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Abstract 

Tissue analysis is the current gold standard for cancer diagnosis and characterization, 

although it may neither fully represent spatial tumor heterogeneity nor clonal evolution 

under treatment pressure. The analysis of circulating tumor cells (CTCs) and cell-free 

DNA (cfDNA) holds great potential to partially overcome this limitation. One major uncer-

tainty is, however, whether both constituents (CTC vs. cfDNA) provide clinical informative 

value in a competitive or complementary way. Therefore, reflection of the mutational pro-

file of tumor tissue in CTCs and cfDNA was investigated. 

Applicability of cfDNA-based mutation analysis in colorectal cancer (CRC) patients in re-

lation to disease stage was systematically investigated using Droplet Digital™ PCR. From 

65 patients, the KRAS and BRAF gene status was assessed in plasma and compared to 

tumor tissue. In 17 of 25 (68%) patients with stage IV tumors, the tissue status was dis-

played in plasma. In patients with stage I-III tumors, concordance was only 43% (12 of 

28 patients). Interestingly, in one stage II patient, cfDNA analysis revealed a different 

mutation compared to the respective colon cancer. Instead, the KRAS mutation of the 

synchronous stage IV tumor of the pancreas was detected in plasma. This case indicated 

the ability of liquid biopsy (LB) to identify the predominant cancer in patients with simul-

taneous malignancies. 

In contrast to cfDNA levels, CTC detection rate in the CRC cohort was independent of 

tumor stage, indicating complementarity of cfDNA and CTCs. To investigate this hypoth-

esis in neoplasms with different metastatic organotropisms, possibly affecting the clinical 

value of LB, panel sequencing of cfDNA and CTCs from patients with advanced CRC, 

head and neck squamous cell carcinoma (HNSCC) and melanoma (MEL) was performed. 

Only one of seven CTC samples isolated from four of 18 patients reflected the status of 

the solid tumor. In contrast, 78% of tissue mutations were displayed in high input cfDNA 

samples (30-100 ng, N=8). Highest concordance was observed in MEL and CRC with 

100% and 92%, respectively, compared to only 50% in HNSCC. 

These results emphasized that, when analyzing cancer patients in the advanced setting, 

cfDNA is superior to CTCs with respect to sample handling and mutation concordance. 

CTCs implicated clinical use in earlier cancer stages and for the analysis of tumor heter-

ogeneity. Overall, clinical value of LB analysis was demonstrated in special patient cases 
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by detecting tumor heterogeneity and clonal dynamics under selective pressure, which 

represent the main drivers of acquired resistance and subsequent treatment failure. 

 

 

Zusammenfassung 

Gewebeanalysen stellen den gegenwärtigen Goldstandard für die Krebsdiagnose 

und -charakterisierung dar, obwohl dadurch weder die räumliche Tumorheterogenität 

noch die klonale Evolution unter selektivem Druck einer Therapie vollständig widerge-

spiegelt werden. Die Analyse zirkulierender Tumorzellen (CTCs) und zellfreier DNA 

(cfDNA) besitzt ein hohes Potential diese Limitation partiell zu überwinden. Allerdings 

besteht Ungewissheit darüber, ob beide Bestandteile der Flüssigbiopsie (LB) Informatio-

nen von klinischer Relevanz übermitteln und ob diese von kompetitiver oder komplemen-

tärer Natur sind. Folglich wurde untersucht, inwiefern CTCs und cfDNA das Mutations-

profil des soliden Tumorgewebes repräsentieren. 

Die Eignung der cfDNA-basierten Mutationsanalyse in Relation zum Krankheitsstatus von 

Patienten mit Kolorektalkarzinom (CRC) wurde mittels Droplet Digital™ PCR systema-

tisch untersucht. Der KRAS und BRAF Genstatus wurde in Plasmaproben von 65 Pati-

enten ermittelt und mit dem im Gewebe verglichen. In 17 von 25 (68%) Patienten mit 

Tumoren im Stadium IV, hat das Plasma den bekannten Gewebestatus wiedergegeben. 

In Patienten mit Krebsstadium I-III lag die Konkordanz bei nur 43% (12 von 28 Patienten). 

Interessanterweise, wurde in einem Patienten ein zum Tumorgewebe (Stadium II) wider-

sprüchliches Ergebnis in der cfDNA offenbart. Stattdessen wurde im Plasma der KRAS-

Status des synchronen Pankreastumors (Stadium IV) widergespiegelt. Dieser Fall impli-

zierte den Anwendungsbereich, anhand der LB den vorherrschenden Tumor in Patienten 

mit multiplen Krebserkrankungen zu identifizieren. 

Im Gegensatz zum cfDNA-Level war die CTC-Detektionsrate in der CRC-Kohorte unab-

hängig vom Tumorstadium, was auf eine Komplementarität der Komponenten hindeutete. 

Zur Untersuchung dieser Hypothese in Neoplasien mit unterschiedlichem Organotropis-

mus wurde eine Panel-Sequenzierung von cfDNA und CTCs von Patienten mit fortge-

schrittenem CRC, Kopf-Hals-Karzinom und Melanom durchgeführt. Nur eine von sieben 

CTC-Proben, die von vier der 18 Patienten isoliert wurde, spiegelte das Mutationsprofil 
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des soliden Tumors wider. Im Gegensatz dazu, wurden 78% der Gewebemutationen in 

hoch konzentrierten cfDNA-Proben detektiert (30-100 ng, N=8). Die höchste Übereinstim-

mung lag bei 100% und 92% in Patienten mit Melanom und CRC, verglichen zu 50% bei 

den Kopf-Hals-Karzinomen.  

Diese Ergebnisse zeigten, dass cfDNA-Analysen in Patienten mit fortgeschrittenem Tu-

morstadium bezüglich der Probenhandhabung und Repräsentation des Tumormutations-

profils den CTC-Analysen überlegen sind. CTCs schienen hingegen zur Untersuchung 

der Tumorheterogenität als auch in früheren Krebsstadien einen klinischen Nutzen zu 

versprechen. Insgesamt wurde in einigen speziellen Patientenfällen der klinische Stellen-

wert der LB-Analyse demonstriert, indem Tumorheterogenität und klonale Dynamiken un-

ter selektiven Therapiedruck detektiert wurden, welche die Haupttreiber erworbener Re-

sistenz und folgendem Therapieversagen repräsentieren. 

 

 

 



Introduction 4 

1 Introduction 

Precision oncology implies different strategies to identify and target cancer-related alter-

ations. This includes the routine analysis of predictive tissue markers to indicate sensitiv-

ity to targeted treatment, such as wild type status of KRAS and BRAF in colorectal cancer 

(CRC) with regard to cetuximab treatment and the presence of BRAF mutations in mela-

noma (MEL) as a prerequisite for BRAF-MEK-inhibition. Frequently, however, initial clin-

ical response to small molecules and monoclonal antibodies is transitory. At present, ini-

tial cancer diagnosis and characterization is based on the analysis of a section of diag-

nostic tumor tissue biopsy, with the inherent limitation to fully represent the entire spatial 

and temporal tumor portrait. In particular, heterogeneous tumor genetics play a pivotal 

role in the development of acquired resistance to targeted treatments, since certain sub-

clones, present at low frequencies and often not recognized in a single tissue biopsy, 

might gain competitive advantages and expand during the selective pressure of treat-

ment. In accordance with this, Khan et al. reported a significant fraction of RAS wild type 

tumors to remain refractory to cetuximab treatment, due to expanding clones with re-

sistance mutations already present initially with allele frequencies below the detection 

threshold (1). To anticipate emerging resistance precociously, collection of consecutive 

tissue samples from all coexisting lesions would be necessary, but impractical due to 

limitations in access to tumor sites. 

1.1  Liquid biopsy: The analysis of CTCs and cfDNA 

Liquid biopsy is suggested as a minimal invasive alternative for serial monitoring of can-

cer, by analyzing tumor-derived biomarkers in body fluids, including blood, urine and cer-

ebrospinal fluid. Especially blood-based analysis of CTCs and cfDNA received consider-

able interest for the potential use as a surrogate of inter- and intratumoral heterogeneity. 

However, the informative value and clinical relevance of liquid biopsies and their different 

constituents remains elusive, requiring further investigation prior to clinical application.  

CTCs represent cancer cells shedding from the solid tumor into circulation, with only 

0.01% of tumor cells estimated to result in metastases (2). The multi-step nature of me-

tastasis to distant organs requires tumor cell survival despite detachment from the extra-

cellular matrix (anoikis-resistance), evasion of the immune system, arrest within blood 

vessels and subsequent invasion of surrounding tissue (diapedesis). A prognostic value 
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of CTCs has been shown in multiple studies of CRC, breast and prostate cancer, corre-

lating the presence of ≥ 3 and ≥ 5 tumor cells in 7.5 ml blood with reduced progression-

free survival and overall survival (3-5). Due to the low abundance of CTCs in blood (1-10 

CTCs and 5-10 x 106 white blood cells per milliliter of whole blood) (6) and various pos-

sible phenotypes, including epithelial, mesenchymal, EMT-like (epithelial-mesenchymal-

transition) and cancer stem cell characteristics, manifold approaches were established to 

enrich CTCs prior to detection and further characterization. Methodologies can be divided 

in two groups: biological and physical property-dependent technologies. The former uti-

lizes marker expression for negative and positive cell selection (depletion of CD45-posi-

tive leucocytes vs. capture of tumor marker-expressing CTCs), whereas the latter uses 

size exclusion based on larger cell dimensions of CTCs compared to normal blood cells. 

To allow genomic analysis of a single cell (6 pg total DNA) (7), whole genome amplifica-

tion is required, which is susceptible to errors based on amplification bias as well as com-

plete failure due to insufficient DNA integrity. Besides those methodological constraints, 

analysis of viable CTCs will have a prominent role in enlightening mechanisms of cancer 

progression and reflecting tumor heterogeneity. 

In comparison, cfDNA is released by healthy and diseased cells, undergoing apoptosis 

or necrosis (8). Therefore, circulating tumor DNA (ctDNA) can only be identified by the 

detection of genomic aberrations, such as single nucleotide variations and copy number 

alterations. Cancer-related mutations are present in frequencies as low as 0.01% (9), 

necessitating highly sensitive and specific detection methods. At present, five cfDNA as-

says have approval, covering EGFR testing in lung cancer and detection of RAS muta-

tions in colorectal cancer (10). In contrast, only the CellSearch® system for CTC detection 

and isolation was FDA-cleared (U.S. Food and Drug Administration), allowing clinical use 

in specific countries.  

1.2  Research questions 

Shedding of CTCs and ctDNA into the bloodstream might be affected by tumor size, its 

anatomic location and vascularization, potentially limiting the clinical value of LB for vari-

ous tumor entities and early cancer stages. Moreover, the tendency of a certain tumor 

type to spread to specific organs (metastatic organotropism) might also affect the utility 

of LB. To elucidate those issues, cfDNA and CTCs were quantified and characterized in 
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two patient cohorts and the genetic compositions were compared between LB and corre-

sponding tissues. Within the first study as part of the OncoTrack research project, suita-

bility of cfDNA analysis for mutation detection in KRAS and BRAF with respect to disease 

stage was investigated in CRC patients (stage I-IV).  To analyze differences in tumor 

entities with distinct metastatic patterns, patients with HNSCC (predominant locoregional 

disease progression), CRC (primarily metastatic spread to the liver through the portal 

vein) and MEL (systemic hematogenous dissemination) were enrolled in the second 

study, in which 327 cancer-related genes were profiled via panel sequencing.  
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2 Methods 

2.1  Patients 

For all studies, informed consent was obtained prior to tissue and blood collection. The 

OncoTrack research project enrolled patients with early and advanced CRC (stage I-IV), 

whereas the following project focused on CRC, HNSCC and MEL patients presented with 

distant metastasis and therefore an elevated risk of high CTC numbers and increased 

levels of ctDNA in blood. The ethics committee of the Charité University Medicine ap-

proved all studies (EA 1/069/11 and EA 4/087/15). The Medical University of Graz and 

the St John of God Hospital Graz approved patient recruitment for the OncoTrack study 

in Graz (23-015 ex 10/11). 

2.2  Isolation of blood-based biomarkers including cfDNA and CTCs 

Peripheral blood was collected prior to surgery and processed within two hours. With 

increasing experience on the preservation of blood-based biomarkers, including type of 

collection tubes and protocols for sample processing, methods differed between publica-

tions. Between 2010 and 2016, BD Vacutainer® PST™ II heparin tubes were used for 

blood collection of the OncoTrack patient cohort. When working with cfDNA nowadays, 

one preferred anti-coagulant is ethylenediaminetetraacetic acid (EDTA) (11, 12), which is 

why blood was collected in BD Vacutainer™ K2-EDTA tubes for the comparative study 

of CTCs and cfDNA (recruitment from 2016-2017). 

For cfDNA analysis, initial blood processing included two centrifugation steps to isolate 

and purify plasma prior to storage at -80°C (see respective publications for details (13, 

14)). Cell-free DNA was isolated from plasma with two different kits, depending on the 

coagulant present in vacutainers employed. Plasma samples from heparin tubes were 

processed with the QIAamp DNA Blood Midi kit (Qiagen, Hilden, Germany), whereas 

EDTA samples were compatible with the QIAamp Circulating Nucleic Acid kit (Qiagen), 

which was reported to increase the yield of smaller, tumor-derived ctDNA fragments (15, 

16). Independently of the cfDNA isolation kit, samples were concentrated following the 

specifications of Zymo`s DNA Clean & Concentrator®-5 kit (Irvine, USA). 

In contrast to the isolation of plasma-derived biomarkers, enrichment and isolation of liv-

ing CTCs was performed immediately after blood sampling. Previously, the EasySep™ 



Methods 8 

Human CD45 Depletion kit (Stemcell Technologies) was used to enrich CTCs, applying 

a tetrameric antibody complex and magnetic particles to deplete CD45-positive cells (On-

coTrack study). However, internal comparisons demonstrated superior performance of 

the RosetteSep™ Human CD45 Depletion Cocktail with respect to enhanced depletion 

efficiency of blood cells and higher CTC detection levels (data not published). Therefore, 

the RosetteSep™ kit was used for the sequencing project. Here, the depletion cocktail 

clusters erythrocytes, granulocytes and peripheral blood mononuclear cells (PBMCs), 

which pellet, when centrifuged over a density gradient centrifugation medium, whereas 

unbound cells (including CTCs) are present at the interface between plasma and density 

medium. In both projects, enriched cells were stained with fluorescence-labelled antibod-

ies to differentiate between remaining PBMCs and CTCs (see respective publications for 

details (13, 14)). Additionally, the LIVE/DEAD™ Fixable Blue Dead Cell Stain for UV ex-

citation (Life Technologies) was used to identify only viable tumor cells, specifically 

stained for the corresponding tumor markers. Viable CTCs were identified based on their 

CD45-negativity and the detection of at least one expressed tumor marker (MEL: mela-

noma-associated chondroitin sulfate proteoglycan antigen (MCSP); CRC/HNSCC: Epi-

thelial cell adhesion molecule (EpCAM), endothelial growth factor receptor (EGFR) and 

CD73, a regulatory molecule of tumor growth, metastasis and immune evasion (17)). The 

DMI3000B fluorescence microscope (Leica, Wetzlar, Germany) was utilized for micro-

scopic analysis, including micromanipulator-assisted single cell isolation using the Mi-

croinjector IM-9B (Narishige Group, Tokyo, Japan). 

2.3  Nucleic acid preparation from CTCs, whole blood and tissue specimens 

The sequencing project included genotyping of tissue, whole blood, cfDNA and CTCs. 

Isolated CTCs were subjected to an overnight whole genome amplification (WGA) using 

the REPLI-g Single Cell kit (Qiagen). An insufficient DNA integrity of single cells might 

lead to unsuccessful amplification during WGA. Therefore, a quality control PCR (QC-

PCR) was performed with 1 µl of the WGA product, amplifying up to four DNA regions of 

various length and chromosomal location to predict successful downstream application 

(Ampli1™ QC kit from Menarini Silicon Biosystems, Castel Maggiore, Italy). 

Formalin-fixed and paraffin-embedded (FFPE) tissue slides from primary and metastatic 

tumor tissue were deparaffinized and processed accordingly to manufacturer`s protocol 

of the High Pure FFPET DNA Isolation kit (Roche, Basel, Switzerland). To differentiate 
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between germline variants and tumor-specific somatic mutations, DNA from 1-2 ml whole 

blood was isolated using the QIAamp DNA Blood Midi kit (Qiagen). Accordingly to ex-

pected concentrations, DNA was quantified using the Implen NanoPhotometer® P-Class 

P 330 (Implen, Munich, Germany) or the highly sensitive Qubit® dsDNA HS Assay kit 

(Thermo Fisher Scientific, Waltham, USA). Additionally, Agilent`s High Sensitivity DNA 

Kit was used with the 2100 Bioanalyzer (Agilent, Eugen, USA) to analyze cfDNA fragment 

length. 

2.4  Mutational analysis using Droplet Digital™ PCR and Next Generation Se-

quencing 

Two highly sensitive methods for the mutation detection in cancer-related genes were 

applied. The analysis of cfDNA of CRC patients was based on the knowledge of reported 

mutations in the two oncogenes KRAS and BRAF from tumor tissue. Therefore, the Drop-

let Digital™ PCR (ddPCR) platform was used to investigate to which extend cfDNA re-

flected the gene status of the solid tumor. Here, a water-oil emulsion droplet technology 

fractionated each PCR sample into 20,000 droplets, resulting in individual PCR reactions 

with approximately one amplicon per droplet. The two detection channels were used to 

differentiate the wild type sequence from the point mutation (HEX and FAM-labelled 

probes, respectively). Multiple assays were designed, detecting the V600E variant of the 

BRAF gene as well as the KRAS mutations G12A/C/D/V and G13D with a limit of detec-

tion of 0.01% and a false positive rate of one event (see respective publications for details 

(13, 14)). Analysis of patient-derived material was performed in duplicates, furthermore 

including corresponding controls, harboring the mutation of interest with a frequency of 

1% or a non-template control (positive and negative controls, respectively). 

To compare informative potential of cfDNA and CTCs in different types of neoplastic dis-

ease, next generation sequencing (NGS) was used for a broader detection range. The 

Haloplex™ HS target enrichment system (Agilent, Santa Clara, CA) was used for library 

preparation, enriching the exonic sequence (1.47 Mb) of our in-house panel of 327 fre-

quently mutated genes (18). The High Output v2 sequencing kit (300 cycles, Illumina, 

San Diego, CA) was used to perform paired-end sequencing on the Illumina NextSeq500 

platform executed by amedes genetics (amedes Medizinische Dienstleitungen GmbH, 

Berlin, Germany). Only sequencing of tumor tissue from the MEL subcohort was con-
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ducted differently as part of the precision oncology program Treat20 Plus (19). Collabo-

rators at the Max Planck Institute performed DNA isolation from the metastatic tissue and 

whole exome sequencing (WES) on the HiSeq™ system using the Nextera Rapid Cap-

ture Exome and Expanded Exome kit (Illumina, 62 Mb).  

2.5  Data analysis 

Final evaluation of ddPCR results considered only samples with ≥10,000 analyzed drop-

lets to guarantee reliable statistical analysis of the QuantaSoft™ software. Wildtype and 

mutation events were differentiated based on their various fluorescence amplitudes, re-

sulting from different probe concentrations used respectively. Outliers were excluded 

prior to quantification of positive events. Furthermore, only those samples with mutation 

event counts above the false positive rate were considered as positive. 

Regarding the NGS analysis, raw fastq files were trimmed and aligned to the hg19 refer-

ence genome using Agilent`s SureCall software (version 3.5.1.46), furthermore, removing 

duplicates and identifying preliminary variants for subsequent analysis. Personal altera-

tions were excluded when detected in the patient-specific germline sample. Common pol-

ymorphisms (minor allele frequency >2%) and artifacts were filtered out and relevant mis-

sense or nonsense mutations were sieved based on the predicted damaging effects an-

notated by the two data bases COSMIC (20) and Cancer Genome Interpreter (21). Alter-

ations from FFPE and cfDNA with an allele frequency below 5% were excluded. Variant 

calling in CTC pools was not limited by an allele frequency cut-off due to different cell 

counts in each sample and an inestimable amplification bias during WGA. CTC and 

cfDNA-derived variants with a sequencing depth >30 and ≥ 5 for total and altered reads 

were integrated into final analysis. Discordant results between tissue and liquid biopsy 

samples from the same individual underwent manual inspection, partly identifying sub-

threshold mutations. WES results of metastatic tissue from MEL patients were provided 

by Alacris Theranostics GmbH (Berlin, Germany). 

2.6  Statistical analysis 

Continuous variables were summarized by median and range, and categorical variables 

by frequency. Due to the small sample size, only exploratory analyses but no formal com-

parisons were made. 
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3. Results 

3.1  Previous work: The pre-clinical OncoTrack platform (published in Schütte et al., 

Nature Communications (22)) 

Our laboratory was part of the OncoTrack consortium (2011-2016), aiming to identify 

novel markers associated with treatment effects in stage I-IV CRC. I joined the laboratory 

in July 2014 and was involved in the methodological work for CTC detection since then. 

Extensive omics data from patient-derived xenograft (N=59) and organoid models (N=35) 

as well as 116 matched tumor samples highlighted the contribution of intra-tumor heter-

ogeneity and clonal dynamics to therapy resistance (22). From this patient cohort, CTCs 

were quantified from blood samples in our laboratory (details in section 3.4), however, 

molecular analysis failed at that time due to the low input material originating from single 

cells. Subsequently, corresponding CTC protocols were improved and additional meth-

ods for the isolation and analysis of cfDNA were established for the following liquid biopsy 

projects. 

3.2  KRAS and BRAF mutation profiling in cfDNA from CRC patients in relation to 

disease stage (published in Liebs et al., Cancer Medicine (13)) 

Plasma samples from 65 patients with early and advanced CRC (OncoTrack cohort) were 

analyzed to detect common point mutations in KRAS and BRAF in cfDNA and compared 

to solid tissue. Tumors from 10 patients (15%) harbored the BRAF V600E mutation, a 

KRAS mutation in codon 12 or 13 was reported in 25 patients (38%), and tumors from 18 

patients (28%) were wild-type for both oncogenes (Table 1). For 12 patients, the KRAS 

and BRAF tissue status was unknown. 
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Table 1: Patient characteristics 

Characteristics Total Stage I Stage II Stage III Stage IV 
Number of patients N = 65 N = 9 N =12 N =15 N = 29 

Age at enrollment, years      
Median 67 67 69 70 63 
Range 36-92 49-79 46-79 39-83 36-92 

Sex, n (%)      
Male 39 (60%) 6 (67%) 7 (58%) 10 (67%) 16 (55%) 
Female 26 (40%) 3 (33%) 5 (42%) 5 (33%) 13 (45%) 

Tissue gene status, n (%)      
KRAS-MUT 25 (38%) 2 (22%) 2 (17%) 6 (40%) 15 (52%) 
BRAF-MUT  10 (15%) 2 (22%) 4 (33%) 1 (7%) 3 (10%) 
WT 18 (28%) 2 (22%) 4 (33%) 5 (33%) 7 (24%) 
Unknown 12 (18%) 3 (33%) 2 (17%) 3 (20%) 4 (14%) 

CTC detection rate, n (%)      
Performed CTC analysis 
Patients with CTCs 
Patients without CTCs 

54 (83%) 
29 (54%) 
25 (46%) 

7 (78%) 
4 (57%) 
3 (43%) 

12 (100%) 
7 (58%) 
5 (42%) 

13 (87%) 
8 (62%) 
5 (38%) 

22 (76%) 
10 (45%) 
12 (55%) 

CTC numbers       
Median 1 1 2 1 0 
Range 0-8 0-4 0-8 0-6 0-5 
Not available 11 2 0 2 7 

KRAS-MUT comprises the amino acid substitutions G12D, G12V, G12C and G13D, the V600E 
mutation is listed as BRAF-MUT. From Liebs et al. (13) Copyright © 2019 The Authors (Repro-
duced with permission from Springer Nature) 

Independent of plasma volume or DNA concentration, cfDNA was detected in 100% of 

patient samples. CfDNA concentrations increased with higher tumor burden, ranging be-

tween 59 ng/ml in healthy donors to 156 ng/ml in patients with distant metastasis (Figure 

1). Across all tumor stages, ddPCR assays demonstrated 100% specificity, verifying all 

wild type statuses from tumors in the corresponding cfDNA sample (Table 2). Sensitivity 

was limited with only 11 of 35 (31%) retrieved tissue mutations in plasma, including 2 of 

10 (20%) BRAF and 9 of 25 (36%) KRAS mutations. Mutant copies were detected with 2 

to 227 ddPCR events, resulting in allele frequencies (AF) of 0.01 to 0.52.  
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Figure 1: Quantitative analysis of cfDNA concentrations in relation to disease stage: (A) CfDNA 

levels in stage I-IV CRC patients in comparison to healthy individuals. Box plot showing median, 

first and third quartiles with whiskers from minimum to maximum. (B) Median cfDNA concentra-

tions increase with higher tumor burden. From Liebs et al. (13) Copyright © 2019 The Authors 

(Reproduced with permission from Springer Nature) 

Table 2: Concordance of the BRAF and KRAS gene status between tumor tissue and cfDNA 

  cfDNA analysis 
 Total 

(N=53) 
Stage I Stage II Stage III Stage IV 

MUT WT MUT WT MUT WT MUT WT MUT WT 

Tissue 
analysis 

MUT 11 24 0 4 1 5 0 7 10 8 
WT 0 18 0 2 0 4 0 5 0 7 

Sensitivity 31% 0% 17% 0% 56% 
Specificity 100% 100% 100% 100% 100% 
Accuracy 55% 33% 50% 42% 68% 

From Liebs et al. (13) Copyright © 2019 The Authors (Reproduced with permission from Springer 
Nature) 

Despite the detection of increasing ddPCR event counts when analyzing higher cfDNA 

concentrations, no correlation of high event counts with successful tissue mutation detec-

tion in plasma was observed (Figure 2). However, ten of the eleven verified mutations 

were detected in the stage IV cohort, resulting in a total concordance rate of 68% for CRC 

patients with distant metastasis (all wild-type samples (N=7) and 10 of 18 (56%) muta-

tions were recovered). In contrast, only one of 17 (6%) mutations in all stage I-III tumors 

was also detected in the periphery, resulting in an overall concordance rate of 43%. 
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Figure 2: Comparative analysis of the concordance of tissue and plasma mutations with levels of 

detectable cfDNA and CTCs: Total ddPCR events increased in higher concentrated cfDNA sam-

ples, but did not correlate with the detection of tissue-reported variants in plasma. CTCs were 

detected independently of cancer stage, suggesting complementarity of both LB components. † 

In patient 374-CB-M, the KRAS G12C mutation from the CRC was not detected in plasma, but 

the G12D variant from the synchronous stage IV cancer of the pancreas. From Liebs et al. (13) 

Copyright © 2019 The Authors (Reproduced with permission from Springer Nature) 

3.3  Identification of the predominant tumor in a patient with synchronous primary 

cancers using cfDNA analysis (published in Liebs et al., ESMO Open (23)) 

One OncoTrack patient with colon cancer and liver metastases was of particular interest, 

since only in this case a discrepancy in the KRAS mutation status of cfDNA and tissue 

was identified (Figure 2). Whereas a KRAS G12D mutation was detected in plasma with 

an AF of 0.10, the stage II colon cancer harbored a KRAS G12C mutation (AF: 0.41). 

However, cfDNA results were in concordance with the detected alteration in both the liver 

metastasis (AF: 0.47) and the synchronous adenocarcinoma of the pancreas (AF: 0.23). 

Those results suggested the pancreas tumor as the origin of ctDNA and the metastatic 

lesion, which was verified by further histologic studies. 
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3.4  Comparative analysis of mutation profiles of tumor tissue, CTCs and cfDNA 

in CRC, HNSCC and MEL patients (published in Liebs et al., Oncogene (14)) 

In contrast to high cfDNA levels associated with advanced disease, CTC counts were 

independent of tumor stage in the OncoTrack cohort, varying between 1-8 CTCs in 29 of 

54 CRC patients (54%). This observation emphasized the differences between cfDNA 

and CTCs, furthermore, indicating complementarity of both LB constituents. To investi-

gate this hypothesis more closely and specifically in relation to different metastatic or-

ganotropisms, archival tissue and liquid biopsy samples from 18 patients with advanced 

CRC, HNSCC and MEL were sequenced using a 327 cancer gene panel. Median cfDNA 

concentrations were 139.7 ng/ml, 4.7 ng/ml and 7.1ng/ml in CRC, HNSCC and MM pa-

tients, respectively (Figure 3). In 13 of 18 (72%) patients, 1-33 CTCs were detected. How-

ever, from only 12 patients, CTC samples were isolated and whole genome amplified, 

resulting in sufficient DNA concentrations for NGS analysis from seven of 16 samples 

(44%). 

 

 

Figure 3: Total CTC counts and cfDNA concentrations possibly influenced by clinical parameters. 

CT: chemotherapy, IT: immunotherapy, LB: liquid biopsy collection, mo: months, RT: radiother-

apy, SURG: surgery, TT: targeted therapy, Tx: treatment, Δt: time span, ‡ available NGS data 
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from whole genome amplified CTCs. From Liebs et al. (14) Copyright © 2021 The Authors (Re-

produced with permission from Springer Nature) 

In primary and metastatic tumor tissue specimens (N=30), 92 tissue mutations were iden-

tified and assessed for reflection in 18 cfDNA and seven CTC samples (Figure 4). 

Whereas highly concentrated cfDNA samples demonstrated a total concordance rate of 

78% with tumor tissue, low input samples displayed only 8% of tissue mutations (44% of 

patients with 30-100 ng cfDNA input for NGS and 56% with <30 ng, respectively). Com-

parative mutation analysis of tissue with CTC samples was performed for only three pa-

tients, harboring one, two and 20 tumor mutations (after applying the filter algorithm de-

scribed in method section 4.5, no tissue mutations were detected in the forth patient with 

sequenced CTCs). Only a pool of 13 CTCs mirrored the molecular profile of the colon 

tumor tissue from patient CRC002.1, although two additional CTC samples from that pa-

tient with comparable genome integrity indices were sequenced as well (eight and five 

CTCs harbored respective wild type sequences only). The TP53 p.Q100* variant from 

patient CRC001.1 was not detected in either of the two CTC samples (one and five tumor 

cells), whereas the corresponding cfDNA reflected the mutation status. Only one of 20 

rather sporadic tissue mutations from patient HNSCC004.1 was displayed subthreshold 

in the respective CTC sample (single tumor cell). 
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Figure 4: Representation of tissue-derived mutations in LB samples: Based on the total cfDNA 

input used for NGS analysis, samples were categorized as (A) high-input and (B) low-input ma-

terial (≥30 ng and <30 ng, respectively). ‡ Multiple mutations were detected in the same gene. 

FIC: density gradient centrifugation-enriched CTCs, LB: Liquid biopsy, LR: local recurrence, NGS: 

next generation sequencing, ROS: RosetteSep™-enriched CTCs, tDNA: tumor-derived DNA. 

From Liebs et al. (14) Copyright © 2021 The Authors (Reproduced with permission from Springer 

Nature) 
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Subsequently, liquid biopsies were evaluated for additional mutations, which were origi-

nally not detected in tissue samples possibly due to tumor heterogeneity or the presence 

of rare subclones. In cfDNA and CTCs, 43 and 204 mutations were identified, respec-

tively. After manual inspection, 15 of 43 (35%) and 18 of 204 (9%) mutations were also 

detected at subthreshold levels in tissue (Figure 5). 

Figure 5: Representation of cfDNA mutations in corresponding tissue samples: Based on the total 

cfDNA input used for NGS analysis, samples were categorized as (A) high-input and (B) low-input 

material (≥30 ng and <30 ng, respectively). FIC: Ficoll-enriched CTCs, LB: Liquid biopsy, LR: 

local recurrence, NGS: next generation sequencing, ROS: RosetteSep™-enriched CTCs, tDNA: 

tumor-derived DNA. From Liebs et al. (14) Copyright © 2021 The Authors (Reproduced with per-

mission from Springer Nature) 
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3.5  Liquid biopsy assessment of tumor heterogeneity (published in Liebs et al., Onco-

gene (14)) 

In patient CRC002.1, tumor heterogeneity was investigated to a broader extent by se-

quencing of cfDNA, three CTC pools and two spatial regions of the colon tumor tissue 

(Figure 6A). Two mutations in the tumor suppressor genes APC and TP53 were detected 

in both tumor samples and reflected in one CTC and the cfDNA sample. The other two 

CTC samples only displayed the respective wild type sequence. In total, 121 variants 

were identified in all three CTC pools, of which only 34 (28%) were also found in at least 

one other specimen. 

Mutated genes were assigned to corresponding pathways and cancer hallmarks using 

the databases KEGG (Kyoto Encyclopedia of Genes and Genomes) and COSMIC. 

Genes associated with genome instability, immune escape and tumor invasion were more 

frequently mutated in and private to CTC samples (Figure 6B/C). In contrast, mutations 

shared by tumor tissue and CTCs were rather related to induction of angiogenesis, pro-

liferative signaling, inflammation and resistance to cell death. 

Figure 6: Shared and private mutations of tumor tissue and CTCs might be associated with the 

requirements for tumor growth and dissemination to distant organs: (A) Distinct mutation profiles 

of corresponding cfDNA, tissue and multiple CTC samples from patient CRC002.1 were assigned 

to cancer hallmarks, (B/C) demonstrating proportional changes in affected cancer-related path-

ways. Whereas mutations private to CTCs were more frequently associated with invasion and 

avoidance of immune destruction, shared mutations with tumor tissue were more frequently in-
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volved in pathways of proliferative signalling, tumor-promoting inflammation and induction of an-

giogenesis. FIC: Ficoll-enriched CTCs, ROS: RosetteSep™-enriched CTCs. From Liebs et al. 

(14) Copyright © 2021 The Authors (Reproduced with permission from Springer Nature)

3.6  Detection of subclonal resistance in cfDNA (published in Liebs et al., Oncogene (14)) 

In a melanoma patient refractory to immunotherapy and BRAF-MEK-inhibition 

(MEL003.1), subclonal resistance was indicated when analyzing multiple metastatic le-

sions and cfDNA (Figure 7). Whereas initial analysis of a cutaneous metastasis revealed 

a BRAF V600E mutation, presence of a secondary NRAS G13R mutation was detected 

in a second skin metastasis when the patient progressed under BRAF-MEK-inhibition. 

Liquid biopsy was collected when the patient presented with progressive disease during 

subsequent immunotherapy. CTCs were detected, however, DNA integrity was insuffi-

cient for further analysis. In contrast, NGS of cfDNA did not only display both tissue mu-

tations, but also the emergence of an additional NRAS Q61R mutation. Using ddPCR, 

four metastatic lesions (resected between 2015 and 2017) and cfDNA (isolated in 2017) 

were analyzed for the presence of BRAF V600E, NRAS G13R and Q61R. All three mu-

tations were verified in plasma. BRAF V600E was detected in all four metastases, 

whereas, consistent with WES results, NRAS G13R was only found in one subcutaneous 

lesion. In contrast, NRAS Q61R was detected in none of the tissue samples. 
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Figure 7: Schematic illustration of the clinical course of a melanoma patient refractory to immu-

notherapy and BRAF-MEK-inhibition: Tissue and plasma samples were collected (indicated by 

scalpel and syringe, respectively) and analysed for the presence of BRAF and NRAS mutations 

using NGS and ddPCR, demonstrating the emergence of potentially resistance-associated NRAS 

mutations (G13R and Q61R) at different time points during treatment. AF: Allele frequency. From 

Liebs et al. (14) Copyright © 2021 The Authors (Reproduced with permission from Springer Na-

ture)
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4. Discussion

4.1  Short summary of results 

The presented studies clearly emphasized what a promising disease surveillance tool 

liquid biopsy may be to guide cancer management. Analysis of cfDNA from the Onco-

Track cohort highlighted the limited utility of cfDNA analysis for early cancer detection, 

but its great potential for cancer monitoring in CRC patients with metastatic disease. The 

case report of a patient with synchronous primary cancers displayed the ability of liquid 

biopsy to identify the predominant tumor burden. Comparative analysis of CTCs and 

cfDNA proved superiority of cfDNA-based tissue mutation detection compared to CTCs 

in CRC, MEL and HNSCC, but also underlined the advantages of CTC analysis for the 

investigation of tumor heterogeneity. In one MEL patient, emergence of a mutation pos-

sibly mediating resistance to the given treatment was identified in cfDNA but not in avail-

able tissue samples.  

All of these examples indicated various advantages of LB, a real-time tool that is sug-

gested to provide a more comprehensive cross-section of the complex clonal divergence 

of single and coexisting lesions compared to individual tissue profiling. Nevertheless, the 

potential and possible pitfalls of this methodology have to be critically evaluated and val-

idated before LB will be implemented into clinical routine. Thus, based on the findings of 

our publications, advantages and disadvantages of LB will be discussed in the following 

sections, furthermore, including additional aspects from the current literature. 

4.2  Interpretation and embedding of results into the current state of research 

In Liebs et al. (Cancer Medicine (13)), 11 of 35 (31%) tissue mutations were retrieved in 

plasma samples, including only one of 17 (6%) mutations in stage I-III and 10 of 18 (56%) 

mutations in stage IV CRC patients. Low concordance between tumor tissue and cfDNA 

might not only be affected by biological factors such as cancer stage and tumor burden, 

but also by pre-analytical and analytical factors as reported by Guo et al (24). In our study, 

sample age as well as the utilized cfDNA isolation kit might have limited assay perfor-

mance (kit compatibility with anticoagulant in blood collection tube had to be taken into 

account, although a different kit was reported to result in superior cfDNA quantities (25)). 
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Additionally, Beije et al reported that different analysis methods might vary in their sensi-

tivity and specificity of mutation detection (26)). Taken all of this into account, the detec-

tion of cancer-related aberrations (up to 10 - 1000 mutant copies per 5 ml plasma (27)) 

in front of the background of wild-type signals originating from non-cancerous cells re-

quires highly sensitive and specific detection methods as well as standard operating pro-

tocols for plasma handling to guarantee successful detection of circulating tumor DNA 

even at low allele frequencies. Thus, in the last decade and still ongoing, many research 

groups tested different techniques for the exploration of cfDNA to identify the optimal 

setting for reliable mutation detection in concordance with the underlying disease. 

In our study, the analysis of plasma samples from 53 CRC patients with known BRAF 

and KRAS gene status resulted in only one discordant finding between tissue and plasma. 

A patient with a KRAS G12C mutation in the stage II CRC tumor displayed a KRAS G12D 

mutation in plasma, which instead displayed the status of the synchronous stage IV pan-

creatic cancer. Although no serial LB sampling was performed since the patient died be-

fore systemic treatment was started, our case report demonstrated the utility of cfDNA to 

identify and track the predominant cancer over time (23), which was consistent with ob-

servations from other groups. Lakis et al reported different cancer driver mutations of 

different allele frequencies in EGFR and KRAS in synchronous pulmonary lesions, of 

which the KRAS-mutated lesion did not response to targeted therapy resulting in cancer 

progression and subsequent treatment failure (28). The identification of the unresponsive 

cancer histology via the detection of an increase of circulating melanoma cells, whereas 

epithelial CTCs originating from the synchronous CRC decreased under chemotherapy, 

was published by Fusi et al (29). However, in this context, it is also important to empha-

size that prerequisites for disease monitoring via LB include the existence and stability of 

disease markers over time and a sufficient release of CTCs and/or cfDNA into the periph-

ery to detect those traces in blood samples. 

Another crucial variable to be investigated with regard to applicability of LB is if the diag-

nostic value of CTCs and cfDNA is affected by different tumor characteristics of certain 

cancer histologies. Clinical manifestation of metastasis in a secondary organ follows a 

cascade of stochastic events, which are affected by extrinsic and intrinsic factors, includ-

ing anatomical site and circulation patterns, vascularization, the ability to cross physical 

barriers as well as the interaction with and modification of the host organ microenviron-
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ment (27, 30). Consequently, different organ-specific patterns of metastasis were ob-

served in multiple tumor entities, including predominant locoregional progress of HNSCC, 

sequential organ-specific metastasis of CRC in liver and then lung, and the ability of MEL 

to colonize many different distant organ sites. In our study, no significant difference in the 

informative value of CTCs and cfDNA between those three entities was demonstrated 

(Liebs et al, Oncogene (14)). However, this observation requires further validation in a 

bigger patient cohort to prove LB as a biomarker independent of the underlying tumor 

entity. 

Superiority of cfDNA over CTC analysis was already suggested in previous studies (31, 

32), however, the biology of CTC and cfDNA release into the bloodstream and therefore 

the potential informative value might be different. Whereas cfDNA is released by apop-

totic cells rather reflecting the overall profile of cancer cells, a subpopulation of CTCs 

depicts cells which escape treatment and patient`s immune response, eventually forming 

new tumor lesions. Thus, the applicability of cfDNA and CTCs to represent the mutation 

tissue profile was compared (Liebs et al, Oncogene (14)), demonstrating that cfDNA out-

performed CTC analysis in terms of concordance with corresponding tissue. Besides the 

already outlined limitations of cfDNA analysis, also CTC detection and characterization 

are still restricted in multiple manners. Different CTC phenotypes (mesenchymal, epithe-

lial, hybrids) express distinct subsets of proteins on their surfaces, which have to be con-

sidered when establishing an antibody panel for the detection of the entire set of existing 

CTCs per blood sample. This is especially necessary due to the low frequency and quan-

tity of CTCs (33, 34), which is a major limitation for their implementation into clinical prac-

tice. CTCs have to be enriched before isolation and whole genome amplification prior to 

mutation detection is prone for technical defects including allelic imbalance and/or drop-

out caused by insufficient DNA integrity in isolated single cells. Furthermore, only 0.01% 

of CTCs have the capacity to form metastases at distant sites. Nevertheless, CTC anal-

ysis yields multiple benefits including the possible identification of new therapeutically 

targetable signatures and the investigation of tumor heterogeneity to assess possible re-

sistance mechanisms. The latter was also demonstrated in our study, showing that con-

sistent with other publications (35-37) the majority of CTC mutations (79%) were private. 

Interestingly, unique CTC mutations were associated with the cancer hallmarks „activat-

ing invasion and metastasis" as well as „avoiding immune destruction“ (38). In contrast, 
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shared mutations by tumor tissue and CTCs were assigned to pathways such as „induc-

tion of angiogenesis“, „deregulation of cellular energetics“ and „sustainability of prolifera-

tive signaling“ being in line with basic conditions of progressing tumor lesions. Besides 

the other outstanding case in our cohort, in which a possible resistance-associated mu-

tation was detected in cfDNA but not in available tissue, did multiple other studies even 

predict therapy resistance by the emergence of mutations in blood before relapse clini-

cally demonstrated (32, 39-41).  

4.3  Implications for practice and future research 

All three studies as well as findings from other research groups proposed manifold capa-

bilities of disease surveillance via liquid biopsies. Despite the high need for informative 

biomarkers in precision oncology, validity and utility of liquid biopsy for clinical routine are 

still subject to debate. One explanatory variable for this is that at current state, multiplicity 

of liquid biopsy approaches for the isolation and analysis of cfDNA and CTCs hampered 

agreement of the clinical and scientific community on the clinical value of LB, due to the 

absence of robust and consistent results verified in large comparative studies. Further-

more, in many cases, abundance of gene alterations in liquid biopsy can jeopardize clin-

ical benefit, when targets of therapeutic relevance are lacking and knowledge about in-

terpretation and translation into clinic is low. In order to resolve those issues, multiple 

aspects should be considered in the future application of liquid biopsies: Procedures of 

sample processing and profiling have to be standardized and verified in bigger patient 

cohorts than is presently the case to allow highest possible sample quality for the detec-

tion of mutations even of low allele frequencies. Associated with that, assay performance 

including sensitivity and specificity have to be further optimized. Especially for clinical 

use, cancer panels targeting mutations of clinical relevance have to be implemented and 

applied to longitudinal liquid biopsy samples to allow early detection of therapy-induced 

emergence of resistant subclones or changes in mutation allele frequencies as an indi-

cator of treatment response. With regard to unknown variants and their involvement in 

cancer progression, more detailed research has to be performed in close cooperation 

between laboratories analyzing LB samples and those performing more basic research 

on aberrated cancer pathways. For this, a database, such as COSMIC, collecting pre-

sumably irrelevant alterations from LB samples might expose more abundant variants 

correlated with cancer progression. Thus, further research on the identification of new 
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targetable signaling pathways of tumor cells has to be performed followed by the estab-

lishment of novel biomarkers and inhibitors. Additionally, simultaneous analysis of CTCs, 

cfDNA and even further blood components such as exosomes should be taken into con-

sideration to increase the sensitivity of tissue profiling via LB by covering the diverse foot-

prints of those complementary disease markers. 
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5. Conclusions  

At current state and apart from a few clinical applications (42, 43), LB is of experimental 

value only and not accepted as an alternative to standard tissue profiling. However, LB 

should not only be an option for patients from which serial invasive sampling would be 

contraindicated or no sufficient DNA quantities are available for mutation profiling. In-

stead, LB should rather be recognized as a relevant complementary biomarker to tumor 

tissue analysis, since from a clinical perspective, assistance to track changes in the highly 

dynamic clonal composition of cancers is urgently needed to predict treatment outcome 

and identify patients who are at risk for relapse. Especially, serial liquid biopsies are most 

promising to predict treatment failure before clinical recurrence, allowing dynamic patient 

monitoring that will potentially precede image-based detection of clinical progress and 

identify potential targets for medical intervention.  
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