Table of Illustrations

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Illustration Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Location of visited sections</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>Previous paleoenvironmental reconstruction</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>General stratigraphic columns</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>Stratigraphic column of the studied area</td>
<td>21</td>
</tr>
<tr>
<td>5</td>
<td>Tectonic blocks of present-day eastern China</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>Geological map of Hunan, Hubei, and Guizhou provinces</td>
<td>24</td>
</tr>
<tr>
<td>7</td>
<td>Location of the South China block in Rodinia</td>
<td>25</td>
</tr>
<tr>
<td>8</td>
<td>The Cambrian bioradiation</td>
<td>25</td>
</tr>
<tr>
<td>9</td>
<td>The agronomic revolution</td>
<td>26</td>
</tr>
<tr>
<td>10</td>
<td>Five phases of the “Snowball Earth” theory</td>
<td>28</td>
</tr>
<tr>
<td>11</td>
<td>Location of study area</td>
<td>36</td>
</tr>
<tr>
<td>12</td>
<td>Formation correlation diagram</td>
<td>36</td>
</tr>
<tr>
<td>13</td>
<td>Map of dominant lithologies</td>
<td>38</td>
</tr>
<tr>
<td>14</td>
<td>Thickness isopachs map</td>
<td>39</td>
</tr>
<tr>
<td>15</td>
<td>Stratigraphic columns of Maoping, Neo-Tianjia Yuanzi, and Wuhe</td>
<td>42</td>
</tr>
<tr>
<td>16</td>
<td>Outcrop photographs of Dengying Formation</td>
<td>43</td>
</tr>
<tr>
<td>17</td>
<td>Stereogram of eight measured folds in Maoping section</td>
<td>44</td>
</tr>
<tr>
<td>18</td>
<td>Tectonic map</td>
<td>44</td>
</tr>
<tr>
<td>19</td>
<td>Outcrop photographs of high-energy facies</td>
<td>46</td>
</tr>
<tr>
<td>20</td>
<td>Photographs of debrites in Yangjiaping section</td>
<td>47</td>
</tr>
<tr>
<td>21</td>
<td>Olistostromes of Xikou section</td>
<td>49</td>
</tr>
<tr>
<td>22</td>
<td>Proposed paleoenvironmental reconstruction</td>
<td>51</td>
</tr>
<tr>
<td>23</td>
<td>Location of the study area</td>
<td>55</td>
</tr>
<tr>
<td>24</td>
<td>Previous paleoenvironmental reconstruction</td>
<td>55</td>
</tr>
<tr>
<td>25</td>
<td>Blocks forming present-day eastern China</td>
<td>56</td>
</tr>
<tr>
<td>26</td>
<td>Schematic stratigraphic column and correlation diagram</td>
<td>57</td>
</tr>
<tr>
<td>27</td>
<td>Photographs of peritidal and shoal facies</td>
<td>60</td>
</tr>
<tr>
<td>28</td>
<td>Photographs of selected shelf facies</td>
<td>62</td>
</tr>
<tr>
<td>29</td>
<td>Progradational environment during parasequence I</td>
<td>64</td>
</tr>
<tr>
<td>30</td>
<td>Progradational environment during parasequences II and III</td>
<td>65</td>
</tr>
<tr>
<td>31</td>
<td>Shallowing-upward sequences of parasequence I</td>
<td>66</td>
</tr>
<tr>
<td>32</td>
<td>Shallowing-upward sequences of parasequences II and III</td>
<td>67</td>
</tr>
<tr>
<td>33</td>
<td>Depositional environment models</td>
<td>68</td>
</tr>
<tr>
<td>34</td>
<td>Correlation of seven stratigraphic sections on the shelf</td>
<td>70</td>
</tr>
<tr>
<td>35</td>
<td>Chronostratigraph from the shelf sections</td>
<td>72</td>
</tr>
<tr>
<td>36</td>
<td>Evolution of the Yangtze platform shelf</td>
<td>74</td>
</tr>
<tr>
<td>37</td>
<td>Geographic and tectonic location of the study area</td>
<td>77</td>
</tr>
<tr>
<td>38</td>
<td>Paleoenvironmental reconstruction</td>
<td>78</td>
</tr>
<tr>
<td>39</td>
<td>Schematic stratigraphic column</td>
<td>78</td>
</tr>
</tbody>
</table>
Fig. 40. Stratigraphic correlation between key sections in Hunan province

Fig. 41. Sediment transport direction

Fig. 42. Evidence of mass wasting

Fig. 43. Schematic ideal sequence of gravity-induced facies

Fig. 44. Proposed sedimentary evolution for the allochthonous deposits

Fig. 45. Geographic and tectonic location of the study area

Fig. 46. Paleoenvironmental reconstruction

Fig. 47. Schematic stratigraphic column

Fig. 48. Correlation diagram between slope sections

Fig. 49. Photographs illustrating Facies 1

Fig. 50. Photographs illustrating Facies 2

Fig. 51. Evidence in thin sections of evaporite presence

Fig. 52. Outcrop photographs of Facies 3

Fig. 53. Stratigraphic columns of Wuhe and Xikou sections

Fig. 54. Outcrop photographs of olistoliths at Xikou section

Fig. 55. Relative dating of sliding

Fig. 56. Evaporite-mediated brecciation

Fig. 57. Possible mechanism and sequence of slide initiation

Fig. 58. Synthesis of the sedimentary evolution of the Yangtze platform

Table 1. Summarizing table of Ediacaran Yangtze platform facies

Table 2. Database for drawing maps of Figs. 13 and 14

Table 3. Summary table of the shelf facies

Table 4. Summary table of slope facies
Index of authors and sections

Standard: Author names Numbers refer to the page number.

Italicics: Section names

<table>
<thead>
<tr>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfaro · 39</td>
</tr>
<tr>
<td>Allen · 21, 27, 29, 57, 63</td>
</tr>
<tr>
<td>Altermann · 26</td>
</tr>
<tr>
<td>Alvarenga · 29</td>
</tr>
<tr>
<td>Amthor · 24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Babcock · 27, 34, 54, 88</td>
</tr>
<tr>
<td>Bahlburg · 21, 37, 56, 90</td>
</tr>
<tr>
<td>Bartley · 29, 168</td>
</tr>
<tr>
<td>Baturin · 100, 167</td>
</tr>
<tr>
<td>Bengtson · 26</td>
</tr>
<tr>
<td>Bergstrom · 34, 54, 88</td>
</tr>
<tr>
<td>Beutner · 85</td>
</tr>
<tr>
<td>Blatt · 61, 103</td>
</tr>
<tr>
<td>Boer · 38, 168</td>
</tr>
<tr>
<td>Bohannon · 85</td>
</tr>
<tr>
<td>Bosellini · 85</td>
</tr>
<tr>
<td>Bosence · 50</td>
</tr>
<tr>
<td>Bottjer · 24, 26</td>
</tr>
<tr>
<td>Brasier · 20, 21, 23</td>
</tr>
<tr>
<td>Braun · 27</td>
</tr>
<tr>
<td>Briggs · 27</td>
</tr>
<tr>
<td>Butois · 26</td>
</tr>
<tr>
<td>Bureau of Geology and Mineral Resources · 18, 35, 36, 37, 38, 40, 50, 85, 135</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calvet · 71</td>
</tr>
<tr>
<td>Cervelli · 84</td>
</tr>
<tr>
<td>Chang · 136, 167</td>
</tr>
<tr>
<td>Chen · 22, 24, 27, 30, 34, 37, 54, 56, 69, 77, 88, 90</td>
</tr>
<tr>
<td>Cheng · 35, 55, 89</td>
</tr>
<tr>
<td>Chough · 84</td>
</tr>
<tr>
<td>Christie-Blick · 24</td>
</tr>
<tr>
<td>Clapham · 24</td>
</tr>
<tr>
<td>Clifton · 46</td>
</tr>
<tr>
<td>Coffey · 46</td>
</tr>
<tr>
<td>Cojan · 103</td>
</tr>
<tr>
<td>Condie · 23, 25, 35, 77, 89</td>
</tr>
<tr>
<td>Condon · 20, 21, 30, 37, 41, 76, 78, 90, 91, 108</td>
</tr>
<tr>
<td>Coniglio · 45, 63, 84, 85</td>
</tr>
<tr>
<td>Cook · 30, 135, 136, 167</td>
</tr>
<tr>
<td>Corsetti · 29, 37, 57, 78, 91</td>
</tr>
<tr>
<td>Craven · 85</td>
</tr>
<tr>
<td>Crimes · 24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dabard · 168</td>
</tr>
<tr>
<td>Desrochers · 38, 68</td>
</tr>
<tr>
<td>Dix · 45, 63, 84, 85</td>
</tr>
<tr>
<td>Dobrzinski · 21, 37, 56, 90</td>
</tr>
<tr>
<td>Donnadieu · 56</td>
</tr>
<tr>
<td>Donnelly · 167</td>
</tr>
<tr>
<td>Dornbos · 26</td>
</tr>
<tr>
<td>Droser · 26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einsele · 31, 71</td>
</tr>
<tr>
<td>Erdtmann · 19, 20, 21, 22, 27, 35, 56, 90</td>
</tr>
<tr>
<td>Eriksson · 68</td>
</tr>
<tr>
<td>Evans · 23, 37, 56, 90</td>
</tr>
<tr>
<td>Eyles · 21, 29, 37, 56, 90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fairchild · 35</td>
</tr>
<tr>
<td>Fedonkin · 24, 26</td>
</tr>
<tr>
<td>Föllmi · 95, 100, 167</td>
</tr>
<tr>
<td>Frimmel · 27, 37, 56, 90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gardner · 85</td>
</tr>
<tr>
<td>Gehling · 24, 25</td>
</tr>
<tr>
<td>Germs · 24, 26, 27, 37, 57, 78, 91</td>
</tr>
<tr>
<td>Goldberg · 20, 29, 30, 111</td>
</tr>
<tr>
<td>Greensmith · 48, 63</td>
</tr>
<tr>
<td>Grey · 24</td>
</tr>
<tr>
<td>Gubanov · 30, 136, 167</td>
</tr>
<tr>
<td>Guo · 29, 91, 111</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hagadorn · 37, 57, 78, 91</td>
</tr>
<tr>
<td>Halverson · 29</td>
</tr>
<tr>
<td>Hambrey · 27</td>
</tr>
<tr>
<td>Hambrey · 26, 27</td>
</tr>
<tr>
<td>Hartz · 23, 25</td>
</tr>
<tr>
<td>Heubeck · 42, 71, 85</td>
</tr>
<tr>
<td>Hidalgo · 71</td>
</tr>
<tr>
<td>Hill · 81</td>
</tr>
<tr>
<td>Hoffman · 21, 26, 27, 28, 29, 37, 56, 57, 78, 90</td>
</tr>
</tbody>
</table>
Hou · 34, 54, 88
Hsü · 77
Hürlimann · 84, 85
Huvenne · 85
Hyde · 29, 37, 56, 90

Irwin · 68

James · 21, 59, 68
Januszczak · 21, 29, 37, 56, 90
Jenkins · 24
Jensen · 24
Jiang · 20, 21, 29, 37, 56, 73, 90, 112
Jinjialong · 79, 81, 83, 84, 85
Jones · 38, 68

Kaufman · 29
Kear · 27
Kendall · 103
Kennedy · 29
Kenneth · 22, 35, 55, 89
Kilner · 27, 29
Kirschvink · 21, 27
Knoll · 29, 30, 37, 56, 57, 78, 90, 112, 167

Landing · 26
Leather · 29
Lee · 84, 85
Li · 21, 23, 25, 26, 27, 30, 35, 37, 43, 50, 56, 71, 77, 89, 90, 105
Liang · 136, 167
Luchapo · 79
Lujiata · 79, 84
Luping · 37, 110
Longbizui · 79
Luoilixi · 48, 50, 79, 81, 83, 84, 85, 92, 94, 97, 98, 99, 103, 104, 109
Lykousis · 85

Ma · 22, 23, 24, 43, 44, 50
Maas · 26, 27
Macouin · 23, 25, 35, 77, 89
Maliva · 167
Mangano · 26
Maoping · 22, 23, 34, 37, 39, 40, 41, 42, 43, 44, 45, 50, 52, 63, 65, 68, 69, 71
Martel · 85
Martin · 18, 24, 25, 27

McIlroy · 24
Meng · 69
Miall · 31, 71
Mo · 22, 23, 24, 56
Moczydlowska · 24, 112
Moore · 84
Mueller · 62
Myrow · 24, 29

Narbone · 24, 25, 26
Neo-Tianjiayuanzi · 39, 41, 42, 45
Nogueira · 21, 27, 37, 57, 78, 91

Oertel · 98
Overman · 98

Peng · 39
Pisarevsky · 23, 35, 56, 77, 89
Podkovyrov · 167
Potter · 38
Powell · 23, 25, 35, 56, 77, 89
Pratt · 68

Read · 46
Reitner · 27
Renard · 103
Rey · 71
Reynaud · 63, 69, 98
Riding · 167
Runnegar · 24, 37, 56, 90

Sageman · 38
Sami · 59
Sangshuping · 83
Santantonio · 50
Saylor · 24
Schrag · 21, 26, 27, 29, 37, 56, 90
Schwennicke · 100
Scoffin · 48, 63
Seilacher · 26
Shanker · 24, 112
Shergold · 30, 136, 167
Shu · 34, 54, 88
Siever · 168
Silva · 85
Sochava · 167
Songlin · 22, 37, 52, 143
Spence · 85
Steiner · 19, 20, 21, 22, 26, 27, 31, 35, 38, 55, 56, 78, 90, 110
Stewart · 84, 85
Stow · 45, 84, 85
Sugitami · 168
Sumner · 37, 57, 91

T
Tabakh · 103
Torsvik · 23, 25
Trappe · 95, 100, 135, 167
Trentesaux · 63, 69, 98
Tucker · 48, 63, 67, 85

V
Valentine · 25
Vernhet · 42, 48, 68, 69, 71, 73, 91, 103, 105
Vidal · 24, 112

W
Walter · 24
Wang · 21, 22, 23, 24, 31, 35, 37, 43, 50, 56, 71, 77, 90, 105, 110, 143
Ward · 84
Watts · 85
Weaver · 38
Weber · 26, 27, 112
Wengan · 18, 24, 27, 34, 45, 52, 110, 136
Wetzel · 38, 168
Whitham · 84
Wood · 24
Wright · 48, 63, 67

Wuhe · 22, 34, 37, 39, 40, 41, 42, 43, 45, 48, 64, 69, 71, 73, 89, 100, 101

X
Xiao · 18, 27, 30, 34, 37, 54, 56, 88, 90, 168
Xiaofenghe · 59, 63, 65, 70, 108, 109
Xiaoyuanxi · 79, 84
Xikou · 48, 49, 50, 89, 101, 102
Xixi · 48, 50, 79, 81, 83, 84, 93, 96, 97, 98, 103, 104, 105, 109, 111

Y
Yamazaki · 73
Yangjiaping · 34, 39, 45, 46, 47, 48, 59, 62, 71, 108, 109, 136
Yin · 20, 24, 27, 34, 54, 88
Yiqing · 136, 167
Yueyan · 136, 167
Yunmaxi · 79

Z
Zhancumping · 45, 59, 60, 62, 63, 65, 69, 71, 73, 103, 104, 107, 108, 109
Zhang · 12, 16, 20, 21, 27, 30, 34, 54, 56, 88
Zhao · 26
Zhongling · 34, 39, 45, 46, 59, 60, 62, 71, 108, 109, 136
Zhou · 27, 37, 56, 78, 90, 168
Zhu · 16, 20, 22, 25, 27, 30, 90, 110
References

Alvarenga de, C.J.S., Santos, R.V., and Dantas, E.L., 2004, C-O-Sr isotopic stratigraphy of “Cap Carbonate” overlying Marinoan-age glacial diamictites in the Paraguay Belt, Brazil, Precambrian Research, 131, 1-21

Bengtson, S. and Zhao, Y., 1992, Predatorial borings in Late Precambrian mineralised exoskeletons, Science, 257, 367-369

Dabard, M.P., 2000, Petrogenesis of graphitic cherts in the Armorican segment of the Cadomian orogenic belt (NW France), *Sedimentology*, **47**, 787-800

Jenkins, G.S., McMenamin, M.A.S., McKay, C.P., Sohl, L. (Eds), The extreme Proterozoic: Geology, Geochemistry and Climate. AGU monograph series, 146, 13-32

Evans, D.A.D., Li, Z.X., Kirschvink, J.L., and Wingate, M.T.D., 2000, A high-quality mid-Neoproterozoic paleomagnetic pole from South China, with implications for ice ages and the breakup configuration of Rodinia, Precambrian Research, 100, 313-334

Eyles, N. and Januszczak, N., 2004, "Zipper-rift": a tectonic model for Neoproterozoic glaciations during the breakup of Rodinia after 750 Ma, Earth Science Reviews, 65, 1-73

Gehling, J.G., 2000, Environmental interpretation and a sequence stratigraphic framework for the terminal Proterozoic Ediacara Member within the Rawnsley Quartzite, South Australia, Precambrian Research, 100, 65-95

Germs, G.J.B., 1995, The Neoproterozoic of southwestern Africa, with emphasis on platform stratigraphy and paleontology, Precambrian Research, 73, 137-151

Goldberg, T., Strauss, H., Guo, Q-J., and Liu C-Q., 2003, Late Neoproterozoic to Early Cambrian sulphur cycle – An isotopic investigation of sedimentary rocks from the Yangtze platform, Progress in Natural Science, 13, 946-950

124

Jiang, G-Q., Sohl, L.E., and Christie-Blick, N., 2003c, Neoproterozoic stratigraphic comparison of the Lesser Himalaya (India) and Yangtze block (south China): Paleogeographic implications, *Geology*, 31, 917-920

Kennedy, M.J., Christie-Blick, N., and Prave, A.R., 2001a, Carbon isotopic composition of Neoproterozoic glacial carbonates as a test of paleoceanographic models for snowball Earth phenomena, Geology, 29, 1135-1138

Kennedy, M.J., Christie-Blick, N., and Sohl, L.E., 2001b, Are Proterozoic cap carbonates and isotopic excursions a record of gas hydrate destabilization following Earth's coldest intervals? Geology, 29, 443-446

Kilner, B., MacNiocaill, C., and Brasier, M., 2005, Low-latitude glaciation in the Neoproterozoic of Oman, Geology, 33, 413-416

Knoll, A., Fairchild, I.J., and Swett, K., 1993, Calcified microbes in Neoproterozoic carbonates: implications for our understanding of the Proterozoic / Cambrian transition, Palaios, 8, 512-525

Landing, E., 1994, Precambrian-Cambrian boundary global stratotype ratified and a new perspective of Cambrian time, Geology, 22, 179-182

Lee, S.H. and Chough, S.K., 2001, High-resolution (2-7 kHz) acoustic and geometric characters of submarine creep deposits in the South Korea Plateau, East Sea, Sedimentology, 48, 629-644

Li, Z-X., Zhang, L., and McA-Powell, C., 1995, South China in Rodinia: part of the missing link between Australia - East Antarctica and Laurentia?, Geology, 23, 407-410

Ma, X-Y., Zhang, J-S., Bai, J., and Suo, S-T., 1984, Variation in tectonic style through the Precambrian history of China, Journal of Geodynamics, 1, 221-249

Maliva, R.G., 2001, Silicification in the Belt Supergroup (Mesoproterozoic), Glacier National Park, Montana, USA, Sedimentology, 48, 887-896

Myrow, P.M., 1995, Neoproterozoic rocks of the Newfoundland Avalon Zone, Precambrian Research, 73, 123-136

Oertel, G.F. and Overman, K., 2004, Sequence morphodynamics at an emergent barrier island, middle Atlantic coast of North America, Geomorphology, 58, 67-83

Powell, C.M. and Pisarevsky, S.A., 2002, Late Neoproterozoic assembly of East Gondwana, Geology, 30, 3-6

Pratt, B.R. and James, N.P., 1986, The St George Group (Lower Ordovician) of western Newfoundland: tidal flat island model for carbonate sedimentation in shallow epeiric seas, Sedimentology, 33, 313-343

Rey, J. and Hidalgo, M.C., 2004, Siliciclastic sedimentation and sequence stratigraphic evolution on a storm-dominated shelf: the Lower Ordovician of the Central Iberian Zone (NE Jaén, Spain), Sedimentary geology, 164, 89-104

Riding, R., 2000, Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms, Sedimentology, 47 (Suppl. 1), 179-214

Runnegar, B., 2000, Loophole for snowball Earth, Nature, 405, 403-404

Saylor, B.Z., Grotzinger, J.P., and Germs, G.J.B., 1995, Sequence stratigraphy and sedimentology of the Neoproterozoic Kuibis and Schwarzrand subgroups (Nama Group), southwestern Namibia, Precambrian Research, 73, 153-171

Seilacher, A., 1999, Biomat-related lifestyles in the Precambrian, Palaios, 14, 86-93

Siever, R., 1992, The silica cycle in the Precambrian, Geochimica et Cosmochimica Acta, 56, 3265-3272

Steiner, M., 2001, Die fazielle Entwicklung und Fossilverbreitung auf der Yangtze Plattform (Südchina) im Neoproterozoikum / frühesten Kambrium, Freiberger Forschungshefte, 492, 1-26 (in German)

Steiner, M. and Reitner, J., 2001, Evidence of organic structures in Ediacara-type fossils and associated microbial mats, Geology, 29, 1119-1122

Steiner, M., Li, G-X., Qiang, Y., Zhu, M-Y., and Erdtmann, B-D., 2003, Lower Cambrian small shelly faunas from Zhejiang (China) and their biostratigraphical implications, Progress in Natural Science, Special Issue, 13, 852-860

Stewart, W.D., Dixon, O.A., and Rust, B.R., 1993, Middle Cambrian carbonate-platform collapse, southeastern Canadian Rocky Mountains, Geology, 21, 687-690

Sugitani, K., 1992, Geochemical characteristics of Archean cherts and other sedimentary rocks in the Pilbara Block, Western Australia: evidence for Archean seawater enriched in hydrothermally-derived iron and silica, Precambrian Research, 57, 21-47
Sugitami, K., Yamamoto, K., Adachi, M., Kawabe, I., and Sugisaki, R., 1998, Archean cherts derived from chemical, biogenic and clastic sedimentation in a shallow restricted basin: examples from the Gorge Creek Group in the Pilbara Block, Sedimentology, 45, 1045-1062

Tabakh, M.E., Grey, K., Pirajno, P., and Schreiber, B.C., 1999, Pseudomorphs after evaporitic minerals interbedded with 2.2 Ga stromatolites of the Yerrida basin, Western Australia: Origin and significance, Geology, 27, 871-874

Trappe, J., 2001, A nomenclature system for granular phosphate rocks according to depositional texture, Sedimentary Geology, 145, 135-150

Valentine J.W., 1995, Why no new phyla after the Cambrian? Genome and ecospace hypotheses revisited. Palaios, 10, 190-194

Vernhet, E., Zhu, M-Y., Heubeck, C., and Zhang, J-M., 2004b, Large-scale slope instability at the southern margin of the Neoproterozoic Yangtze platform (Hunan province, central China), Sino-German symposium: “Environmental and biological processes of the Cambrian explosion”, 25-28 September 2004, Nanjing (China) Abstract volume, 63-64

Watts, P., 2004, Probabilistic predictions of landslide tsunamis off Southern California, Marine Geology, 203, 281-301

Weber, B. and Zhu, M-Y., 2003, Arthropod trace fossils from the Zhujiaqing Formation (Meishucunian, Yunnan) and their palaeobiological implications, Progress in Natural Science, 13, 795-800

Whitham, A.G., 1993, Facies and depositional processes in an Upper Jurassic to Lower Cretaceous pelagic sedimentary sequence, Antarctica, Sedimentology, 40, 331-349

Yin, C-Y., Bengtson, S., and Yue, Z., 2004, Silicified and phosphatized Tianzhushania, spheroidal microfossils of possible animal origin from the Neoproterozoic of South China, Acta Palaeontologica Polonica, 49, 1-12

Yin, C-Y., Gao, L., and Xing, Y., 2001, New observations on phosphatized spheroidal fossils in Sinian Doushantuoan phosphorites in Weng’an, Guizhou province, Acta Geologica Sinica, 75, 1-149

