Chapter 3

Hausdorff Distance Under
Translations

3.1 Overview

In this chapter we consider the problem of matching two polyhedral sets in d dimensions
under translations using the Hausdorff distance. We will use a configuration-space approach
to solve this task.

3.1.1 Problem Statement

We identify R? with its vector space, and identify a translation in R? with its translation vector
t € R% Let a be a k-simplex, i.e., a = CH(py,...,pr+1), where py,. .., pps1 € R? are affinely
independent points. We denote by a+t := CH(t+p1,...,t+ pr+1) the simplex translated by
the translation t. Similarly, for the polyhedral set A we denote by A+t := {t+aq,...,t+an}
the polyhedral set translated by ¢.

We are now ready to formulate the matching problem we wish to solve:

Problem 1 (Hausdorff Optimization) Let A = {a1,...,a,,} and B = {b1,...,b,} in RY
be two polyhedral sets. We wish to find a translation t* € RY such that

on(A+t",B) =mindg(A+1t,B).
teRd
A way to attack an optimization problem such as Problem 1 is to consider the decision
variant of it:

Problem 2 (Hausdorff Decision) Let A = {a1,...,a,,} and B = {by,...,b,} in R? be
two polyhedral sets, and let € > 0. We wish to decide if there exists a translation t € R? such
that 6u(A+t,B) < ¢.

The directed Hausdorff distance is often used to partially match the first object to the
second one. Also the directed Hausdorff distance can be used to compute the undirected
Hausdorff distance. We define the optimization and the decision problems for the directed
case as well:



Problem 3 (Directed Hausdorff Optimization) Let A = {a1,...,an} and B =
{by,...,bp} in R be two polyhedral sets. We wish to find a translation t* € R? such that

Su(A +t*,B) = min by (A +t,B) .
teR?
Problem 4 (Directed Hausdorff Decision) Let A = {a1,...,an} and B = {by,...,b,}

in R% be two polyhedral sets, and let ¢ > 0. We wish to decide if there exists a translation
t € R? such that éy(A +1t,B) <e.

Note that Problem 2 and Problem 4 are monotone in the parameter €, which means that if
there exists a translation that solves the problem for ¢’ then for all ¢ > &’ there always exists
a translation that solves the problem for €. An efficient algorithm solving such a monotone
decision problem can often be plugged as an oracle into an optimization scheme which solves
the corresponding optimization problem by computing the optimal €, and ideally introduces
only a logarithmic or a poly-logarithmic multiplicative overhead in the runtime. Common
optimization schemes are the parametric search [62], the expander-based approach of [54], or
the randomized approach of [34]. See [4] for an overview. In practice one can always use
unbounded binary search to compute the optimal € to any precision, which introduces only
the logarithm of the precision as an asymptotic factor in the runtime.

Recently more practical variants of the standard parametric search paradigm have been
investigated by van Oostrum et al. [70]. They implemented an object-oriented framework
in order to simplify the usually rather complicated implementation of parametric search.
Furthermore, considering those decision problems for which a generic sorting algorithm can
be used to produce the critical values for the parametric search, where usually Cole’s trick
[39] is applied, they show how to use the well-known Quicksort algorithm for this task. In the
worst case this still introduces a quadratic logarithmic asymptotic factor in the running time.
However experiments in [70] on computing the Fréchet distance for polygonal curves (see
Definition 9 and Chapter 5) showed that in this case the usage of Quicksort even outperforms
the always recommended binary search on the number space for e.

3.1.2 Known Results

Different variants of the above matching problems have been investigated in the literature.
For matching with respect to the Hausdorff distance under translations there are results for
point sites in arbitrary dimensions or for sets of segments in two dimensions; see Table 3.1
for a summary. However in this setting there are almost no results so far in three or higher
dimensions for more complicated sites than points. The only result we recently learned about
is the result by Agarwal et al. [1], who compute the minimum Hausdorff distance under
translations for two sets of Lo-disks in the plane in O(mn(m +n)log®(mn)) time and for two
sets of Lo-balls in three dimensions in O(m?n?(m + n)log®(mn)) time.

For more complicated transformations, such as rigid motions or similarities for example,
there are some results known in two dimensions, which are summarized in Table 3.2. Again,
there are no results for higher dimensions known. However in different settings, such as exact
point pattern matching, there are more results known for complicated transformation classes,
also in higher dimensions, see for example [11, 69], and [15] for a survey.

Another strategy is, not to insist to find an optimal transformation, but to find an approx-
imately optimal transformation with a considerably faster algorithm. Both of theoretical and
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Table 3.1: Overview of known results for computing the Hausdorff distance under translations for sets
of points or sets of non-intersecting segments of complexity m and n. N := max(m,n), and a(mn)
denotes the so-called inverse Ackermann function, see [67].

Dim. | Metric | Points Segments
R! - O((m + n)log(m +n)) [64] -
R? Lo O(nmlog®(nm)) [37] | O(m*n%a(mn)) [53]
Loy O(nm(n +m)log(nm)) [53] | O(m?n?log®(mn) [7]
Ly Q(N®) [65] | Q(NY) [65]
R3 L O(n?log®n) [38] -
Lo O(n’*m?(n +m)*9)  [53] -
R | Lo | O(N™3" log? N) 38 -
QN3] [38] -
Ly O(NT%1+1 1og3 N) 38] -

Table 3.2: Known results for computing the Hausdorff distance between sets of sites in R? under dif-
ferent transformation classes. Sites are either points or non-intersecting segments, and the complexity
of the sets is m and n; N := max(m,n). Tmarks lower bounds for the directed Hausdorff distance.

Transformations | Metric Points Segments

Rigid motions Loy O(m?*n?N log(mn)) [36] | O(m?n3log(mn)) [36]
Ly Q(N®) [65] | Q(NO)T [65]

Similarities Lo, Lo | random. expected for convex polygons: O(n + m)[19]

2 scaling factors | Lo Q(NT) [65] | Q(N®T [65]

2 scaling factors | Lo QN [65] | Q(N®)T [65]

Affine maps Ly, Lo | Q(N?) [65] | Q(N'2)T [65]

practical interest for this are the so called reference points, see [12, 9] and also Section 3.5.1.
They allow to find a transformation that yields a Hausdorff distance at most a constant
times worse than the optimum distance. This constant is called the loss factor. In [9] it has
been shown that the Steiner point is an optimal reference point, and algorithms were given
for approximating the Hausdorff distance between sets of possibly intersecting segments or
triangles in two or three dimensions, considering different transformation classes. Table 3.3
summarizes the results of [9]. It has to be noted that these approaches do not work for the
directed Hausdorff distance.

For two sets of points, algorithms to approximate the directed Hausdorff distance under
different transformation classes are given in [46]; the results are summarized in Table 3.4. They
are based on a pinning strategy, that fixes one point of the first point set as a representative,
and tries out all translations that map this representative to a point of the second point
set. The algorithms there generalize in a straightforward way to also handle the undirected
Hausdorff distance.
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Table 3.3: Results from [9] for approximately matching sets of sets of m and n possibly intersecting
segments or triangles in two or three dimensions under the Hausdorff distance for various transforma-
tion classes, using the Steiner point as a reference point. Let H(m,n) denote the time to compute the
Hausdorff distance between two sets.

Transformations | Dimension Runtime Loss Factor
Translations 2 O((m +n)log(m +n)) 4/m +1

3 O(H(m,n)) 2.5
Rigid motions 2 O(mnlog(mn)log*(mn)) 4/ +1

3 O((mn)3H(m,n)) 2.5
Similarities 2 O(mnlog(mn)log™(mn)) 4/m+ 3

3 O((mn)3H(m,n)) 4.5

Table 3.4: Results from [46] for approximately matching sets of m and n points under the directed
Hausdorff distance for various transformation classes.

Transformations | Dimension Runtime Loss Factor
Translations 2 O(nmlogn) 2

d O(nmlogn) 2+«
Rigid motions 2 O(n?mlogn) 4

3 O(n*mlogn)) 8+¢
Rotations 3 O(n’mlogn) 44 ¢

3.1.3 Our Contribution

We consider the task of finding a translation which minimizes the Hausdorff distance between
two sets of sites in higher dimensions. The approaches we consider construct the set of
possible translations explicitly in one way or the other. This is what is called a configuration
space approach. Therefore it is unfortunately not straightforward to generalize most of these
ideas to rigid motions since this would involve the construction of arrangements of algebraic
surface patches, for which there are only very limited results so far available. We consider
a few different combinations of sites, metrics, the directed and the undirected Hausdorff
distance, the decision problem and the optimization problem. For some of these cases there
are different approaches applicable which allow a faster computation.

In Section 3.3 we investigate the task of finding a translation which does not exceed a
given directed Hausdorff distance between a finite set A of points and a polyhedral set B. This
approach, which utilizes an idea of [38], relies heavily on the fact that A consists of points only.
In this case one can avoid the construction of the whole configuration space of all possible
translations. We furthermore give a lower bound on the number of combinatorially different
translations when B consists of k-simplices, which generalizes the bound by Rucklidge [65]
for line segments in two dimensions. The results obtained in Section 3.3 are summarized in
Table 3.5. The lower bound that we present in Section 3.3 relies on the fact that both sets
are highly disconnected. In Section 3.4.4 we present the first lower bound for two curves.
We show that for two polygonal curves in the plane of complexities m and n, respectively,
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Table 3.5: Results of Section 3.3 concerning the decision problem of finding a translation which does
not exceed a given directed Hausdorff distance between a set A of m points and a polyhedral set B of

complexity n. The sites in B are non-intersecting.  fmarks lower bounds that use L., only.
Metric | Dim. Sites Complexity Runtime
polyh. | d=3| linesegments | O(m®n?logn), Q(m*n?)*T | O(m*n?log?n)
polyh. | d= triangles 6(m3n3) O(m*n3logn)
Loy d=3| line segments Os(m3n?), Q(m3n?) Os(m*n?)
polyh. | d >4 simplices 6(min?) O(m™1ndlogn)
convex | d>2 | (d— 1)-simplices Q(mn?) -
Loo, Lo | d>2 k-simplices Q(mink+1) -

Table 3.6: Results of Section 3.4 concerning the decision and optimization problem of finding a trans-
lation which minimizes the Hausdorff distance between two polyhedral sets A and B with complexity
m and n, N = max(m,n). The underlying metric is polyhedral with constant description complexity.

Problem | Dim. | Complexity and Runtime
decision | d =3 O(N°log® N)
decision | d >4 O(NT+d)

opt. d>3 O(NT+d1og? N)

there are Q(m?n?) combinatorially different translations for the directed Hausdorff distance
between the two curves under translations.

We handle the case that both A and B are polyhedral sets and we wish to either decide
or optimize the directed or undirected Hausdorff distance under translations, in Section 3.4.
For this approach we have to construct the space of combinatorially different translations.
The results of Section 3.4 are summarized in Table 3.6. In Section 3.5.1 we give a short
introduction to reference points and raise the open problem to compute a reference point of
optimal quality. In Section 3.5.2 we show a very simple generalization of the pinning technique
of [46] to more general sites than points.

The sets A and B we consider in this chapter are either finite point sets or polyhedral sets.
However for special polyhedral sets, such as terrains or convex polyhedra one can derive special
algorithms which run much faster utilizing special properties of the sets. We investigate these
cases in Chapter 4, where we consider the perpendicular distance for terrains, but also the
Hausdorff distance.

3.2 Basic Properties of o

Now let us give some basic properties of the Hausdorff distance under translations. For this
we need the notion of e-neighborhoods.

Definition 12 (s-Neighborhood) Let B C RY, let p be a metric in R, and let ¢ > 0.
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Then
Bf := B & B
is the e-neighborhood of B.

For example, the e-neighborhood of a line segment in two dimensions has a racetrack-like
shape whose boundary consists of line segments and circular arcs. The boundary of the e-
neighborhood of a triangle in R? consists of copies of the triangle itself, and pieces of cylinders
and spheres. Making use of e-neighborhoods we can reformulate Definition 7 and obtain:

Lemma 1 Let A and B be two compact sets, let p be
a metric in R%, and let € > 0. Then

-

u(A,B) <e < AC B°. Be

Proof:  From Definition 7 follows that o (A, B) < e
iff for each x € A there exists a y € B such that p(z,y) < e. 0

For the directed Hausdorff distance under translations we obtain the following reformulation,
which has already been observed in [7, 36]:

Lemma 2 Let A and B be two polyhedral sets in R%, t a translation in R?, and e > 0. Then

Su(A+t,B)<e<=te (| B @(-a). (3.1)
acA

If A consists of points only, (3.1) simplifies to

te (1B —a. (3.2)
acA
Proof:

—

n(A+t,B)<e — A+4+tCB° = NopeaNpea®+t € B°

= t€MueaMweca B —2 = t€UpcaUseca BE—1 <= t€NpenB @ (—a)
0

We call L, := B @ (—a) the a-layer. One way to check if Su(A+t, B) < e is to explicitly
construct (,cq Lq. This is the approach that we follow in Section 3.4. This construction
results in a sequence of set operations on polyhedral sets, when p is a convex polyhedral
metric. When the Lo-metric is considered the boundaries of the e-neighborhoods contain also
parts of spheres and cylinders, such that the set operations have to be performed on these
sets. The explicit computation of (,., L, is very costly but can be applied to arbitrary
sites. In Section 3.3 we generalize the approach by Chew et al. [38], which avoids an explicit
construction and thus yields faster algorithms. However this approach works only in the
restricted case that A consists of points only, and when the directed Hausdorff distance is
considered.
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3.3 Matching Points to Sites

In this section we present a combinatorial approach to decide, for a given € > 0, if there exists
a translation which brings a set of points A = {ay,...,a,} C R? to within directed Hausdorff
distance ¢ from a polyhedral set B = {by,...,b,} € R% In other words, we wish to solve
Problem 4 for the special case that A consists of points only. Our approach is inspired by a
result of Chew et al. [38], who considered the same problem for two point sets in R?. We
show how to apply similar combinatorial ideas to our more general setting.

From Lemma 2 we know that solving Problem 4 is equivalent to deciding if I := (,c 4 La #
(), where L, = B® — a. The algorithm consists of a generation phase followed by a decision
phase. In the generation phase a set M of candidate points is computed, which contains at
least one point per connected component of I. In the decision phase for every point in M it
is checked if it is contained in all layers L,. This is done by performing point location queries
in B® —a.

Consider an L,-metric for fixed 1 < p < oco. Then the e-neighborhood b° of an arbitrary
k-dimensional simplex b in R? is a semialgebraic set involving only polynomials of constant
degree, assuming p and d are constant. A (d — 1)-dimensional face (or (d — 1)-face) of b° is a
maximal connected closed subset of db° which is contained in one algebraic surface. Hence,
each (d — 1)-face is an algebraic surface patch. A k-face of b° is a maximal connected closed
subset of the intersection of a fixed subset of (d — 1)-faces that avoids all other (d — 1)-
faces. Notice that if there are no degeneracies, meaning that all underlying algebraic surfaces
involved in the intersection are distinct, then the intersection of d — k such algebraic surface
patches will result in (possibly several) k-faces. The combinatorial complexity of b° is the
total number of faces of all dimensions. Consider for example the e-neighborhood of a line
segment in R3, with respect to the Lo metric. Its boundary consists of a cylinder patch and
two sphere patches which are the three 2-faces, and of two circles which are the two 1-faces.

This type of description of the boundary of a volume carries over to volumes obtained by
set operations like unions and intersections of several b*, hence to the layers L, as well as to I.
See [8] for more information on algebraic surfaces or surface patches and their arrangements,
and see [2] for a similar boundary representation.

Definition 13 (vx(n), 7.(n)) Let € > 0 be fized, and let p be a fized metric defining B,.
Consider the union of n e-neighborhoods of possibly intersecting k-simplices in R%. We denote
by v (n) the mazimum combinatorial complexity of such a union, and by v;,(n) the worst-case
time to compute one point on every connected component of such a union.

Clearly 7x(n) and 7;(n) are monotone increasing in n. In order to compute the set M of
candidate points we need the following combinatorial lemma:

Lemma 3 Let e > 0 be fized, and let p be a fived metric defining B.. Let A = {ay,...,an} C
R? be a set of points and let B = {b,...,b,} CR? be a polyhedral set consisting of simplices
of dimension at most k, 1 <k <d. Let L, = B* — a.

Then I := (\yen La has O(my(dn)) connected components, and one can construct one
point per connected component of I in O(md’yl’ﬁ(dn)) time.

Proof: For the combinatorial part it suffices to count the number of p-faces on 91, 0 < p <
d, which are not incident to another face of lower dimension. We call these p-faces minimal.

Let f be a minimal p-face of 0I. There are | < d— p layers £ := {Lg,, ..., Lg, } such that
f is contained in a p-face fz of the boundary of the intersection Iy := Ly, N...N Lg,. In fact,
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f has to equal fr, because if there were a point z on f which was not on f, then z would
have to be separated from f by a (u — 1)-face in I, but this either contradicts the minimality
of f, or the connectivity of f,. Hence, every minimal p-face on 91 is a minimal p-face on 01,
for a set of layers L. Since a u-face f € 91 cannot lie in the interior of any of the layers in L,
it is also a p-face of the boundary of the union Uz := L4, U... U L, of the layers.

There are Zld:1 (") = O(m?) possibilities to choose d — p layers, for 0 < y < d. The
union of those chosen layers consists of at most dn e-neighborhoods of b € B and has the
combinatorial complexity 7x(dn). One point on every connected component of the union can
be constructed in 7}, (dn) time. Altogether the combinatorial complexity of I is O(m%y(dn)),
and we can construct one point on every minimal p-face on 01, 0 < p < d, in O(m, (dn))
time. 0

The candidate set M is the set of all points on I that are constructed according to
Lemma 3. M contains at least one point per connected component of I, |M| = O(m®y;(dn)),
and M can be computed in O(m%y}(dn)) time.

In the decision step we compute B® and preprocess it into a point location data structure.
Let B,(n) be the time for the computation and the preprocessing, and let 3,(n) the time for
a point location query. For each point in M we check if it is contained in B¢ — a for every
a € A. The total time needed to check whether I is empty or not is therefore O(md+y, (dn) +
By(n) + mBy(n)m?yx(dn)). Hence we obtain the following general result:

Theorem 1 Let ¢ > 0 be fized, and let p be a fized metric. Let A = {ay,...,a,}+ € R? be
a set of points and let B = {by,...,b,} C R? be a polyhedral set consisting of simplices of
dimension at most k, 1 < k < d. Let B,(n) be the time for computing B* and for preprocessing
it into a point location data structure, and let 3,(n) be the time for a point location query.

Then it can be decided whether there exists a translation t such that gH(A +1t¢,B) <cein
O(m%}.(dn) + By(n) + mT 1y (dn)B,(n)) time.

For reasonable instances! of v, V> Bp and Gy the last summand m&T Ly (dn) B, (n) will dom-
inate the runtime. This is then a factor of mgG,(n) times the combinatorial complexity
O(m9y,(dn)) of I, see Lemma 3.

Before we apply the results of Lemma 3 and Theorem 1 to the different special cases of sites
and metrics, let us first show a lower bound on the combinatorial complexity of the intersection
I of layers. It shows that the upper bound that can be derived on the combinatorial complexity
on [ is in most cases tight or almost tight. See Corollary 1, Corollary 2, and Corollary 4 below.
This lower bound construction generalizes a result by Rucklidge [65] for line segments in two
dimensions.

Lemma 4 Let A be a set of m points in R, d > 2, and let B be a polyhedral set of complexity
n in R that consists exclusively of k-simplices for a fived k € {0,...,d—1}. Lete > 0. Then
for k =d—1 and convex metrics of constant description complexity, as well as for arbitrary
k=0,...,d—1 and the Lo-metric and the Ly-metric the complexity of I = (\,c4 B —a can
be Q(mInF+1) in the worst case.

Proof:  For better readability we assume that m and n are powers of d; the following
construction carries directly over to arbitrary values of m and n. For convenience we construct

fWhich means that v (n) = v4(n) and 8,(n) = 4 (n).
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a set of axis-parallel k-hyperrectangles. In order to obtain simplices we can either divide each
hyperrectangle into a constant number of simplices, or construct for each hyperrectangle a
big simplex of the same dimension that contains this simplex.

Let us first consider the case that k = d — 1. For given e, m,n we choose § < (k+ 1)e/m.
Let [ :== (n/(k+1) — 1)(2¢ + 0), and let J := [0,]] € R. We construct k + 1 groups of
n/(k + 1) k-hyperrectangles, where the hyperrectangles inside each group are parallel, but
hyperrectangles of different groups are orthogonal to each other. In particular, the ¢-th group

of hyperrectangles, i = 1,...,k + 1, is defined as f(®) := {fl(i), . ,f(i) )} where

n/(k+1
Y= (e +6)) x b

A= (=D +2e+8) + J) x J72x {j(2e +0)} x JFH fori=2,.. k+1,
for j=0,...,m/(k+ 1) — 1. We let B consist of all these hyperrectangles.

YRR ARY2R

AAN AN AN AN

m S

I aYaYaYara

NN A AN
18153 —H——H—H 1558
- |
5

Figure 3.1: Lower bound for the overlay of e-neighborhoods for the case of line segments in d = 2
and the Euclidean metric. The figure shows the segments, their e-neighborhoods, and the point set.

Figure 3.2: Lower bound for the overlay of e-neighborhoods for the case of rectangles for d = 3, and
the Euclidean metric. The figure shows only the three groups of rectangles.

For d = 2, B consists of n/2 vertical line segments spaced (2¢ + ) apart, and of n/2
horizontal line segments, see Figure 3.1. The construction for this particular 2-dimensional
case has been presented by Rucklidge [65].

In R? we have three groups of rectangles, see Figure 3.2. In general the k-hyperrectangles
in the i-th group have the i-th unit vector €; as their normal vector.

The set A of points consists of (k + 1) groups of m/(k + 1) points each. The i-th group

of points, i = 1,...,k 4 1, is defined as p() := {p(li), . ,pfg/(kﬂ)} where
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p} = joei

pji= (i—1)(+3e+d)e1+ (j0 —¢e)e; fori=2,....d
for j =0,...,m/(k+ 1) — 1. Thus we have m/(k + 1) points spaced ¢ apart on a line in
é;-direction, for i = 1,...,k+1. See Figure 3.1 and Figure 3.2 for two- and three-dimensional
examples.

In B¢ each f]@ gives rise to a (k + 1)-hyperrectangle of thickness ¢ in é;-direction, for
any norm induced by a convex metric. The caps differ according to the different norms.
By construction every two neighboring hyperrectangles f]@ and f](21 are spaced at distance
2e + 0. Hence, there is a gap of width ¢ between the (k + 1)-hyperrectangle of thickness ¢ in
é;-direction induced by f]@ and f](21 In particular, each such gap is a (k + 1)-hyperrectangle
which is orthogonal to €; and has thickness § in €;-direction, and side-length [ in all other
directions. Note that this gap does not depend on the shape of the caps, and hence not on
the norm.

The points in A are arranged in such a way that if A C B¢ then the i-th point group has
to be contained in the e-neighborhood of the i-th hyperrectangle group. For fixed i, the i-th
point group can be positioned such that the first of two particular consecutive points is to the
left, and the second point to the right of a particular gap in the i-th hyperrectangle group.
Left and right refer here to the €;-direction. Different choices of a consecutive point pair and
gap are combinatorially different since there is no path in translation space between the two
translations that is completely contained in I. There are m/(k + 1) — 1 consecutive point
pairs, and n/(k 4 1) — 1 gaps between e-neighborhoods of hyperrectangles in one group; thus
(m/(k+1) —1)(n/(k+ 1) — 1) different choices. Note that the choice of a point pair and a
gap in the i-th group still allows to shift in all directions different from €; while preserving the
point pair / gap configuration. Therefore we can choose a point pair and a gap in each group
independently, thus obtaining ((m/(k +1) — 1)(n/(k + 1) — 1))4 = Q(m*+ k1) = Q(mind),
since d = k — 1, combinatorially different configurations, which is a lower bound for the
combinatorial complexity of I.

Now let us consider the case of k =0, ..., d—2. In this case the caps of the e-neighborhoods
do have an influence on the construction. We show a construction each for the L., and the
Lo metrics.

Let us first consider the easier case of the Lo, metric. We choose § < de/m. We carry out
the same construction as above in R¥T! for m(k+1)/d points and n/27%~! k-hyperrectangles.
We embed this construction canonically in R, identifying R¥+1 with R*¥+1 x {0}4=+=1 We
stack an identical copy of the constructed k-hyperrectangles at distance 2+ in €} o-direction
on top of the prior constructed hyperrectangles. We continue this copying process in direc-
tions €j4o9,...,€4, doubling the number of hyperrectangles in each step, thus obtaining n
k-hyperrectangles altogether. To the already constructed point set in R¥*! we add m/d
points in each of the directions €9, ..., €y, starting in the origin each and at a spacing of ¢
within each group. From the construction in R¥*1 we obtain Q(m**1n*+1) combinatorially
different configurations. Since the e-neighborhoods in the L., metric are axis-parallel boxes,
we can shift each such configuration by at most € in each of the directions €jo, ...,y with-
out introducing combinatorial changes. In each of those remaining d — k — 1 directions there
is a gap of width § between the two e-neighborhoods of the copies of the hyperrectangles
of one dimension lower. For each of the m/d — 1 adjacent point pairs in the corresponding
point group one can choose which of the points lies on which side of the gap, according to
the direction under consideration. This choice can be done in each direction independently
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since each point group has a diameter of m/dj < . We thus have altogether Q(m?n*+1)
combinatorially different configurations.

)&
@¢

Figure 3.3: An example for 0-dimensional sites (points) in two dimensions. The first layer of disks is
darker, and the copied layer is lighter.

0 xd

The idea for the Ly metric and k = 0,...,d — 2 is basically the same. We also carry out
the first construction in R**! for a fraction of the points and the hyperrectangles, embed
this construction canonically in R?. The construction for the hyperrectangles remains exactly
the same, i.e., we recursively stack identical copies of the lower dimension in one dimension
higher, just as for the case of the L., metric. We will obtain as before Q(m**1nf*1) combina-
torially different configurations from the construction in R¥*!. For the remaining directions
€x12,--.,€q we now have to be careful with the cylindrical parts of the e-neighborhood that
are caused by the Ly metric. Note that these have only to be considered for the remaining di-
rections €9, ..., €y; the argument for the construction in R¥*+1 is not affected by the metric.
The idea in this new setting is basically the same, however we enlarge the spacing between
adjacent points of each point group slightly, and ensure that the diameter of each point group
is small enough, such that shifts still allow two adjacent points in another group to be on two
different sides of a gap.

For this let o := 3m/(3(k + 1) + (d — k — 1)), and choose & := 2¢/(a® + 1). The point
groups for the construction in R¥*! are of size v each. Note that with our choice of a and §
it still holds that for the diameter ad of such a point group ad < ¢ (for all & > 1). For the
remaining directions €9, ..., €y we let the point groups be of size a/3. The point group for
direction €;, k — 2 < i < d, starts at (¢ — «d)é; and consists of /3 points spaced at distance
3§ in direction €;. The reason why the constant 3 appears is due to the shape of the Lq
sphere: The widths of the gaps between two spheres increases when shifting in some direction
€;, see Figure 3.3. Precisely, a shift by p causes a gap of width § + 2(e — v/€? — p). An easy
calculation shows that with our choice of § the gap will be at most 30 when shifting no more
than «d in any direction.

Thus we can, for each of the a/2 — 1 adjacent point pairs in each of the new point groups
choose which of the points lies on which side of the gap, according to the direction under
consideration. From the earlier argument we see that this choice can indeed be done in
each direction independently. Thus we have altogether Q(m?n**1) combinatorially different
configurations. 0O
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Adjusting the technique of the lower bound construction of Lemma 4 to arbitrary other
convex metrics is not quite straight-forward. Even for the Li-metric the construction of the
point sets cannot be carried out in the same way for kK < d — 1, since the gaps between the
Lq-spheres are too large. An approach, which stacks the hyperrectangles in a better “packing”
which reduces the space between the different layers, seems more promising for more general
metrics. In general the stacking rule would then have to depend on the shape of the unit
sphere and on the Minkowski sum of the unit ball with a hyperrectangle.

Note that the construction in Lemma 4 gives the first lower bounds for the directed Haus-
dorff distance under translations for sets of non-point sites in higher dimensions. Replacing
each point in the construction by tiny simplices of higher dimensions, it follows that the lower
bound for the directed Hausdorff distance under translations for two sets of k-dimensional
sites in R? is also Q(mdnk+1).

Now we are ready to consider special cases of sites and metrics and to apply Lemma 3,
Theorem 1, and Lemma 4 to them.

Corollary 1 Let A be a set of m points in R? and let B consist of n line segments in R?.
Then for any convex polyhedral metric of constant description complexity or any Ly,-metric
the mazimum combinatorial complezity of I = (\,c4 B — a is 0(m?n?) and the time to check
if I =10, i.e., to solve Problem 4 is O(m3n?logn).

Proof: Trivially an arrangement of n algebraic arcs of constant description complexity in
R? has complexity y(n) = O(n?). With Lemma 3 and the lower bound of Lemma 4 and
[65] follows the first statement. An arrangement of n algebraic arcs of constant description
complexity in R? can be computed in O(nlogn + k) time [67], where k is the number of
intersections. We therefore have +/(n) = O(n?). In the case of polyhedral metrics a simple
planar point location can be applied, whereas otherwise we have to apply a point location
within an arrangement of algebraic surfaces, see [67], which needs O(n??=3%¢) preprocessing,
where d is the dimension. In both cases a query needs O(logn) time, so that the term
O(m?n?logn) dominates the running time. 0

In two dimensions this approach is about a factor of m or n slower than the approach of
[7]. But let us now turn to three dimensions.

Corollary 2 Let A be a set of m points in R3 and let B consist of n non-crossing line
segments or triangles in R3. Then for any convex polyhedral metric of constant description
complexity the mazimum combinatorial complexity of I is §(m>n3), and Problem /J can be
solved, i.e., it can be checked whether I # () in randomized expected time O(m*n®logn).

If B consists of line segments only, the maximum combinatorial complexity of I is
O(m3n?logn) and the runtime to check whether I # 0, i.e., to solve Problem 4, is ran-
domized expected O(m*n?logn). A lower bound for the combinatorial complexity of I in the
case of the Lo, metric is Q(m3n?).

Proof: Trivially y(n) = O(n?), and since the b¢ are polyhedra we can use the randomized
algorithm by Aronov et al. [21] to compute the union in randomized expected v/ (n) = O(n?)
time. We apply the result for point location among hyperplanes by Chazelle et al. [35]
with which £,(n) = n? and Bq(n) = logn. Applying Lemma 3 and Theorem 1 we obtain a
combinatorial complexity of O(m?®n3) and a randomized expected runtime of O(m*n3logn).
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We are computing unions of Minkowski sums of disjoint simplices with the same e-ball.
For non-intersecting line segments we can apply the result of Aronov et al. [20] for the
union of Minkowski sums, which states that v(n) = O(n%logn) and 7/(n) = O(n?log®n)
randomized expected. Although this result is stated for interior-disjoint polyhedra, it also
applies to possibly crossing line segments, since a small perturbation of the line segments and
points removes the crossings, but preserves the incidence relations of the faces forming the
union under consideration. Applying again the result for point location among hyperplanes we
obtain a total randomized expected runtime of O(m*n?log®n). The combinatorial complexity
is, applying Lemma 3, O(m>®n?logn). For the lower bound we apply Lemma 4.

O

Corollary 3 Let A be a set of m points in R? and let B consist of n non-crossing line seg-
ments in R3. Then for the Lo-metric it can be checked whether I is empty, which solves
Problem 4, in Os(m*n?) randomized expected time, for any & > 0. The mazimum combina-
torial complezity of I is Os(m3n?) with a lower bound of Q(m3n?).

Proof: We apply the result of Agarwal and Sharir [5, 6, 2] which states that in the case of
line segments v(n) = +'(n) = Os(n?), where 4/(n) is the randomized expected runtime. Again
we might need to perturb the input to assure that the line segments do not intersect. For the
point location we apply the result for algebraic surfaces, see [67], which needs Og(n??=3) pre-
processing, where d is the dimension, and O(logn) query time. Plugging this into Theorem 1
we obtain a runtime of Os(m*n?logn). The combinatorial part again follows from Lemma 3,
and the lower bound from Lemma 4. 0

The following corollary states results for arbitrary dimension d > 2.

Corollary 4 Let A be a set of m points in R? and let B be a polyhedral set of complexity
n in R Then for any polyhedral metric of constant description complexity the mazimum
combinatorial complexity of I is 0(mn?) and the time to check whetehr I is empty, which
solves Problem 4, is O(m@*1ndlogn).

Proof: In this case everything reduces to hyperplane arrangements. Trivially vy(n) =
7'(n) = O(n?), and the lower bound follows from Lemma 4. For point location among
hyperplanes we apply again the result of Chazelle et al. [35] with 3,(n) = n? and B,(n) =
log n. Applying Lemma 3 and Theorem 1 we obtain a combinatorial complexity of O(m%n?)
and a runtime of O(m®!n?logn). The lower bound follows again from Lemma 4.

O

The results we have derived in this section are based on arrangement constructions. For
arrangements of algebraic surfaces or surface patches in dimensions d > 3 there are only
limited possibilities to assess their structure. It is possible to construct a point on every face of
the arrangement [25, 27|, or to construct a one-dimensional road map [28], but it is not possible
to construct the whole arrangement. Therefore we could derive the higher dimensional result
of Corollary 4 only for polyhedral distance functions for which arrangement constructions for
hyperplanes can be used. Furthermore, we have derived results for the decision problem only.
In order to determine an optimal translation we need to apply an optimization procedure.
Theoretically one would want to apply the parametric search paradigm, but we are not aware
of efficient parallel versions of our algorithms. In practice one would apply binary search in
order to determine the minimum distance up to a given precision.
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3.4 Matching Two Sets of Sites

Let A= {ay,...,am} and B = {by,...,b,} be two polyhedral sets in R?. We want to compute
a translation ¢ € R¢ that minimizes the Hausdorff distance &y (A + ¢, B) with respect to any
convex polyhedral metric of constant description complexity. Or in other words we wish to
solve Problem 1 for these metrics. We follow the configuration space approach by Agarwal,
Sharir and Toledo [7], in that we explicitly compute (,c4 Lo by constructing arrangements
of hyperplanes. This explains the reason for considering polyhedral metrics only, since the
surfaces needed to represent e-neighborhoods of simplices are all linear, while other metrics
would introduce algebraic surface patches of higher degree for which there is no known general
way to construct a whole arrangement. We first show how to solve the decision problem for
a given € > 0, i.e., solve Problem 2. Afterwards we apply the parametric search technique for
optimization in order to solve Problem 1. For this we have to assume an appropriate notion
of general position for the simplices in the input sets.

3.4.1 Decision Problem

B* B¢ B @ (—a) BE @ (—a)

= 55 Y

Figure 3.4: Construction of I.

For simplicity we first consider the decision problem for the directed Hausdorff distance
only: Given an £ > 0 we wish to check if a t € R? exists such that dg(A + ¢, B) <e. As we

have shown in (3.1), the existence of such a ¢ is equivalent to I := (), 4 B ® (—a) # 0. For
each simplex a € A let x, € a be an arbitrary fixed point in a. We call L, := B¢ @ (—a) the

a-layer. Then from the definition of the Minkowski sum directly follows, taking into account
that the facets of B¢ are exactly the facets of B*:

La = (BF-z)u |J Fo(-a (3.3)
F facet of B®

= (B-z)\ |J Fe(-a (3.4)

F facet of B¢

Each set b° or F' @ (—a) can be represented by a number of surface patches describing the
set boundary. In fact, in the case of a polyhedral metric of constant description complexity
each such set is a convex polyhedron of constant complexity, assuming as usual the dimension
d to be constant. A straightforward way to check if I # () is to construct I by applying the
needed set operations (union, relative complement, intersection) to these polyhedra.
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3.4.2 Arrangements of Volume Representations

Due to the lack of more efficient algorithms for the needed set operations in d dimensions we
represent the volumes by a general arrangement construction. Each volume can be described
by its bounding facets, i.e. (d — 1)-faces, which in the case of a convex polyhedral metric are
parts of hyperplanes. We thus represent each volume by an arrangement of hyperplanes, in
which we equip each facet which is part of the volume describing boundary with a pointer
telling on which side of the facet the described volume resides. In order to support the desired
set operations we allow the pointers to be labeled: For each a € A we have two possible pointer
labels p, and —p,, where the volume being pointed to by a p,-labeled pointer belongs to L,
and a —p,-label describes the complement of L,. No label indicates that the described volume
is neither part of L, nor of L.

Each layer L, is built incrementally, according to (3.4). Simple volumes, like b —z, or F'®
(—a), are constructed by a simple incremental arrangement construction algorithm, see [40],
which constructs the incidence graph of the arrangement of M hyperplanes in #(M?) time.
The facets describing B — z, are equipped with p,-labeled pointers, while those describing
F®(—a) are equipped with —p,-labeled pointers. The overlay of all these arrangements yields
the volume representation for L,. By traversing this final arrangement cell by cell, crossing
cells via facets only, the pointer information can be utilized in order to maintain a counter
of how many layers a certain cell belongs to. All cells contributing their volume to I can be
enumerated in this way. For this and for the parametric search presented in Section 3.4.3
we need to make the assumption that all sites of A and B are in general position. All we
need to guarantee is that every two volumes with different labels cannot touch each other in
a lower dimensional face, other than a facet. A standard way to guarantee this is to assume
that all coordinates of points are transcendentals that are algebraically independent over the
rationals, see [22] for example.

The overlay of two volume representations, described by N and M hyperplanes, respec-
tively, can be computed as follows: First the arrangement of all N + M hyperplanes is com-
puted incrementally in #((N + M)?) time. Then the volume-pointer information of the two
original arrangements has to be transferred to the combined arrangement. This can be done
by traversing the combined arrangment while keeping track of the corresponding position in
the original arrangment to label each facet according to its volume-pointer information in
the original arrangement. All this can be done in time proportional to the complexity of the
collective arrangement.

In general O(n?) is an upper bound for the complexity of B, and the incidence graph
representation for it can also be computed in O(n?) time. We therefore have O(n?) facets
of constant complexity describing one layer, hence O(mn?) facets describing all layers, which
results in an arrangement of complexity O(mdndQ) which can also be computed in this time.
In order to compute the undirected Hausdorff distance we have to overlay the arrangements
for both directed distances, which results in an arrangement of complexity and construction
time O(max(mn®, n?m)).

Assuming general position the traversing of the arrangement in order to find a cell which
is covered by all layers can be done in a depth-first manner at asymptotically no extra cost.

For d = 3 we use the result of Aronov and Sharir [20] which states that the complexity of
B? is O(n?logn) and that an incidence representation for it can be computed in O(n?log®n)
time. Thus in this case we have O(n?logn) facets describing one layer. Hence, the com-
plexity of the intersection is O(max(m?>n%log®n,n*m®log®m)) = O(N?log® N) and it can be
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constructed and traversed in O(max(m?3n%log®n,n*mSlog®m)) = O(N?1log® N) time, with
N = max(m,n).

Theorem 2 Let A = {ay,...,an} and B = {by,...,b,} be two polyhedral sets in R in
general position. Let € > 0, and let N := max(m,n). Considering a convex polyhedral metric
of constant description complexity, Problem 2 can be solved, i.e., a translation t such that
ou(A +1t,b) < e can be constructed, if it exists, in O(Nd2+d) time. For d = 3 this improves
to O(N°log® N) time and O(N?log® N) space.

Of course Theorem 2 also holds for the directed Hausdorff distance, since the arrangement
construction is the same, without overlaying the arrangements for both sides.

3.4.3 Optimization

For the optimization we apply the parametric search paradigm of Megiddo using the algorithm
of Section 3.4.2 as an oracle. Furthermore, we need a parallel version of the oracle. However
we are not aware of a parallel algorithm to compute the union of Minkowski-sum-polytopes.
Therefore we consider only the case of an arbitrary d, and not the improved version for 3
dimensions. An arrangement of n hyperplanes can be constructed in parallel in O(logn)
time using n processors, see Goodrich [47]. The boundary pointers can also be maintained
at no extra cost in this setting. We can therefore implement the decision oracle in parallel
analogously to Agarwal, Sharir, Toledo [7]: After the arrangement is constructed in parallel,
we consider an auxiliary graph which has a node for each cell in the arrangement, and an
arc for each (d — 1)-face in the arrangement. Assuming general position, the depth of each
cell can then be calculated by first traversing this auxiliary graph in an Euler path and
then calculating the depths, i.e. the number of layers covering a cell, with a parallel prefix
algorithm. As stated in [7] this can be done with O(n?) processors in O(logn) time. Using
this algorithm as a parallel oracle in the parametric search paradigm we obtain a runtime of
O(max(n®m® min®)log? N) = O(N¥*?1og? N) with N = max(n,m).

Theorem 3 Let A = {a1,...,a,,} and B = {b1,...,b,} be two polyhedral sets in RY
in general position. A translation minimizing the Hausdorff distance between A and B
under a convex polyhedral metric of constant description complexity can be computed in
O(max(mn®  n¥m)log®(max(m,n))) time.

In order to apply this approach to other metrics, like the Lo-metric, it is necessary to
be able to construct the incidence graphs of arrangements of surface patches in arbitrary
dimensions. There is no algorithm known for dimensions d > 3, except an algorithm which
preprocesses an arrangement of m surface patches into a point location data structure in
O(m?3=3%2) time, see [67].

3.4.4 Lower Bounds

The lower bound of Lemma 4 also applies to the case of two polyhedral sets, by replacing
the points by tiny higher-dimensional simplices. Thus Lemma 4 yields a lower bound of
Q(m?n*+1) for the number of combinatorially different translations for the directed Hausdorff
distance between A and B, if B consists of k-simplices. Unfortunately this leaves a very
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large gap between the upper bound O(mdndQ) for d > 4 and O(m3nSlog3n) for d = 3, see
Theorem 2.

The constructions in [65] and Lemma 4 rely on the fact that the point set A is disconnected.
But what about connected shapes like curves — does the connectivity help to compute the
minimum directed Hausdorff distance under translations faster? At least for curves in two
dimension the answer is no. We present a lower bound construction for two polygonal curves
for which the number of combinatorially different translations for the directed Hausdorff
between them is Q(m?n?), where m and n are the complexities of the two polygonal curves.
We use the Lo, metric, but we are positive that the basic idea of the construction can be used
to construct a lower bound for the Euclidean metric also.

Let ¢ > 0 and m and n be given, and set § := ¢/(mn). The lower bound construction
is shown in Figure 3.5. P and @ are both polygonal curves, where P consists of O(m) line
segments and @ of O(n) line segments. @ is constructed in that way that there are two groups
of (n — 1) square holes of sidelength 0 each in @°. Those holes and another vertical hole of
height ¢ are shown in grey in Figure 3.5. P consists of two groups of m — 1 line segments
of length € + (n — 1)d each, where one group consists of horizontal line segments only, and
the other of vertical line segments. The spacing between the line segments is ¢, and they are
arranged in such a way that the first line segment group has to lie in between the first group
of holes, and the second line segment group has to lie in between the second group of holes in
order for P to be contained in Q°. Of course the line segments in P are furthermore connected
by auxiliary line segments in order to form a connected curve. Now one can choose one of the
O(n) holes in the first group to lie in between the line segments of the first group, and one of
the O(m) gaps between the line segments which should contain the hole. This yields O(mn)
combinatorially different placements of P, since the line segments are that long that there
is no path in translation space between two such placements such that the translated P is
always contained in Q°. But note that in horizontal direction the segments can be moved for
at least a distance of £, while maintaining the O(mn) combinatorially different translations.
This allows to independently find O(mn) combinatorially different placements for the second
group of line segments and the second group of holes. Thus there are altogether O(m?n?)
combinatorially different translations for the directed Hausdorff distance between P and Q.

Lemma 5 For every e,m,n > 0 there exist two polygonal curves P and Q) of complexities m
and n, respectively, in R?, such that there are X(m?n?) combinatorially different translations
that bring P within directed Hausdorff distance at most € to Q.

3.5 Approximate Algorithms

The algorithms presented in the previous sections have rather high time complexities and
are therefore more of theoretical than of practical interest. It is therefore interesting to
devise approximate algorithms that do not compute the optimal Hausdorff distance under
translations, but that compute some translation which results in a Hausdorff distance that
is only a constant factor worse than the optimum. An easy and efficient way to obtain
approximate results are the reference point methods which have been presented in [9]. For
reasons of consistency we devote Section 3.5.1 to this approach, although we do not present
new results in this area. However we raise the question to compute a reference point of optimal

#We thank Alon Efrat for ideas and discussions regarding this example.
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Figure 3.5: Lower bound for the number of combinatorially different translations for the directed
Hausdorff distance between two polygonal curves of complexities m and n.

26



quality for the Hausdorff distance under translations in higher dimensions. In Section 3.5.2
we consider the approximation result by [46], and present a straightforward generalization to
sites other than points.

For future research it is challenging to develop algorithms that give a constant factor
approximation for the matching of two sets of sites other than points in dimensions larger
than three. A constant factor approximation for the directed Hausdorff would be especially
interesting, since the elegant reference points do not generalize to this setting.

3.5.1 Reference Point Methods

The reference points methods of [9] yield algorithms to approximate the Hausdorff distance
under different transformation classes, involving only a constant loss factor. The theoretical
results are shown for arbitrary dimension, however the computation of the reference points,
as well as of the Hausdorff distance itself, has only been stated for two and three dimensions.

Definition 14 (Approximate matching / Loss factor) Let A, B be two shapes, § a dis-
tance measure, and T a class of transformations. Then the approximate matching problem
with loss factor a, for some a > 1, is to find a T' € T such that
5(T'(A),B) < a-mind(T(A),B) .
(T'(4), B) < a- min§(T(A), B)
An approximate solution is thus only a multiplicative factor a off from the optimal solution.
In the case where the optimal solution is very time consuming to compute, the development
of efficient approximation algorithms comes in handy for practical purposes, but also from

a theoretical point of view. The general concept of reference points, see [12, 9], yields very
elegant and efficient approximation algorithms for the matching problem.

Definition 15 (Reference point) Let C? be the set of all convex subsets of R, § a metric
on C%, and T be a set of transformations on R%. Then a mapping r : C* — R? is called a
reference point with respect to 7 if it has the following two properties:

e Equivariance: r(T(A)) = T(r(A)) for all AcC? and T €T
e Lipschitz continuity: There exists a ¢ > 0 such that for all A, B € C¢
Ir(A) = r(®)l| < c-0(A, B).
The Lipschitz constant ¢ is called the quality of the reference point r.

Using reference points, approximation algorithms for the Hausdorff distance under trans-
lations, rigid motions, and similarities have been given in [9]. Recently Knauer [56] has shown
that there exist no reference points for the Hausdorff distance under arbitrary affine maps.
Given a reference point of quality ¢ with respect to translations and the Hausdorff distance it
has been shown in [9] that the translation that maps the two reference points of the convex
hull of two shapes onto each other is an approximation algorithm for the Hausdorff distance
under translations with loss factor ¢+ 1. Note that this approach however only works for the
undirected Hausdorff distance and not for the directed Hausdorff distance.

Thus, in order to obtain an approximation algorithm with a small loss factor, one would
like to use a reference point with a good (i.e. small) quality. In [12] it has been shown that
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the lower left corner of the bounding box of the shape is a reference point of quality /2 for
translations. For d dimension the quality of this reference point is v/d. In [9] however it has
been shown that the so called Steiner point is a reference point of much better quality, and
that in the case of translations there is no other reference point of better quality. The quality
of the Steiner point in d dimensions is yq = 2I'(d/2 4+ 1)/(v/7['(d/2 + 1/2)), which lies in the
range \/2/mv/d and \/2/m+/d + 1. This is roughly a factor of \/2/m &~ 0.7979 better than the
quality v/d of the lower left corner of the bounding box.

The runtime of the approximate matching algorithm consists of the time needed to com-
pute the convex hulls, the reference points, and the Hausdorff distance. However, it is not
known how to compute the Steiner point in dimensions d > 3. See [48] for more results on
Steiner points. The computation following one possible definition of Steiner points involves
the computation of higher dimensional external angles, which can be reduced to computing
the volume of spherical simplices. The last problem however is an intriguing task which has
already been attacked by Poincaré [63] and has not been solved since. Other approaches are
by Sommerville [68] and Bohm and Hertel[32]. Poincaré [63] and Sommerville [68] generalize
the approach of the well-known theorem of Girard, see e.g. [29], for the volume of spherical
triangles. They establish recurrences for the volume, however the formula only holds for
spherical simplices of even dimension. $ So although the Steiner point is known to be a
reference points with optimal quality for the Hausdorff distance under translations, it is not
known how to compute it for higher dimensions, and there is no other reference point of the
same quality known. Thus the current reference point of choice for the Hausdorff distance
under translations is to take some corner of the bounding box which has quality v/d in d
dimensions.

3.5.2 Sampling and Pinning

We present a very easy way to adapt the pinning approach of [46] that approximates the
directed Hausdorff distance of two finite sets of points to the case of sites more general than
points. For this we sample the sites uniformly by points, and apply the same simple pinning
strategy. This approach does not yield a constant factor approximation, but adds an additive
term, that depends on the sampling density, to the optimal distance. However in practice
the Hausdorff distance is most commonly computed between sets of pixels, that are sampled
from the actual surfaces under consideration. And this approach gives on the one hand an
idea of how much the sampling density actually alters the true Hausdorff distance, but on the
other hand gives a fast algorithm to approximate the Hausdorff distance in this setting (once
one has decided to consider sampled points anyway). We use the Euclidean metric and the
directed Hausdorff distance, but this approach generalizes as well to other metrics and to the
undirected Hausdorff distance.

Let A and B be two polyhedral sets in R? of complexities m and n respectively. And let
B consist of simplices of dimension at most k. Let V' be the maximum k-dimensional volume
of any simplex in B, and let v > 0 be a parameter. Then we sample each simplex b € B
with a uniform grid of at most V/v points. Denote the set of all of these points B’. Clearly
|B’| < nV/~. We pick an arbitrary representative point ap on some simplex of A. Then we
try out all translations that map ag onto some point of B’ (we pin ag to this point), and for

$By now the reader should have noticed that we have tried to extend this formula to work in all dimensions,
and thus to compute the Steiner point in higher dimensions. However it seems to be an unexpectedly intriguing
open problem.
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each such translation ¢ we compute 5H(A + ¢, B’). For the last part we use the same nearest
neighbor algorithms as in [46] to compute for each a € A+t its nearest neighbor in B’. For two
dimensions B’ can be preprocessed into a Voronoi diagram with point location structure in
O(nlogn) such that nearest neighbor queries can be answered in O(log n) time. For d > 2 we
use the data structure of Arya et al. [23] which preprocesses B” in O(nlogn) time and answers
approximate nearest neighbor queries in O(logn) time, always returning a neighbor whose
distance is at most (1 +¢) larger than the distance to the nearest neighbor, for a fixed ¢ > 0.
This algorithm takes O(|B’|log|B’|) time for the preprocessing and O(|B’| - |A]| - log|B’|)
time for all nearest neighbor queries, hence O(nV/vylog(nV/vy) + mnV/ylog(nV/~)) time
altogether. Let hgpy denote the minimum directed Hausdorff distance between A and B for
any translation applied to A. We claim that this algorithm computes a translation tapprox
such that gH(A + tapprox, B) < 2% hopt + Vk~ for d = 2, and such that gH(A + tapprox, B) <
(2+5)*h0pt+\/E’y for d > 2, and any ¢ > 0.

Indeed, consider an optimal translation ¢, such that 5H (A +topt, B) = hopt. Then each
point a € A 4+ top; has a point b on some simplex of B in distance at most hqpi. Let by on
some simplex of B be the closest point to ag. Let first d = 2. With t,,p0x We map ag to its
closest point b, € B’, which has distance at most Vk to by. Thus each point a € A + Lopt
might get mapped by tapprox to a point at distance hopt + hopt + Vk from its corresponding
point b. For d > 2, typprox maps ag to a point in by € B’ whose distance is at most (1 + ¢)
times the distance to the real nearest neighbor of ag, thus the distance between ag and b is
(14+¢)hopt. The same argument as before shows that gH(A—i—tapprox, B) < (2+¢€)*hopt + V.
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