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ABSTRACT: Cross-linking and mass spectrometry (XL-MS) workflows are
increasingly popular techniques for generating low-resolution structural
information about interacting biomolecules. xQuest is an established software
package for analysis of protein−protein XL-MS data, supporting stable isotope-
labeled cross-linking reagents. Resultant paired peaks in mass spectra aid sensitivity
and specificity of data analysis. The recently developed cross-linking of isotope-
labeled RNA and mass spectrometry (CLIR-MS) approach extends the XL-MS
concept to protein−RNA interactions, also employing isotope-labeled cross-link
(XL) species to facilitate data analysis. Data from CLIR-MS experiments are
broadly compatible with core xQuest functionality, but the required analysis
approach for this novel data type presents several technical challenges not optimally served by the original xQuest package. Here we
introduce RNxQuest, a Python package extension for xQuest, which automates the analysis approach required for CLIR-MS data,
providing bespoke, state-of-the-art processing and visualization functionality for this novel data type. Using functions included with
RNxQuest, we evaluate three false discovery rate control approaches for CLIR-MS data. We demonstrate the versatility of the
RNxQuest-enabled data analysis pipeline by also reanalyzing published protein−RNA XL-MS data sets that lack isotope-labeled
RNA. This study demonstrates that RNxQuest provides a sensitive and specific data analysis pipeline for detection of isotope-labeled
XLs in protein−RNA XL-MS experiments.
KEYWORDS: cross-linking mass spectrometry, protein−RNA interactions, ribonucleoproteins, XL-MS, XL-MS software,
false discovery rate estimation

■ INTRODUCTION
Cross-linking coupled to mass spectrometry (XL-MS) is a
popular approach for obtaining structural information from
molecular complexes. Structural information is obtained in a
protein−protein XL-MS workflow by covalent cross-linking of
spatially proximal amino acids of proteins or protein complexes
in solution. Samples are then prepared for analysis with liquid
chromatography (LC) coupled to tandem mass spectrometry
(MS/MS) using a modified bottom-up proteomics workflow.
Through amino-acid specific chemical reactivity of cross-
linking reagents and/or peptide sequencing by MS/MS,
precise cross-linked amino acid positions are identified in a
pair of peptides that must be in close proximity within protein
structures in their native state.1−3 These proximal amino acid
positions are frequently used to define distance restraints in
structural modeling pipelines,4,5 and prove particularly useful
for flexible complexes, where individual molecules do not
conform to a homogeneous structural state upon crystalliza-
tion.
Proteins do not just form complexes with other proteins, but

commonly interact with nucleic acids such as RNA, either
transiently, such as for regulatory functions, or in forming
stable protein−nucleic acid complexes that function as vital
catalytic cellular machinery.6,7 As with protein−protein cross-

links (XLs), protein−RNA XLs derived from mass spectro-
metric workflows also form a useful input data type for
structural modeling pipelines.8−10 However, their use is
currently less widespread than protein−protein cross-linking,
and there are fewer dedicated software solutions for this data
type. Most protein−RNA XL-MS workflows developed so far
rely on photochemical cross-linking, where protein−RNA
complexes are irradiated under UV light. However, proteomics
data sets produced using this approach are particularly
challenging to analyze.
The UV cross-linking reaction tends to be inefficient, with

low proportions of starting material converted to cross-linked
complex11 and low numbers of XL spectrum matches
(XLSMs) during data analysis. To overcome this challenge,
the data analysis approach therefore needs to be both sensitive
enough to make identifications close to the detection limit but
also specific enough to avoid false positive identifications, the
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prevalence of which can be challenging to assess where low
numbers of identifications make it difficult to achieve statistical
robustness.
When purified protein−RNA complexes are analyzed,

previously published approaches propose a variety of strategies
to overcome these challenges. According to best practice, the
RNPxl workflow8,12 should be executed with the input of both
UV cross-linked and non-cross-linked control samples for data
analysis (although it is also technically possible to run the
pipeline without a control sample). This comparative approach
ensures that low intensity and abundance peptide modification
signals present in the UV irradiated sample are absent in the
control sample and therefore likely derive from cross-linked
RNA. However, the addition of a negative control data set
doubles both sample requirement and associated mass
spectrometric analysis time, making this a resource intensive
solution. Furthermore, analysis of low abundant protein−RNA
XL species in a complex background may result in under-
sampling of MS/MS precursors, resulting in reduced sensitivity
in XL detection.
An alternative approach is proposed in the RBS-ID

workflow,13 which uses chemical degradation of RNA in
place of more widely adopted nuclease digestion, to achieve
homogeneous mononucleotide modifications on peptides. This
results in a relative signal boost by avoiding the stratification of
cross-linked species between heterogeneous polynucleotide
adducts attached at a given amino acid site on a peptide.14

Given the very limited number of peptide modifications
provided, data can then be analyzed as with post-translational
modifications, using either open search engines15,16 or more
conventional closed search approaches.17,18 While this
approach is very effective at identifying protein sites that are
in contact with RNA, the absence of polynucleotide adducts in
analysis results makes assignment of the cross-linked
nucleotide within an RNA sequence more difficult. This is
therefore a less suitable approach for derivation of distance
restraints for structural modeling of protein−RNA com-
plexes,14 where precise placement of a XL is required on
both RNA and protein sequences.
The recently introduced CLIR-MS approach9 utilizes stable

isotope labeling of RNA to overcome the challenges posed by
data collected from UV cross-linked complexes. In a CLIR-MS
experiment, both light and heavy isotopic forms of a given
RNA-derived peptide modification must be detected during
data analysis in order to produce an identification, ensuring
peptide modifications truly derive from RNA. Furthermore,
when utilizing the popular xQuest search engine, increased
sensitivity is achieved during analysis by merging light and
heavy spectra as described previously.19,20 The distinguishing
advantage of the CLIR-MS approach is the ability to
incorporate stretches of stable isotope-labeled RNA in a
position specific fashion, as demonstrated previously,9,14,21,22

therefore providing robust localization of the XL in an RNA
sequence, as required for definition of distance restraints for
structural modeling of protein−RNA complexes.
In order to realize fully the advantages provided by the

CLIR-MS approach, a specialized data analysis approach based
on the xQuest search engine19 was established. This approach
uses multiple parallel searches, one per expected delta mass
shift (expected mass difference between the light and heavy
forms) for isotope-labeled RNA adducts in the sample.9 The
analysis approach is flexible and can be adapted to different
delta mass shifts introduced by use of different RNA labeling

strategies, for example through 13C15N metabolic labeling,9

through use of 13C ribose,21 or through appendage of an 18O
phosphate group.22 When one attempts to use just the base
xQuest functionality alone for this type of search strategy, it is
practically prohibitive to manually define the required
parameter sets for each of these searches. Furthermore, the
requirement for multiple parallel xQuest searches, with the
exact number varying depending on RNA labeling strategy,
introduces a technical incompatibility with the false discovery
rate (FDR) control companion software, xProphet,20 leaving
protein−RNA cross-linking identifications reliant on manual
validation, or restricted to arbitrary score cut-offs for quality
control.
Here we introduce RNxQuest, a state-of-the-art Python

package companion to the established xQuest pipeline. The
package provides a number of features to support the analysis
of protein−RNA XL-MS data produced using the CLIR-MS
technique and, to our knowledge, is the only package
specifically designed to handle this data type. The package is
primarily designed for analysis of low complexity protein−
RNA samples prepared with stable isotope-labeled RNA. With
the help of RNxQuest, parameter generation and execution for
the required parallel searches are automated, simplifying data
analysis. Furthermore, the package provides FDR control
functionality, overcoming the incompatibility of xProphet with
protein−RNA cross-linking data. We take advantage of recent
advances in the method which improve the number of
XLSMs,14 and investigate the effectiveness of different FDR
control strategies for obtaining unique structural information
from CLIR-MS data sets. Finally, the RNxQuest package
provides a postprocessing pipeline in the form of a JuPyter
notebook that facilitates further filtering (i.e., by mass error)
and visualization. We additionally compare the outputs of the
overall search strategy and postprocessing pipeline enabled by
the novel RNxQuest functionality with approaches used to
analyze other recently published protein−RNA XL-MS data
sets, which employ non-isotope-labeled RNA. Together, we
demonstrate that RNxQuest excels in its primary function as a
dedicated software solution for CLIR-MS data, while
maintaining broad technical applicability, even for data sets
without isotope-labeled RNA.

■ EXPERIMENTAL SECTION

Preparation of a Heterogeneous Isotope-Labeled
Monolink Sample Using BSA

100 μg aliquots of 5 mg/mL bovine serum albumin (BSA,
Sigma-Aldrich) was prepared in 1× PBS. Eight aliquots were
prepared in total so that each cross-linking reagent type could
be prepared in duplicate. Cross-linking with DSS and DSG was
carried out as described previously.23 Cross-linking stock
solutions for DSS (equimolar mixture of d0 and d12 isotope-
labeled forms, Creative Molecules) and DSG (equimolar
mixture of d0 and d6 isotope-labeled forms, Creative
Molecules) were freshly prepared in anhydrous dimethylfor-
mamide at a concentration of 25 mM. Cross-linking reactions
took place with final protein concentration at 0.67 mg/mL and
final cross-linker concentration of 0.5 mM in 20 mM HEPES
(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid). A short-
ened incubation time was used to favor monolink formation
(20 min, 37 °C). All incubations below were carried out using
a ThermoMixer (Eppendorf, 800 rpm). Reactions were
quenched by addition of ammonium bicarbonate (AmBic) to
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a final concentration of 50 mM, followed by a further
incubation (20 min, 37 °C). Cross-linking with ADH and
PDH was carried out as described previously.24 Stock solutions
were prepared for ADH (equimolar mixture of ADH-d0 and
-d8, Sigma-Aldrich), PDH (equimolar mixture of PDH-d0 and
-d10, Sigma-Aldrich) and DMTMM (4-(4,6-dimethoxy-1,3,5-
triazin-2-yl)-4-methyl-morpholinium chloride, Sigma-Aldrich),
all at approximately 100 mg/mL in 20 mM HEPES. For ADH,
cross-linking reactions took place with a protein concentration
of 0.67 mg/mL, and final concentrations of 8.3 and 12 mg/mL
for ADH (sum of both isotope forms) and DMTMM,
respectively, in 20 mM HEPES. For PDH, concentrations
were identical except adjustments for its different relative mass
(sum of both isotope forms). As with DSS and DSG, a
shortened incubation time was used to favor monolink
formation (15 min, 37 °C). Reactions were quenched by gel
filtration using Zeba spin columns (Thermo Scientific).
After quenching of cross-linking reactions, all samples were

dried in a vacuum centrifuge, and prepared for LC-MS/MS
analysis following the same established protocol.24 Samples
were resuspended in 8 M urea to a final protein concentration
of 1 mg/mL. Disulfide bonds were reduced by addition of
tris(2-carboxyethyl) phosphine to a final concentration of 2.5
mM followed by incubation (30 min, 37 °C). Free cysteines
were then alkylated by the addition of iodoacetamide to a final
concentration of 5 mM, followed by incubation (30 min, 25
°C, in the dark). The urea concentration was adjusted to 6 M
by addition of a 1 M AmBic stock solution, Lys-C (Wako
Chemicals) was added at 1:100 enzyme:substrate ratio, and
samples were incubated (3 h, 37 °C). After Lys-C digestion,
the urea concentration was further adjusted to 1 M by addition
of a 1 M AmBic stock solution, and trypsin (Promega) was
added at a 1:24 enzyme:substrate ratio, in the presence of
ProteaseMax (Promega) rapid digestion surfactant according
to the manufacturer’s instructions. Samples were once again
incubated (3 h at 37 °C). Following digestion, proteases were
quenched by addition of formic acid (FA) to 2% of total
volume, and samples were cleaned up by C18 solid phase
extraction (50-mg SepPak tC18 cartridges, Waters). Eluents
were dried in a vacuum centrifuge. Samples from the four
different cross-linking reagents were then pooled into a single
tube, which was then prepared for peptide-level size exclusion
chromatography (SEC) fractionation as described previ-
ously,23−25 using a Superdex Peptide PC 3.2/30 column (GE
Healthcare). Four 100 μL fractions, expected to contain the
majority of monolinked peptides, were selected, corresponding
to elution volumes of 0.7 to 1.1 mL, for analysis by LC-MS/
MS.
Analysis of Heterogeneous Monolink Samples by
LC-MS/MS

Individual SEC fractions were evaporated to dryness in a
vacuum centrifuge and resuspended in MS mobile phase A
(described below) to a concentration of 0.5 mg/mL according
to the UV signal intensity from the SEC chromatograms at the
time of fraction collection. 2 μL of each sample was injected,
and each sample was injected twice. LC-MS/MS analysis was
carried out using an Easy nLC 1000 HPLC system
(ThermoFisher Scientific) coupled to an Orbitrap Elite mass
spectrometer (ThermoFisher Scientific), using a Nanoflex
electrospray ion source. Samples were separated on a PepMap
RSLC column (150 mm × 75 μm, 2 μm particle size,
ThermoFisher Scientific) with gradient of 9 to 35% mobile

phase B over 60 min (A = water:acetonitrile:FA, 98:2:0.15, v/
v/v; B = acetonitrile:water:FA, 98:2:0.15, v/v/v). The flow rate
used for analysis was 300 nL/min. The data-dependent
acquisition mode was used for the mass spectrometer. The
Orbitrap mass analyzer was used for precursor ion spectra
acquisition at a resolution of 120,000. For each precursor
acquisition cycle, the top 10 ions were selected for collision-
induced dissociation fragmentation, and fragment ions were
analyzed in the linear ion trap by using the normal scan rate.
Further fragmentation parameters used for the analysis were
the following: isolation width, 2 m/z; normalized collision
energy, 35; activation time, 10 ms; dynamic exclusion for 30 s
after one sequencing event was enabled. All files were
converted from Thermo raw format into mzXML using the
msConvert26 package.
Data Analysis for Heterogeneous Monolink Samples

Converted mzXML files were searched with xQuest19,20

(version 2.1.5, available at https://gitlab.ethz.ch/leitner_lab/
xQuest_xprophet) against a target and decoy database for
bovine serum albumin protein. The decoy database was
generated using the xdecoy.pl script included with xQuest,
using the reverse and shuffle features sequentially. Individual
analysis runs for each data set were defined manually (without
the RNxQuest package), one per expected light-heavy delta
mass in the data set (i.e., one per cross-linking reagent). A
mass tolerance of 10 ppm for the mass shift was used, with a
maximum retention time difference between scan pairs of 1
min. Additional search settings: enzyme, trypsin; maximum
missed cleavages, 2; MS mass tolerance, 10 ppm; MS/MS mass
tolerance, 0.2 Da for common ions and 0.3 Da for XL ions.
Only monolink type identifications were searched for. Amino
acid reactivity was restricted to the known reactivity of the
cross-linking reagents (lysine for DSS and DSG, aspartic acid
and glutamic acid for ADH and PDH). Where FDR analysis
was carried out using xProphet20 (version 2.5.5, available at
https://gitlab.ethz.ch/leitner_lab/xQuest_xprophet), default
parameters were used. Outputs are listed in Table S1.
The RNxQuest Python Package

Scripts are provided by the RNxQuest package to facilitate
automated parallel xQuest searches for the CLIR-MS data. The
package source code is publicly available (https://gitlab.ethz.
ch/leitner_lab/RNxQuest). Installation instructions, usage
tutorials, and extensive documentation of functions included
in the package are available in the associated repository wiki
site (https://gitlab.ethz.ch/leitner_lab/rnxquest/-/wikis/
home). The package is designed to function in Windows or
Unix-like environments, using Python 3.7.1, and with desktop
grade hardware. RNxQuest depends on the following Python
packages: lxml, pandas, fastaparser, matplotlib, numpy, plotly,
scipy, pathlib, mokapot. The first step in the RNxQuest analysis
pipeline is automated parameter generation. Using a uniform
set of input files and sample-related parameters (databases,
mzXML files, RNA sequence, template xQuest definition files),
a folder structure, customized parameter files, and Unix shell
scripts are generated that facilitate automated search execution
for the parallel searches required for a CLIR-MS data set. After
search execution, the RNxQuest package provides functions to
extract and consolidate the results from all parallel searches
into a single file, to facilitate further downstream analysis, while
additionally merging the results into groups that are backward
compatible with the xQuest result/spectrum viewer.19
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The package also includes a template postprocessing analysis
pipeline in the form of a JuPyter Notebook.27 The standard
pipeline provides for FDR analysis and subsequent filtering of
results according to the desired threshold. A function is also
provided to refine results by mass error, fitting the observed
relative mass errors for all target identifications to a curve, and
using it to define an acceptable error tolerance that reflects the
data set. The RNxQuest parallel search approach requires
reranking of identifications, to ensure that the same spectrum
is not used in identifications produced by each of the parallel
xQuest searches�a function is provided in the package for this
purpose. The available FDR control approaches and filtering
steps are further illustrated in Figure S1. The package and
JuPyter notebook also contain two suggested methods of
visualizing the data produced in a CLIR-MS experiment
(Figure S2). The first creates a stacked bar plot of RNA
sequences detected at a given amino acid composition, to give
a protein-centric view of observed XLs. Alternatively, these
observed RNA adducts can be compared and overlaid upon
the RNA sequence used to prepare the sample, to create a
probabilistic representation of the likely interaction site on the
RNA. The latter approach is most useful when used with a
short, nonredundant labeled RNA sequence. Finally, the
JuPyter notebook outputs a summary file in .csv format,
containing the suggested minimum information required for
further use of the data in a structural modeling pipeline, or for
reporting results.
Data Analysis for Model Protein-RNA Complexes with
RNxQuest

The sample preparation procedure for these complexes is
described elsewhere.14 The raw files were converted to
mzXML format using msConvert.26 Parameters were gen-
erated for searching each sample using the RNxQuest
parameter generation script. The protein database used for
each search consisted of the target sequence for the respective
protein and a reversed and shuffled decoy database sequence
generated using the xQuest function xdecoy.pl (described
above). Input RNA sequences correspond to the labeled RNAs
used to prepare the samples14�UGCAUGU, CGCUU,
UCUCU for the FOX1, MBNL1, and PTBP1 complexes,
respectively. The default RNxQuest definition files were used as
a basis for the search; these are described in more detail in the
documentation for the package (link above). Mass tolerances
were set in the same way as for the heterogeneous monolink
sample (described above). Searches were executed, and results
were consolidated using parameter generation, merging, and
extraction functionality provided by the RNxQuest package.
FDR Analysis Using RNxQuest Observed FDR Calculation,
Transferred FDR, and mokapot

The default FDR function provided in the RNxQuest package
uses the relative proportions of target and decoy database
identifications above a given ld-score threshold to determine
the false discovery rate, and is a technical reimplementation of
the calculation described for the monolink group in xProphet.20

Where this function is used, calculations are made at the
unique identification level and results are filtered with an FDR
of less than 1%. The 1% value was selected for sufficient
stringency and is the default value suggested to users.
However, this can be adjusted by the user. Here, an
identification is defined as a unique combination of the
amino acid sequence position and cross-linked RNA product.

An alternative FDR analysis approach using the mokapot
package is also provided as a function in RNxQuest. The
conversion function included with the RNxQuest package takes
the consolidated RNxQuest output csv file, and reformats it
into a PIN file, compatible with the Percolator algorithm28 and
the mokapot package.29 The xQuest subscores used to calculate
the ld-score, plus some additional RNA-specific features such
as the calculated peptide mass addition, are outputted as
features by the RNxQuest PIN conversion function. The full list
of features in the PIN output file is listed in Table S2. Where
identifications are analyzed using the mokapot FDR analysis
approach, the analysis is executed at the peptide/identification
level (according to the definition above), and resulting
identifications are filtered for those with a q-value below 0.01.
The transferred FDR calculation is implemented as an

RNxQuest function as described previously.30,31 For analyses
described here, identifications are binned according to the
sequence composition of the RNA component of the
identification. We reason that this most closely reflects the
biological question in a CLIR-MS experiment (i.e., which RNA
sequence is in contact with a given amino acid in a protein−
RNA complex). The lowest 80% of unique decoy identification
score values is used for linear approximation in all cases, to
avoid the issue of lower counts of decoy identifications at
higher score thresholds described previously.30 An identifica-
tion level transferred FDR was calculated for each bin by using
the function in the RNxQuest package. An ld-score threshold at
the specified transferred FDR threshold (<1%) is returned for
each bin, facilitating XLSM filtering. Given the low numbers of
overall identifications expected in a CLIR-MS experiment, bins
with insufficient numbers of decoy identifications for a
mathematically valid calculation are expected frequently. To
account for this, a backup strategy is implemented to use the
FDR computed for the complete data set in such cases, using
the RNxQuest observed FDR calculation instead. After FDR
analysis, XLSMs are filtered according to a 1% FDR threshold.
After all types of FDR analysis, postprocessing steps

provided in the default JuPyter notebook described above
were followed to further refine the list of identifications, before
comparing outputs of each strategy. Lists of unique amino acid
positions and RNA adduct masses were used as a basis for
comparison. Outputted XLSMs from each FDR approach are
provided in Tables S3, S4, and S5 for the FOX1, MBNL1, and
PTBP1 protein−RNA XL-MS data sets, respectively.
Reanalysis of Previously Published Data Sets

For the previously published human RBP complex data,8

corresponding raw mass spectrometry files were downloaded
from the PRIDE repository (data set identifier: PXD000513).
For the Cas9 protein cross-linked to an unlabeled sgRNA,13

corresponding raw mass spectrometry files were also down-
loaded from the PRIDE repository (data set identifier:
PXD016254). Files were converted to the mzXML format
using msConvert.26 Parameters were generated for searching
each sample using the RNxQuest parameter generation script.
The protein database used for each search consisted of the
target sequences for the respective proteins in the sample plus
reversed and shuffled decoy database sequences, as described
above. For the human RNA binding protein data, a theoretical
RNA sequence computed to contain all possible combinations
of all mono-, di-, tri-, and tetranucleotides (given 4 bases) was
used to generate parameters (AAAAAAACAAAGAAA-
UAACCAACGAACUAAGGAAGUAAUUACCCACCGAC-

Journal of Proteome Research pubs.acs.org/jpr Technical Note

https://doi.org/10.1021/acs.jproteome.3c00341
J. Proteome Res. 2023, 22, 3368−3382

3371

https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.3c00341/suppl_file/pr3c00341_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.3c00341/suppl_file/pr3c00341_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.3c00341/suppl_file/pr3c00341_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.3c00341/suppl_file/pr3c00341_si_003.xlsx
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.3c00341/suppl_file/pr3c00341_si_004.xlsx
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.3c00341/suppl_file/pr3c00341_si_005.xlsx
pubs.acs.org/jpr?ref=pdf
https://doi.org/10.1021/acs.jproteome.3c00341?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


CUACGGACGUACUUAGGGAGGUAGUUAUUUCCCC-
CCCGCCCUCCGGCCGUCCUUCGGGCGGUCG-
UUCUUUGGGGGGGUGGUUGUUUUUUU). For the
Cas9 sample, the reported sgRNA sequence13 was used for
search parameter generation (GGCGCAUAAAGAUGAGA-
CGCGUUUUAGAGCUAGAAAUAGCAAGUUAAAA-
UAAGGCUAGUCCGUUAUCAACUUGAAAAAGUG-
UUCG). The default RNxQuest definition files were used as a
basis for the search�these are described in more detail in the
documentation for the package (link above). Mass tolerances
were defined in the same way as for the heterogeneous
monolink sample (described above). Searches were executed,
and results consolidated using parameter generation, merging,
and extraction functionality provided by the RNxQuest
package. FDR analysis was carried out using the RNxQuest
observed FDR calculation, and identifications with an ld-score
where the FDR was below 1% were retained. Further
postprocessing was carried out using the RNxQuest JuPyter
notebook as described above. The number of XLSMs
produced by the RNxQuest pipeline was then compared with
the reported XLSMs with which the data sets were published.
Outputs from the reanalysis of Cas9 and Human RBP data sets
with RNxQuest are included in Table S6.
Validation of Protein-RNA Cross-Links Identified with
RNxQuest

For the model complexes, FOX1, MBNL1, and PTBP1,
protein−RNA XL distances were compared with a list of
distances measured in a previous report.14 For peptide−RNA
combinations for which no prior measurement was available
due to detection of a novel RNA composition, the nearest
mononucleotide distance to a previously measured XL with

matching peptide sequence was used. Where a novel cross-
linked peptide species was detected compared with the
previous data, the nearest single nucleotide of any compatible
with the detected RNA composition was used for the
measurement. For the Cas9 complex, peptide−RNA XLs
with nonmononucleotide-U RNA composition were consid-
ered for validation against a published structure (PDB 4ZT0)32

due to complementarity to previously published identifications.
Validation of the RNA component was not, in the absence of
segmentally isotope-labeled RNA, considered due to the much
increased length of the RNA in the structure compared with
the FOX1, MBNL1, and PTBP1 complexes, and the redundant
nature of nucleic acid sequences. Validation of amino acid
positions was undertaken by inspection of the proximity to the
RNA chain in the published structure. For all complexes
mentioned above, in a small minority of cases, it was not
possible to validate novel cross-links due to the sequence used
for protein−RNA XL-MS experiments diverging from that in
the structure (i.e., truncation, differences in purification tag).
Representative annotated spectra for the FOX1 and Cas9
complexes are provided in the Supporting Information, and
were annotated using the Interactive Peptide Spectral
Annotator.
Data Availability

All RNxQuest outputs have been deposited to the Proteo-
meXchange Consort ium (http://proteomecentral .
proteomexchange.org) via the PRIDE33 partner repository
with the data set identifier PXD039754. Raw data for the
model protein−RNA complexes have been deposited to the
same repository with data set identifier PXD029930. Raw data
for the Cas9 and human RBP complex data sets were

Figure 1. Schematic comparison of xQuest search approaches for protein−protein and protein−RNA XL-MS data sets. (a) Schematic
representation of the xQuest analysis pipeline for a conventional protein−protein XL-MS workflow. (b) Schematic representation of the xQuest
analysis pipeline for a protein−RNA XL-MS workflow using stable isotope-labeled RNA. Two broad groups of functionality enabled by the package
are highlighted in gray boxes: automated parameter generation with search execution, and FDR control postprocessing and visualization with a
JuPyter notebook.
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downloaded from the PRIDE repository using data set
identifiers PXD016254 and PXD000513, respectively.
Software Availability

The RNxQuest package source code is available for download
from a public repository (https://gitlab.ethz.ch/leitner_lab/
RNxQuest), along with extensive documentation in the
associated repository wiki site (https://gitlab.ethz.ch/leitner_
lab/rnxquest/-/wikis/home).

■ RESULTS

Distinct xQuest Configuration for CLIR-MS Protein-RNA
Cross-Linking Data

The xQuest software package was originally designed for
analysis of protein−protein XL-MS data, especially for
supporting experiments that employ a light-heavy isotope
paired cross-linking reagent. Therefore, when defining an
xQuest search, one of the key parameters is the delta mass of
the cross-linked species. In routine protein−protein XL-MS

experiments, a single cross-linking reagent is added to the
sample, resulting in a single expected delta mass. Such data can
therefore be analyzed with a single xQuest search, as
schematically illustrated in Figure 1a. In the case of protein−
RNA XL-MS experiments using the CLIR-MS technique,9 we
propose that light-heavy isotope paired RNA modifications are
conceptually similar to protein−protein XL-MS monolinks
(also known as dead-end links). However, many different
lengths and sequence compositions of RNA products are
expected to be attached to peptides in the same sample,
resulting from nuclease digestion (for example mono-, di-, tri-,
and tetranucleotides). These can also exhibit many different
delta masses, depending on the RNA labeling strategy used.
Therefore, RNA species cross-linked to peptides in a CLIR-MS
sample resemble a set of heterogeneous monolink species in a
protein−protein XL-MS sample that has been prepared with
several different isotope-labeled cross-linking reagents. With
multiple delta masses expected in the sample, multiple parallel
xQuest searches of the data are required to discover all species
expected in a sample, illustrated in Figure 1b. The RNxQuest

Figure 2. Benchmarking the performance of the RNxQuest observed FDR calculation with a heterogeneous protein−protein XL-MS monolink data
set. (a) Schematic representation of experimental steps to produce the heterogeneous monolink data set. This panel was created with
BioRender.com. (b) Monolinks identified on BSA for each of the cross-linkers, where FDR is controlled either by xProphet at the end of each
xQuest run for each Δm or using a combined observed FDR calculation on the complete set of identifications. (c) Overlap of XLSMs when FDR is
controlled using xProphet after each single run or using the observed FDR calculation calculated on the complete set of identifications.
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Python package provides two broad groups of functions,
highlighted in Figure 1b, to facilitate the parallel analyses
required when searching CLIR-MS data using xQuest.
First, the RNxQuest package provides automation for

parameter file generation, search execution, and result
consolidation required for the parallel search strategy (Figure
1b, left box). A parameter generation script takes account of
the RNA sequence provided, which RNA isotope labeling
strategy was used for sample preparation, and (optional)
grouping of input mzXML files by sample type. Based on these,
a set of xQuest search parameter files are generated, together
containing all possible RNA-derived modifications that can
occur based on the input nucleotide sequence, grouped into
parallel searches based on the expected delta masses. RNA-
derived products specified at this point can also include the
many neutral loss products thought to arise from the nucleic
acid moiety.14 Additionally, Unix shell scripts are provided
which automatically execute these searches and consolidate
their results in a single output file. Separately, compatibility
with the xQuest viewer19 is also maintained for analysis of
spectra. As a result, a comprehensive CLIR-MS data search can
be undertaken in as few as three commands, eliminating the
practical inconvenience of defining and executing each
manually, as was previously necessary.9

Second, the RNxQuest package provides bespoke post-
processing functionality required for analysis of CLIR-MS data
(Figure 1b, right box). Consolidated xQuest results from
multiple searches of the same data set require reranking of
identifications made from each spectrum to ensure the same
scan is not assigned multiple times. A function is provided for
this. Furthermore, RNxQuest provides tools to further refine
identifications, such as by mass error, and for visualization of
CLIR-MS XLSMs. RNxQuest also provides solutions to
overcome the inherent incompatibility of CLIR-MS data with
the protein−protein XL-MS FDR estimation package
xProphet.20 From a technical standpoint, when xQuest was
used according to the scheme in Figure 1b, xProphet would
need to be executed once per parallel search. However, given
the sparseness of enriched protein−RNA XL-MS samples, each
search in isolation is expected to only produce a small number
of XLSMs, upon which it is difficult to reliably estimate the
FDR.34 To achieve more accurate estimations, we therefore
propose FDR estimation based on the consolidated identi-
fications from the parallel searches instead, for which multiple
functions are provided in RNxQuest, supporting several distinct
FDR control approaches (see below and Figure S1). Together,
the tools in the RNxQuest package facilitate complete analysis
of CLIR-MS data, from the mzXML file to data visualization.
Generic examples of the output provided by the postprocessing
pipeline are shown in Figure S2.
As an initial approach for FDR estimation in CLIR-MS data,

we reimplemented the target-decoy competition (TDC)
calculation used by xProphet20 as a Python-based function,
included in the RNxQuest package. This is referred to as the
“RNxQuest observed FDR calculation” from here onward.
Benchmarking the Performance of the Novel RNxQuest
Configuration

We first compared the reimplemented observed FDR
calculation in RNxQuest with the original implementation in
xProphet, to ensure faithful reproduction of the behavior of
xProphet. To undertake this comparison, we required a data set
compatible with both approaches. We therefore cross-linked

bovine serum albumin (BSA) protein with four different light-
heavy isotope paired protein−protein cross-linking reagents:
disuccinimidyl suberate (DSS), disuccinimidyl glutarate
(DSG), adipic acid dihydrazide (ADH), and pimelic acid
dihydrazide (PDH). Samples were then pooled after the
respective cross-linking reactions were quenched, and pooled
samples digested and fractionated by size exclusion chroma-
tography as described previously.23 Fractions expected to
contain mostly monolink modifications were selected for
analysis by LC-MS/MS. The experiment is summarized in
Figure 2a. The result is a data set that contains many
heterogeneous isotope paired peptide modifications. These
mimic the properties of heterogeneous RNA adducts found in
a CLIR-MS protein−RNA cross-linking experiment, requiring
multiple parallel xQuest analyses to discover all monolink types
present in the data set. Additionally, owing to the higher
expected yields of these reactions compared with a protein−
RNA UV cross-linking reaction, sufficient numbers of unique
identifications for each monolink type are expected that
xProphet-based FDR analysis is still able to estimate FDR in
each parallel run. Data were analyzed using four manually
defined parallel xQuest searches, one per distinct expected delta
mass between the light and heavy isotopic forms of the
monolinks, according to the approach shown in Figure 1b,
thereby mimicking the required approach for CLIR-MS data.
FDR analysis was then carried out twice for the data set:

once using four parallel xProphet executions, one per search for
each expected delta mass (as supported by core xQuest/
xProphet functionality), and once using the observed FDR
calculation provided by the RNxQuest package, using a single
calculation based upon the combined pool of identifications
from the four searches. Search results were then filtered for
XLSMs with ld-scores (the summary score used by xQuest)
where the FDR was <1%. Given that the calculation used for
both approaches was the same, similar results were expected
from both approaches, thereby validating the technical
functionality of the reimplementation. Unique sets of detected
modified amino acid positions identified for each cross-linking
reagent, resulting from the two FDR analysis approaches, are
compared in Figure 2b. The modified amino acid positions
detected when using the different FDR analysis approaches
were highly similar, with 94 unique cross-linked amino acid
positions detected with the RNxQuest observed FDR
calculation on the total pool versus 97 when using the
separate xProphet runs for each Δm. The full redundant lists of
XLSMs that result from the two FDR analysis approaches were
compared, and the results are shown in Figure 2c. Of the
XLSMs passing the 1% FDR threshold in both approaches,
97% of them overlap. The small number of XLSMs that are
unique to each approach are explained by having ld-scores very
close to the 1% FDR threshold score in their respective
analysis pipeline, making them particularly sensitive to minor
fluctuations in the ld-score filtering threshold that result from
the two approaches. We therefore concluded that the TDC-
based RNxQuest observed FDR calculation correctly replicates
the monolink FDR calculation behavior of xProphet.
Applying RNxQuest to CLIR-MS Cross-Linked Protein-RNA
Samples

Having established that the RNxQuest analysis approach
behaves as expected for a data set containing heterogeneous
monolinks, we then tested the performance of the pipeline on
three CLIR-MS protein−RNA cross-linking data sets,
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generated from three complexes with previously published
structures. Using the outputs, we assessed the behavior of the
pipeline on protein−RNA cross-linking data for which it is
designed. The complexes are the FOX1 RRM with the FOX
binding element (UGCAUGU), MBNL1 with its cognate
binding sequence (CGCUU), and PTBP1 with a short
polypyrimidine sequence (UCUCU). The corresponding
data sets are described separately in more detail.14

Each data set was analyzed using the RNxQuest pipeline. For
each analysis run, a protein database file containing the target
protein sequence and a corresponding reversed and shuffled
decoy sequence for that protein was used. FDR analysis was
carried out using the RNxQuest observed FDR analysis
function, and the score distributions of target and decoy
database identifications for each complex were plotted (Figure
3a−c). From these distributions, a q-value curve is also
calculated and plotted. The scores from all three protein−RNA
complexes display a similar behavior. In each case, decoy
database identifications (shown in red in each plot) form a
single distribution at relatively low ld-scores, representing
XLSMs by chance. The target identifications, shown in blue,
segregate into two distributions; a lower scoring distribution
overlapping with the decoy distribution, likely comprising
mostly false-positive XLSMs by chance, and a higher scoring
target distribution, which likely comprises true positive
matches. In the case of the MBNL1 complex, the number of
high scoring target database XLSMs is not so great. However,
their clear segregation from the decoy identifications supports
their acceptance as reliable identifications. Using a 1% FDR
threshold, 1614, 374, and 654 XLSMs are returned for the
FOX1, MBNL1, and PTBP1 complexes, respectively. Repre-
sentative annotated spectra are shown in Figure S3. In
summary, score distributions of target and decoy database
sequence matches clearly segregate for all complexes. This
suggests that a conventional TDC-based observed FDR

calculation successfully helps control for false positive
XLSMs in the novel isotope-labeled protein−RNA XL-MS
data type.
Next, we more thoroughly investigated the possibility that

any false positive XLSM could be assigned a high ld-score by
the pipeline. We first analyzed a nonirradiated negative control
sample, prepared using the same FOX1-FBE complex,
including isotope-labeled RNA, as in Figure 3a. Sample
processing and data analysis between this control sample and
the sample in Figure 3a were identical, except for the omission
of the UV irradiation step. Score distributions of target and
decoy XLSMs made from this data set were once again plotted
(Figure 3d). The nonirradiated data set exhibits overall very
few putative XLSMs (against target or decoy databases)
compared with the irradiated samples, even before FDR
analysis. These have relatively low scores, in a range
comparable to that of the decoy identifications in Figure 3a−
c. Furthermore, the score distributions of target and decoy
database matches almost exactly overlap, suggesting a high
probability that all of these XLSMs match the database by
chance. This is expected behavior, as a true identification
requires both light and heavy isotopic species to be present in
the mass spectra from which the identification is scored. In a
CLIR-MS data set, light−heavy pairing depends on the
presence of an RNA-derived modification to a peptide. In a
nonirradiated sample, no such modifications are expected, and
non-cross-linked RNA is expected to be lost during sample
preparation, and therefore should not be present in the LC-
MS/MS sample. The lack of substantial high-scoring
identifications from the nonirradiated sample therefore
suggests that the combination of light−heavy isotope pairing,
and a TDC FDR approach, are a sufficiently stringent strategy
to avoid high scoring false positive identifications.
Finally, to further ensure the robustness of the pipeline

against high scoring false positive XLSMs, we tested the

Figure 3. Evaluating the behavior of the RNxQuest observed FDR calculation for CLIR-MS data. (a−c) Target and decoy database match score
distributions for CLIR-MS samples prepared with UV irradiated FOX1 (a), MBNL1 (b), and PTBP1 (c) protein−RNA complexes, respectively.
For each distribution, a q-value is additionally calculated according to the xQuest ld-score. (d) Target and decoy database match score distributions
for a FOX1 complex CLIR-MS sample prepared in the same way as panel a, except with UV irradiation omitted. (e) Target and decoy database
match score distributions for a decoy data set, generated using the mzXML files produced for panel a, but shifting all m/z values by +10 m/z units.
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behavior of the pipeline on XLSMs from a known decoy data
set. All peaks contained in mzXML files from the FOX1-FBE
sample in Figure 3a were shifted by +10 m/z units, a principle
demonstrated previously.34 In doing so, data are produced
from which it is impossible by definition to produce a true
positive identification. However, the data retain the features
and qualities of a data set containing true-positive identi-
fications. The decoy data set was then analyzed in the same
way as the target data set in Figure 3a, and the score
distribution was plotted (Figure 3e). In this case, both target
and decoy database identifications each form overlapping low
scoring distributions, which are remarkably similar. As with the
nonirradiated sample, this is the expected behavior, as all
XLSMs in this data set must be by chance, explaining the
overlap between the distributions. Importantly, there is no high
scoring target database XLSM distribution in this negative
control data set, providing further evidence that the data
analysis approach is specific enough to avoid artifacts. Taken
together, the clear segregation of high-scoring true-positive
distributions of target database matches from the false positive
decoy database matches in target data sets (Figure 3a−c), and
the lack of high scoring target identifications in control data
sets (Figure 3d,e) suggests that the pipeline is both sensitive
and sufficiently stringent when applied to CLIR-MS data.
When a protein−RNA cross-linking data set is produced

using nuclease digestion, a variety of mono- and polynucleo-
tide RNA adducts are present in the sample, attached to
peptides. We speculated that because RNA tends to be more
negatively charged than a peptide, different lengths of RNA
attached to a peptide may have varying impacts on the
fundamental behavior of the peptide−RNA adduct during
mass spectrometric analysis. To investigate this possibility, we
again plotted the score distributions for target and decoy
identifications from the data sets shown in Figure 3a−c, but
this time segregated by the length of RNA component of the
peptide−RNA identification (Figure 4). We observed that
across the three complexes, decoy identification score
distributions do not seem to show much dependence on the
length of RNA in the identification. However, in the cases of
target identifications, longer RNA attachments to the peptides
appear to correspond to lower scoring identifications. We
questioned whether adopting a more sophisticated FDR
control approach may be able to take advantage of these
distinctive behaviors and therefore return a greater amount of
unique structural information from each CLIR-MS data set,
and in particular polynucleotide adducts which are useful for
localizing cross-links within an RNA sequences.

Assessment of mokapot as an Alternative FDR Analysis
Strategy

Like most proteomics search engines for mass spectrometry
data, identifications from xQuest are given a summary score (in
this case the ld-score) that is calculated from a number of
underlying subscores, describing the quality of the spectrum
match to the database species using a fixed scoring model
(described previously19,20). We hypothesized that the RNA
length-dependent ld-score distributions could be founded
upon subtle trends in output subscores, which are not prolific
enough to be noticeable during manual interpretation.
Machine learning approaches provide an alternative strategy
to assess such underlying trends in high dimensional data sets
such as this one. One such approach, the Percolator algorithm,
has become a popular choice for proteomics data sets,28,35 and
was recently reimplemented as part of a Python package,
mokapot.29 The developers of the mokapot package propose
that proteomics data sets with low abundance peptide
modifications, such as protein−RNA XL-MS data sets, may
especially benefit from a machine learning approach. To
evaluate this possibility, FDR analysis for data sets shown in
Figure 3a−c was repeated, using the mokapot package instead
of the RNxQuest observed FDR calculation.
The number of XLSMs over a range of q-values assigned by

mokapot is shown for each complex in Figure 5a. We filtered
these results to achieve a nonredundant list of unique amino
acid position and RNA adduct combinations, giving an
overview of the unique structural information provided by
this FDR analysis approach. This gave lists of 234 and 151
unique amino acid position−RNA adduct combinations for the
FOX1 and PTBP1 data sets, respectively. For the MBNL1 data
set, the execution repeatedly failed owing to the low number of
input XLSMs. The initial results suggest that based on the
same input data, mokapot provided fewer unique protein−
RNA cross-links than the RNxQuest observed FDR approach.
It has been demonstrated previously that mokapot functions

effectively on protein−RNA cross-linking data sets where a
more complete range of identifications, such as those
generated by an open modification search approach16 that
includes linear unmodified peptides, is used as an input,
instead of solely the RNA-modified peptides.29 In contrast, the
default output of the RNxQuest search strategy contains only
modified peptides, such as the results used in Figure 5a. This is
due to the requirement for light-heavy isotope pairing, which is
expected to occur only in RNA-containing species. The
titanium dioxide enrichment step in the CLIR-MS protocol9

is not perfectly efficient, and some linear peptides are therefore
still present in the LC-MS/MS sample, but are not included in

Figure 4. xQuest ld-score distributions may depend on the length of RNA adduct. (a−c) Score distributions for each of the complexes in Figure
3a−c presented as violin plots and additionally broken down by length of the RNA adduct.
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the default search approach illustrated in Figure 1b. We
hypothesized that including results from an additional peptide-
only search in our inputs for the mokapot analysis could more
effectively train the target-decoy discrimination model. By
providing superior discrimination, additional unique amino
acid plus RNA combinations could therefore potentially be
identified.
To evaluate this possibility, we defined an additional parallel

search of the scheme shown in Figure 1b to look for
unmodified peptides using xQuest. We achieved this by
defining a monolink mass of 0 Da, and adjusting the search
parameters to look for “light-only” species, as described
previously.23 A drawback of this approach is that identifications
that are reliant or nonreliant upon isotope pairing may have

different respective underlying subscoring properties. However,
this limitation is here accepted for the lack of a more suitable
alternative. We then executed the mokapot analysis for each
complex using an input file consisting of the protein−RNA
identifications used in the RNxQuest observed FDR calculation
combined with the newly generated peptide-only identifica-
tions. Once again, we filtered the output identifications for
unique combinations of amino acid positions and RNA
adducts, excluding peptide-only identifications, which resulted
in 281, 111, and 247 for the FOX1, MBNL1, and PTBP1
complexes, respectively. When compared with both the
mokapot analysis that did not include peptide-only identi-
fications and the RNxQuest observed FDR approach, the
mokapot approach including peptide-only identifications results

Figure 5. Comparing XLs identified when using mokapot for control of FDR versus the RNxQuest observed FDR calculation. (a) Numbers of
unique identifications provided when the RNxQuest observed FDR approach, and mokapot, both in the presence and absence of peptide-only
identifications, are used to control FDR in the FOX1, MBNL1, and PTBP1 protein−RNA XL-MS data sets. (b−d) Comparisons of unique
protein−RNA identifications for mokapot analysis including peptide-only IDs, with the RNxQuest observed FDR calculation for the FOX1,
MBNL1, and PTBP1 complexes, respectively. (e) Lengths of RNA adducts for uniquely identified peptide−RNA species across all complexes, when
analyzed using the mokapot (including peptide-only identifications) package, compared with the RNxQuest observed FDR calculation. (f) Total
numbers of unique protein−RNA IDs following RNxQuest observed FDR calculation and mokapot analysis, broken down by the length of the RNA
adduct.
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in the highest number of unique peptide−RNA combinations
in all complexes (Figure 5a).
To investigate whether the RNxQuest observed FDR analysis

approach and mokapot (including peptide-only identifications)
yield distinct XL information, we compared the unique amino
acid site and RNA modification combinations produced by
each. Venn diagrams representing the overlap between the final
identification lists produced by each approach are shown in
Figure 5b−d, for the FOX1, MBNL1, and PTBP1 complexes,
respectively. For all three protein−RNA complexes studied,
around three-quarters of the unique identifications overlap
between the mokapot FDR analysis approach and the simpler
RNxQuest observed FDR calculation, with the mokapot
approach yielding a greater number of unique identifications
in each case. Where possible, cross-links were validated against
published structures for both approaches (Tables S3, S4, and
S5), with observed distances suggesting that detected XLs
represent plausible protein−RNA contact sites. When unique
identifications to each FDR analysis approach are broken down
by the length of the RNA included in each identification,
tetranucleotide RNA adducts are represented in the greatest
number of unique identifications (Figure 5e), with 56
tetranucleotide identifications unique to the mokapot approach,
compared with just 3 tetranucleotide identifications that are
unique to the RNxQuest observed FDR calculation. The total
number of unique tetranucleotide identifications returned
across all 3 data sets is also substantially higher with mokapot
(108) than with the RNxQuest observed FDR calculation (55,
Figure 5f). This may suggest that the more sophisticated
mokapot FDR control approach successfully recovers lower
scoring polynucleotide identifications that are otherwise lost
due to the RNA length-dependent scoring behavior shown in
Figure 4a−c.
Assessment of the Transferred FDR Analysis Strategy for
CLIR-MS Data

In addition to the mokapot machine learning based approach,
we implemented another approach termed “transferred
FDR”.30 The transferred FDR approach was developed for
more effective FDR estimation with low-abundance PTMs
than can be achieved when all identifications are considered in

the same pool. It assumes that in a sample containing many
different types of low abundant PTMs, the FDR for each group
of PTMs (separated into “bins”) will be distinct, and can be
approximated for each bin using the proportion of decoy
identifications which contain that PTM from the pool of all
decoy identifications at a given score cutoff.30,31 Given the
conceptual similarity between the heterogeneous RNA-derived
monolinks identified in a CLIR-MS experiment and a set of
heterogeneous PTMs in a more conventional proteomics
experiment, we speculated that this approach might also be
able to more effectively control the FDR where subsets of RNA
modifications display distinct scoring behavior such as that
shown in Figure 4a−c.
To evaluate this hypothesis, consolidated outputs from

RNxQuest searches used in Figure 3a−c were divided into bins
based on the sequence composition of the RNA component
and subjected to the transferred FDR analysis (using a function
included in the RNxQuest package). The resulting ld-score
cutoff calculated for each bin is shown in Figure S4 for the
FOX1, MBNL1, and PTBP1 complexes, respectively. In the
majority of cases across all three data sets, there were
insufficient numbers of decoy identifications for the linear
approximation calculation component of the transferred FDR
approach, resulting in a zero division error, and thus, the
fallback strategy, using the RNxQuest observed FDR
calculation, is used (described in the Experimental Section).
Inclusion of peptide-only xQuest PSMs (subject to the same
limitations acknowledged with respect to mokapot analysis
above) did not lead to any increase in the number of bins for
which a transferred FDR can be computed (Figure S4). This
may be expected, given that their inclusion only modifies the
total pool of decoys, and only adds an additional bin rather
than changing the calculation for any of the existing bins.
To assess any unique information provided by the

transferred FDR approach, the list of XLSMs passing the 1%
transferred FDR threshold was refined to a unique list of amino
acid positions and RNA modifications and compared with an
equivalent list produced using the RNxQuest observed FDR
calculation. Comparisons between the outputs from each
approach are shown in Figure S4d−f for the FOX1, MBNL1,

Figure 6. Reanalysis of previously published protein−RNA XL-MS data sets, where RNA is not isotopically labeled, using the RNxQuest-enabled
approach. (a) XLSMs from spCas9-sgRNA with the RNxQuest approach compared with the MS-GF+ approach used by Bae et al. in their recent
publication.13 (b) XLSMs from many human RNA-binding proteins cross-linked to their target RNAs8 with the RNxQuest approach. RNxQuest
results are compared with RNPxl approach.11
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and PTBP1 complexes, respectively. The transferred FDR
approach provides very little unique information compared
with the RNxQuest observed FDR calculation, which is
expected given that in most cases, the score assigned to each
bin is anyway derived from the RNxQuest observed FDR
calculation as a fallback approach. Taking an example, the
PTBP1 complex has five unique identifications resulting from
the transferred FDR approach, all of which result from the
relatively low score threshold assigned to the mononucleotide
“U” bin. However, these come at the cost of an overall lower
number of unique identifications, compared with the
RNxQuest observed FDR calculation. Based on the lack of
uniform improvement in the number of unique identifications
across all data sets, we conclude that the transferred FDR
approach does not provide sufficient distinct information to
warrant its routine use over the simpler RNxQuest observed
FDR calculation. The relatively poor performance is likely
explained by the low overall number of decoy identifications
produced by the search strategy due to the light-heavy isotope-
pairing requirement. This limitation is therefore specific to the
nature of CLIR-MS data in their current form rather than a
more general indication of the validity of the transferred FDR
approach.
Reanalysis of Previously Published Data Sets without
Isotope-Labeled RNA

Thus, far, we have demonstrated that the RNxQuest package
excels in its primary purpose as a dedicated software solution
for the analysis of CLIR-MS data. However, while it may not
always be the most appropriate choice in these cases, the
RNxQuest pipeline additionally provides technical compati-
bility with protein−RNA XL-MS data sets produced without
isotope-labeled RNA. To demonstrate this, we reanalyzed
previously published data sets, and compared identifications
made between the original publications with those outputted
by our new analysis pipeline, using the RNxQuest observed
FDR calculation approach. First, we analyzed a recently
published data set containing a single protein, Cas9, UV cross-
linked to a short guide RNA (sgRNA),13 which was originally
analyzed using MS-GF+.17 When analyzed using the RNxQuest
approach, 749 XLSMs are returned, compared to 773 in the
originally published identification list (Figure 6a). Most
notably, while the total number of XLSMs returned is lower
with RNxQuest, in contrast with the original publication, a
number of adducts other than mononucleotide Uare detected
using RNxQuest. Representative annotated spectra from these
cases are provided in Figure S5. Validation of cross-linked
amino acid positions in these cases against the published
structure suggests that these identifications likely represent
biologically valid protein−RNA contact sites (Figure S6).
Second, we selected an older but more complex data set, which
includes many human RNA-binding proteins.8 With this more
complex data set, the RNxQuest pipeline with the observed
FDR approach returns a lower number of peptide−RNA
identifications (109) than reported in the original publication
(189). The difference could be explained by the larger number
of possible products and, therefore, the larger search space
considered for the RNxQuest search, which may increase the
false discovery rate. Owing to technical differences between
software packages, precisely matching analysis parameters
between different pipelines is challenging. For completeness,
further comparisons using permutations of ID and XLSM level

FDR calculations and numerical comparisons are provided in
Figure S7.
Taken together with the other data shown in this work, these

examples demonstrate that the RNxQuest package provides a
versatile solution for protein−RNA XL-MS data analysis. The
package is technically capable of analysis of data from samples
containing very large numbers of different protein−RNA
complexes; however, other packages may be more appropriate
for this sample type. Rather, RNxQuest excels most in the task
for which it is designed, in identification of peptide−RNA
cross-links in purified cross-linked protein−RNA samples. For
data produced from purified protein−RNA complexes, the
package returns plentiful FDR-controlled XLSMs, both with
assistance from and in absence of isotope-labeled RNA, and in
the latter case may also return complementary XL
identifications compared with other software packages.

■ DISCUSSION
Here we introduce a software solution for analysis of protein−
RNA XL-MS data, focusing on low complexity samples (such
as purified complexes) where stable isotope-labeled RNA is
used during complex formation, as per the CLIR-MS
approach.9 The particular challenges related to this data type
are derived from the low abundance of target species present in
the sample, itself a problem due to the low efficiency of the
cross-linking reaction. Analysis of this data type therefore
requires a careful balance between sensitivity and stringency, to
maximize identifications made from a data set while
maintaining confidence in those identifications.
The RNA-length dependent shifts in the score distribution

of identifications made with the RNxQuest pipeline may
initially suggest that longer RNA modifications always lead to
lower quality identifications. The difference in scoring behavior
may be explained by the high relative weight of the total ion
current (TIC) value in the xQuest scoring function.20 It has
previously been observed that the RNA component of a
peptide−RNA adduct will also fragment under HCD
conditions, leading to RNA-derived marker ions.8 Unlike
RNPxl,12 the RNxQuest search strategy does not make use of
these marker ions, as the formation of such ions may be
dependent on factors such as mass, charge state or collision
energy threshold for peptide fragmentation. Instead, light-
heavy isotope labeling is used to ensure the peptide
modification is RNA-derived. This leaves marker ions as
unassigned peaks in the spectrum, subsequently reducing the
xQuest TIC subscore. We therefore conclude that this behavior
is expected based on the functionality of the software and does
not reduce the overall reliability of longer RNA adducts.
Of the more sophisticated FDR analysis approaches

investigated in this work, the mokapot machine-learning
approach appears to show promise. In this study, when
peptide-only identifications are included, many unique
identifications are made when the mokapot analysis is used
compared with the simpler observed RNxQuest FDR
calculation. This suggests that routinely generating a bespoke
scoring model or each data set based on such an algorithm
could prove a useful strategy to maximize the information
retrieved from a CLIR-MS data set. The developers of the
mokapot package suggest that an ideal minimum number of
identifications upon which to train a machine learning model
such as this is around 5,000.36 The nature of CLIR-MS
identifications made by xQuest, such as requiring both light and
heavy isotopic variants of a species to be present and only
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searching for peptides with an attached RNA modification,
means that this threshold will tend to not be met when using
xQuest-identified modified peptides alone as an input for
mokapot. We attempt to bring the number of XLSMs used as
an input closer to this value using peptide-only identifications.
However, the practical feasibility of this strategy as a routine
solution might be limited. First, the computational efficiency of
the isotope labeling strategy is lost. For isotope-labeled
identification searches, only spectra that contain the expected
delta mass shift need to be scored against the database. For a
peptide-only search, the parameters do not include the light-
heavy isotope pairing requirement, and therefore all spectra
must be searched, resulting in vastly extended processing
times. Furthermore, in an isotope-labeled search, xQuest
merges the peaks of a pair of spectra for identification
scoring,19 whereas a light-only search leads to identifications
being scored against a single spectrum. This means the
underlying nature of subscores of the XLSMs may differ from
those of the peptide-only spectrum matches, especially in cases
where isotope-enabled search is used. It has also been
previously suggested that adding identifications, such as
unmodified peptides, which are not relevant to the
experimental hypothesis (i.e., protein−RNA interactions)
may adversely affect how effectively the FDR in a set of
identifications is estimated.37

Despite its relative technical simplicity compared with the
mokapot approach, the conventional target-decoy discrim-
ination provided by the RNxQuest observed FDR calculation
appears to provide effective differentiation between target
database matches by chance and those likely to represent the
presence of the assigned peptide−RNA species. When
compared with the mokapot approach without the input of
peptide-only identifications, the RNxQuest observed FDR
approach even yields a greater number of unique peptide−
RNA identifications. However, the strong overlap of the
majority of unique identifications between outputs of the
RNxQuest observed FDR calculation and mokapot analysis
serves as an orthogonal metric of their quality, suggesting that
this core overlapping group of identifications resulting from
both approaches are reliable. In addition, the cross-links were
mapped on existing structures, with calculated distances in line
with previous observations.
In summary, the data analysis approach for protein−RNA

XL-MS data presented here must strike a balance between
sensitivity and specificity, given the underlying properties of
this data type. The sensitivity requirement is achieved by
employing stable isotope labeling in the CLIR-MS approach,
combined with the xQuest software for data analysis. This
approach facilitates an effective signal-to-noise ratio enhance-
ment by spectral merging prior to scoring. The work presented
here explores multiple strategies to ensure specificity of the
approach. We demonstrate that a conventional TDC based
FDR calculation executed on a pool of heterogeneous
monolink-like identifications produced by a CLIR-MS experi-
ment successfully discriminates between target database
matches that are likely by chance and those that likely
represent the presence of the species in the sample. We further
report that a machine-learning based FDR analysis approach
based on the mokapot implementation of the Percolator
algorithm also achieves this aim, while additionally producing
a slightly greater number of unique identifications when
peptide-only identifications are included as inputs. However,
the number of XLSMs used for mokapot analysis here does not

meet the minimum number suggested number by the
developers, risking overfitting the model to a specific data
set. We therefore propose a conventional TDC FDR analysis
approach as the default method used in analysis of CLIR-MS
data, and that the mokapot analysis could provide a useful
alternative in cases where the data set under consideration
contains sufficient numbers of identifications upon which to
train the model.

■ ASSOCIATED CONTENT
Data Availability Statement
All RNxQuest outputs have been deposited to the Proteo-
meXchange Consort ium (http://proteomecentral .
proteomexchange.org) via the PRIDE33 partner repository
with the data set identifier PXD039754. Raw data for the
model protein−RNA complexes have been deposited to the
same repository with data set identifier PXD029930. Raw data
for the Cas9 and human RBP complex data sets were
downloaded from the PRIDE repository using data set
identifiers PXD016254 and PXD000513, respectively.
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jproteome.3c00341.

Figure S1 explains the available FDR control strategies
and XLSM filtering approaches employed in RNxQuest;
Figure S2 illustrates example outputs from the RNxQuest
analysis pipeline; Figure S3 shows representative
example annotated spectra as identified by RNxQuest
from the FOX1 complex; Figure S4 displays summary
outputs from RNxQuest from the FOX1, MBNL1, and
PTBP1 protein−RNA XL-MS data sets using the
transferred FDR approach; Figure S5 shows representa-
tive example annotated spectra, from XLs identified in
the Cas9-sgRNA data; Figure S6 illustrates that
nonmononucleotide-U XLSMs identified by RNxQuest
represent plausible protein−RNA contact sites in the
published structure of this complex; Figure S7 provides
additional representations of underlying data from
Figure 6 using permutations of ID and XLSM level
FDR calculation and numerical comparison; Table S2
contains the list of xQuest search output features used as
inputs for mokapot (PDF)
Table S1 contains summary outputs of XLSM
monolinks identified after cross-linking BSA, using
either xProphet or the RNxQuest observed FDR
calculation for FDR control (XLSX)
Table S3 provides summary outputs of protein−RNA
XLSMs identified from the FOX1 complex, using
RNxQuest and the observed FDR, mokapot, and
transferred FDR approaches, as well as measured
cross-link distances (XLSX)
Table S4 provides summary outputs of protein−RNA
XLSMs identified from the MBNL1 complex, using
RNxQuest and the observed FDR, mokapot, and
transferred FDR approaches, as well as measured
cross-link distances (XLSX)
Table S5 provides summary outputs of protein−RNA
XLSMs identified from the PTBP1 complex, using
RNxQuest and the observed FDR, mokapot, and
transferred FDR approaches, as well as measured
cross-link distances (XLSX)
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Table S6 contains summary outputs of protein−RNA
XLSMs identified after reanalysis of previously published
Cas9 and human RBP data sets using RNxQuest and the
observed FDR approach (XLSX)
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