale networks, making the improvements
independent of dataset size.

We also see that the runtime of LAZYFOX on the DBLP dataset gets worse switching from
128 to 256 threads (see Table 2, Fig. 2). This is not caused by an additional iteration that
had to be made by LAZYFOX due to imprecision, as all DBLP runs take exactly seven
iterations to converge. Instead, the increase in runtime appears before the first iteration
runs, in the run preparations, such as initializing the threads. Thus, the most likely cause
for the increased runtime is that the 128 additional thread initializations going from 128
threads in total to 256 threads in total do not yield enough runtime improvement to
account for their own initialization time. Taken together, we see a threadcount of 64 or 128
as optimal, being a trade-off between runtime improvement and resource usage for our
examined networks.

Quality impact
The multi-threaded approach of LAZYFOX does alter the computations. Therefore, the
results of LAZYFOX on the same dataset can differ for different threadcounts. However, we
find these changes to be insignificant when comparing to ground truth communities. The
following sections compare quality measurements and analysis results of the multi-
threaded approaches to the single-threaded approach, and alternative community
detection algorithms.

Differences in detected communities FOX vs. LAZYFOX

To verify that the difference in community results of LAZYFOX and FOX are negligible, we
compare the results with each other (see Table 3). We use two commonmetrics to measure
overlapping community similarities, F1-Score and ONMI distance (see ‘Methods’). As the
computational differences between FOX and LAZYFOX increase with a higher degree of
parallelism, we compare LAZYFOX with increasing threadcounts.

Table 3 Comparison of LAZYFOX Results to FOX Results. Note that LAZYFOX with a threadcount of 1 is
FOX. F1, F1-Score; ONMI-D, ONMI distance, both calculated with the networkit library (Staudt,
Sazonovs & Meyerhenke, 2014).

Threadcount Eu-core DBLP LiveJournal

F1 ONMI-D F1 ONMI-D F1 ONMI-D

1 1.0 0.0 1.0 0.0 1.0 0.0

2 0.99 0.02386 0.99 0.00005 0.99 0.00348

4 0.99 0.03123 0.99 0.00007 0.99 0.00564

8 0.99 0.03005 0.99 0.00008 0.99 0.00684

16 0.99 0.03316 0.99 0.00014 0.99 0.00756

32 0.99 0.05028 0.99 0.00017 0.99 0.00799

64 0.99 0.04884 0.99 0.00027 0.99 0.00837

128 0.99 0.05345 0.99 0.00034 0.99 0.00874

256 0.85 0.31553 0.99 0.00055 0.99 0.00950

Garrels et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1291 17/30

http://dx.doi.org/10.7717/peerj-cs.1291
https://peerj.com/computer-science/

We find that on sufficiently large datasets, LAZYFOX results in communities extremely
similar to the FOX communities (F1-Score of 0.99, ONMI distance of �0.01). However, we
find that for the small Eu-core dataset, a high degree of parallelism does impact the result.
While LAZYFOX with a threadcount of 128 creates results with 0.99 F1-Score and 0.05345
ONMI distance, the increase to 256 threads impacts the final result, reducing the F1-Score
to 0.85 and increasing the ONMI distance to 0.32. These results suggest that smaller
datasets such as Eu-core are more prone to changes caused by parallelization.

Ground truth communities and comparison to other community detection

approaches
To evaluate the quality of the communities provided by LAZYFOX we compare them against
the ground truth of our datasets. We also evaluate the quality of the results of the FOX
algorithm and the algorithms BigClam4, Core Expansion 95, and OSLOM6. The algorithms
BigClam and Core Expansion were run in their default settings provided by the cdlib
Python package (version 0.2.6). The OSLOM algorithm was also run with the default
settings of the version 2.4.

Note that on the LiveJournal dataset the Core Expansion approach (Core Exp.) and the
OSLOM approach did not finish computation after three days. Both runs were aborted.
However, OSLOM’s settings offer a ‘–fast’ option, reducing the number of iterations per
hierarchy level to one. This enabled us to still retrieve results computed by OSLOM for this
dataset and is the only result computed with a deviation from the default settings. Core
Expansion offers no such configuration options.

Figure 3 displays the performance of the overlapping community algorithms in terms of
F1-Score and ONMI distance. We can see that the performance of FOX and LAZYFOX
against ground truth is extremely similar, irrespective of the degree of parallelization of
LAZYFOX. This is especially noteworthy on the Eu-core dataset, as Table 3 shows that the
results of FOX and LAZYFOX differ. This means that while the logic change in LAZYFOX leads

Figure 3 Ground truth comparisons and other methods. Comparison of ground truth communities
and detected communities for three different real-world datasets (Table 1) with their ONMI distance
(orange bars) and F1-Score (blue). The three community detection methods BigClam, Core Expansion
(Core Exp.) and OSLOM are compared with FOX and LAZYFOX. For our method LAZYFOX, the orange and
blue bars denote the average performance over all eight threadcounts (2, 4, 8, 16, 32, 64, 128, and 256) and
the error bars indicate the minimum and maximum of the obtained values, respectively.

Full-size DOI: 10.7717/peerj-cs.1291/fig-3

4 BigClam Algorithm, https://cdlib.
readthedocs.io/en/latest/reference/cd_
algorithms/algs/cdlib.algorithms.big_
clam.html, retrieved Jan 5, 2023.

5 Core Expansion Algorithm, https://cdlib.
readthedocs.io/en/latest/reference/cd_
algorithms/algs/cdlib.algorithms.core_
expansion.html, retrieved Jan 5, 2023.

6 OSLOM Algorithm (beta version 2.4),
http://www.oslom.org/, retrieved Jan 5,
2023.

Garrels et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1291 18/30

http://dx.doi.org/10.7717/peerj-cs.1291/fig-3
https://cdlib.readthedocs.io/en/latest/reference/cd_algorithms/algs/cdlib.algorithms.big_clam.html
https://cdlib.readthedocs.io/en/latest/reference/cd_algorithms/algs/cdlib.algorithms.big_clam.html
https://cdlib.readthedocs.io/en/latest/reference/cd_algorithms/algs/cdlib.algorithms.big_clam.html
https://cdlib.readthedocs.io/en/latest/reference/cd_algorithms/algs/cdlib.algorithms.big_clam.html
https://cdlib.readthedocs.io/en/latest/reference/cd_algorithms/algs/cdlib.algorithms.core_expansion.html
https://cdlib.readthedocs.io/en/latest/reference/cd_algorithms/algs/cdlib.algorithms.core_expansion.html
https://cdlib.readthedocs.io/en/latest/reference/cd_algorithms/algs/cdlib.algorithms.core_expansion.html
https://cdlib.readthedocs.io/en/latest/reference/cd_algorithms/algs/cdlib.algorithms.core_expansion.html
http://www.oslom.org/
http://dx.doi.org/10.7717/peerj-cs.1291
https://peerj.com/computer-science/

to different communities than FOX, the overall quality of the communities compared to
ground truth does not change.

We also see that OSLOM, FOX, and LAZYFOX outperform the BigClam and the Core
Expansion approaches in terms of community quality. While FOX and LAZYFOX outperform
OSLOM on the DBLP and the LiveJournal datasets, OSLOM provides better results on the
Eu-core dataset.

Overall we find that despite the much shorter runtime compared to FOX, LAZYFOX can
compete in terms of community quality with other overlapping community detection
methods.

Community analysis

We also perform a structural analysis of the results obtained by LAZYFOX. In the best case,
the properties measured (such as average community size) should stay the same, regardless
of threadcount. Similar properties mean that all threadcounts can be used to draw the same
conclusions over community structures within a specific dataset, making the degree of
parallelism hyper-parameter used in LAZYFOX only relevant for run-time improvement, not
for result quality.

The most obvious property of community detection is the number of detected
communities. The threadcount used has no impact on this number, and for all
threadcounts we detected 213 communities for the Eu-core, 76,513 communities for the
DBLP and 920,534 communities for the LiveJournal dataset.

Looking at the size of the communities, the maximum and minimum sizes for DBLP
and LiveJournal communitites do not change dependent on threadcount. The biggest
community in DBLP has 115 members, LiveJournal 574. In the Eu-core dataset the
threadcount changes the original maximum size of 135 members by a maximum of plus
two. However, the run with 256 threads is an exception, as the maximum size here is
decreased by 39. This is another indication that a threadcount close to the node count of
the dataset (256 is about one fourth of the Eu-core node count) is not optimal.

Finally, we can investigate the overlap between communities. This is the average
number of communities a node belongs to. Again, this value does not change for DBLP or
LiveJournal over different threadcounts, staying at 1.19 for DBLP and 1.9 for LiveJournal.
The Eu-core dataset’s overlap changes with different threadsizes, starting with an overlap
of 5.44 for threadcount equal to one. For a threadcount up to four this stays relatively stable
with changes of less than 0.1. However, higher threadcounts change the overlap quite
drastically, up to +0.3. Threadcount 256 is the exception here again, changing the overlap
from the original 5.44 to 4.22, which is about one community less per node.

From these results we conclude that on sufficiently large datasets, the threadcount does
not impact the obtained community structure. The changes only occur with the Eu-core
dataset, and get worse with higher threadcounts. This is caused by the small node count in
Eu-core. The node count therefore can be used as an indicator to determine the most
favorable degree of parallelization. As the Eu-core results already change at two threads
instead of one, we would suggest that the node count should at least be 500 times the
threadcount to avoid these complications.

Garrels et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1291 19/30

http://dx.doi.org/10.7717/peerj-cs.1291
https://peerj.com/computer-science/

Cluster analysis
While it is worthwhile to investigate the impact of the threadcount on the various metrics,
these metrics can also be used to analyze the semantics of the datasets.

LAZYFOX optimizes triangle count. This means nodes end up in the same group if they
are strongly connected with each other. If we speak of people, this means they are socially
close. In all our datasets the nodes represent people, connected by bond, such as common
work (Eu-core, DBLP) or other social interaction (LiveJournal, Friendster).

Eu-core
We find 213 communities with an average size of 11. This means that within the research
institution, there are about 213 teams with an average team size of 11 people. These teams
can already be disbanded, as the data contains e-mails of a long timespan. The high overlap
of 5.44 indicates that a single person works on average in 5.44 teams, however, because
teams can already be disbanded this is not true for any point in time. It means that an
employee works on average in 5.44 teams before leaving the institution or settling for a
final research team. This could mean that there are only five or six team changes before
reaching a leading position in a team or leaving the company, capping off the team
changes.

DBLP
We find 76,513 communities in the DBLP network with an average size of 4.9 members per
community. Semantically these communities represent research groups. Scientists are the
nodes, and edges are their co-authorship. Strong connections mean that any author of the
group has published at least once with most of the other authors. The average size is
reasonable for research groups, and indicates that larger research groups have sub-groups
who rarely co-author with each other. Also, there is low overlap between groups, about 1.2,
which means each author has on average 1.2 research groups. While one would assume a
researcher stays true to their field, the nodes with an overlap above one are likely to be
more senior members of the research community, having been part of multiple research
groups, or researchers who changed their fields.

LiveJournal
Another dataset we looked at is LiveJournal, a platform and social network for blogging.
Users can befriend each other and join common interest groups. In this dataset we find
that the average node has a degree of 17 and an overlap of 1.9. This means that each user
has on average 17 friends and belongs to about two friendship groups. We assume these
represent real life groups, as we think a mutual friendship circle of average eight people
(community size mean) is unlikely to form from social network interactions alone.
However, this is an assumption and verifying that would need sensitive data of LiveJournal
user accounts to the people behind them and their real life friendships, which we do not
have.

Garrels et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1291 20/30

http://dx.doi.org/10.7717/peerj-cs.1291
https://peerj.com/computer-science/

Large scale analysis—Friendster
Finally, we would like to present the results of our computations on the Friendster dataset.
The enormous scale of this dataset makes an analysis with FOX not feasible in reasonable
time. However, due to the runtime improvements achieved with LAZYFOX this analysis is
made possible. We ran LAZYFOX with 256 threads on the Friendster dataset twice, once with
and once without saving the intermediate results to disk. For both runs we use the
measured LAZYFOX runtime to estimate the FOX runtime (see Fig. 4). We do this by
assuming a speedup ratio similar to the speedup ratios of the DBLP and LiveJournal
datasets (0:18), as we found that the speedup is independent of scale at datasets of
sufficient size.

The disk operations of saving the computation results of such a large dataset as
Friendster are time consuming: After each iteration about 1.5 GB of clustering results are
written to disk. LAZYFOX converged after eight iterations, running about 171.3 h (~7.1 days)
with and 71.6 h (~3.0 days) without saving to disk. It is safe to say that the I/O operations
and their preparations take up most of the runtime. This has to be kept in mind when
working with large datasets.

Figure 4 illustrates why LAZYFOX enables community analysis of large scale networks. A
runtime of 71.6 h (~3.0 days) is far more feasible than a runtime of almost 400 h (~16.7
days).

After the 8th iteration, LAZYFOX results in 13,861,732 detected communities, with an
average size of nine nodes per community. However, the largest community has 4,721
members. This indicates that Friendster was mostly used for real friend groups where a size
of nine people is reasonable, but it also contains closely connected communities of great
size. We find that about 92% of all communities have two to 19 members. Communities

Figure 4 Friendster runtime comparison. The runtime of LAZYFOX on the Friendster dataset with 256
threads compared to estimates of FOX runtime. Estimates made assuming a speedup comparable to the
DBLP and LiveJournal datasets. LAZYFOX’ parallel computations make Friendster community analysis
feasible. Full-size DOI: 10.7717/peerj-cs.1291/fig-4

Garrels et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1291 21/30

http://dx.doi.org/10.7717/peerj-cs.1291/fig-4
http://dx.doi.org/10.7717/peerj-cs.1291
https://peerj.com/computer-science/

over 100 members make up only 0.003% of all communities. We assume that these large
communities are career networks, institutions or non-human user networks (bots), where
a high interconnectedness between members is beneficial to the members, even if they do
not know each other personally. We also find that a node belongs on average to 1.92
communities, meaning each user has about two groups of friends.

We find LAZYFOX highly viable to run analyses on such large datasets, despite the
runtime of over a week. However, computing metrics such as F1-Score which compare the
results to the graph itself would be challenging due to the sheer size of the graph.

dWCC threshold impact
Another hyper-parameter apart from the threadcount for the LAZYFOX algorithm is the
iteration termination criterion, the dWCC threshold. Lyu and colleagues propose a
threshold of 0.01 of relative dWCC change, meaning that if an iteration decreases the globaldWCC by less than 1%, the algorithm stops. This threshold was determined by experiments
measuring community size and density (compare Table 7 from Lyu et al., 2020), as a lower
threshold did not yield significant change in these properties.

However, we find that the threshold’s impact on the algorithm’s runtime is quite
extraordinary. As Fig. 5 shows, a slightly higher threshold can save multiple iterations. This
has high impact on runtime, as the iterations get slower over time. We find that even the
threshold of 0.02 instead of 0.01 yields great runtime improvements for runs on a single
thread. For the Eu-core dataset, it saves five iterations, which is equivalent to 39% of the
total runtime. For DBLP, we save two, for LiveJournal three iterations, which is equivalent
to 33% and 43% of the total runtime, respectively.

Figure 5 Relative dWCC change development. The relative change of dWCC at different iterations on
different datasets, Eu-core, DBLP, and LiveJournal. By default and also in Lyu et al. (2020), computations
stop if the change drops below 0.01. Other possible thresholds (0.02, 0.03, 0.04) are visualized.

Full-size DOI: 10.7717/peerj-cs.1291/fig-5

Garrels et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1291 22/30

http://dx.doi.org/10.7717/peerj-cs.1291/fig-5
http://dx.doi.org/10.7717/peerj-cs.1291
https://peerj.com/computer-science/

These runtime improvements are due to an earlier termination and therefore can still be
seen in runs with a higher threadcount. Running LAZYFOX with 256 threads on the
LiveJournal dataset with a dWCC threshold of 0.02 still saves 39% of the runtime, compared
to the same run with a dWCC threshold of 0.01. However, the effectiveness can be
dependent on the dataset scale, as the savings for the Eu-core and DBLP datasets at this
high threadcount are significantly smaller (3% and 10%, respectively).

It is important to note that these decreased savings at higher threadcounts are due to the
overall decreased total runtime and not due to a different dWCC development over time
(see Fig. 6). While a higher threadcount can lead to different results and therefore change
the dWCC scores, this is not the case for large scale datasets. As the community analysis
results are unaffected by higher threadcounts (see ‘Quality Impact’ section), so is the dWCC.
The Eu-core dataset here again is an outlier due to the threadcount being close to its node
count.

DISCUSSION
Our proposed parallelization of the algorithm slightly differs in its logic from the original
version FOX (Lyu et al., 2020): LAZYFOX computes first all node changes for a certain batch
of nodes (in parallel) and then executes them altogether to generate a new community
structure. In contrast, in FOX, computed changes for a single node are applied immediately.
However, LAZYFOX still detects communities which are highly similar to the communities
detected by the FOX algorithm. Furthermore, we see that in most cases, our algorithm
retrieves the ground truth communities more faithfully than other methods.

These results go along the same lines as the parallelization of e.g., the BigClam algorithm
(Liu & Chamberlain, 2018). They show once more that many analysis approaches can be
parallelized even if the resulting algorithms are not strictly equivalent to their sequential
counterparts.

With the runtime improvement provided by the parallelization LAZYFOX brings
overlapping community detection into new areas of application and allows for the analyses

Figure 6 dWCC at different threadcounts. dWCC development at different threadcounts at different iterations on different datasets, Eu-core, DBLP,
and LiveJournal. Threadcount does not influence the dWCC development for sufficiently large datasets. Note that in DBLP and LiveJournal datasets
the values for each threadcount are exactly the same. Full-size DOI: 10.7717/peerj-cs.1291/fig-6

Garrels et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1291 23/30

http://dx.doi.org/10.7717/peerj-cs.1291/fig-6
http://dx.doi.org/10.7717/peerj-cs.1291
https://peerj.com/computer-science/

of significantly larger and more complex datasets. It reduces the computation time for
networks with millions of nodes and billions of edges from weeks to days. For example,
LAZYFOX could not only be used to find community structures in huge social media
networks such as Twitter, but also to find complexes or pathways in intricately connected
multi-layered molecular network (Liu et al., 2020), or querying global-scale, finely resolved
climate (Steinhaeuser, Ganguly & Chawla, 2011), or ecological networks (Bohan et al.,
2017). LAZYFOX is very flexible, the algorithm can be straightforwardly adapted to take
directed or weighted graphs into account. We would like to address these extensions in the
future, thereby opening even further application areas for overlapping community
detection.

LAZYFOX relies on nodes iteratively joining and leaving communities. Therefore, it could
generate empty, disconnected communities, or communities fully contained in other
communities. We provide an additional post-processing API to eliminate those types of
undesired results. However, note that it can be computationally expensive to perform this
post-processing on large graphs, or graphs with many detected communities. Sometimes,
communities that are fully contained in other communities are desirable and occur in the
ground truth. In these cases, e.g., the citation network in SNAP (Yang & Leskovec, 2012),
they should not be removed. The post-processing needed is therefore dictated by the
research domain which is why post-processing in LAZYFOX is disabled by default and why
detailed analyses on post-processing is not part of our work.

We showed that the value of the dWCC threshold hyper-parameter is decisive for the
runtime of the algorithm. This is expected as it constitutes the termination criterion of this
iterative algorithm, and it is comparable to criteria applied to convergence assessment for
other graph-based analyses, such as the PageRank algorithm in NetworKit (Staudt,
Sazonovs & Meyerhenke, 2014). Alternatively, limiting the number of performed steps is
another solution for termination of iterative algorithms that has been applied previously,
e.g., in node-centric PageRank computation in iPregel (Capelli et al., 2019). An
investigation of the asymptotic behavior, i.e., whether the dWCC score of LAZYFOX
converges, might be interesting, but we have not experienced problems in the application
cases we analyzed. As heuristic solution, we suggest to monitor the change in dWCC over
the course of the computation to discover problematic cases.

The queue size as second hyper-parameter of LAZYFOX was set to the available
threadcount in our experiments. In principle, LAZYFOX allows to choose both values
independently from one another. However, increasing the threadcount over the queue size
does not yield any runtime improvements as the queue size controls the maximum degree
of parallelization. Additional threads will then actually slow down the computation as their
allocation takes time.

Moreover, the larger the queue size, the more different LAZYFOX becomes to FOX in
theory, and we cannot guarantee that the community detection results remain stable.
Overall, we find that the optimal queue size and threadcount should scale with the size of
the dataset, but unless very small graphs are analyzed, up to 250 cores can be exploited
without strong impact on the results.

Garrels et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1291 24/30

http://dx.doi.org/10.7717/peerj-cs.1291
https://peerj.com/computer-science/

CONCLUSION
We provide LAZYFOX, an open-source implementation of an efficient, parallelized
algorithm for overlapping community detection. Our implementation and analysis is
another positive example for the idea that many graph analysis algorithms can be
parallelized, even if not being strictly equivalent to their sequential version. The results
show that the in-parallel computed optimization of the dWCC metric yields extremely
similar results to the sequential computation. This allows the leverage of modern hardware
to significantly decrease runtime, enabling the detection of community structures of very
large graphs, without losing community quality. The results on the impact of the dWCC
threshold allow an informed decision on the runtime- dWCC score trade-off. With our
improvements, we make overlapping community detection achievable for very large
graphs with at least tens of million of nodes and a few billion edges in a reasonable amount
of time. Thus, we enable this type of graph analysis for novel and complex application
domains that have not been previously explored with respect to overlapping community
detection.

ACKNOWLEDGEMENTS
We would like to thank Martin Taraz for his excellent support and discussions.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by an Add-on Fellowship for Interdisciplinary Life Sciences of
the Joachim Herz Stiftung (to Katharina Baum) and by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation)—project number
491466077. The funders had no role in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Add-on Fellowship for Interdisciplinary Life Sciences.
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation): 491466077.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Tim Garrels conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

� Athar Khodabakhsh conceived and designed the experiments, analyzed the data,
authored or reviewed drafts of the article, and approved the final draft.

Garrels et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1291 25/30

http://dx.doi.org/10.7717/peerj-cs.1291
https://peerj.com/computer-science/

� Bernhard Y. Renard conceived and designed the experiments, analyzed the data,
authored or reviewed drafts of the article, and approved the final draft.

� Katharina Baum conceived and designed the experiments, analyzed the data, authored
or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code is available at Zenodo: Tim Garrels. (2022). timgarrels/LazyFox: Zenodo DOI
Release (v1.2). Zenodo. https://doi.org/10.5281/zenodo.7374484.

The employed network data are available from the Stanford Network Analysis Project
(https://snap.stanford.edu/data/); Contact Jure Leskovec (jure@cs.stanford.edu):

- email-Eu-core dataset: https://snap.stanford.edu/data/email-Eu-core.html
- DBLP dataset: https://snap.stanford.edu/data/com-DBLP.html
- LiveJournal dataset: https://snap.stanford.edu/data/com-LiveJournal.html
- Friendster dataset: https://snap.stanford.edu/data/com-Friendster.html

REFERENCES
Abughofa T, Harby AA, Isah H, Zulkernine F. 2021. Incremental community detection in

distributed dynamic graph. In: 2021 IEEE Seventh International Conference on Big Data
Computing Service and Applications (BigDataService). Piscataway: IEEE, 50–59.

Ahn Y-Y, Bagrow J, Lehmann S. 2010. Link communities reveal multiscale complexity in
networks. Nature 466(7307):761–764 DOI 10.1038/nature09182.

Airoldi EM, Blei DM, Fienberg SE, Xing EP. 2008. Mixed membership stochastic blockmodels.
Journal of Machine Learning Research 9(65):1981–2014.

Barabasi A-L, Gulbahce N, Loscalzo J. 2011. Network medicine: a network-based approach to
human disease. Nature Reviews Genetics 12(1):56–68 DOI 10.1038/nrg2918.

Barabasi A-L, Oltvai Z. 2004. Network biology: understanding the cell’s functional organization.
Nature Reviews Genetics 5(2):101–113 DOI 10.1038/nrg1272.

Bartesaghi P, Clemente GP, Grassi R. 2023. Clustering coefficients as measures of the complex
interactions in a directed weighted multilayer network. Physica A: Statistical Mechanics and its
Applications 610(28384):128413 DOI 10.1016/j.physa.2022.128413.

Basuchowdhuri P, Shekhawat MK, Saha SK. 2014. Analysis of product purchase patterns in a co-
purchase network. In: 2014 Fourth International Conference of Emerging Applications of
Information Technology. 355–360.

Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. 2008. Fast unfolding of communities in
large networks. Journal of Statistical Mechanics: Theory and Experiment 2008(10):P10008
DOI 10.1088/1742-5468/2008/10/P10008.

Boccaletti S, Latora V, Moreno Y, Hwang D-U. 2006. Complex networks: structure and
dynamics. Physics Reports 424(4–5):175–308 DOI 10.1016/j.physrep.2005.10.009.

Bohan D, Vacher C, Tamaddoni-Nezhad A, Raybould A, Dumbrell A, Woodward G. 2017.
Next-generation global biomonitoring: large-scale, automated reconstruction of ecological
networks. Trends in Ecology & Evolution 32(7):477–487 DOI 10.1016/j.tree.2017.03.001.

Bu Z, Cao J, Li H, Gao G, Tao H. 2017. Gleam: a graph clustering framework based on potential
game optimization for large-scale social networks. Knowledge and Information Systems
55(3):741–770 DOI 10.1007/s10115-017-1105-6.

Garrels et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1291 26/30

https://doi.org/10.5281/zenodo.7374484
https://snap.stanford.edu/data/
http://jure@cs.stanford.edu
https://snap.stanford.edu/data/email-Eu-core.html
https://snap.stanford.edu/data/com-DBLP.html
https://snap.stanford.edu/data/com-LiveJournal.html
https://snap.stanford.edu/data/com-Friendster.html
http://dx.doi.org/10.1038/nature09182
http://dx.doi.org/10.1038/nrg2918
http://dx.doi.org/10.1038/nrg1272
http://dx.doi.org/10.1016/j.physa.2022.128413
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://dx.doi.org/10.1016/j.physrep.2005.10.009
http://dx.doi.org/10.1016/j.tree.2017.03.001
http://dx.doi.org/10.1007/s10115-017-1105-6
http://dx.doi.org/10.7717/peerj-cs.1291
https://peerj.com/computer-science/

Capelli LA, Hu Z, Zakian TA, Brown N, Bull JM. 2019. iPregel: vertex-centric programmability vs
memory efficiency and performance, why choose? Parallel Computing 86(12):45–56
DOI 10.1016/j.parco.2019.04.005.

Cerqueti R, Clemente GP, Grassi R. 2021. Systemic risk assessment through high order clustering
coefficient. Annals of Operations Research 299(1):1165–1187 DOI 10.1007/s10479-020-03525-8.

Chakraborty T. 2015. Leveraging disjoint communities for detecting overlapping community
structure. Journal of Statistical Mechanics: Theory and Experiment 2015(5):P05017
DOI 10.1088/1742-5468/2015/05/P05017.

Choumane A, Awada A, Harkous A. 2020. Core expansion: a new community detection algorithm
based on neighborhood overlap. Social Network Analysis and Mining 10(1):30
DOI 10.1007/s13278-020-00647-6.

Cohen Y, Hendler D, Rubin A. 2016.Node-centric detection of overlapping communities in social
networks. In: 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis
and Mining (ASONAM). Piscataway: IEEE, 1384–1385.

Danon L, Duch J, Diaz-Guilera A, Arenas A. 2005. Comparing community structure
identification. Journal of Statistical Mechanics: Theory and Experiment 2005(9):P09008
DOI 10.1088/1742-5468/2005/09/P09008.

Dao VL, Bothorel C, Lenca P. 2020. Community structure: a comparative evaluation of
community detection methods. Network Science 8(1):1–41 DOI 10.1017/nws.2019.59.

Ding Z, Zhang X, Sun D, Luo B. 2016. Overlapping community detection based on network
decomposition. Scientific Reports 6(1):24115 DOI 10.1038/srep24115.

Epasto A, Lattanzi S, Paes Leme R. 2017. Ego-splitting framework: from non-overlapping to
overlapping clusters. In: Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’17. New York, NY, USA: Association for
Computing Machinery, 145–154.

Evans T, Lambiotte R. 2009. Line graphs, link partitions and overlapping communities. Physical
Review E: Statistical, Nonlinear, and Soft Matter Physics 80(1):016105
DOI 10.1103/PhysRevE.80.016105.

Fortunato S. 2010. Community detection in graphs. Physics Reports 486(3–5):75–174
DOI 10.1016/j.physrep.2009.11.002.

Fortunato S, Newman MEJ. 2022. 20 years of network community detection. Nature Physics
18(8):848–850 DOI 10.1038/s41567-022-01716-7.

Gao G, Sun A, Gu H. 2022. Community detection based on topology and node features in social
networks. In: Artificial Intelligence and Security: 8th International Conference, ICAIS 2022,
Qinghai, China, July 15–20, 2022, Proceedings, Part II. Berlin, Heidelberg: Springer-Verlag,
277–288.

Gavin A-C, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C, Jensen L, Bastuck S,
Dümpelfeld B, Edelmann A, Heurtier M-A, Hoffman V, Hoefert C, Klein K, Hudak M,
Michon A-M, Schelder M, Schirle M, Superti-Furga G. 2006. Proteome survey reveals
modularity of the yeast cell machinery. Nature 440(7084):631–636 DOI 10.1038/nature04532.

Gopalan PK, Blei DM. 2013. Efficient discovery of overlapping communities in massive networks.
Proceedings of the National Academy of Sciences of the United States of America 110(36):14534–
14539 DOI 10.1073/pnas.1221839110.

Gregory S. 2010. Finding overlapping communities in networks by label propagation. New Journal
of Physics 12(10):103018 DOI 10.1088/1367-2630/12/10/103018.

Guimerà R, Amaral L. 2005. Functional cartography of complex metabolic networks. Nature
23(7028):22–231 DOI 10.1038/nature03288.

Garrels et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1291 27/30

http://dx.doi.org/10.1016/j.parco.2019.04.005
http://dx.doi.org/10.1007/s10479-020-03525-8
http://dx.doi.org/10.1088/1742-5468/2015/05/P05017
http://dx.doi.org/10.1007/s13278-020-00647-6
http://dx.doi.org/10.1088/1742-5468/2005/09/P09008
http://dx.doi.org/10.1017/nws.2019.59
http://dx.doi.org/10.1038/srep24115
http://dx.doi.org/10.1103/PhysRevE.80.016105
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1038/s41567-022-01716-7
http://dx.doi.org/10.1038/nature04532
http://dx.doi.org/10.1073/pnas.1221839110
http://dx.doi.org/10.1088/1367-2630/12/10/103018
http://dx.doi.org/10.1038/nature03288
http://dx.doi.org/10.7717/peerj-cs.1291
https://peerj.com/computer-science/

Guimerà R, Mossa S, Turtschi A, Amaral L. 2005. The worldwide air transportation network:
anomalous centrality, community structure, and cities’ global roles. Proceedings of the National
Academy of Sciences of the United States of America 102(22):7794–7799
DOI 10.1073/pnas.0407994102.

Hofman JM, Wiggins CH. 2008. Bayesian approach to network modularity. Physical Review
Letters 100(25):1 DOI 10.1103/PhysRevLett.100.258701.

Huang J, Wang H, Fei X, Wang X, Chen W. 2022. tc–stream: large-scale graph triangle counting
on a single machine using GPUs. IEEE Transactions on Parallel & Distributed Systems
33(11):3067–3078 DOI 10.1109/TPDS.2021.3135329.

Inuwa-Dutse I, Liptrott M, Korkontzelos Y. 2021. A multilevel clustering technique for
community detection. ArXiv e-prints DOI 10.48550/arXiv.2101.06551.

Jebabli M, Cherifi H, Cherifi C, Hamouda A. 2018. Community detection algorithm evaluation
with ground-truth data. Physica A: Statistical Mechanics and Its Applications 492:651–706
DOI 10.1016/j.physa.2017.10.018.

Kelley S, Goldberg M, Magdon-Ismail M, Mertsalov K, Wallace A. 2012. Defining and
discovering communities in social networks. In: Thai MT, Pardalos PM, eds. Handbook of
Optimization in Complex Networks, Springer Optimization and Its Applications. Berlin: Springer,
139–168.

Lancichinetti A, Fortunato S. 2009. Community detection algorithms: a comparative analysis.
Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 80:056117
DOI 10.1103/PhysRevE.80.056117.

Lancichinetti A, Fortunato S, Kertész J. 2009. Detecting the overlapping and hierarchical
community structure in complex networks. New Journal of Physics 11:033015
DOI 10.1088/1367-2630/11/3/033015.

Lancichinetti A, Radicchi F, Ramasco JJ, Fortunato S. 2011. Finding statistically significant
communities in networks. PLOS ONE 6:e18961 DOI 10.1371/journal.pone.0018961.

Lee C, Reid F, McDaid A, Hurley N. 2010. Detecting highly overlapping community structure by
greedy clique expansion. ArXiv e-prints DOI 10.1142/9789814295024_0006.

Leskovec J, Krevl A. 2014. SNAP datasets: stanford large network dataset collection. Available at
http://snap.stanford.edu/data.

Liu CHB, Chamberlain BP. 2018. Speeding up BigClam implementation on SNAP. In: 2018
Imperial College Computing Student Workshop (ICCSW 2018).

Liu X, Maiorino E, Halu A, Glass K, Prasad RB, Loscalzo J, Gao J, Sharma A. 2020. Robustness
and lethality in multilayer biological molecular networks. Nature Communications 11(1):56
DOI 10.1038/s41467-020-19841-3.

Lu H, Halappanavar M, Kalyanaraman A. 2015. Parallel heuristics for scalable community
detection. Parallel Computing 47(3–5):19–37 DOI 10.1016/j.parco.2015.03.003.

Lyu T, Bing L, Zhang Z, Zhang Y. 2020. Fox: fast overlapping community detection algorithm in
big weighted networks. ACM Transactions on Social Computing 3(3):1–23
DOI 10.1145/3404970.

Ma J, Wang J, Soltan Ghoraie L, Men X, Haibe-Kains B, Dai P. 2019. A comparative study of
cluster detection algorithms in protein–protein interaction for drug target discovery and drug
repurposing. Frontiers in Pharmacology 10:1184 DOI 10.3389/fphar.2019.00109.

Mcauley J, Leskovec J. 2014. Discovering social circles in ego networks. ACM Transactions on
Knowledge Discovery from Data 8(1):1–28 DOI 10.1145/2556612.

Garrels et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1291 28/30

http://dx.doi.org/10.1073/pnas.0407994102
http://dx.doi.org/10.1103/PhysRevLett.100.258701
http://dx.doi.org/10.1109/TPDS.2021.3135329
http://dx.doi.org/10.48550/arXiv.2101.06551
http://dx.doi.org/10.1016/j.physa.2017.10.018
http://dx.doi.org/10.1103/PhysRevE.80.056117
http://dx.doi.org/10.1088/1367-2630/11/3/033015
http://dx.doi.org/10.1371/journal.pone.0018961
http://dx.doi.org/10.1142/9789814295024_0006
http://snap.stanford.edu/data
http://dx.doi.org/10.1038/s41467-020-19841-3
http://dx.doi.org/10.1016/j.parco.2015.03.003
http://dx.doi.org/10.1145/3404970
http://dx.doi.org/10.3389/fphar.2019.00109
http://dx.doi.org/10.1145/2556612
http://dx.doi.org/10.7717/peerj-cs.1291
https://peerj.com/computer-science/

McDaid AF, Greene D, Hurley N. 2011. Normalized mutual information to evaluate overlapping
community finding algorithms. ArXiv e-prints DOI 10.48550/arXiv.1110.2515.

MidounMA,Wang X, Talhaoui MZ. 2021. A pyramidal community detection algorithm based on
a generalization of the clustering coefficient. Journal of Ambient Intelligence and Humanized
Computing 12(10):9111–9125 DOI 10.1007/s12652-020-02608-5.

Newman M. 2006. Modularity and community structure in networks. Proceedings of the National
Academy of Sciences of the United States of America 103(23):8577–8582
DOI 10.1073/pnas.0601602103.

Omranian S, Angeleska A, Nikoloski Z. 2021. Efficient and accurate identification of protein
complexes from protein-protein interaction networks based on the clustering coefficient.
Computational and Structural Biotechnology Journal 19:5255–5263
DOI 10.1016/j.csbj.2021.09.014.

Palla G, Derényi I, Farkas I, Vicsek T. 2005. Uncovering the overlapping community structure of
complex networks in nature and society. Nature 435(7043):814–818 DOI 10.1038/nature03607.

Pan X, Xu G, Wang B, Zhang T. 2019. A novel community detection algorithm based on local
similarity of clustering coefficient in social networks. IEEE Access 7:121586–121598
DOI 10.1109/ACCESS.2019.2937580.

Ponomarenko A, Pitsoulis L, Shamshetdinov M. 2021. Overlapping community detection in
networks based on link partitioning and partitioning around medoids. PLOS ONE 16(8):
e0255717 DOI 10.1371/journal.pone.0255717.

Prat-Pérez A, Dominguez-Sal D, Brunat JM, Larriba-Pey J-L. 2012. Shaping communities out of
triangles. In: Proceedings of the 21st ACM International Conference on Information and
Knowledge Management, CIKM ’12. New York, NY, USA: Association for Computing
Machinery, 1677–1681.

Prat-Pérez A, Dominguez-Sal D, Larriba-Pey J-L. 2014. High quality, scalable and parallel
community detection for large real graphs. In: Proceedings of the 23rd International Conference
on World Wide Web, WWW ’14. New York, NY, USA: Association for Computing Machinery,
225–236.

Psorakis I, Roberts S, Ebden M, Sheldon BC. 2011. Overlapping community detection using
bayesian non-negative matrix factorization. Physical Review E: Statistical, Nonlinear, and Soft
Matter Physics 83(6 Pt 2):066114 DOI 10.1103/PhysRevE.83.066114.

Raghavan N, Albert R, Kumara S. 2007. Near linear time algorithm to detect community
structures in large-scale networks. Physical Review E: Statistical, Nonlinear, and Soft Matter
Physics 76:036106 DOI 10.1103/PhysRevE.76.036106.

Regan E, Barabasi A-L. 2003. Hierarchical organization in complex networks. Physical Review E:
Statistical, Nonlinear, and Soft Matter Physics 67:026112 DOI 10.1103/PhysRevE.67.026112.

Regan E, Somera A, Mongru D, Oltvai Z. 2002. Hierarchical organization of modularity in
metabolic networks. Science 297(5586):1551–1555 DOI 10.1126/science.1073374.

Reid F, McDaid A, Hurley N. 2013. Partitioning breaks communities. In: Özyer T, Erdem Z,
Rokne J, Khoury S, eds. Mining Social Networks and Security Informatics. Dordrecht: Springer
Netherlands, 79–105.

Ren Y, Kraut R, Kiesler S. 2007. Applying common identity and bond theory to design of online
communities. Organization Studies 28(3):377–408 DOI 10.1177/0170840607076007.

Saltz M, Prat-Pérez A, Dominguez-Sal D. 2015. Distributed community detection with the WCC
metric. In: Proceedings of the 24th International Conference on World Wide Web.

Garrels et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1291 29/30

http://dx.doi.org/10.48550/arXiv.1110.2515
http://dx.doi.org/10.1007/s12652-020-02608-5
http://dx.doi.org/10.1073/pnas.0601602103
http://dx.doi.org/10.1016/j.csbj.2021.09.014
http://dx.doi.org/10.1038/nature03607
http://dx.doi.org/10.1109/ACCESS.2019.2937580
http://dx.doi.org/10.1371/journal.pone.0255717
http://dx.doi.org/10.1103/PhysRevE.83.066114
http://dx.doi.org/10.1103/PhysRevE.76.036106
http://dx.doi.org/10.1103/PhysRevE.67.026112
http://dx.doi.org/10.1126/science.1073374
http://dx.doi.org/10.1177/0170840607076007
http://dx.doi.org/10.7717/peerj-cs.1291
https://peerj.com/computer-science/

Schaub MT, Delvenne J-C, Rosvall M, Lambiotte R. 2017. The many facets of community
detection in complex networks. Applied Network Science 2(1):4
DOI 10.1007/s41109-017-0023-6.

Shi C, Cai Y, Fu D, Dong Y,Wu B. 2013.A link clustering based overlapping community detection
algorithm. Data & Knowledge Engineering 87(1):394–404 DOI 10.1016/j.datak.2013.05.004.

Song Y, Bressan S, Dobbie G. 2015. Fast disjoint and overlapping community detection. In:
Hameurlain A, Küng J, Wagner R, Decker H, Lhotska L, Link S, eds. Transactions on Large-Scale
Data- and Knowledge-Centered Systems XVIII: Special Issue on Database- and Expert-Systems
Applications. Berlin, Heidelberg: Springer, 153–179.

Souravlas S, Sifaleras A, Katsavounis S. 2019. A parallel algorithm for community detection in
social networks, based on path analysis and threaded binary trees. IEEE Access 7:20499–20519
DOI 10.1109/ACCESS.2019.2897783.

Souravlas S, Sifaleras A, Tsintogianni M, Katsavounis S. 2021. A classification of community
detection methods in social networks: a survey. International Journal of General Systems
50(1):63–91 DOI 10.1080/03081079.2020.1863394.

Staudt CL, Meyerhenke H. 2016. Engineering parallel algorithms for community detection in
massive networks. IEEE Transactions on Parallel and Distributed Systems 27(1):171–184
DOI 10.1109/TPDS.2015.2390633.

Staudt CL, Sazonovs A, Meyerhenke H. 2014. NetworKit: a tool suite for large-scale complex
network analysis. ArXiv e-prints DOI 10.48550/arXiv.1403.3005.

Steinhaeuser K, Ganguly A, Chawla N. 2011. Multivariate and multiscale dependence in the
global climate system revealed through complex networks. Climate Dynamics 39(3–4):889–895
DOI 10.1007/s00382-011-1135-9.

Vieira VDF, Xavier CR, Evsukoff AG. 2020. A comparative study of overlapping community
detection methods from the perspective of the structural properties. Applied Network Science
5(1):51 DOI 10.1007/s41109-020-00289-9.

Wang Y, Chen Q, Yang L, Yang S, He K, Xie X. 2021. Overlapping structures detection in
protein-protein interaction networks using community detection algorithm based on neighbor
clustering coefficient. Frontiers in Genetics 12:689515 DOI 10.3389/fgene.2021.689515.

Wang YJ, Wong GYC. 1987. Stochastic blockmodels for directed graphs. Journal of the American
Statistical Association 82(397):8–19 DOI 10.1080/01621459.1987.10478385.

Watts DJ, Strogatz SH. 1998. Collective dynamics of ‘small-world’ networks. Nature
393(6684):440–442 DOI 10.1038/30918.

Xie J, Kelley S, Szymanski BK. 2013.Overlapping community detection in networks: the state-of-the-
art and comparative study. ACM Computing Surveys 45(4):1–35 DOI 10.1145/2501654.2501657.

Xie J, Szymanski BK. 2012. Towards linear time overlapping community detection in social
networks. In: Tan P-N, Chawla S, Ho CK, Bailey J, eds. Advances in Knowledge Discovery and
Data Mining. Berlin, Heidelberg: Springer, 25–36.

Yang J, Leskovec J. 2012. Defining and evaluating network communities based on ground-truth.
Knowledge and Information Systems 42:181–213 DOI 10.1007/s10115-013-0693-z.

Yang J, Leskovec J. 2013. Overlapping community detection at scale: a nonnegative matrix
factorization approach. In: Proceedings of the Sixth ACM International Conference on Web
Search and Data Mining, WSDM ’13. New York, NY, USA: Association for Computing
Machinery, 587–596.

Yasar A, Rajamanickam S, Berry JW, Çatalyürek UV. 2020. A block-based triangle counting
algorithm on heterogeneous environments. IEEE Transactions on Parallel and Distributed
Systems 33(2):444–458 DOI 10.1109/TPDS.2021.3093240.

Garrels et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1291 30/30

http://dx.doi.org/10.1007/s41109-017-0023-6
http://dx.doi.org/10.1016/j.datak.2013.05.004
http://dx.doi.org/10.1109/ACCESS.2019.2897783
http://dx.doi.org/10.1080/03081079.2020.1863394
http://dx.doi.org/10.1109/TPDS.2015.2390633
http://dx.doi.org/10.48550/arXiv.1403.3005
http://dx.doi.org/10.1007/s00382-011-1135-9
http://dx.doi.org/10.1007/s41109-020-00289-9
http://dx.doi.org/10.3389/fgene.2021.689515
http://dx.doi.org/10.1080/01621459.1987.10478385
http://dx.doi.org/10.1038/30918
http://dx.doi.org/10.1145/2501654.2501657
http://dx.doi.org/10.1007/s10115-013-0693-z
http://dx.doi.org/10.1109/TPDS.2021.3093240
http://dx.doi.org/10.7717/peerj-cs.1291
https://peerj.com/computer-science/

	LazyFox: fast and parallelized overlapping community detection in large graphs
	Introduction
	Related work
	Methods
	Datasets
	Results
	Discussion
	Conclusion
	flink8
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

