
Chapter 4

Matching Special Shape Classes
Under Translations

In this chapter we again consider matching two shapes under translations. However, this time
we exploit the structure of certain special shape classes to speed up the algorithms. We mainly
consider the (directed) Hausdorff distance, for which speed-ups can be achieved for a special
type of terrains (see Section 4.1.2) and for convex polyhedra (see Section 4.2). For terrains we
also consider the perpendicular distance under translations, since the perpendicular distance
is a natural distance measure on terrains.

4.1 Matching Terrains

Since matching of arbitrary polyhedral sets is very time consuming we consider in this section
the case of terrains: To the best of our knowledge there is no other algorithm known which
matches two terrains in higher dimensions.

In Section 4.1.1 we compute the translation that minimizes the perpendicular distance
between two terrains in two or three dimensions. In particular, if the complexities of the
terrains are m and n, respectively, the runtime for d = 2 is O(mn log(mn)α(mn)), and
for d = 3 it is Oδ((mn)2). Here, α(mn) is the extremely slow growing inverse Ackermann
function, see [67].

In Section 4.1.2 we compute the directed Hausdorff distance between two terrains F and G
under translations, where we require that G is a certain type of terrain (an ε-terrain), whereas
F is allowed to be an arbitrary polyhedral set. The results are summarized in Table 4.1. This
notion generalizes to the undirected Hausdorff distance, when both F and G are ε-terrains.
An ε-terrain is a special type of terrain which guarantees a terrain-like property for its ε-
neighborhood.

4.1.1 Perpendicular Distance

In this subsection let two polyhedral terrains F = {(x, f(x)) | x ∈ Df} and G =
{(x, g(x)) | x ∈ Dg} in R

d be given. We will concentrate on the case that d = 2 or d = 3.
Since each terrain intersects every line in ~ed-direction at most once, it is natural to consider
the height difference between points of F and G lying above each other (with respect to the
~ed-coordinate) as a distance measure. We therefore consider the perpendicular distance. Our
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Table 4.1: Results of Section Section 4.1.2 for the decision problem of finding a translation which does
not exceed a given directed Hausdorff distance between a polyhedral set F and a polyhedral ε-terrain
G, |F | = n and |G| = m.

Metric Dimension Runtime
L2, polyhedral d = 2 O(n log2 n + mn log(mn)α(mn))
polyhedral d = 3 Oδ(m2n4)
polyhedral d ≥ 4 O(mdnd2−dαd(n))

task is to translate F in R
d such that Df ⊆ Dg and the maximum perpendicular distance

between F and G restricted to the translated domain of F is minimized. Due to the special
~ed-direction of terrains we consider a translation t′ = (t1, . . . , td−1, td) ∈ R

d to be composed
of a translation t = (t1, . . . , td−1) ∈ R

d−1 and a translation td ∈ R, thus t′ = (t, td). Using
this notation we have F + t′ = {(x, f(x − t) + td) | x ∈ Df}. The problem we wish to solve
in this subsection is:

Problem 5 Let two polyhedral terrains F = {(x, f(x)) | x ∈ Df} and G = {(x, g(x)) | x ∈
Dg} in R

d of complexity m and n, respectively, be given. We wish to compute a translation
(t∗, t∗d) ∈ R

d, t∗ ∈ R
d−1, t∗d ∈ R, such that

δ⊥(F + (t∗, t∗d), G) = min
t ∈ R

d−1

Df + t ⊆ Dg

min
td∈R

δ⊥(F + t′, G) (4.1)

Rewriting δ⊥(F + t′, G) we obtain

δ⊥(F + t,G) = max
x∈Df+t

|f(x− t)− g(x) + td|

= max{ max
x∈Df

(g(x + t)− f(x))− td , td − min
x∈Df

(g(x + t)− f(x)) }

= max{ max
x∈Df

hx(t)− td , td − min
x∈Df

hx(t)) }

with hx(t) := g(x + t) − f(x). Then for each t ∈ R
d−1 the inner maximum is the pointwise

maximum, that is the upper envelope of the functions hx for all x ∈ Df . Observe that
Df + t ⊆ Dg is equivalent to t ∈ Dg ⊕ (−Df ) =: Dh. Then let

h : Dh −→ R ; t 7→ max
x∈Df

hx(t)

be the upper envelope, and

h : Dh −→ R ; t 7→ min
x∈Df

hx(t)

be the lower envelope. Let H and H be the respective graphs of h and h. These graphs are
polyhedral terrains and are, respectively, the upper and lower envelopes of the functions hx,
for all x ∈ Df .
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Lemma 6 Let F,G,H,H be as defined above. Then H (H) is the upper (lower) envelope,
with respect to the ~ed-axis, of G⊕ (−F ) restricted to the region above Dh.

Proof:

G⊕ (−F ) =
⋃

z∈Dg

⋃
x∈Df

(z − x, g(z) − f(x)) =
⋃

t∈Rd−1

⋃
x ∈ Df

x + t ∈ Dg

(t, g(x + t)− f(x))

The lemma now follows directly from the definitions of H and H.

Reformulating (4.1) we thus have

δ⊥(F + (t∗, t∗d), G) = min
t∈Dh

min
td∈R

max{h(t)− td, td − h(t)} (4.2)

which can easily be simplified to

δ⊥(F + (t∗, t∗d), G) = min
t∈Dh

h(t)− h(t)
2

=
h(t∗)− h(t∗)

2
(4.3)

with t∗d = (h(t∗) + h(t∗))/2. (4.4)

(t∗, t∗d) ∈ R
d with t∗ ∈ R

d−1 and t∗d ∈ R is the translation which attains the minimum in (4.3).
Since f and g are piecewise linear, G⊕ (−F ) is polyhedral. Let L be the upper and L be

the lower envelope of G ⊕ (−F ). Clearly L and L are also piecewise linear, thus polyhedral
terrains. The restrictions H of L and H of L to the region above Dh are also piecewise linear
since Dh is piecewise linear. Therefore, h− := (h−h)/2 is also piecewise linear, as well as the
terrain H− := {(x, h−(x)) | x ∈ Dh} it induces. The simplicial partition Mh− of its domain
is by Lemma 6 the overlay of ML and ML restricted to Dh. The linear function associated
with each cell C in Mh− is then simply half the difference of the linear functions assigned to
the two cells in Mh and Mh that contain C. In order to compute topt, it suffices to minimize
(4.3) over all vertices in Mh− . Since H− is piecewise linear this yields the optimal solution.
This leads to the following algorithm:

1. Compute the upper envelope L and the lower envelope L of G⊕ (−F ). The Minkowski
sum of two unions of objects is the union of the pairwise Minkowski sums. We consider
for each (d − 1)-simplex φ in −F and each (d − 1)-simplex γ in G the Minkowski sum
γ ⊕ φ. This Minkowski sum is the (d-dimensional) convex hull of d2 points and has
therefore a constant complexity and can also be computed in constant time for d is
considered to be constant. G ⊕ (−F ) is the union of all γ ⊕ φ, but we do not have to
compute this whole union. We only compute the upper envelope of all γ ⊕ φ. We have
nm different (γ, φ)-pairs. Each γ⊕φ is a convex d-polytope (the Minkowski sum of two
convex sets is convex), whose surface can be triangulated, i.e. partitioned into a constant
number of (d−1)-simplices, see e.g. [61]. Altogether we have O(mn) (d−1)-simplices in
d dimensions. Their lower and upper envelope has complexity O((mn)d−1α((mn)) and
can be computed with a randomized algorithm in expected O((mn)d−1α((mn)) time
and space, or deterministically in Oδ((mn)d−1), see [67].

2. Compute Dh = Dg ⊕ (−Df ). We compute the volume representation for Dh, as in
Section 3.4.2, in O((mn)d−1) time.
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3. Overlay L and L, and clip to within Dh. We compute the overlay of ML and ML,
additionally superimposed with the O(mn) hyperplanes defining Dh. By Lemma 6 this
yields the simplicial partition Mh− .

4. Compute (4.3) for every vertex in Mh− . Let t∗ be a vertex that assumes the minimum.
Plugging t∗ into (4.4) yields t∗d.

In particular, for d = 2 we compute ML and ML in O(mn log(mn)α(mn)) time. In this
case, each domain is a set of O(mnα(mn)) intervals on a line, such that the overlay has
the same complexity and can be computed with a simple sweep in O(mnα(mn)) time. Now
the clipping is done by additionally overlaying the obtained interval partition with Dh, and
computing the desired intervals, again with a simple sweep in O(mnα(mn)) time.

For d = 3, note that the volume representation for Dh consists of the arrangement of
O(mn) lines, see Section 3.4.2. In [67] it is shown that the overlay of ML (or ML) with
O(mn) lines does not increase the complexity of the envelope, and it can also be computed
in the same time. A result in [3, 67] states that the overlay L of ML and ML can be
computed in Oδ((mn)2) time. Both results can be combined to compute the overlay of ML

and ML additionally superimposed with the O(mn) lines defining Dh in Oδ((mn)2) time. The
minimization over all vertices using (4.3) needs time proportional to the number of vertices
processed. We have thus proven the following theorem:

Theorem 4 Let F and G be two polyhedral terrains with complexities m and n. A translation
which minimizes the perpendicular distance between F and G can be computed for d = 2 in
time O(mn log(mn)α(mn)), and for d = 3 in time Oδ((mn)2).

Note that for dimension d = 4 Koltun and Sharir [58, 59] showed that the worst-case
complexity of the overlay of the subdivisions of the domains of the lower envelopes of arbi-
trary trivariate functions of constant algebraic description complexity equals the worst-case
combinatorial complexity of the envelopes. However there is no result that actually computes
the overlay within the same time bounds. For dimensions d > 4 there are currently no results
for the overlay known, only for the region sandwiched between two envelopes, see [41] and
also Theorem 5. ∗

4.1.2 Directed Hausdorff Distance

In this subsection we consider a faster way of matching ε-terrains, which are a special type
of terrains.

Definition 16 For a given ε > 0, and a given metric, a terrain G = {(x, g(x)) | x ∈ Dg} in
R

d is called an ε-terrain iff g(x) is continuous over each connected component of Dg, and the
intersection of Gε with an arbitrary line in direction ~ed is either an interval or empty.

Let a parameter ε > 0, a polyhedral set F = {(x, f(x)) | x ∈ Df} of complexity m,
and an ε-terrain G = {(x, g(x)) | x ∈ Dg} in R

d be given. We consider the decision problem
Problem 4 for which we have to decide if there exists a t ∈ R

d such that the directed Hausdorff
∗After submission of this thesis, Koltun and Wenk [57] generalized the results for overlays of envelopes of

piecewise linear functions, and furthermore Theorem 4, to arbitrary dimension.
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distance ~δH(F + t,G) ≤ ε. Rewriting the result of Lemma 2 we know that this is equivalent
to checking if

I := Gε ⊕ (−F ) 6= ∅ . (4.5)

We will see that ε-terrains have special properties wich allow us to speed up the algorithm
of Section 3.4.

ε-Terrains

We call a metric projectable if the projection in direction ~ed of its closed d-dimensional unit ball
results in its (d− 1)-dimensional unit ball. Clearly the commonly used L2-metric, L1-metric
and L∞-metric are projectable.

We consider different classes and properties of ε-terrains. The first important property is
the following.

Lemma 7 Let G = {(x, g(x)) | x ∈ Dg} be an ε-terrain in R
d for a projectable metric. Then

there exist interior-disjoint terrains Gu, Gl both over the domain Dε
g, and a set S of line

segments in direction ~ed connecting the boundaries of Gu and Gl, such that ∂Gε = Gu∪Gl∪S.

Proof:
Let Gu (Gl) be the set of all upper (lower) endpoints of all
line segments which are obtained as the intersection of a line
in direction ~ed with Gε. Endpoints of degenerate intervals
that consist of one point only are assigned to Gu and to
Gl. Let S consist of all line segments in direction ~ed that
are fully contained in ∂Gε; clearly such a line segment can
degenerate to a point. Then Gu and Gl are both terrains,
and ∂Gε = Gu∪Gl∪S. The projection of Bd

ε in direction ~ed

onto R
d−1 is Bd−1

ε , by the definition of a projectable metric.
Thus Gu and Gl both project onto Dε

g.

Gu

Gl

Lemma 8 Every terrain in R
d which is continuously defined over a convex domain is an

ε-terrain for any ε > 0, with respect to any convex polyhedral metric or the Euclidean metric.

Proof: Let G be the given continuously defined terrain, and let ε > 0. Let l be an arbitrary
line in direction ~ed, and assume for the sake of contradiction that there are three points a, b, c
on l, a below b below c, such that a, c ∈ Gε but b 6∈ Gε. This implies that there cannot be
any point of G in Bd

ε(b). Now let p, q ∈ G such that a ∈ Bd
ε(p) and c ∈ Bd

ε(q). This means in
particular that both p and q are contained in the cylinder l ⊕Bd

ε.
Let p′ (and q′) be the projection of p (and q, respectively) onto the domain Dg of G. By

the convexity of Dg the line segment s between p′ and q′ has to be contained in Dg. From
the continuity property we know that there must exist a path π in G from p to q whose
projection onto Dg is s. Hence, π is contained in l⊕Bd

ε . However, observe that Bd
ε(b) divides

the cylinder l⊕Bd
ε into two parts, and p lies below and q above Bd

ε(b). Thus π has to intersect
Bd

ε(b), which is a contradiction.

Since every connected subset of R is connected, we know that for d = 2 the result of
Lemma 8 holds for any connected domain.

35



Lemma 9 Let G be a terrain of complexity n in R
3, and let ε > 0. Then the complexity of

Gε is Oδ(n2). And even if G is defined over a convex domain there is a lower bound example
of complexity Ω(n2).

Proof: G consists of O(n) triangles, segments, and points which do not intersect in their
relative interior. In [6] it has been shown that the complexity and the computation time for
the ε-neighborhood for such a collection of objects is Oδ(n2). For the lower bound example
we construct a terrain over a rectangular domain which consists of n/2 rectangles and n/2
pyramidal spikes. See Figure 4.1 for an illustration. Let γ be a small constant, and let h ≥ ε.
The rectangles are normal to ~e3 at height h, are adjacent to each other, have width 2ε/(n+1)
in ~e1-direction and have length (ε+γ)n/2. They build the upper half of a convex polyhedron.
The spikes are located right next to the rectangles at distance ε/(n + 1), one after the other
at spacing 2ε + γ in ~e2-direction, i.e., in the direction of the long side of the rectangles.
The spikes have ~e3-height h + ε. The holes between the spikes and rectangles are filled with
the necessary surface patches to build a convex domain. The spikes and the rectangles are
located in such a way, that the ε-neighborhood of every spike intersects the ε-neighborhood
of every rectangle in the overall ε-neighborhood Gε for a total of Ω(n2) intersections. This
construction does not depend on the exact shape of the unit ball, and therefore works for the
L2-metric as well as for other convex metrics.

h

ε

ε

ε
γ

ε

Figure 4.1: Example of a terrain in R
3 defined over a convex domain, whose ε-neighborhood has

quadratic complexity. Left: The terrain. Right: Part of the ε-neighborhood of the terrain.

The Structure of I for ε-Terrains

In the remainder of this subsubsection we assume that G is an ε-terrain for a given parameter
ε > 0. From Lemma 7 we know that for an ε-terrain G the boundary of Gε can be split into
two separate terrains Gu and Gl over the domain Dε

g. Thus, over the domain Dε
g, Gε can be

split into two disjoint parts, Gε = U ∪̇L, where U is the “upper” and L the “lower” part, with
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respect to ~ed. Both U and L are unbounded in the ~ed-direction and bounded by Gu from
below and by Gl from above, respectively.

It suffices to consider Gε only over the domain Dε
g. Thus we can substitute Gε = U ∪̇L

into (4.5) and obtain directly

I = U ⊕ (−F ) ∩ L⊕ (−F ) . (4.6)

Since Gu and Gl are both terrains we know that

U ⊕ (−F ) = H1 := lower envelope of Gu ⊕ (−F )
and L⊕ (−F ) = H2 := upper envelope of Gl ⊕ (−F )

Let H1↓ be the (d-dimensional) region below H1 and similarly H2↑ the region above H2

(where the above/below direction is with respect to the ~ed-direction). Plugging this into (4.6)
yields

I = H1↓ ∩H2↑ . (4.7)

I is often referred to as the region sandwiched between the two envelopes H1 and H2. Let
γd(n) denote the combinatorial complexity of Gu and Gl. We can construct I by performing
the following steps (implementation details are given in the next section):

• Compute Gu (and Gl) as the upper (resp., lower) envelope of the ε-neighborhoods of
all simplices of G.

• Compute the envelopes H1 and H2. Gu and Gl are composed of γ(n) surface patches
whose shape depend on the underlying metric. We compute H1 and H2 by computing
for each such patch and each a ∈ F the individual Minkowski sums of which there are
O(mγ(n)) many, and finally computing the envelope of these Minkowski sums.

• Compute the sandwich region H1↓ ∩H2↑.

Computing I for ε-Terrains

Let us now consider how fast the algorithm for computing I for ε-terrains can be implemented
for various metrics in various dimensions.

In d = 2 dimensions G consists of n pairwise interior-disjoint line segments and points.
For any convex metric, the ε-neighborhoods of single segments or points are pseudo-disks, i.e.,
the boundaries of two ε-neighborhoods intersect at most twice. In [55] it has been shown that
the union of n pseudo-disks has complexity O(n), hence γ2(n) = O(n). Since G is an ε-terrain
we consider the Minkowski sum of each segment in G with the unit disk B2

ε, and then obtain
Gu as the upper envelope and Gl as the lower envelope of all these Minkowski sums. Since
we know that their complexity is O(n), the envelopes can be computed in γ′2(n) = O(n log n)
time, [67].

For the Euclidean metric, Gl and Gu consist of line segments and circular arcs, two of
which can cross each other at most two times. Now we need to compute the Minkowski sum
of each such line segment or circular arc with each a ∈ F . The case of a line segment is
easy because the Minkowski sum is simply the convex hull of the vector sums of each pair of
endpoints, one from each line segment. For circular arcs the computation becomes a bit more
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Figure 4.2: Two examples of the construction of the Minkowski sum of a line segment and a circular
arc.

tricky, but can still be carried out in constant time by basically copying the circular arc at
both ends of the line segment and adding a copy of the segment between the two points on the
arcs at which the segment is tangent. See Figure 4.2 for an illustration of two cases that can
arise. Therefore H1 and H2 also consist of line segments and circular arcs, have complexity
O(mn2α(mn)), and can be computed in O(mn2α(mn) log(mn)) time, see [67]. Since H1 and
H2 are again x-monotone they can cross each other only O(mn2α(mn)) times, such that a
linear-time sweep suffices to check if I is empty or not. In two dimensions for the L2 metric
we therefore have a runtime of O(mn2α(mn) log(mn)) = O(mn2α(mn) log(mn)). For d = 2 and
projectable polyhedral metrics of constant description complexity, Gu and Gl are piecewise
linear functions, i.e. they consist of O(n) line segments each. In that case the envelopes H1

and H2 have a complexity of θ(mnα(n)) each and can be computed in O(mnα(n) log(n))
time, [67]. This yields a total runtime of O(mnα(n) log(n)).

Let us now turn to three dimensions, and let us consider projectable convex polyhedral
metrics of constant description complexity. For d = 3 we have seen in Lemma 9 that Gε

and therefore Gu and Gl have complexity Oδ(n2). But since G is an ε-terrain we can as well
consider the Minkowski sum of each triangle, segment, or point in G with the polyhedron B3

ε,
and then compute the upper envelope of all the obtained simplices (which yields Gu), and the
lower envelope (which yields Gl). The Minkowski sum of two polyhedra is the convex hull of
the vector sums of each pair of extreme points, one from each of the two polyhedra. Thus
these Minkowski sums can be computed in constant time. The complexity of the envelope of
O(n) simplices is O(n2α(n)) and it can be computed in deterministic Oδ(n2) time, for δ > 0,
or in randomized expected O(n2α(n)) time, [67]. Now we compute the Minkowski sums for
each of the O(n2α(n)) surface patches (of constant description complexity) on Gu or Gl with
each a ∈ F . Note that in the case of the L2-metric Gu and Gl can also contain pieces of
ε-spheres and ε-cylinders. For these the computation of the Minkowski sum with a triangle of
F is not straight-forward. In principle a similar approach as the two-dimensional case should
apply, however the handling of tangent planes and intersection curve segments seems tricky.
We therefore consider only polyhedral metrics. After that we compute the region I between
the two envelopes H1 and H2 in Oδ((mn2α(n))2) time, see [3], for δ > 0. The algorithm of [3]
computes the overlay of the domains (so called minimization diagrams) of the envelopes H1

and H2 and provides a representation for the two envelopes above each cell. Employing this
information we can check if I = H1↓ ∩H2↑ is non-empty by simply traversing the overlay.
Hence, altogether we need Oδ(m2n4) time.

For arbitrary d > 3 and projectable convex polyhedral metrics of constant description
complexity one can try to apply the same technique. The complexity of Gu and Gl is
O(nd−1α(n)), and they can be computed in deterministic Oδ(nd−1) time, or in randomized
expected O(nd−1α(n)) time, see [67]. However for this case it is only known that the region
between two envelopes has the same complexity as the envelopes themselves, therefore in our
case O((mnd−1α(n))d−1α(mnd−1α(n))), see [41]. Also note the recent result by Koltun and
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Sharir [58, 59], who bound the complexity of the overlay of two minimization diagrams of
two envelopes of arbitrary trivariate functions of constant algebraic description complexity.
However, we are not aware of an algorithm that actually computes either the region sand-
wiched between two envelopes, or the overlay of the minimization diagrams for dimensions
d > 3.† A brute force approach to construct I is to compute the d-dimensional arrangment of
all O(mnd−1α(n)) Minkowski sums of a triangle on Gl or Gu with a triangle on F , and then
traverse all d-cells of this arrangement in order to check if at least one cell is contained in I.
This needs time O((mnd−1α(n))d) = O(mdnd2−dαd(n)).

Altogether we showed the following results:

Theorem 5 Let F be a polyhedral set and G be a polyhedral ε-terrain in R
d, with complexities

m and n respectively. We can solve Problem 4, i.e., answer the decision problem for the
directed Hausdorff distance under translations for the following cases:

• For d = 2 and any projectable convex polyhedral metrics of constant description com-
plexity, we can solve Problem 4 in O(mnα(n) log(n)) time.

• For d = 2 and the Euclidean metric, we can solve Problem 4 in O(mn2α(mn) log(mn))
time.

• For d = 3 and any projectable convex polyhedral metrics of constant description com-
plexity we can solve Problem 4 in Oδ(m2n4) time.

• For d ≥ 4 and any projectable convex polyhedral metrics of constant description com-
plexity we can solve Problem 4 in O(mdnd2−dαd(n)) time.

If both F and G are ε-terrains, then we can apply the same approach as before. We split
∂F into Fu and Fl, and define UF and LF to be the region above Fu and below Fl. We call
those regions for G now UG and LG. Then we have to compute IF ∩ IG where

IF := UF ⊕ (−G) ∩ LF ⊕ (−G)
IG := UG ⊕ (−F ) ∩ LG ⊕ (−F ) .

This is equivalent to computing

HG
1 ↓ ∩HF

1 ↓ ∩HG
2 ↑ ∩HG

2 ↑

where HG
1 is the lower envelope of Gu⊕ (−F ), HG

2 the upper envelope of Gl ⊕ (−F ), HF
1 the

lower envelope of Fu ⊕ (−G), HF
2 the upper envelope of Fl ⊕ (−G).

Since we have two lower envelopes and two upper envelopes we can simply compute
HF,G

1 as the lower envelope of Gu ⊕ (−F ) ∪ Fu ⊕ (−G), and HF,G
2 as the upper envelope of

Gl ⊕ (−F ) ∪ Fl ⊕ (−G), and know that the following holds:

HF,G
1 ↓ ∩HF,G

2 ↑ = HG
1 ↓ ∩HF

1 ↓ ∩HG
2 ↑ ∩HG

2 ↑

Thus the same argumentation as above applies to this case, however with the time com-
plexities symmetric in n and m:

†Note that in [59] Koltun and Sharir give a rough sketch how to compute the space of hyperplane transversals
in four dimensions, which is a special case of the region sandwiched between two envelopes. If this technique
applies to the general case, then we could apply it to our problems, too.
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Corollary 5 Let F and G be polyhedral ε-terrains in R
d, with complexities m and m respec-

tively. Let N = m + n. We can solve Problem 2, i.e., answer the decision problem for the
undirected Hausdorff distance under translations for the following cases:

• For d = 2 and any projectable convex polyhedral metrics of constant description com-
plexity, we can solve Problem 4 in O(N2α(N2) log(N)) time.

• For d = 2 and the Euclidean metric, we can solve Problem 4 in O(N22α(N2) log(N))
time.

• For d = 3 and any projectable convex polyhedral metrics of constant description com-
plexity we can solve Problem 4 in Oδ(N6) time.

• For d ≥ 4 and any projectable convex polyhedral metrics of constant description com-
plexity we can solve Problem 4 in O(Nd2

αd(N)) time.

Note that the restriction to ε-terrains is by Lemma 8 no restriction for terrains defined
continuously over a convex domain.

We would now like to be able to apply an optimization scheme like parametric search to
finally solve the optimization problems. However we are not aware of parallel versions of the
envelope algorithms we used. But we can of course apply binary search on ε. Note that this
can only be done if the terrains under consideration are ε-terrains for the range of ε to be
searched. Recall that terrains defined over a convex domain are ε-terrains for any ε > 0.

4.2 Matching Convex Polyhedra

In this section let A and B be two bounded convex polyhedra in R
d. Amenta has shown

in [19] that the computation of the minimum Hausdorff distance under translations for two
convex polyhedra can be expressed as a lexicographic convex program. However an actual
implementation has only been given for two dimensions. For higher dimensions it has been left
open how to construct these convex constraints such that the lexicographic minimum point
for a constant number of constraints can be computed in constant time. For two dimensions
it has been stated in [19] that this can indeed be done in constant time, although it is not
completely clear how to construct the corresponding cones and compute their intersections,
especially for the L2-metric. Notice that Amenta [19] considers the slightly more general case
of homotheties, which are combinations of translations and scalings.

We first describe how to solve the decision Problem 2: Given an ε > 0, does there exist
a t ∈ R

d such that the Hausdorff distance δH(A + t, B) ≤ ε? For this we consider first
the question concerning the directed Hausdorff distance, if there exists a t ∈ R

d such that
~δH(A + t, B) ≤ ε. From (3.1) we know that this is equivalent to

t ∈ I(ε) := Bε ⊕ (−A) . (4.8)

So our goal is to check if I(ε) 6= ∅, and if so to find one point in I(ε). For this we will con-
struct I(ε). The following construction is based on polyhedral metrics of constant description
complexity. Unfortunately it does not directly carry over to the case of the L2 metric. After
having solved the decision problem we will see that the construction easily generalizes to
solving the optimization Problem 1.
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Two common ways to efficiently represent polyhedra are the V-representation and the
H-representation. In the V-representation a polyhedron is represented by a finite number of
points in R

d whose convex hull forms the polyhedron. In the H-representation the polyhedron
is represented by a finite number of half-spaces whose intersection forms the polyhedron. We
assume that A and B are bounded convex polyhedra which are given in V-representation
A = CH{a1, ..., am} and B = CH{b1, ..., bn} with a1, ..., am, b1, ..., bn ∈ R

d. Note that we
consider the solid polyhedra A and B and not only their boundaries.

First we construct the V-representation for −A = CH{−a1, ...,−am} by reflecting the
points representing A at the origin. Now note that Bε is, in the case of a convex poly-
hedral metric of constant description complexity, the convex hull of all points a + p with
a ∈ {a1, ..., am} and p an arbitrary point of the constant number of extreme points on the
unit ball Bd

ε . Thus Bε is the convex hull of O(n) points.

Lemma 10 Let P and Q be two convex polyhedra in R
d, d ≥ 2. Then P ⊕Q is also a

convex polyhedron. If P is given in H-representation as the intersection of m half-spaces,
then P ⊕Q is the intersection of m half-spaces. If furthermore Q is given in V-representation
with n vertices, then the H-representation for P ⊕Q can be computed in O(mn) randomized
expected time. For d = 2, P ⊕Q can be computed in O(m + n) time.

Proof: Let P be given in H-representation, P =
⋂m

i=1 h+
i , where each hi is an oriented

hyperplane in R
d, h+

i the associated half-space in direction of the normal vector, and h−i
the associated half-space in the opposite direction. And let Q be given in V-representation,
Q = CH{q1, . . . , qn}. Then

P ⊕Q = (
m⋃

i=1

h−i )⊕Q =
m⋃

i=1

(h−i ⊕ CH{q1, . . . , qn})

Now h−i ⊕ CH{q1, . . . , qn} =
⋃n

j=1(h−i + qj) = h−i + q∗i , where q∗i is a vertex in {q1, . . . , qn}
with maximum signed distance‡ to hi. Thus

P ⊕Q =
m⋃

i=1

(h−i + q∗i ) =
m⋂

i=1

(h+
i + q∗i )

is convex. q∗i can be simply computed for each hi using an LP-solver, for example, in O(n)
randomized expected time§ [66]; resulting in O(mn) time altogether. For d = 2 we use a
result of [49] which states that P ⊕Q can be computed in O(n + m) time.

‡Note that the distance in translation space is the Euclidean distance.
§Note that d is assumed to be constant.
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Let d > 2. Clearly Bε = CH{∪n
i=1B

d
ε(bi)} which is the convex hull of O(n) points,

assuming Bd
ε to be a polyhedron of constant description complexity. Thus we compute an

H-representation for Bε by applying a convex hull algorithm which runs in O(nb(d+1)/2c)
time, see [33] for example. The complexity, i.e., the number of faces of all dimensions is
O(nbd/2c). We take all O(nbd/2c) facets and extend them to their affine hulls. This yields
an H-representation for Bε. Now we can apply Lemma 10 to compute the H-representation
for I(ε), which consists of O(nbd/2c) half-spaces, in O(mnbd/2c) expected time. In order to
obtain one point in I(ε), or to check if I(ε) is empty, we apply an LP solver which runs in
time proportional to the number of defining half-spaces, thus in O(nbd/2c) expected time. For
d = 2, Bε can be computed in O(n) time and I(ε) can be computed in O(m + n) time, see
[49].

Theorem 6 Let A and B be two convex polyhedra in R
d given in V-representation with m

and n vertices, respectively. Let ε > 0. Then we can find a translation t with ~δH(A+t, B) ≤ ε,
if there exists one, in O(mnbd/2c + nb(d+1)/2c) randomized expected time for d > 2, and in
O(m + n) time for d = 2.

We can apply this result directly to the case of the undirected Hausdorff distance: For
this we have to check if I(ε) ∩ I ′(ε) 6= ∅ with I(ε) := Bε ⊕ (−A) and I ′(ε) := Aε ⊕ (−B). So
we construct the H-representation for I(ε), and symmetrically the H-representation for I ′(ε).
This can be done in O(mnbd/2c + nb(d+1)/2c + nmbd/2c + mb(d+1)/2c) expected time, resulting
in a collection of O(nbd/2c + mbd/2c) half-spaces, which we plug into an LP solver to obtain a
t ∈ I(ε) ∩ I ′(ε) if there exists one.

Corollary 6 Let A and B be two convex polyhedra in R
d given in V-representation with m

or n vertices, respectively. Let N = n + m and let ε > 0. Then we can find a translation t
with dH(A+ t, B) ≤ ε, if there exists one, in O(mnbd/2c +nb(d+1)/2c+nmbd/2c+mb(d+1)/2c) =
O(N d(d+1)/2e) randomized expected time for d > 2, and in O(m + n) time for d = 2.

In order to solve the optimization problem we add ε as another dimension to the trans-
lation/parameter space: Instead of considering only translations in R

d for a fixed ε > 0, we
consider tuples (t, ε) ∈ R

d+1 with a translation t ∈ R
d. We construct I = (I(ε), ε) ⊆ R

d+1

and search for the minimum ε such that I(ε) 6= ∅. The only change in the construction of I in
this higher-dimensional space is that (Bε, ε) for varying ε is the Minkowski sum of B with the
convex cone C = (Bd

ε , ε) in ε-direction with base Bd
ε . Note that for ε, ε′ > 0, Bd

ε is the scalar
multiple (ε/ε′)Bd

ε′ = {(ε/ε′)x | x ∈ Bd
ε′} of Bd

ε′ . Thus Bε = B ⊕Bd
ε = B ⊕ ((ε/ε′)Bd

ε′). It is
well-known that Minkowski sums with scalar multiples are combinatorially isomorphic for all
positive scalars, see [51] for example. Thus we obtain an H-representation for C by extending
every half-space of the H-representation for Bε to a half-space in R

d+1, by adding the ap-
propriate direction vector. This direction vector can be obtained from an extreme boundary
point on the facet of Bε that is contained in the hyperplane bounding the half-space. Hence,
C is the intersection of O(nbd/2c) half-spaces, and we can apply Lemma 10 in the same way¶,
which yields that I is convex and can be computed within the same time bounds as I(ε).
Thus Theorem 6 and Corollary 6 carry over to the following Corollary:

¶The proof in Lemma 10 did not assume boundedness of the polyhedra.
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Corollary 7 Let A and B be two convex polyhedra in R
d given in V-representation with m or

n vertices, respectively. Let N = n+m. Then we can solve Problem 3, i.e., find a translation
t that minimizes ~δH(A + t, B) in O(mnbd/2c + nb(d+1)/2c) randomized expected time for d > 2,
and in O(m + n) time for d = 2.

We can solve Problem 1, i.e., find a translation t that minimizes δH(A + t, B), in
O(mnbd/2c + nb(d+1)/2c + nmbd/2c + mb(d+1)/2c) = O(N d(d+1)/2e) randomized expected time
for d > 2, and in O(m + n) time for d = 2.

Note that for two dimensions the time bounds match the bounds given in [19].
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