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Abstract: Machine learning (ML) is being increasingly employed in dental research and application.
We aimed to systematically compile studies using ML in dentistry and assess their methodological
quality, including the risk of bias and reporting standards. We evaluated studies employing ML in
dentistry published from 1 January 2015 to 31 May 2021 on MEDLINE, IEEE Xplore, and arXiv. We
assessed publication trends and the distribution of ML tasks (classification, object detection, semantic
segmentation, instance segmentation, and generation) in different clinical fields. We appraised the
risk of bias and adherence to reporting standards, using the QUADAS-2 and TRIPOD checklists,
respectively. Out of 183 identified studies, 168 were included, focusing on various ML tasks and
employing a broad range of ML models, input data, data sources, strategies to generate reference
tests, and performance metrics. Classification tasks were most common. Forty-two different metrics
were used to evaluate model performances, with accuracy, sensitivity, precision, and intersection-
over-union being the most common. We observed considerable risk of bias and moderate adherence
to reporting standards which hampers replication of results. A minimum (core) set of outcome and
outcome metrics is necessary to facilitate comparisons across studies.

Keywords: dental radiography; dentistry; machine learning; neural networks; scoping review

1. Introduction

With the advent of the big data era, machine learning (ML) methods like Support
Vector Machine, Naïve Bayesian Classifier, Decision Tree, Random Forest (RF), K-Nearest
Neighbor, and Deep Learning involving Convolutional Neural Network (CNN), etc., have
been increasingly adopted in fields such as finance, spatial sciences, and speech recogni-
tion [1]. Additionally, in medicine and dentistry, ML has been employed for a range of
applications, for example, image analysis in dermatology, ophthalmology, or radiology,
with accuracy values similar or better than that of experienced clinicians [1,2].

In the field of ML, mathematical models are employed to enable computers to learn
inherent structures in data and to use the learned understanding for predicting on new,
unseen data [3]. For deep learning models, specifically CNNs, different types of model
‘architecture’ can be used. A ML workflow involves training the model, where a subset of
the data is used to learn the underlying statistical patterns in the data, and testing it on a
yet unseen, testing data subset. ML models tend to become more accurate, when larger
training datasets are used [4]. Moreover, basic learning parameters are usually optimized
on a separate data subset, referred to as validation data, a process called hyperparameter
tuning. Testing the model on the test data involves a wealth of performance metrics
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(accuracy, sensitivity also known as recall, specificity, and F-scores, among others), while
the assessment of a model’s generalizability, achievable via assessing its performance on an
external (independent) dataset, is not frequently performed yet.

Notably, studies in the field of dental ML can vary widely [1]. Different research
questions translate into different ML tasks, which in turn necessitate different model
specifications. Various input data (numerical, imagery, speech, etc.) can be employed and
varied models (SVM, Extreme Learning Machine, Decision Tree, RF, K-Nearest Neighbor,
Neural Network, etc.) can be used. Datasets of different sizes and partitions (training,
testing, and validation sets) can be used, and a range of methods for balancing the input
datasets via synthetic data generation can be conducted. Moreover, the reference test can be
established either by having a “hard” ground truth (for example, for imagery, histological
sectioning) or fuzzy labeling schemes (for example, multiple human annotators labeling
the same image), and a variety of performance metrics can be used to evaluate the model’s
performance. These metrics differ with the ML task (classification or, for imagery, detection
of objects, or segmentation of specific pixels in an image, or even generation of new images),
and can be determined on different hierarchical levels, e.g., patient level, image level, tooth
level, surface level or pixel level. Exemplary metrics are accuracy, the confusion matrix and
(associated with it) sensitivity (also known as recall), specificity, positive predictive value
(precision), and negative predictive value as well as the area-under-the receiver-operating-
characteristics curve (c-statistic). For image segmentation tasks (where each pixel has its
own classification accuracy), the intersection-over-union (IoU), i.e., the overlap between
labeled and predicted pixels (DICE coefficient or Jaccard index), is often used.

As a result, there is significant heterogeneity in the data, tasks, models, and perfor-
mance metrics, which makes it difficult to contrast studies and assess the robustness and
consistency of the emerging body of evidence for ML in dentistry. Additionally, the quality
of ML studies—both with regards to the risk of bias but also the reporting of the methods
and results—has been shown to vary [5], and with a high likelihood such variance in quality
and replicability is also present for dental ML studies.

We aimed to assess this quality of recent ML studies in dentistry, focusing on risk of
bias and reporting quality, and to characterize the overall body of evidence with regards
to the clinical and ML tasks frequently studied, the model types and underlying datasets,
and the employed metrics. Having an overview about these aspects and appraising the
consistency and robustness of existing ML studies in our field facilitates to highlight current
strengths and weaknesses, and to identify future research needs. In comparison with
recent focused reviews on certain clinical tasks (e.g., caries detection on radiographs [6],
cephalometric landmark detection [2], etc.), this scoping review not only mainly targets
clinical applicability and performance in a subfield of dentistry, but captures the overall
picture of ML in our field with a broader focus, and thus a higher number of studies are
expected to be included.

2. Materials and Methods
2.1. Search Strategy and Selection Criteria

We screened three electronic databases (MEDLINE via PubMed, Institute of Electrical
and Electronics Engineers (IEEE) Xplore, and arXiv). Search terms used were ‘deep learn-
ing’, ‘artificial intelligence’, ‘machine learning’, ‘convolutional neural network’, ‘dental’
and ‘teeth’. The search strategy for all the three databases used is specified in the Supple-
mentary Materials. No language restrictions were applied. The search was overall designed
to account for different publication cultures across disciplines. Reviews, editorials, and
technical standards were excluded.

The following inclusion criteria were applied:

(1) Studies which had a dental/oral focus, including technical papers.
(2) Studies employing ML, for example, SVM, RF, Artificial Neural Network, CNN.
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(3) Studies published between 1 January 2015 and 31 May 2021, as we aimed to gather
recent studies and specifically include deep learning as the most rapidly evolving ML
field at present.

Reporting of this scoping review followed the PRISMA checklist [7,8]. Our PICO
question was as follows: Which ML practices are being employed by studies in dentistry and
what are the methodological quality and findings? The question was constructed according
to the Participants Intervention Comparison Outcome and Study (PICOS) strategy.

• Population: All types of data with a dental or oral component.
• Intervention/Comparison: ML techniques applied with a dental or oral focus for the

diagnosis, management, prognosis of dental conditions or improving data quality.
Patient-level, tooth-level, surface-level, or pixel-level.

• Outcome: Performance evaluation of the ML models in terms of metrics, for example,
accuracy, IoU, sensitivity, precision, area under the receiver operating characteristic, F
indices, specificity, negative predictive value, rank-N recognition rate, error estimates,
correlation coefficients, etc.

• Study design type: For this review, we considered all kinds of studies except reviews,
editorials, and technical standards, with no language restrictions.

Ethics approval was not sought because this study was based exclusively on pub-
lished literature.

Screening of titles or abstracts was performed by one reviewer (A.C.). Inclusion or
exclusion was decided by two reviewers in consensus (F.S. and A.C.). All papers which
were found to be potentially eligible were assessed in full text against the inclusion criteria.
We did not limit the inclusion of studies based on the target study population, outcome of
interest, or the context in which ML was used. All original studies related to dentistry and
ML, without gross reporting fallacies, such as failure to define the type of ML used, failure
to minimally describe which dataset was employed for training and testing, and failure to
report study findings, were included in this scoping review.

2.2. Data Collection, Items, and Pre-Processing

Data extraction was performed jointly by A.C., A.M., and L.T.A.-S. The extracted
data was reviewed by L.T.A.-S. Adjudication in case of any disagreement was performed
by discussion (L.T.A.-S. and J.K.). A pretested Excel spreadsheet was used to record the
extracted data. Study characteristics included country, year of publication, aim of study
and clinical field, type of input data (covariates or imagery [photographs or radiographs;
2-D or 3-D imagery]), dataset source, size and partitions (training, test, validation sets),
type of model used and, for deep learning, architecture, augmentation strategies employed,
reference test and its definition, comparators (if available, e.g., current standard of care,
clinicians, etc.), and performance metrics and their values. In each study, all data items that
were compatible with a domain of the extracted data were sought and recorded (e.g., all
performance metrics, models employed). No assumptions were made regarding missing or
unclear data.

2.3. Quality Assessment

The risk of bias was assessed using the QUADAS-2 tool in four domains [9]. First, risk
of bias in data selection was assessed using the parameters of ‘inappropriate exclusions’,
‘case-control design’, and ‘consecutive or random patient enrollment’. Second, risk of bias
in the index test was assessed using the parameters of ‘assessment independent of reference
standard and ‘pre-specification of thresholds used’. Third, risk of bias in the reference stan-
dard was assessed using the parameters of ‘validity of reference standard and ‘assessment
independent of index test’. Fourth, risk of bias in the flow and timing was assessed using
the parameters of ‘appropriate interval between index test and reference standard’, ’use of
a reference standard for all patients’, ‘use of the same reference standard for all patients’,
and ‘inclusion of all patients in the analysis’. Using the same tool, applicability concerns
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in three domains were also evaluated. First, applicability concerns for data selection were
assessed using the parameter of ‘mismatch between the included patients and the review
question’. Second, applicability concerns for the index test were assessed via the parameter
of ‘mismatch between the test, its conduct, or its interpretation and the review question’.
Last, applicability concerns for the reference standard were assessed via the parameter of
‘mismatch between the target condition as defined by the reference standard and the review
question’. We note that alternatively (or even complimentary), the PROBAST tool [10]
could have been used for the same assessment.

Adherence to reporting standards was assessed using the Transparent Reporting of a
Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) tool, which
is a 22-item checklist that provides reporting standards for prediction model studies [11].
Note that not all studies included were prediction model studies (studies varied widely in
their broader approach, as discussed below), but all involved a mathematical model (ML)
for a specific task, which is why we assumed that this checklist would require most studies
to adhere to the large majority of domains. TRIPOD has been used for similar purposes in
other domains [5]. Risk of bias and adherence to reporting standards were independently
assessed by one reviewer (L.T.A.-S.).

2.4. Data Synthesis

We describe various aspects of the included studies, such as country of origin, type
of input data used, source of datasets, type of ML methods used, etc. We had initially
attempted to conduct a meta-analysis using the results of the confusion matrices reported
by the included studies; however, out of 168 studies, only 16 (10%) studies presented their
confusion matrices in a way that could be used for analysis and furthermore. These studies
differed from each other in terms of their clinical research question/task, type of input data,
model architecture, etc.

Instead, a narrative synthesis was performed, displaying which ML tasks (i.e., classifi-
cation, object detection, semantic segmentation, instance segmentation, and generation)
have been studied in different clinical fields of dentistry namely, restorative dentistry and
endodontics, oral medicine, oral radiology, orthodontics, oral surgery and implantology,
periodontology, prosthodontics, and others, i.e., non-specific field or general dentistry. We
briefly explain the different tasks in the following section:

• In ML, classification refers to a predictive modeling problem where a class label
is predicted for a given example of input data. An example is to classify a given
handwritten character as one of the known characters. Algorithms popularly used for
classification in the included studies were logistic regression, k-Nearest Neighbors,
Decision Trees, Naïve Bayes, RF, Gradient Boosting, etc.

• In object detection tasks, one attempts to identify and locate objects within an image or
video. Specifically, object detection draws bounding boxes around the detected objects,
which allow to locate the said objects. Given the complexity of handling image data,
deep learning based on CNNs, such as Region-based CNN, Fast Region-based CNN,
You Only Look Once, Single Shot multiBox Detection, are popularly used for this task.

• In image segmentation tasks, one aims to identify the exact outline of a detected object
in an image. There are two types of segmentation tasks: semantic segmentation and
instance segmentation. Semantic segmentation classifies each pixel in the image into a
particular class. It does not differentiate between different instances of the same object.
For example, if there are two cats in an image, semantic segmentation gives the same
label, for instance, ‘cat’, to all the pixels of both cats. Instance segmentation differs
from this in the sense that it gives a unique label to every instance of a particular object
in the image. Thus, in the example of an image containing two cats, each cat would
receive a distinct label, for instance, ‘cat1’ and ‘cat2’. Currently, the most popular
models for image segmentation are Fully CNNs and their variants like UNet, DeepLab,
PointNet, etc.
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• A fifth type of a ML task is a generation task, which is not predictive in nature. Such
tasks involve the generation of new images from the input images, for example,
generation of artifact-free CT images from those containing metal artifacts.

The study protocol was registered after the initial screening stage (PROSPERO regis-
tration no. CRD42021288159).

3. Results
3.1. Study Selection and Characteristics

A total of 183 studies were identified and 168 (92%) studies were included (Figure 1).
The included studies [3,4,12–177] and their characteristics can be found in Table S1. The
excluded studies with reasons for exclusion are listed in Table S2. The included studies were
published between 1 January 2015 and 31 May 2021 (median: 2019), with the number of
published studies increasing each year; 2015: six studies, 2016: four studies, 2017: 13 studies,
2018: 21 studies, 2019: 49 studies, 2020: 68 studies (for 2021, data only until May was
available). The included studies stemmed from 40 countries (Figure S1) and used different
kinds of input data, such as 2-D data (radiographs: 42% studies, photographs, or other kinds
of images: 16% studies), 3-D data (radiographic scans: 18% studies, non-radiographic scans:
4% studies), non-image data (survey data: 10% studies, single nucleotide polymorphism
sequences: 1% studies), and combinations of the aforementioned types of data (9% studies).
Further, 97% studies used data from universities, hospitals, and private practices, whereas
1% studies each used data from the National Health and Nutrition Examination Survey,
M3BE database, 2013 Nationwide Readmissions Database of the USA, and the National
Institute of Dental and Craniofacial Research dataset.

Additionally, 85% studies partitioned their total dataset into training and testing data
subsets, and 59% studies also created validation data subsets from the same data source.
The median size of the training datasets was 450 (range: 12 to 1,296,000 data instances)
and of the test datasets was 126 (range: 1 to 144,000). Nearly half of the studies tested
model performance on a hold-out test dataset while the remaining used cross-validation.
Cross-validation is a resampling method that uses different portions of the data to test and
train a model during each iteration. For example, in a 10-fold cross-validation, the original
dataset is randomly partitioned into 10 subsamples, out of which nine subsamples are used
as training data and one subsample as the test data. Ten iterations of the following step
are carried out; the model is trained on the nine subsamples designated as training data
and tested on the one subsample of test data; but in each iteration, a different subsample is
chosen to serve as the test data and thus a different combination of subsamples constitutes
the training data. Eventually, the final estimation of model performance is the average of
these results.

In addition, 65% studies augmented their input data, mainly the training data, but a
few augmented the testing data, too. Only 20% studies used an external dataset to validate
their model’s performance. The reference test (i.e., how the ground truth was defined) was
established by professional experts in 73% studies: one expert in 18% studies, two experts
in 11% studies, three experts in 10% studies, four and five experts in 2% studies each, six
experts in 1% studies, and seven, eight, 12, and 20 experts in 0.5% studies, each. Another
27% studies used experts for establishing the reference test but did not provide details on
the exact numbers. Additionally, 22% studies used information from their datasets as the
reference test (for example, age, diagnosis from medical records) and 1% studies used a
software tool to generate the reference test. The remaining 4% studies did not provide
details on how the reference test was established.

Of all studies, 70% used deep learning models; CNN as classifiers: 59 studies, CNN for
other tasks: 14 studies, Faster R-CNN: seven studies, fully CNN: 19 studies, Mask R-CNN:
seven studies, 3-D CNN: three studies, adaptive CNN and pulse-coupled CNN: one study
each, and non-convolutional deep neural networks: seven studies (Table S1). Another 22%
studies used non-deep learning models; perceptron: four studies, other neural networks:
three studies, other types of models, such as, fuzzy classifier, SVM, RF, etc.: 30 studies. In
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addition, 6% studies used various combinations of the aforementioned models and 2%
studies did not provide details of the model architecture employed. Both, models using
and not using deep learning were employed in higher proportions by studies in restora-
tive dentistry and endodontics, oral medicine, and non-specific field or general dentistry
(Table S3). Additionally, models not using deep learning were frequently employed by
studies in orthodontics and periodontology. Finally, 20% studies compared their model’s
performance with that of human comparators.
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3.2. Risk of Bias and Applicability Concerns

The risk of bias was assessed in four domains, namely data selection, index test,
reference standard, and flow and timing. It was found to be high for 54% of the studies
regarding data selection and for 58% of the studies regarding the reference standard
(Table 1). On the other hand, the risk of bias was low for the majority of studies regarding
the index test (77%) and flow and timing (89%). Applicability concerns were found to be
high for 53% of the studies regarding data selection but were low for most studies regarding
the index test (79%) and reference standard (73%).
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Table 1. Evaluation of risk of bias in studies included (n = 168) using the QUADAS-2 tool.

Sr. No.
[Citation]

Data Selection: Risk
of Bias/Applicability

Concerns

Index Test: Risk of
Bias/Applicability

Concerns

Reference Standard:
Risk of

Bias/Applicability
Concerns

Flow and
Timing:

Risk of Bias

1. [12] high/high low/high high/high low

2. [13] low/low low/low low/low low

3. [14] high/low low/low low/low low

4. [15] low/low low/high high/high low

5. [16] low/low low/low low/low low

6. [17] high/high low/high high/high low

7. [18] high/high low/low high/low low

8. [19] low/low low/high low/low low

9. [20] low/low low/low low/high low

10. [21] high/high low/low high/low low

11. [22] high/high low/low high/high low

12. [23] high/low high/low high/low low

13. [24] low/high low/low high/high low

14. [25] high/high high/low low/low low

15. [26] low/low high/low low/low low

16. [27] high/low low/low high/low low

17. [28] high/high low/low high/low low

18. [29] high/low low/low high/low low

19. [30] high/high low/low high/low low

20. [31] high/high low/high high/low low

21. [32] high/high high/high high/high low

22. [33] low/low low/low low/low low

23. [34] low/high low/low low/high low

24. [35] high/high low/low low/low low

25. [36] low/low low/low low/low low

26. [37] high/high low/low high/low low

27. [38] high/high low/low high/low low

28. [39] high/high low/low high/low low

29. [40] high/high high/low high/low low

30. [41] low/low low/low low/low low

31. [42] high/low high/low low/low low

32. [43] low/high low/high low/high low

33. [44] low/low high/low high/low low

34. [45] high/high low/high low/high low

35. [46] high/low low/low low/low low

36. [47] high/high low/low low/low low

37. [48] high/high low/high low/high low

38. [49] low/low low/low high/low low

39. [50] low/high low/low high/low high

40. [51] low/high low/low low/low low

41. [52] high/low low/high high/low low

42. [53] high/high low/low low/low high

43. [54] low/low low/high low/high low
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Table 1. Cont.

Sr. No.
[Citation]

Data Selection: Risk
of Bias/Applicability

Concerns

Index Test: Risk of
Bias/Applicability

Concerns

Reference Standard:
Risk of

Bias/Applicability
Concerns

Flow and
Timing:

Risk of Bias

44. [55] high/high low/low high/low low

45. [56] high/high low/high high/low low

46. [57] high/high low/low high/high low

47. [58] high/high high/high high/high low

48. [59] low/high low/low high/high low

49. [60] low/high low/low high/high low

50. [61] low/low low/low high/low high

51. [62] high/high low/low high/low low

52. [63] low/high low/high high/high low

53. [64] high/high high/high high/high low

54. [65] high/high low/low high/low low

55. [66] low/high low/low high/low low

56. [67] high/high low/high low/high low

57. [68] low/high low/low low/low high

58. [69] low/low low/low low/low low

59. [70] high/high low/low low/low low

60. [71] low/low low/low low/low low

61. [72] low/high low/low high/low low

62. [73] low/low low/low high/low low

63. [74] low/low low/low low/low low

64. [75] low/low low/low low/low low

65. [76] low/low low/low low/low low

66. [77] high/high high/low high/low low

67. [78] high/low high/low high/low low

68. [79] high/low high/low high/low low

69. [80] high/low high/low low/low low

70. [81] low/low low/low low/low low

71. [82] low/low low/low high/low low

72. [83] low/low low/low low/low low

73. [84] high/low low/low high/low low

74. [85] low/low low/low low/low high

75. [86] high/high low/low low/low low

76. [87] high/high high/low low/low low

77. [88] low/low low/low low/low low

78. [89] high/high high/high high/high low

79. [90] high/high high/high high/high low

80. [91] high/high low/low high/low low

81. [92] low/low low/low high/low low

82. [93] low/high low/low high/high low

83. [94] low/low low/low low/low high

84. [95] high/high high/low high/high low

85. [96] low/high high/low high/high low

86. [97] high/high low/high low/high low
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Table 1. Cont.

Sr. No.
[Citation]

Data Selection: Risk
of Bias/Applicability

Concerns

Index Test: Risk of
Bias/Applicability

Concerns

Reference Standard:
Risk of

Bias/Applicability
Concerns

Flow and
Timing:

Risk of Bias

87. [98] high/high low/low low/low low

88. [99] low/high low/high high/high low

89. [100] low/high low/high high/high low

90. [101] low/high low/low low/high low

91. [102] high/high low/low high/low low

92. [103] low/low low/low low/low low

93. [4] high/low low/high high/high low

94. [104] low/low low/low high/low low

95. [105] high/high low/high high/low low

96. [106] low/high low/low low/high low

97. [107] low/low low/low high/low low

98. [108] low/low low/low low/low low

99. [109] high/high high/low high/low low

100. [110] low/low low/low high/low low

101. [111] low/low low/low high/low low

102. [112] high/low high/low high/high low

103. [113] high/high low/low low/high high

104. [3] low/high low/low low/low low

105. [114] low/low low/low low/low low

106. [115] low/low low/low low/low low

107. [116] high/high high/low high/low low

108. [117] high/low high/low low/low low

109. [118] high/high low/low high/low low

110. [119] low/low low/low low/low low

111. [120] low/low low/high high/high low

112. [121] low/low low/low high/low low

113. [122] high/high high/low low/low low

114. [123] low/low low/low low/low low

115. [124] low/high low/low high/low low

116. [125] high/high low/low low/high low

117. [126] high/low high/low high/low high

118. [127] high/high low/low high/low low

119. [128] low/low high/low low/low low

120. [129] high/low low/low low/low low

121. [130] high/high low/low high/low high

122. [131] high/low high/low high/low low

123. [132] high/high low/low high/low low

124. [133] high/high low/low high/low high

125. [134] low/high high/low high/low low

126. [135] high/low high/low low/low low

127. [136] high/low high/low high/low low

128. [137] high/low high/high low/low low

129. [138] low/high low/high high/low low
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Table 1. Cont.

Sr. No.
[Citation]

Data Selection: Risk
of Bias/Applicability

Concerns

Index Test: Risk of
Bias/Applicability

Concerns

Reference Standard:
Risk of

Bias/Applicability
Concerns

Flow and
Timing:

Risk of Bias

130. [139] high/low low/low low/low low

131. [140] high/low low/high high/high low

132. [141] low/low low/low high/low low

133. [142] high/high low/low high/low low

134. [143] high/high low/low low/low low

135. [144] high/high low/low high/low low

136. [145] high/high high/low high/low low

137. [146] high/high low/low high/low low

138. [147] high/low high/low low/low low

139. [148] high/high low/low high/low low

140. [149] high/high low/high high/high low

141. [150] high/high low/high high/high low

142. [151] low/high low/low high/high low

143. [152] high/high low/high high/high low

144. [153] high/low low/low high/low low

145. [154] low/low low/high high/high low

146. [155] low/low high/low low/low low

147. [156] low/high low/low low/low low

148. [157] high/high high/low high/low high

149. [158] low/low low/low low/low low

150. [159] low/high low/high low/high low

151. [160] high/low low/high low/low low

152. [161] low/low high/low high/low high

153. [162] high/low low/low low/high low

154. [163] low/low low/high low/high low

155. [164] high/low low/low high/low low

156. [165] low/low low/low high/low low

157. [166] low/high low/high high/high high

158. [167] low/low low/low low/low low

159. [168] low/low low/low high/low low

160. [169] low/high high/low high/high low

161. [170] high/high low/low low/low low

162. [171] low/low low/low high/low low

163. [172] low/low low/low low/low low

164. [173] low/low low/low high/low low

165. [174] low/low low/low low/low low

166. [175] high/high high/high high/high low

167. [176] high/high high/low low/low low

168. [177] high/high low/low high/low low

3.3. Adherence to Reporting Standards

Overall adherence to the TRIPOD reporting checklist was 33.3%, with 18/22 domains
having an adherence rate less than 50% (Figure 2). Reporting adherence was at or above
80% for background and objectives, and potential clinical use of the model and implica-
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tions for future research, but below 10% for sample size calculation, handling of missing
data, differences between development and validation data, and details on participants.
In particular, less than 20% of studies adequately defined their predictors and outcomes
(in terms of their blinded assessments), stratification into risk groups, presented the full
prediction model and provided information on supplementary resources, such as study
protocol, web calculator, or data sets. Less than 40% of the studies adequately reported
about their data sources (i.e., study dates), participant eligibility, statistical methods (specif-
ically, details on model refinement), model results (in terms of results from crude models),
study limitations, and results with reference to performance in the development data, and
any other validation data.
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Figure 2. Reporting adherence of studies (n = 168) to Transparent Reporting of a Multivariable
Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) tool.

3.4. Tasks, Metrics, and Findings of the Studies

Based on the nature of the ML task formulated, the 168 included studies could be
classified into five major categories of ML tasks; classification task, n = 85; object detection
task, n = 22; semantic segmentation task, n = 37; instance segmentation task, n = 19; and
generation task, n = 5. Classification tasks were most commonly used in oral medicine
studies (22%), whereas object detection, semantic segmentation, and instance segmentation
tasks, each were most commonly used in non-specific field or general dentistry studies
(36%, 38%, and 58%, respectively), Table 2. Generation tasks, though small in number, were
most commonly used in oral radiology studies (80%).

A total of 42 different metrics were used by the studies to evaluate model performance
and some of these could be grouped into one class, for example, the various correlation coef-
ficients could be combined. Such grouping (or consolidation) resulted in 26 distinct classes
of metrics. Note that most studies reported multiple metrics. Studies on classification tasks
commonly reported accuracy, sensitivity, area under the receiver-operating characteristic,
specificity, and precision, and those on object detection reported on sensitivity, precision,
and accuracy. Studies on semantic segmentation reported on IoU and sensitivity, and those
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on instance segmentation reported on accuracy, sensitivity, and IoU. Lastly, studies using
generation tasks commonly reported on peak signal-to-noise ratio, structural similarity
index, and relative error. Table S4 shows the number of studies which used the different
metrics, stratified by ML task.

After stratifying the studies by ML task and clinical field of dentistry, we attempted to
evaluate studies that reported on accuracy, or mean average precision, or IoU. A formal
comparison was inhibited by the large variability at the level of clinical or diagnostic tasks
amongst the studies.

Table 2. Number of studies in each field of dentistry, stratified by type of machine learning task
(n = 168).

Classification Task Object Detection
Task

Semantic
Segmentation Task

Instance
Segmentation Task

Generation
Task

n 85 22 37 19 5

Field of dentistry, n (%)

Restorative dentistry and
endodontics 13 (15%) 1 (4%) 9 (24%) 2 (11%) 0 (0%)

Oral medicine 19 (22%) 5 (23%) 1 (3%) 0 (0%) 0 (0%)

Oral radiology 3 (4%) 0 (0%) 2 (5%) 2 (11%) 4 (80%)

Orthodontics 10 (12%) 3 (14%) 1 (3%) 3 (15%) 1 (20%)

Oral surgery and
implantology 11 (13%) 3 (14%) 3 (8%) 0 (0%) 0 (0%)

Periodontology 9 (11%) 2 (9%) 7 (19%) 1 (5%) 0 (0%)

Prosthodontics 2 (2%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Others (non-specific field,
general dentistry) 18 (21%) 8 (36%) 14 (38%) 11 (58%) 0 (0%)

4. Discussion

ML in dentistry is characterized by the availability of a plethora of clinical tasks which
necessitate the use of a wide range of input data types, ML models, performance metrics,
etc. This has given rise to a large body of evidence with limited comparability. The present
scoping review synthesized this evidence and allowed to comprehensively assess this body.
We will begin by discussing our findings in detail.

First, the included studies aimed for different ML tasks on a wide variety of data. These
data then differed once more within specific subtypes (e.g., imagery, with radiographs,
scans, photographs, each of them being sub-classified again, and differing in resolution,
contrast, etc.). Moreover, data usually stemmed from single centers, representing only a
limited population (and diversity in terms of data generation strategy or technique), all
of which likely adversely impacts generalizability of results. The data used were nearly
never available, except for the few studies employing data from open databases, leading to
difficulties in replication of results. Researchers are urged to comply with journals’ data
sharing policies and make their data available upon reasonable request. We acknowledge
that there may be data sharing and privacy concerns across institutions and countries.
Alternatives to centralized learning of ML models, like federated learning, which do
not require data sharing may be of relevance especially for data which are hard to de-
identify [178]. Practices of data linkage and triangulation, i.e., using a variety of data
sources to create a richer dataset, were almost non-existent. Thus, limiting options for
verification of data integrity and increasing the learning output of a ML model by leveraging
information from multiple data sources on hierarchical structures and correlations.

Second, a wide range of outcome measures was used by the included studies. These
can be measured on different levels, such as patient-level, tooth-level, and surface-level,
and while this is relevant for any comparison or synthesis across studies, it was not always
reported on what level the outcomes were assessed. Another issue was the high number of
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performance metrics in use, as evident from our results, leading to only a few studies being
comparable to each other. Defining an agreed-upon set of outcome metrics for specific
subtasks in ML in dentistry (e.g., classification, detection, segmentation on images) along
with standards towards the level of outcome assessment seems warranted. This outcome set
should reflect various aspects of performance (e.g., under- and over-detection), consider the
impact of prevalence (e.g., predictive values), and attempt to transport not only diagnostic
value, but also clinical usefulness. For the latter, studies attempting to assess the value of
ML in the hands of clinicians against the current standard of care are needed.

Third, the use of reference tests (i.e., how the ground truth was established) warrants
discussion. A wide range of strategies to establish reference tests were employed. In many
studies, no details towards the definition of the reference tests were provided. A few
studies using image data used only one human annotator as the reference test, a decision
which may be criticized given the known wide variability in experts’ annotations [2].
Alternative concepts of applying the reference test to training datasets should be employed
and compared to gauge the impact of different approaches and validate the one eventually
selected. Additionally, testing datasets should be standardized and heterogeneous to ensure
class balance and generalizability. One approach is to establish open benchmarking datasets,
as attempted by the ITU/WHO Focus Group on Artificial Intelligence for Health [179].

Fourth, the quality of conducting and reporting ML studies in dentistry remains
problematic. Notably, the specific risks emanating from ML and the underlying data are
insufficiently addressed, e.g., biases, data leakage, or overfitting of the model. Furthermore,
many studies suffered from unclear or a lack of validation of their results on external
datasets. The evaluation of a model’s performance on unseen data is a crucial aspect as
it relates to the generalizability of ML models regarding performance on data from other
sources. Exploration of why some models were not generalizable was even less common,
thus preventing identification of steps required to better the models. Generally, the majority
of studies performed application testing, developed models, and showed that ML can
learn and, in many studies, predict. Understanding why this is, how it could be improved,
what the clinical domain needs, or which safeguards for ML in dentistry are required, was
seldom an issue. General reporting did not allow full replication, as many details were not
presented, and additionally, the display of the model performance remained, as discussed,
insufficient. Researchers need to adhere to the published guidelines on study conduct and
reporting [180–182].

In an effort to characterize the emerging pattern in the included studies, first, we would
like to elaborate on the nature of clinical tasks employed by the studies. A wide array of
research questions were present; from detecting dental artifacts in images to investigating
the benefits of transfer-learning, from classifying different dental conditions to aiding in
decision-making and assessing cost-effectiveness. Thus, there is evidence of broadening of
avenues where ML could be exploited. As stated earlier, classification tasks were the most
common and this may be because diagnosing dental structures or anomalies on images
is a vital step towards successful treatment outcomes and prognosis. However, over the
years, ML methods have improved their classification performance on images at the cost
of increased model complexity and opacity [183]. The inability to explain ML’s methods
and decisions is one of the contributing factors towards development of explainable AI,
i.e., a set of processes that allows human users to comprehend and trust the results created
by ML algorithms. Second, more recent studies tended to employ image segmentation
models [2,25,39,48,59,60,73,151].

The presented scoping review has a few salient features. First, it is the most compre-
hensive overview on ML in dentistry with 168 studies being included. Second, and as a
limitation, we could not include randomized controlled trials because none were available
and found the included studies to have a considerable risk of bias, both of which should
be considered when interpreting our results. Third, to our knowledge this study is the
first to employ TRIPOD for gauging the reporting quality of studies using ML in dentistry.
TRIPOD is a checklist designed to assess prediction models which has not been validated
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specifically for ML applications [5]. However, previous studies have used it to evaluate ML
models since the quality assessment criteria for clinical prediction tools and ML models are
similar [5]. At present, a TRIPOD-ML tool is under-construction [5]. Fourth, we included
studies until May 2021 only, as the systematic critique of the 168 studies required consider-
able time and effort since then. We acknowledge that inclusion of recently published studies
may have strengthened our review. Furthermore, we acknowledge that arXiv, an archiving
database, may include studies which did not undergo a formal peer-review process and
this may be a limitation for our study. However, studies on arXiv are reviewed by peers in
a non-formal process and updated after peer-review. Last, any clinical usability cannot be
inferred from this study because it was not the focus of this comprehensive review.

5. Conclusions

In conclusion, we demonstrated that ML has been employed for a large number of
tasks in dentistry, building on a wide range of methods and employing highly hetero-
geneous reporting metrics. As a result, comparisons across studies or benchmarking of
the developed ML models are only possible to a limited extent. A minimum (core) set of
defined outcomes and outcome metrics would help to overcome this and facilitate compar-
isons, whenever appropriate. The overall body of evidence showed considerable risk of
bias as well as moderate adherence to reporting standards. Researchers are urged to adhere
more closely to reporting standards and plan their studies with even greater scientific
rigor to reduce any risk of bias. Last, the included studies mainly focused on developing
ML models, while presenting their generalizability, robustness, or clinical usefulness was
uncommon. Future studies should aim to demonstrate that ML positively impacts the
quality and efficiency of healthcare.
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