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Significance

Cryo-soft X-ray tomography 
(cryo-SXT) is a powerful 
microscopy technique, which 
resolves the three-dimensional 
ultrastructure of cells in their 
near-native state at high 
resolution. The depth of 
ultrastructural detail presented in 
these datasets is highly valuable 
for cell biological research, but also 
poses the problem of extracting all 
that information by segmentation 
for more quantifiable analysis. The 
increasing implementation of 
artificial intelligence in bioimage 
analysis has produced a plethora 
of tools for semiautomated or fully 
automated segmentation for 
electron and fluorescence 
microscopy; however, for cryo-SXT, 
segmentation still relies on 
extensive manual input. In this 
work, we developed a 
convolutional neural network, 
which is capable of automatically 
segmenting cryo-SXT datasets at 
high accuracy within a few 
minutes.
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Cryo-soft X-ray tomography (cryo-SXT) is a powerful method to investigate the ultra-
structure of cells, offering resolution in the tens of nanometer range and strong con-
trast for membranous structures without requiring labeling or chemical fixation. The 
short acquisition time and the relatively large field of view leads to fast acquisition of 
large amounts of tomographic image data. Segmentation of these data into accessible 
features is a necessary step in gaining biologically relevant information from cryo-soft 
X-ray tomograms. However, manual image segmentation still requires several orders 
of magnitude more time than data acquisition. To address this challenge, we have here 
developed an end-to-end automated 3D segmentation pipeline based on semisupervised 
deep learning. Our approach is suitable for high-throughput analysis of large amounts 
of tomographic data, while being robust when faced with limited manual annotations 
and variations in the tomographic conditions. We validate our approach by extracting 
three-dimensional information on cellular ultrastructure and by quantifying nanoscopic 
morphological parameters of filopodia in mammalian cells.

cryo-soft X-ray microscopy | deep learning | automated segmentation

All cells are filled with a dense and complex mixture of organelles and macromolecular 
structures that rely on nanoscale interactions to perform vital functions. To understand 
the organization and interaction of cellular organelles, gathering information at the res-
olution of native cellular ultrastructure is essential. Electron microscopy (EM) is considered 
the gold standard for ultrastructural analysis. However, while a significant portion of our 
current understanding of cellular processes is based on EM methods, several limitations 
in sample preparation, volume coverage, acquisition speed, and throughput remain. 
Cryo-soft X-ray tomography (cryo-SXT) offers several advantages over EM approaches, 
but with the trade-off of somewhat lower resolution.

Cryo-SXT takes advantage of the intrinsic different absorption contrast of elements. 
In the spectral region called the ‘water window’, carbon atoms absorb very strongly com-
pared to oxygen atoms. This is of great relevance for biological specimens, where the 
natural contrast between carbon-dense material such as proteins and lipids and the aqueous 
environment can be exploited to visualize membranous organelles and small particles [e.g., 
nanoparticles (1) or viruses (2)] at a resolution of 30 to 40 nm (3). Moreover, specific 
organelles or structures can be distinguished based on their linear absorption coefficient, 
which is directly related to their chemical composition (4). Unlike many EM methods, 
cryo-SXT samples require neither chemical fixation nor embedding or labeling. Instead, 
cells can be grown on gold transmission electron microscopy (TEM) grids, plunge frozen 
and directly imaged in the transmission X-ray microscope. Furthermore, the penetration 
depth of soft X-rays is with 15 µm significantly deeper than what would be accessible by 
TEM techniques. This allows transmission microscopy and tomography of the entirety 
of the cellular volume in minutes without the need for physical sectioning (5, 6).

Cryo-SXT yields projection images acquired at incremental tilt angles, which are then 
aligned and processed by a tomographic reconstruction algorithm to produce a tomogram. 
With tissue culture cells on a flat support (e.g., EM grids), a tilt range of ±65° is typically 
used for tomography. In this paper, we use the term “tomogram” instead of “tomographic 
reconstruction” in order to avoid confusion with the reconstruction procedure performed 
by our proposed deep network. One such obtained tomogram is composed of hundreds 
of image slices, from which the 3D ultrastructure of the cell must subsequently be extracted 
using segmentation techniques. Segmentation of the tomogram yields more quantifiable 
information, as for instance the size, organization, and distribution of organelles in the 
cytosol (3). Cryo-SXT covers a large volume in a short period of time and does not suffer 
from preparation artifacts such as section compression or shrinkage (7, 8). Fast-paced 
development of 3D-EM techniques such as focused ion beam scanning electron micros-
copy (FIB SEM) toward larger volumes and imaging under cryogenic and noncryogenic 
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conditions has led to remarkable results in the ultrastructure of 
biological specimens (9–12). However, these techniques are still 
limited by extensive sample preparation procedures in comparison 
to cryo-SXT (13). Using cryo-SXT, it is possible to acquire a 
tomogram covering ~1000 µm3 within less than 30 min. This 
allows for the study of changes in, for example, the organization 
of cellular organelles with statistically relevant amounts of data in 
3D volumes as in the yeast cell cycle (14), nanoparticle uptake 
(1), and parasite infection (15). Moreover, the compatibility of 
cryo-SXT with cryo-fluorescence microscopy or cryo-hard X-ray 
fluorescence microscopy facilitates the identification and visuali-
zation of specific cellular structures and processes (16, 17).

While volumetric data can be generated rather quickly in 
cryo-SXT, the data analysis is still time-consuming. Specifically, 
in the cryo-SXT workflow, manual segmentation remains the key 
bottleneck (18). The complete manual segmentation of a dataset 
may take several days or even weeks, discouraging the effort to 
segment the data beyond the structures of interest. As a result, 
subtle but potentially important changes in cellular ultrastructure 
may go unnoticed, even if that information was present in the 
original data. Automated or semiautomated segmentation using 
machine learning algorithms, especially artificial neural networks, 
hold the promise of overcoming this barrier. Deep learning (DL) 
has already made a great impact in microscopy, with promising 
applications in resolution enhancement (19–22) and denoising 
(23), missing data reconstruction (24) and rapid phenotyping 
(25). More specifically, significant contributions have already been 
made toward automated segmentation in various microscopy 
applications, including volume-EM (9, 10, 26–29). Open-source 
solutions offering basic functionality are also available (30–33), 
and the design of dedicated fine-tuned networks will likely lead 
to further improvements. The design of methods suited for auto-
mated segmentation of cryo-SXT tomograms is an ongoing effort 
(34–38) and faces inherent challenges such as limited depth of 
focus and the missing wedge problem (6). The missing wedge 
refers to larger tilt angles that are missing in the 3D tomogram, for 
example in cryo-SXT, +/−65° instead of +/− 90°. Reconstruction 
of data with a missing wedge introduces artifacts, such as blurring 
and apparent elongation in the z axis (39, 40). Addressing these 
challenges using conventional DL image processing requires a large 
pool of consistent, high-quality training data, which in turn requires 
extensive access to suitable cryo-soft X-ray microscopes and signif-
icant manual effort in building suitable training datasets.

Focusing on the automatic image segmentation task, supervised 
learning with deep convolutional networks (ConvNets) remains 
the most popular approach (41–43). While other approaches, 
from using the general-purpose vision transformers (44, 45) to 
more specific methods such as the weighted random walks (46) 
have also been suggested, ConvNets that are being actively 
fine-tuned and optimized to compete for the top performance in 
image processing tasks (47) still provide a reliable and versatile 
solution. Nevertheless, relying exclusively on supervised learning 
with ConvNets requires large amounts of manually annotated 
data. Moreover, in supervised training the network can overfit on 
the instrument(s) used in acquiring the training data and fail to 
generalize to a different imaging source.

To address these challenges, while benefitting from the perfor-
mance and ease of use of ConvNets, we introduce a method for 
semisupervised learning of cryo-SXT image segmentation. We pro-
pose a deep convolutional model that combines the well-established 
U-Net architecture (26, 27) with an image reconstruction path, and 
uses a mixture of manually annotated and unannotated images 
for training. While the network learns to classify features of inter-
est, such as membrane structures, from manual annotations, 

significantly larger amounts of unannotated data enable it to learn 
a representation of various possible image features and imaging 
conditions. This approach significantly enhances the network’s 
understanding of the variability of input, while reducing the num-
ber of annotated images required to make reliable predictions. 
Once trained on both the annotated and unannotated data, 
zero-shot segmentation and surface reconstruction of a variety of 
cryo-SXT tomograms from different instruments can be achieved 
without the need for parameter tweaking and retraining. While 
the surface reconstruction enables rapid visual inspection of the 
cellular structures captured in the dataset, the automatic segmen-
tation allows faster quantitative evaluation of the data. The entire 
application pipeline requires minutes for whole-cell tomograms, 
offering a versatile tool to fully harness the structural information 
in cryo-soft X-ray tomographic datasets. We test our model on 
unseen data acquired at three different synchrotrons to demonstrate 
transferability and quantify a significant amount of subresolution 
3D data to demonstrate the throughput of our technique.

Results

Semisupervised Training of Deep Convolutional Network for 
Cryo-SXT Segmentation. We aimed to develop an end-to-end 
deep-learning network suited for the analysis of cryo-SXT datasets. 
After testing a large number of different network architectures, we 
determined that the significant variety of image features and the 
relatively low contrast in cryo-SXT images demand a very deep 
network with a large representation power (Methods).

Consequently, we constructed a specific-purpose convolutional 
feed forward network (48), as illustrated in Fig. 1 and explained 
in detail in Methods. This network takes 2D slices of cryo-SXT 
tomograms, and transforms them in parallel to two outputs by 
using “image” and “annotation” decoders (48). From a general 
perspective, our model augments a U-Net, that is used for the 
main segmentation tasks, with an unsupervised autoencoder, with 
them sharing the same encoder (Fig. 1). The U-Net architecture 
and its variants have proven very successful in supervised segmen-
tation tasks (26, 27, 38, 41, 49). We will demonstrate how the 
addition of the parallel autoencoder improves the segmentation 
performance, and brings it up to the task of segmenting cryo-SXT 
tomograms based on a rather small training set.

As is usual with ConvNets, besides the width and height dimen-
sions, a 2D image processed by the network is assigned an extra 
“channel” dimension. The input grayscale images have thus only 
one channel. The channel dimension contains parallel sets of 
pixel-wise information about an image, that are being processed 
simultaneously at each layer of the network. Since using residual 
learning (i.e., making skip connections spanning one or more 
intermediate layers in a feed-forward architecture) facilitates train-
ing of significantly deeper networks (50), our proposed model 
relies heavily on residual blocks. These blocks are made up of 
convolutional layers in which residuals (i.e., information carried 
across the skip connections) are concatenated along the channel 
dimension, accumulating extended pixel-wise information. 
Similar designs have successfully been used in previous segmen-
tation applications (51, 52).

Overall, our proposed network contains 31 layers in the seg-
mentation and 23 layers in the image reconstruction path (Fig. 1A) 
with a total of more than 76 million trainable parameters (network 
weights). To improve the training procedure of the network, we 
have employed batch normalization in the majority of blocks, 
which leads to faster convergence by regularizing the mean and 
variance of pixel intensity values across batches of image data (53) 
(Fig. 1). The global bottleneck of the network introduces a D
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cardinality of 3, i.e., three parallel convolutional paths with dif-
ferent kernel sizes (Fig. 1A). This allows for higher representa-
tion power with less network depth and prevents vanishing 
gradients during the training procedure (54). The outputs of the 
bottleneck paths are concatenated and passed to the two decod-
ers. The image decoder (Fig. 1A) is tasked with reproducing the 
input image, while the annotation decoder performs the seg-
mentation. Global encoder-to-decoder skip connections, which 
are characteristic of the U-Net architecture (26, 27), are only 
introduced between the encoder and the annotation decoder 
(Fig. 1A).

For the image segmentation branch, we have made hyperpa-
rameter choices similar to the original U-Net design in the number 
of down/up-sampling stages, kernel sizes, and the number of con-
volutional filters. For other hyperparameters, such as the number 
of residual blocks in each stage, the cardinality of the bottleneck 
region, final layers in the decoders, and the learning rate, we have 
relied on extensive experimentation and manual selection of the 

combinations that resulted in best results, both qualitatively as 
judged by the final segmentation, and quantitatively as measured 
via pixel-wise accuracy and precision (details in Methods). Despite 
the large number of trainable parameters, with several key decisions 
in our network design (details in Methods) it is memory-efficient 
enough to feed full-sized slices from our dataset in one go.

The network is trained in a semisupervised fashion by following 
a two-step protocol (Fig. 1A and SI Appendix, Fig. S1A): i) in the 
supervised training step, we use manually segmented image-label 
pairs to train the network. These are tomogram slices for which 
segmentation labels in the form of binary masks are prepared. In 
the supervised training step, the loss function is a weighted sum 
between image reconstruction and label prediction errors. 
Subsequently, weights in both branches of the network are updated 
by the optimizer. The aim of this step is to best reproduce the 
image and its accompanying label. ii) in the unsupervised training 
step, we use a large number of slices from different tomograms to 
train only the image reconstruction path of the network. For these 

A

B
Input: Full Tomogram

Image Decoder

Annotation Decoder

Output: Binary Map

Segmentation

Bottleneck

residual blocks

conv. layers+BN+ReLU

pre-/postprocess conv. layers

MaxPool 2x2

transposed conv. 2x2
(skip) connection+concatenation

Output: Surface Reconstruction

Reconstruction

Encoder

segmentation
loss

manual label
output 1

(annotation)

reconstruction
loss

input image output 2
(image)

supervised
training loop

unsupervised
training loop

Fig. 1. Processing workflow from raw tilt data to 3D volume rendering of cryo-SXT datasets. (A) Schematic of the two-headed convolutional neural network, 
illustrating the image segmentation and image reconstruction paths. On the right, the training procedure is shown. (B) Whole cryo-SXT tomograms can be used 
as input for the CNN. Shown is a 0° tilt image of a representative cryo-soft X-ray tomographic dataset, showing a part of the cytosol of a plunge-frozen CRFK cell. 
The output is a binary map of annotated labels, shown here in red and overlaid with the raw data. The Network can also produce a 3D volume rendering of all 
network output labels from the entire tomogram in random colors. (Scale bar, 2 µm.)
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images no manual segmentations are available. Thus, when the 
images are used in the training loop, the segmentation decoder 
has to be frozen and its weights are not updated (SI Appendix, 
Fig. S1A). This step amounts to training an autoencoder for repro-
ducing cryo-SXT images and relies on a loss function between 
the output and input images only (Methods). What this step 
achieves is to force the encoder toward learning a compressed 
representation of cryo-SXT images that is transferable between 
different cell and tomography conditions. The overall training 
protocol entails a loop that alternates between the two steps, and 
iteratively updates the network weights. Satisfactory convergence 
of the training protocol is achieved when the network is capable 
of simultaneously restoring the input image as well as producing 
the segmentation labels where provided (Fig. 1B). We used early 
stopping (decided based on validation accuracy) to prevent the 
network from overfitting, as well as reducing the chance for false 
positives.

To quantify the performance of the trained network, we have 
used pixel-wise scores that measure the percentage of pixels cor-
rectly reproduced, both in the reconstructed image and in the 
predicted label. The predicted segmentation labels have been first 
transformed into binary data by applying a hard threshold of 0.9 
(only pixels are accepted as positively segmented in the predicted 
label that have intensities greater than 0.9). This results in an 
unequivocal way of obtaining true and false predictions of positive 
(belonging to a segmented area) and negative (belonging to the 
background) pixels. We have thus measured accuracy, precision, 
recall, and F1-score of the data using this information (Fig. 2A, 
details in Methods). To estimate the reconstruction accuracy of 
images, pixels with values within one SD of intensity for recon-
structed images are considered positive predictions

We have run the training protocol for 700 epochs on 256 × 
256 pixel images, which have been prepared on-the-fly by one 
sweep of our data augmentation protocol over all the full-sized slices 
in the training set (Methods). The receptive field of the combined 
convolutional and pooling layers in the encoder and bottleneck of 
our network is 206 pixels (55). This justifies the chosen size of the 
images used for training the network, and should also serve as an 
estimate for the scale of features learnable by the network.

After training, the image reconstruction path achieves a pixel- 
wise accuracy of > 80%. It is noteworthy that reconstructing 
images also includes reproducing the background noise. Because 
the network lacks any stochastic input for noise sampling, the back-
ground noise is implicitly approximated (Fig. 1 and SI Appendix, 
Fig. S2). The segmentation path, on the other hand, reproduces 
manual labels with pixel-wise mean accuracy of 97% and precision 
of 74% over the test dataset (Fig. 2A and SI Appendix, Fig. S2). 
We emphasize that all the reported scores have been measured on 
hold-out test datasets that the network has not been exposed to 
during the training.

To demonstrate that our modification of the U-Net architecture 
and the addition of the image-to-image autoencoder indeed 
improves the segmentation task, we have separately trained two 
networks, one a pure U-Net trained in a supervised manner on 
image-label training data, and the other, our model, with the same 
U-Net segmentation branch (Fig. 1A), and trained with the pro-
posed semisupervised protocol. Our model with the semisuper-
vised training shows a significantly higher segmentation precision 
across the test dataset (Fig. 2A). The median segmentation preci-
sion has been improved by at least 14% by the semisupervised 
approach (Fig. 2A). Additionally, as will be shown, semisupervised 
learning not only improves the segmentation quality on one data-
set, but also contributes to the transferability of the model to 
different imaging instruments.

Evaluation of Segmentation Speed, Quality, and Robustness. 
Using a GeForce RTX 3090 graphics card with 24 GB of graphics 
memory, and using the already trained network, automated 
segmentation took less than 5 min for a tomogram with 350 
slices of 1324 × 1284 pixel images or 8 min for a tomogram of 500 
similarly sized slices. The fully convolutional nature of the network 
makes it possible to apply it, without adjustment, to input images 
of almost arbitrary size. The only limiting factor is the available 
graphics memory for simultaneous storage of the bitmap images, 
in all stages of processing by the network, including the auxiliary 
channels added in between. With our hardware, we found out 
that slices with the maximum size of 1664 × 1664 pixels can 
undergo automatic segmentation in one shot. This resulted in a 
processing time of 2 s per slice. To allow for processing of larger 
images on a similar hardware, or similar images on a graphics 
card with less memory, we added a preprocessing step, run on the 
CPU, during which the image is sliced into smaller overlapping 
square chunks. The set of all chunks are processed by the GPU, 
and in the postprocessing step, reassembled into a fully segmented 
slice, averaged with constant weights in the overlapping regions. 
The option also remedies the fact that the current network model 
with 4 stages of pooling requires input sizes to be multiples of 16.

To evaluate the segmentation quality of the network on the 
tomogram-level, a human expert user classified the automatically 
generated labels and filled in missing features into a representative 
set of 59 slices from three different tomograms. By comparing the 
pixels in each category, we found that out of all labeled pixels per 
slice, an average of 69.8% (s.d. = 10.4) were true positives, i.e. 
correctly labeled by the network and 27.7% (s.d. = 10.8) were 
false negatives, i.e., structures additionally labeled by the human 
user. 1.3 % (s.d. = 2.2) and 1.2 % (s.d. = 2.1) were false positives 
or labeled reconstruction artifacts, respectively (Fig. 2 B–E). 
Additionally, we performed a side-by side comparison of 100 slices 
of a high-quality tomogram of a CRFK cell that had not be used 
for training after analysis by an expert user (we allowed 20 h for 
analysis) and the trained network and found good agreement 
(SI Appendix, Fig. S4).

Since SXT requires synchrotron radiation, it can at this time 
only be performed at a few institutions worldwide. Thus, to be 
widely applicable, our method should generalize to data acquired 
from other synchrotrons. To test this, we applied our trained 
deep-learning network to X-ray tomography datasets obtained 
from two other synchrotrons. We used a dataset of A549 lung 
cancer cells incubated with nanoparticles for endocytosis that was 
imaged on the MISTRAL beamline at the ALBA synchrotron 
(Barcelona, Spain; SI Appendix, Fig. S5) (1), and a dataset of 
mock-infected U2OS cells (EMPIAR-10416) imaged on the B24 
beamline at Diamond Light Source (Didcot, UK) (16) 
(SI Appendix, Fig. S6). The data provided by the Diamond Light 
Source were acquired with a different X-ray microscope objective 
with somewhat lower resolution but higher depth of field com-
pared to the objectives used for all the other data (40-nm vs. 
25-nm zone plates). Despite the different experimental conditions, 
these two additional datasets were also readily segmented in min-
utes by our trained network, which identified the vast majority of 
membranous organelles inside the cytosol (SI Appendix, Figs. S6 
and S7). These results demonstrate the utility of our deep network 
for data generated at cryo-soft X-ray microscopes from other syn-
chrotron facilities and under different imaging and cell-biological 
conditions.

Using DL to Quantify Filopodia Morphology. Next, we asked 
whether our automated segmentation would allow for medium-
throughput, high-resolution image analysis. As a ubiquitous example, D
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we investigated cellular filopodia, which are abundant, narrow plasma 
membrane protrusions whose spatial dimensions are inaccessible by 
visible-light imaging. These elongated, submicron-thick, actin-filled 

structures play an important role in cellular migration and spreading 
of cells (56). We obtained three tomograms of CRFK cells, 
containing a total of 59 filipodia. These three datasets were then 
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Fig. 2. Quantification of image segmentation robustness and accuracy. (A, Left) pixel-wise metrics (accuracy, precision, recall, and F1-score) of the segmentation 
task, measured for the trained deep network when applied to the test dataset. (Middle and right) comparison between the performance of two distinct networks, 
trained, respectively, in the supervised and semisupervised manner, in terms of precision and accuracy of predictions on the test dataset. (B) A representative 
2D slice from the 3D tomographic image stack that was analyzed. (C) Overlay of the example slice in A with the labels automatically produced by the deep 
network. (D) The labels produced by the network were manually filled in on a series of randomly selected single slices and classified into true positives (green), 
reconstruction artifacts (pink), false positives (cyan). Manually added labels (false negatives) are shown in blue. (E) The network performance was evaluated 
based on the percentage of surface pixels per class for each analyzed slice. The red dots indicate the mean percentage and red bars the SD (Scale bar, 2 µm.)
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rapidly segmented, reconstructed and analyzed (Fig. 3A). Manual 
corrections were performed where necessary to close any open loops 
and separate the filopodia objects from the plasma membrane, 
from which they originate (Methods).

As expected, we found that the spatial orientation of the filopo-
dia affected their analysis in 2D tomogram slices. Filopodia crossing 
a lateral tomographic slice at a low angle would be observed as a 
very elongated ellipse (i.e., having a long first axis length, Fig. 3A). 
Consistent with this observation, we noticed a high variation of 
the first axis length of the filopodia cross-section (302 ± 189 nm). 
The second axis length, more robustly reflecting filopodial diame-
ter, was with 132 ± 28 nm generally more homogeneous. The 
diameter of filopodia is thus essentially constant but the 3D ori-
entation prevents accurate measurements of volume, surface area, 
and perimeter from 2D cross-sections. It is thus essential to analyze 
entire filopodia from 3D reconstructions.

Our DL–based reconstruction provided the basis for swift 3D 
analysis as well. Using a pixel size of 9.8 nm in all dimensions, we 
found a major axis length of 966 ± 394 nm by fitting an ellipsoid 
to the segmented data. The 3D second axis length also had a 
higher error with 320 ± 141 nm (Fig. 3B). We found that the 
average volume and surface area of filopodia was highly variable, 
with 2.2 ·107 ± 1.7 ·107 nm3 and 6.1 ·105 ± 3.6 ·105 nm2, respec-
tively. However, the surface area to volume ratio was consistent 
with 30.2 ± 5.3 µm−1 (or 0.3021 ± 0.0534 nm−1, respectively) for 
the entire population, indicative of a consistent shape of all filopo-
dia. Taken together, we concluded that the combination of SXT 
with DL image analysis allowed for fast reconstruction and analysis 
of small subresolution 3D structures.

Discussion

In this work, we have developed a deep neural network that allows 
for rapid and robust segmentation and surface reconstruction of 
three-dimensional cryo-SXT data. On average, it recognizes 70% 
of the feature pixels in a cryo-soft X-ray tomogram within 10 min 
or less, regardless of the complexity of the dataset. Hence, highly 
complex datasets such as mammalian cells can be segmented in a 
very short period of time. Even a semimanual segmentation 
requires significantly more hands-on time by the user. Using early 
stopping as well as maintaining sparsity in the annotated features 
in the training data, we intentionally guided the training of the 
network such that the risk of false positives was minimal, reasoning 
that false-positive labels would further increase the connectivity 
of the objects and thus require significant additional manual user 
input for separating objects and correcting the segmentation. We 
are convinced that future iterations with additional training data 
may recognize significantly more features, while maintaining a 
low false-positive rate.

Based on our segmentation evaluation, only about 1.8% or 
1.6% of the automatic label pixels were either false positives or 
reconstruction artifacts on average per slice. These erroneous labels 
could at most times easily be distinguished from cellular features, 
since they were either localized in extracellular space and/or on 
the direct boundaries of the reconstructed volume. The appearance 
of these errors can be further reduced prior to classification with-
out loss of information by cropping the dataset by a few pixels on 
the boundaries to avoid most reconstruction artifacts and by using 
a rough mask to differentiate the cellular volume from extracellular 
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Fig. 3. Quantification of filopodial 3D structure. (A) Representative tomographic slice of an analyzed dataset, overlaid with the automatically generated labels in 
red (i). The yellow box in i denotes the area shown up close in ii. A selection of individual filopodia used for analysis are shown in isosurface renderings, illustrating 
the general rod-like morphology of the filopodia. The box with dashed outline illustrates the orientation of first and second axis lengths on a representative 
filopodium. (B) Dot-plots illustrating the mean first and second axis lengths and perimeter of the 2D cross-sections of the filopodia, as well as the 3D surface 
area, volume and surface area to volume ratio of all of the filopodia analyzed in this study. The red dot indicates the mean, and the bar denotes the SD of the 
respective parameter across the population (n = 59). (Scale bars, (i) 2 µm, (ii) 1 µm, and (ii) Inset 0.5 µm.)D
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space to reduce the presence of false positives. SI Appendix, Fig. S3 
illustrates examples of the falsely labeled reconstruction artifacts 
and false positives that were the most common in our datasets. 
However, we must also acknowledge the potential introduction 
of bias by having a human user interpret and classify automatically 
generated labels.

It is possible to perform the automatic segmentation with addi-
tional filtering to remove small objects, or to perform several iter-
ations of erosion, leading to increasingly thinner contours and 
better object separation, as well as increasing the rate of false neg-
atives. Depending on the intended use of the segmentation, i.e., 
rapid inspection vs. accurate analysis, as well as the size of the 
smallest objects of interest, tweaking of filtering and erosion set-
tings may be useful for optimal results.

Filopodia Analysis. To illustrate the utility of our deep network, 
we quantified several spatial parameters of a high number of 
filopodia. We found that 2D analysis is not sufficient for the 
accurate determination of critical parameters, but 3D analysis 
after fast reconstruction through our algorithm allows for the swift 
determination of filopodial volume and surface area. These values 
have a high SD, since the measured population represents filopodia 
in various states of extension and retraction of these highly dynamic 
and often transient structures (57). The measurement of filopodial 
dimensions is of great interest, due to their important role in cell 
migration and cancer (56, 58–61). Our method will allow for a 
fast and convenient readout at the nanoscale and opens broad 
avenues of research on filopodial growth.

Advantages of our DL Approach. Our proposed deep network 
provides several key advantages for segmenting cryo-SXT data:

Using this network, a segmentation can be produced in less 
than 10 min on a modern GPU. This dramatically simplifies and 
accelerates the data analysis step to the point where data can 
already be analyzed at the synchrotron during the acquisition of 
the tomogram. This saves not only a significant amount of time, 
but also enables researchers to learn from their data faster and 
potentially adjust critical sample parameters before acquiring the 
next datasets, thereby increasing the quality of the data they 
obtain. This is especially important since cryo-SXT is predomi-
nantly available at synchrotrons, which only allows for limited 
amounts of beamtime.

The manual input required for obtaining a 3D segmentation 
of the data is significantly reduced, saving time and providing 
more objective segmentation results. The time required for a full 
segmentation of a dataset is considerable, so that users may focus 
their segmentation efforts on only a part of their data, looking for 
an expected result. An unbiased, automated segmentation can help 
in revealing more subtle or unexpected changes in the cells under 
the experimental conditions. At the same time, it becomes possible 
to generate statistically relevant amounts of data in a reasonable 
timeframe. This allows to take advantage of the full potential of 
cryo-SXT in indiscriminately visualizing all carbon-dense cellular 
structures, such as membranous and cytoskeletal structures.

Our network can be retrained with new training data. This 
should allow to improve the network’s performance under specific 
tomographic reconstruction conditions, or when different cell 
types other than adherent mammalian cells are being investigated. 
Thanks to the high processing speed and accuracy, it is much faster 
to generate a high number of training data based on preliminary 
segmentations, instead of manually segmenting a comparable 
amount of data. This can also be helpful for experimenting with 
other DL tools.

The output data of the network can be exported as common 
file formats, including .TIFF format and thus easily imported into 
a variety of programs commonly used by biologists, such as FIJI 
(62) or Microscopy Image Browser (MIB) (63). This ensures an 
easier integration into the user’s individual image processing and 
analysis workflow.

Remaining Challenges. A few issues remain to be addressed 
in the future. While cryo-SXT as a method allows for rapid 
acquisition of a large portion of a cell, this imaging technique is 
still predominantly available at only a few synchrotron facilities 
worldwide. Laboratory-based cryo-soft X-ray microscopes are 
under development, but are currently not capable of achieving 
results of comparable quality. The limited accessibility of this 
technique, together with the diversity of applications and 
generated datasets results in a scarcity of comparable training data 
for effective training, which was one of the central challenges of 
this work.

The interior ultrastructure of mammalian cells is often highly 
complex, with many organelles in close proximity or even in direct 
contact with each other. This high degree of connectivity among 
the organelles poses a problem of object separation. This network 
was designed to rapidly and objectively segment all membranous 
structures of the cell. A user interested in separately quantifying 
one organelle from another must still invest manual effort in clas-
sifying and separating the objects (i.e., the organelles) from each 
other. This can be observed in SI Appendix, Figs. S6 and S7, where 
several organelles were joined together during the 3D segmenta-
tion procedure. The high speed and accuracy of our automated 
segmentation will now help to generate sufficient training data 
for such a classification network, which will learn to distinguish 
the major organelle types present in mammalian cells and assist 
in separating objects.

Finally, our automated procedure can be further improved to 
address the complications introduced by the missing wedge prob-
lem. This problem arises from incomplete rotation of a tomo-
graphic specimen, and cannot be avoided when imaging specimens 
grown on a flat substrate. Reconstruction of data with a missing 
wedge leads to blurring, elongation, and ray artifacts, which may 
obscure actual cellular features. As a consequence, cellular features 
distorted by missing-wedge artifacts become very difficult to dis-
cern, even for the human eye. Such cases formed only a small part 
of our training data space, and so our network is not yet suffi-
ciently well trained to compensate for these artifacts. This will be 
overcome as the network is exposed to more and more data which 
suffer from such artifacts, and so with time the network will learn 
to more accurately segment features obscured by missing-wedge 
artifacts.

Conclusion

In conclusion, we present here a convolutional neural network 
that dramatically reduces the manual effort and time required for 
segmentation of cryo-soft X-ray tomographic datasets. We show 
that the network correctly recognizes about 70% of the features 
present in different datasets correctly and thus allows for an instant 
assessment of the dataset. This will allow soft X-ray microscope users 
to analyze their data more rapidly, efficiently, and objectively, and 
thereby optimize their microscope time, which is constrained by 
the heavy demand for these instruments at synchrotron beamlines. 
Furthermore, our work opens the door to the generation of statis-
tically relevant amounts of data on large cytosolic volumes from 
many cells. This will be of great importance in the quantitative 
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investigation of the organization and reorganization of the cellular 
organelle complement.

Methods

Sample Preparation. Crandell-Rees feline kidney (CRFK) cells were cultivated in 
DMEM with 4,5 g/l D-glucose, supplemented with 2 mM glutamine and 10% FCS 
inside a humidified incubator at 37 °C. For preparing specimens, Quantifoil R2/2 
AuG200F1 finder or Au-HZB-2 grids (Quantifoil Micro Tools GmbH, Germany) were 
first cleaned for 30 s at maximum power in a Diener Zepto plasma cleaner (Diener 
Electronic, Germany), then sterilized in 70% ethanol and placed inside empty wells 
of a 24-well plate. After letting the remaining ethanol evaporate, fresh full medium 
was added and subsequently CRFK cells were seeded, such that they had reached a 
confluency of 70 to 80 % the next day, when the cells were either fixed for two hours 
at room temperature in freshly prepared 2% glutaraldehyde or directly plunge-frozen 
in liquid ethane. The frozen specimens were stored in liquid nitrogen until imaging.

Cryo-Soft X-Ray Tomography and Tomographic Reconstruction. All acquisi-
tions were performed at the U41 beamline at the BESSY II synchrotron facility, unless 
specifically mentioned otherwise. Tilt images ranging from ± 60° (round Quantifoil 
grids) or ± 65° (HZB-2 grids) with an increment of 1° were acquired at 510 eV with 
a 25 nm Fresnel Zone Plate (FZP). Tracking, alignment, and tomographic reconstruc-
tion were performed using 30 iterations of the simultaneous iterative reconstruction 
technique (64) in IMOD (65), using gold nanoparticles as fiducial markers.

Deep Network for Image Segmentation. The model shown in Fig. 1 is an 
end-to-end convolutional feed-forward network, taking 2D slices of cryo-SXT tomo-
grams, and processing them to two concurrent outputs, respectively, from “image” 
and “annotation” decoders (48, 50). Convolutional layers of the network apply a 
convolution with a learnable kernel plus an additive bias, followed by the non-
linear activation function g . Thus, for image X being transformed by the network, 
Xn+1 = g

(
Wn ∗ Xn + bn

)
 , with Wn and bn being the trainable kernel and the bias, 

respectively. We have used rectified linear unit (ReLU) as the activation function 
g throughout the network. Each individual convolution step in the network is 
composed of mini “bottle-neck” convolutional blocks, as described by He et al. 
(50). In these blocks, the number of image channels is reduced by a convolution 
step with a kernel of size 1 × 1, followed by the main convolution with a 3 × 
3 kernel, and a mapping back to the desired output channels by another 1 × 1 
kernel. This setup reduces the number of trainable parameters in the network, 
while enhancing the abstraction learned by each convolution step.

Data Pipeline. The manually annotated data consist of 79 pairs of raw 1324 
× 1284 pixel slices from a single tomogram and their corresponding manually 
fully annotated binary labels. For semisupervised training, these data are com-
plemented with 513 unannotated slices from 17 different tomograms, for which 
manual labels are not produced. These unannotated data are used for training 
the image-reconstruction branch of the network.

The network is trained on 256 × 256 pixel images, or image/label pairs, 
depending on which dataset the input data are taken from. We designed an 
image augmentation procedure, which randomly crops the input slices into these 
smaller images, while additionally applying random 90° rotations and horizontal/
vertical reflections (SI Appendix, Fig. S1B). We have implemented the entire data 
preparation and augmentation pipeline using the TensorFlow (66) Dataset API, 
which benefits from automated GPU processing, hence offering uninterrupted 
training of the network while augmented data are prepared on-the-fly. The sto-
chastic manner in which the training data are prepared and fed to the network 
results in a more robust prediction as well as less chance of overfitting. The orig-
inal data are split 90 to 10% between training and hold-out test sets before the 
augmentation, with the quality of image reconstruction and the accuracy and 
precision of label prediction verified on the test set.

Training and Optimization. For the decoder performing image segmentation, 
we have used the pointwise Huber loss between manual ( Y  ) and predicted ( X ) 
annotations (67),

LH =

⎧
⎪⎨⎪⎩

1

2
(X−Y )2, �X−Y �<𝛿

−1

2
𝛿2+𝛿 ⋅ �X−Y �, otherwise

where LH is the Huber loss, and δ is a scalar parameter, which we set to 0.1 in 
training our model. This function provides the robustness of the l1 -norm with 
constant gradients, with well-behaving near-zero gradients similar to the l2 -norm. 
We found Huber loss to produce the sharpest segmentations with minimal arti-
facts. For the image reconstruction decoder, we have used as the loss function 
a combination of the Huber function and the structural similarity index (SSIM), 
proposed by Wang and Sheikh (68),

 

where LS is the image structural similarity loss, µX and µY are the mean pixel 
intensities of the respective images, σX and σY are the corresponding SDs, and 
σXY is the covariance between the two images. C1 and C2 are parameters of SSIM, 
which we, respectively, chose as 0.01 and 0.03. In SSIM, mean and (co)variances 
are measured locally using a Gaussian kernel. We chose the size of the Gaussian 
kernel to be 11 pixels, with a SD of 1.5 pixels. This choice has been backed by the 
systematic study of Zhao et al. on the loss functions for image reconstruction (69).

During the forward pass and the subsequent backpropagation, gradients of 
the loss function with respect to trainable parameters are calculated and used by 
the optimizer algorithm to update these parameters (22). We monitor the training 
procedure by comparing the loss between training and 10% validation datasets. 
We stop the training loop when the validation loss plateaus, which implies the 
network might begin to overfit the training data.

The performance of the trained network is evaluated based on the following 
scores:

 

Hyperparameter Optimization. We considered three classes of hyperpa-
rameters to be manually optimized based on the test data. i) the decision 
between the presence or the absence of the image decoder resulting in the 
supervised-only versus semisupervised learning. We showed the significance 
improvement resulting from this choice (Fig. 2A), resulting in the decision to 
move forward with the semi-supervised approach. ii) the model complexity 
pertaining to the number of convolutional kernels considered in each layer of 
the network. We considered four choices for this hyperparameter, controlled 
by a tunable scaling parameter that determines the number of kernels when 
setting up the network layers. Our choices result in the network being set up 
with the range of 1 million to 76 million trainable parameters (SI Appendix, 
Fig. S7A). Both the accuracy and the precision of the segmentation task improve 
with the model complexity in the studied range. Neither of the two scores show 
hints of overfitting (SI Appendix, Fig. S7A). The improvement however has an 
asymptotic trend, seemingly saturating with models more complex than what 
we used here. iii) the learning rate used for training the network. We experi-
mented with values in the range 10−5 to 0.001, and found the best result in 
terms of the accuracy and the precision to be obtained for the value of 10−4. 
With the learning rate of 0.001 and higher, the network essentially fails to train  
(SI Appendix, Fig. S7B).

3D Volumetric Reconstruction. The two-dimensional outputs of the segmenta-
tion network provide a voxelized representation of the membranes in the tomo-
gram. We have applied the well-established marching-cube algorithm to obtain 
surface reconstructions from the voxels (70). The implementation from the SciPy 
package has been used for this purpose (71). The PyVista python package has 
been used for processing of the 3D data (72). Final renderings are achieved via 
the POV-Ray package (73).

Output Export and Import into Software for Downstream Applications. 
The output labels generated by the deep network were exported as stacks 

LS = 1 − SSIM (X, Y ),

SSIM (X, Y ) =
2�

X
�
Y
+ C1

�2

X
+ �2

Y
+ C1

⋅

2�
XY
+ C2

�2

X
+ �2

Y
+ C2

,

accuracy=
true pos. + true neg.

all pos. + all neg.
, precision=

true pos.

all pos.
,

recall=
true pos.

true pos. + false neg.
, F1−Score=

2

precision−1+ recall−1
.
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of binary mask images in .TIFF format. These stacks were then imported into 
MIB (63). By thresholding, the binary labels could be quickly selected and used 
as a mask to be overlaid on the original input image. This result was saved as 
a .MODEL file and could be used for inspection of segmentation quality, label 
classification, manual complementation of labels, and quantification of objects.

Evaluating Segmentation Quality. In order to determine the quality of the 
automatic segmentation results, an expert user manually inspected the pre-
dicted labels of 59 randomly selected slices of three representative tomographic 
datasets, covering the entire range of the datasets by setting appropriate inter-
vals between the slices. The labels generated by the network were overlaid 
with the corresponding, original slice and then classified into correct labels 
(a feature was being recognized correctly), false positives (a label was placed 
where no feature was present) and reconstruction artifacts (a label was placed 
where the cryo SXT tomographic reconstruction algorithm produced an obvious 
image artifact). Cellular features that were missing in the network’s segmen-
tation were manually labeled and classified as false negatives. The evaluation 
was performed by scoring the number of pixels of each category for each slice 
analyzed versus the total amount of labeled pixels. The inspection, classification, 
and evaluation of slices were all performed in MIB (63). Due to the missing 
wedge problem that arises in tomographic techniques with incomplete sample 
rotation and the limited depth of focus of the 25 nm FZP, some apparent features 
were present but too blurred for a human user to confidently trace the feature 
contour with a four pixel brush tool. These features were excluded from the 
analysis, since training a network to recognize such features would lead to a 
significant increase in false positives.

Filopodia Analysis. A total of sixty automatically labeled filopodia from three 
different datasets were selected for analysis. Filopodia had to be covered entirely 
by the reconstructed volume, i.e., filopodia protruding beyond the x, y, or z bounda-
ries of the field of view were excluded, since 3D parameters cannot be conclusively 
determined from incomplete objects. Similarly, filopodia partially interrupted by 
e.g., reconstruction artifacts from gold fiducials were also excluded, since these 
artifacts prevent unambiguous labeling of underlying structures in tomographic 
datasets.

The automatically generated labels were inspected individually for each 
filopodium, ensuring that the entire structure from its base at the plasma 
membrane to the tip of its protrusion was correctly labeled by the network. 
While doing so, the object was manually separated from any adjacent labels, 
which arose most frequently most frequently at the filopodial juncture with the 
plasma membrane. Any open loops of the labels were closed and the contour’s 

shape filled, such that the volume and surface area values could be determined 
accurately. This process took approximately 2 h for each of the three tomograms, 
with most of the time required for separating the filopodia labels from the 
plasma membrane labels. The isolated and filled objects were then quantified 
both as a series of 2D objects and as a fitted ellipsoid around the 3D object 
using the built-in quantification toolbox in MIB (16). For 2D quantification of 
each individual filopodium, the mean and SD of all values in all slices of its 
component 2D objects were determined. The final quantification of all filopodia 
is based on the mean and SD of all 59 individual means (2D) or 3D parameters, 
respectively. For calculating the nanometer-scale values, an isotropic voxel size 
of 9.8 nm was used.

Data, Materials, and Software Availability. The deep learning software 
developed for this study is publicly available via the GitHub repository under 
the MIT license https://github.com/noegroup/deep_sxt  (74). The tomographic 
X-ray datasets are accessible under EMPIAR-11392 upon publication of this manu-
script (75). The data used in training, evaluation and hyperparameter optimization 
procedure are accessible from the public repository http://dx.doi.org/10.17169/
refubium-37222 (76).
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