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Abstract

This thesis involves quantum mechanical studies of diatoms embedded in cryogenic envi-

ronments. Computer simulations are performed on three molecular systems with the aim of

disclosing the role of the interactions of the diatoms with their environment in the dynam-

ical mechanisms of chemical reactions. It gives, therefore, a contribution to the transition

of chemical reaction dynamics from the gas phase to the condensed phase. The complexity

of such interactions increases along this work, from the elementary caging e�ect, until the

active role of the environment in chemical reaction. The quantum mechanical treatment

of many-body systems makes extensive use of the Born-Oppenheimer approach or even

calls for going beyond it. Along this work a multi-stage hierarchical adiabatic separation

scheme is applied in order to study di�erent classes of degrees of freedom (DOF) of interest

separately, even though approximately.

Two dimensional quantum dynamics simulations are carried out on the double proton

transfer system embedded in the frozen sca�old of a porphine molecule. Starting from a

non-equilibrium initial state a switch from synchronous (or concerted) to sequential (or

stepwise or successive) breaking and forming of the two hydrogen bonds is observed. The

wavepacket dynamics is analyzed in terms of the probability densities and �ux densities.

Quantitative results are inferred from the time evolutions of the populations in various

regions of the potential energy surface (PES). The switch from the synchronous to the

sequential mechanism is mediated by two e�ects: The wavepacket dispersion in time, and

the relief re�ections of the broadened wavepacket from the steep repulsive wall close to the

minimum for the product. Both of them are directly connected to the landscape of the

PES determined by the environment, i.e. the porphine sca�old.

The second study is concerned with the photo-dissociation dynamics of molecular bromine

embedded in an Ar crystal upon laser excitations from the ground X to the electronically

excited B state. Although the de�nitive internal bond breaking is prevented by caging ef-

fects of the environment, the investigation of the non-adiabatic transition (predissociation)

between the bound B and the dissociative doubly degenerate C states is central for the

understanding of the role of the matrix in the predissociation mechanism. The lattice is

taken to be frozen with exception of the cage surrounding the impurity. The �ve dimen-

sional model includes two anharmonic reaction coordinates, describing the Br-Br bond and

a collective displacement of the caging atoms, and three additional vibrational modes of

cage fragments. Laser control is performed with the aim to promote predissociation. Res-

onant vertical transitions from vibrationally preexcited eigenstates of the Br2 coordinate

in the X state are used to access di�erent Franck-Condon windows in the B state. The

largest predissociation yield is observed from the v = 8 vibrational eigenstate, since this

supports formation of a wavepacket in the B state with energy close to the B − C level

crossing. Optimal control theory is used in order to achieve vibrational preexcitation via

the C state. The ultra-short shaped light pulse is essentially constituted by four subpulses



triggering a pump-dump-type mechanism. The �rst and fourth subpulses are resonant to

the vertical C ← X(v = 0) and the X(v = 8) ← C transitions, whereas the second and

third subpulses have negative chirps covering the frequency range between the �rst and

four subpulses.

In the third part of the thesis the structure and energetics of a Cl2 molecule embedded in

the parahydrogen crystal is investigated. The aim is the characterization of the initial state

for Cl + H2 → HCl + H chemical reaction, which has been experimentally observed upon

simultaneous UV+IR laser irradiation. The role of the environment is fundamental for the

understanding of the dynamical mechanism of the reaction, since it becomes a reactant

itself. The many-body system is approximated in a pairwise fashion, neglecting three-

body terms. The Cl2-pH2 and pH2-pH2 pair potentials are obtained by adiabatization of

four-dimensional quantum chemistry potentials with respect to the rotational DOF of the

hydrogen molecule(s) in a rigid rotor approximation. These potentials are used in order

to grow the energetically lowest cluster sequence by means of classical simulations. A

�rst-shell structure is found with the Cl2 molecule occupying a single substitutional site

of a fcc cluster pointing along the <001> crystallographic direction. The translational

zero-point energies (ZPE) and wavefunctions of solvent and solute molecules in the matrix

are calculated within the three dimensional Einstein model revealing large ZPEs compared

to the well depths of the pair potentials, even for the heavier Cl2 molecules. For the

�rst time, relaxation of the cage around the pH2 and Cl2 molecules for the pure and doped

crystals, respectively, is simulated in order to mimic the �exibility of translational quantum

matrices. Comparison of the results obtained within the rigid and the non-rigid lattice

approaches show that the translational time-scale of the individual hydrogen molecules

is much shorter than the one needed by the surrounding molecules in order to relax, so

that the rigid model more closely reproduces experimental data. The situation is reversed

for Cl2, since it translates more slowly due to its heavier mass, so that the simulation of

a softer environment may be more adequate. The rotational energies and the rotational

wavefunctions of the Cl2 molecule in the matrix are evaluated within the Devonshire model

disclosing that within both the rigid and non-rigid lattices the impurity cannot rotate

freely, but actually librates around de�nite crystallographic directions implying librational

ZPEs. Moreover, relaxation of the cage shows substantial changes on the landscapes of

the rotational PESs, which favour librations around di�erent crystallographic directions

in the rigid and in the non-rigid lattices. A comparison with the pH2 translational ZPEs

suggest that the solvent molecules easily follow the Cl2 rotations, so that the simulation

of the non-rigid lattice may be required.
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Kurzfassung

Die vorliegende Arbeit umfasst quantenmechanische Untersuchungen zweiatomiger Sys-
teme, die in ultrakalte Umgebungen eingebettet sind. Für drei verschiedenen moleku-
lare Systeme werden Computersimulationen durchgeführt mit dem Ziel, den Ein�uss der
Wechselwirkung der Diatome mit ihrer Umgebung auf die Dynamik chemischer Elemen-
tarschritte aufzudecken. Somit soll ein Beitrag zur chemischen Reaktionsdynamik beim
Übergang von der Gasphase zur kondensierten Phase geleistet werden. Dabei steigt die
Komplexität der Wechselwirkungen für die drei untersuchten Systeme, vom elementaren
Kä�ge�ekt beim Bindungsbruch bis hin zur aktiven Rolle der Umgebung in einer chemis-
chen Reaktion. Die quantenmechanische Behandlung der Vielkörper-Systeme basiert in
weiten Teilen auf adiabatischen (Born-Oppenheimer) Näherungen oder geht sogar darüber
hinaus. In dieser Arbeit wird eine mehrstu�ges, hierarchisches adiabatische Approxima-
tionsverfahren entwickelt, das es uns näherungsweise erlaubt, verschiedene Klassen von
Freiheitsgraden separat zu betrachten.
Das doppelte Protonentransfer-System im eingefrorenen Gerüst eines Porphin-Moleküls

wird mit zweidimensionalen quantendynamische Simulationen modelliert. Ausgehend von
einem Nicht-Gleichgewichtszustand kann ein Umschalten von synchronem (konzertiertem)
zu sequentiellem (schrittweisem) Brechen und Neubilden der zwei Wassersto�brücken-
bindungen beobachtet werden. Die entsprechende Wellenpaketdynamik wird in Hinsicht
auf Wahrscheinlichkeitsdichten und -�üsse analysiert. Quantitative Ergebnisse werden aus
der Zeitentwicklung der Populationen in verschiedenen Bereichen der Potentialenergie�äche
erschlossen. Der Wechsel vom synchronen zum sequentiellen Mechanismus wird durch zwei
E�ekte vermittelt: Zum einen die Dispersion des Wellenpaketes mit der Zeit, zum anderen
die Re�ektionen des verbreiterten Wellenpaketes an den repulsiven Wänden des Potentials
in der Nähe des Minimums für das Produkt. Beide E�ekte stehen in direktem Zusammen-
hang mit der Potentialenergie-Landschaft, die durch die Umgebung des Porphin-Gerüstes
gegeben ist.
Die zweite Studie behandelt die Photodissoziations-Dynamik von Brom-Molekülen, die

in einen Argon-Kristall eingebettet sind, nach Anregung vom Grundzustand (X) in den
elektronisch angeregten B-Zustand. Auch wenn der endgültige Bindungsbruch von Kä-
�ge�ekt der Umgebung verhindert wird, ist die Untersuchung des nicht-adiabatischen
Überganges (Prädissoziation) vom gebundenen B- zum dissoziativen und zweifach en-
tarteten C-Zustand für das Verständnis des Ein�usses der Matrix auf den Prädissoziations-
Mechanismus von zentraler Bedeutung. Dabei wird das Gitter der Edelgas-Atome als starr
angenommen, mit Ausnahme des Kä�gs aus den Atomen, die die das Gastmolekül direkt
umgeben. Das fünfdimensionale Modell umfasst zwei anharmonische Reaktionskoordi-
naten, die die Br-Br-Bindung und eine kollektive Auslenkung der Kä�gatome beschreiben,
sowie drei weitere Schwingungsmoden des Kä�gfragmentes. Die Laser-Steuerung wird
mit dem Ziel durchgeführt, Prädissoziation zu befördern. Resonante vertikale Übergänge
werden verwendet, um verschiedene Franck-Condon-Fenster im B-Zustand zu erreichen,
wobei die Schwingung des Br2 Moleküls im X-Zustand vorher angeregt wird. Die gröÿte
Prädissoziations-Ausbeute wird vom v=8 Schwingungs-Eigenzustand aus beobachtetet,
da dieser zu einem Wellenpaket im B-Zustand mit Energie nahe der B-C Durchschnei-



dung führt. Die Theorie der optimalen Steuerung wird verwendet, um die Schwingungs-
Voranregung über den C-Zustand zu erreichen. Der ultraschnelle geformte Lichtpuls wird
im wesentlichen aus vier Subpulsen gebildet, die einen Anregungs-Abregungs-Mechanismus
auslösen. Der erste und vierte Subpuls sind resonant zu den vertikalen C ← X(v = 0) und
X(v = 8)← C Übergängen, während der zweite und dritte Subpuls mit ihren abfallenden
Frequenzen den Bereich zwischen dem ersten und vierten Subpuls abdecken.
Im dritten Teil der vorliegenden Arbeit werden die Struktur und die Energetik von Cl2

Molekülen untersucht, die in einen para-H2 Kristall eingebettet sind. Das Ziel ist die
Charakterisierung des Anfangszustands für die chemische Cl + H 2 → HCl + H Reak-
tion, die in Experimenten mit gleichzeitiger UV + IR Laserstrahlung beobachtet wurde.
Dabei ist hier für das Verständnis der Reaktionsdynamik die Rolle der Umgebung von
grundlegender Bedeutung, da sie selbst einen der Reaktanden darstellt. Die Vielkörper-
Wechselwirkung wird durch die Summe aller paarweisen Wechselwirkungen approximiert,
wobei Drei-Körper-Terme vernachlässigt werden. Die Cl2-pH2 und pH2-pH2 Paarpoten-
tiale werden quantenchemisch in vier Dimensionen berechnet und dann bezüglich der Ro-
tation des/der Wassersto�-Moleküle(n) adiabatisiert, wobei die Näherung der starren Ro-
toren verwendet wird. Die resultierenden Potentiale werden verwendet, um zunächst das
Wachstum kleiner Cluster an Hand der energetisch niedrigsten Cluster-Sequenz mit Hilfe
klassischer Simulationen zu untersuchen. Als erste komplette Solvatationshülle ergibt sich
eine fcc-ähnliche Struktur, bei der das Cl2 Molekül einen mono-substitutionellen Platz ein-
nimmt und entlang der kristallographischen <001> Richtung ausgerichtet ist. Die transla-
torischen Nullpunktsenergien und die zugehörigen Wellenfunktionen der Gastmoleküle und
der Moleküle des Wirtskristalles werden im Rahmen eines dreidimensionalen Einstein-
Modells berechnet. Dabei zeigt sich, dass die Nullpunktsenergien im Vergleich zu den
Topftiefen der Paarpotentiale groÿsind, sogar für die schwereren Cl2 Moleküle. Zum ersten
Mal wird auch die Relaxation des Kä�gs um die pH2 und Cl2 Moleküle für die reinen bzw.
dotierten Kristallen simuliert, um die Flexibilität der translatorischen Quanten-Matrizen
zu modellieren. Ein Vergleich der Ergebnisse für die starren und nicht-starren Gitter zeigt,
dass die translatorische Zeitskala der einzelnen Wassersto�moleküle viel kürzer ist als die
Zeit, die die umgebenden Moleküle zu ihrer Relaxation benütigen, so dass die starren
Modelle die experimentellen Daten besser wiedergeben. Die Situation für Cl2 Moleküle
ist umgekehrt, da sie sich aufgrund ihrer höheren Masse langsamer bewegen, so dass die
Simulation mit einer �exiblen Umgebung angemessener erscheint. Die Rotations-Energien
und -Wellenfunktionen des Cl2 Moleküls in der pH2 Matrix werden im Rahmen eines De-
vonshire Modells berechnet, wobei sich zeigt, dass sich die Gastmoleküle weder in den star-
ren noch in den nicht-starren Gittern frei drehen können, sondern tatsächlich Librations-
Schwingungen um bestimmte kristallographische Richtungen ausführen, was insbesondere
auch eine Nullpunktsenergie impliziert. Darüber hinaus führt die Relaxation des Kä�gs zu
wesentlichen Änderungen in den Landschaften der Rotationsenergie�ächen, die Libratio-
nen um verschiedene kristallographische Richtungen in den starren und in den nicht-starre
Gittern favorisieren. Ein Vergleich mit den Energien der pH2 Translation legt nahe, dass
die Umgebungsmoleküle den Cl2 Drehungen leicht folgen können, so dass die Simulation
mit nicht-starren Gitter nötig ist.
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1 Introduction

Understanding the dynamical mechanisms of chemical reactions is central in physical chem-

istry. Characterization of energetic states of particles in reactive collisions relies in general

upon spectroscopic techniques, because of the uniqueness of atomic and molecular spectra.

In the gas-phase, information about the initial conditions of reactants and products, such as

the kinetic energy or the angle of orientation, at the moment of the collision are lost, since

they are eventually averaged. Spectroscopic investigations have been therefore proposed in

solid-matrices, where the reactant molecules are �xed in well-de�ned positions. In the last

decades matrix isolation techniques developed ideal conditions for such spectroscopic and

also for photochemical investigations [1�7]. The molecular system of interest is trapped in

an unreactive matrix, i.e. the host-guest interactions are weak or even negligible. Natural

candidates for such host matrices are therefore inert species, such as close-shell rare gas

atoms [1�4] or hydrogen molecules [5�7], which present crystalline structures with a broad

optical transparency in their solid state at low temperatures. Thus, their very low melting

points call for a spectroscopy at cryogenic temperature, where the system lies preferably

in its ground state and information about the initial conditions are known. Moreover,

the solvent �rst electronic excitations are found at much higher energies (10-12 eV [2, 8])

than the solute electronic transitions which allows for recording their spectral responses

upon light interrogation similarly as in the gas-phase. Even more interesting in the �eld of

quantum reaction dynamics has been the development of ultra-fast lasers, which permits

to excite speci�c modes in the system with the aim of controlling the dynamics of the

hosting molecules [4], as for example, the excitation of speci�c lattice phonon modes. In

this case the weak solute-solvent interactions are actually of interest and present even a

major challenge.

The above-mentioned experimental conditions are also suitable for theoretical treatments

such as quantum chemistry and quantum dynamics, since they generally rely on the valid-

ity of the Born-Oppenheimer approximation [9�12] for the study of the molecular system

and approximate low-dimensional models. Quantum calculations are in fact expensive, and

simulations are mostly carried out in reduced dimensionality. Finally, cryogenic tempera-

tures are the closest phenomenon to an ideal frozen environment, which allows to focus on

the subpart of interest of the system, i.e. the solute or guest molecules. Furthermore, the

calculation of the multi-dimensional matrix interaction potentials is also simpli�ed by the

approximate pairwise additivity of two-body forces, which accounts for 90-95% of the total
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1 Introduction

solvent-solvent interaction energy. In particular, the isotropic solvent-solvent pair poten-

tials are known to high precision from experiment. Finally, the three-body interactions are

in general well approximated by the Axilrod-Teller-Muto potentials, which contain triple-

dipole polarization terms [2]. The use of hydrogen as hosting species poses some more

challenges to the theoreticians, since one has to deal with additional degrees of freedom,

such as molecular rotations and vibrations, which where absent in the case of noble gas

atoms, and which are connected to many quantum e�ects because of the lighter mass, such

as partial �exibility of the quantum crystal [13,14].

The present thesis comprehends quantum dynamical studies of three di�erent molec-

ular systems at cryogenic temperatures. One entire chapter is devoted to each of three

topics, which deserve their own introduction and conclusion. Therefore, only a short sur-

vey is provided here on the topics themselves emphasizing the common aspects. Since

the investigations are carried out in the same quantum mechanical framework, the second

chapter contains the whole theoretical background required along the thesis. The �rst

part is consecrated to the Born-Oppenheimer approach, which pervades the entire thesis,

even though it aims at the observation of di�erent phenomena depending on the molecular

system. Adiabatic separation is a useful tool, which simpli�es the study of a molecular sys-

tem by considering its degrees of freedom to be independent, so that they may be treated

separately. This assumption is not always valid, but has permitted several generations of

scientists to gain insights in the molecular systems observed. An adiabatic separation relies

essentially on di�erent masses and di�erent contents of energy of the dynamical degrees

of freedom, thus the larger the di�erence between such contents of energy is, the safer is

the corresponding adiabatic separation. On the one hand, the motion of the degrees of

freedom showing fast dynamics. i.e. the light particles, can be averaged, so that the system

is then described by its quantum mechanically properties. On the other hand, the degrees

of freedom showing a slow dynamics, i.e. the heavy particles, can be considered frozen,

so that a classical approximation is then applied by considering �xed particle positions

instead of distribution functions. Since a system formed by N particles has 3N degrees

of freedom, when trying to isolate the ones of interest, several consecutive adiabatic sep-

arations may be applied to the system. This is addressed in chapter two as �multi-stage

adiabatic separation� and has been in particular adapted to the hydrogen matrix system.

The second part of the chapter two is a review of the quantum chemistry and quantum

dynamics methods involved in the research. Afterwards, the three topics are presented

individually.

In the �rst topic quantum dynamics of the double proton transfer reaction of the bio-

logical system porphine is investigated, where the molecular sca�old can be seen as the

matrix embedding the two-proton subsystem. Attention is focused on the long-standing

debate, whether the two proton exchange their equivalent positions synchronously or se-

quentially. Despite of the many approximations involved, the two dimensional analytical
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potential taking into account just the linear motions of the two protons and their coupling,

and ignoring therefore the sca�old-matrix dynamics, served well for the proof of principle

disclosed there.

The second and third topics investigate the two halogen molecules Br2 and Cl2 embedded

respectively in a Ar and H2 matrices, even though with two di�erent purposes. In the fourth

chapter laser-driven quantum dynamical reactions are simulated on the Br2@Ar system.

Attention is focused on controlling the predissociation dynamics of Br2 through electronic

excited states by using ultra-fast laser pulses. The quantum simulations involve therefore

non-adiabatic vibronic coupling terms between electronic states, which are included in

the diabatic multi-dimensional potential energy surface obtained within the Diatomics-

In-Molecule (diabatic) approximation. Thus, by means of a Group Born-Oppenheimer

approximation [10,11] we select the relevant subgroup of electronic states, even though by

treating non-adiabatic coupling terms within that group we are actually going beyond the

Born-Oppenheimer approximation [10�12].

In the �fth chapter the Cl2@pH2 system is studied prior to laser excitations. Attentions

is focused on the structure and the energetics of the doped quantum crystal in the electronic

ground state in order to prepare the system to form HCl in situ upon combined UV/IR

irradiation [15, 16]. Intuitive, low-dimensional models are applied for taking into account

the quantum e�ects such as the rotations and the large and strong anharmonic translational

zero-point energy typical for solid hydrogen, as well as the the rotations of the solute, which

could be simply hindered by matrix or even reduced to librations involving therefore again

a zero-point energy. All degrees of freedom of the reactants play a role in the system, so

that one has to consider them all. The validity of the many adiabatic separations involved

is discussed both when calculating the pH2-Cl2 and pH2-pH2 pair potentials needed for the

evaluation of the matrix interaction potential energy surfaces in terms of two-body forces,

and when treating the solvent translational and solute translational and rotational degrees

of freedom within the matrix.

Thus, even though we investigate three di�erent systems, the common aim is to describe

chemical processes of small molecules embedded in an environment quantum mechanically.

Molecular spectroscopy as well as reaction dynamics of three body systems are well un-

derstood in the gas phase and full quantum mechanical models are straightforward. It is

the aim of this thesis to move towards the understanding of physical chemical processes

of molecular systems in the condensed phase. This poses more challenges because of the

interactions with the environments, so that crystallized systems or frozen environments at

cryogenic temperatures are still simpli�ed prototypes. Nevertheless, the interactions with

the environment must be included when developing theoretical models, which in princi-

ple means to account for all possible degrees of freedom of hosting and guest molecules,

i.e. rotational, translational, vibrational, electronic motions. Thus, it becomes di�cult to

have a full quantum mechanical description of these systems and one has to focus just on
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1 Introduction

certain aspects. For this reason mixed classical-quantum mechanical approximate models

are often applied and/or are commonly based on the Born-Oppenheimer approximation,

generally called also adiabatic separation, where two or more molecular degrees of freedom

with rather low energies are taken into account individually.
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2 Theoretical Concepts

2.1 Overview

The investigation carried out throughout this work is based on time-independent (TI)

and time-dependent (TD) Quantum Mechanics (QM). In this chapter the reader will be

introduced to the theoretical concepts underlying the methods employed. In section 2.2 the

Born-Oppenheimer approach is presented and the Schrödinger Equation in its adiabatic

picture is derived. The second section 2.3 is an introductory review about the di�erent

Quantum Chemistry methods used throughout this work. Finally, in the third section 2.4

the Multi-Con�gurational Time-Dependent Hartree (MCTDH) method used in order to

carry out the numerical Quantum Dynamics simulations, is discussed.

2.2 The Born-Oppenheimer Approach

2.2.1 The Born-Oppenheimer Approximation

QM is a branch of physics born in the early 1900's, after a number of experimental ob-

servations, such as for example the emission of discrete quantities of energy (quanta) from

the black body by Planck or the photoelectric e�ect could not be interpreted within the

classical mechanics picture anymore. A new paradigm was developed in physics which was

well supported by de Broglie in the wave-particle duality at the atom-scale: on the one

hand, particle-like properties were recognized to the waves (photons) by Einstein, on the

other hand, wave-like properties were recognized to the particles (electrons) by Compton.

Thus, at the microscopic scale Newton's laws give way to the Time-Independent (TISE)

and Time-Dependent Schrödinger Equation (TDSE), respectively,

Etot|Ψtot〉
i~ ∂
∂t |Ψtot(t)〉

}
= Ĥtot

{
|Ψtot〉
|Ψtot(t)〉

, (2.1)

where Ĥtot is the total Hamiltonian, the operator corresponding to the total energy Etot

of the system, and |Ψtot〉 and |Ψtot(t)〉 are, respectively, the time-independent and time-

dependent full particle wavefunctions expressed in the Dirac notation. In the TISE the

total Hamiltonian and the wavefunction are always time-independent. In the TDSE the
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2 Theoretical Concepts

wavefunction is strictly time-dependent, however, the total Hamiltonian can be both inde-

pendent of, or dependent on, time according to the system and/or the phenomenon to be

described. For example, the 2-dimensional model system of Porphine presented in Chap. 3,

it is assumed to not exchange energy with the ambient, which implies conservation of the

total energy of the system, so that the Quantum Dynamics simulations are carried out

by solving the TDSE for a time-independent total Hamiltonian. In turn, in Chap. 4 the

Br2@Ar system is excited by an external electromagnetic �eld changing in time, imply-

ing a non-conservation of the total energy of the system and the total Hamiltonian being

time-dependent.

The TISE is an eigenvalue equation, Etot and |Ψtot〉 being its eigenvalues and eigenfunc-

tions, respectively. It is widely used in the �rst part of Chap. 5, since its solution allows for

the calculation of the Cl2-H2 2-dimensional potential energy surface and of the pH2-pH2 1-

dimensional potential energy curve, in terms of which the energetics of a chlorine molecule

embedded in a para-hydrogen crystal (Cl2@pH2) at cryogenic temperatures is described.

The wavefunction is a mathematical function providing information about the probabil-

ity amplitude of position and momentum of the particles. Thus, the Schrödinger equations

give the most complete non-relativistic description to a physical system1, since they de-

scribe both its microscopic and macroscopic properties, but at the same time they are very

di�cult equations to deal with.

The Born-Oppenheimer (BO) approximation [9], also known as adiabatic separation,

is a well-known concept in theoretical chemistry and physics, based on the very general

separation of the particles into heavy and light ones, under the assumption the mass ratio
M
m , whose inverse squared,

(
m
M

) 1
2 , is often called adiabatical parameter, to be large enough.

The mass of the heavy and light particles areM andm, respectively. The idea is, in fact, to

try to separate the total Hamiltonian Ĥtot(~∇R, ~R, ~∇r, ~r) of the system in Eq. 2.1 into two

contributions: a heavy particle Hamilton operator Ĥheavy(~∇R, ~R) containing the kinetic

energy of the heavy particles, with coordinates ~R and gradient with respect to them, ~∇R,
as well as the interactions between the heavy particles, and a light Hamilton operator

Ĥlight(~∇r, ~r; ~R) containing the kinetic energy of the light particles with coordinates ~r and

gradient with respect to them, ~∇r, the interactions between the light particles as well as

the interactions between heavy and light particles.

Ĥtot(~∇R, ~R, ~∇r, ~r) = Ĥheavy(~∇R, ~R) + Ĥlight(~∇r, ~r; ~R) , (2.2)

Ĥheavy(~∇R, ~R) = T̂heavy(~∇R) + V̂heavy,heavy(~R) , (2.3)

Ĥlight(~∇r, ~r; ~R) = T̂light(~∇r) + V̂light,light(~r; ~R) + V̂light,heavy(~r; ~R) , (2.4)

1In the more particular case of molecular systems, the description of bosons and fermions, in q
accordance with the Pauli principle, is not directly covered by the Schrödinger equation and must

be introduced as a constraint when representing the wavefunction, Ψ
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2.2 The Born-Oppenheimer Approach

where the kinetic energy operators are expressed in terms of the momentum operators in

QM, ~P = −i~~∇R and ~p = −i~~∇r 2:

T̂heavy(~∇R) = − ~2

2M
∆R , (2.5)

T̂light(~∇r) = − ~2

2m
∆r . (2.6)

In order to solve the TISE and TDSE, Born and Oppenheimer proposed to expand the

total wavefunction in terms of the light wavefunction. The so-called BO-expansion reads

|Ψtot(~R,~r, t)〉 =

∞∑
q=0

|Ψ(q)
heavy(~R1, ~R2, ... ~RN , t)〉 × |Ψ(q)

light(~r1, ~r2, ..., ~rn; ~R1, ~R2, ... ~RN )〉 , (2.7)

where, in the case of the TISE, one just has to drop the time-dependence in the equation.

N and n are the total numbers of heavy and light particles, respectively, and q is a quantum

number running, in general, from zero to in�nity. The heavy wavefunctions Ψ
(q)
heavy depend

only on the set of coordinates ~R = ~R1, ~R2, ... ~RN , whereas the light wavefunctions Ψ
(q)
light

depend on the set of coordinates ~r = ~r1, ~r2, ..., ~rn as well as parametrically on the set of

coordinates ~R. Moreover, the complete set of light wavefunctions is orthonormal:

〈Ψ(q)
light|Ψ

(q′)
light〉 = δqq′ . (2.8)

The light TISE is de�ned as

(Ĥlight(~∇r, ~r; ~R)− E(q)
light(

~R))|Ψ(q)
light(~r;

~R)〉 = 0 , (2.9)

where the set of eigenvalues, E(q)
light(

~R), de�ne the so-called adiabatic energies of the light

particles. Please note that the coordinates ~r are averaged out by solving the light TISE.

Hence, the heavy particles feel only an interaction with the light ones, which is averaged

2The choice to express the total energy in terms of kinetic energy depending only on the derivative
with respect to the position coordinates, the ~∇ operators, and the interactions, or rather the potential
energies, depending only on the position coordinates themselves, is not the most general one. For
example, the use of non-Cartesian coordinates, which might be a better choice for describing certain
systems, would make the kinetic energy to become coordinate-dependent. In turn, the presence of a
magnetic �eld would make the potential to depend, classically speaking, on the velocity of the particles
and hence on the momentum operators, ~∇. As a �nal remark, it is mentioned that in general the form
of the momentum operator could be conveniently rethought case by case. This notation used here is
anyway preferred since the approximation will be later applied to molecular systems without involving
any magnetic �eld.
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2 Theoretical Concepts

over all their possible positions since they move much more rapidly.

〈Ψ(q)
light(~r;

~R)|Ĥlight(~∇r, ~r; ~R)|Ψ(q)
light(~r;

~R)〉r = E
(q)
light(

~R) . (2.10)

In the following it shall be useful to consider

W
(q)
light(

~R) = E
(q)
light(

~R) + V̂heavy,heavy(~R) , (2.11)

which de�nes the potential energies governing the dynamics of the heavy particles. In

order to derive the coupled equations for the expansion coe�cients |Ψ(q)
heavy(~R, t)〉, the

BO-expansions of Eq. 2.7, are now inserted in Eq. 2.1. Multiplication from the left by

〈Ψ(q′)
light(~r;

~R)| with q′ 6= q and integration over the light coordinates �nally leads to

E
(q)
heavy|Ψ

(q)
heavy(~R)〉

i~ ∂
∂t |Ψ

(q)
heavy(~R, t)〉

}
=

∞∑
q′=0

[
− ~2

2M
∆R δq′q +W

(q′)
light(

~R) δq′q −

− ~2

2M

(
2~τ

(q′q)
1 · ~∇R + ~τ

(q′q)
2

) ]{ |Ψ(q′)
heavy(~R)〉

|Ψ(q′)
heavy(~R, t)〉

,(2.12)

where the explicit form for the kinetic operator for the heavy particles given in Eq. 2.5

was used. Eqs. 2.12 are the TISE and TDSE within the adiabatic representation. The

�rst two terms are diagonal matrices, with the W (q′)
light(

~R) being the sum of the interactions

between the heavy particles and the adiabatic potential energies resulting from the average

of the light particle Hamiltonian with respect to the light densities, as already mentioned

above for Eq. 2.11. The third term couples the motions of electrons and nuclei through

the two matrices, ~τ (q′q)
1 and ~τ (q′q)

2 , which are, therefore, called the �rst and second order

Non Adiabatic Coupling Terms (NACT), and is inversely proportional to the mass, M , of

the heavy particles. The de�nitions of the NACTs are

~τ
(q′q)
1 (~R) = 〈Ψ(q′)

light(~r;
~R)|~∇R|Ψ(q)

light(~r;
~R)〉r , (2.13)

~τ
(q′q)
2 (~R) = 〈Ψ(q′)

light(~r;
~R)|∆R|Ψ(q)

light(~r;
~R)〉r , (2.14)

so that they are matrix representations of the gradient and the Laplacian operator in the

basis of the light wavefunctions, respectively. The ~τ (q′q)
1 is an o�-diagonal matrix, whereas

~τ
(q′q)
2 is a full matrix. They also have the following interesting properties [10,12]:

(~τ
(q′q)
1 )∗ = −~τ (qq′)

1 , (2.15)

~τ
(q′q)
2 = ∇R · ~τ (q′q)

1 + ~τ
(q′q)
1 · ~τ (qq′)

1 , (2.16)
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2.2 The Born-Oppenheimer Approach

where
~

τ
(q′q)
2 , is rewritten in terms of

~
τ

(q′q)
1 . Moreover, by using the extended Hellmann-

Feynman theorem, the �rst order NACT can be otherwise expressed as [10,12]

~τ
(q′q)
1 (~R) =

〈Ψ(q′)
light(~r;

~R)|
(
~∇RĤlight(~∇r, ~r; ~R)

)
|Ψ(q)

light(~r;
~R)〉r

E
(q)
light(

~R)− E(q′)
light(

~R)
, (2.17)

where, instead of the diagonal elements, as in the traditional Hellmann-Feynman theorem,

the o�-diagonal elements with q′ 6= q, are taken. Eq. 2.17 shows that the magnitude of
~

τ
(q′q)
1

is inversely proportional to the energy gap between the two states, q′ and q, considered.

In the traditional Hellmann-Feynman theorem, derivation of the Hamiltonian with respect

to the positions of the particles results in the averaged forces acting on them. Thus, the

numerator in Eq. 2.17 has also the unit of a force. Moreover, this equation highlights the

link between the �rst order NACTs and the topography of the eigenstates, since ~τ1
(q′q)

shows a singularity whenever two eigenstates are degenerate.

2.2.2 Adiabatic Separation (AS)

For the while being, no approximations have been introduced, since the BO-expansion in

Eq. 2.7 is assumed to be complete. However, the solution of the heavy TISE and TDSE in

Eq. 2.12 requires the in�nite set of eigenvalues E(q′)
light(

~R) in order to calculate the adiabatic

potential energiesW (q′)
light(

~R) and eigenfunctions Ψ
(q′)
light(~r;

~R) from the light TISE in Eq. 2.10,

since they are needed for the calculation of the NACTs of �rst and second order.

The BO-approximation enters the discussions at this point by simply neglecting the third

(coupling) term of Eq. 2.12, which reduces the number of eigenvalues to be calculated. The

new TISE and TDSE read:

Ẽ
(q)
heavy|Ψ̃

(q)
heavy(~R)〉

i~ ∂
∂t |Ψ̃

(q)
heavy(~R, t)〉

}
=

(
− ~2

2M
∆R +W

(q)
light(

~R)

){
|Ψ̃(q)

heavy(~R)〉
|Ψ̃(q)

heavy(~R, t)〉
, (2.18)

where the motions of the heavy and light particles are now decoupled from each other,

but, due to the adiabatic approximation, the eigenvalues Ẽ(q)
heavy are di�erent from E

(q)
heavy

in Eqs. 2.12. The same applies to the wavefunctions, i.e. |Ψ̃(q)
heavy(~R)〉 6= |Ψ(q)

heavy(~R)〉 and
|Ψ̃(q)

heavy(~R, t)〉 6= |Ψ(q)
heavy(~R, t)〉.

Since the neglected coupling term is inversely proportional to the mass, M , of the heavy

particles, its magnitude is proportional to the adiabatic parameter (mM )
1
2 , which indeed

dictate the limits of applicability of the BO-approximation. Additionally, the magnitude

of the coupling term depends on the magnitude of the NACTs themselves and on the action
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2 Theoretical Concepts

of the nabla operator dot-multiplying ~τ (q′q)
1 (that is the momentum operator −i ~

M
~∇R) on

the heavy wavefunctions. For the NACTs to be small enough, the light wavefunctions have

to change as little as possible when varying the position of the heavy particles (see Eq. 2.13

and Eq. 2.14), whereas the e�ect of the nabla operator is the smaller, the slower the heavy

particles move. The last condition connects the use of the words adiabatic and diabatic

in the BO-approach to the concept of �adiabatic process� in thermodynamics, where the

terminology actually comes from, where systems are said to behave �adiabatically� or

�diabatically� when e.g. the temperature changes slowly or rapidly, respectively. Recalling

Eqs. 2.17, one can equivalently state that ~τ (q′q)
1 is small whenever the energy gap between

two eigenvalues, E(q′)
light(

~R) and E(q)
light(

~R), and subsequently also between the corresponding

adiabatic potential energies, W (q′)
light(

~R) and W
(q)
light(

~R) (see Eqs. 2.11 and 2.17), is large

enough. Therefore, the following corollary can be additionally drawn: �The slower the

heavy particles move and the larger the energy gap between the adiabatic potential energies

is, for which the TISE is solved, and the rest of them, the more accurate the adiabatic

separation of the motions of heavy and light particles is�. Thus, the BO-approximation

fails whenever two eigenvalues approach each other at some set of ~R, since the ~τ1
(q′q)

becomes very large (in�nite at singularities), even if the heavy particles move very slowly.

These points of degeneracies between the adiabatic potential energies are known as avoided

crossings (one dimension) or conical intersections (more than one dimension).

Whenever the BO-approximation fails, an accurate description of the system under in-

vestigation calls for the explicit treatment of the NACTs. However, their calculation is not

straightforward since their dependence on the heavy particle coordinate generally presents

singularities. Therefore, it is usually preferred to switch to the so called diabatic repre-

sentation, in which the equation of motion for the heavy particles is formulated in a set

of diabatic (light) wavefunctions, generally obtained by an orthogonal transformation in a

small subset of (light) adiabatic wavefunctions, chosen such that the o�-diagonal coupling

term in the kinetic energy operator becomes small (ideally vanishes). As a consequence,

in this new representation, the motions are not coupled via the momenta, but via the

potentials, namely the potential energy matrix becomes o�-diagonal. Thus, avoiding the

calculation of the NACTs, one eventually has to deal with these o�-diagonal elements in

the new potential energy matrix, which, however, often behave smoothly. Finally, since

the new diabatic set of states is obtained from a subset of the adiabatic wavefunctions,

diabatic representations are also approximated, so that one speaks of �quasi-diabatic� rep-

resentation [10]. This domain is usually called as going �beyond the BO-approximation�

and will not be treated explicitly here. A in depth discussion can be found for example

in the book of Baer [12] or in the book of Domcke et al. [10]. Please note that even

though the Br2@Ar system in Chap. 4 is treated in the diabatic picture, still the so called

Group-Born-Oppenheimer Approximation [10] is applied in order to separate a subgroup
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2.2 The Born-Oppenheimer Approach

of adiabatic electronic potential surfaces (the ground state and three excited states) from

the higher lying ones.

The Born-Oppenheimer approach presented in this section is a very powerful tool and

can be applied whenever the total Hamiltonian of the system can be separated into the

heavy (or slow) and light (or fast) parts and the DOFs involved satisfy the above mentioned

conditions. In the particular case of molecular systems, one could even think to iteratively

apply adiabatic separations in a multi-stage process with the aim of separating motions of

di�erent nature like the electronic, vibrational, rotational and translational DOFs, which

may have di�erent e�ective masses and/or lie in di�erent energy scales, two of the con-

ditions seen in the last paragraph for having negligible coupling terms. Such procedures

are common in QM and can be generally repeated until the desired level is reached (if

possible), which the molecular system is studied at. The study of the Cl2@pH2 system in

Chap. 5, for example, involves electronic, vibrational, rotational and translational motions

of the Cl2 and H2 molecules, so that such an iterative application of the Born-Oppenheimer

approach is performed. Therefore, in the next section, the multi-stage adiabatic separation

tool is presented.

2.2.3 AS of Nuclear from Electronic Molecular Degrees of Freedom (DOF)

The �rst stage of the multi-stage adiabatic separation tool is the separation of the electronic

and nuclear motions. The BO-approximation is tailored to the description of molecular

systems in the electronic ground state. The TISE and TDSE, in fact, can not be solved

exactly for systems larger than H+
2 (a three particle problem!). Since the ratio between

the mass of a proton and an electron is about 1836, the electrons move much faster than

the nuclei and it seems obvious to consider the electronic and nuclear Hamiltonians as the

light (or fast) and heavy (or slow) Hamiltonians of the adiabatic separation, respectively

Ĥheavy = Ĥnuc(~∇nuc, ~Rnuc) , (2.19)

Ĥlight = Ĥel(~∇el, ~Rel; ~Rnuc) , (2.20)

Ĥtot = Ĥmol(~∇nuc, ~Rnuc, ~∇el, ~Rel) = Ĥheavy + Ĥlight , (2.21)

where ~Rnuc and ~Rel are the coordinates of the nuclei(= nuc) and of the electrons(= el), re-

spectively, and ~∇nuc and ~∇el are the corresponding gradient vectors 3. Consider a molecule

composed of Nnuc nuclei with masses Mk, momenta ~Pk and nuclear charges Zke at Carte-

sian coordinates ~Rnuc,k, with k = 1, ..., Nnuc surrounded by nel electrons with masses me,

momenta ~pj and charge e at Cartesian coordinates ~Rel,j , with j = 1, ..., nel. The light

3Please note that from now on in order to keep the notation compact, the gradient vectors will carry a
subscript indicating only the kind of Degree Of Freedom (DOF) involved, ~∆DOF , instead of ~∆RDOF
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2 Theoretical Concepts

electronic and heavy nuclear Hamiltonians are, respectively

Ĥnuc(~∇nuc, ~Rnuc) = T̂nuc(~∇nuc) + V̂nuc,nuc(~Rnuc) , (2.22)

Ĥel(~∇el, ~Rel; ~Rnuc) = T̂el(~∇el) + V̂el,el(~Rel; ~Rnuc) + V̂el,nuc(~Rel; ~Rnuc) , (2.23)

with

T̂nuc =

Nnuc∑
k=1

~P 2
k

2Mk
, (2.24)

V̂nuc,nuc =

Nnuc∑
k<l

ZkZle
2

|~Rnuc,k − ~Rnuc,l|
, (2.25)

T̂el =

nel∑
j=1

~p2
j

2me
, (2.26)

V̂el,el =

nel∑
i<j

e2

|~rel,i − ~rel,j |
, (2.27)

V̂el,nuc = −
Nnuc∑
k=1

nel∑
j=1

Zke
2

|~rel,j − ~Rnuc,k|
. (2.28)

By following the adiabatic separation procedure, the total wavefunctions will be now

expanded in the electronic wavefunctions

|Ψtot(~Rnuc, ~Rel, t)〉 =
∞∑
n

|Ψ(n)
nuc(~Rnuc, t)〉 × |Ψ

(n)
el (~Rel; ~Rnuc)〉 , (2.29)

where n is the �rst or principal or main quantum number, not to be confused with the

total number of electrons in the system, nel
4. Similarly, the TISE for the electronic part

is:

(Ĥel(~∇el, ~Rel; ~Rnuc)− E
(n)
el (~Rnuc))|Ψ(n)

el (~Rel; ~Rnuc)〉 = 0 , (2.30)

where, the eigenvalues, E(n)
el (~Rnuc), are obtained by multiplying Eq. 2.30 by 〈Ψ(n)

el (~Rel;

~Rnuc)|, which means to average the electronic Hamiltonian with respect to the electronic

wavefunctions. The electronic adiabatic energies E(n)
el (~Rnuc) and the nuclear repulsion

4Please note that in this and in the next sections the BO-expansion is always presented in its time-
dependent form and that in the case of the TISE, one just has to drop the time-dependence.
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2.2 The Born-Oppenheimer Approach

term, V̂nuc,nuc(~Rnuc), together form the potential energy surface (PES) of the molecular

system along the nuclear coordinates, ~Rnuc, namely:

W
(n)
el (~Rnuc) = E

(n)
el (~Rnuc) + V̂nuc,nuc(~Rnuc) . (2.31)

Finally, the coupled TISE and TDSE for the nuclear Degree Of Freedom (DOF) reads

E
(n)
nuc|Ψ(n)

nuc(~Rnuc)〉
i~ ∂
∂t |Ψ

(n)
nuc(~Rnuc, t)〉

}
=

∞∑
n′=0

[
− ~2

2M
∆nuc δn′n +W

(n′)
el (~Rnuc) δn′n −

− ~2

2M

(
2~τ

(n′n)
1 · ~∇nuc + ~τ

(n′n)
2

) ]{ |Ψ(n′)
nuc (~Rnuc)〉

|Ψ(n′)
nuc (~Rnuc, t)〉

(2.32)

where the �rst two terms in square brackets are diagonal matrices describing the kinetic

energy of the nuclei and the PES governing their dynamics, respectively, while the third

term is an o�-diagonal matrix coupling the nuclear and electronic DOFs. By applying

the BO-approximation, this latter term is neglected, which reduces the number of eigen-

values E(n)
el (~Rnuc) to be calculated from in�nite to just one (or few in the Group-BO-

Approximation mentioned in the previous section). Finally, the TISE and TDSE become:

Ẽ
(n)
nuc|Ψ̃(n)

nuc(~Rnuc)〉
i~ ∂
∂t |Ψ̃

(n)
nuc(~Rnuc, t)〉

}
=

(
− ~2

2M
∆nuc +W

(n)
el (~Rnuc)

){
|Ψ̃(n)

nuc(~Rnuc)〉
|Ψ̃(n)

nuc(~Rnuc, t)〉
, (2.33)

where the motions of nuclei and electrons are now decoupled from each other, but, due to

the adiabatic approximation, the eigenvalues Ẽ(n)
nuc are di�erent from E

(n)
nuc in Eq. 2.32. The

same applies to the wavefunctions, i.e. |Ψ̃(n)
nuc(~Rnuc)〉 6= |Ψ(n)

nuc(~Rnuc)〉 and |Ψ̃(n)
nuc(~Rnuc, t)〉 6=

|Ψ(n)
nuc(~Rnuc, t)〉.

The discussion about the validity of the BO-approximation in Sec. 2.2.2 is now trans-

ferred to the adiabatic separation of the electronic and nuclear DOFs. In this case, in

fact, the adiabatical parameter appearing as a prefactor in the coupling term in Eq. 2.32

is often small enough to decouple them safely (for the hydrogen atom, for instance, this

ratio is approximately ( 1
1822)

1
2 ). Additionally, since the magnitude of the coupling term is

directly proportional both to the e�ect of the nabla operator ~∇nuc acting on the nuclear

wavefunction and to the magnitude of the NACTs ~τ (n′n)
1 and ~τ (n′n)

2 , the BO-approximation

is the more accurate, the slower the nuclei move and the smaller the NACTs are. This

last condition is satis�ed when the electronic wavefunction does not change dramatically,

during the motion of the nuclei, or, equivalently, if the energy di�erence between two PESs,

n and n′, is large enough. This is shown in the next three equations:

13



2 Theoretical Concepts

~τ
(n′n)
1 (~Rnuc) = 〈Ψ(n′)

el (~Rel; ~Rnuc)|~∇nuc|Ψ
(n)
el (~Rel; ~Rnuc)〉el ,

~τ
(n′n)
1 (~Rnuc) =

〈Ψ(n′)
el (~Rel; ~Rnuc)|

(
~∇nucĤel(~∇el, ~Rel; ~Rnuc)

)
|Ψ(n)

el (~Rel; ~Rnuc)〉el

E
(n)
el (~Rnuc)− E(n′)

el (~Rnuc)
,

~τ
(n′n)
2 (~Rnuc) = 〈Ψ(n′)

el (~Rel; ~Rnuc)|∆nuc|Ψ(n)
el (~Rel; ~Rnuc)〉el . (2.34)

In turn, the faster the nuclei move and/or the bigger the NACTs are, the less accurate

Eq. 2.33 will be, implying the failure of the BO-approximation. Thus, on the one hand,

the BO-approximation critically fails whenever two or more PESs approach one another

forming the so-called avoided crossing (1 dimension) or conical intersection (more than 1

dimension). In those cases, in fact, the NACTs become very large (in�nite at the contact

points), so that the BO-approximation fails even if the nuclei move slowly. On the other

hand, although the energy gap between two adiabatic potentials may be large enough, the

BO-approximation might still fail if the heavy nuclei move too fast.

The failure of the BO-approximation was found for more and more systems during the

last decades, but nevertheless this approximation and the underlying idea have been a

milestone in the theory of molecules, basic to all molecular QM and remains therefore

the reference to which we compare and in term of which we discuss di�erent quantum

systems [10,11].

The separation of electronic and nuclear DOFs is just the �rst stage of the multi-stage

AS tool mentioned above. Since in the next section the nuclear DOFs will be further

separated, the counter m indicating the number of consecutive ASs applied is introduced.

The consecutive ASs performed are depicted in the tree diagram in Fig. 2.1 together with

the counter m, the quantum numbers and the corresponding nomenclature used at each

stage. Eventually, the positions of the three molecular systems investigated along this

thesis in the tree diagram are also indicated. The Br2@Ar system investigated in Chap. 4,

is treated at the present stage, m = 1, of the multi-stage adiabatic separation. The model

involves four PESs (Group-BO-Approximation), but actually, since the NACTs between

them are treated explicitly, we even go beyond the BO-approximation. The PES were

obtained by Borowski [17] by using the Diatomics-In-Molecule (DIM), which is a suitable

model for the calculation of electronic PESs in their diabatic picture and for the treatment

of the relative diabatic nuclear equation of motion within the vibronic coupling theory. In

this context the NACTs are called �vibronic couplings�, since they measure the coupling

between vibrational and electronic motions. In particular, after population is transferred

from the electronic ground state to the �rst excited state via an electromagnetic �eld, the

14



2.2 The Born-Oppenheimer Approach

Figure 2.1: Tree diagram of the multi-stage adiabatic separation applied along the thesis.
The counter m indicates the number of subsequent adiabatic separations. In Chap. 4 the
Br2@Ar system is treated at the stage, m = 1 (actually we go beyond Born-Oppenheimer).
In Chap. 5 the Cl2@pH2 system is studied at the stage, m = 3. In Chap. 3 the investi-
gation of the Double Proton Transfer (DPT) also involve three subsequent ASs, but the
stage is indicated as m = 3′, since the path in the tree diagram di�ers from the path for
the Cl2@pH2 system and, moreover, the vibrationally-fast DOFs are treated in a time-
dependent picture. Quantum numbers and labels used along the thesis are also reported.
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2 Theoretical Concepts

role of two vibronic couplings in the non-adiabatic population transfer (predissociation)

between the �rst and two additional electronically excited PESs is investigated.

It is also mentioned here that the PES for the DPT is not calculated by solving the TISE

for the electronic part in Eq. 2.30. Instead, the ground state adiabatic PES is an analytical

function �tted to both experimental and ab-initio parameters from the literature. Non-

adiabatic transitions to electronically excited states and NACTs are completely neglected,

even if this approximation is very critical.

2.2.4 AS of External and Internal Molecular DOFs

So far the general adiabatic separation between the DOFs of heavy (or slow) and light (or

fast) particles has been applied to electronic and nuclear motions. The subsequent stage,

m = 2, involves the AS of external and internal DOFs (see Fig. 2.1), where the former ones

are the three translational and two rotational motions (three in the more general cases of

non linear molecules), which are indeed de�ned with respect to an external coordinate sys-

tem of reference (space-�xed frame), whereas the latter ones are the 3N−5 (3N−6 for non

linear molecules) vibrational motions, which are indeed de�ned with respect to an internal

coordinate system of reference with origin at the center of mass (COM) of the molecule

(body-�xed frame). In particular, it should be veri�ed whether the adiabatic parameter is

small enough to separate internal and external DOFs and whether the molecules involved

are vibrating faster enough than translating or rotating, that is whether the Cl2, Br2 and

H2 molecules possess higher vibrational than translational or rotational frequencies. The

comparison of rotational and vibrational e�ective masses is di�cult, since rotations imply

the moment of inertia of the molecules instead of just their masses. The moment of iner-

tia is de�ned in general as I =
∑np

p mpr
2
p, where np is the total number of particles and

mp and rp are the mass of the particle and its distance from the rotational axis, which

goes through the COM of the system, respectively. Since the moment of inertia is directly

proportional to both these quantities, the heavier and/or the more extended a molecular

system is, the greater the momentum of inertia will be and the better will vibrational and

rotational DOFs separate. Translational and vibrational e�ective masses are, in contrast,

easily compared. In the case of linear homonuclear diatomic molecules, the vibrational

e�ective masses corresponds to the reduced masses µX2 = mX
2 , that is half of the mass

of the atom X, and the e�ective mass of the translational motions is the total mass of

the molecule, MX2 = 2mX . As a consequence, the adiabatic parameter when separating

vibrational and translational DOFs is 1
2 . Since all linear homonuclear molecules present

the same adiabatic parameter, the separation of vibrational and translational motions is

principally based on di�erent frequency scales (fast vs slow) rather than on mass di�erences

(light vs heavy), see also Fig. 2.1. For more general molecular systems, di�erent reduced

masses allow also for an AS of vibrations of light and heavy nuclei [18�20], as mentioned

above.
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2.2 The Born-Oppenheimer Approach

In principle, the procedure in the �rst stage, where the motions of electrons and nuclei

were separated, is now repeated by splitting the nuclear coordinates into a set of external

and internal coordinates, ~Rnuc = {~Rext, ~Rint}, assigned to the heavy and light particle

Hamiltonian, respectively.

Ĥtot = Ĥnuc(~∇nuc, ~Rnuc) = Ĥext(~∇ext, ~Rext) + Ĥint(~∇int, ~Rint; ~Rext) (2.35)

Ĥheavy = Ĥext(~∇ext, ~Rext) = T̂ext(~∇ext) + V̂ext(~Rext) , (2.36)

Ĥlight = Ĥint(~∇int, ~Rint; ~Rext) = T̂int(~∇int) + V̂int(~Rint; ~Rext) . (2.37)

With the purpose of giving an explicit expression for the corresponding kinetic and poten-

tial energy operators in terms of linear diatomic molecules, the very general external coor-

dinates are split into translational and rotational ones. Whereas the former ones are still

expressed in Cartesian coordinates, ~Rtra, describing the COM position of the molecules,

the latter ones are better expressed in spherical coordinates, r, θ and φ, describing the

rotations around the COM. The Laplacian in the new coordinates becomes

∆rot−vib =
1

r2
∇r
(
r2∇r

)
+

1

r2 sin θ
∇θ (sin θ∇θ) +

1

r2 sin2 θ
∆ϕ , (2.38)

where, since r refers to the internuclear bond distance, one has

∆int =
1

r2
∇r
(
r2∇r

)
(2.39)

∆rot =
1

r2 sin θ
∇θ (sin θ∇θ) +

1

r2 sin2 θ
∆ϕ . (2.40)

Even though Eq. 2.40 shows a dependence of the rotational operator on the internuclear

distance, in the present work the molecular bonds will be considered �xed at their equilib-

rium position, req. For the internal DOFs, this implies a further classical approximation

(on top of the adiabatic separation otherwise the right-hand side of Eq. 2.39 would vanish),

i.e. an in�nitely narrow delta distribution function centered at the ground state vibrational

equilibrium distance is used instead of the quantum mechanical distribution. For the ro-

tational DOFs, it implies neglecting the centrifugal distortion of the bond due to rotation.

Finally, the external and internal kinetic energy operators are

T̂ext(~∇ext) = − ~2

2M

[
∆tra +

1

r2
eq sin θ

∇θ (sin θ∇θ) +
1

r2
eq sin2 θ

∆ϕ

]
, (2.41)

T̂int(~∇int) = − ~2

2µ
∆int , (2.42)
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where ~Rext = {~Rtra, θ, ϕ} and ~∇ext = {~∇tra,∇θ,∇ϕ}. Moreover, µ is the reduced mass of

the molecule and ~∇int is a (3N−5)-dimensional vector ((3N−6)-dimensional in the general

case of polyatomic molecules). Regarding the potential energy operators in Eqs. 2.36

and 2.37, V̂ext(~Rext) is the PES obtained by solving the respective light TISE of the

present AS stage m = 2, whereas V̂int(~Rint) is the PES obtained by solving the respective

heavy TISE from the previous AS stage m = 1, that is

V̂ext(~Rext) = W
(n,v)
int (~Rext) = W

(n,v)
int (~Rtra, θ, ϕ) , (2.43)

V̂int(~Rint; ~Rext) = W
(n)
nuc(~Rnuc) = W (n)

nuc(~Rint; ~Rtra, θ, ϕ) , (2.44)

It is worth to note at this point, that the potential, W (n)
el (~Rnuc), governing the dynam-

ics of the heavy particles, in the �rst stage m = 1, is obtained by averaging the light

particle Hamiltonian, Ĥel(~∇el, ~Rel; ~Rnuc), with respect to the light particle wavefunctions,

Ψ
(n)
el (~Rel; ~Rnuc); in turn the potential, W (n)

nuc(~Rnuc) = W
(n)
nuc(~Rtra, θ, ϕ), governing the light

particle dynamics of this stage m = 2 are the eigenvalues, E(n)
nuc(~Rnuc) obtained by solving

the heavy TISE in Eq. 2.33 for the heavy Hamiltonian, Ĥnuc(~∇nuc, ~Rnuc), with respect to

the heavy particle wavefunctions, Ψ
(n)
nuc(~Rnuc) of stage m = 1. In close analogy, the poten-

tial, W (n,v)
int (~Rtra, θ, ϕ), governing the dynamics of the heavy particles in this stage m = 2,

is obtained by averaging Ĥint(~∇int, ~Rint; ~Rext) with respect to the vibrational wavefunc-

tions and so on. Please refer to Fig. 2.1 for an overview of which DOFs are assigned to

the light (or fast) and heavy (or slow) parts of the system from one stage to the next one.

Please note also that the iterative application of the adiabatic separations causes the list

of quantum numbers to increase in order to completely specify an adiabatic state.

In order to solve the TISE for the vibrational Hamiltonian, the nuclear wavefunction,

Ψ̃
(n)
nuc(~Rnuc), is now expanded in the internal wavefunctions, Ψ

(n,v)
int (~Rint; ~Rext)

|Ψ̃(n)
nuc(~Rnuc, t)〉 =

∑
v

|Ψ(n, v)
ext (~Rext, t)〉 × |Ψ(n, v)

int (~Rint; ~Rext)〉 , (2.45)

with v being a new set of (3Nnuc − 5) vibrational quantum numbers 5.

Finally, the internal TISE reads

5Along this work the electronic adiabatic separation in stage m = 1 is always assumed to be valid,
i.e. we consider only the n = 0 electronic ground state and forget about vibrational, rotational and
translational NACTs to the n > 0 excited electronic states.
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2.2 The Born-Oppenheimer Approach

(Ĥint(~∇int, ~Rint; ~Rext)− E(n,v)
int (~Rext))|Ψ(n,v)

int (~Rint; ~Rext)〉 = 0 , (2.46)

which is solved by multiplying it by 〈Ψ(n,v)
int (~Rint; ~Rext)|, namely by averaging the inter-

nal Hamiltonian with respect to the internal wavefunctions. The resulting eigenvalues,

E
(n,v)
int (~Rext), �nally correspond to the vibrational adiabatic PES,W (n,v)

int (~Rext), of the elec-

tronic state n and vibrational states v, governing the external DOFs, namely translations

and rotations.

It is brie�y mentioned that in the particular case of diatomic molecules, the nuclear

PES, W (n)
nuc(~Rint; ~Rext), can be approximated by the simple Morse oscillator model, which

also includes anharmonicity e�ects. The Morse potential is de�ned as

M(r) = De(1− e−a(r−re))2 , (2.47)

where De is the dissociation energy, a is a range parameter controlling the width of the

potential, and req the equilibrium bond distance of the molecule considered, and the re-

sulting vibrational eigenvalues are

E(n,v) = ~ωe
(
v +

1

2

)
− ~ωexe

(
v +

1

2

)2

, (2.48)

where ωe = a
√

2De
µ is the harmonic vibrational frequency and ωexe = ~ω2

e
4De

is the anhar-

monicity constant.

The coupled TISE and TDSE for the external DOFs �nally reads

E
(n,v)
ext |Ψ

(n,v)
ext (~Rext)〉

i~ ∂
∂t |Ψ

(n,v)
ext (~Rext, t)〉

}
=

∞∑
v′

− ~2

2M

[
∆tra +

1

r2
eq

(
∆θ + cot θ ∇θ +

1

sin2 θ
∆ϕ

)]
δv′v +

+ W
(n,v′)
int (~Rext) δv′v + C

{
|Ψ(n,v′)

ext (~Rext)〉
|Ψ(n,v′)

ext (~Rext, t)〉
, (2.49)

with C being the coupling term
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C = − ~2

2M

[
2~τ

(n, v′v)
1,tra · ~∇tra + ~τ

(n, v′v)
2,tra +

1

r2
eq

(
2~τ

(n, v′v)
1,θ · ∇θ + ~τ

(n, v′v)
2,θ +

+ cot θ ~τ
(n, v′v)
1,θ

)
+

1

r2
eq sin2 θ

(
2~τ

(n, v′v)
1,ϕ ·∆ϕ + ~τ

(n, v′v)
2,ϕ

)]
. (2.50)

The parts in Eqs. 2.49 and 2.50 referring to the translational DOFs are very similar to the

corresponding equations in the previous sections. The same is true for the terms referring to

the coordinate ϕ, except for the prefactor, 1
r2
eq sin2 θ

, multiplying them. The parts referring

to the polar angle θ, in contrast, present two new terms, that is the diagonal and o�-

diagonal matrices cot θ ∇θ and cot θ ~τ
(n,v′v)
1,θ , respectively.

Within the adiabatic approximation, the coupling term C in Eq. 2.50 is neglected and

Eq. 2.49 simpli�es to

Ẽ
(n,v)
ext |Ψ̃

(n,v)
ext (~Rext)〉

i~ ∂
∂t |Ψ̃

(n,v)
ext (~Rext, t)〉

}
= − ~2

2M

[
∆tra +

1

r2
eq

(
∆θ + cot θ ∇θ +

1

sin2 θ
∆ϕ

)]
+

+ W
(n,v)
int (~Rext))

{
|Ψ̃(n,v)

ext (~Rext)〉
|Ψ̃(n,v)

ext (~Rext, t)〉
, (2.51)

where the motions of external and internal DOFs are now decoupled from each other, but,

due to the adiabatic approximation, the eigenvalues Ẽ(n,v)
ext are di�erent from E

(n,v)
ext in

Eq. 2.49. The same applies to the wavefunctions, i.e. |Ψ̃(n,v)
ext (~Rext)〉 6= |Ψ(n,v)

ext (~Rext)〉 and
|Ψ̃(n,v)

ext (~Rext, t)〉 6= |Ψ(n,v)
ext (~Rext, t)〉.

The neglected NACTs are expressed in the following equations

~τ
(n, v′v)
1,a (~Rext) = 〈Ψ(n,v′)

int (~Rint; ~Rext)|~∇a|Ψ(n,v)
int (~Rint; ~Rext)〉int ,

~τ
(n, v′v)
1,a (~Rext) =

〈Ψ(n,v′)
int (~Rint; ~Rext)|

(
~∇aĤint(~∇int, ~Rint; ~Rext)

)
|Ψ(n,v)

int (~Rint; ~Rext)〉int

W
(n,v)
int (~Rext)−W (n,v′)

int (~Rext)
,

~τ
(n, v′v)
2,a (~Rext) = 〈Ψ(n,v′)

int (~Rint; ~Rext)|∆a|Ψ(n,v)
int (~Rint; ~Rext)〉int , (2.52)

where, by cyclically substituting the subscript a by tra, θ and ϕ, the di�erent NACTs in

Eq. 2.50 are obtained.
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2.2 The Born-Oppenheimer Approach

Similarly to the previous stages of the ASs, the magnitude of the coupling term in

Eq. 2.50 is directly proportional to the adiabatic parameter, which mainly dictates the

applicability of the BO-approximation. Additionally, two more factors in�uence the mag-

nitude of the coupling term, the velocity at which the molecules rotate and translate, which

is expressed by the nabla operators, ~∇tra, ∇θ and ∇ϕ acting on the external wavefunction,

and the magnitude of the NACTs, themselves, which depends on how much the internal

wavefunction, Ψ
(n,v)
int (~Rint; ~Rext), change when varying the parameters ~Rtra or θ or ϕ (see

Eqs. 2.52 and 2.52).

These two factors becomes important for example in molecular collisions, where transla-

tional and/or rotational energy is transferred to the vibrational DOFs, so that the higher

the collision energies are, the higher the non-adiabatic e�ects will be, since under a faster

motion (consequence of an higher frequency/energy) of the external DOFs, the vibrational

(internal) wavefunctions undergo drastic changes.

A second equivalent way to interpret the �rst order NACTs is shown in Eq. 2.52, that is

non-adiabatic couplings are the smaller, the larger the energy gaps between the vibrational

eigenstates, W (n,v)
int (~Rext) are. Correspondingly, if the internal vibrational motions in a

molecule occur at a much higher frequency-range than the rotational and translational

ones, one condition for the validity of the approximation is ful�lled. However, the adiabatic

separation could still fail, if the external DOFs move too fast.

Before we continue to the next stage m = 3, it should be mentioned that the adiabatic

separation can also be applied in order to decouple the motions of heavy (or slow) and

light (or fast) vibrations within the internal DOFs, see for example [18�20]. This permits

for example to combine classical and quantum dynamics simulations, by treating light/fast

particles, such as hydrogen, quantum mechanically, and the heavy rest of the molecular

system classically [21�23]. This is actually done in Chap. 3, where the DPT mechanism

of the porphine molecule is investigated. The relative equations are not included in this

chapter, since their derivation involves an extension of the Born-Oppenheimer approach

to time-dependent solutions for the light (or fast) DOFs, in close analogy to the �eld of

attosecond chemistry [24], where the nuclei are still clamped, but the electronic SE in

solved in a time-dependent picture6. Nevertheless, three ASs are consecutively applied on

the DPT system, so that in the tree diagram of Fig. 2.1 this stage is numbered m = 3′,

where the prime serves to distinguish between the two series of ASs applied to the DPT

and to the Cl2@pH2 systems, respectively. A new quantum number vf is therefore also

de�ned, which stays for vibrationally-fast DOFs.

6Please note that this is never foreseen for the Br2@Ar and the Cl2@pH2 systems, but the multi-stage
adiabatic separation tool could be generalized to include the time-dependent solution of the light or
fast DOFs.
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2.2.5 AS of Translational and Rotational Molecular DOFs

In the stage m = 3 of the multistage AS the separation of translational and rotational

DOFs is presented. This stage is applied only on the Cl2@pH2 system treated in Chap. 5.

At stage m = 1 electronic and nuclear DOFs have been separated. The electronic pair

potentials for the Cl2-H2 (2D) and pH2-pH2 (1D) systems are obtained by means of the

Quantum Chemistry methods presented later in this chapter, that is, by solving the elec-

tronic TISE in Eq. 2.30. In this case, electronic transitions will be neglected, since no

electromagnetic �elds are applied and, at the cryogenic temperatures considered, the sys-

tem has not enough energy to reach the electronic excited states, which lie energetically

well above. At stage m = 2 the nuclear ones are separated into internal (vibrational) and

external (rotational and translational) DOFs. The AS of translations and rotations is, in

general, more severe, since the conditions for its validity are not always ful�lled by molec-

ular systems. Translational motions of the molecules around their nominal position in the

crystal, could for example take place at similar frequency as rotations, 7 so that assign-

ment of rotational and translational DOFs to the fast and or slow parts of the Hamiltonian

has to be considered case by case. Therefore, di�erently from the previous sections, both

cases will be considered. In the worse case, if rotations and translation can not be treated

separately, they must be treated simultaneously.

Let us split the external coordinates in rotational and translational ones, ~Rext = {~Rtra, θ,
ϕ}, and assign �rst the rotations to the light Hamiltonian. Hence,

Ĥtot = Ĥext(~∇ext, ~Rext) = Ĥtra(~∇tra, ~Rtra) + Ĥrot(∇θ,∇ϕ, θ, ϕ; ~Rtra) (2.53)

Ĥheavy = Ĥtra(~∇tra, ~Rtra) = T̂tra(~∇tra) + V̂tra(~Rtra) , (2.54)

Ĥlight = Ĥrot(∇θ,∇ϕ, θ, ϕ; ~Rtra) = T̂rot(∇θ,∇ϕ) + V̂rot(θ, ϕ; ~Rtra) , (2.55)

with

T̂tra(~∇tra) = − ~2

2M
∆tra , (2.56)

V̂tra(~Rtra) = W
(n,v,l)
rot (~Rtra) , (2.57)

T̂rot(∇θ,∇ϕ) = B

[
1

sin θ
∇θ (sin θ ∇θ) +

1

sin2 θ
∆ϕ

]
, (2.58)

V̂rot(θ, ϕ; ~Rtra) = W
(n,v)
ext (~Rext) = W

(n,v)
ext (θ, ϕ, ~Rtra) , (2.59)

7In this context, it must be also remarked that in two of the systems studied here, Br2@Ar and Cl2@pH2,
since the single molecules or atoms in the matrix are surrounded by the other ones, which behave as a
cage around them, the translational motions will be called �external� vibrational motions, in contrast
to the �internal� one, in the sense that the COM of the molecules or of the atoms is oscillating forth
and back around their nominal positions.
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2.2 The Born-Oppenheimer Approach

where M is the total mass of the molecular system, B = −~2

2I is the well-known rotational

constant of the speci�c molecule with I = Mr2
eq being the moment of inertia mentioned

above. Moreover, θ and ϕ are the same spherical coordinates as in the previous section,

W
(n,v,l)
rot (~Rtra) is the rotationally adiabatic PES governing the dynamics of the translational

DOFs obtained by solving the rotational TISE in Eq. 2.61 in the present stage m = 3 and

W
(n,v)
ext (~Rext) = E

(n,v)
ext (~Rext) are the eigenvalues obtained by solving the external TISE in

Eq. 2.51, that is the external PES from the previous stage with m = 2, governing the

dynamics of the DOFs de�ned as �light� in this third stage with m = 3.

The external wavefunction, Ψ̃
(n,v)
ext (~Rext), is now expanded in the rotational wavefunc-

tions, Ψ
(n,v,l)
rot (θ, ϕ; ~Rtra)

|Ψ̃(n,v)
ext (~Rext, t)〉 =

∑
l

|Ψ(n,v,l)
tra (~Rtra, t)〉 × |Ψ(n,v,l)

rot (θ, ϕ; ~Rtra)〉 , (2.60)

where l is an index collecting the two rotational quantum numbers for linear molecules in

a three dimensional Cartesian space8.

The TISE for the rotational DOFs reads

(Ĥrot(~∇rot, θ, ϕ; ~Rtra)− E(n,v,l)
rot (~Rtra))|Ψ(n,v,l)

rot (θ, ϕ; ~Rtra)〉 = 0 , (2.61)

where the eigenvalues, E(n,v,l)
rot (~Rtra) are obtained by multiplying Eq. 2.61 by 〈Ψ(n,v,l)

rot (θ, ϕ;

~Rtra)|, that is by averaging the rotational Hamiltonian with respect to the rotational

wavefunctions. The rotationally adiabatic energies, E(n,v,l)
rot (~Rtra), �nally correspond to

the rotational adiabatic PES, W (n,v,l)
rot (~Rtra), of the electronic state n, vibrational state v

and rotational state l governing the translational DOFs.

Finally, the coupled TISE and TDSE for the translational DOFs become

E
(n,v,l)
tra |Ψ(n,v,l)

tra (~Rtra)〉
i~ ∂
∂t |Ψ(n,v,l)

tra (~Rtra, t)〉

}
=

∞∑
l′=0

− ~2

2M
∆tra δl′l +W

(n,v,l′)
rot (~Rtra) δl′l − (2.62)

− ~2

2M

(
2~∇tra · ~τ (n,v,l′l)

1 + ~τ
(n,v,l′l)
2

) { |Ψ(n,v,l′)
tra (~Rtra)〉

|Ψ(n,v,l′)
tra (~Rtra, t)〉

,

8Again it is assumed the electronic and internal adiabatic separations in the previous stages with m = 1
and 2, respectively, to be valid, i.e. we consider only the electronic and vibrational ground state,
n = v = 0 and forget therefore about rotational and translational NACTs to the v > 0 excited
vibrational states.
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and neglecting the coupling part of these equations, the TISE and TDSE within the adia-

batic approximation are obtained, namely

Ẽ
(n,v,l)
tra |Ψ̃(n,v,l)

tra (~Rtra)〉
i~ ∂
∂t |Ψ̃(n,v,l)

tra (~Rtra, t)〉

}
= T̂tra(~Rtra) +W

(n,v,l)
rot (~Rtra))

{
|Ψ̃(n,v,l)

tra (~Rtra)〉
|Ψ̃(n,v,l)

tra (~Rtra, t)〉
, (2.63)

where the motions of the translational and rotational DOFs are now decoupled from

each other, but, due to the adiabatic approximation, the eigenvalues Ẽ(n,v,l)
tra are di�er-

ent from E
(n,v,l)
tra in Eq. 2.71. The same applies to the wavefunctions, i.e. |Ψ̃(n,v,l)

tra (~Rtra)〉 6=
|Ψ(n,v,l)

tra (~Rtra)〉 and |Ψ̃(n,v,l)
tra (~Rtra, t)〉 6= |Ψ(n,v,l)

tra (~Rtra, t)〉.

Let us now brie�y consider the second case where the translational motions are assign

to the light Hamiltonian instead. Hence, the two Hamiltonians become

Ĥtot = Ĥext(~∇ext, ~Rext) = Ĥrot(∇θ,∇ϕ, θ, ϕ) + Ĥtra(~∇tra, ~Rtra; θ, ϕ) (2.64)

Ĥheavy = Ĥrot(∇θ,∇ϕ, θ, ϕ) = T̂rot(∇θ,∇ϕ) + V̂rot(θ, ϕ) , (2.65)

Ĥlight = Ĥtra(~∇tra, ~Rtra; θ, ϕ) = T̂tra(~∇tra) + V̂tra(~Rtra; θ, ϕ) , (2.66)

where the kinetic energy operators are those of Eqs. 2.59 and 2.57, but the potential energy

operators are

V̂rot(θ, ϕ) = W
(n,v,k)
tra (θ, ϕ) , (2.67)

V̂tra(~Rtra; θ, ϕ) = W
(n,v)
ext (~Rext) , (2.68)

with W (n,v,k)
tra (θ, ϕ) being the translationally adiabatic PES governing the dynamics of the

rotational DOFs obtained by solving the translational TISE in Eq. 2.70 in the present stage

m = 3. With this aim, the external wavefunction, Ψ̃
(n,v)
ext (~Rext) is expanded this time in

the translational wavefunctions, Ψ
(n,v,k)
tra (~Rtra; θ, ϕ)

|Ψ̃(n,v)
ext (~Rext, t)〉 =

∑
k

|Ψ(n,v,k)
rot (θ, ϕ, t)〉 × |Ψ(n,v,k)

tra (~Rtra; θ, ϕ)〉 , (2.69)

where k is an index, which collects the three new translational quantum numbers for a

molecule with its COM translating in the three-dimensional space. The TISE for the

translational DOFs reads
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2.2 The Born-Oppenheimer Approach

(Ĥtra(~∇tra, ~Rtra; θ, ϕ)− E(n,v,k)
tra (θ, ϕ))|Ψ(n,v,k)

tra (~Rtra; θ, ϕ)〉 = 0 , (2.70)

where the eigenvalues, E(n,v,k)
tra (θ, ϕ) are found by multiplying Eq. 2.70 by 〈Ψ(n,v,k)

tra (~Rtra;

θ, ϕ|, that is by averaging the translational Hamiltonian with respect to the corresponding

wavefunctions. The rotationally adiabatic energies, E(n,v,k)
tra (θ, ϕ), �nally correspond to the

rotational adiabatic PES, W (n,v,k)
tra (θ, ϕ), of the electronic state n, vibrational state v and

translational state k governing the rotational DOFs. Finally, the coupled TISE and TDSE

for the rotational DOFs become

E
(n,v,k)
rot |Ψ(n,v,k)

rot (θ, ϕ)〉
i~ ∂
∂t |Ψ(n,v,k)

rot (θ, ϕ, t)〉

}
=

∞∑
k′=0

B

(
∆θ + cot θ∇θ +

1

sin2 θ
∆ϕ

)
δk′k +

+ W
(n,v,k′)
tra (θ, ϕ) δk′k + C

{
|Ψ(n,v,k′)

rot (θ, ϕ)〉
|Ψ(n,v,k′)

rot (θ, ϕ, t)〉
(2.71)

with

C = B

[
2~τ

(n,v,k′k)
1,θ · ∇θ + ~τ

(n,v,k′k)
2,θ + cot θ~τ

(n,v,k′k)
1,θ +

1

sin2 θ

(
2~τ

(n,v,k′k)
1,ϕ ·∆ϕ + ~τ

(n,v,k′k)
2,ϕ

)]
.

Please note that the sum of the coupling terms in Eqs. 2.71 and 2.63 corresponds to the

term coupling the external and internal DOFs in Eq. 2.49. Finally, by neglecting the

coupling term in Eq. 2.72, the TISE and TDSE within the adiabatic approximation are

obtained, namely

Ẽ
(n,v,k)
rot |Ψ̃(n,v,k)

rot (θ, ϕ)〉
i~ ∂
∂t |Ψ̃(n,v,k)

rot (θ, ϕ, t)〉

}
= T̂rot(θ, ϕ) +W

(n,v,k)
tra (θ, ϕ))

{
|Ψ̃(n,v,k)

rot (θ, ϕ)〉
|Ψ̃(n,v,k)

rot (θ, ϕ, t)〉
, (2.72)

where the motions of the rotational and translational DOFs are now decoupled from

each other, but, due to the adiabatic approximation, the eigenvalues Ẽ(n,v,k)
rot are di�erent

from E
(n,v,k)
rot in Eq. 2.63. The same applies to the wavefunctions, i.e. |Ψ̃(n,v,k)

rot (~Rrot)〉 6=
|Ψ(n,v,k)

rot (~Rrot)〉 and |Ψ̃(n,v,k)
rot (~Rrot, t)〉 6= |Ψ(n,v,k)

rot (~Rrot, t)〉.

It is brie�y mentioned here that in the trivial case of W (n,v,k)
tra (θ, ϕ) = 0 the solution of

the rotational TISE, E(n,v,k)
rot are just the eigenvalues of the rigid rotor, that is

25
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E
(n,v,k)
rot (J) = BJ(J + 1) , (2.73)

where J is the rotational quantum number, and YJ,M (θ, ϕ) are the corresponding eigen-

functions (spherical harmonics) and B = ~2

2µr2
eq

is the rotational constant of the rigid rotor.

In the case of diatomic molecules in vacuum, where translational and rotational DOFs are

separable (no collisions), the rovibrational spectra can be interpreted within the non-rigid

rotor model, which is an extension of the rigid rotor including the centrifugal distortion

of the molecular bond due to rotations. In this sense, it is a simple model for approxi-

mating the rovibrational operator in Eq. 2.38. The non-rigid rotor approximation give the

following eigenvalues

E
(n,v)
rot−vib(Jv) = Bv Jv(Jv + 1) +Dv J

2
v (Jv + 1)2 , (2.74)

where Bv = ~2

2µr2
v
and Dv = ~4

2kµ2r6
v
(in the harmonic oscillator approximation [25]) are the

rotational and centrifugal distortion constants, which depend on the vibrational eigenstate

v the molecules are vibrating at, since the higher is the vibrational frequency, the larger is

the expectation value of the bond distance rv, the smaller are Bv and Dv.

The equations for the �rst order NACTs for the two cases exposed above, namely, when

assigning either the rotational (case 1) or the translational (case 2) DOFs to the light part

of the Hamiltonian, are now given below.

Case 1:

~τ
(n,v,l′l)
1 (~Rtra) = 〈Ψ(n,v,l′)

rot (θ, ϕ; ~Rtra)|~∇tra|Ψ(n,v,l)
rot (θ, ϕ; ~Rtra)〉rot ,

~τ
(n,v,l′l)
1 (~Rtra) =

〈Ψ(n,v,l′)
rot (θ, ϕ; ~Rtra)|

(
~∇traĤrot(~∇rot, θ, ϕ; ~Rtra)

)
|Ψ(n,v,l)

rot (θ, ϕ; ~Rtra)〉rot

W
(n,v,l)
rot (~Rtra)−W (n,v,l′)

rot (~Rtra)
,

~τ
(n,v,l′l)
2 (~Rtra) = 〈Ψ(n,v,l′)

rot (θ, ϕ; ~Rtra)|∆tra|Ψ(n,v,l)
rot (θ, ϕ; ~Rtra)〉rot . (2.75)
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Case 2:

~τ
(n,v,k′k)
1 (θ, ϕ) = 〈Ψ(n,v,k′)

tra (~Rtra; θ, ϕ)|~∇rot|Ψ(n,v,k)
tra (~Rtra; θ, ϕ)〉tra ,

~τ
(n,v,k′k)
1 (θ, ϕ) =

〈Ψ(n,v,k′)
tra (~Rtra; θ, ϕ)|

(
~∇rotĤtra(~∇tra, ~Rtra; θ, ϕ)

)
|Ψ(n,v,k)

tra (~Rtra; θ, ϕ)〉tra

W
(n,v,k)
tra (θ, ϕ)−W (n,v,k′)

tra (θ, ϕ)
,

~τ
(n,v,k′k)
2 (θ, ϕ) = 〈Ψ(n,v,k′)

tra (~Rtra; θ, ϕ)|∆rot|Ψ(n,v,k)
tra (~Rtra; θ, ϕ)〉tra . (2.76)

Thus, as already discussed for the previous stages, the AS separation is the more ac-

curate, the smaller the adiabatic parameter is, since the coupling terms are directly pro-

portional to it. However, the magnitude of the coupling term is also proportional to the

magnitude of the NACTs and to the velocity, or momentum, at which the heavy compo-

nents move relative to their light counterparts, depending on the cases 1 and 2, because

of the gradient multiplying the heavy wavefunctions in Eqs. 2.63 and 2.71. Finally, the

NACTs are negligible if and only if upon variation of the heavy particle coordinates, the

respective light wavefunctions do not change drastically (see Eqs. 2.75, 2.75, 2.76 and 2.76).

Equivalently, the extended Feynman-Hellman theory allows us to state that the �rst order

NACTs are inversely proportional to the energy gaps between two considered PESs, as

shown in Eqs. 2.75 and 2.76.

When for the molecular system considered, translational and rotational DOFs do not

separate, the NACTs have to be treated explicitly. Referring to the present work for exam-

ple, ~τ (n,v,l′l)
1 (~Rtra) could be calculated by quantifying the changes in the rotational states

of Cl2 or H2, when translating their COM in the crystal. Correspondingly, ~τ (n,v,k′k)
1 (θ, ϕ)

could be calculated by quantifying the changes in the translational states when the orien-

tation of Cl2 or H2 is changed (rotation). This �eld of research is established since many

years, see for example [26], and is still actual, see for example [27]. Afterwards, the SE for

the system has to be solved, which is, in the case of a linear molecule, a �ve-dimensional

coupled equation (3 translational and 2 rotational DOFs) and can be nowadays treated, by

using the Discrete Variable Representations (DVR) [28�30], also implemented in the Multi

Con�gurational Time-Dependent Hartree program package [31�37] used for the Br2@Ar

system in Chap. 4 and exposed later in this chapter.

2.3 Quantum Chemistry Methods

In this section it will be focused on the Quantum Chemistry (QC) methods used during

this investigation for solving the TISE in Eq. 2.30. In the �rst subsection the Hartree

Fock (HF) method will be introduced, whereas in the next ones the so-called post-HF or

correlation methods will be exposed. The subscript el indicating electronic wavefunction
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will be dropped from now on, and instead the method will be indicated in order to highlight

the connections between the HF method in section 2.3.1 and the correlated methods in

Sec. 2.3.3, 2.3.4 and 2.3.5, which improve the results upon the HF approximation. Hence,

Ψmethod = Ψel (where "method" may be "HF", "CI", "MP", etc.) and Ĥ = Ĥel. Please

note that the di�erent QC techniques are adapted from various sources including Refs.38

and 39.

2.3.1 Hartree Fock (HF) Method

Solution of the TISE for atoms and molecules containing many electrons is not a trivial

task. Most of the calculations rely on the Hartree-Fock method, which is equivalent to the

molecular orbital (MO) approximation, in which a determinant of one-electron functions

is constructed so that the total electronic wavefunction results antisymmetric with respect

to the exchange of any two electrons (Pauli exclusion principle) and then optimized [38].

For an nel-electron system the HF wavefunction can be expressed by means of a Slater

determinant:

|ΨHF〉 =
1√
nel!

∣∣∣∣∣∣∣∣∣∣
χ1(~q1) χ2(~q1) . . . χnel

(~q1)

χ1(~q2) χ2(~q2) . . . χnel
(~q2)

. . . . . . . . . . . .

χ1(~qnel
) χ2(~qnel

) . . . χnel
(~qnel

)

∣∣∣∣∣∣∣∣∣∣
. (2.77)

The multiplying prefactor in Eq. 2.77 is the normalization factor and the χi(~qi) are a

set of orthonormal spin-orbitals describing each electron. They are a product of a spatial

part, ψi(~ri), which depends on the position of the electron, and a spin orbital, α(ω) or

β(ω), which depends only on its spin coordinate:

χi(~qi) = ψi(~ri) ·

{
α(ω)

β(ω)
. (2.78)

In order to determine the best spin-orbitals, the variational method is applied to mini-

mize the electronic Hamiltonian operator:

〈ΨHF|Ĥ|ΨHF〉 = min . (2.79)

Finally, the variation results in the following eigenvalue problem [38]:

f̂(~qi)χ(~qi) = εiχ(~qi) . (2.80)

Eqs. 2.80 are called Hartree-Fock equations. εi are the eigenvalues and f̂(~qi) is an e�ective

one-electron operator called Fock operator with the form,
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f̂(~qi) = ĥ(~qi) + 〈V̂HF(~qi)〉 = ĥ(~qi) +

nel∑
j=1

(
Ĵj(~qi)− K̂j(~qi)

)
. (2.81)

The �rst term is the one-electron Hamiltonian for the ith electron

ĥ(~qi) = − ~2

2me
∇2
i −

Nnuc∑
k=1

Zke
2

|~ri − ~Rk|
. (2.82)

It describes the motion of a single electron i in the �eld of the nuclear frame. Indeed

the two terms are the kinetic energy and the potential energy for the attraction between

the ith electron and each of the nuclei. 〈V̂HF(~qi)〉 is the so-called one-electron e�ective

HF potential, describing the interaction of each electron in the mean-�eld of all the other

electrons. In turn, 〈V̂HF(~qi)〉 is composed of the one-electron Coulomb operator

Ĵj(~qi)χi(~qi) =
[∫

dqjχ
∗
j (~qj)

1

|~ri − ~rj |
χj(~qj)

]
χi(~qi) , (2.83)

which speci�es the classical interaction of an electron with coordinate ~qi in the average

�eld arising from the remaining nel − 1 electrons, and the exchange operator

K̂j(~qi)χi(~qi) =
[∫

dqjχ
∗
j (~qj)

1

|~ri − ~rj |
χi(~qj)

]
χj(~qi) , (2.84)

which arise from the antisymmetric nature of the Slater-determinant and does not have a

classical interpretation like the Coulomb operator [38]. The last two expressions show that

the Fock equations in 2.80 are not independent, since the Fock operator, f̂(~qi), acting on a

spin orbital, χi(~qi), depends itself on all other spin-orbitals via the Hartree Fock potential

operator, 〈V̂HF(~qi)〉. Thus, the problem has to be solved iteratively: an initial guess for

the spin-orbitals, χj(~qj), is used to calculate Ĵ and K̂ and, hence, the Fock operator f̂ .

Then the Hartree Fock equations are solved yielding new χi(~qi) which are again used to

calculate a new Fock operator. This iteration step is repeated until convergence is reached

and it is known as the Self Consistent Field method (SCF) [38].

In general, if the spatial part of the spin-orbital is expanded in an in�nite basis set

(see Sec. 2.3.2 for an introduction to the basis set used in this work; for a more detailed

review of basis sets, see instead Ref. 39) ensures the HF energy EHF(=E(0)
el ) to reach the
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Hartree-Fock limit.

EHF = 〈ΨHF|Ĥ|ΨHF〉 , (2.85)

where ΨHF = Ψ
(0)
el , is the HF ground state wavefunction. The di�erence between the exact

non-relativistic energy within the BO approximation, Eexact, and the HF energy EHF at

the basis set limit is called correlation energy

Ecorr = Eexact − EHF . (2.86)

Please note that, since the EHF is an upper bound to the exact energy, the correlation

energy is always negative. Correlation energy arises since the motion of the electrons with

the same spin (called Fermi correlation [39]) is treated approximately and the motion of

electrons with opposite spin (called Coulomb correlation [39]), which is the largest contri-

bution to the correlation energy, is not treated at all within the Hartree-Fock approach.

Since the HF method gives the best wavefunction for a single Slater determinant, the ob-

vious way to improve on this result is to start from a trial wavefunction containing more

than one Slater determinant,

Φ0 = c0ΨHF +
∞∑
d=1

cdΨd , (2.87)

where c0 is usually close to 1 and the subscript d stays for determinant. Several methods,

called electron correlation methods, were developed in order to recover the correlation

energy upon the HF approximation and they actually di�er in how the coe�cients cd in

Eq. 2.87 are calculated [39].

Before some of those methods will be exposed, in the next section the Roothaan Equation

are derived by introducing the set of function (basis set) used in order to represent the

atomic orbitals (AO) before the SCF procedure is applied.

2.3.2 Basis Set and Roothaan Equation (MO-LCAO)

The spatial part ψi(~ri) of the spin-orbital χi(~qi), that is, the Molecular Orbitals (MO),

is generally expanded in a set of known K spatial basis functions θµ(~r), µ = 1, 2, ...,K,

representing the atomic orbitals (AO).
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ψi(~ri) =
∑
µ

cµiθµ(~ri) i = 1, 2, ..., nel . (2.88)

The cµi are the coe�cients for the linear combination of atomic orbitals (LCAO), to be it-

eratively found by using the SCF method mentioned above, which minimize the electronic

energy. The set of known functions θµ is in general �nite, because of practical computa-

tional limits, and K is therefore chosen such that a good compromise between accuracy

and computer resources is achieved. Substitution of Eq. 2.88 in the Fock equations 2.80

leads to the so-called Roothaan-Hall equations [40,41].

FC = SCε , (2.89)

with F being the Fock matrix with elements

Fij = 〈θi(~r)|f̂(~q)|θj(~r)〉 (2.90)

and S the overlap matrix with elements

Sij = 〈θi(~r)|θj(~r)〉 . (2.91)

Across this work, the MO were expanded by using the Polarized Correlation Consistent

(cc-p) basis set [42] and the discussion will therefore be restricted just to them. For a more

general knowledge refer to Ref. 39. The cc-p are a widely used type of basis set developed

by Dunning and co-workers [42], which was especially designed to converge systematically

to the Complete Basis Set (CBS) limit using extrapolation techniques, see Eq. 2.94. The

cc-p basis set are based on the Gaussian Type Orbitals (GTO), which in polar or Cartesian

coordinates can be written as

GTOζ,n,l,m(r, θ, ϕ) = NYl,m(θ, ϕ)r(2n−2−l)e−ζr
2
, (2.92)

GTOζ,lx,ly ,lz(x, y, z) = Nxlxylyzlze−ζr
2
. (2.93)

Since the number of GTO functions increases very rapidly with the complexity of the

system to be described, it is of common use to �x, in a reasonable manner, some of

the variational coe�cients, cµi, of the MO expansion creating �xed linear combination of

basis functions, called contracted GTOs (CGTO). Therefore, in contrast, the initial basis

functions are generally denoted primitive GTOs (PGTO). In Table 2.1 the total number

of contracted Gaussian functions used in order to represent the MOs is shown. The red

colour code highlights the cases occurring in this work. The CGTO functions used in

the cc-p type basis sets and in the aug-cc-p type basis sets are listed in the upper and
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Table 2.1: The number of contracted Gaussian functions (CGTO) used for each basis set
are listed for the �rst and third rows of the periodic table containing the H atom and, the
Cl and Ar atoms, respectively. The red colour highlights the cases occurred in this work.
VDZ, VTZ, VQZ, ect. stay for Valence Double, Triple, Quadruple, and so on, Zeta and
means that a n-tuple set of CGTOs is used for describing the valence Atomic Orbitals
(AO) of an atom. For the H-He row a VDZ basis set contains 2 CGTOs for the s-AO
indicated by [2s]. cc-p stays for Polarized Correlation Consistent basis set and means, for
the H and He elements, that 1 set of CGTOs is taken for the p AOs (indicated by [1p]),
which accounts for polarization e�ects of the electronic cloud. Since the p-AOs are triply
degenerate, the total number of CGTOs is 5. Aug- stays for augmented and means that
for each of the AOs, 1 more CGTO is taken, which accounts for dispersion e�ects. For the
H and He elements 1 GCTO must be added for each of the AOs, i.e. [1s1p]. This �nally
means to add to the 5 functions in the cc-pVDZ basis set four more CGTOs for a total of
9.

H −He Na−Ar

cc−pV DZ [2s+ 1p]→ 5 [4s3p2d+ 1f ]→ 30

cc−pV TZ [3s2p+ 1d]→ 14 [5s4p3d2f + 1g]→ 55

cc−pV QZ [4s3p+ 2d1f ]→ 30 [6s5p4d3f + 2g1h]→ 91

cc−pV 5Z [5s4p+ 3d2f1g]→ 55 [7s6p5d4f + 3g2h1i]→ 140

cc−pV 6Z [6s5p+ 4d3f2g1h]→ 91 [8s7p6d5f + 4g3h2i1l]→ 204

aug−cc−pV DZ [2s1p+ 1s1p]→ 9 [4s3p2d1f + 1s1p1d1f ]→ 46

aug−cc−pV TZ [3s2p1d+ 1s1p1d]→ 23 [5s4p3d2f1g + 1s1p1d1f1g]→ 80

aug−cc−pV QZ [4s3p2d1f + 1s1p1d1f ]→ 46 [6s5p4d3f2g1h+ 1s1p1d1f1g1h]→ 91

aug−cc−pV 5Z [5s4p...2f1g + 1s1p1d1f1g]→ 80 [7s6p...2h1i+ 1s1p1d1f1g1h1i]→ 189

aug−cc−pV 6Z [6s5p...2g1h+ 1s1p1d1f1g1h]→ 91 [8s7p...2i1l + 1s1p1d1f1g1h1i1l]→ 268
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lower part of the table, respectively. The keywords DZ (Double Zeta), TZ (Triple Zeta),

QZ (Quadruple Zeta), ect., mean that the CGTOs are doubled, tripled, quadrupled and

so on. The term zeta stems from the exponent used above in the GTO equations. The

addition of the keyword V, speci�es that only the valence AOs are doubled, tripled, ect..

Finally, the cc-p basis sets include already a set of CGTOs, generally called polarization

or correlation functions, which take into account for polarization e�ects on the AOs and

are indispensable for the calculation of the correlation energy. In the second part of the

table aug, stays for augmented and refers to the addition of di�use functions, which are

indispensable for calculating long-range interactions like for example Van der Waals forces.

They are, indeed, very large CGTOs with small exponent coe�cients.

As already mentioned, the use of p-cc basis sets allows the extrapolation of the PES

values to the complete basis set limit by using the following formula [43]

EXY =
X3EX − Y 3EY

X3 − Y 3
, (2.94)

where X and Y represent the cardinal numbers in the basis sets used.

2.3.3 Con�guration Interaction (CI) Method

The CI method can be seen as an extension of the HF method in the sense that the new

ansatz is constructed starting from the n-electron Slater determinant of the HF ground

state wavefunction

ΨHF = |χ1χ2...χaχb...χnel
〉 , (2.95)

which contains all occupied spin-orbitals. The latter will be labelled with the �rst letters of

the alphabet, whereas the unoccupied or virtual ones will be labeled with the later letters

of the alphabet r, s, .... If one now moves one electron from one occupied to an unoccupied

spin-orbital, a new wavefunction describing a single excited Slater determinant would be

created.

Ψr
a = |χ1χ2...χrχb...χnel

〉 . (2.96)

At the same way exciting two electrons from two occupied to two unoccupied spin-

orbitals one would end up with a wavefunction describing double excited Slater determi-

nant.

Ψrs
ab = |χ1χ2...χrχs...χnel

〉 . (2.97)
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In general, this procedure could be repeated until all electrons have been excited from all

occupied to unoccupied spin-orbitals, obtaining all possible Slater determinants describing

all possible electronic con�gurations of the system. The CI Ansatz consists in writing

the exact electronic wavefunction for any state of the system as an expansion of all these

con�guration state functions [38].

ΦCI
0 = c0|ΨHF〉+

∑
ra

cra|Ψr
a〉+

∑
a<b
r<s

crsab|Ψrs
ab〉+

∑
a<b<c
r<s<t

crstabc|Ψrst
abc〉+ ... , (2.98)

which is the exact wavefunction for the electronic ground state. It is very interesting to

examine the structure of the full CI matrix, obtained by solving variationally the SE. For

this purpose it is more convenient to rewrite the Eq. 2.98 as

Φ0 = c0|ΨHF〉+
∑
S

cS |S〉+
∑
D

cD|D〉+
∑
T

cT |T 〉+
∑
Q

cQ|Q〉+ ... (2.99)

By virtue of the Brillouin's theorem (see Sec. 3.3.2 in Ref. 38) and because the matrix

elements of 2 electrons operator vanish if two Slater determinants di�er for more than 2

spin-orbital, the �nal Full CI matrix reads:



〈ΨHF|Ĥel|ΨHF〉 0 〈ΨHF|Ĥel|D〉 0 0 ...

〈S|Ĥel|S〉 〈S|Ĥel|D〉 〈S|Ĥel|T 〉 0 ...

〈D|Ĥel|D〉 〈D|Ĥel|T 〉 〈D|Ĥel|Q〉 ...

〈T |Ĥel|T 〉 〈T |Ĥel|Q〉 ...

〈Q|Ĥel|Q〉 ...

... ... ... ... ... ...


. (2.100)

The Brillouin's theorem is based on the use of the canonical HF equations. In this case,

in fact, the Fock matrix of Eq. 2.90 is diagonal and the o�-diagonal (or mixing) elements,

〈χi(~r)|f̂(~q)|χj(~r)〉, with j = i ± 1 vanish. Since the singly excited Slater determinants

〈ΨHF|Ĥ|S〉 correspond to such mixing terms, the �rst conclusion to be drawn is that

they only mix indirectly with |ΨHF〉 through the doubly excited determinants and have

consequently a very small e�ect on the ground state energy. On the contrary the doubly

excited determinants are the �rst important term, since they directly mix with the ground

state. Finally the more highly excited determinants only interact with the ground state

indirectly.
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At this point the CI expansion of Eq. 2.98 is conveniently rewritten in its intermediately

normalized form

|ΦCI
0 〉 = |ΨHF〉+

∑
ra

c̃ra|Ψr
a〉+

∑
a<b
r<s

c̃rsab|Ψrs
ab〉+

∑
a<b<c
r<s<t

c̃rstabc|Ψrst
abc〉+ ... , (2.101)

which involves the reasonable approximation that the coe�cient c0 is much larger than

all other coe�cients and that c2
0 must be really close to 1. Multiplying the SE for the

correlation energy by 〈ΨHF| from the left one obtains

〈ΨHF|(Ĥ− EHF )|ΦCI
0 〉 = (Eexact − EHF )〈ΨHF|ΦCI

0 〉 = Ecorr〈ΨHF|ΦCI
0 〉 = Ecorr ,(2.102)

since for the intermediately normalized wavefunction condition 〈ΨHF|ΦCI
0 〉 = 1. Substi-

tuting the expansion in Eq. 2.101 in the left-hand side of the last equation, an explicit

equation for the calculation of the correlation energy Ecorr is obtained:

Ecorr =
∑
a<b
r<s

c̃rsab〈ΨHF|Ĥ|Ψrs
ab〉 . (2.103)

By using the intermediately normalized wavefunction, the correlation energy seems to

depend only on the coe�cients of the double excitations, but in reality those coe�cients

are a�ected by the presence of other excitations, as demonstrable by multiplying the SE

for the correlation energy by 〈Ψr
a|, 〈Ψrs

ab|, 〈Ψrst
abc|, etc.. By doing it, a large number of

equations involving higher excitations would be generated. Those equations have to be

solved simultaneously and show how CI is not a feasible method.

In the case that all nel-electron determinants for the molecular system are included the

method is called �full CI� (FCI). If, additionally, an in�nite number of basis functions are

used with FCI, ideally the non-relativistic solution of the SE within the BO-approximation

would be obtained. Unfortunately, the number of the nel-electron determinants increases

exponentially with the number of electrons of the system, so that the method becomes unre-

alistic from the computational point of view. Therefore, the CI expansion is often truncated

including only determinants with single (CIS), single/double (CISD), single/double/triple

(CISDT) excitations and so on. In opposition to the FCI, the truncated CI methods do not

ful�ll the Size Consistency requirement. The size consistency is an important property,

which can be explained, considering for example the interaction potential between two H2

molecules as a function of their distance. Imagine the two H2 molecules at a very large
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distance, at which the two molecules do not interact. Physically, the energy of the dimer

should be twice the energy of the monomer, namely E(H4) = 2E(H2). If the approxi-

mation scheme considered, ful�ll such a requirement, then the method is size consistent.

This is the case for the HF method, since only closed-shell monomers are considered and

the interaction between the monomers is automatically not included. In turn, at the CISD

level, single and double excited determinants will be created for each of the monomers,

and multiplying this by two would generate quadruply excited determinants. Since the

method is restricted to doubly excited determinants, the size consistency is lost, or simply

E(H4) 6= 2E(H2). Brie�y, it must be mentioned that if the two monomers interact (in the

previous example for short distances) an additional property has to be in general ful�lled,

the Size Extensivity. In this case the method must scale properly with the number of

particles, or in other terms the energy of a many-particle system, must be proportional

to the number of particles n in the limit n → ∞ [38]. These two properties are all but

modest requirements. For the study of molecular dissociation evidently a method is needed

which is able to treat the molecule and its fragments at the same level. In general, the CI

methods have the advantage to be variational, but the disadvantage to be computationally

unreliable (FCI) and to not be size consistent (CIS,CID,CISD,...,etc.). In the next sections

new correlation methods are introduced, which unfortunately are not variational, but are

size consistent and in the case of the Møller-Plesset (MP) method shows considerable

calculating time advantages.

2.3.4 Møller-Plesset (MP) Method

The MP method is based on the more general theoretical framework called the Many-body

Perturbation Theory (MBPT) or simply Perturbation Theory (PT). The idea behind all

perturbation methods is to treat a system being only slightly di�erent from a reference

one, which has an exactly known solution. Mathematically, it means that the electronic

Hamilton operator is separated into two parts:

Ĥ = Ĥ0 + λĤ′ , (2.104)

a reference Hamiltonian Ĥ0 and a perturbation Hamiltonian Ĥ′, which should be very

small compared to Ĥ0. λ is a continuous parameter (Lagrange multiplier), which is in the

range [0, 1] and switches on and o� the perturbation. The general perturbed SE reads:

Ĥ|ΨPT〉 = (Ĥ0 + λĤ′)|ΨPT〉 = EPT|ΨPT〉 . (2.105)
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The eigenfunctions and eigenvalues of the unperturbed Hamiltonian ful�ll the unperturbed

SE,

Ĥ0|Φi〉 = Ei|Φi〉 . (2.106)

If λ = 0, one simply has the SE for the unperturbed Hamiltonian, so that Ĥ = Ĥ0,

|ΨPT〉 = |Φ0〉 and EPT = E0. As the perturbation increases continuously, the new energy

and wavefunction also change continuously and can be written as an expansion in powers

of the perturbation parameter λ [39]

EPT = λ0EPT
0 + λ1EPT

1 + λ2EPT
2 + λ3EPT

3 + ...,

ΨPT = λ0ΨPT
0 + λ1ΨPT

1 + λ2ΨPT
2 + λ3ΨPT

3 + ... , (2.107)

where the ΨPT
n and EPT

n are the nth-order corrections to the wavefunction and the energy,

respectively.

Again to work with intermediately normalized wavefunction is useful. This implies that

the corrections to the wavefunction are orthogonal to the unperturbed wavefunction.

〈ΨPT
n 6=0|Φ0〉 = 0 . (2.108)

Thus, by using the expansions of Eqs. 2.107 the SE becomes

(Ĥ0 + λ1Ĥ′ − λ0EPT
0 − λ1EPT

1 − λ2EPT
2 − ...)(λ0ΨPT

0 + λ1ΨPT
1 + λ2ΨPT

2 + ...) = 0 .(2.109)

and by sorting the terms with the same power of λ, the nth-order perturbation equations

are obtained

λ0 : Ĥ0|ΨPT
0 〉 = EPT

0 |ΨPT
0 〉

λ1 : Ĥ0|ΨPT
1 〉+ Ĥ′|ΨPT

0 〉 = EPT
0 |ΨPT

1 〉+ EPT
1 |ΨPT

0 〉

λ2 : Ĥ0|ΨPT
2 〉+ Ĥ′|ΨPT

1 〉 = EPT
0 |ΨPT

2 〉+ EPT
1 |ΨPT

1 〉+ EPT
2 |ΨPT

0 〉

λn : Ĥ0|ΨPT
n 〉+ Ĥ′|ΨPT

n−1〉 =
n∑
i=0

EPT
i ΨPT

n−i . (2.110)
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The zero-order equation is just the unperturbed problem for the ground state, i.e. Ĥ0|Φ0〉 =

E0|Φ0〉. The higher -order perturbation equations in turn contains unknowns. The energy

correction to the nth-order can be easily calculated by multiplying the nth-oder equation

from the left by 〈Φ0| and using the intermediate normalization property.

EPT
n = 〈Φ0|Ĥ′|ΨPT

n−1〉 . (2.111)

It appears that for the calculation of the nth-order corrections to the energy, En, the

(n-1)th-order correction to the wavefunction is required, but in reality by using the equa-

tions 2.110 it can be shown that actually the nth-order correction to the wavefunction

allows the calculation of energies up to the (2n+1)th-order [39].

At this point an expedient for the solution of the perturbation equations is needed.

Rayleigh and Schrödinger (RS) proposed to expand the unknown nth-order corrections to

the wavefunction, |ΨPT−RS
n 〉, in the unperturbed wavefunctions, |Φi〉.

|ΨPT−RS
n 〉 =

∑
i

cn,i|Φi〉 , (2.112)

Thus, the �rst-order perturbation equation becomes

(Ĥ0 − EPT−RS
0 )(

∑
i

c1,iΦi) + (Ĥ′ − EPT−RS
1 )Φ0 = 0. (2.113)

Multiplying from the left by 〈Φ0| and integrating yields the �rst correction to the energy

EPT−RS
1 = 〈Φ0|Ĥ′|Φ0〉 , (2.114)

which is the average of the perturbation operator over the unperturbed wavefunctions.

Otherwise, multiplying from the left by 〈Φj | and integrating, the �rst correction to the

wavefunction is obtained

c1,j =
〈Φj |Ĥ′|Φ0〉
E0 − Ej

. (2.115)
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Solving the second -order perturbation equation, leads to the following two equations

EPT−RS
2 =

∑
i

c1,i〈Φ0|Ĥ′|Φi〉 =
∑
i 6=0

〈Φ0|Ĥ′|Φi〉〈Φi|Ĥ′|Φ0〉
E0 − Ei

, (2.116)

c2,j =
∑
i 6=0

〈Φj |Ĥ′|Φi〉〈Φi|Ĥ′|Φ0〉
(E0 − Ej)(E0 − Ei)

− 〈Φj |Ĥ′|Φ0〉〈Φ0|Ĥ′|Φ0〉
(E0 − Ej)2

, (2.117)

for the second -order correction to the energy and to the wavefunction, respectively. Com-

paring, Eqs. 2.113, 2.115, 2.116 and 2.117, it becomes already clear how complicated the

formulas for the higher -order corrections must become. Please note, however, that all

corrections can be expressed in terms of unperturbed energies and wavefunctions.

In the Møller Plesset theory the unperturbed Hamiltonian is expressed as a sum of Fock

operators,

Ĥ0 =

nel∑
i=1

f̂i =

nel∑
i=1

ĥi + 2〈V̂ee〉 , (2.118)

where, 〈V̂ee〉 =
∑nel

i=1〈V̂HF
i 〉, is just the sum of the one-electron mean-�eld of Eq. 2.81

over all electrons and the factor 2 arises because the interaction between pairs of electrons

is counted twice. Thus, the zero-order wavefunction is just the HF wavefunction, i.e.

|ΨMP
0 〉 = |ΨHF〉, and E0 is just the sum of the MO energies. This is what makes MP so

attractive, the method, in fact, becomes size consistent. The inconvenient is that for this

choice the perturbation is not so small, as the MBPT requires. In principle, by solving

the total Hamiltonian, Ĥ, the total interaction potential, V̂ee, between the electrons is

recovered. The perturbation Hamiltonian Ĥ′, if expressed as the di�erence between the

total Hamiltonian, Ĥ and the unperturbed Hamiltonian Ĥ0, can be rewritten as

Ĥ′ = Ĥ− Ĥ0 = V̂ee − 2〈V̂ee〉 . (2.119)

Recalling the �rst order correction to the energy in Eq. 2.113, since the �rst-order

correction is the average of the perturbation operator over the zero-order wavefunction,

one obtains:

EMP
1 = 〈Φ0|Ĥ′|Φ0〉 = 〈V̂ee〉 − 2〈V̂ee〉 = −〈V̂ee〉 . (2.120)
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Please note that in the Møller Plesset theory, the zero- and �rst-order corrections to the

energy correspond to the Hartree-Fock energy, where EMP
1 is just the correction for the

overcounting of the electron-electron repulsion, so that the �rst evaluation of the correlation

energy is the second -order energy, e.i. MP2, followed by the higher -order terms. Therefore,

the correlation energy in Eq. 2.86 is de�ned in MP terms as

Ecorr =
∞∑
i=2

EMP
i . (2.121)

Since in the MP theory, the zero-order wavefunction is just the HF wavefunction, the

various equations derived above could be now discussed in terms of CI determinants. Re-

calling Eq. 2.115, from the Brillouin theorem, it is known that c1,j will not vanish, only

if |Φj〉 is a doubly excited determinant. Therefore, since with the �rst-order correction to

the wavefunction, |ΨMP
1 〉, it is possible to calculate the second and third -order corrections

to the energy, then EMP
2 and EMP

3 contain contributions only from doubly excited deter-

minants. In Eq. 2.117 the coe�cients c2, j will not vanish, only if the |Φj〉 in the second

term and the |Φi〉 in the �rst one, are again doubly excited determinants, whereas the 〈Φj |
of �rst term may be either singly, doubly, triply or quadruply excited determinants, see

Eq. 2.100. Hence, since with the second -order correction to the wavefunction, |ΨMP
2 〉, it

is possible to calculate the fourth and �fth-order corrections to the energy, then EMP
4 and

EMP
5 contain contributions from singly, doubly, triply and quadruply excited determinants.

Size consistency and greater computational reliability make MPn methods a good alter-

native to the variational but not size consistent truncated CI methods. Furthermore, even

if the energy could be overestimated, this is rarely a problem, since the basis set imposes

even more severe limitations [39].

Figure 2.2: Typically oscillating convergence behaviour of energy results obtained with the
MPn methods. The Limiting value is the exact non-relativistic electronic energy in the
Born-Oppenheimer approximation. (Adapted from [39])
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Probably the main disadvantage of MPn methods is that the HF reference Hamiltonian

is not really consistent with the premise of the perturbation theory, the perturbation to be

small enough. It is indeed known that in such a case the MP2, MP3 and MP4 methods show

oscillatory convergence, as shown in Fig. 2.2 overshooting in some case the exact energy.

This behaviour becomes more drastic if big basis sets are used, as for example basis sets

with augmented functions. In such a case the MP3 method gives certainly wrong, whereas

MP2 often gives surprisingly good results [39] and is considered to be then the best choice.

2.3.5 Coupled-Cluster (CC) Method

Coupled Cluster (CC) methods form another popular approach to the problem of construct-

ing correlated wavefunctions. CC theory was born in the physics community in particular

in the area of nuclear physics, but since over 30 years it found an always increasing appli-

cation in Quantum Chemistry, where perhaps the most reliable computational method for

the calculation of electronic structures and for the prediction of molecular properties has

been developed. Like the MPn methods, the CC is size consistent, but non-variational.

The intermediate normalized coupled cluster wavefunction is written as

|ΨCC〉 = eT̂|Φ0〉 , (2.122)

where |Φ0〉 is the HF reference wavefunction and T̂ is the cluster operator, given by

T̂ = T̂1 + T̂2 + T̂3 + ...+ T̂N . (2.123)

Moreover, the eT̂ term can be expanded as follows:

eT̂ = 1 + T̂ +
1

2
T̂2 +

1

6
T̂3 + ... =

∞∑
k=0

1

k!
T̂k . (2.124)

When the T̂i operator acts on the HF wavefunction |Φ0〉, the nth-ply excited Slater

determinants are created,

|ΨCC〉 = |Φ0〉+
∑
ra

tra|Ψr
a〉+

∑
a<b
r<s

trsab|Ψrs
ab〉+

∑
a<b<c
r<s<t

trstabc|Ψrst
abc〉+ ... . (2.125)
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where

T̂1|Φ0〉 =
∑
ra

tra|Ψr
a〉 (2.126)

T̂2|Φ0〉 =
∑
a<b
r<s

trsab|Ψrs
ab〉 (2.127)

. . . . . . . . . .

and t are called amplitudes. Substitution of Eq. 2.123 into 2.124 leads to the explicit form

of the exponential operator:

eT̂ = 1 + T̂1 +

(
T̂2 +

1

2
T̂2

1

)
+

(
T̂3 + T̂2T̂1 +

1

6
T̂3

1

)
+

+

(
T̂4 + T̂3T̂1 +

1

2
T̂2

2 +
1

2
T̂2T̂

2
1 +

1

24
T̂4

1

)
+ ... (2.128)

The last expression already gives an idea of the advantages of truncated CC over truncated

CI methods, since it shows the size consistent nature of the CC ansatz. The �rst term is the

reference wavefunction, the second term generates the single excited Slater determinants,

the �rst parenthesis includes all doubly excited con�gurations, both the so called connected

(T̂2) and disconnected (T̂2
1), whereas the second parenthesis includes all connected and

disconnected triply excited determinants, and so on. The size consistent property of the

truncated CC methods arises from the presence of those disconnected terms. For example

the CISD method does not include the term T̂2
1 and at the same way the CISDT method

does not include the terms T̂3
1 and T̂2T̂1 and so on. By using the CC wavefunction the

SE reads

ĤeT̂|Φ0〉 = ECCeT̂|Φ0〉 . (2.129)

Similarly to the Eqs. 2.113, 2.115, 2.116 and 2.117, if one multiplies the SE from the left

by 〈Φ0| or by one of the nth-ply excited determinants and integrates the expressions the

CC energy or the nth amplitudes are attained, respectively.

ECC 〈Φ0|eT̂Φ0〉︸ ︷︷ ︸
=1

= 〈Φ0|ĤeT̂|Φ0〉 ,

ECC = 〈Φ0|ĤeT̂|Φ0〉 , (2.130)

ECC = EHF +
∑
ra

tra〈Φ0|Ĥ|Ψr
a〉︸ ︷︷ ︸

=0

+
∑
a<b
r<s

(trsab + trat
s
b − trbtsa)〈Φ0|Ĥ|Ψrs

ab〉+ ... ,
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and

ECC〈Φr
a|eT̂1Φ0〉 = 〈Φr

a|ĤeT̂|Φ0〉 , (2.131)

ECC〈Φr
a|T̂1Φ0〉 = 〈Φr

a|Ĥ|Φ0〉+
∑
ra

tra〈Φr
a|Ĥ|Ψr

a〉︸ ︷︷ ︸
=0

+
∑
a<b
r<s

(trsab + trat
s
b − trbtsa)〈Φ0|Ĥ|Ψrs

ab〉+ ...

The last expression only shows the amplitudes of the singly excited determinants, as an

example. In both equations the matrix elements of the singly excited determinants are

zero because of the Brillouins Theorem.

If all possible operators are included in Eq. 2.128 up to the order N = ∞, the CC-

and FCI-ansatz become equivalent and equivalently the method becomes computationally

unreliable. The CC operator has to be truncated at some excitation level, and like CI,

Coupled Cluster Double (CCD), Single Double (CCSD) are generally used and the only

applicable ones. The CCSDT and the higher methods are, in fact, computationally too

demanding. Unfortunately the contributions from the double and triple excitations, T̂2

and T̂3, respectively, in the CC operator expansions are the dominant terms, so that a

relevant part of the correlation energy is therefore not included. It is possible to avoid the

obstacle and add the triple excitations calculating them by mean of perturbation theory

at a same level of approximation. The MP4 methods for example includes the correlation

energy given by the triple excitations and is usually added to the CCSD energy. In this

case the method is called CCSD+T(CCSD). Addition of more terms arising from MP5

and describing the coupling between singles and triples leads to the CCSD(T) method.

The CCSD(T) method is often called "the gold standard of quantum chemistry" for its

excellent compromise between the accuracy and the computational cost for the molecules

near equilibrium geometries. One could go on and add other terms from the MP5 or even

from higher MPn methods, but again the procedure would become computationally too

demanding. Please note that in those hybrid MPn-CC methods for the calculations of the

MPn energy correction the CCSD-wavefunctions (amplitudes) are used.

2.4 Quantum Dynamics Method

2.4.1 Multi-Con�guration Time-Dependent Hartree Method (MCTDH)

The multi-con�guration time-dependent Hartree (MCTDH) method [31�37] is probably

one of the most powerful numerical implementations for propagating wavepackets, i.e. for

solving the TDSE in Eq. 2.33.

i~
∂

∂t
Ψnuc(t) = ĤΨnuc(t) . (2.132)
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The method is particularly advantageous in case of multi-dimensional systems. In order

to appreciate this point let us consider �rst the standard wavepacket propagation approach,

before the basic concepts behind the MCTDH method will be illustrated. Consider a sys-

tem with f nuclear degrees of freedom k, which may be represented by a set of generalized

coordinates {qk}, being di�erent kinds of coordinates, the standard expansion in term of

a time-independent basis for representing a multi-dimensional wavepacket reads

Ψnuc({qk}; t) =

N1∑
j1=1

· · ·
Nf∑
jf=1

Aj1···jf (t)

f∏
k=1

χ
(k)
jk

(qk) ≡
∑
J

AJ(t)XJ({qk}) , (2.133)

where Nk denotes the number of basis functions χ
(k)
jk

(qk) required for representing the kth

DOF; AJ(t) = Aj1···jf (t) are the time-dependent expansion coe�cients with J collecting all

the jk indices; XJ({qk}) =
∏f
k=1 χ

(k)
jk

(qk) is a time independent Hartree product expansion

of the one dimensional basis set. By solving the TDSE the basis functions χ(k)
jk

(qk) are often

chosen by using a Discrete Variable Representation (DVR)/Finite Basis Representation

(FBR) on a grid, [28, 29, 44, 45]. For more detailed information on DVR techniques refer

to the reviews in Refs. [36] and [30]. By using the ansatz in Eq. 2.133 and applying the

Dirac-Frenkel variational principle to Eq. 2.132

〈δΨnuc({qk}; t)|Ĥ − i~
∂

∂t
|Ψnuc({qk}; t)〉 = 0 , (2.134)

the following equations of motion (EOM) for the expansion coe�cients AJ(t) can be ob-

tained:

i~ȦJ(t) =
∑
L

HJLAL(t) , (2.135)

where HJL = 〈XJ({qk})|Ĥ|XL({qk})〉 denote the matrix elements of the Hamiltonian in

the above product basis set. If for simplicity the same number Nk = N of grid points is

chosen for all k, the numerical e�ort in evaluating the EOMs is proportional to fNf+1. This

exponential scaling restricts the applicability of standard methods to quantum problems

with only few nuclear DOFs. In the MCDTH method a new ansatz is proposed for the

wavefunction Ψnuc({qk}, t) [46]:

Ψnuc({qk}, t) =

n1∑
j1=1

· · ·
nf∑
jf=1

Ãj1···jf (t)

f∏
k=1

χ̃
(k)
jk

(qk, t) ≡
∑
J

ÃJ(t)X̃J({qk}, t) (2.136)
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2.4 Quantum Dynamics Method

The main di�erence is that the con�gurations X̃J({qk}, t) are time-dependent, since they

are represented by f -dimensional Hartree products of now time-dependent single-particle

functions (SPFs) χ̃(k)
jk

(qk, t), as they are called in the MCTDH frame. The single particle

functions are now able to follow the propagation of the system (imagine a moving grid),

decreasing substantially the number n of SPFs needed for representing the di�erent nuclear

DOFs. Considering s expansion terms, the total e�ort now scales as sfn(N2 +fnf ), which

is advantageous over fNf+1, as long as n� N [36]. Numerically, each SPF is represented

by a linear combination of time-independent basis (grid) functions g(k)
ik

(qk):

χ̃
(k)
jk

(qk, t) =

Nk∑
ik=1

cjk,ik(t)g
(k)
ik

(qk) . (2.137)

The limiting case nk = Nk corresponds again to the numerically exact expansion of

the wavefunction in Eq. 2.133. Since both, the expansion coe�cients and SPFs are time-

dependent, Eq. 2.136 also introduces some redundancies in the representation of the wave-

function, which can be avoided applying additional constraints to the SPFs, e.g.:

〈χ̃(k)
jk

(qk, t = 0)|χ̃(k)
lk

(qk, t = 0)〉 = δjklk , (2.138)

〈χ̃(k)
jk

(qk, t)| ˙̃χ
(k)
lk

(qk, t)〉 = 0 . (2.139)

In particular, Eq. 2.138 ensures the SPFs to be orthonormal at t = 0. Eq. 2.139 in turn

ensures orthonormality for t > 0 and moreover minimizes the motions of the SPFs.

It is helpful to introduce the single-hole functions

Ψ
(k)
lk

({q1, qk−1, qk+1, qf}, t) = 〈χ̃(k)
lk

(qk, t)|Ψnuc({qk}, t)〉 . (2.140)

which is a linear combination of Hartree products of (f − 1) SPFs, which does not con-

tain the SPF for the kth-DOF. The single-hole functions permit the following alternative

expression for Eq. 2.136

Ψnuc({qk}, t) =
∑
lk

χ̃
(k)
lk

(qk, t)Ψ
(k)
lk

({q1, qk−1, qk+1, qf}, t) , (2.141)
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and density matrices as well as mean �eld matrix elements, which act on a kth-DOF only,

can be expressed respectively in an easier way:

ρ
(k)
jklk

({q1,qk−1,qk+1,qf},t) = 〈Ψ(k)
jk

({q1,qk−1,qk+1,qf},t)|Ψ(k)
lk

({q1,qk−1,qk+1,qf},t)〉 , (2.142)

〈Ĥ〉(k)
jklk

= 〈Ψ(k)
jk

({q1,qk−1,qk+1,qf},t)|Ĥ|Ψ(k)
lk

({q1,qk−1,qk+1,qf},t)〉 . (2.143)

Finally, after de�ning the single-particle projector onto the space of the SPFs

P (k) =

nk∑
jk=1

|χ̃(k)
jk

(qk, t)〉〈χ̃
(k)
jk

(qk, t)| (2.144)

and employing Eqs. 2.142-2.144, the MCTDH coe�cients and single-particle functions can

be optimized by using the Dirac-Frenkel variational principle in Eq. 2.134. The following

EOMs can thus be derived [36,37]:

i~ ˙̃AJ(t) =
∑
L

〈X̃J({qk}, t)|Ĥ|X̃L({qk}, t)〉ÃL(t) , (2.145)

i~ ˙̃χ(k)(qk, t) =
(

1− P (k)
)(

ρ(k)({q1, qk−1, qk+1, qf}, t)
)−1
〈H〉(k)χ̃(k)(qk, t) , (2.146)

where the constraints Eq. 2.138 and 2.139 were used. χ̃(k)(qk, t) = (χ̃
(k)
1 , . . . , χ̃

(k)
nk )T refers

to a column vector of the individual SPFs χ̃(k)
jk
, and ρ(k)({q1,qk−1,qk+1,qf},t) and 〈H〉(k) to the

respective density and mean �eld matrices de�ned by Eqs. 2.142 and 2.143, respectively.

It is worth to highlight that the eigenvectors and eigenvalues of the density matrix

ρ(k)({q1,qk−1,qk+1,qf},t), the so-called natural orbitals and natural populations, are unique

quantities with respect to the chosen SPFs, such that the population of the highest natural

orbital provides a measure for the convergence of a MCTDH calculation.

The most CPU expensive part in solving the EOMs is the direct evaluation of the f -

and f − 1-dimensional integrals of the Hamilton matrix elements mean �elds, Eqs. 2.145

and 2.146, respectively. A way to avoid the problem is to utilize a separate representation

of the Hamiltonian in terms of sums over products of one-dimensional operators, similar

to the MCTDH ansatz of Eq. 2.136. Unfortunately, the PES in general does not have this

form. For this reason the additional internal algorithm Potfit [47, 48] was implemented

in order to �t PESs in such a form.

Since the TDSE is an initial value problem, an initial guess, namely Ψnuc(t = 0), is

required. The ground state wavefunction of a coupled Hamiltonian can be provided by
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2.4 Quantum Dynamics Method

propagating an initial Hartree product of 1D-eigenfunctions of uncoupled Hamiltonians, in

imaginary time t→ −iτ [49]. In this case the new TDSE reads:

− ~
∂

∂τ
Ψnuc(τ) = ĤΨnuc(τ) (2.147)

and the general formal solution for the wavefunction becomes

Ψnuc(τ) = e−
Ĥτ
~ Ψnuc(0) . (2.148)

Finally, expanding the initial wavefunction in eigenfunctions θn of the Hamiltonian the

following equation is obtained

Ψnuc(τ) =
∑
n

ane
−Enτ~ θn(0) . (2.149)

which shows how each eigenfunction relaxes to zero at a rate proportional to its eigenvalue.

Therefore, after a time τ the eigenfunction n is reduced relative to the ground state by the

ratio e−(En−E0)τ . This means that the ground state relaxes most slowly persisting over all

other ones, such that after su�cient time and by preserving the norm of the wavefunction

only the pure ground state is left.

The MCTDH program package is capable to treat non adiabatic systems using the built-

in multi-set formalism [34�37, 50�52]. Di�erent sets of SPFs are employed for each elec-

tronic state considered. The expansion of the Hamiltonian H as well as the wavefunction

Ψnuc has therefore to be expanded into a set {|a〉} of electronic states:

|Ψnuc({qk}; t)〉 =
∑
a

Ψ(a)
nuc({qk}; t)|a〉 , (2.150)

Ĥ =
∑
a

∑
b

|a〉Ĥ(ab)〈b| , (2.151)

where each wavefunction Ψ
(a)
nuc({qk}; t) has the MCTDH form in Eq. 2.136. The new EOMs

read now [34,36,51]:
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i~ ˙̃A
(a)
J (t) =

∑
b

∑
L

〈X̃(a)
J ({q(a)

k }, t)|H
(ab)|X̃(b)

L ({q(b)
k }, t)〉Ã

(b)
L (t) , (2.152)

i~ ˙̃χ(a,k)(q
(a)
k , t) =

(
1− P (a,k)

)(
ρ(a,k)({q(a)

1 , q
(a)
k−1, q

(a)
k+1, q

(a)
f }, t)

)−1
·

·
∑
b

〈H〉(ab,k)χ̃(b,k)(q
(b)
k , t) , (2.153)

Finally, a brief discussion must be carried out about the integration schemes the MCTDH

package provides. The EOMs both in the single and multi-set formalism are systems of

coupled non-linear equations of �rst-order. The standard predictor-corrector methods are

available under the name variable mean-�eld (VF) [36]. Alternatively another scheme

is provided, which was speci�cally developed for the numerically e�cient solution of the

MCTDH-EOMs, called constant mean-�eld (CF) [53]. The name refers to the fact, that

Hamiltonian matrix elements 〈X̃J({qk}, t)|Ĥ|X̃L({qk}, t)〉, as well as the products of the in-
verse density and mean �eld matrices, respectively

(
ρ(k)({q(a)

1 , q
(a)
k−1, q

(a)
k+1, q

(a)
f }, t)

)−1
and

〈H〉(k), change much slower in time than the MCTDH coe�cients and single-particle func-

tions, such that the former matrix elements can be kept constant over some time. In this

case the di�erential equation for the A-vector in Eq. 2.145, becomes a set of linear equa-

tions with constant coe�cients, most e�ciently solved by using the short iterative Lanczos

(SILE) or Lanczos-Arnoldi integrators implemented. Similarly, the di�erential equation

for the single-particle functions in Eq. 2.146 splits up into each subsets of uncoupled, but

still non-linear equations, which can be integrated using the implemented Bulirsch-Stoer

(BS) extrapolation method.

2.4.2 Optimal Control Theory (OCT)

Optimal Control Theory (OCT) is a mathematical discipline with numerous applications

in science, engineering and even in economy. The method is sometimes called quantum

optimal control theory in the particular case of quantum systems. The idea is to vary

a properly de�ned functional in order to shape specially tailored laser pulses, which are

able to control the quantum dynamics of the system under consideration, as for example

to coherently control product ratios of chemical reactions. Thus, the OCT method has

an own history, which is independent from the MCTDH framework (see for example Refs.

54,55).

Since the OCT method must be solved iteratively after an initial laser pulse has been

given as a guess, it turns to be very expensive from the CPU point of view. As it will

be shown in this section, two wavefunctions have to be propagated forward and backward

in a time interval T numerous times, in order to reach the chosen target, restricting the
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2.4 Quantum Dynamics Method

use of the method to system with few degrees of freedom. Thus, the combination of OCT

and MCTDH appears to be a natural choice for controlling multi-dimensional systems

[56, 57]. Moreover, Brown et al. implemented the possibility to perform forward and

backward propagation at the same time and also saving the time-dependent wavefunction

is not required anymore. The expedient speeds up the MCTDH-OCT implementation

considerably [57].

The OCT method was implemented in the MCTDH package by May et al. [56] within

the electric dipole approximation. Later Brown et al. [57] even moved on allowing the use

of arbitrary dipole operators.

Assuming that the interaction between a system and an electromagnetic �eld can be

treated semi-classically, the TDSE can be rewritten as

∂

∂t
|Ψnuc(t)〉 = − i

~

(
Ĥ0 − µ̂ε(t)

)
|Ψnuc(t)〉 , (2.154)

where Ψnuc(t) is the nuclear wavefunction as in the MCTDH expansion, µ̂ denotes the

dipole operator in S.I. units of [Cm] and atomic units of [ea0], ε(t) is the electric �eld in

S.I. units of
[
V
m

]
and atomic units of

[
Eh
ea0

]
, so that the product µ̂ε(t) �nally has units of

energy as well as the time independent Hamiltonian of the unperturbed system, Ĥ0 in the

initial state |Ψnuc(0)〉.

There are di�erent ways to de�ne the OCT functional J . The one implemented in

MCTDH and used in this work is given by [58]

J(ε, T ) = 〈Ψnuc(T )|Ô|Ψnuc(T )〉 (2.155)

+ 2Re

{∫ T

0
dt 〈Θnuc(t)|

(
− ∂

∂t
+
H

i~

)
|Ψnuc(t)〉

}
−
∫ T

0
dt α(t)|ε(t)|2 ,

where Ô is associated with an observable, or in other words denotes the control target,

whose expectation value has to be maximized at the �nal propagation time T . The operator

Ô could be, for example, a projector operator Ô = |Φ〉〈Φ|, where |Φ〉 can be a target state

or a target wavepacket. Please note that in all cases every term in Eq. 2.156 has to be

dimensionless. Therefore, α0 has S.I. units of
[
m2

V2s

]
and atomic units of

[
e2a2

0
~Eh

]
. The

second term in Eq. 2.156, ensures that Eq. 2.154 is ful�lled and introduces the Lagrangian

multiplier 〈Θnuc(t)|. Moreover, Θnuc(t) and Ψnuc(t) obey the TDSE. The third term in

Eq. 2.156, guarantees strong �elds to be penalized, in order to avoid, for example, the

ionization of the system. α(t) is a time-dependent constraint function, which ensures the
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pulse to be switched on and o� smoothly, namely [59]

α(t) =

{
α0
s(t) if t ≤ T

0 otherwise
, (2.156)

with α0 being the constant constraint controlling the intensity of the pulse. Finally, s(t)

within the MCTDH package is simply de�ned as:

s(t) = sin2(πt/T ) . (2.157)

Variation of the functional J with respect to the laser pulse ε(t) leads to the expression

for the optimal electric �eld [56]

ε(t) = −sin2(πt/T )

~α0
Im〈Θnuc(t)|µ̂|Ψnuc(t)〉 , (2.158)

where Θnuc(t) is propagated back in time and is, initially, Θnuc(T ) = ÔΨnuc(T ) = |Φ〉
〈Φ|Ψnuc(T )〉. The wavefunction Θnuc(t) evolves according to the TDSE.

∂

∂t
|Θnuc(t)〉 = − i

~

(
Ĥmol − µ̂ε(t)

)
|Θnuc(t)〉 (2.159)

The general OCT scheme presented above exhibits a quadratic and monotonic convergence

behaviour as demonstrated by di�erent authors (see Refs. 27-29 of Ref.56). Since the

MCTDH-ansatz in Eq. 2.133 results in coupled nonlinear EOMs for the SPFs and expansion

coe�cients, a direct check of the convergence behaviour is not possible [53] and convergence

has to be proved within the course of the numerical calculations. However, this above-

mentioned OCT scheme can not be implemented in the existing MCTDH code, since

solution of the noni-linear TDSEs obtained when the left-hand side of Eq. 2.158 for the

electric �eld ε(n) is substituted in Eqs. 2.154 and 2.159, is not possible [56]. May et al.

proposed to approximate the optimal pulse via a quadratic extrapolation [56]. The �eld at

time t−∆t is evaluated within the n-th iteration by using Θ
(n−1)
nuc (t−∆t) of the previous,

(n− 1)-th iteration.

ε(n)(t−∆t) = −sin2(πt/T )

~α0
Im〈Θ(n−1)

nuc (t−∆t)|µ̂|Ψ(n)
nuc(t−∆t)〉 . (2.160)

Θ
(n)
nuc(t − ∆t) is, in fact, not yet available, since it should be obtained after backward

propagation of Eq. 2.159 by using ε(n).
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For the calculation of the electric �eld for the n-th iteration at time t, ε(n)(t), the two

following auxiliary �elds are necessary

ε(1)
aux =

1

2
(ε(n)(t− 3∆t)− 4ε(n)(t− 2∆t) + 3ε(n)(t−∆t) , (2.161)

ε(2)
aux =

1

2
(ε(n)(t− 3∆t)− 2ε(n)(t− 2∆t) + ε(n)(t−∆t) . (2.162)

The extrapolated �eld strengths at t and t+ ∆t are �nally obtained as follows

ε(n)(t) = ε(n)(t−∆t) + E(1)
aux + E(2)

aux , (2.163)

ε(n)(t+ ∆t) = ε(n)(t−∆t) + 2ε(1)
aux + 4ε(2)

aux . (2.164)

The stability of this numerical strategy is proved in Appendix B of Ref. 56.
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3 From Synchronous to Sequential

Double Proton Transfer: Quantum

Dynamics Simulations for the Model

Porphine [60]

3.1 Introduction

Porphyrins and metalloporphyrins are a wide class of organic compounds known as well as

the "pigment of life", since they play important roles in several biological processes, such

as photosynthesis (chlorins), oxygen transport (hemoglobin and myoglobin) and oxygen

activation (cytochromes). Their characteristics are utilized in many �elds as for example

in medicine for phototherapeutic treatments, as well as for many advanced materials as for

example arti�cial photosynthetic systems or molecular memories. Therefore, these kind of

systems are object of a wide research in both basic and applied sciences, which consequently

drove to a systematic development of synthetic procedures in order to obtain them [60].

All porphyrins show a second, but biologically not less important process: the Double

Proton Transfer (DPT) mechanism. For example its dysfunction in the DNA base pairs

may cause irreversible mutations. Moreover, DPT mechanism has been observed for many

reactions such as cycloadditions [61�66] or three-body dissociations [67]. To those systems

the same question was addressed, whether the DPT shows a synchronous (or concerted)

or sequential (or stepwise or successive) mechanism. In this chapter the DPT mechanism

of porphine will be inquired entering a hot debate of the last decades [60,68�85].

The research carried out here aims at a proof of principle, showing that the question

addressed till now was wrong, since it implied a restricted classi�cation of the mechanism

either as concerted or stepwise. Both mechanisms in fact may occur simultaneously, albeit

with di�erent probabilities, or even a switch from one to the other mechanism may be

observed. Moreover, the classi�cation of the DPT may depend on the de�nition of the

two mechanisms themselves. On the side of quantum chemistry (QC), the classi�cation

was essentially based on the discussion of the saddle points [61, 65, 68] of the PES for

a given system. In other words, the system will prefer the mechanism with the lower

energy barrier. In the same fashion sometimes the decision is based on consideration of

the reaction path: if it leads from the reactant to the product via a quasi-bound reaction
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intermediate which is characterized by a local minimum on the PES, then the mechanism is

classi�ed as stepwise, otherwise as concerted, see e.g. Refs. 80,81. Accordingly, constrained

dynamics simulations along speci�c paths a priori classify a mechanism as either stepwise

or concerted. In contrast, unconstrained classical Molecular Dynamics(MD) simulations

carried out by Ushiyama and Takatsuka [73], discovered, for example, that the DPT in

the formic acid dimer shows a sequential mechanism, even though the second hydrogen is

transferred only 8 fs later. This result contradicts previous studies based on exclusively

energetic considerations, which favour the synchronous mechanism. Their counter-intuitive

result is supported by an in-depths-discussion of the underlying properties of the system,

which induce the sequential events [73]. A new and very interesting de�nition of concerted

and stepwise mechanisms has been recently given by Houk et al. [66], see also Refs. 65,84,85,

who carried out MD simulation of 1,3-dipolar cycloadditions. They classify the mechanism

as synchronous, if the two new bonds in the reaction are formed within a time gap below

a characteristic period of vibration. In particular, the reactions between nitrous oxide,

fulminic acid and methylene nitrone with acetylene occurs in a time scale below 30 fs,

which is the vibrational period of the characteristic bending mode of the three linear

molecules. Since this bending mode distorts the reactants, supporting the formation of the

precursors of the respective transition states (TS), the phenomenon can also be described

in terms of Polanyi rules [86], where the excitation of the vibrational mode can be seen as

a typical late barrier reaction. In this new de�nition, however, the formic acid dimer DPT

should be regarded as synchronous again, in contrast with the assignment as sequential

given by Ushiyama and Takatsuka [73]. Apparently, di�erent de�nitions based on MD

simulations may yield di�erent classi�cations.

In contrast with the previous MD simulations [65,66,73], and with the previous quantum

dynamics simulations along a selective reaction coordinate [80�83], in the present approach

quantum dynamics simulations are carried out for the DPT reaction of a model porphine,

which involves the breaking of two NH bonds and the formation of two alternative NH

bonds, in the electronic ground state. The purpose of this work is on the one hand to

demonstrate a proof of principle, the scenario of competing synchronous and sequential

mechanisms via alternative reaction to be possible, and on the other hand to answer the

question about synchronous or sequential mechanism within a quantum time-dependent

approach, since, as it will be seen later, the quantum e�ects play a major role for a

switch from a synchronous to a sequential mechanism. Moreover another important aspect

disregarded in the previous approaches is considered here, namely the initial preparation

of the reactants, which e�ects the mechanism. Unfortunately, performance of quantum

instead of classical dynamics simulations is much more demanding, so that a dimensionally

reduced model of porhine is used. In the next section the model of porphine designed by

Smedarchina, Siebrand, and Fernández-Ramos [69] is adapted. This model has also been

used in a recent quantum model simulation of laser driven double proton transfer [87].
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Figure 3.1: Double proton transfer of the model porphine, adapted from Smedarchina et
al. [69]. The protons move along coordinates q1, q2. The snapshot shows the con�guration
of the minimum of the model PES, see Eq. 3.1, corresponding to the reactant.

3.2 Model

The simple two-dimensional model of porphine [69] adopted in this work takes into account

only the constrained dynamics of the two protons of the DPT reaction and clearly involves

many approximations. Recalling the multi-stage adiabatic separation tool in Chap. 2, at

the �rst stage the electronic and nuclear motions are adiabatically separated. Afterwards

the fast vibrational DOFs of the light protons is adiabatically separated from the slow

motions of the heavy molecular sca�old, which is therefore considered frozen (see also

Fig. 2.1 ). It should also be recalled that the light DOFs, i.e. the motion of the two protons,

is treated in a time-dependent picture in close analogy to the attosecond chemistry [24],

where the position of the electrons in time is investigated. In contrast, in Chaps. 4 and 5,

the light DOFs are exclusively treated in a time-independent picture. Obviously, excitation

of the other vibrational DOFs can have a dramatic in�uence on the DPT dynamics, as

54



3.2 Model

recently shown by Waluk and coworkers [88] on the related porphycene molecule, but in

the time scale of a few tens of femtoseconds investigated here, the adiabatic separation of

the two fast proton from the sca�old can be considered a valid assumption, as supported in

a paper by Limbach [89], based on the Rice-Ramsperger-Kassel-Marcus (RRKM) theory,

which states that the molecule shows a slow intramolecular vibrational relaxation (IVR).

Finally, with respect to the �rst chapter, the resulting two-dimensional PES for the motion

of the two hydrogens refers to the light adiabatic potential of Eq. 2.11, which is here

obtained by using the analytical model by Smedarchina et al. [69] �tted to experimental

and calculated parameters.

The model is illustrated in Fig. 3.1. The two protons are labeled 1 and 2 and move

parallel along the coordinates q1 and q2, respectively. A DPT reaction is always completed

when the two protons have moved from the domain of the reactant close to q1 = q2 =

−∆qmin to the product domain near to q1 = ∆qmin and q2 = ∆qmin, or back from the

product to the reactant domain. The analytical function for modelling the PES is given

by

W (n=0)
nuc (q1, q2) =

U0

∆q4
0

[(
q2

1 −∆q2
0

)2
+
(
q2

2 −∆q2
0

)2 − 4G∆q2
0q1q2

]
+ 2G(2 +G)U0 . (3.1)

where W (n=0)
nuc (q1, q2) uses the nomenclature of Chap. 2 with the quantum number, n = 0,

indicating the adiabatic electronic ground state. The function represents a quartic po-

tential and can be thought of as a two-dimensional quadruple-well potential, with an

additional bilinear coupling between the transfers of the two single hydrogens. The pa-

rameter U0 = 0.473 eV has been �tted in Ref. 69 considering the experimental results

of nuclear magnetic resonance (NMR) and laser-induced �uorescene (LIF) measurements

of Refs. 90�92 and represents the barrier height for the transfer of one single decoupled

hydrogen, i.e G = 0. The parameters ∆q0 = 1.251 a0 and G = 0.063 are based on

density functional theory (DFT) calculations of Smedarchina et al. [93] at the B3LYP/6-

31G* level. Finally the constant term 2G(2 + G)U0 is added in order to shift the PES,

such that the two equivalent global minima for the reactant (R, cf. 3.1) and the prod-

uct (P) are set to zero, W (n=0)
nuc (−∆qmin,−∆qmin) = W

(n=0)
nuc (∆qmin,∆qmin) = 0 eV, where

∆qmin = ∆q0

√
1 +G = 1.290 a0 ≈ ∆q0. Note that the nomenclature has been simpli�ed

and the �rst quantum number �n =0� is just indicated with its value �0�.

The PES resulting from the analytical functions is shown in Fig. 3.2, where new fea-

tures are now visible: the two equivalent local potential minima, W (n=0)
nuc (∆qI,−∆qI) =

W
(n=0)
nuc (−∆qI,∆qI) = 8GU0 = 0.238 eV, which support two reaction intermediates, la-

beled respectively, I1 and I2, with ∆qI = ∆q0

√
1−G = 1.211 a0 ≈ ∆q0; the four equiv-

alent barriers between reactant or product and the intermediates,W (n=0)
nuc (−∆q+

TS,∆q
−
TS) =

W
(n=0)
nuc (∆q+

TS,−∆q−TS) = W
(n=0)
nuc (∆q−TS,−∆q+

TS) = W
(n=0)
nuc (−∆q−TS,∆q

+
TS) = (1+2G)2U0 =
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Figure 3.2: Potential energy surface for double proton transfer of the model porphine, see
Eq. 3.1, adapted from Ref. 69. The equidistant values of the contours range from 0 eV
for the potential minima for the reactant (R) and product (P) con�gurations, to 9.7 eV.
The corresponding energies of the local minima for the intermediates I1, I2, of the four
barriers labeled TS, and of the saddle point SP2 are 0.238, 0.600 and 1.069 eV, respectively.
Synchronous double proton transfer leads via the domain which is encircled by the thick
contour; its energy is 0.860 eV, and it passes through the point (−∆q0/2, 0) and three other
equivalent points, half way between SP2 and TS.

0.600 eV, where ∆q±TS = (∆q0/
√

2)
√

1±
√

1− 4G2 , hence ∆q+
TS = 1.249 a0 ≈ ∆q0 and

∆q−TS = 0.079 a0. Please, note how the small displacements, ∆q−TS, can be discovered

in Fig. 3.2. The label TS of the four barrier reminds of �transition states� for two al-

ternative sequential reaction mechanisms, which are illustrated schematically in Fig. 3.3.

The forward reactions can lead from the reactant R to the intermediate I1 and I2 via

two alternative TSs and subsequently via the other two alternative TSs to the product

P. Equivalently, the back reaction is also shown in Fig. 3.3. Additionally, Fig. 3.2 shows

a saddle point, W (n=0)
nuc (0, 0) = 2(1 + G)2U0 = 1.069 eV, labeled SP2, since it is a saddle

point of second order with two imaginary frequencies corresponding, in two dimensions, to

a maximum. Thus, the synchronous mechanism leads from the reactant R to the product

P via the SP2, as schematically illustrated in Fig. 3.4.

In order to analyse the dynamics of the DPT, the PES was schematically divided in

di�erent domains (D), as illustrated in Fig. 3.5. The di�erent domains are D = R, P, SP2,

I1 and I2. In both Figs 3.2 and 3.5 the SP2 domain is encircled by the equi-potential-

contour W (n=0)
nuc (q1, q2) = 0.860 eV, which passes through the four points half way (�equal
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I
2
  

R P 

I
1
  

Figure 3.3: Two equivalent mechanisms for sequential double proton transfer of the model
porphine, from the reactant R via alternative barriers or transition states TS to intermedi-
ates I1 or I2, and subsequently via the other two TS to the product P, and back (schematic).
The path via I1 corresponds to initial motion of proton 1 along q1, followed by the motion
of proton 2 along q2, from the reactant to the product con�gurations. The path via I2 has
the reverse order of the sequential steps, �rst transfer of proton 2, then 1. Compare with
Figs 3.1 and 3.2.

R SP2 P 

Figure 3.4: Synchronous double proton transfer of the model porphine, from the reactant
R via the saddle point SP2 to the product P, and back (schematic). Compare with Figs 3.1
and 3.2.

share�) between the saddle point SP2 and the four barriers TS, e.g. (q1 = −∆q0/2, q2 = 0).

Finally, Fig. 3.5 also shows the domain boundaries (DB), which will be labeled using the

same notation, DB = R, P, SP2, I1, I2. The straight lines DB(R,I1), DB(I1,P), DB(P,I2),

DB(I2,R), separating the neighbouring domains R and I1, I1 and P, P and I2 as well as I2
and R from each other, extend to in�nity and are connected by quarter circle. This ensures

closed loops for each of the domains R, I1, P, I2. However, these extensions are physically

irrelevant, since the representative wavefunction never penetrates outside the region which

is shown in Fig. 3.2, since the potential energy goes to in�nity for q1 and q2 = ±∞. This

means the corresponding densities are negligible, beyond the domain boundaries which
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3 From Synchronous to Sequential Double Proton Transfer

are shown in Fig. 3.5. The de�nition of these domains and their boundaries is, of course,

somewhat arbitrary, but reasonable. Other reasonable de�nitions, e.g. slightly smaller

or larger domains SP2, possibly with di�erent shapes of the boundaries, yield equivalent

results and conclusions.

The potential provided by Eq. 3.1 is symmetric with respect to the diagonal q1 = ±q2,

since reactants and products are identical, according to experimental results by Limbach

and coworkers for various similar environments [89�92]. Consequently, the corresponding

eigenstates of the PES must be near-degenerate doublets, namely Ψ
(n=0, vf+)
light (q1, q2) and

Ψ
(n=0, vf−)
light (q1, q2), with respective energies E

n=0, vf+
light (q1, q2) and E

n=0, vf−
light (q1, q2), delo-

calized, either preferably in the R and P, or I1 and I2. The heavy model Hamiltonian for

the DPT is de�ned as

Ĥlight(q1, q2) =
P̂2

1

2M
+

P̂2
2

2M
+W (n=0)

nuc (q1, q2) (3.2)

where (
P̂1

P̂2

)
= −i~

(
∂/∂q1

∂/∂q2

)
(3.3)

are the momentum operators conjugate to q1, q2, and M = mp is the proton mass. The

symmetry of the PES in Eq. 3.1, implies that the Hamiltonian in Eq. 3.2, is symmetric

with respect to exchange of protons 1 and 2, namely

Ĥlight(q1, q2) = Ĥlight(q2, q1). (3.4)

The initial (t = 0) state Ψlight(q1, q2, t = 0) is determined by propagating in imagi-

nary time an initial two-dimensional wavefunction in the domain of the reactant by us-

ing Eq. 2.147 and the MCTDH method [36, 53]. This initial guess is a Hartree prod-

uct (see Eq. 2.77, but for generalized DOFs) of one dimensional ground state eigenfunc-

tions, obtained by diagonalizing two one-dimensional operators [53] for two respective one-

dimensional cuts of the two-dimensional PES, W (n=0)
nuc (q1, q2), along the relative DOFs, q1

and q2 at the minimum of the reactant well R. At the initial time, τ = 0, of the relaxation,

the two-dimensional Hartree product is represented in MCTDH as a linear combination

in the doublet eigenstates, see Eq. 2.149, calculated by solving the TDSE of Eq. 2.18 for

W
(n=0)
nuc (q1, q2),
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Figure 3.5: Domains of reactant (R), product (P), two intermediates (I1, I2), and the
saddle point (SP2), together with their boundaries. Horizontal and vertical red arrows
indicate the �ux densities of protons 1 and 2 from the domain of the reactant R to the
intermediates I1 and I2, respectively, corresponding to the �rst step of the two alterna-
tive routes of the sequential reaction mechanism, cf. 3.3. Likewise, vertical and horizontal
blue arrows symbolize the �ux densities of protons 2 and 1, from domains I1 or I2 to the
product P, respectively, corresponding to the second step of the sequential reaction mech-
anism (schematic). Moreover, green and magenta arrows indicate the �ux densities at the
boundaries between domains R and SP2 as well as SP2 and P, respectively, corresponding
to synchronous double proton transfer, see 3.4. Furthermore, cyan arrows indicate the
�ux densities at the boundaries between SP2 and intermediates I1, I2. Also shown by

equi-density contours is the ground state wavefunction Ψ
(n=vf=0)
light,R (q1, q2, t = 0) (gray), 3.6,

which is localized close to the potential minimum in the domain of the reactant (R), to-
gether with the initial wavefunction Ψlight(q1, q2, t = 0) (black), 3.7, which is obtained by

a shift (gray arrow) of Ψ
(n=vf=0)
light,R (q1, q2, t = 0) along the diagonal q1 = q2, see text.

ĤlightΨ
(n=0, vf±)
light (q1, q2, t = 0) = E

(n=0, vf±)
light Ψ

(n=0, vf±)
light (q1, q2, t = 0). (3.5)

Finally, after a relaxation time of τrel = 28 fs the corresponding localized ground state is

obtained, which is the superposition of the ground state doublet

Ψ
(n=vf=0)
light,R (q1, q2, t = 0) =

1√
2

[Ψ
(n=0, vf=0+)
light (q1, q2) + Ψ

(n=0, vf=0−)
light (q1, q2)] (3.6)
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3 From Synchronous to Sequential Double Proton Transfer

with mean energyE
(n=vf=0)
light,R = (E

(n=0, vf=0+)
light +E

(n=0, vf=0−)
light )/2 = 0.194 eV. The localized

wavefunction is rigorously non-stationary, since it tunnels from the reactant to the prod-

uct with tunneling time τ0 = h/∆E0, where ∆E0 = E
(n=0, vf=0−)
light − E(n=0, vf=0+)

light is the

tunneling splitting. ∆E0 is a very small number: the four barriers TS in fact ensure both

E
(n=0, vf=0+)
light andE

(n=0, vf=0−)
light to be below the TS barrier heightW (n=0)

nuc
(−∆q+

TS,∆q
−
TS) =

0.600 eV and, therefore, their di�erence to be even smaller. Consequently, the tunneling

time τ0 is very long compared both with the relaxation time τrel and with the �nal time of

propagation of approximately T = 40 fs and is therefore negligible. From the experimental

point of view, such a localized ground state may be created by symmetry breaking, namely

by deuteration of the C4N rings. The slightly heavier mass in fact does not change the

PES, but induces a localization of the reactant wavefunction. For reference, in harmonic

approximation, each of the two global potential minima supports two normal modes, one

for symmetric vibration along the diagonal Q1 = Q2, with vibrational period tsym = 21.2 fs,

and the other one for perpendicular antisymmetric vibration, tasym = 20.6 fs.

As mentioned above, the dynamics crucially depends on the preparation of the initial

wavefunction. In this study the following scenario is chosen, where the localized wavefunc-

tion, Ψ
(n=vf=0)
light,R (q1, q2, t = 0), is displaced along the diagonal q1 = q2 to a non-equilibrium

position

Ψlight(q1, q2, t = 0) = Ψ
(n=vf=0)
light,R (q1 + ∆q, q2 + ∆q, t = 0) (3.7)

as shown in Fig. 3.5, where ∆q = −1 a0. Such a shift can be induced, for example, by

means of pump-dump laser pulse control, as designed by Tannor and Rice [94�97]. Shortly,

the �rst ultra-short pump pulse transfers the wavepacket to the excited electronic state,

where it evolves until it is shifted to the target position. At this point the dunp pulse

transfers the wavepacket back to the electronic ground state. A similar shift has been

shown recently by means of laser pulse control, by Kapteyn, Murnane and coworkers [98].

The displaced wavefunction has now a new mean energy E0 = 4.885 eV. The wavefunction

at later time t > 0 is evaluated by solving the TDSE of Eq. 2.18 using again the MCTDH

method [36,53].

3.3 Fluxes and Flux Densities

The quantitative analysis of the dynamics of the DPT was done by evaluating the �uxes

and �ux densities �owing from a domain to the neighbouring ones through the boundaries

de�ned in the previous section. The net �uxes can be calculated by deriving the population

in each of the domains with respect to the time:
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3.3 Fluxes and Flux Densities

FD(t) =
d

dt
PD(t) = ṖD(t) , (3.8)

where the population is obtained by integration of the densities in the domains D =

R,P,SP,I1 or I2 with respect to the two coordinates q1 and q2 for each time step

PD(t) =

∫ ∫
D
ρ(q1, q2, t) dq1dq2 . (3.9)

and the density is obtained from the propagated wavefunction as

ρ(q1, q2, t) = |Ψlight(q1, q2, t)|2, (3.10)

Please note that for the present 2D model, the density in Eq. 3.10 has units of 1/area,

analogous to the units of 1/volume of the densities in the 3D world. Similarly, the �uxes

can be calculated by integrating the �ux densities along the domain boundaries DB =

R,P,SP,I1 or I2

FD(t) = −
∫

DB

~j(q1, q2, t) · d~S(q1, q2) , (3.11)

where |d~S(q1, q2)| represents the in�nitesimal part of the boundaries at (q1, q2) and d~S(q1, q2)

denotes the corresponding in�nitesimal vectors perpendicular to the boundaries, pointing

out of the domains. The Gauss's theorem, known as the divergence theorem, allows to

rewrite the integrals of Eq. 3.11 as corresponding 2D (�surface�) integrals of the diver-

gence, ∇ = (∂/∂q1, ∂/∂q2)T, of the �ux densities in the domains D,

FD(t) = −
∫ ∫

D

~∇ ·~j(q1, q2, t) dq1dq2. (3.12)

The continuity equation for the considered model

ρ̇(q1, q2, t) + ~∇ ·~j(q1, q2, t) = 0 (3.13)
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3 From Synchronous to Sequential Double Proton Transfer

yields �nally,

FD(t) =

∫ ∫
D
ρ̇(q1, q2, t) dq1dq2 . (3.14)

Please note that by substituting Eq. 3.9 in Eq. 3.14, Eq. 3.8 is obtained.

The symmetry of the system and its Hamiltonian, as well as the symmetry of the initial

condition implies the probabilities and the �uxes for the domains of the two intermediates

to be equal,

PI1(t) = PI2(t) =
1

2
PI(t) (3.15)

and

FI1(t) = FI2(t) =
1

2
FI(t) , (3.16)

so that from now on PI(t) and FI(t) denote the overall population and �uxes of the domain

of both intermediates, I = I1 + I2, respectively. This means that the two possible routes

from the reactant to the product, R→ I1 → P or R→ I2 → P, have the same probabilities

at any time.

The population present in the di�erent domains during the propagation of the initial

wavepacket is used to indicate whether the synchronous or sequential DPT mechanism is

preferred by the system, as discussed in the next section. If the population in the SP2

domain, PSP2(t), is larger than the population in the I domain, PI(t), then the system

prefers a synchronous mechanism, and vice versa. In order to analyse even more deeply

the DPT reaction, it would be interesting to evaluate not only the whole population �owing

out from each of the domains to its neighbor ones (net �uxes), but to evaluate the so-called

domain-to-domain (DTD) �uxes from one domain (say D1) to only one of the neighboring

ones (say D2), as well. These new �uxes will be denoted as FD1,D2(t). The DTD �uxes

can be obtained by using Eq. 3.11 after the two-proton �ux density has been calculated

from the wavefunction as

~j(q1, q2, t) =
1

2M

(
Ψ∗light(q1, q2, t)P̂Ψlight(q1, q2, t)−Ψlight(q1, q2, t)P̂Ψ∗light(q1, q2, t)

)
,(3.17)

where the two components j1(q1, q2, t), j2(q1, q2, t) correspond to the one-proton �ux den-

sities of protons 1 and 2, respectively. Please note that the components of the �ux density

have units of 1/(time · length), analogous to the units of 1/(time · area) of the familiar �ux
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density in the 3D space. Due to the momentum operator in Eq. 3.17, the �rst derivative

of the wavefunction has been evaluated numerically using �nite di�erence approximations

for representations of the wavefunction on the non-equidistant grids used in the MCTDH

propagations. For example the DTD �ux between the domain of the reactant R and the

speci�c intermediate I1 is evaluated as

FR,I1(t) = −
∫

DB(R,I1)

~j(q1, q2, t) · d~S(q1, q2) = −
∫ −∆q0/2

−∞
j1(q1 = 0, q2, t) dq2 , (3.18)

where DB(R,I1) is the straight line boundary between domains R and I1, see Fig. 3.5. The

integral is evaluated by using the midpoint rectangle rule applied to the �uxes density

representation on the non-equidistant grid employed for the MCTDH propagation of the

wavefunction in principle between −∞ and −∆q0/2, which corresponds to the boundary

between the two domains. Equally, the DTD �ux between the domain I1 and the product

P can be calculated as

FI1,P(t) = −
∫

DB(I1,P)

~j(q1, q2, t) · d~S(q1, q2) = −
∫ ∞

∆q0/2
j2(q1, q2 = 0, t) dq1 . (3.19)

For symmetry reasons, the DTD �uxes between R and I1 and R and I2, as well as

between P and I1 and P and I2 are again equal,

FR,I2(t) = FR,I1(t) =
1

2
FR,I(t) , (3.20)

and

FI2,P(t) = FI1,P(t) =
1

2
FI,P(t) , (3.21)

where FR,I(t) and FI,P(t) denote the overall DTD �ux between R and the domain of the

two alternative intermediates, I = I1 + I2, and between the domain of the two alterna-

tive intermediates, I = I1 + I2, and P, respectively. In general, the in�nitesimal vectors

d~S(q1, q2) for the DTD �uxes FD1,D2(t) are perpendicular to the boundaries DB(D1,D2)

and point from D1 to D2. Consequently, the DTD �ux FD1,D2(t) is negative for the proton

transfer from D1 to D2 and vice versa.

Moreover, microscopic reversibility implies

FD1,D2(t) = −FD2,D1(t). (3.22)

Finally, the balance equations are employed for the net �uxes, Eq. 3.8, for all domains D

= R, P, SP2, I = I1 + I2, in terms of all the DTD �uxes, speci�cally
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FR(t) = FR,I(t) + FR,SP2(t) (3.23)

FP(t) = FP,I(t) + FP,SP2(t) (3.24)

FSP2(t) = FSP2,R(t) + FSP2,P(t) + FSP2,I(t). (3.25)

FI(t) = FI,R(t) + FI,P(t) + FI,SP2(t) (3.26)

0 = FR(t) + FP(t) + FSP2(t) + FI(t) . (3.27)

where the Eq. 3.27 is the conservation of �uxes obtained by summing up all net �uxes. The

last �ve equations allow the indirect calculation of the DTD �uxes between the domains

SP2 and R and P, FR,SP2(t) and FP,SP2(t), respectively, which are used in order to measure

the DTD �uxes associated with the synchronous mechanism, as well as the DTD �uxes

between the domains SP2 and I. Please note that direct integration of the �ux density in

the partially circular boundaries of the SP2 domain would have been a more di�cult task.

To the best of our knowledge, the complete DTD �uxes between neighbouring domains

have not been calculated previously, with the exception of special cases where the overall

�uxes from R to P were evaluated, see, for example, Refs. 83,99.

3.4 Results

The populations in all the domains versus time are shown in Fig. 3.6a. The net �uxes

together with their decomposition in the DTD �uxes are shown in Figs 3.6b-e. Finally, in

Fig. 3.7 the densities and �ux densities are shown with snapshots of the salient moments

(identi�ed by ta, tb, tc, ... , tl corresponding to the events a,b,c, ... ,l shown both in

Figs 3.6a and 3.7) of the wavepacket propagation. Analysis of this detailed documentation

yields, as a proof of principle, a switch of the reaction mechanism of the DPT reaction of

the model porphine from synchronous to sequential. In principle, at any time the PD(t)

curves represent the probabilities of the di�erent species D on the PES. In general, higher

or smaller PD(t) values corresponds to more and less important population and processes,

respectively. Speci�cally, dominance of PSP2(t) or PI(t) documents a mechanism which

is preferably (not exclusively!) synchronous or sequential. The discovery of simultaneous

occurrence of more than one species on the PES, re�ects the non-deterministic quantum

description of the process and, as a consequence, makes the reaction never either syn-

chronous or sequential. Instead, it may proceed at the same time both synchronously and

sequentially, albeit with di�erent probabilities. Consider �rst the populations in Fig. 3.6a.

At time ta = 0 the whole population resides in the reactant domains R, since it corresponds

to the prepared initial state (see Eq. 3.6 in sec. 3.2). At time tb = 3 fs, the reactant is

still dominant with probability PR(tb) > 0.99. Afterwards, the two protons of the model
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porphine are transferred preferably with a synchronous mechanism during the �rst forward

reaction from R to P. The transfer from the reactant region to the SP2 domain is evident

from the loss of PR(t), which starts soon after 5 fs, and from the increase of PSP2(t),

e.g. PSP2(tc) = 0.264, PSP2(td) = 0.657, PSP2(te) = 0.475 at tc = 5.65 fs, td = 6.75 fs,

te = 7.75 fs, respectively. Subsequently, the population �ows to the product region P

and reaches its maximum value PP(tf ) = 0.959 at tf = 14.85 fs. Soon after, the �rst

back propagation to the product starts and, in fact, the population in the domain P at

tg = 17.8 fs already decreases to PP(tg) = 0.756. This time the population �ows back

to the reactant preferably via the I domains, namely following the sequential mechanism:

the maximum population PI(th) = 0.390 is reached at th = 21.20. Finally, the reactant

rises again to its second maximum population, PR(tj) = 0.793 at tj = 27.75 fs ending

the �rst back propagation. At this point, the second forward propagation starts which

again is dominantly sequential, PI(tk) = 0.326 at tk = 34.90 fs. The second maximum for

the product is reached at tl = 40.90 fs, PP(tl) = 0.618. Fig. 3.6a shows that the maxi-

mum probabilities for R and P never reach 1 again, but decreases continuously in favour

of SP2 and in particular of I. This behaviour is linked to well-known quantum e�ects of

wavepackets, which are composed of faster and slower parts. The faster parts, in fact,

run away, whereas the slower parts lack behind causing an increasing "wash-out" e�ect

of the dominant population to the bene�t of others. Summarizing Fig. 3.6a, the two pro-

tons of the model porphine are transferred preferably concertedly during the �rst forward

propagation, but stepwise during the �rst back and second forward propagations, which

provides the proof of principle. The subsequent analysis of the �uxes gives more detailed

information of the underlying e�ects.

The �ux dynamics shown in Figs 3.6b-e may be divided into two di�erent periods: the

initial one corresponding to the �rst forward propagation, where the concerted process

dominates, and a second one corresponding to the �rst back and second forward propa-

gations, where both mechanisms are present, but nevertheless, the sequential process is

dominant, as seen in Fig. 3.6a for the population analysis. Moreover, a second distinction

must be done between the panels b and c, regarding the �uxes of R and P, and the panels d

and e regarding the �uxes of SP2 and I. The former, in fact, show unidirectional processes

from R to P and vice versa, whereas the latter show unidirectional as well as antagonist

processes, which in some case compensate. The second panel in Fig. 3.6 shows the net

and DTD �uxes relative to the reactant: FR(t), FR,SP2(t) and FR,I(t). In the �rst 10 fs

FR,SP2(t) dominantly participates to FR(t) resulting in a concerted process during the �rst

forward propagation. Later the �rst back and the second forward propagations is sup-

ported by both DTD components with slightly larger contribution from FR,I(t). Likewise,

in Fig. 3.6c, the net �ux FP(t) is, clearly, dominated by a the DTD �uxes from the SP2

to the P domains, FSP2,P(t). The contribution of FI,P(t) to FP(t) increases, however, with

respect to the contribution of FR,I(t) to FR(t). Subsequently, both mechanisms contribute
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3 From Synchronous to Sequential Double Proton Transfer

unidirectionally, with slightly larger losses of FP,I(t) with respect to FSP2,I(t) during the

�rst back propagation, followed by more or less equal contributions during the second for-

ward propagation. The forth panel in Fig. 3.6 shows the net and DTD �uxes relative to

the saddle point domain representing the synchronous DPT. Two rather sharp opposite

peaks can be noted during the �rst forward propagation corresponding to FSP2(t). Its de-

composition in DTD �uxes readily shows that the two peaks are due to the slightly delayed

(circa 3 fs) decay of the reactant (FSP2,R(t)) and formation of the product (FSP2,P(t)) by

the synchronous mechanism. Moreover, a direct switch from synchronous to the sequen-

tial mechanism is visible (FSP2,I(t)). This corresponds to the two sets of opposite arrows,

from the SP2 to the I domain shown in Fig. 3.5. Pictorially speaking, they represent a

switch from initial concerted motions of protons 1 and 2, corresponding to the beginning

of synchronous double proton transfer, to the repulsion of one of the protons, either 2

or 1, back towards its position at the reactant, while the other one that means 1 or 2,

respectively, continues its paths to the product geometry, implying formation of one of the

intermediates, I1 or I2, respectively. Ultimately, this repulsion of the two protons from

each other may be interpreted as consequence of their Coulomb interaction. Afterwards,

the two contributions, FSP2,R(t) and FSP2,P(t) form again pairs of opposite and slightly

delayed peaks which are now broader (circa 5 fs) than their delay (circa 2 fs) and have

smaller amplitudes. They are reversed during each propagation from or to the P, but their

e�ects compensate more and more, so that the initial two opposite sharp peaks become

a strongly damped oscillation of FSP2(t) around the mean value zero (note that the DTD

FSP2,I(t) does not play any role in the second part of the propagation).

The synchronous mechanism is thus dominant only during the �rst forward propagation

(PSP2(td) = 0.657 and PSP2(th) = 0.182). The major source for this "wash-out" e�ect

is due to several partial waves with di�erent momenta, which lower and broadens the

amplitudes of the peaks of the DTD �uxes, resulting in the suppression of the concerted

mechanism. The �fth and last panel of Fig. 3.6 shows the �ux dynamics of the intermediate

domains I1 and I2 representing the sequential process. The net �ux FI(t) results from the

contributions of FI,R(t), FI,P(t) and FI,SP2(t). This picture appears more complex than the

others, but in reality there are no prominent large amplitude peaks, which becomes clear

when looking at the blow-up of the scale of the �uxes in this panel. Nevertheless, FI(t)

and its components show al least three minor e�ects taking place during the �rst part

of the propagation: �rst the DTD �ux FI,R(t), which accompanies the dominant DTD

�ux FSP2,R(t) from R to SP2 as discussed before in Figs 3.6b,d; second about 2 fs later

comes the direct switch from SP2 to I given by FI,SP2(t), discussed previously in Fig. 3.6d.

Moreover, these two contribution are unidirectional and have equally large contributions.

Third, the contribution FI,P(t), which has opposite sign and slightly smaller amplitude

with respect to the previous contributions, arises circa 1-2 fs after FI,R(t) showing that the

small gain of the intermediate is almost instantaneously transformed into the products P.
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Figure 3.6: Population and �ux dynamics of double proton transfer in the model porphine,
starting from the initial state, Eq. 3.7. (a) Populations PD(t) of the domains D = R,
P, SP2 and I = I1 + I2 of the reactant, product as well as the saddle point and the
two intermediates, for the synchronous and sequential reactions, respectively. The events
labeled a, b, c, etc are discussed in the text. (b), (c), (d), (e) Net �uxes FD(t) out of, or
into the domains D, and domain-to-domain (DTD) �uxes FD1,D2(t) for the domains D1 =
D = R, P, SP2 and I = I1 + I2 and neighboring domains D2, respectively. The colors for
the DTD �uxes correspond to the domain boundaries DB(D1,D2), see Fig. 3.5.
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This results in the maximum population PI(t) for the sequential mechanism for the �rst

concerted forward propagation, close to t = td. In the following backward and second

forward propagations the direct switch component FI,SP2(t) becomes zero, as seen already

in Fig. 3.6d and the net �ux is the result of the superposition of the two left components,

with alternate gains and losses of FI,P(t) and FI,R(t) in the �rst backward propagation and

of FI,R(t) and FI,P(t) in the second forward propagation, respectively. Their behaviours are

similar to the behaviour of FSP2,R(t) and FSP2,P(t) seen in panel d of Fig. 3.6. In particular,

the peaks are broader (circa 5 fs) than their time delay (circa 2 fs), so that they overlap.

The more and more e�cient compensation ends with the damped oscillation around the

mean value zero of the net �ux FI. The largest amplitude peak is given by FI,P(t) at the

�rst backward propagation and causes the population PI(th) to be the dominant peak in

Fig. 3.6a. Moreover, their amplitudes decrease systematically due to the �wash-out� e�ect.

The main di�erence between the net �ux FI(t) and the previously discussed FSP2(t) is the

mean value around which the populations oscillate because of the damped oscillation of

the respective net �uxes, which is larger for PI(t), con�rming that after the mechanism

switches from concerted to sequential, it will not return.

More detailed information about the quantum nature of the underlying e�ects for the

switch of the mechanism from concerted to sequential are illustrated in Fig. 3.7, by using

snapshots of the density of the wavefunction together with the �ux density which corre-

sponds to the events a,b,c, ... ,l. In panel a the initial wavefunction at ta = 0 fs is shown,

when the �ux density is still zero. During the �rst 3 fs the wavefunction propagate towards

the global minimum of the reactant region R, driven by the L-shaped parts of the steep

walls of the PES close to the reactant which impose various momenta on di�erent part of

the initial wavefunction. In panel b at tb = 3 fs a fascinating quantum e�ect is visible,

namely the wavepacket is squeezed into the minimum well, since the forces by the PES

walls impose a �lensing� e�ect, such that the wavefunction is narrowed in the �focus�. Sim-

ilar e�ects are described for example in Refs. 58, 100. Subsequently, the wavefunction is

driven forward and climbs the saddle point reaching the top at td = 6.75 fs. Afterwards it

runs towards the product well (te = 07.75 fs), see panel e. The �lensing� e�ect seen before is

suddenly converted into a strong dispersion of the wavefunction with several consequences.

In particular, the minor DTD �ux FR,I(t), which accompanies the dominant FR,SP2(t) at

tc = 5.65 fs discussed in Fig. 3.6b, is due to the wings of the wavepacket, which slightly

penetrate into the domains of the two intermediates I1 and I2. Moreover, the dispersion

causes also the small DTD �ux, FSP2,I(t), for the direct switch from concerted to sequential

mechanism, seen above in Figs 3.6d,e. At tf = 14.85 fs the wavepacket is already in the

product domain P. This is visible in Fig. 3.7f which corresponds to the �rst maximum of

population PP(tf ) = 0.959 of Fig. 3.6a. From now on, the wavepacket dispersion has the

most decisive consequences for inducing the switch of the mechanism from synchronous to

sequential. Speci�cally, the wavefunction crashes against the inverse L-shaped part of the
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Figure 3.7: Density (equi-contours) and �ux density (arrows) dynamics of the wavefunction
representing double proton transfer in the model porphine, starting from the initial state,
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steep walls close to the minimum for the product, covering a much broader range compared

with the part of the opposite L-shaped steep potential close to the reactants, covered by

the initial wavepacket at ta = 0 fs. Consequently, so-called relief re�ections of the di�erent

parts of the wavefunction into di�erent directions is induced [101,102]. Thus, at tg = 17.80

fs in Fig. 3.7g, the wavepacket takes three major di�erent directions: one part is scattered

back towards the SP2 domain and two prominent equivalent parts are scattered towards

the two intermediates domains I1 and I2. Therefore, it can be concluded that the present

switch of the mechanism from synchronous to sequential has to be attributed to the dis-

persion of the wavepacket and to the relief re�ections from the walls of the PES. This

switch could be called �indirect� in contrast with the �direct� switch due to the DTD �ux

FI,SP2(t) seen above in Figs 3.6d,e. A last relevant consequence of the dispersion of the

wavefunction is the rich interferences patterns of the wavepacket, whose faster parts have

already been scattered by the wall, whereas the slower parts are still running towards it.

The Figs 3.7g-j show the �rst back reaction. At th = 21.20 the majority of the wavefunc-

tion is in the domains of the intermediates I1 and I2. This corresponds to the maximum

population PI(th) = 0.390 of Fig. 3.6a. The preference for the sequential mechanism is

even more evident in Fig. 3.7i at ti = 24.50 fs. In panel j at tj = 27.75 the population of

the reactant achieves its second maximum, PR(tj) = 0.793, see Fig. 3.6a. This snapshot

con�rms the conjecture which has been made during the discussions of the probabilities

PR(tj) and PI(th), that is, the time dilatation of the wavefunction is so large that even

though most parts of the wavepacket are back to the domain R of the reactant, there are

still some other slower parts which lack behind in domain I. The two last panels, k and

l, of Fig. 3.7 at tk = 34.90 fs and tl = 40.90 fs con�rm the dominance of the sequential

mechanism, as well as the time dilatation supported by continuous wavepacket dispersion,

during the second forward reaction.

3.5 Conclusion

The proof of principle for the switch of the DPT mechanism of porhine from synchronous

to sequential has been demonstrated within a simple two dimensional model, starting from

the symmetric non-equilibrium position of the initial wavepacket. This is schematically

depicted in Fig. 3.8, where the synchronous �rst forward reaction through the saddle point

SP2 is followed by the sequential �rst backward reaction through the intermediate domains

I1 and I2. The subsequent second forward reaction is not shown. Admittedly, the chosen

scenario may be considered as somewhat extraordinary, but it is just �ne for a proof of

principle.

The e�ects for the switch of the mechanism are analyzed within quantum reaction dy-

namics methods starting from the qualitative patterns of densities and �ux densities and

from the quantitative �uxes and populations probabilities in the di�erent domains of the
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Figure 3.8: Switch from synchronous double proton transfer (DPT) of the model porphine,
during the �rst forward reaction from the reactant (R) to the product (P) via the saddle
point domain (SP2) (horizontal arrows), to two sequential DPTs during the �rst back
reactions via two intermediates I1 and I2 (other arrows, schematic). The events a, b, c, etc
correspond to those of Figs. 3.6 and 3.7. After the �rst back reaction, the second forward
reaction is also sequential (not shown).

PES during the propagation of the initial wavefunction during the �rst 40 fs. The net

�uxes were decomposed into the DTD �uxes providing additional interesting informa-

tion about the causes for the switch of the mechanism. Thus, the present de�nition of

synchronous and sequential mechanism is based on the populations �owing through the

synchronous and sequential regions, SP2 and I, respectively, and may be considered as

a quantum mechanical extension of the de�nition of Ushiyama and Takatsuka based on

classical MD simulation [73]. The transfer of the protons one-after-the-other corresponds

to the representative wavepacket �owing mainly through the intermediates domains I1 and

I2 (PI(t) > PSP2(t)) from R to P or vice versa, whereas the both-at-the-time transfer of the

two protons corresponds to the representative wavepacket �owing mainly through the SP2

domain(PSP2(t) > PI(t)). Alternatively, within the recent quanti�cation of synchronicity

by Houk and coworkers [66], since the wavepacket always resides in the I or in the SP2

domains less than 10 fs and the characteristic vibrational periods are τsym = 21.2 fs and

τasym = 20.6 fs for the symmetric and asymmetric stretching modes, respectively, the

DPT mechanism of the model porphine would be classi�ed as synchronous. Apparently,
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3 From Synchronous to Sequential Double Proton Transfer

the di�erent assignments depend on the speci�c de�nitions of synchronous and sequential

mechanisms. Moreover, by joining these two quantum extension of the classical de�nition

by Ushiyama and Takatsuka [73] and by Houk and coworkers [66], the present results could

be summarized as follows: during the �rst forward reaction both protons are transferred

via the saddle point SP2, whereas during the �rst backward and second forward propaga-

tions the two protons are transferred preferably one-after-the-other via the intermediates

domains; all forward and backward reactions are ultra-fast and occur within less than the

characteristic periods of vibrations.

The central point of the results presented here, is that the switch of the mechanism is

supported essentially by the quantum e�ect of the dispersion of the wavepacket during the

propagation and by the relief re�ections from the corner and the two arms of the rather

steep, inverse L-shaped repulsive walls of the PES near the product P. Minor e�ects are

also discovered as for example the direct switch from synchronous to sequential or the

partially compensating processes of the reformation and decay of the reactant during the

sequential �rst back and second forward reactions.

Explicit considerations of �ux densities and domain-to-domain �uxes are still innovative

tools for the analysis of reaction processes, beyond the investigations based only on den-

sities and probabilities analyses. Similar analyses can be found for the interpretations of

electronic �ux densities and �uxes [100,103,104].

The present study should stimulate systematic investigations for switches of mechanism

from concerted to sequential or from sequential to concerted, or even multiple switches

for more realistic models and for di�erent non-equilibrium initial conditions. For example,

a break of the symmetry of the two intermediates of the initial condition could induce

switch from synchronous mechanism to clockwise or anticlockwise sequential reactions via

the intermediates I1 �rst and I2 second, or in the reverse order. Ultimately, these types of

switches of the reaction mechanism should be induced and observed experimentally. The

design of laser pulse for driving clockwise or anticlockwise electronic ring currents [105,

106], or nuclear currents [107] (or see the review [108]), or molecular rotors [109] are very

encouraging examples for such quantum controls.
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4 Non-adiabatic Quantum Dynamics

Simulations and Laser Control of Br2 in

Solid Argon

4.1 Introduction

Dihalogen and interhalogen systems embedded in cryogenic rare gas matrices are very

suitable prototypes for detailed spectroscopic studies of condensed-phase systems. On the

one hand, the dihalogen chromophores show a rich set of bound, repulsive, and crossing

electronic states. On the other hand, the inertness and spectroscopic al transparency of

rare gas matrices allow for a deep investigation of the energetics, as well non-radiative and

coherent dynamics processes. Moreover, both the dihalogens and the rare gases have been

studied in great detail in the past decades, both theoretically and experimentally, so that

a very well characterized set of spectroscopic constants for simulations is available in the

literature [3, 4, 25,110�113].

Pump-probe spectroscopy has been mainly used for the investigation of these systems,

since it allows for a systematic collection of information about the electronic population

and nuclear wavepacket evolution on one electronic state. First, an ultra-fast pump pulse

vertically excites the chromophore from the electronic ground state to the Franck-Condon

region of an electronic excited state, where a coherent superposition of vibrational states

is created. Such superposition is a vibrational wavepacket evolving in time, which can be

interrogated by a probe pulse at the delay time ∆t and excited, in turn, to higher lying

Charge Transfer (CT) states. The �uorescence from CT states can be �nally recorded as

a function of the delay time, tracking the time evolution of the wavepacket. These experi-

ments have permitted to observe a large number of interesting phenomena, as for example,

vibrational energy relaxation e�ects for Br2 in Ar, for which an e�ective chromophore po-

tential could be deduced [114]. Due to the presence of non-adiabatic electronic transitions

(see Sec. 2.2.1 in Chap. 2), ultra-fast spin-�ip [115�117] takes place. For instance, for ClF

molecules in Ar matrices a time scale of 0.5 ps has been reported, which is a rather fast

intersystem crossing process from a singlet to a triplet state. The wavepacket simulation

for this system using a one-dimensional model (bond coordinate) gave an even lower limit

of 60 fs [116], whereas for HF in Ar a 1 fs spin-�ip time has been predicted on the ba-

sis of non-adiabatic trajectory simulations [118]. For the heavier dihalogens Br2 and I2,
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a classi�cation of the electronic states according to the Hund case c is preferred to the

case a, due to the enhanced spin-orbit coupling [17]. For those systems the most studied

non-adiabatic transition is the predissociation from 0+
u to the doubly degenerate 1u states,

usually called B and C states, respectively [119, 120]. The B state is attractive, whereas

the C state is repulsive in the gas-phase. The predissociation yield in the gas-phase is

extremely low [121], but it is considerably enhanced in the rare gas environment due to

the non-adiabatic couplings to the lattice modes (vibronic coupling). This has been shown

in particular for I2 in Ar at di�erent pressures [122]. For Br2 in Ar the predissociation

probability has been experimentally estimated from the broadening of the zero-phonon

lines to be 5% per vibrational round-trip [123].

The cage e�ects are probably the most dramatic manifestations of the interaction be-

tween chromophore and matrix and have been demonstrated, for example, for F2 in a

Ar54 cluster host comprising the �rst four shells of an fcc crystal structure [124]. The

collision with the matrix transfers energy to the cage, which excites speci�c collective vi-

brational motions. This has been seen, for instance, in Cl2 in Ar [125]. Moreover, the

electronic transition induce coherent phonon motion in the host, which display a dynamics

mostly decoupled from the dihalogen's bond vibration, as seen for I2 in Kr and Cl2 and

Br2 in Ar [126, 127]. The respective oscillations persist during several picoseconds with a

frequency corresponding to the zone boundary phonon mode of the host crystal.

These results stimulated several new experiments aiming at the investigation of electronic

and vibrational coherences. The former have been investigated by using Phase-Locked

Pulse Pairs (PLPP). Two pulses excite a population from the electronic ground to the

excited state within a delay time ∆τ . Population can be transferred by the second pulse

in a constructive or destructive way, by tuning the relative phase φ between the PLPP.

As in the pump-probe scheme seen above, the vibrational wavepacket is probed by a third

pulse at time ∆t to a CT state. The vibrational recurrences on the excited state have

been registered on an interferogram and can be related to the electronic coherence, which

persist for more than 660 fs for Cl2 in Ar and 300 fs for Br2 in Ar [128, 129]. With the

same technique, it has been shown that the chromophore-matrix interaction can even be

tuned by generating a frequency comb able to excite a wave packet composed of either

zero-phonon lines or phonon side bands [130]. Ultimately, vibrational coherence has been

investigated by means of shaped laser pulses. In particular, chirped pulses have been used

for Br2 in Ar in order to compensate for the wavepacket dispersion on the B state due to

the anharmonicity of the potential and to measure the time scale of vibrational decoherence

due to the interaction with the environment [129].

On the theoretical side, a great e�ort has been made in order to treat those systems and

carry out classical trajectory and quantum dynamics simulations. The �rst challenge for

theoreticians has been the calculation of the PESs, which may describe the manifold of the

dihalogen (at least valence) states and take into account the very large number of nuclear
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DOFs of the considered crystal. Moreover, since the nuclear motions are coupled to the

electronic ones (see Sec. 2.2.3), the electronic states mix and non-adiabatic transitions have

to be treated as well. The semi-empirical method Diatomics-In-Molecules (DIM) was able

to match all these criteria: the many-body nature of these systems, the valence electronic

states of the dihalogen molecules (the extended Diatomics-in-Ionic-System method, DIIS,

actually includes also CT states [131, 132]) as well as the easy calculation of forces and

NACTs (see Sec. 2.2.1). The method was initially worked out by Ellison [133,134] for the

calculation of electronic structures of polyatomic molecules from diatomic and atomic po-

tentials avoiding, thus, the calculation of interaction integrals. It was adapted later by Tully

for studying molecular collision dynamics within the surface hopping approach [135�137],

since it e�ciently allows for the calculation of the PES �on-the-�y�. The basic idea of

the DIM method is to approximate the polyatomic PES by a sum of all diatomic interac-

tions and it is, therefore, closely related to the valence bond theory of pairs of electrons

forming bonds between atoms. Finally, the pair potentials are simple analytical functions

�tted to experimental and/or calculated data. Despite its semi-empirical nature, the DIM

method was widely used for classical trajectory simulations, revealing itself as an optimal

compromise between accuracy and numerical feasibility, in particular for halogen-rare gas

systems [138�151].

Although classical and semi-classical methods treat these systems in their full dimension-

ality, the description of coherent dynamics as well as the laser-matter interaction clearly

call for quantum dynamical simulations. Unfortunately, the dimensionality of the problems

must be drastically decreased, restricting the model systems to a subset of relevant elec-

tronic states and nuclear DOFs. In this respect, quantum dynamics pro�ts from classical

simulations, which have shown a reduced e�ective dimensionality, at least in the early time

window [144�146].

Quantum dynamics simulations have been carried out in particular by Manz and co-

workers, who developed models based on the DIM-PES including one or two nuclear DOFs.

Quantum dynamics has been performed in order to simulate cage exit dynamics of F2 in Ar

including a collective cage coordinate next to the bond distance [101,152,153]. It was also

shown that the inter-system crossing process for Cl2 [154,155] and ClF [116,117,156,157]

in Ar systems can be controlled by laser pulses on ultra-fast time scales. Speci�cally, a case

was studied where two wave packets are excited, respectively, from the third preexcited vi-

brational state in the electronic ground to the singlet B-state and from the vibrational and

electronic ground to the triplet C-state, so that the populations in the excited states are

about equal. The constructive or destructive interferences of the associated wavepackets

in the region of strong spin-orbit coupling can favour the triplet or the singlet components

depending on their initial preparation. Moreover, 4D [119, 120, 158] and 5D [120] dimen-

sional models including 4 electronic states have been developed for the Br2 in Ar system by

combining concepts from the Cartesian Reaction Surface (CRS) and the Vibronic Coupling
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Hamiltonian (VCH) approaches. Within the CRS concept [31,159�161], two mass-weighted

large amplitude coordinates (LAC) have been chosen for simulating excitation from the

ground X- to the B-state. The �rst is just the dihalogen internal bond and the second

is a collective matrix coordinate obtained from the coordinate shift between the con�g-

urations at the minima of the X- and B-state PES. Within the VCH concept [162�164],

two more harmonic coupling modes are included in the 4D-model [119, 120, 158], which

are involved in the non-adiabatic transition, and a supplementary harmonic tuning mode

is included in the 5D-model [120], which modulates the energies of the electronic excited

states [10,11]. Speci�cally, Ref. 119,120,158 considered those modes, which are important

for the B to C transition, since the role of the cage matrix in the predissociation has been

investigated. The quantum dynamics of the dimension-adapted Reaction Surface-Vibronic

Coupling (RSVC) Hamiltonian has been conveniently treated using the MCTDH package

(see Sec. 2.4.1), after the PES and NACTs were calculated by using the DIM method, as

outlined on Ref. 17. In the present contribution the B-C predissociation mechanism is in-

vestigated further from the perspective of optimal laser control by using the OCT method

implemented in the MCTDH package (see Sec. 2.4.2). In fact, the simulations carried out

by using the 4D and 5D models were not able to reproduce the experimental predissociation

yield mentioned above (about 5% per vibrational round-trip). One straightforward way to

enhance such yield is to add more (in principle all) of the remaining vibronic coupling and

tuning modes (in other words, to take into account all possible NACTs). This way will be

not pursued here, since the 5D model from [119, 120, 158] is not further developed in the

present work. Instead, a second way to enhance such yield is presented in the following

sections and is based on changing the Frack-Condon window of the B ← X excitation by

using OCT, so that the wavepacket created on the electronically excited bound B-state

spends as much time as possible at the crossing seam with the other two electronically

excited dissociative C and C' states, where predissociation actually takes place.

4.2 Theory and Model [119,120,158]

The RSVC Hamiltonian has been derived in Ref. 158 and takes into account four electronic

states: X, B and the doubly degenerate C and C' states. Two large-amplitude coordinates,

ζR and ζX−B, account for the Br-Br bond elongation and for the displacements of the

cage atoms upon excitation from the X-ground state to the B-excited state, respectively.

The two large-amplitude coordinates are depicted in panels (c) and (d) of Fig. 4.1: Upon

elongation of the Br-Br distance, the four belt atoms invade the space emptied by the

chromophore, whereas the 8 (4+4) atoms forming the 2 windows, toward which the Br

atoms are moving, are pushed outward. Fig. 4.1b shows the X-state PES along these

two coordinates by taking all other DOFs frozen at the minimum con�guration, whereas

Fig. 4.1a shows the quasi-adiabatic PES obtained by following the lowest energy path along
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4.2 Theory and Model

the B and C states. Both large-amplitude coordinates preserve the overall D2h symmetry

of the cage and are of Ag symmetry. Therefore, they form a crossing seam along the

intersection of the B and C states, as indicated by the solid line in Fig. 4.1, which is almost

parallel to the ζX−B coordinate. Finally, the �lled circle marks the energetic minimum

along the seam.

Within the CRS approach, the two large-amplitude coordinates account for the full

anharmonicity of this PES cut [120]. In order to represent the DOFs of the remaining

part of the system, vibronic coupling theory is applied. In particular, the two LACs are
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Figure 4.1: PES along the two large-amplitude coordinates for the (X) ground (panel (b),
contour lines at 0.001, 0.035, 0.069, 0.080, 0.090, and 0.100 Eh) and quasi-diabatic (B-C)
�rst excited state (panel (a), contour lines at 0.069, 0.072, 0.073, 0.075, 0.077, 0.080, 0.085,
0.090, 0.095 and 0.100 Eh). In panel (a), the crossing seam is included as a black line. The
minimum along this seam is at ζR ≈ 8 and ζX−B ≈ 3 amu1/2a0. Panels (c) and (d) show
the mass-weighted atomic displacement vectors for the two large-amplitude coordinates.
The four panels are adapted from Ref. 120
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projected out and the Hessian matrix is diagonalized at the minimum of the electronic

ground state, in order to obtain normal modes, which are orthogonal to the LACs.

Within the VCH approach [162], the normal mode coordinates, {qi}, are treated in har-

monic approximation and are added to the model, giving the following RSVC Hamiltonian

matrix in diabatic representation [119,120,158]:

H =


T + VX 0 0 0

0 T + VB −V ∗BC VBC′

0 −VBC T + VC 0

0 V ∗BC′ 0 T + VC′

 . (4.1)

Since the {qi} normal modes are taken to be dimensionless, the kinetic energy is simply

de�ned as

T = −~2

2

(
∂2

∂ζ2
R

+
∂2

∂ζ2
X−B

)
− ~

2

∑
i

ωi
∂2

∂q2
i

. (4.2)

Finally, the diagonal and o�-diagonal elements of the potential energy operator are given

by (a,b = X,B,C,C')

Va = Ua(ζR, ζX−B) +
~
2

∑
i

ωiq
2
i +

∑
i

Fa,i(ζR, ζX−B)qi (4.3)

and

Vab =
∑
i

Fab,i(ζR, ζX−B)qi . (4.4)

In Eq. 4.3, Ua denotes the potential energy of the Cartesian reaction surface spanned by

the two LACs (see Fig. 4.1a and Fig. 4.1b). The second term is the potential energy of the

bath oscillators. The last term in Eq. 4.3 is, in terms of vibronic coupling theory, the sum

over the intra-state couplings (tuning modes), where Fa,i are the gradients along the {qi}
modes. The gradients are taken here in linear approximation with respect to the LACs,

Fa(ζR, ζX−B) ≈ Fa(ζR = 0, ζX−B = 0) +
∂Fa
∂ζR

ζR +
∂Fa
∂ζX−B

ζX−B , (4.5)

with FB(ζR = 0, ζX−B = 0) = -4.101, FC(ζR = 0, ζX−B = 0) = -25.96 (in 10−5Eh),
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∂FB/∂ζR = -2.325, ∂FB/∂ζX−B = 3.828, ∂FC/∂ζR = -2.025, and ∂FC/∂ζX−B = 3.603 (in

10−5Eh/a0(amu)−1/2). Notice, that such quantities can be calculated analytically within

the DIM approach. Moreover, since the C and C' PESs are degenerate, all quantities

referring to them are the same.

The o�-diagonal potential energy matrix elements of Eq. 4.4 are the inter-state inter-

actions mediated by the coupling modes and are taken to be the Taylor expansion of the

gradient with respect to ζX−B up to the fourth term. In fact, since they are calculated at

the energetic minimum of the crossing seam (called below c), the derivative with respect

to ζR practically vanishes.

Fab,i(ζX−B) ≈ Fab,i(ζX−B = c) +
4∑
j=1

∂jFab,i

∂ζjX−B
ζjX−B , (4.6)

with

FBC,1(ζX−B = c) = 3.56 · 10−06Eh ,

FBC,2(ζX−B = c) = 1.91 · 10−05Eh ,

∂Fab,1
∂ζX−B

ζX−B = 1.16 · 10−06Eh/a0(amu)−1/2 ,

∂Fab,2
∂ζX−B

ζX−B = 1.69 · 10−06Eh/a0(amu)−1/2 ,

∂2Fab,1
∂ζ2

X−B
ζ2
X−B = 3.46 · 10−08Eh/(a0(amu)−1/2)2 ,

∂2Fab,2
∂ζ2

X−B
ζ2
X−B = 8.17 · 10−08Eh/(a0(amu)−1/2)2 ,

∂3Fab,1
∂ζ3

X−B
ζ3
X−B = 1.53 · 10−09Eh/(a0(amu)−1/2)3 ,

∂3Fab,2
∂ζ3

X−B
ζ3
X−B = 2.15 · 10−09Eh/(a0(amu)−1/2)3 ,

∂4Fab,1
∂ζ4

X−B
ζ4
X−B = 1.20 · 10−11Eh/(a0(amu)−1/2)4 ,

∂4Fab,2
∂ζ4

X−B
ζ4
X−B = 2.33 · 10−11Eh/(a0(amu)−1/2)4 ,

Where again, these gradients have been calculated analytically within the DIM model.

Moreover, projecting them on the normal modes is a useful way to identify the strongest

coupled modes. In the 4D-model in Ref. 158, two coupling modes are identi�ed by pro-

jecting the FBC gradients taken at the minimum of the crossing seam, c, onto the nor-

mal modes. These modes have been selected because they show, within the approxima-

tions employed here, the strongest non-adiabatic e�ects. They are here denoted as q1
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Figure 4.2: Mass-weighted atomic displacement vectors for the vibronic coupling modes q1

(B3g) in panel (a) and q2 (B2g) in panel (b) and the tuning mode q3 (Ag) in panel (c). In
panel (d) the coupling of the ground state normal modes to the X to B transition upon
vertical excitation is shown. The four panels are adapted from Ref. 120
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(~ω1 = 60cm−1 of B3g symmetry) and q2 (~ω2 = 63cm−1 of B2g symmetry) and are shown

in Fig. 4.2a and Fig. 4.2b. Displacements along these two modes lead to conical intersec-

tions (not shown, see Ref. 119,120,158). The coupling of the ground state normal modes to

the B← X transition upon vertical excitation (Franck-Condon), is depicted in Fig. 4.2d and

has been obtained by projecting the FB gradients onto the normal modes [120]. The cou-

pled tuning mode included in the 5D-model [119,120] is denoted here as q3 (~ω3 = 61cm−1

of Ag symmetry). This mode has been selected because it shows, within the approxi-

mations employed here, the strongest displacement upon laser excitation. The respective

displacement vectors are shown in Fig. 4.2c.

The interaction with the laser �eld is included in the model by means of the following

interaction Hamiltonian

Hfield(t) = −µE(t) , (4.7)

where the laser �eld E(t) is linearly polarized along the Br-Br bond and the dipole operator

µ allows for transitions between the X ground and the B and C excited states. The dipole

gradient with respect to ζR [119] is also included in the model and has been adapted from

Ref. 165. The transition dipole moment operators are given by (a = B,C,C')

µXa = µ
(0)
Xa +

∂µXa
∂ζR

ζR , (4.8)

with µ(0)
XC = 0.1953ea0, ∂µXC/∂ζR = −0.01047e(amu)−1/2, µ(0)

XB = 0.15ea0, ∂µXB/∂ζR =

0.01e(amu)−1/2.

For the electric �eld the following form is assumed

E(t) = E0 exp(−t2/2σ2) cos(ωt), (4.9)

with amplitude E0, carrier frequency ω, and width σ.

These 4D and 5D models developed in Refs. 119, 120, 158, have been used to perform

quantum dynamics simulations by using the multi-set formulation within the MCTDH

package (see Sec. 2.4.1) and the harmonic oscillator DVR (see Refs. 28�30, 44, 45 ). Tests

for the convergence of the number of grid points Nk as well as the number of SPFs (Single

Particle Functions, see 2.4.1) used, have been carried out in the corresponding Refs. 119,

120. In particular, the wavepacket dynamics on the excited B state and the relative

nonadiabatic population transfer (predissociation) from the B to the doubly degenerate
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Figure 4.3: Time-dependent reduced B-state densities for (a) the Bromine coordinate
ρ(B)(ζR, t) (isodensity values of 0.001, 0.003, 0.005, 0.007, 0.01, and 0.03), (b) the matrix
coordinate ρ(B)(ζX−B, t) (isodensity values of 0.002, 0.004, 0.006, 0.008, 0.01, and 0.02),
and (c) the tuning mode ρ(B)(q3, t) (isodensity values of 0.001, 0.003, 0.005, 0.007, 0.01,
and 0.03). Panel (d) compares the relative C-state population, Eq. 4.11, of the present 5D
to that of the former 4D model [119], which did not include the tuning mode. The four
panels are adapted from Ref. 120
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C state have been investigated. The vertical excitation from the vibrational ground state

v = 0 of the X state to the Franck-Condon region of the B state has been performed by

using the analytical laser pulse in Eq. 4.9 with resonant frequency ω = 0.092Eh/~, width
σ = 18fs and amplitude E0 = 0.005Eh/(ea0), which corresponds to an intensity I of about

1.8 ·1012Wcm−2, calculated with the following formula:

I = cε0E
2
0 (4.10)

With these conditions, about 8% of the total population is transferred onto the excited

bound state, where the wavepacket is propagated during 2 ps. In order to focus on the

predissociation yield versus propagation time t, the following quantity has been de�ned:

P (t) =
PC(t) + PC′(t)

1− PX(t)
, (4.11)

where Pa(t) is the population of the diabatic a = X,C,C' states and 1 − PX(t) is the

population excited from the X state by the laser pulse, so that �nally P (t) is the rel-

ative population transferred non-adiabatically from the bound to the dissociative in the

gas-phase states. This quantity is shown in Fig. 4.3d for the 4D (dashed line) [119, 120]

and 5D model (solid line) [120]. Both curves show a step-wise behaviour with di�erent

predissociation dynamics at di�erent propagation times. The reason for this behaviour can

be understood from panels (a), (b) and (c) of Fig. 4.3, which show 1D reduced densities

of the wavepacket with respect to the coordinates ζR, ζX−B and q3, respectively. In the

�rst panel the reason for the step-wise predissociation mechanism is disclosed. Each time

the wavepacket passes the crossing seam, nonadiabatic population transfer occurs. A

comparison with panel (b) shows that the predissociation yield is enhanced whenever the

wavepacket passes the crossing seam and at the same time the matrix coordinate ζX−B is

maximally elongated, showing that compression of the cage is a prerequisite for predissoci-

ation, since the B and C states are brought in resonance. Note that the interaction with the

two coupling modes is a function of the ζX−B elongation (not shown, see Refs. 119, 120),

that is, the coupling to the asymmetric cage deformation is enhanced by symmetric com-

pression of the matrix LAC, favouring predissociation. Finally, comparing panels (b) and

(c), the role of the tuning mode is discovered. With respect to the 4D model, which did not

include the q3 mode, the �nal predissociation yield increases. The tuning mode involves

a breathing of the 4 belt-atoms of the cage, as well as the collective matrix coordinate

ζX−B, so that they exchange energy. When the two coordinates are out of phase ( t=750fs

and t = 1700fs), ζX−B is decelerated by the tuning mode and the predissociation yield

is lowered. When the two coordinates are in-phase (t between 1300 and 1400 fs and t

= 1800 fs), ζX−B is accelerated by the tuning mode and the predissociation yield is, in
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Table 4.1: Parameters used for the MCTDH propagation. All coordinates were repre-
sented by a harmonic oscillator discrete variable representation using Nk grid points; the
numbers of SPFs per DOF for the multi-set formulation are given in the last columns for
the respective electronic states (number of SPFs for the non converged result of Fig. 4.7 in
parentheses).

Mode Nk X B C C'

ζR 160 12(6) 12(6) 12(4) 12(4)
ζX−B 160 12(6) 12(6) 12(4) 12(4)
q1 10 4(2) 4(2) 4(2) 4(2)
q2 10 4(2) 4(2) 4(2) 4(2)
q3 65 12(6) 12(6) 12(4) 12(4)

Table 4.2: The �rst and second columns show the vibrational quantum number v from 0 to
10 and the corresponding energy values within the direct product approximation (see text)
representing the vibrationally preexcited initial states. In the third column the respective
laser frequencies for excitation from these vibrational states to the electronically excited
B-state are listed. They have been taken to be the frequencies matching the resonance
condition.

Eigenstate v Eigenvalue E(n=0, v)[Eh] Excitation frequency ω[Eh/~]

0 0.001182 0.0920
1 0.002612 0.0825
2 0.004029 0.0775
3 0.005437 0.0740
4 0.006837 0.0704
5 0.008225 0.0676
6 0.009605 0.0651
7 0.010973 0.0630
8 0.012331 0.0606
9 0.013679 0.0586
10 0.015017 0.0567
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Figure 4.4: The strategy for the enhancement of the population transfer from the B- to the
C-state (predissociation) is shown. The �rst 8 vibrational levels of the X-state potential
are depicted. Their energy values are listed in the second column of Tab. 4.2. Steps 1
and 2 (blue and violet arrows) refer to the Tannor's pump-dump scheme used in order to
populate the vibrational level v = 8 starting from v = 0. This part is accomplished by
the OCT scheme. Steps 3 and 4 (red arrows), respectively, refer to the excitation of the
wavepacket created by the OCT pulse to the B-state and to the subsequent propagation
on it.

turn, higher. In particular, at t = 1800 fs, the energy gap between the B and C states,

modulated by the tuning mode, becomes very small (not shown, see Ref. 120) showing a

decisive enhancement of the predissociation yield with respect to the 4D-model.

Upon vertical Franck-Condon excitation from the vibrational ground state v = 0, the

wavepacket on the B state is energetically about 0.016Eh above the crossing seam at the

�rst passage, so that deformation of the cage matrix is needed in order to bring the B and

C states in resonance and have an e�cient nonadiabatic population transfer, as seen above

in Fig. 4.3. Another way for establishing resonance would be the excitation of a wavepacket

to a lower energy region of the B state. Using a vertical Franck-Condon excitation, this is

possible only by starting from preexcited vibrational states of the electronic ground state.

The next section can be split into three subparts. In the �rst part, the dependence of the

predissociation yield on the starting vibrational levels v = 1−8 in the X state is investigated

(v = 1 has been already investigated in Refs. 119, 120). The starting vibrational levels
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are drawn in Fig. 4.4 and their corresponding values are listed in Tab. 4.2. Enhanced

predissociation is disclosed for excitation from the preexcited vibrational eigenstate v = 8,

motivating the subsequent study. In the second part, the OCT method is applied for the

preparation of the vibrational level v = 8 in the X state. The strategy presented involves

the C state and is labeled in Fig. 4.4 by 1 and 2 and corresponds to the blue (pump) and

violet (dump) arrows. In the third part, the state obtained by the OCT pulse, is used as

the initial state for further investigation of the B-C predissociation, labeled in Fig. 4.4 by

3 and 4, and corresponding to the two red arrows, respectively.

The number of grid pointsNk as well as the number of SPFs used in MCTDH for carrying

out all quantum dynamics calculations are listed in Tab. 4.1. The VMF (Variable Mean-

Field, see Sec. 2.4.1) scheme has been used in combination with an eight-order Burlisch-

Stoer integrator. The maximum of the lowest natural orbital population was well below

10−10.

4.3 Results

4.3.1 Vibrational Preexcitation-Dependent Dynamics

The �rst ten vibrationally excited (stationary) states, from 1 to 10, along the ζR coordinate

have been chosen as the initial states for the investigation of the B-C predissociation, upon

vertical excitation to the B state. They are approximated as direct products of vibrational

eigenfunctions of one-dimensional cuts of the PES along the �ve coordinates,

Ψ(n=0, v=0)(ζR,ζX−B ,q1,q2,q3;t=0) ≈ ψṽζR (ζR)ψṽζX−B (ζX−B)ψṽq1 (q1)ψṽq2 (q2)ψṽq3 (q3)

or

≈ |ṽζR , ṽζX−B , ṽq1 , ṽq2 , ṽq3〉 (4.12)

Thus, the ground state Ψ(n=0, v=0)(ζR,ζX−B ,q1,q2,q3;t=0) = |0, 0, 0, 0, 0〉 in the direct prod-

uct approximation has all quantum numbers equal to zero. The �rst excited state

Ψn=0, v=1(ζR,ζX−B ,q1,q2,q3;t=0) = |1, 0, 0, 0, 0〉 has all quantum numbers equal to zero ex-

cept for ṽζR , and so on. Please note that ṽζR is the only quantum number changed from

0 to 8, whereas the other four ones are always zero, so that from now on, the quantum

number v = ṽζR will be used in order to refer to the vibrational states obtained in the

direct product approximation. The validity of this last approximation was checked only

for the ground state, Ψn=0, v=0(ζR,ζX−B ,q1,q2,q3;t=0) which has been relaxed on the 5 di-

mensional PES. The eigenvalue for the ground state before and after relaxation does not

change within the �rst 6 digits. In Tab. 4.2 the vibrational quantum numbers v and the

energy values E(n=0, v) of the corresponding vibrational states are listed from 0 to 10 in
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the �rst and second columns, respectively. In the third column the corresponding car-

rier frequencies of the laser �elds are listed, which has been used for vertically excite a

wavepacket from those 10 vibrationally states in the electronically ground state X, to the

B-state. They have been taken to be the frequencies matching the resonance condition for

vertical excitation. For all cases the width of the pulse has been σ = 18 fs, the amplitude

E0 = 0.005 Eh/(ea0) and the population transfer to the B state about 8%.

Fig. 4.5 shows the relative nonadiabatic transfer population P (t) in Eq. 4.11 from the B

to the C and C' states for four chosen initial conditions: v = 0, 1, 8 and 10, labeled cases

I, II, III, and IV, respectively. The black curve for case I was already shown in Fig. 4.3

for the 5D model [120] and is now drawn for comparison with the other cases. First, the

predissociation yield decreases as a function of v until v = 5, but then increases to reach

a maximum at v = 8 (case III), after which it decreases again (case IV). The reason for

the decrease of the population yield in case II has already been explained in Refs. 119,120.

Excitation to a lower region of the B-state corresponds to a shorter round-trip for the

wavepacket, so that the matrix cage compression and, consequently, the coupling to the

q1 and q2 asymmetric compressions are reduced, causing a decrease of the predissociation

yield [119,120]. Moreover, the kinetic energy of the wavepacket upon passing the crossing

seam is still too high and can not compensate for the reduced coupling by having better

resonance. This behaviour can be explained in terms of Landau-Zener formula [166�168],
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Figure 4.5: Population dynamics (relative C-state population, Eq. 4.11), for excitation
from di�erent vibrational states in the electronic ground state, (I) v = 0, (II) v = 1, (III)
v = 8, (IV) v = 10. The pulse parameter of the Gaussian pulse have been set to σ = 18
fs, and E0 = 0.005Eh/(ea0). The respective frequencies matching the resonance condition
are listed in Tab. 4.2 in the text.
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PLZ = 1− e−γ with γ =
2πλ2

v∆F
(4.13)

where λ is the coupling matrix element in the diabatic representation, v is the classical

velocity at the crossing point and ∆F is the di�erence in the slopes of the two crossing

diabatic PESs taken to be linear at the crossing point.Thus, the nonadiabatic transfer

probability is proportional to the coupling and inversely proportional to the velocity and

to the slopes at the crossing point. Starting from v = 5, this situation changes and for

v = 8 (case III in Fig. 4.3), the energy of the wavepacket is close to the energy of the

crossing seam of 0.074Eh, corresponding to the fourth vibrational level in the B state.

The energy of the v = 8 level is, in fact, 0.0123Eh, which together with the excitation

energy, 0.0606Eh (see Tab. 4.2) approximately matches the energy of the crossing seam

along the ζR coordinate close to its minimum. The step-like increase of the predissociation

yield results from the small-amplitude vibration of the Br2 coordinate in the B state. The

turning point of the wavepacket propagation is located approximately at the crossing seam,

so that for each round-trip population is transferred to the repulsive states. Finally, by

exciting even closer to the potential minimum, the wavepacket does not reach the crossing

seam anymore and predissociation through the barrier would be possible only by tunneling,

which is, due to the high mass of Br2, practically impossible. Thus, the predissociation

yield dramatically drops.

4.3.2 OCT Preparation of a Vibrationally Excited Ground State

Motivated by these results, the preparation of the vibrationally excited ground state

v = 8 is now attempted. Experimentally, vibrational preexcitation of matrix-isolated het-

erodimers has been demonstrated, for example, for HCl in Kr [169], by direct IR excitation.

However, since Br2 is a homodimer, excitation strategies involving excited electronic states

have to be used in analogy to Tannor's pump-dump scheme [95]. This stimulated Raman

type of excitation has been carried out in experiments on K2 in the gas-phase, where the

ground state wavepackets could be generated with mean quantum numbers ranging from

4 to 18 depending on the laser pulse parameters, such as wavelength and pulse delay [170].

From the theoretical point of view, non-equilibrium ground state distributions have been

generated by vibrational hole burning mechanism in the strong �eld regime [171, 172]. In

contrast, in Refs. [154,155], the goal has been to selectively excite a single vibrational state

in the electronic ground state. This was achieved by means of narrow bandwidth lasers

with durations of picoseconds, which are state-selective within an e�ective one-dimensional

model of Cl2 in Ar.
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In this work, the preparation of the vibrational level v = 8 in the electronic ground state

was achieved by using the OCT method. For this purpose, the operator Ô in Eq. 2.156

of Sec. 2.4.2 has been de�ned as the projection operator Ô = |X, v = 8〉〈X, v = 8| on
the target state. Since in the next step the wave function from the OCT pulse will be

used as the initial state for further investigations of the B-C predissociation mechanism,

the B state as intermediate state for the pump-dump strategy is immediately excluded.

Thus, the choice is reduced to one of the two repulsive C and C' states included in the

already-developed model Hamiltonian used along this work. Note that any other electronic

optically bright state would have been equally well-suited for the present purpose. For the

present choice, however one still has to deal with the part of the wavepacket eventually

left on the C or C' state by the OCT-Pulse. The round-trip of the wavepacket on the

dissociative state is, in fact, approximately 300 fs, which is much shorter than the time

interval of 500 fs chosen below for the B-C predissociation, so that in order to avoid

interferences with the predissociation mechanism to be studied, the population on the C

state is neglected after the OCT pulse is over and the wavepacket in the X-state is re-

normalized. Re-normalization does not a�ect the results presented, since only relative

nonadiabatic population transfer from the B- to the C-state are considered (see Eq. 4.11).

In the Franck-Condon region, the C-state PES is repulsive, and the wavepacket moves

rapidly out of the region where it overlaps with the v = 8 eigenstate. For this reason,

the �nal time T for the OCT pulse, in Eq. 2.156 of Sec. 2.4.2, is chosen to be only 50

fs. The time step is chosen to be ∆t = 0.1 fs. The initial guess �eld has been chosen

as E(t) = E0 sin2(πt/T ) cos(ω0(t − T/2)), with E0 = 0.005Eh/ea0 and ω0 = 0.1099Eh/~,
which corresponds to the vertical transition energy at the minimum of the X state, and is

shown in Fig. 4.6a. In order to obtain a J functional di�erent from 0, a very small penalty

factor (see Eq. 2.156 of Sec. 2.4.2), α0 = 0.000025 e2a2
o/E

2
h, was used for the �rst iteration.

Immediately, upon starting the OCT iteration, the amplitude E0 of the pulse increases

from 0.005 to 0.08 Eh/ea0, and the relative intensity from about 1.8 ·1012 W cm−2 to

about 4.5 ·1014 W cm−2 entering the strong �eld regime (compare panel (a) and (b) of

Fig. 4.6). The penalty factor is increased to α0 = 0.08 e2a2
o/E

2
h for the second iteration

and subsequently kept constant at a value of α0 = 0.1 e2a2
o/E

2
h until the �nal iteration N

= 200. The laser pulses after the second and the �nal iterations are shown in Fig. 4.6c

and Fig. 4.8a, respectively. After one iteration the laser �eld already shows a four pulses

envelope, which does not change appreciably along the 200 OCT iterations, except for their

relative amplitudes.

A convergence study with respect to the number of SPFs is shown in Fig. 4.7. First,

the number of SPFs listed in parentheses in Tab. 4.1 were used. The resulting OCT

yield (dashed line in Fig. 4.7) does not show any monotonic or quadratic behaviour, as

expected from the general scheme of OCT implemented in the MCTDH package (see

Sec. 2.4.2). In contrast, the solid line in Fig. 4.7 shows a monotonic convergence behaviour
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4.3 Results: OCT Preparation of a Vibrationally Excited Ground State

and corresponds to the use of the larger number of SPFs listed in Tab. 4.1. After 200

iterations the change in the J functional becomes rather small.

Fig. 4.8c shows that about 17% of the population is transferred into the target state v = 8

and about one third of the population remains on the C state. This amount of population

left on the C state is neglected later as detailed above. The rest of the population is

distributed over vibrational levels v 6= 8 as demonstrated in Fig. 4.9. The dashed and

solid black lines refer to the population left on the vibrational ground state and the one

transferred on to the target state v = 8, respectively, which has been maximized with

respect to all other vibrationally excited states. An appreciable percentage of populations

(above 5%) are distributed on vibrational levels around the target state; in decreasing

order: v =7, 9, 6, 1, 10, 5 and 11.

Finally, the optimized OCT-pulse generates a vibrational wavepacket in the X state,

whose distribution is, at the �nal time T , centered around the target state v = 8, as

con�rmed by the average occupation number calculated with respect to t,

〈v(t)〉 =
12∑
v=1

vPv(t) , (4.14)

and plotted in Fig. 4.9c (solid black line).
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The reduced 1D-density of the generated wavepacket is shown in Fig. 4.8d. In Fig. 4.8c

the changes of population on the target state and on the C state are plotted together.

Fig. 4.8b shows the XFROG trace (see Ref. 57) of the respective OCT-pulse of panel (a).

The XFROG trace is calculated as

IXFROG(ω, τ) =

∣∣∣∣∫ dtE(t)G(t− τ) exp(−ωt)
∣∣∣∣2 (4.15)

where, G(t) is a rectangular gate function with Gaussian tails, as in Ref. 57. Comparing

panels (b) and (c) the action of the laser pulse can be rationalized. The �rst subpulse is

resonant to the vertical excitation C ← X(v = 0), whose frequency, ω0 = 0.1099Eh/~, is
shown by the upper horizontal black line in Fig. 4.8b. It populates the C state by about

20%, but there is no population of the target state. The second subpulse has a negative

chirp; it excites the C state and stimulates population down to the X state at the same

time. The chirp brings the center frequency down to accomodate the transition energy

from the C to the v = 8 state, whose frequency, ω0 = 0.0966Eh/~, is shown by the lower

horizontal black line in Fig. 4.8b. The action of the third subpulse is rather similar to

that of the second one. Finally, a fourth subpulse being resonant to the X(v = 8)← C

transition captures part of the propagating C-state wavepacket and dumps it down to the

X state.

One should notice that the peak intensity of the OCT �eld of about 4.5 ·1014 W cm−2 is

about 2 orders of magnitude larger than the estimated damage threshold for Br2 in solid

Ar (N. Schwentner, private communication). An attempt to reduce the intensity of the

shaped OCT-�eld by a factor 4 also reduced the control yield, as shown in Fig. 4.9b. The

populations distributed on the vibrational states v 6= 0 dramatically drop (about 2 orders

of magnitudes) and the distribution is clearly dominated by the v = 0 level. However, the

pump-dump-like scheme is not appreciably modi�ed: Still a wavepacket on the X-state is

produced, whose averaged occupation number still corresponds to the target state v = 8,

as shown in Fig. 4.9c by the black dashed line. In other words, the mechanistic aspects of

the proposed control pathway do carry to the regime of lower intensities, as well.

4.3.3 Predissociation Starting From the OCT ground state Wavepacket

The propagation of the ground state wavepacket during the next 500 fs is depicted in

Fig. 4.10a. After the OCT-pulse is over, the wavepacket begins to regularly oscillate with

a period of circa 100 fs. Hence, the ground state wavepacket needs to be promoted to the

B state. The most simple scheme appears to be its excitation whenever the outer turning

points are reached and this for two reasons: First, it is rather compact, and second,
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its maximal displacement allows for the energetically lowest excitation onto the B-state

potential.

This was achieved by a short Gaussian laser pulse, Eq. 4.9, of width σ = 18fs, amplitude

E0 = 0.005Eh/ea0 and frequency ω = 0.0606 Eh/~, which matches the resonance condition

giving the maximum of population of again about 8%. The pulse is centered at 185 fs,

as shown in Fig. 4.10b. The predissociation yield obtained, is �nally shown in Fig. 4.10c

(black solid line) and compared to the case of excitation from the vibrational preexcited

stationary eigenstate v = 8 (solid blue line), see also Fig. 4.5, within the �rst 500 fs.

The predissociation dynamics looks rather similar, that is, one observes steps whenever

the wavepacket arrives at the crossing seam region. Two points should be emphasized.

First, it is surprising that the predissociation yield after 550 fs is almost the same in both

simulations. After all, one compares excitations from rather di�erent initial states, and

optimization of the pulse parameters of the second pulse were not even attempted. Second,

one could, in principle, envisage a simple extension of this control scheme, which consists

of a train of pulses acting each time the wavepacket is located at its outer point.

4.4 Conclusion

The �ve-dimensional RSVC-Hamiltonian model, based on the DIM theory and developed

in Refs. 119, 120, 158, was used here in order to get more insights into the nonadiabatic

population transfer mechanism (predissociation) from the B- to the C-state of the dihalogen

molecule Br2 embedded in a Ar matrix. All nonadiabatic laser-driven quantum dynamics

simulations were based on the MCTDH wavepacket propagation.

In this work a new strategy has been applied for studying the predissociation mechanism,

which could be resumed in the following three stages. In the �rst stage, it has been proved

that excitation to the energetically lower region of the B-state potential permits to create

a wavepacket energetically closer to the B-C crossing seam, which slightly increases the

predissociation yield with respect to the previous studies, Refs. 119,120,158. A systematic

study of the dependence of the predissociation yield on the starting vibrationally preexcited

(stationary) states v = 1− 10 has shown that this resonance condition to the B-C crossing

seam is matched by promoting a wavepacket into the B state from the preexcited vibrational

level v = 8. The energy values of the �rst eight vibrational states are listed in Tab. 4.2 and

are additionally drawn in Fig. 4.4. In the second stage, population on the vibrationally

state v = 8 is achieved by using Optimal Control Theory. The shaped pulse actually

prepares a wave packet in the electronic ground state with dominating v = 8 character, via a

multiple pump-dump-like mechanism involving the electronic C state. This is schematically

depicted by the blue and violet arrows, labeled 1 and 2, in Fig. 4.4. The created wavepacket

oscillates in the X state and is, in the third stage, excited by a simple Gaussian pulse to

the B state. This stage is represented in Fig. 4.4 by the two red arrows, numbered 3 and
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Figure 4.10: (a) Time-dependent reduced X-state density for the Bromine coordinate
ρ(B)(ζR, t) (isodensity values of 0.05, 0.15, 0.25, 0.35, 0.55, and 0.85) after the OCT pulse
is over. (b) Gaussian pulse (σ = 18 fs, E0 = 0.005Eh/ea0, ω = 0.0606Eh/~) promoting
part of the ground state wavepacket to the B state. (c) Predissociation yields (C-state
relative populations, Eq. 4.11) are compared when starting from the stationary eigenstate
v = 8 (blue solid line), see also Fig. 4.5, and when taking the OCT wavepacket in the
X-state as the initial state (black solid line), within the �rst 500 fs.
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4.4 Conclusion

4. Approximately, the same predissociation yield was obtained as for the idealized case

when the stationary vibrational preexcited eigenstate v = 8 is taken as the initial state.

Even though the new strategy enhances the nonadiabatic transfer process, the increas-

ing of the predissociation yield still does not reach the threshold of 5% per round-trip

estimated experimentally from the broadening of zero-phonon lines mentioned in the in-

troduction. One source of error in the model could be the Br-Ar interaction potential used

for calculating the DIM-PESs, which has been extracted from photoelectron spectroscopy.

A further inconvenience in the present strategy lies on the OCT method used in the second

stage, which involves a very intense pulse, not reproducible in a real experiment.

Finally, in more general terms, it must be emphasized that dihalogens in rare gas matrices

lend themselves as laboratories for testing new concepts. They are versatile simpli�ed

models for disclosing basic quantum mechanics phenomena as shown throughout this work.
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5 Structure and Quantum Dynamics of

Cl2 Embedded in Solid H2

5.1 Introduction

The main purpose of this chapter is to get insights on the structure and energetics of a Cl2
molecule trapped in solid hydrogen. In the previous chapter, a Br2 molecule embedded in

an Ar matrix was investigated. In general, cold and well-ordered crystalline systems such

as RG matrices permit to study a wide range of interesting chemical processes, such as

photodissociation of the guest molecules, in detail both in experiment and in theory. At

cryogenic temperatures solid hydrogen shares many properties with the RG matrices. For

example, the individual molecules rotate in their rotational ground state wavefunctions,

which is indeed almost spherical, closely mimicking the RG atoms. Moreover, the inter-

actions between the hydrogen molecules and with doping molecules are also in the van

der Waals regime. However, solid hydrogen shows many quantum e�ects connected to its

lighter mass, such as the high zero-point energy, which make the crystal to be less rigid.

Additionally, under certain conditions, chemical reactions can be observed in situ.

At the end of this chapter, we try to hand over the information needed for future quantum

dynamics simulations of the Cl + H2 -> HCl + H reaction observed in situ by Anderson

and Raston in Ref. 15 when irradiating the system with UV and IR light at the same time.

From the theoretical point of view, this implies many challenges, since practically all pos-

sible degrees of freedom of the reactants have to be considered, i.e. rotations, translations

and vibrations of the hosting hydrogen molecules, and also rotations (or librations), vibra-

tions and translations of the guest molecules. In order to treat this complicated system,

the multi-stage adiabatic separation tool developed in Chap. 2 is applied, which essen-

tially permits to separate most of these DOFs and study them individually at least in an

approximate way.

In the �rst part of this introduction, a review is given about the fascinating features

of pure solid hydrogen. Afterwards, since the many-body system is described in terms of

pair interactions, the second part is dedicated to the H2-H2 pair potential, which has been

widely investigated in the past decades. Finally, in the third part, a review is given about

the use of doped solid hydrogen for matrix isolation spectroscopy.
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In Sec. 5.2, the multi-stage adiabatic separation tool is applied in order to calculate the

H2-H2, D2-D2, H2-Cl2 and D2-Cl2 pair potentials. The theoretical model is detailed and

the corresponding equations for the rotational adiabatization of the H2 molecule in the

rigid-rotor approximation are derived.

In Sec. 5.3, the results are presented. This section is subdivided into three main parts.

In the �rst one, the quantum chemistry calculations are performed. On the way, the pair

interactions are discussed in terms of quadrupole-quadrupole electrostatic interactions.

The resulting rotationally adiabatic pair potentials are �nally �tted to HFD-functions. In

the second part, the pair potentials are used in order to grow pure and doped clusters

by means of classical dynamics. The obtained growth sequences are therefore discussed

before building up the crystal. In the third part, the study on the translational and

rotational DOFs of guest and hosting molecules in the pure and doped matrices within the

Einstein [173] and the Devonshire [174] models are presented. In Sec. 5.4, the main results

are summarized.

5.1.1 H2 Solid Crystal

Molecular hydrogen and its di�erent isotopes form the simplest of all molecular species.

Intensive experimental and theoretical investigation of solid molecular hydrogen only began

in the early 1960s (see for example the review [13]), whereas solid He, the smallest stable

atom of similar mass, has already been studied since the 1930s. One possible reason for

this is that the theoretical treatment of molecular H2 poses more di�culties than that of

atomic He, owing to the rotational and vibrational DOFs of the diatomic molecule.

In the solid phase molecular hydrogen presents many fascinating features mostly con-

nected with its quantum nature. The light mass, in fact, heavily in�uences the condensed

phase properties, as for example its low melting and boiling temperatures of 14.01 and

20.28 K, respectively, at normal pressure. Its phase diagram is rather complicated and

supersolid and metastable metallic phases are expected at high pressures. Nevertheless,

since we are only interested in low pressure properties, all simulations carried out do not

involve pressure.

In the solid state the H2 molecules rotate almost freely, even at T=0 K [13]. The reasons

for this particular behaviour are, on the one hand, the small moment of inertia correspond-

ing to a large molecular rotational constant, on the other hand the weak anisotropic forces

due to the almost spherical distribution of the electronic density. Moreover, because of

the light mass and the weak intermolecular interaction, the system possesses a large trans-

lational Zero Point Energy (ZPE), which conferred to solid H2 (and He) the attribute of

�translational quantum� solid. The large ZPE is also accompanied by a large anharmonic-

ity which explains why the quasi-harmonic theory of lattice dynamics can not be applied

to translational quantum solids [13]. A further consequence of the large ZPE and strong

anharmonicity is the large nearest-neighbour distance (NNd), which becomes 0.3789 nm in
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the limit of 0 K. Based on a hard-sphere model with van der Waals radius of 0.12 nm [175]

for atomic hydrogen and considering the experimental minimum equilibrium distance of

circa 0.074 nm for molecular hydrogen, one may guess the NNd to be around 0.314 nm,

which is about 17% less than the experimental value. Thus, due to the ZPE, solid hydrogen

undergoes a great expansion in each direction. The same model applied on Ar, gives an

expected NNd around 0.376 nm, (0.379 nm within the extended Einstein model of Manz

et al. [176]), with the di�erence that e�ectively the experimental NNd has been measured

to be 0.376 nm [177].

The total wavefunction of an isolated hydrogen molecule may be approximated by the

product of the vibrational, rotational and nuclear spin wavefunctions. Molecular hydrogen

is formed by two indistinguishable protons with nuclear spin IN = 1
2~, that is two fermion

particles. Thus, they are subject to the Pauli's principle and the total wavefunction must be

antisymmetric under exchange of the two nuclei. Seeing that the vibrational wavefunction

is symmetric, either the nuclear spin wave function is antisymmetric (anti-parallel spins)

and the rotational one is symmetric (the rotational quantum number J assumes even

values) or vice versa. In the �rst case the species is termed para-H2 (pH2), whereas in

the second case ortho-H2 (oH2). For the boson deuterium, the situation is simply reversed

since the total wave function has to be symmetric under exchange of the nuclei. Thus, the

rotational quantum number J assumes even and odd values for the ortho-D2 (oD2) and

para-D2 (pD2) species, respectively.

Para and ortho-hydrogen as well as ortho and para-deuterium should be regarded as

di�erent species with di�erent properties. Conversion between them is forbidden in the

case of isolated molecules and very slow in general, because of the small spin coupling term.

In the solid phase at zero pressure, conversion takes place with a constant rate of 1.9%/h

and 0.06%/h for H2 and D2, respectively. Thus, pure samples of them can be prepared

up to a concentration of 99.98% [13], which remain metastable for long enough to permit

suitable experimental investigations.

5.1.2 The (pH2)2 Interaction Potential

Theoretical study of the intermolecular interactions in solids has been and still is a challenge

for scientists. The total interaction energy of a solid can be subdivided in sums over the

n-body interactions as

Etot(N) =
∑
n

En(N) =
∑
i<j

Eij(2) +
∑
i<j<k

Eijk(3) + ... (5.1)

where N is the number of closed-shell particles and n runs from 2 to N . The importance

of the terms in the expansion decreases with the number n of body interactions involved,

whereas the di�culties in calculating them remarkably increases, so that the expansion is

truncated at some value of n where hopefully the results are a good compromise between
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computational feasibility and a reasonable value of the total interaction energy. For certain

systems the three-body interactions can already be neglected, whereas, for example for

RG crystals, they are indispensable in order to �nd the equilibrium fcc structure [3]. The

three-body interactions can be divided in two contributions, the exchange terms, which are

operative at short-distance and have to be considered only in liquid-phase or high density

solids, and the dispersion terms, which are operative at long-distances and whose leading

term is the interaction between the induced-dipoles of three particles, generally evaluated

by the Axilrod-Teller-Muto (ATM) potential [178]. Thus, in the zero-temperature limit,

eventually, the ATM approximately describes the three-body interactions and can therefore

be considered an estimation of the error introduced by neglecting the three-body term in

Eq. 5.1. In the case of Ar, Kr and Xe crystals, the ATM contribution amounts to 7%,

9% and 10% of the cohesive energy [179] and in the case of solid hydrogen it amounts to

10% of the pure pair interactions [13]. Finally, even though the importance of three-body

terms has been largely demonstrated, they have been normally neglected and the total

interaction energy approximated just by the sum over the two-body interactions. By all

means, the study of the (pH2)2 pair potential has been a milestone for the understanding

of the properties of solid pH2 and many e�orts have been made in the last decades by both

the theoretical [180�191] and experimental [13, 192,193] communities.

Please note that in Chap. 4, in the spirit of the DIM model used for calculating the PES

of the Br2@Ar system only two-body interactions have been considered, as well.

Two of the most famous and widely used semi-empirical (pH2)2 pair potentials in the

past decades as well as in this study are the experimental potentials of Silvera-Goldmann

(SG) [13, 192] and Norman-Watts-Buck et al. (NWB) [193]. Both potentials are �tted

to the Hartree-Fock-dispersion (HFD) potential family developed by Ahlrichs et al. [194],

which consists of the sum of an attractive and a replies part

V = Vrep + Vattr = exp[f(R)] +
∑

i=6,8,...

Ci
Ri
× S(R) . (5.2)

Vrep describes the short-range interaction and has in general an exponential form, so that

the energy goes to in�nity when the nuclei approach each other, as expected from Pauli's

principle forbidding two di�erent electrons to occupy the same spin-orbital. Vattr accounts

for the long-range interactions and behaves as some inverse power of the distance R between

the centers of mass. The attractive part is, additionally, multiplied by the switch function

S(R), which attenuates the asymptotic van der Waals (VDW) attraction at short distances.

Both the repulsive and attractive parts arise mainly from the electrostatic interactions

between the molecules and are well established in theory (see for example [195]). Vattr

re�ects the multipole expansion, which is a valid assumption as long as the distance between

two molecules is large compared to the dimension of the molecule (or more precisely to the

dimension of the multi-particle charge-distribution). Moreover, the multipole expansion
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terms become in�nite at the origin, so that the switch function also has the role to cut

them o� at shorter distances. Within this theory, the Ci coe�cients assume a physical

meaning and quantify the contributions from the electrostatic, induction and dispersion

e�ects. Its leading term with n = 6 is the induced dipole -induced dipole interaction.

Neutral, homonuclear molecules, with D∞h symmetry, like H2, D2 and Cl2 (treated

in the next sections) do not possess a monopole or dipole so that the lowest order of

electrostatic interaction between two of these molecules is the quadrupole-quadrupole in-

teraction, which has a R−5 dependence. Since the next symmetry allowed multipole is

the hexadecapole, the next two ones are the quadrupole-hexadecapole and hexadecapole-

hexadecapole interactions, which have R−7 and R−9 dependencies, respectively. Their

orders of magnitude have been guessed here to be never greater than 10−3 kJ/mol. How-

ever, the C5/R
5, C7/R

7 and C9/R
9 terms do not appear in the HFD �tting function by

Norman-Watts-Buck (NWB) and Silvera-Goldmann (SG), since all electrostatic moments

vanish in the case of isolated para-hydrogen and ortho-deuterium molecules in their lowest

rotational state, J = 0. Please note that the C9/R
9 term in the HFD �tting function of

Silvera-Goldmann term refers to the three-body interaction and not to the hexadecapole-

hexadecapole interaction. In the rotational ground state, the average static multipolar

�eld outside the molecule vanishes because all the multiple moments of a spherical charge

distribution are zero, whereas in the state J = 1 the molecule is surrounded by a relatively

strong �eld of mainly quadrupolar nature [14], as shown also in App. 6.3, where such

quadrupole moments have been calculated. As a consequence, electrostatic contributions

are expected to be important only for oH2 (and pD2), whereas for pH2 (and oD2) only

induction and dispersion e�ects play a role. The isotropic part of the (pH2)2 pair potential,

almost exclusively arises from dispersion e�ects (of quantum-mechanical nature), and the

leading terms are the C6/R
6, C8/R

8 and C10/R
10, namely, the induced dipole-induced

dipole, induced dipole-induced quadrupole and induced quadrupole-induced quadrupole

interactions, respectively. These coe�cients have been determined by Meyer by means of

perturbation theory [196].

The SG and NBW potentials are compared later in Fig. 5.14 and show very similar

shapes independently of the inclusion of the three-body term C9, which is approximated

as αC6, with α being the polarizability of pH2. This coe�cient has been determined so

that the e�ective pair interactions, when summed over the lattice, give the same energy

as the true ATM forces [13]. This approach has been recently criticized by Hinde in

Ref. [191], where high level quantum chemistry calculations demonstrate that three-body

exchange (non-ATM) interactions can not be neglected at high densities. The author

justi�es the very good agreement to the experiments to a fortuitous error cancellation of

the neglected non-ATM e�ects and the �t of the repulsive part of the potential to very low

level calculations. Operetto and Pederiva recently computed the pressure-volume curve

at T = 0 K by using the di�usion quantum Monte Carlo method and reported a poor
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agreement with the experimental curve when using the SG potential, whereas a better

agreement is achieved by using the NWB potential when the ATM triple-dipole term is

included explicitly.

From the theoretical point of view the interaction between four nuclei and four electrons

is in principle calculable to high precision from ab-initio approaches. However, since the

interactions are of VDW nature, a very high level of calculation is needed. Thus, from the

�rst calculations of Gallup in 1976 [180], to the �rst accurate 4-dimensional potential of

Deep and Johnson in 1999 [186] about 2 decades passed. In 2008 an even more accurate

4-dimensional potential has been calculated by Patkowski et al. [188], which accurately re-

produces measured thermodynamic properties. In about the same period Hinde published

a 6-dimensional potential at nearly the same level of calculation as Diep and Johnson,

including the intramolecular vibrational DOFs of the two monomers. The agreement of

the rotational and rovibrational infrared spectra with those obtained experimentally, is

impressive. Recently, Hinde also recalculated the isotropic dispersion coe�cients C6, C8

and C10 of the parahydrogen dimer by averaging them over the monomer vibrations [197].

They are compared later in Tab. 5.6 of Sec. 5.3.5 to the ones calculated by Meyer [196]

and along this work.

5.1.3 Doped pH2 Solid Crystal

The many peculiar properties mentioned above make pH2 crystal a very interesting medium

for matrix isolation spectroscopy, as well as for hosting chemical reactions. Matrix isolation

spectroscopy was initiated in the 40's by Lewis [198] and found many interesting applica-

tions in physical chemistry. Because of their chemical inertness and weak perturbation,

Rare Gas (RG) atoms have been mostly used in this �eld (see Chap. 4 or for example [199]).

However, the resolution in RG matrices is limited due to both homogeneous and inhomo-

geneous line broadening, which could, as a consequence, hide some information in the

spectra [6]. Moreover, the rigidity of such matrices limits the study of chemical reactions

at cryogenic temperatures, as strong interactions from the surrounding lattice may distort

the reaction potential surface signi�cantly with respect to those in gas-phase [6]. After

Oka in the 80's demonstrated that enriched pH2 can be used as matrix for IR spectroscopy

with high resolution of ∆v/v < 10−6 [5], many investigations started on pH2 doped with

several molecules [6,7,15,200�206]. The IR spectra of molecules embedded in pH2-crystal

present very sharp linewidths, indicating that the dopants are in well-de�ned rotational

and vibrational quantum states [7]. Moreover, due to the large ZPE, pH2 results in a �soft�

crystal (that is in a high compressibility [176,207]), so that cage e�ects are practically ab-

sent and chemical reactions upon photolysis can be observed in situ, opening a way for the

investigation of chemical processes in condensed-phase and at cryogenic temperatures [7],

as for example, pure tunneling reactions. Isolated hydrogen molecules as well as solid pH2

do not show IR activity, in contrast, absorption is observed in the presence of impurities
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as for example oH2 or other molecules. The interaction with the hosted species, in fact,

induces dipole moments in the neighbouring pH2 molecules, so that the resulting spectra

contain information about the response of the pH2 matrix [7].

Since pH2 in the condensed-phase retain good vibrational and rotational quantum num-

bers, v and J , respectively, the IR spectrum features correlate with well-de�ned rovibra-

tional transitions [7]. Upon absorption due to an impurity, a vibrational coupling based

mechanism delocalised the v = 1 vibrational state, so that the vibrational excitation can

�hop� between neighbouring pH2 molecules. The v = 1 vibrational state is therefore broad-

ened (4 cm−1) and the vibrational exciton is termed vibron after van Kranendonk [14].

Analogously, delocalized rotational excitations are called rotons (see for example [208].

Finally, this vibrational bond energy can be used to induce reactions with reactive species

stabilised in solid para-hydrogen. Solid pH2 possesses, in fact, a property not yet men-

tioned: a thermal conductivity of 50 W m−1 K−1 [6], which is comparable with that of Cu

and is almost one order of magnitude larger than the conductivity of RG crystals [1]. Thus,

solid pH2 stabilises photofragments resulting from photodissociation processes through a

very e�cient dissipation of the excess of energy [6].

Several molecules have been used to dope pH2 for experimental investigations in the

past years. Momose et al. studied the photochemistry of methyl iodide, CH3I, in pH2 [6],

showing that methylradicals and iodine atoms can be stabilised and that upon a new irra-

diation, formation of methane is induced via a three-step reaction mechanism. They also

observed the same chemical reaction via quantum tunneling. Yoshioka et al. [7] investi-

gated pH2 doped with CH3F, CH3Cl and CH3Br, showing that the residual oH2 molecules

in the crystal cluster around the dopant species due to electrostatic interactions between

the non-vanishing quadrupole moment of oH2 and the dipole moment of the dopant. Sim-

ilar clustering e�ects were observed when doping with N2O. Clustering of oH2 molecules

around trans-formic acid embedded in pH2, instead, has been shown by Paulson and An-

derson [205]. Anderson et al. for the �rst time demonstrated a cooperative transition

in pH2 matrices doped with HCl: A single photon excites the rotational motion of the

dopant molecules and the vibrational coordinate of an adjacent pH2 molecule, which are

the condensed-phase analogs of combination bands in VDW clusters [202]. Cyclic wa-

ter hexamer have been observed in solid para-hydrogen by Fajardo et al. [209], who also

recorded spectra of H2O, D2O and HDO molecules in pH2 2 years later [203]. Infrared

spectroscopy of carbon clusters trapped in solid para-hydrogen have been presented by

Miki et al. [201]. Several atomic species embedded in solid para-hydrogen have been also

studied and literature can be found on H, Li, B, C, N, O, Mg, Al, see, for example, the

small review Ref. 210.

Many of the mentioned experiments were stimulated by, or conversely went on to stim-

ulate theoretical investigations, including the present one. Theoretical investigation has

been found in the literature on OCS [211�213], on HF [214�220], on CO [221, 222], on
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O2 [223] as well as on NO2 [224] molecules and on Li [225�230], on Li+ [231, 232] as well

as on B [233] and on O [234] atoms.

The present work was inspired by the experiments carried out in the group of Anderson

on solid pH2 doped with Cl2 molecules [15,204]. In particular, they photolysed the dopant

species and monitored the formation of HCl in situ under di�erent experimental conditions.

In the �rst instance, they irradiated the sample by using a 355 nm UV source exciting the

Cl2 molecules to the dissociative C, 2Πu state and generating Cl∗ atoms almost exclusively

in their spin-orbit ground state 2P3/2. Conservation of energy gives the translational energy

of the photofragments with respect to the laboratory frame

ET =
mCl

mCl2

[Eph −D0] = 48.93 kJ/mol (5.3)

where Eph=337.02 kJ/mol is the photon energy and D0 = 239.22 kJ/mol is the dissociation

energy of Cl2 (X 1Σg).

For this experimental set up, referred to as �only UV�, formation of the product HCl was

not observed. It is known from previous theoretical and experimental studies [235,236] that

in the gas phase the Cl + H2(v=0) -> HCl(v=0) + H reaction is endothermic by about

4.31 kJ/mol. However, even though the translational energy for the Anderson experiment

in H2 crystal is far above the reaction barrier, formation of the product is negligible and

has a probability of PUV = 0.006.

In a second experiment, the sample is simultaneously irradiated by UV + IR sources.

The authors refer to this experimental set up as �UV+IR�, in which production of HCl is

observed with a probability PUV+IR = 0.15. They state that excitation to at least the �rst

vibrational level v=1 of the pH2 matrix is necessary in order to induce reaction, since the

PES presents a late barrier, hence explaining the mechanism in terms of Polanyi rules [86].

In a third experiment, to which they refer as "IR" only, the IR source is used to irradiate

the sample after the UV source is turned o�. Again no signi�cant amount of HCl was

produced, demonstrating that the translational energy of the Cl∗ atoms after photolysis is

rapidly dissipated by the crystal thanks to the high thermal conductivity mentioned above.

Finally, the results for the three experiments can be summarized by the following re-

spective reactions

1 : Cl∗ +H2(v = 0) 9 HCl +H

2 : Cl∗ +H2(v = 1)→ HCl +H

3 : Cl∗ +H2(v = 0)
∆t−→ Cl +H2(v = 0)

IR−−→ Cl +H2(v = 1) 9 HCl +H

(5.4)

where Cl∗ and Cl are the photofragments produced upon UV photolysis with high trans-

lational energy and after the translational energy has been dissipated, respectively.
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Quantum dynamics simulations corresponding to reactions 1 and 2 have been carried out

in the Manz group [16]. Reaction 3 is more di�cult to simulate, since the time needed by

the Cl∗ atoms to relax in the pH2 matrix is too long with respect to the approximation for

which the environment is considered frozen during the �rst 100 fs. Admittedly, the model

involves many approximations. For example, it assumes a single vibrationally excited H2

molecule, instead of a delocalized vibron. Moreover, such H2 is positioned in the �rst

shell of molecules surrounding the dopant, so that the direction of the Cl2 bond is directly

pointing to it. As a consequence, the probability found for the reaction resulted in an upper

limit of the real one. A second approximation lies in the description of the wavefunction of

the reactant H2 molecules in terms of the Einstein model (EM), which is for the �rst time

applied to a �translational quantum crystal� [176]. For this purpose the classical EM has

been extended including anharmonicity e�ects. The e�ective potential has been evaluated

by moving the COM of the H2 molecule along three important crystallographic directions.

The three 1-dimensional cuts of the e�ective potential have been found to be approximately

harmonic within the width of the 1-dimensional wavefunction of H2. Moreover, this all is

assumed to be valid also for the dopant molecule, so that the width of the wavefunction

of the Cl2 molecule is calculated within the harmonic oscillator model from that of the

H2 molecule, to be proportional to the fourth-root of the ratio between the masses of the

two molecules. Additionally, the dimensionality of the problem is reduced to 2 and the

reaction is considered to start from the electronic ground state instead of from the C2Πu

state. Finally, a London-Eyring-Polanyi-Sato (LEPS) PES is used with parameters �tted

to the ab-initio PES of Capecchi and Werner [236] and the total wavefunction entering the

LEPS represented simply by a product of the Cl and H2 wavefunctions.

Nevertheless, this simpli�ed model already elucidates some of the most important and

interesting features of the reaction mechanism involved in the experiment of Anderson. In

particular, reactions 1 and 2 have been explained as consequences of energetic and dynam-

ical e�ects. From the energetic point of view, if one considers the �only UV� experiment,

only about 5.4% of the kinetic energy of the photodissociated Cl atoms are converted into

translational energy available for reaction, whereas the rest is �wasted� as energy of the

COM of the reactive system. This is shown in App. 6.1 and published in Ref. [16], where

the three-body collision kinematic is treated in detail for the special case of photodissoci-

ation. Finally, the main energy of the system, which only consists of this small fraction

of the kinetic energy, is below the reaction barrier height. The �UV +IR� experiment, in

contrast, supplies additional vibrational energy, making the reaction endothermic. From

the dynamical point of view, the experimental results can be explained within an extended

theory of the Polanyi rules, called �interpolated Polanyi rules�. Manz et al., in fact, found

the barrier of the LEPS PES to be neither �early� nor �late�, but actually in between, at

�high noon�, as they termed it. In other words, in order to e�ciently overcome the barrier
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and obtain the products, the total energy must be adequately partitioned in translational

+ vibrational energy, which seems to be the case for the experimental setup in reaction 2.

The present work aims to prepare the ground for the quantum reaction dynamical treat-

ment of the Cl2@pH2 system, i.e. the mechanism of the UV/IR driven reactions observed

in situ by Anderson et al.. It critically reviews some of the assumptions made in Ref. 16

in order to gain a deeper knowledge of the structure and the energetics of the reactants in

the matrix.

The crystal is described in terms of only pair interactions, so that the �rst step involves

the calculation of the (H2)2 and H2-Cl2 pair potentials by means of quantum chemistry

in Sec. 5.3.2. In order to have a compact description of them, the multi-stage AS tool

developed in Chap. 2 is going to be applied, since electronic, vibrational and rotational

DOFs of both molecules have to be in principle considered simultaneously. Finally, the

quantum chemistry PESs are further averaged with respect the hydrogen molecule rotations

(rotational adiabatization), which allows for the calculation of the (pH2)2 and pH2-Cl2 as

well as of the oH2-Cl2, oD2-Cl2, pD2-Cl2 and (in principle also (oD2)2) pair potentials in

Sec. 5.3.3.

The �rst question addressed is which of the close-packed structures is energetically

favoured in the pure and doped crystal, fcc or hcp? It is known that the pure crystal

can be grown both in fcc and hcp symmetries depending on the experimental conditions,

so that near degenerate energies are expected from theoretical simulations. However, the

structure of the crystal in the presence of the impurity has to be thoroughly investigated.

Comparing the magnitude of the dopant molecule and the particularly large NNd of solid

para-H2, the Cl2 molecule is expected to occupy only a single substitutional lattice site, but

no theoretical simulations were still performed to con�rm it. In contrast, Br2 for example

is found to occupy a double substitutional site in the Ar matrix, see Chap. 4. Moreover,

Br2 is found to undergo only small librations around the <110> fcc crystallographic di-

rection: On the other hand the Ar atoms are heavy to be pushed away and Br2 has even a

smaller rotational constant than Cl2. Immediately, another question arises: Along which

crystallographic direction does Cl2 align? Since hydrogen molecules are very light and the

crystal very soft, is the impurity librating or even rotating in the matrix? One step in

this direction, is the investigation of the growth sequences of pure and doped clusters in

Sec. 5.3.6.

In order to perform quantum reaction dynamics on a translational quantum crystal,

sophisticated models must be developed for the calculation of realistic initial wavefunctions

for the reactants H2 and Cl2. The models have to take into account the anharmonicity

originating from the large excursions (translations or external vibrations) from the nominal

lattice position and the rotations of the H2 molecules and, eventually the rotations or

librations (rotational oscillations around a main crystallographic direction) of a solute

molecule. This clearly calls for a quantum mechanical treatment in order to properly
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describe the position of the molecule in terms of distribution functions. Moreover, due to

the high ZPE and to the large lattice constant, translational quantum crystals are highly

compressible [176, 207] and therefore considered to be �soft� matrices. Finally, the high

dimensionality of condensed systems unfortunately makes it di�cult to include all those

properties in an unique model. Anharmonicity was included by Manz et al. in Ref. 16

within the �anharmonic Einstein model�, but the lattice is still treated classically, i.e. with

the nuclei frozen at their nominal lattice positions. Distribution functions for the nuclei

of the lattice are instead included by Ro±ciszewski and Paulus in Ref. 237, within the

�quantum Einstein model�, which, on the contrary, does not include anharmonicity. In the

present work we try to include the softness of translational quantum crystals by simulating

a less rigid environment. This is achieved by extending the anharmonic Einstein model,

so that for the �rst time anharmonicity and high compressibility of solid hydrogen are

considered at the same time.

Investigation of the Cl2 rotations also involves approximate models, which closely recall

the EMs just discussed. The rotational potential felt by the guest molecule in the matrix are

calculated within the Devonshire model (DM) [174] by considering both fcc and hcp rigid

lattices. Similarly to the EMs, the DM is also extended to include a non-rigid environments.

Dynamics of the molecules in the matrix is treated in Sec. 5.3.8, which also includes a

discussion on the validity of the fourth and last AS of translational and rotational DOFs.

5.2 Multi-Stage Adiabatic Separation for Pure and Doped

pH2 Crystals.

Description of the pure pH2 and doped Cl2@pH2 crystals in terms of (at least) the pair

interactions involves the calculation of the (pH2)2 and pH2-Cl2 pair potentials, which is

the aim of this section. Such pair potentials are calculated within the multi-stage AS tool

presented in Chap. 2, so that the many DOFs involved in the pair interactions will be

separated and the validity of the critical AS-stages discussed.

The application of the multi-stage AS tool calls, therefore, for the comparison of the

energy (or frequency) or time scales, in which the di�erent DOFs of the involved species

lie. These data are listed in Tab. 5.1 together with the diatomic constants, where the time

scales are calculated as

TDOF =
h

∆EDOF
(5.5)

with ∆EDOF being the energy di�erence between �rst excited and ground states.

In general, the �rst stage, i.e. the nuclear and electronic AS in Sec. 2.2.3, is considered to

be valid for all species, since the �rst electronic excited states lie well above their respective

108



5.2 Multi-Stage Adiabatic Separation for Pure and Doped pH2 Crystals.

ground states (last three rows in Tab. 5.1) and no electronic laser-driven excitations are

foreseen1. For the subsequent stages, only vibrational and rotational energy scales are

compared, since the translational DOFs enter the model only when considering both species

in the matrix. Moreover, the application of the multi-stage AS must be separately discussed

for the �homomolecular� (pH2)2 and the �heteromolecular� pH2-Cl2 pair potentials. In

order to compare vibrational and rotational energy scales, one also may compare the ratios

between them. These ratios are de�ned as ∆EDOF1=f←i(mol1)
∆EDOF2=f←i(mol2) , where DOF1 and DOF2 can

be either a vibrational or a rotational DOF, and mol1 and mol2 refer to one of the species

considered. Finally, i and f refer to the quantum numbers of the initial and �nal states.

Please note that for para and ortho molecules, since they are two di�erent species, the

ground and �rst excited rotational states are, respectively, J = 0 and J = 2 for pH2 and

oD2, and J = 1 and J = 3 for oH2 and pD2. For instance, the energy scale ratio between

the vibrational DOF of Cl2 and the rotational DOF of pH2 is de�ned as ∆Ev=1←0(Cl2)
∆EJ=2←0(pH2) .

Thus, the bigger the ratio between energy (or frequency, or time) scales, the safer is the

corresponding AS.

Vibrational and rotational frequencies are compared �rst for the isolated molecules. By

analysing the Tab. 5.1, one notes that for Cl2 they are safely separable: The respective

energy scale ratio is 1230, that is a frequency di�erence of more than three orders of mag-

nitude. In turn, for the four species, pH2, oH2, oD2 and pD2, such separation is less

accurate, since the corresponding ratios lie between 7.3 and 17, which means that the

frequencies, at which each of those molecules rotates and vibrates, di�er only about one

order of magnitude. Nevertheless, in all cases we apply the adiabatic separation and con-

sider only the vibrational ground state v = 0. Additionally, the corresponding probability

density function, |Ψ(n,v=0)

int |2 (see Sec. 2.2.4), e.g. Gaussian function, is approximated to

an in�nitely narrow delta distribution centered at the v = 0 vibrationally averaged equi-

librium distances, r̃Cl2 = 〈rCl2〉v=0 = 0.2032 nm, r̃pH2 = 〈rpH2〉v=0 = 0.0757 nm and

r̃oD2 = 〈roD2〉v=0 = 0.0753 nm. At the low temperature of few Kelvin, in fact, only the

vibrational ground state is populated, the probability density distribution of which has its

maximum at the equilibrium distance2. The ground state probability densities were calcu-

lated resulting in nearly Gaussian shapes and the corresponding FWHM are respectively

0.0208, 0.0175 and 0.0103 nm for H2, D2 and Cl2 molecules, that is the 13.5%, 11.5% and

2.5% of the vibrationally averaged equilibrium distances. Thus, the Cl2 vibrational density

function is e�ectively narrow, whereas at a �rst glance the classical approximation may

appear not to be valid for the solvent molecules. However, when separating the vibra-

tional and rotational DOFs, this corresponds to describe the molecules in the rigid rotor

approximation, for which the centrifugal distortion constants are found to be 5 orders of

1This was not the case for the Br2@Ar system in Chap. 4, where we instead went beyond the Born-
Oppenheimer approximation, since non-adiabatic laser-driven processes were investigated.

2Please note that this is exactly the opposite for classical oscillators, where the maximal probability to
�nd the molecule is at the minimum and maximum elongation of the bond.
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Table 5.1: Diatomic constants of H2, D2 and Cl2 are listed in order to compare energy,
∆EDOF, and time scales, TDOF (see Eq. 5.5), of the di�erent DOFs involved.

DOF Species Diatomic Constants[kJ/mol] ∆EDOF[kJ/mol] TDOF[fs]

R
ot
at
io
na
l

pH2 Be = 0.6812 ∆EJ=2←0 = 4.087 97

oH2 Be = 0.6812 ∆EJ=3←1 = 6.812 59

oD2 Be = 0.3498 ∆EJ=2←0 = 2.099 190

pD2 Be = 0.3498 ∆EJ=3←1 = 3.498 114

Cl2 Be = 2.733× 10−3 ∆EJ=1←0 = 5.4× 10−3 72× 103

V
ib
ra
ti
on
al

H2 ωe = 52.65 [8] ∆Eν=1←0 = 49.75 8
ωexe = 1.451 [8]

D2 ωe = 37.27 [8] ∆Eν=1←0 = 35.79 11
ωexe = 7.397× 10−1 [8]

Cl2 ωe = 6.695 [8] ∆Eν=1←0 = 6.632 60
ωexe = 3.194× 10−2 [8]

E
le
ct
ro
ni
c H2 ∆En=1←0 = 1096.97 [8] 0.36

D2 ∆En=1←0 = 1096.94 [8] 0.36

Cl2 ∆En=1←0 = 205.28 [8] 1.94
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magnitude smaller than the respective rotational constants for H2 and D2 and 8 orders of

magnitude for Cl2 [8].

Comparison between the vibrational as well as rotational frequencies of H2 (para and

ortho) and D2 (ortho and para) is not mentioned here, since only solvent-pure crystals are

considered. Moreover, the ratio between their fundamental vibrational frequencies as well

as between the anharmonicity corrections to them are already known from the solutions

to the Morse potential given in Eq. 2.48, that is ωe(H2)
ωe(D2) =

√
2 and ωexe(H2)

ωexe(D2) = 2.

In the case of the pH2-Cl2 dimer the situation is further complicated, since the DOFs of

Cl2 and pH2 have to be considered at the same time, but the idea behind the multi-stage

AS discussed in Chap. 2 remains essentially the same. Solute and solvents rotational en-

ergy scales lie in very di�erent ranges because of the particularly large rotational constant

of H2 and D2. The vibrational energy scales instead only di�er less than one order of

magnitude. However, the most critical point is the adiabatic separation of solute vibra-

tions and the solvent rotations, since their motions happen in a very similar time scale.

Thus, even though the Cl2 vibrational ground state wavefunction is narrow (classical ap-

proximation), the NACTs may be still large due to the very fast H2 and D2 rotations (see

Eqs. 2.49 and 2.52 in Sec. 2.2.4)), so that this is, a priori, probably the weakest point in

the application of the multi-stage AS on the H2-Cl2 and D2-Cl2 dimer systems. The error

introduced by rotational adiabatization will be estimated later in Sec. 5.3.4. In order to

avoid such error an average with respect to the vibrational ground state of Cl2, should

be considered as well, but implies excessive CPU-time, which we cannot a�ord, since the

ab-initio PES should be calculated at di�erent Cl2 bond distances. This has been done

for example on the (H2)2 dimer at a high level of theory by Hinde [197]. Summarizing,

speci�cally for the pH2-Cl2 and oD2-Cl2 dimers, the sequence of ASs can be represented

in terms of the energy scales of the di�erent DOFs as follows:

∆En=1←0(H2/D2) >> ∆En=1←0(Cl2) >> ∆Ev=1←0(pH2/oD2) ≈ (5.6)

≈ ∆Ev=1←0(Cl2) ≈ ∆EJ=2←0(pH2/oD2) >> ∆EJ=1←0(Cl2)

At this point, one can proceed to the rotational adiabatization of the H2 (and D2)

molecules for the calculation of the pair potentials. Since at the temperature of liquid

Helium (less than 4 K), only the rotational ground state is thermally populated, in a �rst

assumption, one expects all pH2 (and oD2) molecules to behave almost isotropically in

solid hydrogen, like in solid Helium. In contrast, anisotropic interactions are expected for

oH2 (and pD2). Consideration of the shape of the pH2 molecules as perfectly spherically

shaped, in fact, notably reduces the computational e�ort of, e.g., dynamical simulations,

since the molecules are then treated as He-like atoms. Under these assumptions, the
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Figure 5.1: The �gure shows the Cartesian coordinate system in the laboratory frame used
in order to carry out the quantum chemistry calculations.
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respective angular distribution functions become those of the free rotor, that is the spherical

harmonics with angular and directional quantum numbers J = 0 and M = 0 (s-like

spherical distribution) and J = 1 and M = −1, 0, 1 (p-like distributions), respectively,

and the pair potential can be obtained by a crude spherical average of the PES on a

surface of a sphere, that is the absolute value of the lowest spherical harmonics function,

|YJ=0,M=0|2 when considering only pH2. This approximation is called here Spherical-

Average-Approximation (SAA) and has been applied in the past in several works, see

for example [221, 224, 234, 238, 239]. Recently Le Roy et al, [240], compared the results

obtained within the SAA to those obtained within an �adiabatic-hindered-rotor� (AHR)

approximation, when applying them to the hydrogen molecule in the case of the pH2-CO2,

pH2-CO and (pH2)2 dimer systems (and on the deuterium molecule for the corresponding

systems with oD2) �nding slightly more accurate PESs. In contrast to the SAA, the AHR

approximation consists in the average of the PES with respect to a basis-set of SHs, which

is complete, in principle, so that it describes also the distortion due to the presence of the

�eld of a second molecule (pair potential). Actually, the di�erent results between the two

methods can be considered as measure of the degree of distortion undergone by the system.

Thus, the more similar are the AHR wavefunctions to the SHs, the more decoupled are

the rotational DOFs. Please note that the AHR approximation is completely equivalent

to the rotational adiabatization applied in the present work within the multi-stage AS.

The pH2-Cl2 and (pH2)2 ab-initio PESs have been calculated referring to the coordinate

system shown in Fig. 5.1. The molecule labeled by A can either be the chlorine or the

hydrogen (or deuterium) molecules, whereas the molecule labeled by B is always hydrogen

(or deuterium). In both cases the position of the four atoms is de�ned by the four angles

θA, θB, φA and φB and the distance RAB between the COM's of the two molecules. The

internal bonds RA and RB of the two molecules are considered rigid and �xed at the

quantum mechanical average values for the respective vibrational ground states (classical

approximation). Consequently, RA can either be r̃Cl2 or r̃H2 , wheres RB = r̃H2 always.

Nevertheless, for both dimer systems, the ab-initio PESs are four dimensional because of

their respective C∞v and D∞h global symmetries, which make them to be dependent only

on the mutual orientations of the planes on which the two monomers lie, which is indeed

expressed by φB −φA. Hence, the ab-initio PESs are de�ned as W (n=0)

A−B (RAB, θA, θB, φB −
φA). Please note that in order to obtain the �nal pair potentials, di�erent procedures

are applied for the two molecular systems: In the case of the H2-Cl2 dimer, the hydrogen

molecule is rotationally adiabatized with respect to �xed values of the parameters RAB,

θA and φA, whereas in the (H2)2 molecular system both the monomers are rotationally

adiabatized with respect to �xed values of the intermolecular distance, RAB.

Let us now derive the equations for the rotational adiabatization of H2 in the H2-Cl2
dimer system. Please note that the H2-Cl2 pair potential is independent of the variable

φA, that is a two dimensional potential is obtained upon adiabatization, but the following
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equations are given in a more general formulation in view of the calculation of rotational

PESs of Cl2 embedded in the crystal, where θA and φA de�ne indeed its orientation. In

the most general formulation the RA and RB parameters should be also included in such

equations, but they are skipped here, since their values are just kept �xed, within the rigid

rotor approximation applied here.

The four-dimensional intermolecular translational-rotational Hamiltonian, in terms of

the notation used in Eq. 2.55 in Sec. 2.2.5, has the following form

Ĥtot = − ~2

2µAB

∂2

∂R2
AB

+
(Ĵ − ĵA − ĵB)2

2µABR2
AB

+BAĵ2
A

+ Ĥrot(∇θB ,∇φB , θB, φB;RAB, θA, φA) , (5.7)

where A and B are Cl2 and H2, respectively. The �rst and the second term in the former

equation are the translational and the rotational Hamiltonians with respect to the COM

of the dimer. µAB is the reduced mass of the dimer, (Ĵ − ĵA − ĵB)2 = λ̂2 is the angular

momentum operator for the rotation of the dimer with respect to the intermolecular axis,

RAB. Ĵ is the total angular momentum operator and ĵA and ĵB are the angular momentum

operators of the two single molecules. The third term �nally is the rotational Hamiltonian

of the hydrogen molecule, the solution of which will give us the rotationally adiabatic

H2-Cl2 pair potential. Please note that by splitting the Hamiltonian in two parts, i.e.

the translational and rotational DOFs with respect to the dimer COM from the rotational

DOFs of the H2 molecule, an AS has been applied to the system, where, recalling Sec. 2.2.5,

the �rst three terms of Eq. 5.7 represent the heavy or slow Hamiltonian depending only

on RAB, θA and φA, and Eq. 5.8 represent the light or fast Hamiltonian depending on θB
and φB, but parametrically also on RAB, θA and φA. Following the notation in Sec. 2.2.5,

the rotational Hamiltonian is de�ned as

Ĥrot(∇θB ,∇φB , θB, φB;RAB, θA, φA) = BB ĵ2
B +W (n=v=0)

H2−Cl2
(RAB, θA, θB, φB − φA) , (5.8)

where the parameters {RAB, θA, φA}, the variables {θB, φB} and the potential W (n=v=0)

H2−Cl2

(RAB, θA, θB, φB −φA) correspond respectively to the parameter ~Rtra, the variables {θ, φ}
and the potential V̂rot(θ, φ; ~Rtra) = W (n,v)

ext (~Rext) in Eq. 2.59. The quantum numbers (n =

v = 0) specify that the system is in its electronic and vibrational ground state. The validity

of this AS has to be still proved along this work and will tell us how strongly coupled those

DOFs eventually are. Finally, a two-dimensional (light) TISE for the rotational Hamilton

operator in Eq. 5.8 is solved for every (RAB, θA, φA)-con�guration averaging out θB and
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φB, namely

(Ĥrot(∇θB ,∇φB , θB, φB;RAB, θA, φA) − E(n=v=0, l)

rot (RAB, θA, φA))× (5.9)

× ψ(n=v=0, l)

H2−Cl2
(θB, φB;RAB, θA, φA) = 0

where l is the rotational quantum number. The rotational wavefunction in Eq. 5.10 is

hence expanded in terms of spherical harmonics

ψ(n=v=0, l)

H2−Cl2
(θB, φB;RAB, θA, φA) =

Jmax∑
J=0

J∑
M=−J

c
(l)
J,M(RAB, θA, φA)YJ,M(θB, φB) (5.10)

with [241],

YJM(θB, φB) =

√
(2J + 1)

(J −M)!

(J +M)!
PM
J (cos θB) eiMφB for M ≥ 0 (5.11)

where PMJ (cos θB) is an associated Legendre polynomial. It is interesting to show that the

SHs obey the following symmetry-law [241]:

YJ(−M)(θB, φB) = −

√
(2J + 1)

(J −M)!

(J +M)!
PM
J (cos θB) e−iMφB = −YJM(θB, φB) . (5.12)

In order to solve the two-dimensional TISE, let us multiply Eq. 5.8 by the left by

ψ∗(n=v=0, l)

H2−Cl2
(θB, φB;RAB, θA, φA), so to obtain the matrix, ĤJ′,M′,J,M

rot (θB, φB;RAB, θA, φA),

which is the sum of a diagonal matrix from the kinetic energy operator of the free rotor

(see Eq. 2.73) and a full potential energy matrix with elements

W (J′,M′,J,M)

H2−Cl2
(RAB, θA, φA) =

1

4π

∫ π

0
sin θBdθB

∫ 2π

0
dφB × (5.13)

× W (n=v=0)

H2−Cl2
(RAB, θA, θB, φB − φA)×

× Y ∗
J′M′(θB, φB)YJM(θB, φB)

sin θB dθB dφB representing the in�nitesimal surface element of a sphere. Since d cos θB
dθB

=

sin θB, this integration can be conveniently rewritten in terms of cos θB,
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W (J′M′JM)

H2−Cl2
(RAB, θA, φA) = N

∫ 1

−1
d cos θB

∫ 2π

0
dφB W (n=v=0)

H2−Cl2
(RAB, θA, θB, φB − φA)×

×PM′
J′ (cos θB)PM

J (cos θB) ei(M−M
′)φB (5.14)

with

N =
1

4π

√
2J + 1

(J −M)!

(J +M)!

√
2J ′ + 1

(J ′ −M ′)!
(J ′ +M ′)!

(5.15)

Since Eq. 5.10 will be solved separately for the para and ortho species of molecu-

lar hydrogen, two di�erent matrices are diagonalized, that is Ĥ(J′,M′,J,M)

pH2−Cl2
(RAB, θA, φA)

and Ĥ(J′,M′,J,M)

oH2−Cl2
(RAB, θA, φA), respectively for even and odd values of J. The eigenvalues

E(n=v=0, l)

rot (RAB, θA, φA) for each of the (RAB, θA, φA) con�gurations de�ne the adiabatic

PES, W (n=v=0, l)

H2−Cl2
(RAB, θA, φA), describing the interaction of pH2 and oH2 with the Cl2

molecule, respectively, and l de�nes a new quantum number, running over the resulting

rotationally adiabatic PESs. The resulting potentials are grouped with respect to their

asymptotic limits, given by the free rotor kinetic energies (in units of B), 0, 2, 6, 12,

etc., which are one-, three-, �ve-, seven-fold, etc., degenerate. Thus, the energetically

lowest PES, W (n=v=0, l=0)

H2−Cl2
(RAB, θA, φA) (resulting from the diagonalization of Ĥ(J′,M′,J,M)

pH2−Cl2
)

describes the interaction between chlorine molecule and the pH2 species in its rotational

ground state and the �rst three PESsW (n=v=0, l=1,2,3)

H2−Cl2
(RAB, θA, φA) (resulting from the diag-

onalization of Ĥ(J′,M′,J,M)

oH2−Cl2
) describe the interactions between the chlorine molecules and the

oH2 species in its lowest three states. Please note that the same applies to the D2-Cl2 sys-

tem, except for the di�erent masses involved, so that W (n=v=0, l=0)

D2−Cl2
(RAB, θA, φA) describes

the interaction between chlorine molecule and the oD2 species in its rotational ground state

and the �rst three PESsW (n=v=0, l=1,2,3)

D2−Cl2
(RAB, θA, φA) describe the interactions between the

chlorine molecules and the pD2 species in the three lowest states.

After the rotational adiabatization, the Hamiltonian in Eq. 5.7 is e�ectively reduced to

Ĥ(l) ≈ − ~2

2µAB

∂2

∂R2
AB

+
(Ĵ − ĵA)2

2µABR2
AB

+BAĵ2
A +W (n=v=0, l)

H2−Cl2
(RAB, θA, φA) . (5.16)

The equations relative to the rotational adiabatization of H2 in the (H2)2 dimer system

are just an extension of the previous ones, since simultaneous adiabatization of the two

monomers is involved. The total rotational-translational Hamiltonian is now
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Ĥtot = − ~2

2µAB

∂2

∂R2
AB

+
λ̂2

2µABR2
AB

+ (5.17)

+ Ĥrot(∇θA , θA,∇φA , φA,∇θB , θB,∇φB , φB;RAB)

where again the �rst two terms build up the slow (or heavy) Hamiltonian, and the third

term the fast (or light) Hamiltonian, so that following the notation in Sec. 2.2.5 the rota-

tional Hamiltonian reads:

Ĥrot(∇θA , θA,∇φA , φA,∇θB , θB,∇φB , φB;RAB) = BAĵ2
A +BB ĵ2

B + (5.18)

+ W (n=v=0)

(H2)2
(θA, θB, φB − φA;RAB)

where the parameter RAB and the potential W (n=v=0)

(H2)2
(θA, θB, φB − φA;RAB) correspond

respectively to ~Rtra and W (n,v)

ext (~Rext) in Eq. 2.55.

The TISE to be solved is now four-dimensional and will average out the couples of polar

angles of the hydrogen molecules.

(Ĥrot(∇θA , θA,∇φA , φA,∇θB , θB,∇φB , φB;RAB) − E(n=v=0, l)

rot (RAB))× (5.19)

× ψ(n=v=0, l)

(H2)2
(θA, φA, θB, φB;RAB) = 0

The adiabatic wavefunction is expanded by using the product of two sets of SHs, namely

ψ(n=v=0, l)

(H2)2
(θA, φA, θB, φB;RAB) =

Jmax∑
JA=0

JA∑
MA=−JA

Jmax∑
JB=0

JB∑
MB=−JB

(5.20)

c(l)
JA,MA,JB,MB

(RAB) × YJA,MA(θA, φA)× YJB,MB (θB, φB)

so that the full potential energy matrix involves the four pairs of quantum numbers J ′A,

M ′A, JA, MA, J ′B, M
′
B, JB, MB:

W

(
J′AM

′
AJ
′
BM
′
B

JAMAJBMB

)
(H2)2

(RAB) = NA ×NB

∫ 1

−1
d cos θA

∫ 1

−1
d cos θB

∫ 2π

0
dφA

∫ 2π

0
dφB

W (n=v=0)

(H2)2
(RAB, θA, θB, φB − φA)

P
M′A
J′A

(cos θA)P
M′B
J′B

(cos θB)P
MA
JA

(cos θA)P
MB
JB

(cos θB)

ei(MA−M ′A)φA ei(MB−M ′B)φB (5.21)
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Thus, for the case of two para-Hydrogen molecules, the initial rotational-translational

Hamiltonian of Eq. 5.18 is now reduced to just one dimension.

Ĥ(l) ≈ − ~2

2µAB

∂2

∂R2
AB

+
l̂2

2µABR2
AB

+W (n=v=0, l)

(H2)2
(RAB) (5.22)

Once the TISE is solved for each of the RAB distances, the lowest eigenvalue, l = 0, de�nes

the one-dimensional isotropic interaction potential between two para-hydrogen molecules

in their rotationally adiabatic ground state. Please note again that, except for the di�erent

masses involved, the same applies to the (oD2)2 system.

In general, the weaker the NACTs are, the more the rotationally adiabatic ground state

wavefunctions will resemble the �rst spherical harmonic YJ=0,M=0, which is independent of

θ and φ, or a product of two of them, YJA=0,MA=0 ·YJB=0,MB=0, respectively for the pH2-Cl2
and (pH2)2 systems. This is expected to be the case for the pH2 dimer, since the interaction

at the minimum of the pair potential of approximately 0.28 kJ/mol is very weak compared

to the rotational energy spacing of 4.087 kJ/mol (see also Tab. 5.1):

ψ(n=v=0, l=0)

(H2)2
(θA, φA, θB, φB;RAB) ∝ YJA=0,MA=0(θA, φA) · YJB=0,MB=0(θB, φB) (5.23)

for each of the RAB distances. In contrast, in the SAA the ground state wavefunctions

are taken just to be the �rst spherical harmonic or the respective product of two of them,

ignoring the couplings to higher SHs, as already mentioned above.

5.3 Results

All quantum chemistry calculations have been carried out by using the quantum chemistry

methods presented in Chap. 2.3 by means of the MOLPRO program package [242�252].

The bond distances of the two molecules were �xed at the quantum mechanical average

values for the respective vibrational ground states: r̃Cl2 = 〈rCl2〉v=0 = 0.2032 nm, r̃pH2 =

〈rpH2〉v=0 = 0.0757 nm and r̃oD2 = 〈roD2〉v=0 = 0.0753 nm. The electronic ground state

curves have been calculated at the CCSD(T):aug-cc-pV5Z and Full-CI:aug-cc-pV6Z levels

of theory, respectively. 3

For all calculations, the Basis-Set Superposition Error (BSSE) was handled by using

the a posteriori counterpoise (CP) method introduced in the famous paper by Boys and

3Please note the notation �METHOD:BASIS-SET� adopted from now on.
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Bernardi [253]. The BSSE becomes signi�cant for systems bound through hydrogen bond

or VDW interactions, like in the systems investigated here. Interaction energies between

two atoms or molecules A and B are typically calculated as the energy di�erence between

the product complex AB and its components A and B:

Einteraction = E(AB, rc)− E(A, ra)− E(B, rb) (5.24)

where the label rc indicates the geometry of the product complex AB, while ra and rb

indicate the geometries of the separated reactants. The BSSE originates from the fact that

the wavefunction of the monomer is typically expanded in much fewer basis functions than

the wavefunction of the complex. Strictly speaking, the use of an in�nite basis-set would

prevent such an error, so that the BSSE in more general terms originates from the use of

a �nite basis-set. The CP interaction energy is therefore computed as:

Einteraction = E(AB, rc)
AB − E(A, ra)

AB − E(B, rb)
AB (5.25)

where the superscript AB indicates that the complex as well as the separate components

are calculated in the absolute basis.

5.3.1 Basis-set Convergence

The basis-set convergence test has been carried out only on six particular highly sym-

metric geometries of the H2-Cl2 complex, which are shown in Fig. 5.2. For each of these

con�gurations, the PES curve has been calculated by using the following basis-sets: The

aug-cc-pVTZ, cc-pVQZ, aug-cc-pVQZ, cc-pV5Z and aug-cc-pV5Z. Single point calcula-

tions with the aug-cc-pV6Z basis-set were carried out, but they appeared to be prohibitive

for complete scans of the surfaces.

Fig. 5.3 shows the curves calculated at two di�erent levels of theory, the CCSD (dashed-

line) and the CCSD(T) (solid-line) methods. For all con�gurations, the curves obtained

with the CCSD method underestimate the binding energy and lie well separated above

the corresponding CCSD(T)-curves independently of the basis-set used. Moreover, the

use of the augmented basis-set is found to be essential for an accurate description of the

VDW interactions involved, so that only those curves are shown. The aug-cc-pV5Z almost

converge to the extrapolated complete basis-set limit, with respect to which the relative

errors are also given in Fig. 5.3. Errors between 2.7% and 4.3% occur depending on the

con�guration considered.
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Figure 5.2: The six highly symmetric geometries taken into account for the �rst calculation
of the H2-Cl2 pair interaction. Four of them, namely the H-, T1-, T2- and X-con�gurations
take their names from their geometrical dispositions in the space, whereas the other two
take the names from the word used to name them, L-form comes from �Linear�and S-form
comes from �Slipped�, respectively.
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Table 5.2: The two pairs of angles corresponding to each of the six highly symmetric
con�gurations are listed referring to the Cartesian coordinate system depicted in Fig. 5.1.

Con�guration θA φA θB φB G(θA, θB, φB − φA)

Parallel or H 90◦ 0◦ 90◦ 0◦ +9
4

T 90◦ 0◦ 0◦ 0◦ −3

X 90◦ 0◦ 90◦ 90◦ +3
4

Linear or L 0◦ 0◦ 0◦ 0◦ +6

Slipped or S 45◦ 0◦ 45◦ 0◦ −2 7
16

A similar trend is discovered in Fig. 5.3 (see also Fig. 5.4 top-left for an overlook)

for the H-, T1-, and X-con�gurations, respectively. They have similar binding energies

between -1.58 and -1.29 kJ/mol and similar equilibrium distances of approximately 0.35

nm. In contrast, the T2- and L-con�gurations exhibit very di�erent behaviour: the L-

con�guration is much less bounded and has a minimum geometry at a larger distance of

0.44 nm, whereas the T2-one is the most stable complex at a distance of 0.40 nm. A

partial explanation lies in the symmetry of these 5 con�gurations, which can be divided

in two main groups: the �Collinear�, where the Cl-Cl bond lies on the line connecting the

two centres of mass and the H2 molecule essentially interacts only with one Cl atom, and

the �Non-Collinear� symmetry group where the Cl-Cl bond is perpendicular to the same

line. The Slipped con�guration can be placed in between the two groups, even though, the

equilibrium distance is more similar to those of the �Collinear� group.

The same calculations have been carried out for the (H2)2 complex at the CCSD(T):aug-

cc-pV5Z level, but only for �ve di�erent highly symmetric con�gurations, since now T1

and T2 are degenerate and the con�guration is simply called T. These curves are shown all

together in the top-right panel of Fig. 5.4. A comparison of the two top panels highlights

two di�erent energy scales for the two dimers. The H2-Cl2 potential depths are about

�ve times deeper than the corresponding (H2)2 ones. Moreover, the equilibrium distances

are much more homogeneous in the second system con�rming almost spherical electronic

density. Only for the (H2)2 linear con�guration a slightly shorter equilibrium distance is

observed.
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Figure 5.3: H2-Cl2 ab-initio potential energy curves in the electronic ground state cal-
culated within the CCSD (dashed lines) and CCSD(T) (solid lines) methods for the
highly symmetric con�gurations X, H and T1 (top/middle/bottom left) and L, T2 and S
(top/middle/bottom right) with internal bond distances �xed at r̃H2 = 〈rH2〉v=0 = 0.0757
nm and r̃Cl2 = 〈rCl2〉v=0 = 0.2032 nm. The colour code denotes the use of three di�erent
basis-sets. The basis-set limit was calculated for the CCSD(T) curves at the equilibrium
distances by using Eq. 2.94.
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Most of the features in Fig. 5.4 can be interpreted in terms of quadrupole-quadrupole

(QQ) electrostatic interactions typical between linear neutral homonuclear molecules. Since

they are simple to calculate, let us compare them to the already calculated ab-initio PES

curves. The formula for the calculation of the QQ interaction is found in literature [195]

and reads:

UQAQB
=

QAQB
4πε0R5

×G(θA, θB, φB − φA) (5.26)

with the angular-dependent function G(θA, θB, φB − φA) being

G(θA, θB, φB − φA) =
3

4
[1− 5 cos2 θA − 5 cos2 θB − 15 cos2 θA cos2 θB +

+ 2(4 cos θA cos θB − sin θA sin θB cos(φB − φA))2]

QA and QB are the z-components (along the bond axis) of the quadrupole tensors of

the molecules involved, hence, QH2 = 0.4252ea2
0 or QCl2 = 2.4704ea2

0, which have been

calculated at the CCSD(T) level of theory and using the very large basis-set aug-cc-pV6Z

at the equilibrium bond distances r̃H2 = 〈rH2〉v=0 and r̃Cl2 = 〈rCl2〉v=0, de�ned above.

The two couples of polar angles refer to the Cartesian system shown in Fig. 5.1 and

their values are given in Tab. 5.2 for the �ve particular con�gurations. By substituting

them into Eq. 5.26, �ve di�erent values are obtained for the angular-dependent function,

G(θA, θB, φB − φA), which are listed in the last column of the same table (see also [195]).

The QQ electrostatic interactions for the two systems, (H2)2 and H2-Cl2, are plotted

in the bottom-left and bottom-right panels of Fig. 5.4, respectively, together with the

respective ab-initio curves (top-left and top-right, respectively). The QQ-interaction curves

all start from a minimum distance, which has been calculated on the base of a very simple

model, here called hard-sphere. Consider the atoms involved to be hard spheres with

the VDW radii tabulated in Ref. 175. These minimum distances correspond to the RAB
separations, when the hard spheres are brought into contact. They are therefore called

VDW minimum distances and compared with the equilibrium distances from the ab-initio

curves. The VDW minimum distances are depicted in Fig. 5.2 by the red dashed lines.

Below this distance, since the hard spheres cannot overlap, the energy goes to in�nity.

In spite of its simplicity, this model already correctly reproduces many of the trends

obtained with the ab-initio methods. First of all, since both molecules have a positive

quadrupole moment along the internuclear axis, the energetic order of the QQ-interactions

for the di�erent con�gurations remains the same for H2-Cl2 and (H2)2. Please note that

under consideration of the QQ-interaction only, QQ(T1) and QQ(T2) are completely de-

123



5 Structure and Quantum Dynamics of Cl2 Embedded in Solid H2

−2.5

−2

−1.5

−1

−0.5

0

0.5

 H −>R
AB

eq
= 0.33 nm

 L −>R
AB

eq
= 0.45 nm

T1 −>R
AB

eq
= 0.35 nm

 X −>R
AB

eq
= 0.34 nm

 S −>R
AB

eq
= 0.43 nm

T2 −>R
AB

eq
= 0.40 nm

E
H

2
−

C
l 2

(n
=

v
=

0
)  [

k
J
/m

o
l]

−1

−0.5

0

0.5

1

QQ(H)  −>R
AB

eq
=0.288 nm

QQ(L)  −>R
AB

eq
=0.434 nm

QQ(T1) −>R
AB

eq
=0.314 nm

QQ(X)  −>R
AB

eq
=0.274 nm

QQ(S)  −>R
AB

eq
=0.412 nm

QQ(T2) −>R
AB

eq
=0.349 nm

U
Q

C
l 2

−
Q

H
2

 [
k
J
/m

o
l]

0.2 0.3 0.4 0.5 0.6 0.7 0.8
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

H −>R
AB

eq
= 0.36 nm

L −>R
AB

eq
= 0.37 nm

T −>R
AB

eq
= 0.34 nm

X −>R
AB

eq
= 0.35 nm

S −>R
AB

eq
= 0.34 nm

R
AB

 [nm]

E
H

2
−

H
2

(n
=

v
=

0
)  [

k
J
/m

o
l]

0.2 0.3 0.4 0.5 0.6 0.7 0.8
−0.4

−0.2

0

0.2

0.4

0.6

QQ(H) −>R
AB

eq
=0.24 nm

QQ(L) −>R
AB

eq
=0.314 nm

QQ(T) −>R
AB

eq
=0.274 nm

QQ(X) −>R
AB

eq
=0.234 nm

QQ(S) −>R
AB

eq
=0.287 nm

R
AB

 [nm]

U
Q

H
2

−
Q

H
2

 [
k
J
/m

o
l]

Figure 5.4: H2-Cl2 (top-left) and (H2)2 (bottom-left) ab-initio potential energy curves
calculated respectively for the 6 and 5 highly symmetric con�gurations shown in Fig. 5.2
at the CCSD(T):aug-cc-pV5Z level of theory, are compared to the corresponding QQ-
interactions (top-right and bottom-right). The intermolecular distances ReqAB from which
the QQ-interactions are calculated are based on the simple hard-sphere model.

generate. Moreover, this order is well conserved also in the ab-initio curves, even if for

the H2-Cl2 dimer it is necessary to zoom in close to the asymptotic limit, where quantum

mechanical e�ects (or dispersion e�ects) are still negligible. The order of the VDW minima

are also very well predicted for the L-, S-, and T- (T1- and T2-) con�gurations, whereas

for both dimers, the H- and X-con�gurations are not. Those con�gurations can de�nitely

get closer in the hard-sphere picture, than in the Quantum Mechanical one. The bind-

ing energies for the X-,H- and L- con�gurations all exclusively originate from dispersion

e�ects, since the QQ-interaction is repulsive. Finally, the dispersion e�ects are de�nitely

much more important for the complex involving the chlorine molecule, which is much more
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polarizable, as disclosed when comparing the di�erence between the energy scale of the

QQ- and of the ab-initio-curves separately for each dimer.

5.3.2 Calculation of the Multi-Dimensional PESs

The two four-dimensional H2-Cl2 and (H2)2 PESs have been calculated at 36 and 37 di�er-

ent RAB distances between 0.17 and 0.95 and 0.27 and 0.95 nm, respectively. Additionally,

19 equidistant angles between 0◦ and 90◦ have been chosen to represent θA in the former

case. The sets of angles corresponding to the rotation of one H2 monomer have been taken

to be the Gaussian-Legendre Discrete Variable Representation (DVR) grid points, so that

the average of the PESs with respect to the rotational states of each hydrogen monomer

was evaluated with a Gaussian-Quadrature (GQ), see App. 6.2. In particular, the grid

consists of 8 × 16 points along the cos θB and φB angle, as well as along cos θA and φA
in the case of two hydrogen molecules, which run from 1 to -1 and from 0◦ to 360◦, re-

spectively. In total, the electronic SE has to be solved for 36 × 19 × 8 × 16=87552 and

37× 8× 16× 8× 16=606208 di�erent geometrical con�gurations for the H2-Cl2 and (H2)2
molecular systems, respectively. Additionally, in view of calculating counterpoise energy

points, for each of those geometrical con�gurations the SE has to be solved three times.

Even though the number of con�gurations to be calculated for the homomolecular dimer

system is almost 10 times greater than for the other one, it only involves four electrons,

so that the high level of theory CCSD(T) could be chosen and the results extrapolated to

the complete basis-set from the large aug-cc-pVTZ and aug-cc-pVQZ by using Eq. 2.94

in Sec. 2.3.2. In contrast, for the pH2-Cl2 dimer a lower level of theory has been used,

since now the dimer system has 34 electrons and the CCSD(T) method revealed itself to be

highly CPU consuming. With four Intel(R) Xeon(R) CPU's (2.33GHz) running in parallel,

the calculation of the PES at each of the geometrical con�gurations, (RAB,θA), takes about

1.5 h and 2.5 h when using the aug-cc-pVQZ and aug-cc-pV5Z basis-sets, respectively, so

that circa 15 and 25 years would be needed in order to calculate the entire surface when

using only one of such machines. For this reason, the previous highly symmetric pair po-

tential curves have been recalculated by using the MP2 method with di�erent basis-sets

and then compared with them calculated at the CCSD(T):aug-cc-pV5Z as well as with at

the CCSD(T):extrapolated level of theory. It is known from literature that the Møller-

Plasset method of 2nd order (MP2) based on the perturbation theory (see Sec. 5.3.2) gives

good results and is very competitive from the CPU-time point of view (0.28 h for one point

on the PES). Fig. 5.5 compares the PES curves obtained with the CCSD(T):aug-cc-pV5Z

method with the MP2:aug-cc-pVQZ as well as the MP2:aug-cc-pV5Z methods. The basis-

set limits at the minima of the curves calculated in the previous section are also re-shown

and the errors are given in percent with respect to them. The errors lie between -9.7%

and 9.5%, depending on the basis-set used and the con�guration considered. Negative

or positive values correspond to an over- or underestimation of the binding energies, re-
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Figure 5.5: H2-Cl2 ab-initio potential energy curves in the electronic ground state cal-
culated within the MP2:aug-cc-pVQZ and MP2:aug-cc-pV5Z methods are compared to
the CCSD(T):aug-cc-pV5Z curves for the highly symmetric con�gurations X, H and T1
(top/middle/bottom left) and L, T2 and S (top/middle/bottom right) with internal bond
distances �xed at r̃H2 = 〈rH2〉v=0 = 0.0757 nm and r̃Cl2 = 〈rCl2〉v=0 = 0.2032 nm. The
error with respect to the basis set limit extrapolated within the CCSD(T) method is given
in percent.
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spectively. Both the MP2:aug-cc-pVQZ and MP2:aug-cc-pV5Z curves in all cases lie very

close to those calculated with CCSD(T):aug-cc-pV5Z, so that �nally the smaller basis set

has been chosen, as the CPU time will also be considerably shorter. Furthermore, the

MP2:aug-cc-pVQZ curves are almost equally distributed around the CCSDT:aug-cc-pV5Z

ones through the con�gurations, so that one could argue a cancellation of the error after

rotational adiabatization. Later in this work, a counter check of our choice of the basis-set

is provided for the H2-Cl2 complex at θA = 0◦, 45◦, and 90◦ (see Sec. 5.13).

5.3.3 Rotational Adiabatic Separation: Numerical Treatment

Once the ab-initio PES has been computed at the Gauss-Legendre DVR points, the GQ

scheme is applied and Eqs. 5.14 and 5.21 are numerically integrated:

W

(
J′M′
JM

)
H2−Cl2

(RAB, θA, φA) ≈ N
GθB

=8∑
k=1

wk

GφB
=16∑

j=1

wj ×

× W (n=v=0)

H2−Cl2
(RAB, θA, φA = 0 , cos θB,k, φB,j)×

×PM′
J′ (cos θB,k)P

M
J (cos θB,k) e

i(M−M ′)φB,j (5.27)

and

W

(
J′AM

′
AJ
′
BM
′
B

JAMAJBMB

)
(H2)2

(RAB) ≈ N
Gθ=8∑
p=1

wp

Gφ=16∑
q=1

wq

Gθ=8∑
k=1

wk

Gφ=16∑
j=1

wj ×

×W (n=v=0)

(H2)2
(RAB, cos θA,p, cos θB,k, φA,q, φB,j)×

×PM
′
A

J ′A
(cos θA,p)P

M ′B
J ′B

(cos θB,k)P
MA
JA

(cos θA,p)P
MB
JB

(cos θB,k)×

×ei(MA−M ′A)φA,k ei(MB−M ′B)φB,j (5.28)

The precision of the numerical integration through the GQ scheme depends on several

factors. First of all, the accuracy of the ab-initio energies at the Gauss-Legendre DVR

grid points. The default energy error threshold in the MOLPRO program package is

∆E = 1×10−8 Eh, which is already enough for the calculation of van der Waals interactions

in the order of 10−4 Eh.

The most severe limitation for the integration of Eqs. 5.27 and 5.28 lies, however, in

the precision attainable within the chosen size of the DVR grid. In fact, the higher the

quantum numbers J and M are, the more numerous the nodes of the corresponding SH

functions and the less accurate the integration becomes. Since the integral also includes

the PES (with its nodes), a numerical convergence test is needed in order to �nd out for

which maximum angular momentum Jmax the GQ is still accurate.
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Figure 5.6: Squared value of the expansion coe�cients c(l)
J,M in Eqs. 5.10 are plotted re-

vealing the linear combinations of spherical harmonics, YJ,M , building the rotationally
adiabatic wavefunctions ψ(n=v=0, l)

H2−Cl2
(RAB, θA) of the pH2-Cl2 (l = 0, see �rst row of panels)

and of the oH2-Cl2 dimers (l = 1, 2, 3, see second, third and fourth rows of panels, respec-
tively). The three columns of panels refer to the three con�gurations with (RAB = 0.36
nm; θA = 0◦, 20◦, 90◦)
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Figure 5.7: H2-Cl2 eigenvalues, E(n=v=0, l)

rot (RAB, θA) (red circles), with quantum numbers
l = 0, ..., 15 obtained by solving the two-dimensional TISE of Eq. 5.10 for the three con�g-
urations with (RAB = 0.36 nm; θA = 0◦, 20◦, 90◦) are compared to the eigenvalues of the
free rotor model in Eq. 2.73 (blue circles).
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Eq. 5.27 has been integrated at three di�erent con�gurations with θA = 0◦, 20◦ and

90◦ and φA = 0 on a 25 × 25 DVR grid to make sure the integration scheme is accurate

even for relatively high values of Jmax. For these three con�gurations the system assumes

C∞v, C1 and C2v symmetries, respectively. Contributions from the SHs to the eigenvec-

tors ψ(n=v=0, l)

H2−Cl2
(RAB, θA, φA = 0) are obtained by projecting out the expansion coe�cients

c(l)
J,M = 〈JM |l〉. The corresponding results are plotted in Fig. 5.6. The three columns

correspond to the three chosen con�gurations with θA = 0◦, 20◦, 90◦, whereas the rows

correspond to the eigenvectors with quantum numbers l = 0, 1, 2, 3, which are the ground

state wavefunction describing the pH2-Cl2 (l = 0) and the three lowest ones describing

the oH2-Cl2 (l=1,2,3) molecular systems, respectively. Please note that the irreducible

representations under which the eigenvectors ψ(n=v=0, l)

H2−Cl2
(RAB, θA, φA = 0) transform have

also been given in Fig. 5.6.

Many comments arise from this �gure. First of all, it is well-known that for θA = 0◦ and

90◦ only higher SHs with the same symmetry contribute to a given eigenvector. Moreover,

the contributions to the eigenvectors from SHs with high quantum numbers J and M

are limited just to the SHs with quantum numbers J ′ = J + 1 (and M ′ = M), which

re�ects a weak coupling due to the interaction potential. Additionally, these contributions

become smaller when θA increases from 0◦ to 90◦ and, correspondingly, the rotationally

adiabatic (RA) wavefunction ψ(n=v=0, l=0)

H2−Cl2
(RAB, θA, φA = 0) becomes more similar to the

corresponding SHs of the free rotor, that is YJ=0,M=0. Finally, since the SH with the

highest quantum numbers, which signi�cantly contributes to the adiabatic wavefunctions,

is YJ=4,M=0, Jmax has been set to 5, involving therefore two basis-sets of 15 and 21 spherical

harmonics for the para and ortho species, respectively.

In Fig. 5.7 the RA-energies, corresponding to the same chosen con�gurations as in

Fig. 5.6, are depicted by red circles and are compared to the energy levels obtained within

the free rotor, which have already been de�ned in Eq. 2.73. The �rst free rotor energy levels

are 0BpH2 , 2BoH2 , 6BpH2 , 12BoH2 , ..., and are depicted by blue circles in Fig. 5.7. Whereas

the free rotor eigenvalues are 2J + 1-fold degenerate, such degeneracy is lifted within the

rotational adiabatic separation (RAS), due to the potential energy interaction. Thus, at

distances, RAB →∞, where the interaction potential between the two molecules vanishes,

the eigenvalues E(n=v=0, l)

rot tend to the energy values of the free rotor, E(J), themselves. In

other words, the energy levels of the free rotors are the asymptotic limits of the RA-PESs

calculated later in this chapter (see for instance Fig. 5.8).

Since the interaction is weak, it is still easy in Fig. 5.7 to assign the free rotor energy

levels, E(J), with even and odd values of J , to the respective eigenvalues E(n=v=0, l)

rot (RAB =

0.36, θA = 90◦, φA = 0) to the values of l = 0, 4, 5, 6, 7, 8 corresponding to pH2, and those

with l = 1, 2, 3, 9, 10, 11, 12, 13, 14, 15 corresponding to oH2. They in fact do not di�er much

in general. For θA = 90◦, the pH2 rotor in its ground state, l = 0, is practically unperturbed

by the Cl2 molecule. This can be traced back to the results obtained above in Sec. 5.3.1,
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when the H2-Cl2 pair potentials have been calculated for the six highly symmetric H-,

L-, X-, T1, T2 and S-con�gurations. The T2- and L-con�gurations were subgrouped in

the �Collinear� symmetry group, since they present higher bonding energies and larger

equilibrium bond distances, whereas the H-, X- and T1-con�gurations were subgrouped

in the �Non-Collinear� symmetry group, since they present in turn lower bonding energies

and shorter equilibrium bond distances. For symmetry reasons only con�gurations from

the �Non-Collinear� subgroup (the COM of H2 is always perpendicular to the Cl2 bond)

contribute to the RA-eigenvalues E(n=v=0, l)

rot (RAB = 0.36, θA = 90◦, φA = 0), which are

indeed weakly bound. As a consequence, the RA-wavefunction is only slightly distorted.

For the same value of Jmax = 5, the RAS has been carried out on di�erent grids and the

results then compared. Convergence for the RA ground state potential, W (n=v=0, l=0)

H2−Cl2
(RAB,

θA, φA = 0) is already reached for a 8 × 4 grid. Convergence up to W (n=v=0, l=8)

H2−Cl2
(RAB, θA,

φA = 0) is instead reached for a 14 × 8 grid. Finally, the more safe 16 × 8 grid has been

chosen. The rather good accuracy reached despite such small grids is explained by the fact

that within the chosen basis-functions, those with M > 1, which are the ones calculated

with less precision because of the increased number of nodes along φB, play no role, i.e.

they do not contribute to the building of the RA-eigenvectors, ψ(n=v=0, l)

H2−Cl2
(RAB, θA, φA = 0)

at θA = 0◦.

5.3.4 The H2-Cl2 and D2-Cl2 RA-PESs

In the previous section, all needed convergence tests have been carried out for the cal-

culation of the RA-PESs of the H2-Cl2 and D2-Cl2 systems. The calculation of the RA-

eigenvalues E(n=v=0,l)

rot (RAB = 0.36 nm,θA, φA = 0) with θA = 0◦, 20◦ and 90◦ and of

the expansion coe�cients of the �rst RA-eigenvectors, ψ(n=v=0, l)

H2−Cl2
(RAB, θA, φA = 0), with

θA = 0◦, 20◦ and 90◦ and l = 0, 1, 2, 3, already gave us physical insights in the system

under investigations. In particular, the very small contributions from SHs with high val-

ues of J to the RA-eigenvectors and the small di�erences between the free rotor energy

levels and the RA-eigenvalues, already tell us that, at least at the distance, RAB = 0.36

nm, the pair interaction is very weak and, hence, that the hydrogen behaves almost like

a free rotor. Moreover, considering the NNd in the para-hydrogen crystal of 0.3798 nm,

and assuming that the Cl2 molecule occupies a single substitutional site, the convergence

test is probably a close example of the changes the solute molecule induces to each of the

hydrogen molecules in its �rst shell environment when embedded into the crystal (within

the two-body interaction approximation).

In order to gain some more insight, let us now investigate the resulting RA-PESs,

W (n=v=0,l)

H2−Cl2
(RAB, θA, φA = 0) and W (n=v=0,l)

D2−Cl2
(RAB, θA, φA = 0), for the four lowest quan-

tum number l = 0, 1, 2, 3, where l = 0 corresponds to the potential interaction of pH2 or

oD2 with Cl2 and l = 1, 2, 3 corresponds to the interaction potential of oH2 or pD2 with

Cl2. Please note that the ab-initio PESs have been calculated at the quantum mechanical
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Table 5.3: The values of the dissociation energies at three one-dimensional cuts of the
RA-PESs along θA = 0◦, 45◦ and 90◦ for the H2-Cl2 and D2-Cl2 molecular dimers with
four di�erent values of the quantum number l = 0 (pH2/oD2) and l = 1, 2, 3 (oH2/pD2) are
listed together and compared to those of the SAA-PES for the �rst four spherical harmonics
with J,M = (0, 0), (1,−1), (1, 1), (1, 0). In brackets the deviations of the dissociation
energies for the SAA-model from those of the more accurate RA-model.

PES θA = 0◦ θA = 45◦ θA = 90◦ Asymptotic
Limits

H2-Molecule

RA (l = 0) 1.8790 0.7361 1.4169 0×BH2
e

SAA (J = 0,M = 0) 1.7648 (−6%) 0.7278 (−1%) 1.4132 (−0.3%) 0×BH2
e

RA (l = 1) 2.1324 0.8870 1.5110 2×BH2
e

SAA (J = 1,M = −1) 2.0916 (−2%) 0.7249 (−18%) 1.4144 (−6%) 2×BH2
e

RA (l = 2) 2.1324 0.6955 1.4119 2×BH2
e

SAA (J = 1,M = 1) 2.0916 (−2%) 0.7249 (+4%) 1.4144 (+0.2%) 2×BH2
e

RA (l = 3) 1.2435 0.6069 1.3209 2×BH2
e

SAA (J = 1,M = 0) 1.1989 (−4%) 0.7335 (+20%) 1.4109 (+7%) 2×BH2
e

D2-Molecule

RA (l = 0) 1.9593 0.7442 1.4202 0×BD2
e

SAA (J = 0,M = 0) 1.7648 (−10%) 0.7278 (−2%) 1.4132 (−0.5%) 0×BD2
e

RA (l = 1) 2.1709 0.8905 1.5123 2×BD2
e

SAA (J = 1,M = −1) 2.0916 (−4%) 0.7255 (−19%) 1.4144 (−6%) 2×BD2
e

RA (l = 2) 2.1709 0.6976 1.4109 2×BD2
e

SAA (J = 1,M = 1) 2.0916 (−4%) 0.7249 (+4%) 1.4144 (+0.2%) 2×BD2
e

RA (l = 3) 1.2867 0.6126 1.3273 2×BD2
e

SAA (J = 1,M = 0) 1.1989 (−7%) 0.7335 (+20%) 1.4108 (+6%) 2×BD2
e
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average value of the H2 bond distance, but used also for applying the RAS to the D2-Cl2
molecular system. Since the di�erence between the two bond distances is circa 1%, and

the potentials are not averaged with respect to the vibrational DOF, the systematic error

is expected to be very small with respect to the systematic error introduced by all previous

assumptions.

The two-dimensional contour-plots of the RA-PESs with respect to RAB and θA for the

H2-Cl2 and D2-Cl2 systems are presented in the next section. For the moment, in order

to better understand the topology of the PESs and disclose some more physical insights,

let us look at Fig. 5.8, where one-dimensional cuts of the RA-PESs (solid lines) along

θA = 0◦, 45◦, 90◦ (�rst, second and third column of panels) are depicted and compared

with the SAA-PESs (dashed lines) for the four lowest rotationally adiabatic states of the

H2-Cl2 (l = 0) and D2-Cl2 (l = 1, 2, 3) systems, and in Tab. 5.3, where the values of the

dissociation energies of the di�erent RA-PES and SAA-PES cuts are collected and the

relative discrepancies given in percent.

Topologically, for all PESs shown two minima have been found at θA = 0◦ and θA =

90◦, the global one always at θA = 0◦, except for W (n=v=0,l=3)

H2−Cl2
(RAB, θA, φA = 0). The

position of the saddle points is discussed later after �tting the PESs to continuous functions.

Focusing on the W (n=v=0,l=0)

H2−Cl2
(RAB, θA, φA = 0) cuts (�rst row of panels), one notes that

the magnitude of the energy discrepancy between the RA- and SAA-models increases with

stronger interaction with maximum value at θA = 0◦ and that this dependence is enhanced

for the oD2-Cl2 molecular system. These two conclusions have already been drawn by Le

Roy et al. in [240] and are con�rmed here. However, only the second conclusion applies

to all RA-PESs, since for l = 1 and 3 the greatest discrepancy is found at θA = 45◦.

Such discrepancies may not be large in absolute terms, but in relative terms the RA-PESs

deviate up to a ± 20% from the SAA-PESs in particular in the region close to the saddle

points. This justi�es the application of the RAS model on the present system.

In Tab. 5.3 the rotational constants for H2 and D2 molecules have di�erent values due

to the di�erent masses of the two molecules and therefore BD2
e < BH2

e . Thus, the PES

cuts with l = 0 (�rst row of panels) have the same asymptotic limit, since the rotational

constants are both multiplied by 0, but for l 6= 0 the asymptotic limits for the two systems

are shifted by 2(BH2
e − BD2

e ), such that the H2-Cl2 PESs are always located above the

D2-Cl2 ones. Apart from this shift, the RA-PESs with l > 0 (second, third and fourth row

of panels) are rather similar in the two molecular systems as in the l = 0 case. Please note

that within the SAA model, apart from the BH2
e −BD2

e shift, the potentials are identical.

This also is a reason for using the RAS model instead of the SAA model.

Even more interesting is the fact that both molecular systems, H2-Cl2 and D2-Cl2,

present deeper minima, i.e. the complex is more stable, when the chlorine molecule forms

complexes with oH2 and pD2 (l = 1 and 2) instead of with pH2 and oD2 (l = 0), respec-

tively. This happens quite often: At θA = 0◦ and l = 1 and 2, at θA = 45◦ and 90◦ for
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Figure 5.8: Four H2-Cl2 (red-solid lines) and four D2-Cl2 (blue-solid lines) one-dimensional
cuts of the 2D RA-PESs with quantum numbers l = 0 (pH2/oD2) and l = 1, 2, 3 (oH2/pD2),
are compared to the corresponding cuts of the SAA-PESs with quantum numbers J,M =
(0, 0) (red-dashed lines) and J,M = (1,−1), (1, 1), (1, 0) (blue-dashed lines).
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l = 1. Additionally, for many of the remaining cases the values in Tab. 5.3 eventually

only di�er by less than 0.1 kJ/mol. The increase in stability of such complexes is due to

the interaction between the quadrupolar moment of the chlorine molecule and the non-

vanishing quadrupolar moment of the rotating oH2 and pD2 molecules (see Appendix 6.3)

and is expected to increase further in complexes with molecules possessing electrostatic

moments lower than the quadrupolar one. Thus, molecular impurities embedded in H2

and D2 crystals, which have a dipole moment or even a charge, interact more strongly with

oH2 and pD2 than with pH2 and oD2, respectively, since the latter ones do not have any

electrostatic moments. This would con�rm the conclusion drawn by Yoshioka et al. [7] and

by Paulson and Anderson [205] from their experiments on CH3F, CH3Cl, CH3Br, NO2

and trans-formic acid molecules embedded in a para-hydrogen crystal, that the observed

clustering e�ects of oH2 molecules around the impurities is mainly due to the interaction

with the dipole moment possessed by those impurities.

Fit of the H2-Cl2 and D2-Cl2 RA-PESs

The �t of molecular PESs is the starting point for the de�nition of a PES to be used in

molecular dynamical calculations. The use of a parametrized continuous functions provides

the energy values on the global PES and not only at the ab-initio energy values. In this

section the 8 RA-PESs obtained for the two molecular systems, H2-Cl2 and D2-Cl2, are

�tted by including an angular dependence to the analytical HFD-function, invented by

Ahlrichs et al. [194] and used for instance by Goldmann and Silvera, and Norman, Watts

and Buck, for �tting their semi-empirical (pH2)2 pair potentials. In the present work the

latter one is used, so the attractive part does not contain the C9 coe�cient. The function

reads:

V
(l)
AB(RAB, θA) = a(θA)× exp[−b(θA)×RAB − c(θA)×R2

AB]

−
(
C6(θA)

R6
AB

+
C8(θA)

R8
AB

+
C10(θA)

R10
AB

)
×B(RAB, θA) (5.29)

B(RAB, θA) =

{
exp[−p(θA)(Rp(θA)/RAB − 1)2], if RAB ≤ Rp
1, if RAB ≥ Rp

, (5.30)

where Rp(θA), p(θA), a(θA), b(θA), c(θA), C6(θA), C8(θA) and C10(θA) are angle dependent

�tting parameters expanded in terms of the �rst three even Legendre Polynomials (LP)

X(θA) = X0 · P0(θA) +X2 · P2(θA) +X4 · P4(θA) . (5.31)
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where X(θA) represents each of the �tting parameters and X0, X2 and X4 are the coef-

�cients of the LP expansion4. On the one hand, expansion of the �tting parameters in

the �rst three even LPs makes this analytical function dependent on 24 parameters, hence

to be very �exible. On the other hand, the computational costs for �tting the RA-PESs

are expected to be very high. For this reason, it is important to have already reasonable

initial values as input for the �tting code. This has been achieved, by �tting three one-

dimensional cuts of the RA-PESs along θA = 0◦, 45◦, 90◦ for each of the four values of l.

In other words, the angular dependent �tting function of Eq. 5.29 is used for �xed values

of the angle θA. Thus, three values, X(0◦), X(45◦) and X(90◦), are obtained for each of

the 8 �tting parameters, which can be used in order to solve 8 di�erent systems of linear

equations (for each value of the quantum number l) of the type given below:

P0( 0◦)×X0 + P2( 0◦)×X2 + P4( 0◦)×X4 = X( 0◦) (5.32)

P0(45◦)×X0 + P2(45◦)×X2 + P4(45◦)×X4 = X(45◦) (5.33)

P0(90◦)×X0 + P2(90◦)×X2 + P4(90◦)×X4 = X(90◦) (5.34)

where the matrix of LPs is known, the LP expansion coe�cients X for each of the 8 �tting

parameters have to be determined and will be the initial values of the 24 �tting parameters

for �tting each of the two-dimensional RA-PESs using Eq. 5.29, as mentioned above.

The two-dimensional �tted RA-PESs of the H2-Cl2 and D2-Cl2 systems are shown in

Figs. 5.9, 5.10, 5.11 and 5.12 and the corresponding �tting parameters can be found in

Appendix 6.4. The positions of the two minima Rmin1 and Rmin2 (always at θA = 0◦

and 90◦, respectively) and of the saddle point Rsp, and the corresponding dissociation

energies, De, are collected in Tab. 5.4. A comparison with the dissociation energies given

in Tab. 5.3 at θA = 0◦ and 90◦, which came from the quantum chemistry raw data, shows

some small discrepancy, in particular for the PESs with l > 0, but, nevertheless, their

topologies have been maintained. The dissociation energies given in Tab. 5.3 at θA = 45◦

can not be directly compared, since within the analytically �tted RA-PESs they are given

in correspondence of the saddle points, the location of which depends on the potential

considered hence on the quantum number l and are indeed always located at θA > 45◦.

Please note that all the dissociation energies given in the Tab. 5.4 are now subject to the

accuracy of the �tting procedure.

The large change in the equilibrium distances when going from the L- to the T-shaped

con�gurations makes the PESs to depend strongly on θA, hence on the Legendre expansion

of the �tting parameters. Such a high anisotropic character is also seen in the PESs of

4Please note that from now on the new notation V
(l)
H2−Cl2

(RAB , θA) and V
(l)

(H2)2
(RAB) will be used to

indicate the now �tted pair potentials, see Eq. 5.29
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Table 5.4: For each of the two species, H2 and D2, the positions of the two minima, Rmin1

and Rmin2 and of the saddle point Rsp, and the corresponding dissociation energy values,
De, are tabulated for the �rst four lowest �tted RA-PESs with l =0, 1, 2 and 3. Distances
are given in nm, angles in degrees and energies in kJ/mol.

PES Minimum1 Saddle Point Minimum2 Asymptotic
θA Rmin1 De θA Rsp De θA Rmin2 De Limits

H2-Molecule

RA (l = 0) 0◦ 0.408 1.876 46.6◦ 0.341 0.734 90◦ 0.241 1.415 0×BH2
e

RA (l = 1) 0◦ 0.408 2.116 45.9◦ 0.338 0.847 90◦ 0.244 1.515 2×BH2
e

RA (l = 2) 0◦ 0.409 2.107 48.7◦ 0.332 0.686 90◦ 0.242 1.434 2×BH2
e

RA (l = 3) 0◦ 0.428 1.262 45.4◦ 0.346 0.624 90◦ 0.244 1.368 2×BH2
e

D2-Molecule

RA (l = 0) 0◦ 0.407 1.967 46.6◦ 0.339 0.716 90◦ 0.243 1.427 0×BD2
e

RA (l = 1) 0◦ 0.406 2.171 46.2◦ 0.337 0.852 90◦ 0.243 1.561 2×BD2
e

RA (l = 2) 0◦ 0.404 2.176 55.5◦ 0.312 0.765 90◦ 0.241 1.394 2×BD2
e

RA (l = 3) 0◦ 0.424 1.285 46.1◦ 0.344 0.608 90◦ 0.244 1.343 2×BD2
e

other RG-Cl2 systems, even if the change on the equilibrium distances between linear and

T-shaped minima are not so large. For example, for the linear and T-shape con�gurations

in the He-Cl2 and Ar-Cl2 systems they are respectively 0.420 against 0.345 nm and 0.447

against 0.374 nm [254] (see also Tab. 5.11). In a similar way, the equilibrium distance

between Cl2 and the other three molecules is always shorter at θA = 90◦ than at θA = 0◦

because of the linear shape of Cl2, as already seen in Sec. 5.3.1 when comparing Collinear

against Non-Collinear spacial con�gurations.

Validity of Previous Assumptions

At this point, as already mentioned above in Secs. 5.2 and 5.3.2, respectively, two signi�-

cant a posteriori tests are carried out in order to validate two important assumptions made

throughout this work: 1) the choice of the Quantum Chemistry method and of the basis-set
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Figure 5.9: pH2-Cl2 (top) and oD2-Cl2 (bottom) 2D RA-PES contourplots with quantum
number l = 0 obtained by solving Eq. 5.10. The contour levels are given at -1.75, -1.50,
-1.25, -1.00, -0.75, -0.50, -0.25, 0, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00. For the
positions and energies of the minima and the saddle points refer to Tab. 5.4. The zero is
de�ned as the BSSE-corrected energy value at RAB = 0.95 nm.
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Figure 5.10: oH2-Cl2 (top) and pD2-Cl2 (bottom) 2D RA-PES contourplots with quantum
number l = 1 obtained by solving Eq. 5.10. The contour levels are given at -0.75, -0.50,
-0.25, 0, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00 for the top-panel and at -1.25, -1.00,
-0.75, -0.50, -0.25, 0, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00 for the bottom-panel. For
the positions and energies of the minima and the saddle points refer to Tab. 5.4. The zero
is de�ned as the BSSE-corrected energy value at RAB = 0.95 nm.
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Figure 5.11: oH2-Cl2 (top) and pD2-Cl2 (bottom) 2D RA-PES contourplots with quantum
number l = 2 obtained by solving Eq. 5.10. The contour levels are given at -0.75, -0.50,
-0.25, 0, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00 for the top-panel and at -1.25, -1.00,
-0.75, -0.50, -0.25, 0, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00 for the bottom-panel.
For the positions and energies of the minima saddle points refer to Tab. 5.4. The zero is
de�ned as the BSSE-corrected energy value at RAB = 0.95 nm.
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Figure 5.12: oH2-Cl2 (top) and pD2-Cl2 (bottom) 2D RA-PES contourplots with quantum
number l = 3 obtained by solving Eq. 5.10. The contour levels are given at -0.75, -0.50,
-0.25, 0, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00 for the top-panel and at -1.25, -1.00,
-0.75, -0.50, -0.25, 0, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00 for the bottom-panel.
For the positions and energies of the minima saddle points refer to Tab. 5.4. The zero is
de�ned as the BSSE-corrected energy value at RAB = 0.95 nm.
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used in the evaluation of the ab-initio PESs, and 2) the validity of the RA approximation

upon the vibrational motion of the Cl2 molecule. Again only the three one-dimensional

cuts of the RA-PESs at θA = 0◦, 45◦ and 90◦, are considered.

Recall that the Quantum Chemical calculations have been carried out at the MP2:aug-

cc-pVQZ level of theory. The results obtained after adiabatization with respect to the

rotational DOFs of the hydrogen or deuterium molecules are now compared with data

produced at a higher level of theory. The one-dimensional cuts along θA = 45◦ and 90◦

have been reproduced at the CCSD(T):aug-cc-pVQZ level of theory, whereas the one-

dimensional cut along θA = 0◦ has been reproduced using the CCSD(T) method, but

extrapolating the results to the complete basis-set from the aug-cc-pVQZ and aug-cc-pV5Z

basis-sets (CCSD(T):extrapolated), see Eq. 2.94. This last con�guration is in fact CPU-

time saving for symmetry reasons, since the rotational adiabatization of the H2 molecule

becomes independent of φB.

These two counter-checks are depicted in the left and right panels of Fig. 5.13 only for

the H2-Cl2 molecular system, but all conclusions drawn in this section are valid for the D2-

Cl2 molecular system as well. The top-, middle- and bottom-panels are the respective cuts

along θA = 0◦, 45◦ and 90◦. Moreover, the relative errors with respect to the dissociation

energies are given in percent in Tab. 5.5, which is also divided in a left and right part for

the validity of the chosen ab-initio level of theory and of the adiabatic separation. In the

table, the relative errors are given for both molecular systems.

Let us focus �rst on the ab-initio level of theory counter-check. With respect to the

energy di�erences observable in Fig. 5.5 between the interaction potential curves for the

H, L, X, T1, T2 and S con�gurations (hence before adiabatization!), the energy di�erences

between the RA-PESs (hence after adiabatization!) obtained from the two di�erent levels

of theory almost vanish for θA = 45◦ and θA = 90◦ and all relative errors are below

or equal to 4%. Greater discrepancy is found at θA = 0◦ (top-panel), where the cyan

colour has been used instead of blue, since the comparison is now done with respect to

the CCSD(T):extrapolated level of theory. The dissociation energies are overestimated

between a 5% and 8%. A reason for this larger discrepancy can be found in the strength

of the interaction between the two molecules in a collinear con�guration, which means

that the MP2 method is less accurate in evaluating the correlation energy at the collinear

geometries.

The magnitude of the error introduced by considering the Cl2 bond length �xed at

the v = 0 vibrationally averaged values (classical approximation) has been estimated by

recalculating the RA at two additional values of the Cl2 bond distances, which have been

chosen to be the distances corresponding to the Full Width at Half of the Maximum

(FWHM) of the vibrational ground state wavefunction, namely r̃− = (r̃Cl2 −∆r) = 0.1959

nm and r̃+ = (r̃Cl2 + ∆r) = 0.2107 nm. The changes of the dissociation energies for the
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Table 5.5: The di�erence between the values of the dissociation energies at three one-
dimensional cuts of the RA-PESs along θA = 0◦, 45◦ and 90◦ for the H2-Cl2 and D2-Cl2
molecular dimers with four di�erent values of the quantum number l = 0 (pH2/oD2) and
l = 1, 2, 3 (oH2/pD2) and the dissociation energies obtained when using the higher level of
theory CCSD(T):aug-cc-pV5Z (CCSD(T):extrapolated in the case of θA = 0◦) (left part
of the table) and the dissociation energies obtained when using the new values r− and r+

for the Cl2 bond distance (right part of the table) are given in percent.

Counter-check

ab-initio Level of Theory Adiabatic Separation

PES θA = 0◦ θA = 45◦ θA = 90◦ θA = 0◦ θA = 45◦ θA = 90◦

H2

RA (l = 0) +5% −1% +2% −7%/+ 8% −1%/+ 1% +4%/− 3%

RA (l = 1) +5% +0.6% +4% −7%/+ 7% −2%/+ 2% +2%/− 1%

RA (l = 2) +5% −2% +1% −6%/+ 7% −1%/+ 1% +5%/− 4%

RA (l = 3) +8% −3% +0.8% −6%/+ 7% −0.1%/+ 0.6% +4%/− 3%

D2

RA (l = 0) +5% −0.9% +2% −7%/+ 8% −1%/+ 1% +3%/− 3%

RA (l = 1) +5% +0.6% +4% −7%/+ 8% −2%/+ 2% +2%/− 1%

RA (l = 2) +5% −2% +1% −6%/+ 8% −1%/+ 1% +5%/− 4%

RA (l = 3) +7% −3% +0.9% −6%/+ 7% −0.2%/+ 0.6% +4%/− 3%

molecular complexes at the Cl2 bond distances r̃− and r̃+ with respect to the equilibrium

position r̃Cl2 are given in percent on the last three columns of Tab. 5.5.

Once more the di�erences between the energy curves are more pronounced for con�gu-

rations close to the collinear one. As expected, the potential energy is very sensitive to the

Cl2 internuclear distance at θA = 0◦, since in this case the chlorine vibrations are along the

axis pointing to the hydrogen or deuterium molecule. The relative errors are below 6% for

the PES-cuts along θA = 45◦ and 90◦,but lie between 6% and 8% for the PES-cut along

θA = 0◦. Since the quantum mechanical probability to �nd the molecule at its equilibrium
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Figure 5.13: Two a posteriori checks are shown: The level of theory chosen for the ab-

initio calculations (left column) and the separability of the H2 rotations and from the Cl2
vibrations (right column). Three di�erent cuts of the 2D RA-PESs, W (n=v=0,l)

H2−Cl2
(RAB, θA)

for quantum numbers l = 0, 1, 2, 3 are depicted at three con�gurations (θA = 0◦, 45◦ and
90◦ (top-, middle- and bottom-row, respectively). Colour-code: The black curves refer to
the RA-PESs calculated at the MP2:aug-cc-pVQZ level of theory with r̃Cl2 = 〈rCl2〉v=0 =
0.2033 nm. The colours red and green refer to the same RA-PESs with r̃+ = (r̃Cl2 +∆r) =
0.2107 nm and r̃− = (r̃Cl2 −∆r) = 0.1959 nm, respectively.
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5.3 Results: The (pH2)2 RA-Pair Potential

distance is maximal, we believe that neglecting the Cl2 vibrational DOF does not a�ect

the present results for more than 10%.

5.3.5 The (pH2)2 RA-Pair Potential

In the calculation of the ground state of the (pH2)2 RA-pair potential, W
(n=v=0, l=0)

(pH2)2
(RAB),

the size of the DVR-grid 8 × 16 is taken to be the same without any further convergence

test, since the interaction potential energy is weaker and almost isotropic compared to the

pH2-Cl2 molecular system. Moreover, only the rotational ground state is calculated, since

no applications are foreseen, which imply mixed ortho/para or pure ortho/ortho crystals.

The (pH2)2 and (oD2)2 pair interaction are expressed in this work by the same curve.

Strictly speaking the quantum chemistry PES should have been recalculated with the

two D2 monomer bond length �xed at the r̃D2 distance, instead of r̃H2 , but within all

above mentioned approximation we believe that the systematic error introduced may be

negligible.

The (pH2)2 RA-pair potential pair potential is �tted to the V (l=0)

(pH2)2
(RAB) HFD-function

in Eq. 5.29, where the angular dependence is now dropped. The resulting curve is compared

in Fig. 5.14 (red solid line) to the semi-empirical potential curves by Norman, Watts and

Buck [193], by Silvera-Goldmann [13] and to the Lennard-Jones potential based on Michels'

results [255] (black lines) as well as to the pair potentials calculated by Li, Le Roy and Roy

(LLR) [240] within the AHR model (blue solid line) and to the one calculated by Hinde [189]

(green solid line). The LLR curve is based on the ab-initio PES calculated by Patkowski et

al. [188] at a higher level of theory than in this work (they extrapolated the energies from

the QC to the basis-set limit from CCSD(T):aug-cc-pVQZ and CCSD(T):aug-cc-pV5Z),

however also in the rigid-rotor approximation, whereas the calculations by Hinde are based

on an ab-initio PES at a very similar level of theory as in the present work (CCSD(T):aug-

cc-pVQZ supplemented with a set of 3s3p2d bond functions at the dimer's COM), but

include also the vibrational average of the hydrogen monomers, so that comparison to

the curve from the present work can be considered as direct measurement of the error

introduced by �xing the molecular internal bond distance (classical approximation).

The HFD �tting parameters are listed in Tab. 5.6 except for the curve by Hinde, since

none have been found in the literature. Nevertheless, the vibrationally averaged dispersion

coe�cients C6, C8 and C10 were recently calculated by Lillistolen and Hinde [197] (LH)

at the high CCSD:d-aug-cc-pV5Z level of theory and are, therefore, listed in Tab. 5.6 for

comparison. Finally, the equilibrium distances and the dissociation energies are summa-

rized in Tab. 5.7. In general, all pair potentials present very similar shapes, equilibrium

distances and dissociation energies. Nevertheless, the curves from ab-initio present slightly

larger equilibrium bond distances and dissociation energies than the semi-empirical ones.

It is also interesting to note that the potential curves by Hinde and from the present work

have a softer repulsive part than the LLR curve. As already mentioned in the introduction
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Figure 5.14: The (pH2)2 RA-pair potential, V (l=0)

(pH2)2
(RAB) from the present work is com-

pared to the semi-empirical curves by Norman-Watts-Buck (NWB) [193], by Silvera-
Goldmann (SG) with and without the C9 coe�cient [13], to the Lennard-Jones (LJ) poten-
tial [255], to the (pH2)2 AHR-pair potential curve calculated by Le Roy et al. [240] (based
on an ab-initio PES calculated by Patkowski et al. [188] at a higher level of theory than
in the present work) and to the vibrationally averaged pair potential by Hinde (H) [190]
(based on an ab-initio PES calculated at a similar level of theory).
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5.3 Results: From Clusters to Crystals

Table 5.6: HFD-parameters �tting the one-dimensional isotropic (pH2)2 RA-PES,
V (l=0)

(pH2)2
(RAB), from the present work and the semi-empirical pair potentials by Norman,

Watts and Buck (NWB) [193] and by Silvera-Goldmann (SG) [13]. The vibrationally av-
eraged dispersion coe�cients by Lillestolen and Hinde [197] are also listed both for the
(pH2)2 and the (oD2)2 dimers. All values are given in au.

pair potential Unit Present Work NWB SG LH (H2) LH (D2)

Rp [a0] 9.7410 9.641 − − −
Rm [a0] − − 0.341 − −
p 1.0 1.0 − − −

log(a) ≡ α 1.4414 1.3154 1.713 − −
b ≡ β [a−1

0 ] 1.3706 1.47058 1.5671 − −
c ≡ γ [a−2

0 ] 0.0419 0.02240 0.00993 − −
C6 [Eh × a6

0] 11.6812 12.14 12.14 12.073 11.865
C8 [Eh × a8

0] 235.2 215.2 215.2 212.7 207.4
C9 [Eh × a9

0] − − 143.1 − −
C10 [Eh × a10

0 ] 4813.9 4813.9 4813.9 4783 4630

to this chapter, the ab-initio methods give in general more repulsive energies at short bond

distances than the semi-empirical methods. In fact, inclusion of the three-body interac-

tions has been proved to soften the repulsive wall [191]. Nevertheless, for our purpose it is

more important to compare the attractive parts of the potentials. Since at larger distances,

the curves converge to each other, similar results are expected when using any of those

curves. This becomes also evident by comparing the dispersion coe�cients in Tab. 5.6. No

drastic deviations are indeed disclosed, neither upon vibrational average, nor between the

LH (H2) and LH (D2) coe�cients, so that on one hand the classical approximation seems

to introduce only negligible errors in the pair potential, on the other hand the (pH2)2 can

be used to express also the (oD2)2 interaction.

5.3.6 From Clusters to Crystals

In the next sections solid state aggregation is investigated starting from the growth of small

clusters and arriving at the building of in�nite crystals. All simulations are based on the

two-body interaction potentials calculated in the previous sections within the multi-stage

adiabatic separation, so that all conclusions drawn on the pair potentials are transferred

to the multi-body simulations. The solvent-solvent pair potential showed a very low inter-

action energy con�rming that the pH2 molecules rotate almost freely. In the solvent-solute
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Table 5.7: The positions of the minima, Rmin, and the dissociation energies of di�erent
one-dimensional isotropic (pH2)2 pair potentials are listed. The semi-empirical potentials
by Norman, Watts and Buck (NWB) [193] and by Silvera-Goldmann (SG) [13] (with and
without the C9 parameter), the Lennard-Jones potential by Michels (LJ) [255] and those
from ab-initio by Li-Le Roy-Roy (LLR) [240] and by Hinde(H) [190] are compared to
the �tted RA-PES, V (l=0)

(pH2)2
(RAB), from the present work. Distances are given in nm and

energies kJ/mol.

Potential Rmin[nm] De[kJ/mmol]

NWB 0.344 0.281
SG 0.344 0.268
SG (C9 = 0) 0.341 0.285
LJ 0.332 0.305
LLR 0.346 0.296
H 0.347 0.289

Present Work 0.346 0.286

pair potentials the solvent rotations were found to be slightly dependent on the Cl2 inter-

nal vibrations, but the error was evaluated to be less or equal to 8%. Consequently, it is

now assumed in the aggregates that the rotational DOFs of the single pH2 molecules are

practically decoupled from those in their neighbourhood as well as from the Cl2 vibrations,

even though this introduces a systematic error in the simulations (see Sec. 5.3.4).

In the next section the structures of the closest packed crystals, the hexagonal close-

packed (hcp) and the face-centered cubic (fcc), and of the icosahedral (ico) quasi-crystal

are introduced as a background for the subsequent sections. Afterwards, small pure and

doped clusters are grown by means of classical simulations with the aim of investigating

which structure is energetically favoured when describing the N -dimensional PESs just by

a sum of pair interactions of HFD type. Secondly, since the three structures, fcc, hcp and

ico, all have 12 molecules in their �rst coordination shell, the total energies of these �rst-

shell pure (pH2)13 and doped Cl2(pH2)12 clusters, are calculated as a function of the NNd

and compared. Thirdly, the (in principle in�nite) pure and doped crystal structures, hcp

and fcc, are discussed, which will be used later when applying the non-rigid anharmonic

EM for calculating the translational energies of H2 and Cl2 and the rotational PES of the

Cl2 in the crystal.
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Figure 5.15: The two di�erent ways of stacking sheets of spheres are shown, from which
the hcp (ABA..) and fcc (ABC...) structures originate, in the left and right part of the
�gure, respectively. The red honeycomb-like hexagon typical for closed-packed lattices is
shown in the left part of the �gure, whereas in the right part the cubic form of the fcc unit
cell is highlighted. The �gure has been adapted from Wikipedia.

Close Packing of Spheres

In nature, atoms, ions or molecules aggregate in several di�erent crystal structures depend-

ing on the magnitude of the particles involved and on the kind of interactions between them,

ionic, covalent, hydrogen bonds or VDW. Since the particles in the solid state attract each

other, the denser the arrangements in the space are, the more stable the structures will

be. For this reason, two of the most common crystallographic structures found in nature

are the hcp and fcc ones, which are based on the closest way of packing spheres. This

means that within these arrangements the particles occupy the largest fraction of space

which is achievable in a regular lattice. Both structures are based on sheets of touching

spheres disposed at the vertices of equilateral triangles. They just di�er in the way how

subsequent sheets are stacked on each other as depicted in Fig. 5.15. First a sheet of

spheres is created, such that each triad of contiguous spheres forms a triangle. This sheet

is called A. The second sheet of spheres called B (black triangle), is stacked on top of the

�rst one, leaning the spheres at the centers of the triangles of sheet A. Please note that in

the top-left part of the �gure (hcp ABA-stacking), there are two possible ways of leaning

the new black triangle: The one shown in the �gure, which forms the B-sheet, and a second

one (not shown) where the black triangle is rotated by 60◦ around the axis perpendicular

to the sheet and passing through the center of the black triangle, which is called C-sheet.

Finally, if the third sheet put in top of the second is again an A sheet, then the hcp packing
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originates, whereas if the sheet is a C sheet, the fcc crystal arises, as shown in the left and

right part of Fig. 5.15, respectively.

The two structures also reach the same highest average density possible in nature, which

is called, generally, the atomic packing factor (APF). This quantity is obtained by dividing

the volume occupied by the spheres contained in the unit cell of a crystal by the total

volume of such unit cell. The calculation of these quantities can be easily done looking

at the two di�erent unit cells (UC), which are the hexagonal prism and the external cube

represented in the top and middle parts of Fig. 5.16. The hcp and fcc UCs contain 6 and

4 spheres, so that the volumes occupied by such spheres are

V hcp
sphere = 6× 4π

3
(r)3 (5.35)

V fcc
sphere = 4× 4π

3
(r)3 , (5.36)

whereas the volumes of the UCs are

V hcp
uc = 6×

√
3r2 × 2c = 24

√
2r3 (5.37)

V fcc
uc =

(
2
√

2r
)3

= 16
√

2r3 , (5.38)

respectively, where r is the radius of a sphere. Since the diameter corresponds to the

distance between the centers of two touching spheres the diameter is indeed the NNd,

Rd = 2r, where the subscript d stays for diameter5. Finally, the fcc lattice constant is

a = 2
√

2 r =
√

2 Rd, whereas for the hcp lattice a second lattice constant c =
√

6 × 2r
3

has to be considered along the z-axis stacking direction, being half of the height of the

hexagonal prism forming the hcp unit cell. Finally, the APF of both crystal structures is

APF =
V hcp

sphere

V hcp
uc

=
V fcc

sphere

V fcc
uc

=
π

3
√

2
≈ 0.74048... (5.39)

Please note that the fcc UC is a face-centered cube, and its edges are usually taken to

be the Cartesian system of coordinates of references for it, whereas for the hcp, each of the

sheet lies on the xy plane, and the sheets are stacked in the z-direction.

The hcp and fcc UCs are depicted in the top and middle panels of Fig. 5.16. For the

fcc crystal, a primitive cell is de�ned within the UC by the following so-called primitive

5The nearest-neighbour distance will be indicated by Rd through the entire thesis.
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Figure 5.16: The UCs and the primitive cells together with the primitive vectors for the
hcp (top panel) and the fcc (middle panel) lattices. These two pictures have been adapted
from [14]. In the bottom panel, a regular icosahedron is constructed by three concentric,
mutually orthogonal rectangles, the two sides of which de�ne the golden formula (Paciolo
construction 15th century [256]).
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vectors

~t1 =
a√
2

(~i+~j) (5.40)

~t2 =
a√
2

(~j + ~k) (5.41)

~t3 =
a√
2

(~k +~i) , (5.42)

where ~i, ~j and ~k are the unitary vectors in the x, y and z directions as de�ned in the

middle panel of Fig. 5.16, where also the primitive cell is shown, that is the smaller inclined

cube inside the UC. It contains one sphere per cell and when translated along the three

dimensional space generates an in�nite lattice without overlapping itself or leaving voids

(translational symmetry). This is expressed mathematically by the Bravais vector [257],

~T = n1~t1 + n2~t2 + n3~t3 (5.43)

where nl, with l = 1, 2, 3, can be any integer number. These regular lattices are indeed

called Bravais-lattice [257].

The primitive cell for an hcp lattice can be de�ned by the following three vectors

~t1 =
1

2
a(
√

3 ~i−~j) (5.44)

~t2 =
1

2
a(
√

3 ~i+~j) (5.45)

~t3 = 2c ~k (5.46)

where ~i, ~j and ~k are the unitary vectors in the x, y and z directions as de�ned in the top

panel of Fig. 5.16. The hcp lattice contains two spheres per primitive cell and the position

of this second sphere is given by the non-primitive vector

~τ =
1

3
(~t1 + ~t2) +

1

2
~t3 . (5.47)

also shown in Fig. 5.16.
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Icosahedral Structure

The use of mass spectroscopy has revealed that when growing large RG clusters particularly

stable sizes constituted by N particles appear [258]. These particular cluster sizes, N , form

a sequence of so-called magic numbers, which are closely connected to the mechanism of

cluster formation and growing. In the case of noble gases, the magic clusters mainly

have size N = 1
3(2S + 1)(5S2 + 5S + 3), which is the analytical formula counting the

number of particles required to build icosahedral clusters with S = 1, 2, 3, 4, 5, ..., etc.

complete coordination shells. Since icosahedral structures are crystal-like ordered, but do

not present translational symmetry, they have been called quasi-crystal after Shachtman

[259], who has been awarded the Nobel Prize in chemistry in 2011 for having observed

them experimentally for the �rst time in 1982.

Since pH2 molecules have almost a spherical shape and the binding energy is also in the

range of VDW interactions, the growth sequence is expected to be similar. Experimentally,

only one investigation has been found in the literature based on Raman spectroscopy of

small pH2 clusters formed in cryogenic free jets [260], where the authors were able to resolve

Raman peaks for the �rst clusters with N = 2, ..., 8 molecules, whereas broad maxima were

observed at N ≈ 13, 33, 55, and connected to icosahedral structures. In turn, theoretical

studies are numerous, most of them based on Monte Carlo methods [261�266]. They all

observe formation of the so called Mackay clusters [267], which is a series of global minimum

structures of icosahedral symmetry typical for RGs when the pair potential interaction is

approximated by a Lennard-Jones (LJ) potential [268�270], which has a R−6 dependence

for the attractive part, or also by Morse potentials [270]. The similar results obtained

for molecular hydrogen clusters are easily explained by the use of the NWB or the SG

pair potentials �tted to HFD-functions having the same dependence on the intermolecular

distance in their leading term C6/R
−6. In the paper by Doye et al. [269] a very interesting

structural phase diagram for general LJ clusters is found, which predict that at T = 0 K

icosahedral structures are stable up to a maximum number of particles (critical number)

of about 2000. Afterwards a switch is expected to the decahedral phase and �nally, to

the fcc phase. RGs certainly switch at same point to the fcc symmetry as experimentally

observed [258], whereas para hydrogen has been experimentally observed to form fcc or

hcp crystals depending on the growing conditions [13].

For the above mentioned reasons, the icosahedral structure is also presented in the

following. The formation of icosahedral clusters should not astonish for two simply reasons:

all three structures, fcc, hcp and ico show the same coordination number 12 in the �rst

shell and, moreover, the surface over volume ratio is of 5.163 against 5.7195 of the hcp or

fcc �rst shells clusters [271]. Mackay showed in 1962 [267] that the icosahedral structures

are a dense non-crystallographic packing of spheres with a very large APF. The number of

spheres contained in an icosahedron, as well as the APF, changes depending on the number

S of shells forming it. Each of the spheres at the vertex counts 0.20965, at the edges 0.38386
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and at the faces 0.5. The number of spheres within an icosahedral shell has been calculated

by Mackay to be CS = 10
3r3 +0.15183r and the APF to be PS = 0.68818+0.03767r−2 [267],

where r is the radius of the icosahedron, that is the centre-vertex distance. Finally, the APF

for the �rst shell is 0.72585, for the second shell already 0.69769 and decreases continuously

for increasing number of shells tending to the value 0.68818, if the number of shells tends

to in�nity.

The regular icosahedron is formed by 20 identical equilateral triangular faces, 30 edges

and 12 vertices. The Platonic body can be partitioned into 20 equal distorted tetrahedra

sharing the common vertex at the center of the icosahedron. For this reason the edges are

1.05 times longer than the radius r, and the vertex-center-vertex angle is 63.43◦ instead of

60◦ (as for the regular tetrahedron), so that the spheres on the faces of the icosahedron can

not be densely packed. A regular icosahedron is shown in the bottom panel of Fig. 5.16,

where it is created by three concentric, mutually orthogonal golden rectangles (Paciolo

construction 15th century [256]), which have a ratio between the two edges corresponding

to the golden ratio, that is, if the shorter side is long a, the NNdistance, the longer side

will be a×
√

5+1
2 . From this, the Cartesian coordinates of the 12 spheres at the vertices of

the regular icosahedron can be easily found.

The icosahedral clusters are closely related to the fcc and hcp crystals and, in fact, each

of the spheres is 12 coordinated: Those at the vertices in pentagonal pyramidal prisms

(Ih icosahedral symmetry), those in the edges in anti-cuboctahedra (D3h hcp symmetry)

and those at the faces in cuboctahedra (Oh, fcc symmetry), where anti-cuboctahedron

and cuboctahedron are the polyhedra formed by hcp and fcc complete coordination shells,

respectively, as shown in the top and middle panels of Fig. 5.20 for their �rst coordination

shells. The anti-cuboctahedra and the cuboctahedra are slightly distorted, which helps in

understanding why above the critical number, icosahedral structure switch to the fcc one.

The �rst reason is certainly the APF, but the second is that the number of sphere at the

faces of the icosahedron, which are almost fcc-packed, at some point is overwhelming with

respect to the others, in particular the number of vertices, which is constant from shell

to shell, so that a fault in the stacking of layers parallel to the faces easily prevent the

icosahedral clusters to grow further [267].

Growing Small Clusters

When growing small clusters, the aim is generally to �nd the global minimum structure

out of the N dimensional PES. Those global minima are equilibrium structures at T =

0 K and are normally considered as good starting points for the structures at higher

temperatures [269]. The degree of di�culty for these global optimizations increases with

the size of the clusters, N , since the number of local minima increases exponentially.

Moreover, optimization of some cluster sizes may be even more di�cult because of an

unfavourable topography of the PES (see for example Ref. 272,273).
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In this section, small pure (pH2)N and doped Cl2(pH2)N clusters are grown within a

size-range from 2 to 65, and from 2 to 60 molecules, respectively. The growth process does

not involve the temperature. The total binding energy was calculated by minimizing the

cohesive energy of the clusters with respect the two-body distances

Etot = min


Np−1∑
i=1

Np∑
j>i

V (l=0)

(pH2)2
(Rij)

 (5.48)

and

Etot = min


Np−1∑
i=2

Np∑
j>i

V
(l=0)

(pH2)2
(Rij) +

Np∑
j=2

V (l=0)

pH2−Cl2
(R1j , θA, φA)

 (5.49)

for the pure and doped clusters, respectively. In Eq. 5.49 the �rst and second terms are

respectively the sum over the solvent-solvent interactions, EpH2−pH2
, and over the solute-

solvent interactions, EpH2−Cl2 . The interaction between each pair of pH2 molecules in the

clusters is approximated by the NWB pair potential (the pair potential from the present

work had not been yet calculated, but the results are expected to be very similar), whereas

for describing the interaction between each of the pH2 molecules and the Cl2 molecule the

RA-pair potential V (l=0)

pH2−Cl2(RAB, θA, φA) from the present work is used. For each cluster

size many independent optimizations with random initial conditions have been run by using

the TrajLab software [274], which means that, when the size of the clusters increases, the

probability to get the most stable structure (i.e. the global minimum) fast decreases and

the number of calculations to be performed must be notably increased. The most stable

cluster con�guration (or cluster isomer) of size N has been taking as starting con�guration

for the simulations involving the cluster with size N + 1.

The binding energy per molecule with respect to the size N of the clusters in general

decreases monotonically, that is the clusters become more stable during the growth process,

but particularly drops for certain values of N , referred to as magic numbers, which are

peculiar to the structures formed. For the icosahedral structure the following analytical

formula, N = 1
3(2S + 1)(5S2 + 5S + 3) with S = 1, 2, 3, 4, ... ect. being the number

of concentric icosahedra, has been found for the calculation of the magic numbers. Thus,

at each of these magic numbers the clusters assume the form of an icosahedron. This

formula, however, does not take into account other particularly magic numbers occurring

when growing clusters and corresponding to stable substructures between two di�erent

concentric icosahedra S and S + 1. Please note that no simple formulas have been found

for the calculation of the magic numbers in the case of fcc and hcp structures, but they

can be calculated by using a slightly more complicated method treated elsewhere [275].
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5 Structure and Quantum Dynamics of Cl2 Embedded in Solid H2

In the following, the total binding energies (or chemical potentials) of the clusters,

Etot(N) and the ��rst derivative� (or incremental binding energies) ∆Etot(N) = Etot(N)−
Etot(N −1), are listed in Tabs. 5.8 and 5.9, respectively, together with the sizes N and the

corresponding point group symmetries. Moreover, the series of magic numbers, both for

the pure and the doped clusters, are highlighted instead by plotting the �second derivative�

of the total binding energy, ∆2Etot(N) = Etot(N − 1) − 2Etot(N) + Etot(N + 1), in the

lower parts of Figs. 5.17 and 5.19, respectively. In the upper parts of the same �gures the

most important/symmetric cluster structures are also shown.

Pure (pH2)N Clusters

The total binding energies, Etot(N) of the (pH2)N clusters shown in the �rst column of

Tab. 5.8, decrease stepwise while the cluster size N increases. The magnitude of such steps,

that is ∆Etot(N), when going from N to N + 1, is not constant and present minima at

N = 7, 13, 19, 23, 26, 29, 32, 34, 37, 41, 43, 45, ..., ect., showing that such structures are

magic clusters. Moreover, next to these minima always a maximum of ∆Etot(N), that is at

N + 1 is found, since the next molecule is placed at the surface of a complete coordination

shell, or subshell, such to have a smaller number of nearest neighbours to interact with.

The magic numbers are also highlighted by plotting the �second derivative�, ∆2Etot(N),

in the lower part of Fig. 5.17, which, inversely to ∆Etot(N), shows a maximum at the

magic sizes. Additionally, Tab. 5.8 also shows the corresponding symmetries of the grown

clusters, some of which can be recognized in the upper part of Fig. 5.17. The two smallest

clusters with sizes N = 2 and 3 have not been shown since they have the trivial linear and

equitriangular shapes with point group symmetries D∞h and D3h, respectively. The �rst

cluster visualized in panel a of Fig. 5.17 has size N = 4 and the shape of a tetrahedron with

point group symmetry Td. In panel b, the cluster with N = 5 forms a trigonal bipyramide

of D3h symmetry, for which, ∆2Etot(N), shows a minimum, since the two molecules above

and under the triangular plane do not touch each other. The next cluster with N = 6

forms an octahedral and belongs therefore to the Oh point group. At N = 7 the second

maximum of ∆2Etot(N) is reached, which together with the clusters of size N = 19 and

34 (panels d, j and l of Fig. 5.17, respectively) present a D5h symmetry typical for some

of the substructures between consecutive complete icosahedral shells. At N = 13 the �rst

icosahedral shell with S = 1 is completed (see panel h and/or i of Fig. 5.17). This is

the most stable structure (highest maximum in bottom panel of Fig. 5.17), since it has

maximum APF as already mentioned in Sec. 5.3.6. The remaining clusters do not present

elements of symmetry other than the identity.

The magic numbers N = 13, 19, 23, 26, 29, 32, 34, 37, 43, 49 highlighted by the maxima

of ∆2Etot(N) in the bottom part of Fig. 5.17 are a typical series of magic clusters, which

follows the growth process model made of interpenetrating icosahedron units proposed in

Ref. 268. Starting from the �rst-shell cluster with size N = 13, shown in panel h and i of
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Figure 5.17: The most symmetric and/or signi�cant cluster structures from the growing
sequence with number of pH2 molecules N = 4, 5, 6, 7, 8, 9, 12, 13, 19, 23, 34 are shown
in the top part of the �gures in panels a-l. In the bottom part, the �second derivative� of
the cohesive energy, ∆2Etot(N) = Etot(N −1)−2Etot(N)+Etot(N +1), is plotted against
the cluster size N in order to discriminate particularly stable structures (maxima).
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Table 5.8: The total binding energies of the pure (pH2)N clusters obtained by using the
NWB pair potential are shown together with their sizes N and their corresponding point
group symmetries. Energies are given in kJ/mol.

N Etot(N) ∆Etot(N) Point Group N Etot(N) ∆Etot(N) Point Group

1 0 − − 33 −40.5489 −1.3478 C1

2 −0.28132 −0.28132 D∞h 34 −42.1354 −1.5865 D5h

3 −0.84396 −0.56264 D3h 35 −43.4170 −1.2816 C1

4 −1.68790 −0.84396 Td 36 −44.8289 −1.4119 C1

5 −2.55880 −0.87089 D3h 37 −46.3999 −1.5710 C1

6 −3.57470 −1.0159 Oh 38 −47.7767 −1.3768 C1

7 −4.63310 −1.0584 D5h 39 −49.3841 −1.6074 C1

8 −5.55820 −0.92502 C1 40 −50.9579 −1.5738 C1

9 −6.76000 −1.2018 C1 41 −52.6096 −1.6517 C1

10 −7.96790 −1.2079 C1 42 −54.2025 −1.5928 C1

11 −9.18510 −1.2172 C1 43 −55.8415 −1.6390 C1

12 −10.6570 −1.4719 C5v 44 −57.3072 −1.4657 C1

13 −12.4484 −1.7914 Ih 45 −58.9382 −1.6310 C1

14 −13.4249 −0.97653 C1 46 −60.5116 −1.5734 C1

15 −14.6738 −1.2489 C1 47 −61.9827 −1.4711 C1

16 −15.9285 −1.2547 C1 48 −63.6015 −1.6188 C1

17 −17.1852 −1.2567 C1 49 −65.3117 −1.7102 C1

18 −18.6074 −1.4222 C1 50 −66.6696 −1.3580 C1

19 −20.4156 −1.8082 D5h 51 −68.0854 −1.4157 C1

20 −21.6776 −1.2620 C2v 52 −69.8325 −1.7471 C1

21 −22.9387 −1.2611 C2v 53 −71.4203 −1.5878 C1

22 −24.3919 −1.4532 CS 54 −73.3175 −1.8972 C1

23 −26.1273 −1.7354 C2v 55 −74.8314 −1.5139 C1

24 −27.3840 −1.2567 C1 56 −76.5415 −1.7101 C1

25 −28.8085 −1.4245 C1 57 −78.0800 −1.5386 C1

26 −30.5283 −1.7198 C2v 58 −79.9090 −1.8290 C1

27 −31.7823 −1.2540 C1 59 −81.6940 −1.7850 C1

28 −33.1868 −1.4045 C1 60 −83.4829 −1.7889 C1

29 −34.8738 −1.6870 C2v 61 −85.2330 −1.7500 C1

30 −36.1422 −1.2684 C2v 62 −86.8891 −1.6562 C1

31 −37.5396 −1.3974 C1 63 −88.7096 −1.8204 C1

32 −39.2011 −1.6614 C2v 64 −90.1028 −1.3933 C1

− − − − 65 −91.5054 −1.4026 C1
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5.3 Results: From Clusters to Crystals

Fig. 5.17 (top and side views, respectively), a double icosahedron (DIC) can be obtained by

completing the �rst-shell coordination of one of the vertices. The DIC is constituted by 19

molecules, which is, indeed, the second magic number, and is shown in panel j of Fig. 5.17.

The DIC is now a prolate structure of three pentagonal rings and four atoms lying on the

�ve-fold axis (two of them being the vertices). If one now takes one of the molecules of the

central ring and completes its �rst-shell coordination a new icosahedron interpenetrates

the DIC and the new cluster has in total 23 molecules, which is the third magic number.

The corresponding cluster is shown in panel k of Fig. 5.17 (top view). If the same is done

for the other molecules of the same ring, e.g. the neighbouring one in clock-wise direction,

only 3 more molecules are now required to complete its �rst-shell coordination. The new

cluster has now size N = 26, the fourth magic number. Following the clock-wise direction

the procedure can be repeated 2 more times adding always 3 molecules and a third and

last time adding 2 molecules only, forming the now oblate cluster shown in panel l of

Fig. 5.17 (top view), and the corresponding magic sizes are therefore 29, 32, 34 and 37.

The cluster structures for N = 43, 46 and 49 are not shown, but they also continue the

interpenetrating model just explained. Starting from N = 50 this pathway is lost and the

next magic number 55, corresponding to the complete second icosahedral shell has been

not found, at least within the number of runs simulated.

The growth process discovered in the present investigation at T = 0 K, is in close

agreement with most of the results obtained by others theoretical groups, who use Quantum

Monte Carlo methods [261�264]. A small comment is worth about the investigation by

Cuervo and Roy in Ref. 265, who compared the magic number sequence obtained by using

the SG and the NWB potentials �nding only magic clusters with N = 13, 19, 23, 26, 30,

36 and N = 13, 26 and 33, respectively. These results are de�nitely in contrast to the

present ones, since we found all magic clusters (except the one of size N = 55) by using

indeed the NWB pair potential, for which they found fewer magic clusters.

As already mentioned above, the attractive part of the HFD-potentials presented along

this work all present an R−6 dependence in their leading term. This is shared by the

Lennard-Jones (LJ) potential as seen in the next equation

LJ(R) = 4ε

[( σ
R

)12
−
( σ
R

)6
]

(5.50)

where ε is the depth of the potential well, σ is the distance at which the potential is zero, and

R is the internuclear distance. The LJ-potential has been widely used for growing clusters,

so that it could be very interesting to compare the total binding energies, Etot(N), listed in

Tab. 5.8, with those of so-called LJ-clusters. A very easy way of calculating such energies is

to make use of the disconnectivity graphs [276], which have been suggested as an intuitive
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5 Structure and Quantum Dynamics of Cl2 Embedded in Solid H2

Figure 5.18: Disconnectivity graphs for (a) LJ13, (b) LJ19 and (c) LJ55. In (a) all minima
are included, whereas in (b) and (c) only the branches leading to the 250 and 900 lowest
minima are shown. The �gures have been adapted from Ref. 276.

and simple way for visualizing multi-dimensional energy landscapes of systems in just two

dimensions. The idea is to connect the local minima (isomers) and the transition states

between them in a tree-like graphic. In particular, given an energy, E, the minima can

be grouped in subsets, termed �superbasins�, if they are mutually accessible via transition

states lying below E. Two minima are instead in di�erent superbasins if the pathway

between them exceeds this energy. By raising the energy threshold, new local minima

become accessible and more superbasins appear. Construction of disconnectivity graphs

for LJ-clusters results in a further advantage: they can be given in units of ε and become

independent of the molecular system under investigation, as shown in Fig. 5.18a, b and c

for the LJ-clusters of size N = 13, 19 and 55, which have been adapted from Ref. 276. The

Disconnectivity graph for the LJ-cluster of size N = 13 is complete and shows 1467 local

minima, whereas the other two only show their lower parts. The global minimum in the

�rst graph corresponds to the �rst Mackay icosahedron with 12 vertices and one particle

at the center. The next three lowest isomers correspond instead to �defect� structures,

where one particle is moved from the vertex to one of the three possible so-called �capping�

sites, for example at one of the faces of the icosahedron. The energy gaps between the

global minima and the �rst lowest isomers are 2.85ε and 2.64ε for the complete Mackay

icosahedra at N = 13 and 55, which are quite large since the icosahedral structures are very

stable. By taking ε to be the depth of the NWB potential used to grow the clusters in the

present work, i.e. 0.2813 kJ/mol (see Tab. 5.7), the binding energies of the corresponding

13-, 19- and 55-LJ-clusters can be calculated from the graphs by multiplying the energy

of the global minimum by ε. By doing so, one obtains approximately -12.52, -20.45 and

-78.62 kJ/mol. The �rst two values are very similar to the corresponding ones in Tab. 5.8,

which demonstrates that HFD-cluster closely follow the growth process of LJ-clusters. The

third value instead is, as expected, in disagreement (5%), since in the present work the
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5.3 Results: From Clusters to Crystals

global minimum structure at N = 55 has not been found. For the capped 55-LJ-cluster

an approximate energy of -77.88 kJ/mol is expected from the disconnectivity graph in

Fig. 5.18c, which is still much lower than the energies of the 55-isomers found in the

present work. Nevertheless, the disconnectivity graph could be used, inversely, to predict

the superbasin of belonging of our local minimum structure. In this case, its energy is

divided by ε, and results -266.02, which is unfortunately outside of the partial graph given

in Fig. 5.18c.

Doped Cl2(pH2)N Clusters

Similar to the growth process of the pure clusters, the total binding energies Etot(N) of

the now doped Cl2(pH2)N clusters also decrease in a stepwise fashion while the cluster size

N increases, as shown in the fourth column of Tab. 5.9. The magnitudes of such steps,

∆Etot(N), are shown in the second column and de�ne the ��rst derivatives� of Etot(N),

that is the gain in energetic stability when going from the N to the N + 1 cluster. The

minima of ∆Etot(N) show magic numbers at N = 6, 9, 14, 18, 23, 26, 29, 31, 36, 39, 42, 46,

49, 52, 54, 57 , ..., etc., which correspond to maxima of the �second derivative�, ∆2Etot(N),

plotted in the lower part of Fig. 5.19. Tab. 5.9 also lists the corresponding symmetries of

the grown clusters, some of which are depicted in the upper part of Fig. 5.17. The �rst

cluster with N = 1 has two minima (see also PES in top Fig. 5.9): the global one has a

linear (L) C∞v symmetry with the only pH2 molecule in a head-on position, and is shown

in panel a of Fig. 5.19; the local one is instead T-shaped and has, therefore a C2v symmetry

(not shown). The clusters of sizes N = 2, 3, 4 have even three di�erent minima, the global

ones are shown in panel b, c and d and have D∞h, C2v and C2v symmetry, respectively. The

corresponding other two isomers are obtained by moving one or both the molecules from

L-position to the T-position, respectively. Thus, as long as the ring around the Cl2-bond

has less than three molecules, the head-on positions (L-shaped) are favoured with respect

to the equatorial ones (T-shaped), which is a consequence of the high anisotropy of the

pH2-Cl2 pair potential from this work, that is an appreciable energy di�erence between

the L- and T-shape con�gurations (about 0.45 kJ/mol). The situation changes in panel

e where the cluster of size N = 5 with C4v symmetry is depicted. Since the four-fold

ring is now closed, the T-con�gurations are stabilized and the cluster structure has only

one molecule in the L-con�guration. The cluster with N = 6 in panel f is an elongated

octahedral of D4h symmetry (a subgroup of the Oh point group) and is the �rst magic

number of the growing sequence. The other clusters up to N = 11 do not present any

symmetry elements, so that the cluster at N = 9 is not shown in Fig. 5.19, even if it is a

magic number. The cluster with size N = 14 in panel g shows a distorted fcc structure

with D4h symmetry. This is easily recognised by comparison with the next panel h, where

an fcc slab is depicted with the corresponding 14 solvent molecules highlighted in blue.

Since the molecules of the two non-equatorial ring around Cl2 are now the least bound,
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the two structures with N = 12 and 13 simply have one or both the rings incomplete

(not shown). Since the fcc symmetry is slightly distorted and the L-con�guration has the

shortest equilibrium distance, the �rst-shell around the Cl2 is �rst complete at N = 14

whereas at N = 12 no magic cluster is found, as one would expect when considering

the �rst coordination shell in an fcc crystal when the doping molecule occupies a single

substitutional site. Moreover, no cluster structures are found for larger values of N with

the impurity occupying a double substitutional site and pointing along the <001> or along

another typical fcc (nor hcp) crystallographic direction. On the contrary, the fcc �cage�

slightly distorts in order to better accommodate the dopant molecule, so that Cl2 occupies

a single substitutional site, as it has been correctly assumed by Manz et al. in Ref. 16,

and after completion of the �rst shell, i.e. starting from N = 15, the growth process is

dominated by the solvent-solute interactions and the new solvent molecules prefer to stack

on each other forming an icosahedral phase, instead of building a second coordination shell

around Cl2, see second and third columns of Tab. 5.9. This leaves the doping molecule

and the distorted fcc-structure at the surface of the larger clusters (not shown) implying

an optimal shield of the Cl2 attraction when the latter occupies a single substitutional site

and points along the <001> fcc crystallographic direction, and, therefore, an energetically

favourable structure.

Unfortunately, no literature has been found about Cl2 impurity clustered by pH2 molecules

to compare with. Theoretical investigations based on Quantum Monte Carlo simulations

have been carried out on (pH2)N clusters doped by the two isotopomers, oH2 [278] and

oD2 [279], which form icosahedral structures as in the case of pure pH2. Clusters doped

with OCS [280], CO2 [281], CO [221] and N2O [282] have been also studied, but the sizes

only ranged between N = 1-19 depending on the molecular system considered. However,

clusters doped by triatomic molecules are expected to show a di�erent sequence of magic

numbers. The system CO(pH2)N , which is already more similar to ours, even if less sym-

metric, has a very stable structure at the cluster size N = 12, for which the �rst shell is

completed. A second less stable minimum of the cohesive energy is found at N = 14, but

unfortunately, such structure and their symmetries are not shown.

Other cluster growth sequences to compare with are naturally doped RG systems, since

they are also closed-shell systems interacting in the VDW regime. Here, results are reported

for Cl2HeN [283] and Cl2ArN [284]. The Cl2ArN clusters have magic numbers at N = 8,

11, 13, 15, 17, 21 and 23, which correspond to icosahedral structures ascribable to the

corresponding pure ArN+2 ones, but distorted by the presence of the dopant molecule,

which occupies a double substitutional site in an icosahedral quasi-crystal, so that the

�rst coordination shell is completed at N = 17, that is the DIC structure seen above in

Fig. 5.17j as well as in other Dihalide-RG system as for example I2Kr17 [285]. In Ref. 283,

Cl2HeN clusters are investigated, but only for N = 1, 6 and 20, so that no sequence of

magic numbers is given. At N = 6, the solvent molecules form a six-fold ring around the
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5.3 Results: From Clusters to Crystals

Table 5.9: The solvent-solvent, the solvent-solute, the total and the relative binding en-
ergies of the doped Cl2(pH2)N clusters are listed respectively in the second, third, fourth
and �fth columns with respect to the cluster size N (�rst column) together with their
corresponding point group symmetries (last column). Energies are given in kJ/mol.

N EpH2−pH2
(N) EpH2−Cl2(N) Etot(N) ∆Etot(N) Point Group

0 0 0 0 − D∞h
1 0 −1.8348 −1.8348 0 C∞v
2 −0.0025515 −3.6697 −3.6722 −1.8374 D∞h
3 −0.15827 −5.1047 −5.263 −1.5908 C2v

4 −0.59829 −6.5383 −7.1366 −1.8736 C2v

5 −1.5782 −7.5759 −9.1541 −2.0175 C4v

6 −1.8806 −9.4097 −11.2903 −2.1362 D4h

7 −3.1036 −9.8416 −12.9452 −1.6548 C1

8 −3.9917 −10.7498 −14.7415 −1.7963 C1

9 −5.1645 −11.721 −16.8855 −2.144 C1

10 −6.5669 −12.0726 −18.6396 −1.7541 C1

11 −7.2811 −12.9858 −20.267 −1.6274 C1

12 −8.9206 −12.8203 −21.7409 −1.4739 C1

13 −9.8726 −13.38 −23.2525 −1.5116 C1

14 −10.7965 −14.0878 −24.8843 −1.6318 D4h

15 −12.0532 −14.1284 −26.1816 −1.2973 C1

16 −13.3159 −14.1721 −27.488 −1.3064 C1

17 −15.0961 −13.6872 −28.7833 −1.2953 C1

18 −16.3639 −13.969 −30.3329 −1.5497 C1

19 −17.5407 −14.2601 −31.8008 −1.4679 C1

20 −18.8106 −14.4474 −33.258 −1.4571 C1

21 −20.0558 −14.6482 −34.7039 −1.4459 C1

22 −21.8295 −14.4352 −36.2647 −1.5608 C1

23 −23.0247 −14.7403 −37.765 −1.5003 C1

24 −24.4706 −14.7019 −39.1725 −1.4075 C1

25 −25.902 −14.7571 −40.6591 −1.4865 C1

26 −27.5675 −14.7677 −42.3352 −1.6761 C1

27 −28.9619 −14.7776 −43.7395 −1.4043 C1

28 −30.4867 −14.8117 −45.2984 −1.5589 C1

29 −32.0854 −14.8225 −46.9078 −1.6094 C1

30 −33.4789 −14.8936 −48.3725 −1.4647 C1

31 −35.1684 −14.8979 −50.0663 −1.6938 C1

32 −36.8045 −14.8427 −51.6471 −1.5808 C1

33 −38.2205 −14.9187 −53.1392 −1.4921 C1

continued in the next page
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Table 5.10: Continued from previous page.

N E(pH2)2
(N) EpH2−Cl2(N) Etot(N) ∆Etot(N) Point Group

34 −39.5352 −15.083 −54.6182 −1.4789 C1

35 −40.9438 −15.2685 −56.2123 −1.5941 C1

36 −42.5808 −15.2774 −57.8582 −1.6459 C1

37 −44.1862 −15.1819 −59.368 −1.5099 C1

38 −45.2277 −15.7158 −60.9435 −1.5755 C1

39 −47.0886 −15.6055 −62.6942 −1.7506 C1

40 −48.4195 −15.5693 −63.9888 −1.2947 C1

41 −49.9658 −15.4471 −65.4129 −1.424 C1

42 −51.6973 −15.37 −67.0673 −1.6544 C1

43 −53.141 −15.437 −68.578 −1.5106 C1

44 −54.7321 −15.487 −70.219 −1.6411 C1

45 −56.3826 −15.5769 −71.9595 −1.7405 C1

46 −58.2686 −15.5434 −73.812 −1.8525 C1

47 −60.1383 −15.1796 −75.3178 −1.5058 C1

48 −61.8862 −14.948 −76.8342 −1.5164 C1

49 −63.5199 −14.9582 −78.4781 −1.6439 C1

50 −65.1236 −14.9749 −80.0986 −1.6204 C1

51 −66.9477 −14.9362 −81.8839 −1.7854 C1

52 −67.9766 −15.6279 −83.6045 −1.7206 C1

53 −69.5734 −15.678 −85.2514 −1.6469 C1

54 −71.7259 −15.1743 −86.9002 −1.6488 C1

55 −73.2058 −15.2122 −88.418 −1.5178 C1

56 −74.3714 −15.4815 −89.8529 −1.4349 C1

57 −76.351 −15.5547 −91.9057 −2.0528 C1

58 −78.1162 −15.5193 −93.6355 −1.7297 C1

59 −79.5479 −15.6229 −95.1708 −1.5353 C1

60 −81.4042 −15.4162 −96.8204 −1.6496 C1

Cl2 bond. A six-fold ring structure is also found for OCS embedded in liquid 4He droplets

with a complete �rst shell at N = 17 in Ref. 286. The OCS-He and Cl2-He pair potentials

present indeed similar anisotropies [286].

Since the optimized growth sequences for the Cl2HeN , Cl2ArN and Cl2(pH2)N systems

are based on two-body interactions, a further comparison shall focus on the equilibrium

distance and on the energetics, that is the well depth, of the solvent-solvent and solvent-

solute pair potentials listed in Tab. 5.11. The solute-solvent PESs for the three systems

have a similar topography, since all present one global and one local minimum in the L-

and T-shaped con�gurations, respectively. Let us now de�ne a new quantity for measuring
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Figure 5.19: The most symmetric and/or signi�cant Cl2(pH2)N cluster structures from the
growing sequence with number of pH2 molecules N = 1, 2, 3, 4, 5, 6, 14 are shown in the
top part of the �gures in panels a-g. Panel h depicts a small slab of fcc crystal, where the
blue spheres correspond to the pH2 molecules in panel g. In the bottom part, the second
derivative of the cohesive energy, ∆2Etot(N) = Etot(N − 1)− 2Etot(N) + Etot(N + 1), is
plotted against the cluster size N in order to discriminate particularly stable structures
(maxima).
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Table 5.11: The equilibrium distances and the respective well depths of the He-He, (pH2)2,
Ar-Ar, He-Cl2, pH2-Cl2 and Ar-Cl2 pair potentials are compared. For the mixed pair
potential the energy di�erence between the L- and T-shape minima relative to their mean
energy is also given as a measure of anisotropy. All entries are given in nm and kJ/mol.

Pair Potential Req(nm) De(kJ/mol) 2∆L−T
EL+ET

He-He [277] 0.296 0.090 −

(pH2)2 0.344 0.281 −

Ar-Ar [120] 0.374 1.190 −

He-Cl(L)
2 [254] 0.420 0.481

0.076
He-Cl(T )

2 [254] 0.345 0.446

pH2-Cl
(L)
2 0.405 1.879

0.280
pH2-Cl

(T )
2 0.242 1.417

Ar-Cl(L)
2 [254] 0.447 2.573

0.013
Ar-Cl(T )

2 [254] 0.374 2.540

their relative anisotropy as follows:

A =
2∆L−T
EL + ET

(5.51)

where ∆L−T = EL − ET is the absolute energy di�erences between the global and local

minima, i.e. 0.4621, 0.035 and 0.033 kJ/mol for the pH2-Cl2, He-Cl2 and Ar-Cl2 dimers,

respectively, and 0.5(EL +ET ) is in turn the corresponding mean energy. The results are

listed in Tab. 5.11 and mirror the higher anisotropy of the pH2-Cl2 system with respect to

the RG ones. Thus, the preference in occupying the head-on positions in the Cl2(pH2)N
growing sequence and the in contrast formation of the six-fold ring in the Cl2(He)6 cluster

are a consequence of the di�erent anisotropies in the pair potentials. This is further

con�rmed in [254], where it is stated that, even if the linear minimum of the He-Cl2 PES

is deeper, experiments show that the T-shape con�guration is favoured because of the ZPE
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5.3 Results: From Clusters to Crystals

energies associated with the minima. Finally, the formation of the six-fold ring around the

Cl2 bond is instead related to the shorter He-He equilibrium distance.

The second interesting feature is the relation between the solvent-solute and the solvent-

solvent pair potential well depths, which strongly in�uences the growth processes. In the

pH2-Cl2 and He-Cl2 systems their ratio is about 5, whereas in the Ar-Cl2 system the ratio

is circa 2 (with respect to the T-shape con�guration), which could explain why the Ar-

Cl2N clusters form icosahedral structures, that is the growing sequence is dominated by

the solvent-solvent interaction already from the beginning.

Finally, it seems counter-intuitive that the Ar atoms form a �ve-fold ring around the Cl2,

whereas in the present work the ring is four-fold, even if the equilibrium distance is larger

for the Ar-Ar system than for the (pH2)2. However, this proves that both the energetics

and the equilibrium distances play a role in growing process of cluster systems and the Ar

prefers a growing process based on icosahedral structures because of �ve-fold rings.

First-Shell Clusters

On the way to build the in�nite crystal, pure and doped �rst-shell clusters are investigated

in order to disclose the energetics of fcc, hcp and icosahedral structures when imposing

those symmetries onto the clusters. For this purpose cohesive energies are calculated as a

function of the NNd and compared. First-shell clusters represent the closest environment

to the solvent or the solute in the crystal. They are responsible for the most part of its

cohesive energy (per molecule) and strongly in�uence the growth process of the crystal

in the �rst stages when surface e�ects play a dominant role. In fact, whereas the central

molecule is 12 coordinated, the surface coordination number is always smaller. Thus, it is

interesting to guess to which of the closest packed crystal structures the pure cluster may

switch because of the missing translational symmetry in the icosahedral quasi-crystals.

Even more interesting are the �rst-shell doped clusters, since they can be seen as the

precursors of larger rigid crystals in contrast to the optimized cluster structures which

can be seen as distorted local symmetries induced by an impurity in a non-rigid lattice

(as for example translational quantum crystals) of di�erent global symmetry. Actually, in

Sec. 5.3.8 rotational and translational DOFs of solvent and solute are investigated in the

matrix and the �rst two shells (see Fig. 5.24) around them will be relaxed so that such

local distorted symmetries may occur.

The �rst coordination shells of fcc, hcp and icosahedral symmetry are all constituted by

12 molecules. They di�er just in how those molecules are distributed in the space, as shown

in Fig. 5.20. They form three solid polyhedra: the anti-cuboctahedron (hcp), the cuboc-

tahedron (fcc) and the icosahedron (ico), respectively from the top. The Miller indices,
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5 Structure and Quantum Dynamics of Cl2 Embedded in Solid H2

Figure 5.20: The �rst-shell of nearest-neighbour molecules for the hcp (top), fcc (mid-
dle) crystals and for the icosahedral structure (bottom) are shown. All of them are
formed by 12 molecules placed at the vertices of three regular platonic polyhedra, the
anti-cuboctahedron, the cuboctahedron and the icosahedron, respectively. The Miller in-
dices [287] are also shown.
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Figure 5.21: The total energies, Etot(Rd) and Etot(Rd, θA, φA) in Eqs. 5.52 and 5.53,
respectively of pure and doped �rst shell clusters with fcc (red curve), hcp (blue curve)
and ico (green curve) symmetry, are plotted with respect to the NNdistance, Rd.

which de�ne the crystallographic directions of Bravais lattices are also given (however not

for ico)6.

The binding energies of the clusters have been calculated as the sum of the contributions

of all distinct pairs for the pure and doped �rst-shell clusters, respectively:

Etot(Rd) =

Np−1∑
i=1

Np∑
j>i

V
(l=0)

(pH2)2
(Rij ;Rd) (5.52)

6Please note that when using the Miller indices for the crystallographic directions, the convention is to
indicate sets of equivalent directions [hkl] by <hkl>, whereas sets of equivalent plane (hkl) are indicate
by curly brackets {hkl}. Moreover, for the hcp lattice it is possible to use four Miller indices <hkil>,
as in the present work. For the equivalence to the three indices convention please refer to [287].
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Table 5.12: Nearest-neighbour equilibrium distances, Rmin
d and the corresponding binding

energies, Etot of pure (pH2)13 and doped Cl2(pH2)12 clusters with fcc, hcp and icosahedral
symmetries are listed. All entries are given in nm and kJ/mol.

Molecular System Symmetry Rmin
d (nm) Etot(Rd)(kJ/mol)

(pH2)13

fcc 0.339 −11.44
hcp 0.339 −11.45
ico 0.330/0.3465 −12.45

Molecular System Symmetry Rmin
d (nm) Etot(Rd, θA, φA)(kJ/mol)

Cl2(pH2)12

fcc 0.339 −15.34
hcp 0.360 −13.49
ico 0.350/0.3675 −12.63

and

Etot(Rd, θA, φA) =

Np−1∑
i=2

Np∑
j>i

V
(l=0)

(pH2)2
(Rij ;Rd) +

Np∑
j=2

V
(l=0)

pH2−Cl2
(R1j ;Rd, θA, φA) (5.53)

which is the usual formula for calculating the cohesive energy of a crystal with Np particles

at their lattice positions, ~Ri, with ~Ri depending on the Nearest-Neighbour (NN) distance,

Rd. Rd is changed from 0.25 to 0.9 nm and the resulting curves are shown in Fig. 5.21. All

curves tend to zero at their asymptotic limits, since the interaction energy vanishes, when

the molecules are taken apart. In the case of the pure (pH2)13 clusters, the hcp and fcc

structures present nearly identical curves (dashed blue and red lines), since the two clusters

count the same numbers of NN interactions: 12 between the central molecule and those of

the shell and 24 between these latter ones, which correspond to the number of edges of the

cuboctahedron and of the anti-cuboctahedron (see Fig. 5.21). Thus, they present almost

the same binding energies, -11.44 and -11.45 kJ/mol for fcc and hcp, respectively, at the

minimum of the curves with NNd, Rmin
d = 0.339 nm, as shown in Tab. 5.12. This is not

surprising, since the two polyhedra are interchangeable just by halving the polyhedron with

a plane parallel to one of the triangular faces and rejoining them after rotation of 60◦ [267].

The icosahedral structure is the most stable in the case of pure �rst-shell clusters, since

the icosahedron possesses now 30 edges, and the molecules at the surface are therefore 5,
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5.3 Results: Simulation Boxes for fcc and hcp Crystals

instead of 4 coordinated as in the two previous polyhedra (see also Tab. 5.8). Its energy

at the minimum of the green dashed line is -12.45 kJ/mol and has the same energy as

the optimized (pH2)13 cluster structure in Fig. 5.17h and 5.17i, see Tab. 5.8. It must be

recalled, however, that the distance between the molecules at the surface is 1.05 times the

NNd, Rmin
d = 0.330 (center-vertex distance), which increases the weight of surface e�ects

for larger crystals (see also Sec. 5.3.6). Finally, large icosahedral cluster may switch either

to an hcp or an fcc structure con�rming the many experimental founding of pure hcp, fcc

or mixed hcp/fcc hydrogen crystals [13].

The total binding energy of the doped �rst-shell clusters strongly depend on the orien-

tation of the Cl2 molecule inside the cluster. Since the growth sequence in the previous

section brought to a complete �rst coordination shell with a distorted fcc symmetry with

the Cl2 oriented along the z-direction, that is the <001> crystallographic direction, the

calculations have been limited to this direction. The direction of the impurity in the hcp

crystal is arbitrarily chosen to be also the z-direction, that is the <0001> crystallographic

direction. Finally, in the case of the icosahedral quasi-crystal, the Cl2 molecule lies along

one of the C5 symmetry axis. Later in Sec. 5.3.8 the rotational DOF of the Cl2 in the

crystal is going to be studied giving more insights about the relative distribution function

of Cl2 along the crystallographic directions. Relatively to the z-direction, the Cl2-doped

�rst-shell clusters favour the fcc structure with a binding energy of -15.34 kJ/mol at the

bottom of the solid red curve with Rmin
d = 0.339 nm. This cohesive energy rather deviate

from the energy of the Cl2(pH2)12 in Tab. 5.9 because of the imposed fcc symmetry. In

fact, the optimized cluster Cl2(pH2)14 in Fig. 5.19g presents an elongated D4h symmetry

instead of Oh. Please note, however, that the pure and doped �rst-shell cluster in Fig. 5.21

present the same NNds at the bottom of the fcc curves (solid and dotted red curves) with

Rmin
d = 0.339 nm, which means that the Cl2 molecules has enough space to accommodate

in the single substitutional site, so that the deviation from the fcc symmetry disclosed for

the optimized Cl2(pH2)14 cluster exclusively depend on the anisotropy of the Cl2-pH2 pair

potential, i.e. R
(T )
eq < Rmin

d < R
(L)
eq . The icosahedral structure is the least stable (solid

green line) with an energy of -12.63 kJ/mol at Rmin
d = 0.350 nm, which is slightly larger

than in the pure cluster meaning that the cluster need to expand to accommodate the

impurity. The hcp curve lies energetically in between the other two curves and has the

largest NNd, Rmin
d = 0.360 nm, so that again the cluster need to expand to leave place to

the Cl2 molecule, at least when directed along the z-direction.

5.3.7 Simulation Boxes for fcc and hcp Crystals

In this section, the sizes of the simulation boxes for the hcp and fcc crystals are converged

by calculating the cohesive energy per molecule with respect to the number of primitive

cells, nc, in each direction, hence, with respect to the number of molecules Np constituting

the box. Since a primitive cell contains 4 molecules, the total number of molecules in the
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5 Structure and Quantum Dynamics of Cl2 Embedded in Solid H2

simulation box is simply Np = 4 × (nc)
3. The cohesive energy per molecule is calculated

by dividing the total binding energy Etot(Rd) from Eqs. 5.52 and 5.53 by the total number

of molecules, Np.

Ec(Rd) =
Etot(Rd)

Np
(5.54)

for the pure and doped crystals. The subscript c stays for classical and its meaning will

become clear at the end of this section. Periodic boundary conditions are applied onto the

simulation boxes, which practically corresponds to modelling the crystal by the in�nite

repetition of a small part of it. This small part is normally taken to be a slab of lattice

for which the central particle feel no surface e�ects. Since all other particles in this slab

still su�er surface e�ects, the minimum image convention is additionally applied, which

is a stratagem ensuring that each molecule in the simulation box should feel the same

environment as it would be at the center. This is achieved by letting each individual

particle in the lattice slab interact with the closest image of the remaining particles in one

of the repeated neighbour slabs. Periodic boundary conditions is only applicable to Bravais

lattices, so that it was not used for the icosahedral quasi-crystal. Upon application of the

minimum image convention Eq. 5.54 can be rewritten respectively for the pure and doped

crystals as

Ec(Rd) =

Np∑
j=2

V
(l=0)

(pH2)2
(R1j ;Rd) (5.55)

where the molecule number 1 is always the central molecule, and

Ec(Rd, θA, φA) =
Np − 1

Np

Np∑
j=2

V
(l=0)

(pH2)2
(R1j ;Rd) +

1

Np

Np∑
j=2

V
(l=0)

pH2−Cl2
(R1j ;Rd, θA, φA) (5.56)

with θA = φA = 0◦ independently of the crystal symmetry considered.

The results of the convergences of the simulation boxes made of pure pH2 and doped

Cl2@pH2 crystal are shown in Figs. 5.22 and 5.23, respectively, and are practically identical.

The top panels show the crystal cohesive energy per molecule with respect to the NNd.

The fcc and hcp crystals are constituted by 4000 molecules (nc = 10) and the ico quasi-

crystal by 3870 molecules (10 concentric icosahedral shells). Because of the surface e�ects

the icosahedral quasi-crystal has the lowest cohesive energy per molecule. The fcc and hcp

crystals show almost identical curves. At Np = 4000, the cohesive energy per molecule

of pure pH2 fcc and hcp crystals are approximately -2.36 kJ/mol, which is slightly above
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Figure 5.22: The cohesive energies per molecule, Ec(Rd), from Eq. 5.55 is converged with
respect to the magnitude of the simulation boxes, i.e. the number of molecules, Np, con-
stituting the pH2-pure crystals with fcc (blue curves), hcp (red curves) and ico (green
curves) symmetries. The top panel shows the cohesive energies vs the NNdistance, Rd, for
a simulation box made of nc = 10 primitive cells per direction. The middle panel shows
the convergence of the cohesive energies at the minimum NNdistance, Rmin

d , from the top
panel vs Np. The bottom panel shows the changes in the cohesive energies when increasing
the magnitude of the simulation box, i.e. of number of primitive cells per direction, nc, by
steps of one unit.
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Figure 5.23: The cohesive energies per molecule, Ec(Rd, θA, φA) from Eq. 5.56 is converged
with respect to the magnitude of the simulation boxes, i.e. the number of molecules, Np,
constituting the Cl2-doped crystals with fcc (blue curves), hcp (red curves) and ico (green
curves) symmetries. The top panel shows the cohesive energies vs the NNdistance, Rd, for
a simulation box made of nc = 10 primitive cells per direction. The middle panel shows
the convergence of the cohesive energies at the minimum NNdistance, Rmin

d , from the top
panel vs Np. The bottom panel shows the changes in the cohesive energies increasing the
magnitude of the simulation box, i.e. the number of primitive cells per direction, nc, by
steps of one unit.
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Table 5.13: Nearest-neighbour equilibrium distances, Rmin
d and corresponding cohesive

energies per molecule, Ec(R
min
d ), and Ec(R

min
d , θA, φA) from Eqs. 5.55 and 5.56, respec-

tively, of the pure pH2 and doped Cl2@pH2 crystals with fcc, hcp and quasi-crystal with
icosahedral symmetries are listed for Np = 4000. All entries are given in nm and kJ/mol.

Molecular System Symmetry Rmin
d [nm] Ec(R

eq
d ) [kJ/mol]

Pure pH2

fcc 0.331 −2.36
hcp 0.331 −2.36
ico 0.325 −2.08

Molecular System Symmetry Rmin
d [nm] Ec(R

eq
d , θA, φA) [kJ/mol]

Doped Cl2@pH2

fcc 0.331 −2.36
hcp 0.331 −2.36
ico 0.330 −2.07

the value expected when using the LJ-potential, that is 8.6ε [288]. If ε = 0.2813 kJ/mol,

i.e. the well depth of the NWB pair potential used for converging the simulation boxes,

the expected cohesive energy per molecule would in fact be -2.42 kJ/mol. In the middle

panels of Figs. 5.22 and 5.23 the crystal cohesive energy per molecule is now calculated

by stepwise varying the crystal size, but �xing the NNd at the �xed value Rmin
d for which

the total energy of the crystal is minimized. At each step, nc is increased by one, so

that the Np increases from 4 × n3
c to 4 × (nc + 1)3. Thus, when the cohesive energy per

molecule becomes constant with respect to the crystal size, the simulation box converges,

since the interaction between each molecule and the most distant ones becomes negligible.

The hcp and fcc simulation boxes, when using the minimum image convention, converge

faster than the icosahedral quasi-crystal, which instead su�ers the surface e�ects, and the

cohesive energy per molecule becomes almost constant for a crystal made of 4000 molecules

with nc = 10. This can be better seen in the bottom panels, where the changes of the

cohesive energy per molecule is plotted again the crystal size. When increasing the crystal

size from nc = 9 to the nc = 10, the change in the energy is about or even less than 1

J/mol depending on the crystal symmetry considered. Please note that the convergence

of the Cl2@pH2 simulation boxes again assumes the impurity to be directed along the z-
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direction for the fcc and hcp crystals and along the C5 symmetry axis for the icosahedral

quasi-crystal, as in the �rst-shell cluster calculations in the previous section.

The minimum of the cohesive energy per molecule for both the fcc and hcp crystal is

found at the NN equilibrium distance Rmin
d = 0.331 nm, which does not �t the experi-

mentally measured value Rexp = 0.378 nm. Similarly, the cohesive energy per molecule

Ec(R
min
d ) = −2.36 kJ/mol is more than thrice the sublimation energy value of 0.74 kJ/mol

measured from experiment [289]. This is due to the strong quantum e�ects, which make

the theoretical treatment of solid hydrogen more elaborate than that of RG crystals. Our

model so far do not account for the large Zero-Point Energy (ZPE), which covers up to two

thirds of the classical cohesive energy Ec(R
min
d ), con�rming a rather large quantum e�ect.

In the next section, the EM will be applied with the aim of including the ZPE and cal-

culating the corresponding translational wavefunctions both for a pH2 and a Cl2 molecule

in the matrix. Summation of the ZPE to the classically calculated cohesive energies, is

expected eventually to predict the experimental NNd, Rexp, and the correct sublimation

energy, Es. Additionally, within the multi-stage adiabatic separation, the ZPEs will be

later compared to the rotational energies of the pH2 and Cl2 molecules in order to discuss

whether the rotational and translational DOFs may be, or to which degree, separable.

5.3.8 Translational and Rotational DOFs

The study of the Cl2@pH2 system involved so far many approximations. In the �rst step,

the low temperature of liquid Helium ensured the safe separation of the electronic DOFs

of solute and solvent from the other DOFs. In the subsequent step, where internal (vibra-

tional) and external (rotational and translational) DOFs are separated, it is assumed that

only the vibrational ground states of the two molecules are populated and, moreover, that

the coupling to the rotations is negligible. It must be mentioned that this last assump-

tion based either on the gas-phase diatomic constants or on the pair potentials calculated

above, is in turn transferred to the solid-phase, which is indeed a multi-body problem, so

that they have to be thoroughly considered. The internal and external DOFs of Cl2, for

example, can be safely separated on the base of gas-phase diatomic constants, since the

spacing between the two �rst vibrational levels is three order of magnitude larger than the

one between the �rst rotational states (see Tab. 5.1), but the situation could drastically

change in the solid-phase, since the dopant is expected to show a hindered rotation or even

a libration. Thus, vibrations are �rst neglected, but will be discussed a posteriori in the

next sections after a model is applied for the calculation of the Cl2 rotational/librational

energy levels in the crystal. The energy di�erence between the �rst two vibrational levels

of H2 is only one order of magnitude larger than the one between the �rst two rotational

levels in the gas-phase. The situation is expected to hold also in the solid-phase, since the

narrow vibrational potential is not expected to undergo drastic changes and the rotational

states are practically undistorted as we learnt from the pair potentials. Thus, conclusions
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are now transferred to the solid-phase, a many-body interactions problem, on the base

of just pair interactions. This is justi�ed in the case of Cl2, since the solvent-dopant po-

tential describes the distortions su�ered by each of the solvent molecule in the vicinity of

the impurity, which, in the spirit of the pair interaction approximation, largely conserves

additivity. This is not true for the (pH2)2 potential, since it describes the interaction be-

tween two individual solvent molecules, even though in the crystal each of them is actually

interacting with 12 nearest-neighbours at the same time. Thus, the true distortion of the

rotational levels is probably more than twelve time the distortion undergone under the

presence of only one solvent molecule (less additivity), e.g. the terms of order N > 2 in

the many-body expansion of Eq. 5.1 becomes more important. Finally, the couplings of

the solvent rotations to Cl2 internal vibrations is neglected, which introduces an error in

the RA pH2-Cl2 pair potential with an upper limit of 8% in the linear con�guration when

the solvent molecules lie along the Cl2 bond (head-on), see Sec. 5.3.4. For the same reasons

just discussed, these last conclusions based on pair potentials are again safely transferred

to the solid-phase.

Once the internal DOFs are adiabatically separated, still all possible non-adiabatic cou-

plings between translational and rotational DOFs has to be disclosed. From now on, the

models applied serve for the calculation of rotational and translational energy levels of

molecules embedded in the crystal, so that all conclusions refer to the solid-phase. Those

models su�er from the same range of errors just discussed, i.e. the neglect of the NACTs

terms between solvent rotational and solute vibrations and of higher order terms of the

many-body expansion, in particular the three-body term.

In general, rotational and translational DOFs of a molecule are separable only in the gas-

phase, whereas in the solid-phase the situation is highly complicated by the non-adiabatic

interactions with the matrix. The translations in the gas-phase, become external vibrations

around the lattice nominal positions in the solid-phase7. Such vibrations can be analyzed

in terms of collective motions, which give rise to phonon modes, the quantum-mechanical

equivalent of classical vibrational normal mode. Phonon modes are coupled in di�erent

ways to the internal vibrational [290] and in particular to the rotational DOF [27,291�294]

of the solvent as well as of the solute molecule.

Translational and rotational PESs can be explored simultaneously by rotating the test-

molecule around its COM and by displacing it at the same time. This allows also for the

calculation of the NACTs given in Eqs. 2.75 and 2.76 of Sec. 2.2.5. However, along this

investigation the two DOFs are treated separately. On one side, the translational PES

is explored along di�erent crystallographic directions, on the other side, the rotational

PES is explored for di�erent lattice symmetries. In the limiting case of complete AS, no

7Please note that in the literature translations in the crystals are often synonymous to vibrations, since
the molecules or atoms move back and forth from their nominal lattice positions. Recall that they have
been called �external� vibrational DOFs in Chap. 2, in contrast to the �internal� vibrational DOFs.
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Figure 5.24: The �rst 12 and second 6 nearest-neighbours are shown for the pure and Cl2-
doped pH2 crystals in the left and right panels, respectively. Their positions are optimized
in the 1D and 3D non-rigid EMs.

dependence of the translational energy levels on the rotational DOFs, and vice versa, is

expected to be observed. The individual PESs are evaluated by using the Einstein Model

(EM) [173] and the Devonshire Model (DM) [174] for the translational and the rotational

DOFs, respectively. In both models, the interaction potentials are calculated as the change

in the crystal cohesive energy when only the central molecule in the lattice, also called test-

molecule, is displaced from its nominal lattice position, or rotated around its COM �xed at

its nominal lattice position, respectively, while keeping all other molecules frozen (classical

treatment). Fig. 5.24 shows a pH2 (left) and a Cl2 (right) molecule, embedded in the

nearest environment, i.e. the �rst two shells of pH2 molecules in a fcc lattice. The PESs

felt by the test-molecules are e�ective, since they account for also the anharmonicity of

the system. Afterwards, they are inserted in the respective translational or rotational SEs

in order to calculate the corresponding quantum states. However, this classical treatment

is expected not to hold in the case of translational quantum crystals, because of the large

quantum mechanical distribution functions and of the high anharmonicity due to the large

amplitude of such translational motions. Moreover, the large lattice constant makes the

solid hydrogen to be a spacious and soft lattice for guest molecules [6]. Experimental studies

on doped para-hydrogen show indeed that the rotational parameters of doping species are

typically about 90% of those in the gas phase and even less a�ected than in He droplets,

see for example [295]. The inverse compressibility, called bulk modulus, was calculated in

Ref. 176 to be 1.6 kbar at the zero-temperature limit. As an example, the experimental

bulk modulus for solid Ne and Ar at 0K are 11.2 and 26.7 kbar, respectively [296].

Along this work we try to include the softness of the crystal by considering a non-rigid

environment, which allows the molecules to move away from their nominal positions, but

still treats them in a classical way, so that their quantum mechanical distribution functions
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are still neglected. By means of an optimization routine, the lattice is relaxed around the

central molecule trying to simulate the ability of the pH2 molecules to partially adjust their

positions and favourably lower the total energy of the crystal. Unfortunately, due to the

computational costs of optimizing the position of the Np− 1 molecules in the crystal, only

the positions of the �rst two coordination shells are optimized for a total of 18 molecules,

12 from the �rst coordination shell and 6 from the second shell, whereas the remaining

Np − 19 molecules are still kept frozen. For the fcc lattice, the �rst two shells form the

octahedrons depicted in Fig. 5.24.

All equations were implemented by using the TrajLab software [274], whereas the SEs

are solved by using the WavePacket software [297].

Translational DOFs: The Einstein Model [173]

The harmonic EM has been proposed by Einstein in 1907 to solve the problem of speci�c

heats of solids, which had not found adequate explanation in classical mechanics. It as-

sumes all particles in the solids to be independent three-dimensional quantum harmonic

oscillators vibrating at the same frequency, ωj (in contrast to the Debye model, which con-

siders instead collective phonon motions). The idea behind the EM can be easily traced

back to the concept of adiabatic separation applied to the translational motions of particles

in a solid. If they vibrate independently of each other, then the ZPE of a crystal within

the EM is calculated just by summing over the ZPEs of the single oscillators.

This simple model has been successfully applied to rigid lattices, such as RG matrices,

but fails when applied to translational quantum crystals. Therefore, the harmonic EM

has been extended in order to include di�erent properties. The 1D �anharmonic Einstein

model� proposed by Manz et al. in Ref. 16 includes anharmonicity e�ects. Within this

model the potential is evaluated by displacing a test-molecule away from its nominal lattice

position, while all the other molecules are treated classically, that is for T = 0 K. Never-

theless, such potentials e�ectively include the anharmonicity of the system. The quantum

mechanical character of solid hydrogen is in contrast included in the �quantum Einstein

model� by Ro±ciszewski and Paulus [237], who use a distribution function for describing

the positions of the molecules in the lattice. They use the idea of the Self Consistent Field

method (see Sec. 2.3.1) in order to average the e�ective potential over all the quantum me-

chanical distribution functions. However, they �t the obtained potential to an harmonic

potential, so that possibly existing anharmonic contributions are cut out, which is in con-

trast with the argued anharmonicity of translations in quantum crystals. Unfortunately,

an extension of the quantum EM to include anharmonicity corresponds to average over

distribution functions others than Gaussians, which is expected to notably increase the

already non negligible computational e�orts of the Self Consistent method. An important

property of translational quantum crystals, which has been neglected so far, is its high

compressibility [176, 207], which implies a �soft� matrix. The anharmonic Einstein model
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(EM) is therefore partially rethought in the present work in order to account for it. In

practical terms, the �rst 2 coordination shells around the test-molecule, will be allowed

to relax and move from their lattice nominal positions in order to simulate a less rigid

environment. In this context, the model could be named �non-rigid anharmonic EM�.

First we extend the 1D anharmonic EM [16] to a 3D model, here simply called rigid EM.

The e�ective PESs are evaluated by implementing the following equation

VEM(δ ~RA;Rd, [θA, φA]) =
1

2Np

Np∑
j>1

V (δ ~RA − ~Rj ;Rd, [θA, φA])− Ec(Rd, [θA, φA]) , (5.57)

where, for A = Cl2, the potential is evaluated at θA = φA = 0, independently of the

crystal symmetry considered. Otherwise, if A = pH2 (or oD2), the parameters θA and φA
can be just dropped, since they have already been averaged out in the calculation of the

pair potential (doubly rotational adiabatization). Ec(Rd, [θA, φA]) is the cohesive energy

per molecule of the crystal before displacing the test-molecule (see Eqs. 5.55 and 5.56 in

Sec. 5.3.7). In order to evaluate Eq. 5.57 the simulation box is reduced to nc = 3 cells

in each direction for a total number of molecules, Np = 4 × 33 = 108 without loss in the

accuracy of the simulations, since systematic errors are cancelled out by the subtraction.

When the matrix is relaxed around the test-molecule, the model is called �non-rigid EM�.

Within this approach, Eq. 5.57 becomes:

ṼEM(δ ~RA;Rd, [θA, φA]) = min
Rj∈[−C,C]

1

2

Np∑
j>1

V (δ ~RA − ~Rj ;Rd, [θA, φA])− Ẽc(Rd, [θA, φA])

 (5.58)

where C is the maximum allowed displacement of the caging molecules away from their

nominal lattice positions, used as a constraint in the optimization routine, and Ẽc(Rd,

[θA, φA]) corresponds to Ec(Rd, [θA, φA]) in the non-rigid model, that is the cohesive energy

of the crystal when keeping the central molecule at its nominal lattice position and relaxing

the remaining molecules.

Ẽc(Rd, [θA, φA]) = min
Rj∈[−C,C]

1

2

Np∑
j>1

V (~R1 − ~Rj ;Rd, [θA, φA])

 . (5.59)

Within the non-rigid model the number of cells per direction of the simulation box is

increased from nc = 3 to 4, so that the total number of molecules becomes Np = 4× 43 =

256.

180
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By following the notation in Sec. 2.2.5, the translational SE is written as

(Ĥtra(∇δ ~RA , δ
~RA;Rd, [θA, φA]) − E(n=v=0, k=0)

0 (Rd, [θA, φA]))×

× Ψ(n=v=0, k=0)

A (δ ~RA;Rd, [θA, φA]) = 0 , (5.60)

For A = Cl2, the latter equation closely resembles Eq. 2.70 except for the additional

parameter Rd, which determines the positions of all molecules in the crystal and appears

because the multi-stage adiabatic separation tool is now applied on the solid phase. The

translational Hamiltonian is de�ned as

Ĥtra(~∇δ ~RA , δ
~RA;Rd, [θA, φA]) = − ~2

2MA
∆δ ~RA

+W (n=v=0)(δ ~RA;Rd, [θA, φA]) (5.61)

where the parameters {Rd, θA, φA}, the variable δ ~RA and the interaction potentialW (n=v=0)

(Rd, [θA, φA]) correspond respectively to the parameters {θ, φ}, the variable ~Rtra and the

potential V̂tra(~Rtra; θ, φ) = W (n,v)

ext (~Rext) in Eqs. 2.68. Finally, the potential W (n=v=0)(Rd,

[θA, φA]) is one of the translational PESs, either VEM(δ ~RA;Rd, [θA, φA]) or ṼEM(δ ~RA;Rd,

[θA, φA]), within the rigid and non-rigid EMs, respectively, i.e. Eqs. 5.57 and 5.58.

The SE is solved in order to obtain the translational ground state wavefunctions and the

corresponding probability densities

ρ(k=0)

A (δ ~RA;Rd, [θA, φA]) = |Ψ(n=v=0, k=0)

A (δ ~RA;Rd, [θA, φA])|2 , (5.62)

which are in many cases very close to Gaussian distributions and are, therefore, �tted to

the following Gaussian function (in 1D)

ρ(k=0)

A (δRA;Rd, [θA, φA]) ≈ N0 exp

[
−
(
δRA
σ

)2
]
, (5.63)

with σ always referring to the widths along the crystallographic direction of the fcc and the

hcp crystals properly chosen case by case (for the Cartesian coordinates and the respective

Miller indices refer to Fig. 5.20).

The ZPEs, E(n=v=0, k=0)

0 (Rd, [θA, φA]) are �nally summed to the respective classically

calculated cohesive energies Ec(Rd, [θA, φA]) in order to �nd the ZPE-corrected interaction

potential of a particle in the translational quantum crystal, namely:
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VQM(Rd, [θA, φA]) = Ec(Rd, [θA, φA]) + E(n=v=0, k=0)

0 (Rd, [θA, φA]) , (5.64)

where QM stands for quantum mechanical. For the discussion, the following particular

NNds are additionally de�ned: The NNd, Rc, at the minimum of the classical cohesive

energy curve Ec(Rd, [θA, φA]) from Eq. 5.55 and 5.56, the NNd, R0, at the minimum of the

ZPE curve E(n=v=0, k=0)

0 (Rd, [θA, φA]) from Eq. 5.60, and the quantum mechanical corrected

NNd, RQM, at the minimum of the e�ective ZPE-corrected curve VQM(Rd, [θA, φA]) from

Eq. 5.64:

Rc = arg min
Rd

(Ec(Rd, [θA, φA])) , (5.65)

R0 = arg min
Rd

(E(n=v=0, k=0)

0 (Rd, [θA, φA])) , (5.66)

RQM = arg min
Rd

(VQM(Rd, [θA, φA])) , (5.67)

where arg min de�nes the value of the argument at the minimum of the corresponding

function. RQM and−VQM(RQM) are directly compared to the experimental NN equilibrium

distance, Rexp = 0.3789 nm and Rexp = 0.3610 nm, and to the sublimation energies,

Es = −VQM(RQM) = 0.74 and 1.1 kJ/mol [289] for the pH2@pH2 and oD2@oD2 systems,

respectively.

pH2/oD2 Translational Zero-Point Energies in the Matrix.

fcc rigid EM

In the one-dimensional EM proposed by Manz and coworkers, the test-molecule was dis-

placed along the <100>, <110> and <111> crystallographic directions of an fcc-lattice.

Thus, they used one-dimensional versions of Eqs. 5.57, 5.60 and 5.61 [176]. The e�ective

potential VEM(Rd) was calculated by using the NWB pair potential and the resulting ZPEs

E(n=v=0, k=0)

0 (Rd) approximated by the sum of the ZPEs along the three chosen directions:

E(n=v=0, k=0)

0 (Rd) ≈ E(k=0)

0 (e1;Rd) + E(k=0)

0 (e2;Rd) + E(k=0)

0 (e3;Rd) (5.68)

where e1, e2 and e3 are unit vectors along the <100>, <110> and <111> directions.

Such approximation is based on the fact that along those crystallographic directions the

probability distributions are nearly isotropic, that is the ZPEs depend weakly on the di-

rection of the translations. This has been already proved in Ref. 176 to be the case within

a certain range of Rd values including Rexp, but the ZPEs have in turn shown dependence
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Figure 5.25: pH2@pH2 e�ective potentials, VEM(Rd) in Eq. 5.57, are evaluated in the fcc
crystal within the 1D rigid EM (panels (a), (c), (e) ) along the e = <100>, <110>,
<111> directions, and within the 3D rigid EM (2D cuts in panels (b), (d), (f)), along the
{001} plane at three representative NNds, Rd = 0.33, 0.38 and 0.42 nm (top, middle and
bottom panels, respectively). Contour lines are given in a logarithmic scale by 48 steps
between 0.001 and 100 kJ/mol. The corresponding ground state probability densities,
ρ(k=0)

A (δ ~RA;Rd) in Eq. 5.62, are superimposed. For the 1D model at the experimental
NNd, R0 = Rexp = 0.38 nm in panel (c) the corresponding Gaussian approximations (blue
curves) in Eq. 5.63 are additionally plotted.
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Figure 5.26: pH2@pH2 e�ective potentials, VEM(Rd) in Eq. 5.57, are evaluated in the fcc
crystal within the 3D rigid EM at the experimental NNd, R0 = Rexp = 0.38 nm. 2D cuts
are plotted together with the probability densities (red curves), ρ(k=0)

A (δ ~RA;Rd) in Eq. 5.62,
and their approximated Gaussian functions (blue curves) in Eq. 5.63 along the {001} and
{110} planes in panels (a) and (b), respectively. The 1D cuts along the <100>, <110>
and <111> directions are additionally plotted in panel (c) together with their Gaussian
approximations.
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on the direction of displacement for larger NNds. These results are reproduced in panels

(a), (c) and (e) of Fig. 5.25 and compared now to the extended three-dimensional (3D)

EM in the corresponding next panels (b), (d) and (f). The 2D cuts of the 3D e�ective

potentials VEM(Rd) (black contour-lines) have been also obtained by using the NWB pair

potential and are shown at the same three representative NNds, Rd = 0.33, 0.38 and 0.42

nm, respectively, in the top, middle and bottom panels. In the former case, the three

one-dimensional (1D) cuts along the <100>, <110> and <111> fcc crystallographic di-

rections are depicted, whereas in the latter 3D model, two-dimensional (2D) contour plots

are shown along the {001} plane (x and y Cartesian directions de�ned in Fig. 5.20). Please

note that due to the Oh symmetry of the fcc crystal, the (001), (100) and (010) planes are

equivalent. Similarly to the 1D model, when increasing Rd from 0.30 nm to 0.42 nm, the

e�ective potential becomes �atter (black curves), since the test-molecule has more space

at disposal for translating. At the largest NNd, Rd = 0.42 nm, the double-well potential in

panel (e) within the 1D model becomes four-well shaped in panel (f) within the 3D model.

As the potential becomes �atter, the corresponding ground state probability density (PD)

(red curves and green contour lines for 1D and 3D plots, respectively) broaden and the ZPE

decreases. The background colour-code in panels (b), (d) and (f) corresponds to the de-

creasing of the ZPE when going from light to dark yellow. Only at the experimental NNd,

Rexp = 0.38 nm, the resulting PDs have been approximated by Gaussian distributions (see

Eq. 5.63) and superimposed (blue curves) in Fig. 5.25(c) to the 1D PDs. The same is done

in Figs. 5.26(a) and 5.26(b) for the 3D EM, where 2D cuts of the PDs are superimposed to

their corresponding 2D Gaussian approximations, respectively along the {001} and {110}

crystallographic planes. The diagonal dashed-lines in Figs. 5.26(a) and 5.26(b) indicate

the <110> and the <111> directions. Finally, for better comparison with the 1D model,

1D cuts of the e�ective potentials and of the PDs along <100>, <110> and <111> are

extracted from the 3D model and plotted in Fig. 5.26(c), the blue curves being again 1D

Gaussian approximations.

In addition to the anharmonicity of the e�ective potentials, both the 3D and the 1D

model show a notable dependence on the direction of the displacement at the largest NNd

(Rd = 0.42 nm), where the e�ective potentials become double- and fourth-well shaped

and the wavefunctions deviates, therefore, from Gaussian distributions. This latter case

justi�es the extension to an anharmonic EM. The widths of the Gaussian approximations

at the experimental NNd, Rexp = 0.38 nm, are listed in Tab. 5.14. The translational PDs

become more similar to their Gaussian approximations, and their widths are practically

independent from the crystallographic direction, in particular in the 3D EM. This is easily

discovered comparing Figs. 5.25(c) and 5.26(c). In Ref. 176 the 1D Gaussian approximation

is given only for the PD arithmetically averaged over the three directions, that is ρ(k=0)
av =

1
3

(
ρ(k=0)

<100> + ρ(k=0)

<110> + ρ(k=0)

<111>

)
= 0.0876 nm−1. Thus, extension to the 3D model results in

slightly narrower wavefunctions in position space and, in turn, in broader wavefunction in
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Figure 5.27: pH2@pH2 e�ective potentials, VEM(Rd) in Eq. 5.57, are evaluated in the hcp
crystal within the 3D rigid EM (2D cuts) along the xy-plane (panels (a), (d) and (g)), along
the yz-plane (panels (b), (e) and (h)) and along the xz-plane (panels (c), (f) and (i)) at
three representative NNds, Rd = 0.33, 0.38 and 0.42 nm (top, middle and bottom panels,
respectively). Contour lines are given in a logarithmic scale by 48 steps between 0.001
and 100 kJ/mol. The corresponding ground state probability densities, ρ(k=0)

A (δ ~RA;Rd) in
Eq. 5.62, are superimposed.
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Figure 5.28: pH2@pH2 e�ective potentials, VEM(Rd) in Eq. 5.57, are evaluated in the hcp
crystal within the 3D rigid EM at the experimental NNd, R0 =Rexp = 0.38 nm. 2D cuts
are plotted together with the probability densities (red curves), ρ(k=0)

A (δ ~RA;Rd) in Eq. 5.62,
and their approximated Gaussian functions (blue curves) in Eq. 5.63 along the xy and xz
planes in panels (a) and (b), respectively. 1D cuts along the x, y and z directions are
plotted in panel (c).
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Table 5.14: The widths σ of the 1D Gaussian function de�ned in Eqs. 5.63 and approxi-
mated to the probability densities resulting from the 1D and 3D rigid EMs when using the
(pH2)2 pair potential by NWB are listed for the fcc and hcp phases. All values are given
in nm−1 at Rexp = 0.380 nm.

rigid Model σ<100> σ<110> σ<111> C

1D-fcc 0.0865 0.0761 0.0788 0

3D-fcc 0.0789 0.0759 0.0763 0

non-rigid Model σ<100> σ<110> σ<111> C

1D-fcc
0.1041 0.0849 0.0916 0.01
0.1245 0.0918 0.1069 0.02
0.1356 0.0983 0.1167 0.03

3D-fcc
0.0898 0.0853 0.0867 0.01
0.0955 0.0904 0.0923 0.02

rigid Model σx σy σz C

3D-hcp 0.0778 0.0772 0.0775 0

momentum space, that is higher translational energies. The values of E(n=v=0, k=0)

0 (RQM)

can be compared in Tab. 5.15 both for the pH2@pH2 and oD2@oD2 systems and for both

the fcc and hcp lattices, when using the (pH2)2 pair potentials of NWB, GS and from the

present work. In particular, when going from the 1D to the 3D EM the ZPEs increase

approximately by a 20% and 10% for the two systems, respectively, independently of the

(pH2)2 pair potential used and the lattice structure considered, calling for the extension

to the 3D EM. Next to the ZPEs, Tab. 5.15 additionally shows the respective values of the

quantum mechanical NNd, RQM (see Eq. 5.67).

hcp rigid EM

The 1D and 3D EM have also been applied to the hcp crystal. The results are presented in

Figs. 5.27 and 5.28, but only for the 3D model. Since the test-molecule is displaced along

the Cartesian directions x, y and z, the Miller indices are not used along this section (see
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Fig. 5.20). The orthogonal x, y and z directions as well as the three xy, yz and xz planes are

not equivalent as in the fcc-lattice because of the lowered symmetry. Along the xy-plane,

the central molecule is at the center of the honeycomb-like hexagon typical for closed-packed

lattices, which gives the regular hexagonal shapes to the e�ective potentials in panels

(a), (d) and (g). In particular, the vertices of the hexagon correspond to displacements

directed between two NNs, whereas the middle of the sides, where the potential is steeper,

to displacements directed against a NN. Panels (b), (e) and (h) show the cuts along the

yz-plane. The e�ective potential has also an hexagonal shape, but is elongated, that is

shallower, along the z-direction, since the central molecule is directed against the triangular

windows, whereas in the y-direction the potential is steeper, because it encounters a NN.

The potential along the xz-plane in panels (c), (f) and (i) present less regular and less

intuitive shapes. This irregularity is due to the fact that only two NNs lie on this plane,

both in the x-positive half, where the potential is indeed steeper, whereas in the x-negative

half, the NNs are all o�-plane resulting in a shallower e�ective potential. The asymmetry

of the e�ective potential along the x-direction is also observed in Fig. 5.28(c), where 1D

cuts of the PDs at the experimental NNd, Rexp = 0.38 nm, are shown together with the

Gaussian approximations to them. The 2D PDs along the xy (most symmetric) and xz

(least symmetric) planes are also approximated to 2D Gaussian functions and shown in

Figs. 5.28(a) and 5.28(b). The resulting 1D widths have been collected in Tab. 5.14 and

reveal that despite the stronger anharmonicity of the hcp e�ective potentials, in particular

along the x-direction, the PDs are again very close to Gaussian distributions and their

widths even more similar to each other, i.e. more independent from the crystallographic

direction. When comparing the Gaussian widths of the two di�erent lattice structures, fcc

and hcp, one sees that the 3D wavefunctions are, very similar, as expected on the base of

the environment felt by the test-molecule, which is identical for the �rst coordination shell.

The VQM(Rd) (green-), Ec(Rd) (red-) and E
(n=v=0, k=0)

0 (Rd) (blue-)curves are shown to-

gether in Figs. 5.29 and 5.30, respectively for the pH2@pH2 and oD2@oD2 systems. The

red curve is the same in all panels, since the classical cohesive energy is obtained using the

NWB pair potential, which describes both the (pH2)2 and (oD2)2 interactions. Rc = 0.331

nm, is highlighted by the X-marker on the red curves. In contrast, E(n=v=0, k=0)

0 (Rd) and

VQM(Rd) depends on the mass and on the EM used. RQM and VQM(RQM) are highlighted

by the X-mark on the green curves and their numerical values listed in Tab. 5.15. The dot-

mark shows the VQM(RQM) value obtained in Ref. 237 (only for the pH2@pH2 system) by

using the quantum Einstein. Their RQM value is only 0.6% shorter than the experimental

one, but the sublimation energy, Es is underestimated by about 26%. Finally, the cross-

mark shows the experimental NNd, Rexp, and sublimation energy, Es, given in Ref. 289.

By using the 3D EM we found RQM = 0.381/0.381 nm and 0.363/0.362 (fcc/hcp), which

are only 0.5% longer than the experimental ones, and sublimation energies, −VQM(RQM)

of about 0.85 and 1.2 kJ/mol which are only 12% and 8.3% larger than the experimental
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values for the pH2@pH2 and oD2@oD2 systems, respectively. Finally, our 3D anharmonic

EM reduces the classical cohesive energies by 64% and 49%, respectively and comes very

close to the experimental values.

These results are in very good agreement with the experiments. Thus, in spite of all ap-

proximations introduced so far, as for example the omission of the three-body interactions,

but in particular the classical treatment of the remaining Np-1 molecules in the lattice, the

three-dimensional extended rigid EM works well for translational quantum crystals. Since

the quantum EM in Ref. 237 averages the e�ective potential over all quantum mechanical

positions of the neighbouring molecules (within a cuto� distance of 1 nm), but neglects

anharmonicity, by �tting the potential to a harmonic form, the two model are in some

sense complementary. Unfortunately a combination of them, even if theoretical possible, is

expected to be very expensive from the computational point of view, since the calculation

of the e�ective potential within the quantum EM would involve the solution of complicated

three-dimensional integrals, which in the harmonic model have been evaluated analytically.

fcc non-rigid EM

In order to calculate the ZPEs within the non-rigid EM, an optimization procedure is

carried out by stepwise increasing the constraint C in Eqs. 5.58 and 5.59, which is the

maximal change allowed to the three components of the displacement vectors of each

molecule, so that the absolute value of the displacement vector can be larger than C. At

each step the constraint C is increased by 0.01 nm and the geometries optimized in the

previous step are taken as starting point and further optimized in the next step. Thus

the 183-dimensional optimization procedure is subdivided in smaller sub-tasks diminishing

the risk of remaining trapped in a local minimum. Moreover, from one step to the next,

one can monitor the degree of relaxation around the central molecule until in principle

the global minimum is reached and the displacements from the nominal lattice positions

converge to a maximum value.

First the 1D non-rigid EM is applied. The results are presented in Fig. 5.31. In panels

(a), (d) and (g) the �rst two solvation shells are allowed to move not more than C = 0.01

nm away from their position. In panels (b), (e) and (h) the constraint is enlarged to

C = 0.02 nm and, �nally, in panels (c), (f) and (i) to C = 0.03 nm. In the three top

panels, when going from C = 0.01 to 0.03 nm, no signi�cant changes are observed in the

e�ective potentials, since the crystal is so densely packed, that the relaxation process easily

converges. At the experimental NNd, Rd =0.38 nm, comparing additionally Fig. 5.25(c)

(C = 0 nm) to Figs. 5.31(d), 5.31(e) and 5.31(f), one observes the e�ective potential cuts

become less repulsive and the wavefunctions broader. Please note that the barrier forming

the double-well e�ective potential appears at shorter NNds with respect to the rigid EM,

since the �rst two solvation shells can now adjust their position creating the condition for

the minimum con�guration at larger displacements, δRA. Thus, the e�ective potentials

become double- or even quadruple-well shaped already at shorter NNds. However, as long
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Table 5.15: The NNds, RQM (see Eq. 5.67) and the ZPEs, E(n=v=0, k=0)

0 (Rexp) and
E(n=v=0, k=0)

0 (RQM), of the pH2 and oD2 within the 1D and 3D rigid and non-rigid EMs are
compared for both the fcc and hcp lattices using the (pH2)2 potentials by NWB, GS and
from the present work. Rexp = 0.380 nm. Energies are given in kJ/mol.

pH2

Pair Pot. Lattice 1D + 1D + 1D 3D

rigid EM
E0(RQM) E0(Rexp) RQM E0(RQM) E0(Rexp) RQM

NWB
fcc 0.637 0.777 0.386 0.828 0.888 0.381
hcp 0.694 0.813 0.384 0.838 0.885 0.381

SG
fcc 0.605 0.771 0.387 0.798 0.879 0.383
hcp 0.667 0.806 0.386 0.807 0.876 0.382

Present fcc 0.587 0.858 0.392 0.785 0.974 0.388
Work hcp 0.640 0.895 0.391 0.901 0.970 0.387

non-rigid EM

NWB
fcc (C=0.01) 0.472 0.588 0.384 0.773 0.665 0.373
fcc (C=0.02) 0.498 0.507 0.358 0.745 0.618 0.369

oD2

Pair Pot. Lattice 1D + 1D + 1D 3D

rigid EM

NWB
fcc 0.741 0.732 0.364 0.818 0.792 0.363
hcp 0.762 0.751 0.364 0.817 0.788 0.362

SG
fcc 0.719 0.723 0.364 0.793 0.782 0.363
hcp 0.738 0.741 0.364 0.793 0.778 0.363

Present fcc 0.718 0.816 0.369 0.801 0.876 0.368
Work hcp 0.739 0.836 0.369 0.801 0.872 0.368

non-rigid EM

NWB
fcc (C=0.01) 0.731 0.584 0.354 0.806 0.4637 0.353
fcc (C=0.02) 0.681 0.565 0.356 0.750 0.576 0.353
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Figure 5.29: The pH2@pH2 cohesive energy, Ec(Rd) (red curve) in Eq. 5.55, the ZPE,
E(n=v=0, k=0)

0 (Rd) (blue curve) in Eq. 5.60, and the ZPE-corrected interaction potential,
VQM(Rd) (green curve) in Eq. 5.64, evaluated in the hcp crystal within the 1D and 3D
rigid EMs (panels (a) and (b), respectively), the 1D and 3D rigid and non-rigid EMs
(panels (c), (d), (e), (f), respectively) using the (pH2)2 potentials by NWB are depicted
in the range of Rd = 0.30− 0.45 nm.
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Figure 5.30: The oD2@oD2 cohesive energy, Ec(Rd) (red curve) in Eq. 5.55, the ZPE,
E(n=v=0, k=0)

0 (Rd) (blue curve) in Eq. 5.60, and the ZPE-corrected interaction potential,
VQM(Rd) (green curve) in Eq. 5.64, evaluated in the hcp crystal within the 1D and 3D
rigid EMs (panels (a) and (b), respectively), the 1D and 3D rigid and non-rigid EMs
(panels (c), (d), (e), (f), respectively) using the (pH2)2 potentials by NWB are depicted
in the range of Rd = 0.30− 0.45 nm.
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Figure 5.31: pH2@pH2 e�ective potentials, ṼEM(Rd) in Eq. 5.58, are evaluated in the fcc
crystal within the 1D non-rigid EM along the e = <100>, <110>, <111> directions at
three representative NNds, Rd = 0.33, 0.38 and 0.42 nm (top, middle and bottom panels,
respectively). In panels (a), (d) and (g) the constraint is set to C = 0.01 nm, in panels
(b), (e) and (h) it is set to C = 0.02 nm and in panels (c), (f) and (i) it is set to C = 0.03
nm. The corresponding ground state probability densities (red curves), ρ(k=0)

A (δ ~RA;Rd) in
Eq. 5.62, are superimposed. For the 1D model at the experimental NNd, R0 =Rexp = 0.38
nm in panel (c), the corresponding Gaussian approximations (blue curves) in Eq. 5.63 are
additionally plotted.
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Figure 5.32: pH2@pH2 e�ective potentials, ṼEM(Rd) in Eq. 5.58, are evaluated in the
fcc crystal within the 3D non-rigid EM at the experimental NNd, R0 =Rexp = 0.38 nm.
2D cuts are plotted together with the probability densities (red curves), ρ(k=0)

A (δ ~RA;Rd)
in Eq. 5.62, and their approximated Gaussian functions (blue curves) in Eq. 5.63 along
the {001} and {110} planes in panels (a), (b),(c),(d), respectively. The 1D cuts along
the <100>, <110> and <111> directions are additionally plotted in panel (e) and (f)
together with their Gaussian approximations. In panels (a), (c) and (e) the constraint is
set to C = 0.01 nm, whereas in panels (b), (d) and (f) it is set to C = 0.02 nm.
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as the height of the barriers is lower than or in the same order of the ZPE, the wavefunctions

are still well approximated by the Gaussian distributions as depicted by the blue curves in

panels (b), (e) and (h). On the contrary, at Rd = 0.42 nm, the barriers are energetically

above the ZPEs strongly a�ecting the wavefunctions, which notably deviate from Gaussian

distributions. Please note also that the e�ective potentials become so shallow that the

respective wavefunctions become in some case broader than 1 nm, and the relaxation does

not converge completely! Thus, if one would treat the non-rigid model in a quantum

mechanical way, one would have to average the e�ective potential with respect to very

delocalized and broad wavefunctions.

Application of the 3D non-rigid EM gives similar results as in the 1D treatment. This is

already seen in Fig. 5.32, where the 2D cuts of the e�ective potentials are plotted along the

{001} and {110} fcc crystallographic planes together with the 2D reduced PDs (red lines)

and their Gaussian approximations (blue lines). Panels (a), (c) and (e) show the results

for the C = 0.01 nm, whereas panels (b), (d) and (f) for C = 0.02 nm. Optimization has

not been possible when setting C = 0.03 nm, since the potential becomes too �at and the

wavefunctions tend to the particle-in-the-box ones. Panels (e) and (f), �nally show the 1D

cuts along the <100>, <110> and <111> fcc crystallographic directions extracted from

the 3D model and �tted to 1D Gaussian functions.

The Gaussian widths at the experimental NNd, Rexp = 0.38 nm from the 1D and 3D

non-rigid models have been collected in Tab. 5.14 for comparison with the ones from rigid

model. When increasing the constraint C, the e�ective potentials become shallower and the

widths of the wavefunction increases. However, the PDs are still well approximated by their

Gaussian �ts showing that the bottom of the e�ective potential is still nearly harmonic.

The anisotropy of the e�ective potentials eventually increases faster for increasing values

of C in the 1D than in the more realistic 3D model, which means that the total ZPE

cannot be approximated as the sum over the 1D ZPEs. The values of E(n=v=0, k=0)

0 (RQM)

are summarized in Tab. 5.15 and con�rm that the ZPES are slightly lowered compared

to the corresponding 1D and 3D rigid EMs, however, when going from the 1D non-rigid

EM to the 3D one, the ZPE again increase by about 20% and 10% for the pH2@pH2 and

oD2@oD2 systems, respectively, as seen above within the rigid EMs.

The VQM(Rd) curves obtained with the non-rigid EM are represented by the green lines in

Figs. 5.29(e) and 5.29(f) and 5.30(e) and 5.30(f) respectively for the 1D and 3D cases and

for the pH2@pH2 and oD2@oD2 systems. The colour code and the meanings of the marks

are the same as before. In the case of the pH2@pH2 system the quantum mechanical

NNds, RQM are about 5.5% and 2.6% shorter than Rexp and the sublimation energies,

that is −VQM(RQM), overestimated by about 65% and 55% by the 1D and 3D models,

respectively. In the case of the oD2@oD2 system they are about 1.4% and 2.2% shorter

than the experimental ones and the sublimations energies overestimated by about 30% and

27%, respectively. Thus, the results obtained within a 3D rigid lattice are in a much better
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agreement with the experimental values than within a 3D non-rigid lattice. This may be

ascribable to the time scale of the relaxation process, which is not taken into account in

the optimization routine. Two opposite pictures can be proposed: In one case, the caging

molecules are able to rapidly adjust their positions (non-adiabatic approximation). In the

opposite case, the test-molecule is moving so rapidly that the other pH2 molecules cannot

adapt to the new con�guration (adiabatic process). Reality stays somewhere in between

these two extreme cases. The optimization routine certainly works in the non-adiabatic

regime, since it just searches for the new global minimum on the PES after displacing the

central molecule, i.e. the system has in principle an in�nite time to �nd its new most stable

con�guration, whereas the real relaxation process in the pure crystal seems to be much

closer to the adiabatic regime. Thus, if there would not be other sources of error, from the

resulting ZPEs we could state that the rigid EM is more adequate. As a consequence, the

non-rigid EM has not be applied to the hcp lattice.

Cl2 Translational Zero-Point Energy in the Matrix

In this section the rigid and non-rigid EMs are applied to the Cl2@pH2 system. This

should be considered as a preliminary step towards a more complete and realistic quantum

dynamical simulation of the experiments carried out in Refs. 15, 204, where the doped

Cl2@pH2 sample is grown without any annealing process, so that the crystal is expected

to exhibit a mixed fcc/hcp structure [15]. In the previous quantum dynamical simulations

carried out in Ref. 16, to which we refer for comparisons, an fcc lattice structure has been

assumed. Moreover, the authors just assumed that the Cl2 bond points in the direction

of a vibrationally excited H2 molecule of the surrounding cage without specifying any

crystallographic direction. Following the results in Sec. 5.3.6, where small doped clusters

have been grown, in the present simulations the impurity is assumed to occupy a single

substitutional site at the center of an fcc lattice site. Moreover, only the <001> direction

is considered (see Fig. 5.19h). The subsequent investigations of the Cl2 rotating in both fcc

and hcp lattices in the next section, actually show that other crystallographic directions

may also be of interest for a more complete treatment.

fcc rigid EM

The results from the 1D and 3D rigid EMs are compared in Fig. 5.33. With respect to the

1D model, since the Cl2 molecule points in the <001> crystallographic direction, the 1D

cuts of the e�ective potential along the <100> and <010> directions are degenerate. In

panels (a), (d) and (g), the e�ective potential and the corresponding probability densities

(PD) are superimposed, showing that the potential is shallower along the <001> direction

than along the <100>=<010> directions, since in the former case the Cl2 points to the

center of the square formed by the �rst NNs, easily passing through and moving to the

second NN (the vertex of the octahedron), whereas in the latter case it has to pass through

the lateral (equivalent to the �rst) square of NNs, but with the Cl2 bond parallel to the

square diagonal (see also Fig. 5.20 and 5.24), encountering more resistance. From the blue
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Figure 5.33: Cl2@pH2 e�ective potentials, VEM(δ ~RA;Rd, θA, φA) in Eq. 5.58, are evaluated
in the fcc crystal within the 1D rigid EM (panels (a), (d), (g) ) along the <100>= <010>
and <001> directions, and within the 3D rigid EM along the {001} plane (2D cuts in
panels (b), (e), (h)) and along the {010} plane (2D cuts in panels (c), (f), (i)) at three
representative NNds, Rd = 0.33, 0.38 and 0.42 nm (top, middle and bottom panels, re-
spectively). Contour lines are given in a logarithmic scale by 48 steps between 0.001 and
100 kJ/mol. The corresponding ground state probability densities, ρ(k=0)

A (δ ~RA;Rd, θA, φA)
in Eq. 5.62 are superimposed. For the 1D model at the experimental NNd, R0 =Rexp =
0.38 nm in panel (c) the corresponding Gaussian approximations (blue curves) in Eq. 5.63
are additionally plotted.
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Figure 5.34: Cl2@pH2 e�ective potentials, ṼEM(Rd, θA, φA) in Eq. 5.58, are evaluated in
the fcc crystal within the 3D rigid EM at the experimental NNd, R0 = Rexp = 0.38 nm. 2D
cuts are plotted together with the probability densities (red curves), ρ(k=0)

A (δ ~RA;Rd, θA, φA)
in Eq. 5.62, and their approximated Gaussian functions (blue curves) in Eq. 5.63 along the
{001} and {100} planes in panels (a) and (b), respectively. The 1D cuts along the <010>
and <001> directions are additionally plotted in panel (c) together with their Gaussian
approximations.
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Figure 5.35: The Cl2@pH2 cohesive energy, Ec(Rd, θA, φA) (red curves) in Eq. 5.55, the
ZPE, E(n=v=0, k=0)

0 (Rd, θA, φA) (blue curves) in Eq. 5.60, and the ZPE-corrected interaction
potential, VQM(Rd, θA, φA) (green curves) in Eq. 5.64, evaluated in the fcc crystal within
the 1D and 3D rigid EMs (panels (a) and (b), respectively), the 1D non-rigid EMs (panels
(c) and (d), respectively) using the (pH2)2 potentials by NWB are depicted in the range
of Rd = 0.30− 0.45 nm. In panels (c) and (d) the constraint values are C = 0.01 and 0.02
nm, respectively.

curves in panel (d) it can be seen that at the experimental NNd, Rexp = 0.38 nm, the PD

along the <100> direction is perfectly approximated by a Gaussian function, whereas it

slightly deviates along the <001> direction. The width along the Cl2 bond is nearly twice

as broader as the one along the perpendicular direction, as shown in Tab. 5.16, where the

widths of all Gaussians approximated to the 1D PDs have been collected. In panels (b),

(c), (e), (f), (h) and (i), the 2D cuts of the e�ective potential and of the PDs from the

3D rigid EM are depicted. Similarly to the 1D model, the 2D cuts along the (100) and

the (010) planes are also degenerate (suggesting two perpendicular translational modes of

Cl2), so that they are shown only once. In panels (b), (e) and (h), the potential shows

an octagonal shape. The potential is more repulsive at the side centers of the octagon,
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Table 5.16: The widths σ of the 1D and σ1 = σ2 of the 2D Gaussian functions are �tted
to the probability densities obtained within the 1D and 3D EMs. Data are listed for the
fcc and hcp phases and compared to the results from [176]. All values are given in nm for
Rexp = 0.380 nm.

rigid EM σ<100> = σ<010> σ<001> C

1D-fcc 0.0271 0.0543 0

3D-fcc 0.0234 0.0385 0

non-rigid EM σ<100> = σ<010> σ<001> C

1D-fcc
0.0323 0.0622 0.01
− − 0.02

Table 5.17: The NNds, RQM (see Eq. 5.66) and the ZPEs, E(n=v=0, k=0)

0 (Rexp) and
E(n=v=0, k=0)

0 (RQM), of the Cl2 within the 1D and 3D rigid and non-rigid EMs are com-
pared for both the fcc and hcp lattices using the (pH2)2 potentials by NWB, GS and from
the present work and the pH2-Cl2 potential from the present work.

Cl2
Pair Pot. C 1D + 1D + 1D 3D

rigid EM
E0(RQM) E0(Rexp) RQM E0(RQM) E0(Rexp) RQM

NWB
0 0.623 0.348 0.343 0.473 0.248 0.339

SG
0 0.613 0.348 0.344 0.467 0.248 0.340

Present 0 0.590 0.348 0.346 0.445 0.248 0.343

non-rigid EM

NWB
0.01 0.551 0.212 0.339 − − −
0.02 0.454 (0.334) 0.338 − − −
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where the test-molecule encounters more repulsion. The octagon is slightly elongated

along the <010> than in the <110> direction, since in the former case the molecule

encounters two of the �rst NNs forming the square window, whereas in the latter case it

encounters only of the �rst NNs orthogonal to the Cl2 bond. In panels (c), (f) and (i) the

degenerate 2D cut along the (100) and (010) planes is depicted, showing both elongated

e�ective potentials and PDs along the <001> direction. The potential is particularly

shallow in the <001> direction, since this time the Cl2 molecule passes through the square

window of �rst NNs before encountering one of the second NNs. The background color

changing from green to yellow indicates that the ZPE decreases when going from Rd =

0.33 to 0.45 nm. At the experimental distance, Rexp = 0.38, the PDs along the (001)

and (100) planes have been approximated to 2D Gaussian functions (red and blue curves)

in Figs. 5.34(a) and 5.34(b) showing a very good match. Actually, when looking at the

corresponding 1D cuts in Fig. 5.34(c), one sees that the PD has a more Gaussian shape now

also along the Cl2 bond with respect to the PDs obtained within the 1D model. Moreover,

its width is less than twice the one along the <100> or <010> directions, as shown in

Tab. 5.16). Thus, as in the pure crystal, also for the Cl2@pH2 the 1D model predicts a

larger anisotropy due to the environment than the 3D one. In contrast to the pH2@pH2

and oD2@oD2 systems, the ZPEs, E(n=v=0, k=0)

0 (RQM, θA, φA) and E(n=v=0, k=0)

0 (Rexp, θA, φA)

decreases (about 45%) when going to three dimensions. Thus, in the pure crystals as well

as in the doped one, the 3D EM predicts ZPEs in closer agreement to the experimental

values than the 1D one. Finally, it is interesting to compare the magnitude of the ZPE

at Rc, E
(n=v=0, k=0)

0 (Rc, θA, φA) in the 3D rigid EM, when going from the light H2 and

D2 molecules to the heavy Cl2. They correspond respectively to about 81%, 65% and

23% of the respective classical cohesive energies, Ec(Rc, [θA, φA]), which re�ects the high

quantum nature of hydrogen and deuterium. Nevertheless, the Cl2 ZPE in solid hydrogen

is still large considering the heavy mass of about 71 amu depending probably on the larger

steepness of the VEM(Rc, θA, φA) potentials. For example, application of the 1D rigid EM

to the Ar@Ar system results in a ZPE, which is, despite the lighter Ar mass of about

40 amu, only about 11% of the classical cohesive energy (see [176]). Thus, the big ratio

between ZPE and classical cohesive energy of a Cl2 embedded in the pH2 matrix is to be

addressed to the weaker cohesive energy of the crystal.

fcc non-rigid EM

Due to the lower symmetry of the Cl2@pH2 system, relaxation of the lattice around the Cl2
impurity presented longer CPU-time and only the 1D non-rigid EM has been applied. The

results are presented in Fig. 5.36 at the NNds, Rd = 0.33, 0.38 and 0.42 nm, respectively

in the three top, middle and bottom panels. The constraint C is increased from 0.01

nm in panels (a), (c) and (e), to 0.02 nm in panels (b), (d) and (f). As seen previously

in the pure crystals, the e�ective potentials become �atter when allowing the 18 caging

molecules to relax. This is particularly evident at larger NNds. Moreover, the height of

202



5.3 Results: Translational and Rotational DOFs

0

0.5

1

1.5

2

V
E

M
 [

k
J/

m
o

l]
~

R
d
 = 0.33 nm

(a)

0

0.5

1

1.5

2

V
E

M
 [

k
J/

m
o

l]
~

R
d
 = 0.38 nm

(c)

−0.2 −0.1 0 0.1 0.2
0

0.5

1

1.5

2

δ R
A

 [nm]

V
E

M
 [

k
J/

m
o

l]
~

R
d
 = 0.42 nm

(e)

 

 

<100>=<010>

<001>

Gaussian

Gaussian

0

0.5

1

1.5

2

R
d
 = 0.33 nm

(b)

0

0.5

1

1.5

2

R
d
 = 0.38 nm

(d)

−0.2 −0.1 0 0.1 0.2
0

0.5

1

1.5

2

δ R
A

 [nm]

R
d
 = 0.42 nm

(f)

 

 

<100>=<010>

<001>

Gaussian

Gaussian

Figure 5.36: Cl2@pH2 e�ective potentials, ṼEM(Rd, θA, φA) in Eq. 5.58, are evaluated in the
fcc crystal within the 1D non-rigid EM along the <100>=<010> and <001> directions at
three representative NNds, Rd = 0.33, 0.38 and 0.42 nm (top, middle and bottom panels,
respectively). In panels (a), (c) and (e) the constraint is set to C = 0.01 nm, whereas
in panels (b), (d) and (f) it is set to C = 0.02 nm. The corresponding ground state
probability densities (red curves), ρ(k=0)

A (δ ~RA;Rd, θA, φA) in Eq. 5.62, are superimposed.
At the experimental NNd, R0 =Rexp = 0.38 nm in panels (c) and (d), the corresponding
Gaussian approximations (blue curves) in Eq. 5.63 are additionally plotted.

203



5 Structure and Quantum Dynamics of Cl2 Embedded in Solid H2

the barrier originating at the center of the potentials also increases, in�uencing the shape

of the corresponding wavefunctions. In particular in panel (c), along the <001> direction

a double-well potential originates already for C = 0.01 nm, so that the corresponding PD

deviates from a Gaussian distribution. The deviation is enhanced in panel (d), where also

the potential along the <100>=<010> directions have now a double-well shape, so that the

widths from the corresponding Gaussian approximations are not given in Tab. 5.16. To the

�attening of the e�ective potentials corresponds a lowering of the ZPEs, as already seen for

the pH2@pH2 and oD2@oD2 systems. Admittedly, the values of the dynamical energy at the

experimental distance, E(n=v=0, k=0)

0 (Rexp, θA, φA), for C = 0.02 nm listed in Tab. 5.17 could

be inaccurate due to an ine�cient optimization at NNds, Rd > 0.34nm (the value is given

in brackets). This is also seen in Fig. 5.35, where the static energy, Ec(Rd, θA, φA) (red),

the dynamical energy, E(n=v=0, k=0)

0 (Rd, θA, φA) (blue), and the total quantum mechanical

energy, VQM(Rd, θA, φA) (green) are plotted with respect to Rd. Thus, the three crystal

systems show similar changes in the properties of the e�ective potentials calculated, and of

the corresponding wavefunctions, when going from the 1D rigid model to the 3D one, or to

the 1D non-rigid one. On this bases, we speculate that the 3D non-rigid model is expected

to results in even more shallow and isotropic potentials. Correspondingly, the value of

E(n=v=0, k=0)

0 (Rexp, θA, φA) in the 3D model is expected to be even below the value of 0.248

kJ/mol reported in Tab. 5.17. Actually, the Cl2 ZPE, E(n=v=0, k=0)

0 (Rexp, θA, φA) = 0.212

kJ/mol (1D non-rigid EM, C = 0.01 nm, NWB, fcc), is approximately one fourth of the

pH2 ZPE, E
(n=v=0, k=0)

0 (Rexp) = 0.888 kJ/mol (3D rigid EM, NWB, fcc), so that the caging

molecules are expected to follow more easily when the Cl2 is moving because of their higher

translational frequency. In terms of the time scales mentioned above, the doped crystal

probably is closer to the non-adiabatic regime than the pure crystal, that is the solvent

molecules translate much more rapidly than the solute molecule, so that the non-rigid EM

for Cl2@pH2 may be more adequate than for pH2@pH2.

Cl2 Rotational DOF: The Devonshire Model [174]

The dynamics of rotating diatomic molecules trapped in crystals has been widely inves-

tigated since the 1930's in the theoretical and experimental �elds of research. A �rst

theoretical model was proposed by Pauling [298] in 1930, which takes into account the

interaction of a trapped molecule in the �eld of a crystal of de�nite symmetry. The model

considered the molecule rotating on a plane and was extended to the more realistic three

dimensional cases by Devonshire [174] in 1936. Considering only crystals of octahedral

symmetry, he connected the strength of the crystal �eld to the shifts and splittings of the

rotational energy levels of the molecule with respect to those of a free rotor, providing a

�rst tool for the interpretation of rovibrational spectra of diatoms embedded in RG matri-

ces. In the Devonshire model (DM) [174] the crystal is taken to be rigid with the COM of

the host as well as of the guest molecules �xed at the nominal lattice positions. This has
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the advantage of describing the interaction potential as a linear combination of (totally

symmetric) spherical harmonics of the lattice symmetry. In the case of fcc crystals with

octahedral symmetry Oh, one just uses linear combinations of cubic harmonics. Devonshire

included only the �rst cubic harmonic with J = 4 and M = −4, 0, 4 and multiplied the

linear combination by a constantK being the strength of the solute-solvent interaction. On

the one hand, if the trapped molecule interacts weakly with the environment, that means

the crystal �eld barriers are lower than the molecular rotational constant, the molecule

behaves as a slightly hindered rotor, as for example small molecules such as the hydrogen

halides [3]. In the most extreme cases even as a free rotor, as for example solid molecu-

lar hydrogen, at least in a very good approximation. On the other hand, if the trapped

molecule strongly interacts with the environment, that is the case if the crystal �eld bar-

riers are much higher than the molecular rotational constant, the guest molecule librates

around some crystallographic directions. In the most extreme case, librational quantum

states are better described by a harmonic or anharmonic oscillator, which involves also an

additional quantum e�ect, i.e. librational ZPEs. The DM was later extended to include

cubic harmonics of higher orders [299�303] and other crystal symmetries [304] and it is to-

day commonly known as crystal �eld theory (CFT). Nevertheless, when considering rigid

lattices, one completely neglects couplings between rotational and translational (either of

solute or solvent) DOFs. Thus, the DM failed to predict the �ne structure of many diatoms

embedded in RG matrices. In the 1960's Friedman and Kimel [26,305�307] introduced the

rotation-translation coupling (RTC) model, which includes only the translational DOF

of the impurity and still considers a rigid lattice. They assumed the impurity to rotate

around a center of interaction not coinciding with the center of symmetry in heteronuclear

molecules. This causes the center of interaction to translate (or externally vibrate) during

rotation (eccentric rotation). The coupling is treated using second order perturbation the-

ory in the distance between the impurity COM and the center of interaction expressing the

strength of the perturbation. The RTC model was further generalized by Mannheim [291],

who introduced the coupling to the lattice vibrations represented by Green's functions. Af-

terwards, many models originated and evolved including di�erent couplings, see [292�294].

In particular, Kono and Lin [293] adiabatically separated the intramolecular vibrational

DOF from the heat bath DOFs, which closely resembles the investigation in Chap. 4, where

also localized matrix-solute modes are separated from the solvent modes.

Another meaningful contribution to the solute-solvent interaction was given by Manz [308]

in 1980, who extended the DM including a more realistic non-rigid host lattice. The

molecules in the vicinity of the impurity are relaxed to new equilibrium positions, so that

the cage assumes the form of the guest linear molecule and an ellipsoidal deformation is

induced. Thus, when the impurity is rotating, the molecules undergo small deviations

from their nominal lattice positions. The �nal e�ect is called pseudorotation and couples

the guest rotational to the host translational DOFs. A further consequence of the pseu-
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dorotation is an e�ective increase of the total moment of inertia of the guest molecule

corresponding to a decreasing of the rotational constant, the detection of which has been

documented in spectroscopy [301,309�316].

In the present work, e�ective rotational PESs are obtained �rst within the CFT, namely

considering a rigid DM, afterwards by relaxing the �rst two solvation shells around the

impurity, namely considering a non-rigid DM, in close connection to the rigid and non-

rigid EMs from the previous section. In the same way the rotational PESs are calculated

as the change in the crystal cohesive energy when rotating the Cl2 molecule in the matrix,

VDM(f(δθA, δφA);Rexp) =
1

2

Np∑
j>1

V (f(δθA, δφA)− ~Rj ;Rexp)− Ec(Rexp) (5.69)

where f(δθA, δφA) simply transforms the spherical coordinates into the corresponding

Cartesian coordinates of the Cl atoms. Similarly, if the two solvation shells are relaxed the

previous equation becomes

ṼDM(f(δθA, δφA);Rexp) = min
Rj∈[−C,C]

1

2

Np∑
j>1

V (f(δθA, δφA)− ~Rj ;Rexp)− Ẽc(Rexp) (5.70)

These potentials are used in order to calculate the rotational energy levels, when im-

posing an fcc and hcp symmetry to the lattice, that is changing the positions ~Rj . This is

achieved by setting equations very similar to Eqs. 2.61 and 2.55, respectively. The SE to

be solved is

(Ĥrot(∇θA , θA,∇φA , φA;Rexp)− E(n=v=0, l)

rot (Rexp))× ψ(n=v=0, l)

Cl2
(θA, φA;Rexp) = 0 (5.71)

where the rotational Hamiltonian Ĥrot is de�ned by following the notation in Sec. 2.2.5

Ĥrot(∇θA , θA,∇φA , φA;Rexp) = BAĵ2
A +W (n=v=0)

Cl2
(θA, φA;Rexp) , (5.72)

and the variables {θA, φA}, the parameter Rexp and the potential W (n=v=0)

Cl2
(θA, φA;Rexp)

correspond respectively to the variable {θ, φ}, the parameter ~Rtra and the interaction

potential V̂rot(φ, θ; ~Rtra) = W (n,v)

ext (~Rext) in Eq. 2.59.
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The e�ective potential W (n=v=0)

Cl2
(θA, φA;Rexp) is evaluated on a 73 × 37 grid for equidis-

tant points in the range [0 − 180◦] and [0 − 360◦] for the θA and φA coordinates, respec-

tively, implementing Eqs. 5.69 and 5.70 within the TrajLab software [274] for the rigid and

non-rigid DMs, respectively. The SE is solved by using the WavePacket software [297].

The quantum numbers given as superscript in the potential term, W (n=v=0)

Cl2
(θA, φA;Rexp),

means that the Cl2 molecule lies in its electronic and vibrational ground states, whereas

the translational DOFs are neglected, since the positions of the molecules are described

classically (no distribution functions). These quantum numbers come from the multi-stage

AS applied to the system, see Sec. 2.2.5. Please recall that the classical approximation is

additionally imposed for Cl2 internal vibrations by using the ground state vibrationally av-

eraged equilibrium bond distance, r̃Cl2 , even though the vibrational dynamics could couple

the rotational eigenfunctions, and vice versa, as already seen for the H2 rotational wave-

functions. We also recall that the Cl2 translational and rotational DOFs in the present

models are treated separately. On one side, the rotational SE is solved at only one value

of ~RA (determined directly by Rexp), that is with the guest molecule COM �xed at the

nominal lattice position, on the other side the Cl2 translational energies were calculated in

the previous section for only one angular orientation, i.e. the <001> fcc crystallographic

direction.

The rotational wavefunction ψ(n=v=0, l)

Cl2
(θA, φA;Rexp) is again expanded in SHs, but since

the rotational constant is now much smaller, the Cl2 free rotor energy levels are more

dense and energetically expected to be in the same or even lower order than the barriers

of the potential, W (n=v=0)

Cl2
(θA, φA;Rexp). Actually, the rotational wavefunctions are so

strongly coupled by the potential, that they must be expanded up to the SH with maximum

angular momentum Jmax = 80. Please note that for the rotational adiabatization of H2,

the wavefunction was expanded just up to Jmax = 5 (see Sec. 5.3.4). On the other hand,

the mass ratio between the two species is approximately 35.17, and the ratio of the two

momenta of inertia is 249! Since the accuracy of the adiabatization depends strongly on

how accurate the computation of the SHs is, a denser DVR grid is needed. This means

that the potentials VDM and ṼDM in Eqs. 5.69 and 5.70 must be also �tted to the new

grid before the SE can be treated numerically as in Eq. 5.27. The new grid is conveniently

taken at the Gauss-Legendre DVR points in order to apply the GQ scheme with GθA = 512

and GφA = 256, see Sec. 5.3.3.

The e�ective potentials felt by Cl2 rotating in the crystal are shown in Figs. 5.37 (panels

(a), (c) and (e)) and 5.38, respectively for the fcc and hcp lattices. Figs. 5.37(a) and 5.38(a)

show the crystal �eld potentials felt by the impurity rotating in the rigid lattice with C = 0

nm. Correspondingly, Figs. 5.37(c) and 5.38(e) show the rotational PESs when letting

the �rst two coordination shells relax around the impurity with constrained maximum

displacement C = 0.06 nm away from the lattice nominal position in all directions. The

corresponding displacement vectors when relaxing the matrix are depicted by the blue
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Figure 5.37: Cl2@pH2 e�ective rotational PESs, W (n=v=0)

Cl2
(θA, φA; ~RA) in Eq. 5.72, are

evaluated in a fcc crystal within the rigid (panel (a)) and non-rigid DM (panels (c) and
(e)). By relaxing the caging molecules the constraint values are C = 0.02 and 0.06 nm,
respectively. Panels (b), (d) and (f) are the corresponding PESs obtained by �tting the
linear combination of cubic harmonics given in Eq. 5.73. Contour lines are given in the
same range of energies in units of kJ/mol, i.e. [0 - 2.25] and steps of 15.0, and in units of
Be in the range [0 - 825] and steps of 55, where Be is the Cl2 rotational constant in the
gas-phase.
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Figure 5.38: Cl2@pH2 e�ective rotational PESs, W (n=v=0)

Cl2
(θA, φA; ~RA) in Eq. 5.72, are

evaluated in the a hcp crystal within the rigid (panel (a)) and non-rigid DM (panels (b)
and (c)). By relaxing the caging molecules the constraint values are C = 0.02 and 0.06
nm, respectively. Contour lines are given in the same range of energies in units of kJ/mol,
i.e. [0 - 2.25] and steps of 15.0, and in units of Be in the range [0 - 825] and steps of 55,
where Be is the Cl2 rotational constant in the gas-phase.
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Table 5.18: The equilibrium distances of the caging molecules from the Cl2 COM obtained
by relaxing the �rst two coordination shells around the impurity within the fcc non-rigid
model are compared to the equilibrium distances of the solvent molecules for the Cl2(pH2)14

cluster obtained in Sec. 5.3.6.

Cage molecule numbers Cl2(pH2)14 cluster Cl2@pH2 (C = 0.06)

5,6,7,8 (belt ring) 0.244 nm 0.295 nm

1,2,3,4 and 9,10,11,12 (square windows) 0.362 nm 0.370 nm

13,14 (head-ons) 0.471 nm 0.510 nm

arrows in Figs. 5.39, 5.40 and 5.41 for the fcc lattice and in Figs. 5.42, 5.43 and 5.44 for the

hcp lattice, respectively, and their corresponding absolute values are listed in Tab. 5.19.

Finally, intermediate situations with C = 0.02 nm are shown in Figs. 5.37(b) and 5.38(c)

for comparison. All rotational potentials have been shifted to have their global minima

at zero for easier comparison. The magnitude of the shifts S is given on top of each

panel next to the constraint C. All �gures are plotted within the same energy range

[0 - 2.2995] kJ/mol with regularly spaced contour lines at intervals of 0.1503 kJ/mol.

Such interval exactly corresponds to 55 Be and their values are also given in units of

Be next to the kJ/mol units as [kJ/mol ; Be ]. This should help the reader to readily

discriminate whether the impurity dynamics lies in the hindered rotor (Be much larger

than the rotational potential barriers) or in the librational (Be much smaller than the

rotational potential barriers) regime. For both lattice symmetries considered, the absolute

energy decreases when relaxing the caging molecules as inferred from the magnitude of

the shifts S when comparing respectively panels (a), (c) and (e) of Fig. 5.37 and the

corresponding panels (a), (b) and (c) of Fig. 5.38. The absolute energy scale of the

rotational PESs depends on the magnitude of the simulation box used, thus the larger the

box the lower the energy (pair interaction are summed up), so that relative energies are

more appropriate for comparisons. Generally, one expects the energy di�erence between

global maximum and global minimum to decrease upon relaxation of the molecular system,

as well. An optimized interaction between the molecules in the crystal should in fact �atten

the respective rotational barriers. This is not seen here since the pH2-Cl2 interactions are

about 7 (T-shaped) and 10 (linear) times larger than the respective (pH2)2 ones, which

particularly a�ects the �rst two coordination shells included in the optimization code. They

prefer to stay closer to the impurity, instead of mediating between the impurity and the
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5.3 Results: Translational and Rotational DOFs

outer shells, so that to consider the remaining lattice molecules as rigid, �nally stabilizes the

minimum geometries more than the maximum ones. Thus, these energy di�erences increase

oppositely from 1.73 to 2.01 kJ/mol and from 1.78 to 2.30 kJ/mol when considering the

fcc and hcp lattices, respectively. This systematic error could not be avoided because of

CPU time limits and must be added to the already long list of approximations involved in

the model. However, it is reasonable to think that the model slightly enhances the barriers

without losing its overall topology, since the PESs are strongly a�ected by the relaxation

process. In all cases, those energy di�erences are small, i.e. in the order of 2 kJ/mol, which

is due to the softness of the crystal. Nevertheless, such a small barrier is still very large

compared to the rotational constant Be = 2.733× 10−3 kJ/mol, so that the Cl2 molecule

is eventually expected to librate in the matrix.

In Fig. 5.37(a), the global minimum is found in the <100> crystallographic direction,

where the Cl2 is pointing to the center of the square window and to the second nearest-

neighbour, see Fig. 5.39. A local minimum is found in the <111> direction, where the

impurity is pointing to the center of the triangular window, see Fig. 5.41. The energy

di�erence between the two minima is only 0.0147 kJ/mol and the saddle point (SP1)

between them lies at 1.03 kJ/mol. A second local minimum with the very peculiar form of

a volcano is �nally visible along the <110> direction, where the Cl2 is pointing to one of

the �rst nearest-neighbour, see Fig. 5.40. The volcano minimum becomes the global one in

Fig. 5.37(e) after relaxation. The displacement vectors in Fig. 5.40 show that the head-on

nearest-neighbours are pushed away to the minimum equilibrium distance dictated by the

pH2-Cl2 pair potential. The other 16 caging molecules also adjust their positions to lower

the total cohesive energy of the system. The minimum along the <111> direction becomes

the global maximum after relaxation. In reality, the absolute cohesive energy is lowering

upon relaxation, see Fig. 5.41, but the relative energy with respect to the global minimum

increases. Finally, the minimum along <001> turns in a local minimum lying at 0.225

kJ/mol with a saddle point (SP2 in Fig. 5.37(e)) to the global minimum at 0.792 kJ/mol.

Again the absolute cohesive energy of the system is lowered upon relaxation, whereas the

relative one increases.

For the rigid lattice in Fig. 5.38(a) global minima are found along the z or <0001> and

along the <0331> crystallographic directions. In the former case the impurity points in

both directions to the triangular windows lying on the top and bottom parallel honeycomb

sheets formed by the molecules numbered respectively 1,2,3 and 10,11,12 in Figs. 5.42, 5.43

and 5.44, whereas in the latter case, the Cl2 bond points on one end to the center of

the a lateral triangular window formed for example by the molecules numbered 1,4,5 or

4,5,10, and on the other end to an opposite square window (not shown) 8. These two

8Please note that now the Miller indices are used in order to indicate the hcp crystallographic directions.
For the hcp symmetry two equivalent conventions exist: The three indices <hkl> one, as for fcc, and the
four indices <hkil> one, which is used along this section. For the equivalence between the conventions
please refer to [287].
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crystallographic directions are not equivalent. Nevertheless, the energy di�erence of the

minima along them is practically negligible. Two local minima are found on the PES.

The �rst one when the Cl2 bond points almost to one of the three vertices of the top

(or bottom) triangular windows, see Fig. 5.44, the energy of which is 0.437 kJ/mol. The

direction pointing exactly to one of such vertices is the <0221> crystallographic direction

with θA = 35.26◦ (or 180◦ − 35.26◦ = 144, 74◦), which is indicated in the three panels of

Fig. 5.38 by the black solid line. Since the minimum is found at slightly larger angles than

35.26◦ (or slightly smaller than 144, 74◦), this direction is labeled as �Vt� in Fig. 5.38. The

global maximum is found between each of the Vt local minima (not shown) and is simply

labeled with a �B� in Fig. 5.38. Finally, the saddle points between the Vt local minimum

and the global minimum along the <0331> (labeled SP3 in Fig. 5.38(a)) is 0.816 kJ/mol

and between the same local minimum and the global minimum along z or <0001> (not

labeled in Fig. 5.38(a)) is 1.23 kJ/mol. Similarly to the fcc lattice, a volcano minimum is

found along the <1210> crystallographic direction (the equivalent <2110> corresponds to

the y Cartesian direction) in Fig. 5.38(a), when the Cl2 is pointing to one of the equatorial

nearest-neighbours (see top panel in Fig. 5.43). Please note that as in the fcc lattice, the

volcano minima become global minima in Fig. 5.38(c) upon relaxation. As seen before for

fcc, the head-on nearest-neighbours are pushed away to the minimum equilibrium distance

dictated by the pH2-Cl2 pair potential, see Fig. 5.43, and the other 16 cage molecules

adjust their positions to lower the total cohesive energy of the system. Upon relaxation,

the global minimum along the <0331> direction simply disappears, whereas the global

minimum along the z or <0001> direction becomes a maximum, con�rming that their

near degeneracy before relaxation was just incidental. The Vt remains a local minimum

and the maximum B becomes a local minimum nearly degenerate to the Vt ones. Finally,

the saddle point (SP4 in Fig 5.38(c)) between global and local B minimum is 1.20 kJ/mol,

and between the two local minima (not labeled in Fig. 5.38(c)), Vt and B 0.68 kJ/mol.

Convergence of the optimization routine was di�cult to check. In fact, since only the

�rst two shells are relaxed in the present model, the optimization routine is mostly driven

by the pH2-Cl2 pair potential, as already mentioned above, so that the caging molecules

eventually move even closer to the impurity for larger values of the constraint, C > 0.06

nm, resulting in slightly arti�cial rotational PESs. Therefore, we compare the subsystem

shown in Fig. 5.39 with the impurity along the <001> to the Cl2(pH2)14 minimum cluster

structure shown in Fig. 5.19(g) of Sec. 5.3.6. The equilibrium distances of the caging

molecules numbered from 1 to 14 after relaxation of the non-rigid fcc lattice and those

optimized within the cluster growth are listed in Tab. 5.19 in the �rst and second columns,

respectively. In the second column of Tab. 5.18 the distances are larger, since the solvent

molecules are slightly attracted by the molecules of the outer shells in the matrix. This

e�ect is stronger on the molecules in the belt ring than on those forming the square

windows. The cohesive energy of the Cl2(pH2)14 cluster has been recalculated by using
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5.3 Results: Translational and Rotational DOFs

these larger distances resulting in a slightly more stable cluster of -25.15 kJ/mol against

-24.88 kJ/mol of the optimized cluster Cl2(pH2)14. The comparison con�rms that the

structure optimized is very close to the equilibrium structures, so that we believe that the

optimization was stopped before entering the arti�cial regime.

Finally, please note that in all bottom panels of Figs. 5.39, 5.40 and 5.41 for the fcc

lattice and to Figs. 5.42, 5.42 and 5.44 for the hcp lattice, the �rst two shells of solvent

molecules after relaxation assume as expected an ellipsoidal form around the impurity.

Nevertheless, when using the Manz's model [308] for pseudorotation, even by taking the

largest displacement from Tab. 5.19, that is 0.085 nm as the average displacement, the in-

crease in the moment of inertia due to pseudorotation is still less than 1.0% (upper limit)

because of the very light mass of molecular hydrogen. Thus, pseudorotation is easily tak-

ing place, but the in�uence on the rotational constant and, consequently, on the rotational

energy levels is negligible. Thus, coupling due to pseudorotation does not give rise to no-

table displacements in the vibrational frequencies or splitting in the rotational frequencies

in the rovibrational spectrum, as suggested by Manz also for the CO@Ar cryogenic system.

Fit of the fcc Rotational PESs

The top panel of Figs. 5.39, 5.40 and 5.41 for the fcc lattice and to Figs. 5.42, 5.43

and 5.44 for the hcp lattice all represent the geometrical system con�gurations at di�erent

points of the rigid rotational PESs in Figs. 5.37(a) and 5.38(a), respectively. When rotating

the impurity the Oh and D3h symmetries of the fcc and hcp lattices are locally broken.

However the overall symmetry is still conserved due to the rigid character of the outer

molecules of the lattice considered. The bottom panels of Figs. 5.39, 5.40 and 5.41 for

the fcc lattice and of Figs. 5.42, 5.43 and 5.44 for the hcp lattice, respectively, show the

changes in the positions of the molecules in the �rst two solvation shells after relaxation

(C = 0.06 nm). Similarly to the rigid DM, the Oh and D3h symmetries are locally lost.

For example, in Fig. 5.39 the symmetry of the Cl2(pH2)18 subsystem is lowered from Oh to

D4h. Nevertheless, the overall symmetry of the rotational PESs is again preserved as before,

since the environment is still taken to be rigid. Consequently, all rotational PESs can be

still approximated by linear combinations of spherical harmonics as done by Devonshire.

Equations are given here only for the Oh (fcc) symmetry by summing up linearly combined

cubic harmonics up to the angular momentum J = 8,

W (0,0,0)

Cl2
(θA, φA; ~RA) = K0V0(θA, φA) +K4V4(θA, φA) +K6V6(θA, φA) +K8V8(θA, φA) (5.73)

where the coe�cient K0 corresponds to the shift parameter S, the coe�cients K4, K6

and K8 are given in Fig. 5.37 on top of the corresponding panel, terms VJ=0,4,6,8 are the
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5 Structure and Quantum Dynamics of Cl2 Embedded in Solid H2

symmetry adapted spherical harmonics (SASH) of order J [301,302,317,318]

V0(θA, φA) = a0 × Y0,0

V4(θA, φA) = a4
4 × Y4,4 + a4

◦ × Y4,0 + a−4
4 × Y4,−4

V6(θA, φA) = a4
6 × Y6,4 + a6

◦ × Y6,0 + a−4
6 × Y6,−4

V8(θA, φA) = a8
8 × Y8,8 + a4

8 × Y8,4 + a8
◦ × Y8,0 + a−4

8 × Y8,−4 + a−8
8 × Y8,−8(5.74)

where the coe�cients aMJ determine the linear combinations of SHs and are found in Table

I(a) of Ref. 319 as well as in Table I of Ref. 317. Similar equations can be written also for

the hcp lattice, even though this is slightly more laborious, see for example [320]. Eq. 5.73

was used here in order to �t the rotational PESs with the KJ coe�cients being the �tting

parameters. This is very convenient for dynamical simulations since the potential energy

matrix elements become just product of three spherical harmonics, for which analytical

solutions are known. In order to �t the rotational PES in Fig. 5.37(a), Eq. 5.73 was

expanded only to K = 6. The resulting potential already predicts the right landscape,

except for the volcano shaped maxima for which cubic harmonics of order J > 8 are

needed, but not implemented. The �tted values are K4 = -182.98 kJ/mol and K6 =

-402.55 kJ/mol. The appearance of particular combinations of minima and maxima in

octahedral crystal �elds was connected to the signs of the K4 and K6 values already by

Smith [300] in 1977 and are correctly predicted in Fig. 5.37(b), where both of them are

negative. In Figs. 5.37(d) and 5.37(f) the connection between the signs of the K4 and

K6 and the positions of minima and maxima on the PESs foreseen in Ref. 300 is instead

broken, due to the inclusion of the K8 parameter.

Cl2 Librational Energy Levels in the Matrix

The rotational PESs, W (n=v=0)

Cl2
(θA, φA;Rexp), within the fcc rigid and non-rigid lattice in

Figs. 5.37(a) and 5.37(e) and within the hcp rigid and non-rigid lattice in Figs. 5.38(a)

and 5.38(c), have been inserted in the SE given in Eq. 5.71 in order to calculate the

respective rotational energy levels. The results are depicted in the spectrum-like Fig. 5.45,

where they are also compared with the free rotor quantum levels. The energies are again

given in the double scale units [kJ/mol ; Be], as for the e�ective rotational PESs. Before

entering the many information contained in this �gure, the reader should note that for

each of the models, the saddle point energies SP1, SP2, SP3, SP4 from Figs. 5.37 and 5.38

are represented by the respective green lines. These energies have to be understood as the

respective barriers hindering the Cl2 rotation within the crystal and must be compared

to the free rotor energy levels depicted on the left side of the �gure. The green lines are

found between the rotational levels J = 16 and J = 21, which is roughly between 275 and

440 Be units. Thus, referring to the DM, the Cl2@pH2 molecular system resides at one of
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Figure 5.39: The position of the caging molecules is shown before (top panel) and after
(bottom panel) relaxing (C = 0.06 nm) an fcc crystal around the Cl2 molecule lying along
the <001> direction. The motion is depicted by the blue arrows. The corresponding
energies, VDM(f(δθA, δφA);Rexp) and ṼDM(f(δθA, δφA);Rexp) in Eqs. 5.69 and 5.70 are
also given.
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Figure 5.40: The position of the caging molecules is shown before (top panel) and after
(bottom panel) relaxing (C = 0.06 nm) an fcc crystal around the Cl2 molecule lying along
the <101> direction. The motion is depicted by the blue arrows. The corresponding
energies, VDM(f(δθA, δφA);Rexp) and ṼDM(f(δθA, δφA);Rexp) in Eqs. 5.69 and 5.70 are
also given.
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Figure 5.41: The position of the caging molecules is shown before (top panel) and after
(bottom panel) relaxing (C = 0.06 nm) an fcc crystal around the Cl2 molecule lying along
the <111> direction. The motion is depicted by the blue arrows. The corresponding
energies, VDM(f(δθA, δφA);Rexp) and ṼDM(f(δθA, δφA);Rexp) in Eqs. 5.69 and 5.70 are
also given.
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Figure 5.42: The position of the caging molecules is shown before (top panel) and after
(bottom panel) relaxing (C = 0.06 nm) an hcp crystal around the Cl2 molecule lying
along the <0001> (or z) direction. The motion is depicted by the blue arrows. The
corresponding energies, VDM(f(δθA, δφA);Rexp) and ṼDM(f(δθA, δφA);Rexp) in Eqs. 5.69
and 5.70 are also given.

218



5.3 Results: Translational and Rotational DOFs

−0.5
0

0.5 −0.5

0

0.5−0.5

0

0.5

−

y [nm]

<1210>4

16

13

5

10

1

9

14

17

V
DM

( f(δ θ
A

, δ φ
A

) ; R
exp

 ) =−432.7503 kJ/mol

3

6

12

x [nm]

2

11

87

15

18

~

z 
[n

m
]

−0.5
0

0.5 −0.5

0

0.5−0.5

0

0.5

−

y [nm]

<1210>4

16

13

5

1

10

9

14

17

V
DM

( f(δ θ
A

, δ φ
A

) ; R
exp

 ) =−432.7503 kJ/mol

3

12

6

x [nm]

2

11

87

15

18

~

z 
[n

m
]

Figure 5.43: The position of the caging molecules is shown before (top panel) and after
(bottom panel) relaxing (C = 0.06 nm) an hcp crystal around the Cl2 molecule lying along
the <1210> direction. The motion is depicted by the blue arrows. The corresponding
energies, VDM(f(δθA, δφA);Rexp) and ṼDM(f(δθA, δφA);Rexp) in Eqs. 5.69 and 5.70 are
also given.
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Figure 5.44: The position of the caging molecules is shown before (top panel) and after
(bottom panel) relaxing (C = 0.06 nm) an hcp crystal around the Cl2 molecule lying along
the Vt direction. The motion is depicted by the blue arrows. The corresponding energies,
VDM(f(δθA, δφA);Rexp) and ṼDM(f(δθA, δφA);Rexp) in Eqs. 5.69 and 5.70 are also given.
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Table 5.19: The absolute values of the displacement vectors due to relaxation (C = 0.06
nm) of the molecules in the �rst two solvation shells are listed for Cl2 lying along the
<001>, <101> and <111> of the fcc matrix, and along the <0001> (or z), <1210> (or
y) and Vt directions of the hcp matrix are listed.

Molecule Number < 001 > [pm] < 101 > [pm] < 111 > [pm]

1 27 32 15
2 29 56 83
3 28 84 27
4 28 56 16
5 85 55 14
6 85 57 27
7 85 57 15
8 85 57 84
9 29 84 83
10 30 55 17
11 29 32 15
12 29 56 27
13 17 13 18
14 15 14 20
15 11 13 20
16 12 5 19
17 11 14 18
18 12 7 21

Molecule Number < 0001 >, z [pm] < 1210 >, y [pm] V t [pm]

1 15 83 84
2 14 27 22
3 14 78 20
4 7 30 52
5 17 86 34
6 15 29 85
7 22 66 76
8 22 57 76
9 61 71 53
10 14 78 85
11 61 74 50
12 72 31 50
13 19 15 17
14 17 12 17
15 25 13 34
16 19 16 17
17 15 13 17
18 25 12 10
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the far ends of the Devonshire [174] diagram for large absolute values of K and, therefore,

de�nitely in the librational regime.

Molecular librations around main crystallographic directions can be described within 2D

anharmonic oscillators (AO). Since the results are going to be discussed only qualitatively,

let us for simplicity consider a non-degenerate 2D HO approximated by the sum of two

1D HOs along each of the two dimensions. Moreover, let us already distinguish between

global and local minima by considering two of them:

E
(Λ1;Λ2)

Cl2
(~RA) = ~ω1

(
Λ1 +

1

2

)
+ ~ω2

(
Λ2 +

1

2

)
(5.75)

E
(Λ3;Λ4)

Cl2
(~RA) = ~ω3

(
Λ3 +

1

2

)
+ ~ω4

(
Λ4 +

1

2

)
(5.76)

where the �rst couple of quantum numbers, (Λ1; Λ2) will be always referred to the global

minimum wells and the second couple of quantum numbers (Λ3; Λ4) to the local minimum

wells. In the most simple case of degenerate 1D HOs, that is the case if ω1 = ω2 and

ω3 = ω4, the previous equations reduce to the even more simple form of the 2D HOs

E
(Λg)

Cl2
(~RA) = ~ωg (Λg + 1) (5.77)

E
(Λl)

Cl2
(~RA) = ~ωl (Λl + 1) (5.78)

with ωg = ω1 = ω2, ωl = ω3 = ω4 and Λg = Λ1+Λ2 and Λl = Λ3+Λ4. To recall the 2D HO

model at this point is useful, since it helps in reading the features in Fig. 5.45. In a 2D HO

the �rst eigenvector with quantum number Λg = 0 has no nodes and is singly degenerate.

The next eigenvector can either have one node along the �rst dimension, that is (Λ1 = 1;

Λ2 = 0), or along the second one, that is (Λ1 = 0; Λ2 = 1), but since the sum of the two

quantum numbers is Λg = 1 in both cases, the eigenvector is doubly degenerate. Similarly,

the eigenvector with Λg = 2 is triply degenerate, since the following three combinations of

couples of quantum numbers (Λ1 = 2; Λ2 = 0), (Λ1 = 0; Λ2 = 2) and (Λ1 = 1; Λ2 = 1)

are possible and so on. Finally, the eigenvectors present (Λg + 1)-fold or, equivalently,

(Λl + 1)-fold degeneracy.

The di�erent librational states could be recognized on the base of the number of the

nodes along the θA or the φA dimensions of the respective two dimensional eigenvectors,

at least as long as the eigenvalues lie below the respective saddle points SP1, SP2, SP3

and SP4 between global and local minima. Above such limit, that is above the green

lines, the wavefunctions from the di�erent wells begin to mix and the assignment of the

right quantum numbers to the eigenvectors becomes too di�cult. These mixed states are
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5.3 Results: Translational and Rotational DOFs

represented by the black lines up to the arbitrary energy value of 1.5 kJ/mol, whereas below

such threshold the red and blue lines are always the librational levels localized respectively

in the global and local minimum wells. Please note that in the former two �spectra� (fcc),

the green lines are between black lines, whereas in the latter two �spectra� (hcp), they are

still between red and/or blue lines. This may depend on how important tunneling e�ects

between minimum wells are, since they can anticipate the mixing of eigenvectors already

below the respective energy barriers.

Please note that when solving the SE in Eq. 5.71, all rotational PESs are evaluated in

the range θA = 0−180◦ and φA = 0−360◦, so that the property of homonuclear molecules

to exist in their para and ortho species, proper also to Cl2, similarly to H2 and D2, was

neglected. In fact, half of the rotational PESs is found by just inverting the position of the

chlorine atoms. Thus, the SE is solved as the impurity would be the Cl35Cl37 heteronuclear

molecule.

The number n of minimum wells found on the potential dictates the degeneracy of the

eigenvalues, since this corresponds to consider an ensemble of n 2D HOs. Finally, in the

ideal case of n independent 2D HOs, one expects therefore ng × (Λg + 1) and nl × (Λl + 1)

degenerate eigenvalues. Since the oscillators are neither harmonic, nor independent, such

degeneracy is de�nitively lifted in Fig. 5.45, but nonetheless the dg = ng×(Λg+1)-fold and

dl = nl× (Λl+1)-fold librational energy levels, E(Λg)

Cl2
and E(Λl)

Cl2
of the ideally six uncoupled

2D HOs are calculated as the arithmetic mean values of the corresponding non-degenerate

eigenvalues E(Λ1;Λ2)

Cl2
and E(Λ3;Λ4)

Cl2
with Λ1 + Λ2 = Λg and Λ3 + Λ4 = Λl, respectively. The

quantum numbers (Λ1; Λ2), (Λ3; Λ4), Λg and Λl, as well as the degeneracies (dg) and (dl)

are given in Fig. 5.45.

fcc Rigid DM

Global Minima (red librational energy levels). Let us consider the librational quantum lev-

els obtained within the fcc rigid lattice model in more detail. The corresponding rotational

PES shows six global minimum wells along the <001> crystallographic direction corre-

sponding to the three couples of spherical angles {θA;φA} = {0◦;∞}, {90◦; 0◦}, {90◦; 90◦},
respectively. The spherical coordinates corresponding to the other three minima are found

by inverting the position of the two chlorine atoms, they are {θA;φA} = {180◦;∞},
{90◦; 180◦}, {90◦; 270◦}. The �rst six eigenvectors present no nodes and the corresponding

eigenvalues are dg = 6-fold (nearly) degenerate, so that the system is well approximated

by an ensemble of six uncoupled 2D HOs with quantum number Λg = Λ1 + Λ2 = 0, with

ideal �rst librational eigenvalue E(Λg=0)

Cl2
= 1

2~ωg = 0.24 kJ/mol (see Eq. 5.77 for Λg = 0).

Please note that this is the librational ZPE of the system within the harmonic approxima-

tion considered here. The degeneracy is slightly lifted by tunneling e�ects between the six

potential wells coupling the oscillators. The next twelve eigenvectors have either a node

along the �rst dimension φA or along the second dimension θA, so that the correspond-
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5 Structure and Quantum Dynamics of Cl2 Embedded in Solid H2

ing quantum numbers are (Λ1 = 1; Λ2 = 0) or (Λ1 = 0; Λ2 = 1), both corresponding

to Λg = Λ1 + Λ2 = 1 in the ideal case of six uncoupled 2D HOs. The degeneracy is

completely lifted by tunneling e�ects, which indeed increase for higher eigenvalues, and

additionally by the anharmonicity of the oscillators, i.e. two di�erent frequencies ω1 and

ω2 along the two dimensions. From the eigenvectors and the corresponding eigenvalues,

it could be argued that the potential well is narrower, i.e. steeper, along the second co-

ordinate, θA, than along the �rst one, φA. and therefore ω2 > ω1. Finally, the second

librational level of the ideal ensemble of 2D HOs has energy E(Λg=1)

Cl2
= 0.42 kJ/mol with

∆EΛg=1←0 = 0.18 kJ/mol. Following this line of reasoning, we can assign also the next 18

eigenvectors to the three following combinations of quantum numbers (Λ1 = 0 ; Λ2 = 2),

(Λ1 = 1 ; Λ2 = 1) and (Λ1 = 2 ; Λ2 = 0) and corresponding ideally to the quantum number

Λg = Λ1 + Λ2 = 2. The degeneracy of the dg = 18 eigenvalues is again lifted by an even

increased anharmonicity of the oscillators and by strong tunnel e�ects coupling them. The

third librational level of the ideal ensemble of 2D HOs has energy E(Λg=2)

Cl2
= 0.68 kJ/mol

with ∆EΛg=2←1 = 0.26 kJ/mol. The fourth and last group of librational levels comprises

the 12 eigenvectors with quantum numbers (Λ1 = 1, Λ2 = 2) and (Λ1 = 2, Λ2 = 1), so that

those with quantum numbers (Λ1 = 0, Λ2 = 3) and (Λ1 = 3, Λ2 = 0) ideally corresponding

to the Λg = Λ1 + Λ2 = 3, as well, are already mixing with the eigenvectors from the local

minimum wells. The eigenvalue of the ideal ensemble of 2D HO oscillators is E(Λg=3)

Cl2
=

0.85 kJ/mol with ∆EΛg=3←2 = 0.17 kJ/mol.

Local Minima (blue librational energy levels). Eight local minima are found in the rota-

tional PES along the <111> crystallographic direction to which the following spherical

coordinates correspond: {θA;φA} = {54.7◦; 45◦ + n × 90◦}, {125.3◦; 45◦ + n × 90◦} with
n = 0, 1, 2, 3. The �rst eight eigenvectors do not have any nodes, i.e. with quantum num-

bers Λl = Λ3 + Λ4 = 0. They present complete dl = 8 degeneracy, so that the librations is

well described by eight independent 2D HOs with librational ZPE E
(Λl=0)

Cl2
= 1

2~ωl = 0.54

kJ/mol (see Eq. 5.78 for Λl = 0). Please note that the librational ZPE is calculated from

the bottom of the local minimum well at 0.0147 kJ/mol indicated in Fig. 5.45 by the blue

dotted horizontal line. Since the local minimum wells are much steeper and narrower than

the global minimum wells, the higher eigenvalues are already above the saddle point SP2 in

the upper part of the �gure, where the corresponding eigenvectors mix with those localized

in the global minimum (black lines).

fcc Non-rigid DM

Global Minima (red librational energy levels). The same reasoning can now be repeated

for each of the other DMs. The fcc non-rigid lattice results in a rotational PES with 12

global minimum well along the <101> corresponding to the following spherical coordinates

{θA;φA} = {45◦; 0+n×90◦}, {90◦; 45◦+n×90◦} and {135◦; 0◦+n×90◦}, respectively with
n = 0, 1, 2, 3. Along this crystallographic direction the impurity points to one of the 12 �rst

NNs. The �rst 12 eigenvectors do not have any nodes and the corresponding eigenvalues
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5.3 Results: Translational and Rotational DOFs

are dg = 12-fold (nearly) degenerate, so that the system is still well approximated by an

ensemble of 12 uncoupled 2D HOs with quantum number Λg = Λ1 +Λ2 = 0, the librational

ZPE of which is E(Λg=0)

Cl2
= 1

2~ωg = 0.29 kJ/mol (see Eq. 5.77 for Λg = 0). The next 24

eigenvectors have either one node along φA or along θA, i.e. their quantum numbers are

(Λ1 = 1 Λ2 = 0) or (Λ1 = 0; Λ2 = 1) both corresponding ideally to Λg = Λ1 + Λ2 = 1.

The ideal dg = 24-fold degeneracy is now completely lifted. Since the potential well has

similar steepness along the two dimensions, i.e. the frequencies ω1 and ω2 are similar, we

argue that the anharmonicity e�ects are small and that the degeneracy is lifted principally

because of tunneling e�ects between global and local minima. The approximation to an

ideal system of 12 uncoupled 2D HOs gives a librational energy level at E(Λg=1)

Cl2
= 0.55

kJ/mol with ∆EΛg=1←0 = 0.26 kJ/mol, which is indeed energetically close to the saddle

point (SP2) between global and local minima. This is also proved by the fact that the

eigenvectors at higher energies already mix with those in the local minimum wells even

though they lie still below the saddle point energy SP2.

Local Minima (blue librational energy levels). When relaxing the fcc lattice, the global

minima within the fcc rigid DM become now local minima. They are therefore located along

the same crystallographic direction. The �rst 6 eigenvectors do not have any nodes and the

corresponding dl = 6 librational energy levels are nearly degenerate. The approximation

to an ensemble of six ideally uncoupled 2D HOs with quantum number Λl = Λ3 + Λ4 = 0

results in the ideal librational ZPE E
(Λl=0)

Cl2
= 1

2~ωl = 0.23 kJ/mol (see Eq. 5.78 for Λl = 0),

where the bottom of the local minimum well at 0.2252 kJ/mol is indicated in Fig. 5.45 by

the blue dotted horizontal line. The next 12 eigenvectors have either one node along φA
or along θA so that their quantum numbers are (Λ3 = 1; Λ4 = 0) and (Λ3 = 0; Λ4 = 1)

both corresponding ideally to Λl = Λ3 + Λ4 = 1. The approximation to an ideal system

of six uncoupled 2D HOs results in the second librational energy level, E(Λl=1)

Cl2
= 0.45

kJ/mol with ∆EΛl=1←0 = 0.22 kJ/mol. As in the global minima, the ideal dl = 6-

fold and dl = 12-fold degeneracies for Λl = 0 and Λl = 1 are lifted by small tunneling

e�ects. It is interesting to note that the minimum wells in the <001> direction, even

though they became local minima upon relaxation, remain almost unchanged, in particular

the bottoms. This is inferred by comparing the librational ZPE and the �rst librational

quantum in the global minima of the fcc rigid DM and in the local minima of the fcc

non-rigid DM, that is E(Λg=0)

Cl2
= 1

2~ωg = 0.24 kJ/mol and ∆EΛg=1←0 = 0.18 kJ/mol

against E(Λl=0)

Cl2
= 1

2~ωl = 0.23 kJ/mol and ∆EΛl=1←0 = 0.22 kJ/mol, respectively. What

e�ectively changes upon relaxation are indeed the relative stabilities of the system along

the <111> and the <101> directions: The former destabilized to a maximum, the latter

stabilized to a global minimum. Finally, with respect to the fcc rigid DM, the librational

frequencies are all in the same order or, equivalently, the walls in the respective wells have

similar steepness. With respect to the fcc rigid DM within the non-rigid fcc DM broader

wells are favoured upon relaxation.
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5 Structure and Quantum Dynamics of Cl2 Embedded in Solid H2

hcp Rigid DM

Global Minima (red librational energy levels). In the hcp rigid model, librational states

could be assigned only to the 12 global minimum wells along the <0331> direction, to

which correspond the spherical coordinates {θA;φA} = {71.8◦; 0◦ + n× 60◦} and {180◦ −
71.8◦; 0◦ + n× 60◦} with n = 0, 1, 2, 3, 4, 5, and to the nearly degenerate couple of minima

along the <0001> (or z) direction to which correspond the spherical coordinates {θA;φA} =

{0◦;∞} and {180◦;∞}, respectively. There is a set of 14 lowest eigenvalues with quantum

number Λg = Λ1 + Λ2 = 0. To the twelve eigenvectors localized in the wells along the

<0331> direction correspond dg = 12-fold (nearly) degenerate eigenvalues, whereas to

the two eigenvectors localized in the wells along the <0001> (or z) direction correspond

two degenerate eigenvalues at a slightly higher energy. From this we deduce that the

latter wells are steeper compared to the former one. The two crystallographic directions

are indeed not equivalent, as already mentioned above in Sec. 5.3.8. Nevertheless, the

system is approximated by an ensemble of 14 uncoupled 2D HOs with ideal librational ZPE

E
(Λg=0)

Cl2
= 1

2~ωg = 0.49 kJ/mol (see Eq. 5.77 for Λg = 0). The degeneracy within the ideally

dg = 12-fold degenerate eigenvalues is principally lifted due to tunneling e�ects between the

global minimum wells (<0331>), and to the anharmonicity of the oscillators (triangular

shape of the well). The next 24 eigenvectors with quantum numbers (Λ1 = 1; Λ2 = 0)

and (Λ1 = 0; Λ2 = 1) are localized in the potential wells along the <0331> direction only.

The ideal dg = 24-fold degeneracy of the corresponding eigenvalues is lifted again due to

tunneling e�ects, but in particular to the more evident anharmonicity e�ects. From the

eigenvectors and the corresponding eigenvalues, it could be argued that the potential well

is narrower, i.e. steeper, along the second coordinate θA, than along the �rst one, φA,

i.e. ω2 > ω1. The librational energy levels of the approximated system of 12 uncoupled

2D HOs �nally results in E(Λg=1)

Cl2
= 0.82 kJ/mol with ∆EΛg=1←0 = 0.33 kJ/mol. Higher

eigenvectors are di�cult to assign, since they lie energetically above the saddle point SP3

energy (black levels) mixing with the one from the local minimum wells. However, in

contrast to the fcc non-rigid DM, the 24 eigenvectors ideally with Λg = Λ1 + Λ2 = 1

could be still correctly assigned, even though some of them also lie energetically above the

saddle point. This is due to the fact that the bottom of the local minimum wells (Vt) lie

at the high energy of 0.4373 kJ/mol (see blue dotted line in Fig. 5.45) and the respective

eigenvectors well above the saddle point.

Local Minima (blue librational energy levels). No librational states could be assigned ex-

clusively to the local minimum wells. Compared to both the fcc rigid and non-rigid DMs,

the librational quanta between librational levels slightly increases because of narrower and

steeper walls of the global minimum wells.

hcp Non-rigid DM

Global Minima (red librational energy levels). Upon relaxation in the hcp matrix the 6

volcano minima along the <1210> (or y) direction become global minima, to which cor-
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respond the following spherical coordinates: {θA;φA} = {90◦; 30◦ + n× 60◦}, respectively
for n = 0, 1, 2, 3, 4, 5. The �rst six eigenvectors do not have any nodes and have therefore

quantum numbers Λg = Λ1 + Λ2 = 0. To them correspond dg = 6 degenerate libra-

tional eigenvalues, so that the system behaves as an ensemble of six uncoupled 2D HOs

with librational ZPE E
(Λg=0)

Cl2
= 1

2~ωg = 0.40 kJ/mol. Tunneling e�ects are absent, since

the global minimum wells are separated by the global maxima along the <0110> (or y)

direction (about 2.3 kJ/mol) and the librational ZPE lies well below the bottom of the

local minimum wells. Moreover, 12 eigenvectors with quantum numbers Λg = 1 could

be assigned easily. To the 6 eigenvectors with quantum numbers (Λ1 = 0; Λ2 = 1) and

and to those with quantum numbers (Λ1 = 1; Λ2 = 0) correspond to two groups of 6

degenerate eigenvalues. Thus, the ideally dg = 12 degenerate eigenvalues are split in two

groups. This proves that there are no tunneling e�ects between the minimum wells, but

only anharmonicity e�ects due to di�erent steepnesses along the two dimensions θA and

φA, respectively. In particular, we could argue that ω2 > ω1. The second librational level

of the ideal ensemble of 2D HOs is found at E(Λg=1)

Cl2
= 0.79 kJ/mol with ∆EΛg=1←0 =

0.39 kJ/mol. A third series of eigenvectors with quantum numbers Λg = Λ1 + Λ2 = 2

is localized in the global wells. The degeneracy of the corresponding dg = 18 librational

energies is now lifted also by tunneling e�ects between global and local minima. Never-

theless, those e�ects are still small, since the eigenvectors could be assigned easily even

though they lie energetically above the saddle point SP4. Approximation of the system to

an ensemble of six uncoupled 2D HOs gives the librational energy E(Λg=2)

Cl2
= 1.16 kJ/mol

with ∆EΛg=2←1 = 0.37 kJ/mol. The higher eigenvectors lie well above the saddle point

SP4, where the eigenvectors from global and local wells are mixing. The librational quanta

in the global minimum well are again larger than in both the fcc rigid and non-rigid DMs.

Local Minima (blue librational energy levels). The local minima along the Vt and <0331>

directions are practically degenerate and the barrier between them is only 0.13 kJ/mol.

As a consequence, the eigenvectors in the 24 wells mix already at low energies and the de-

generacies dl of the corresponding eigenvalues are completely lifted (the levels are spread

out in Fig. 5.45). In other words, the approximation to the ensemble of 2D HOs is rather

poor. Nevertheless, due to the high energy of the saddle point SP4, the eigenvectors from

local and global minima mix only late and at least the sequences of eigenvalues are easily

assigned. Two series of 24 and 48 eigenvalues are assigned to the librational ground state

and to �rst excited librational energies, respectively. Considering an ideal ensemble of six

uncoupled 2D HOs the librational ZPE is E(Λl=0)

Cl2
= 1

2~ωl = 0.29 kJ/mol and the energy of

second librational level is E(Λl=1)

Cl2
= 1.10 kJ/mol with ∆EΛl=1←0 = 0.31 kJ/mol. Finally,

the librational quanta in the local minimum wells are comparable to those in both the fcc

rigid and non-rigid DMs.
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Figure 5.45: Librational energy levels of Cl2 embedded in the pH2 crystal are evaluated within the rigid and
non-rigid DMs by solving Eq. 5.71 when considering fcc and hcp lattices. The corresponding eigenvalues localizes
in the global (red) and local (blue) minima are depicted as long as the corresponding eigenvectors are not mixing.
The mixed eigenvalues are depicted in black up 1.4 kJ/mol. The corresponding quantum numbers, (Λ1 ; Λ2 )
and (Λ3 ; Λ4 ) in Eqs. 5.75 and 5.76 are indicated respectively in red and blue for the global and local minima.
Arithmetically averaged librational energy levels (harmonic approximation) of eigenvectors with the same quantum
numbers Λg = Λ1 + Λ2 and Λl = Λ3 + Λ4 in Eqs. 5.77 and 5.78 are also given in order to qualitatively interpret the
results in terms of uncoupled ensembles of 2D harmonic oscillators. The degeneracy of the eigenvectors in the 2D
harmonic approximation is given in brackets next to the eigenvalues with quantum numbers Λg and Λl. The vertical
solid lines indicate the energies between two consecutive librational levels in the 2D harmonic approximation.
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General Remarks. In conclusion, comparison of the librational energy levels in Fig. 5.45

for the four di�erent cases within the harmonic approximation given in Eqs. 5.77 and 5.78,

tells that the librational quanta are slightly higher within the hcp lattices than within

the fcc ones, but de�nitively in the same order. When changing the lattice symmetry or

relaxing the environment, the librational ZPEs are still in a narrow range, namely [0.23 -

0.54] kJ/mol. Except for the hcp rigid DM, the impurity can librate in the cage around

two di�erent crystallographic directions corresponding to the global and local minima of

the corresponding rotational PES. Nevertheless, at 0 K the Cl2 molecule is expected to

librate trapped along the crystallographic direction with the lowest possible eigenstate,

since all rotational barriers are still in the order of hundreds of Be units and tunneling

e�ects should be negligible.

It is very interesting to note that similarly to the translational DOFs, the librational

ZPEs are large compared to the depths of the corresponding minimum wells. For the fcc

rigid DM the ZPEs are about one fourth and one half of the saddle point SP1 along the

<001> and <111> directions, respectively. For the hcp rigid DM this ratio becomes even

more than one half.

Referring to the application of the EMs to the Cl2 molecule, we have to admit that it

was restrictive to consider the impurity aligned only along the <001> direction just in the

fcc lattice, since librations are also expected along the <111> and <101> directions in the

case of rigid and non-rigid fcc lattice models, respectively, and also along the <0331>, Vt

and <1210> (or y) directions in the case of an rigid and non-rigid hcp lattice. It would

be interesting in fact to compare translational and rotational fundamental quanta between

the corresponding lattice models, instead of just rigid fcc with the Cl2 aligned exclusively

along the <001> direction.

Adiabatic Separability of Internal and External DOFs.

In the previous sections the pH2 and Cl2 translational and Cl2 librational DOFs were

investigated in the matrix. Adiabatic separability of internal and external DOFs as well of

translational and rotational DOFs was assumed. Therefore, it is interesting to compare a

posteriori the energies of fundamental vibrational, translational and rotational/librational

quanta listed in Tab. 5.20. The vibrational and free rotor energies are just reported from

Tab. 5.1. It is known that for RG as well as pH2 matrices, the vibrational levels shift very

little from the gas to the solid-phase. The translational and librational energies are taken

in the harmonic approximation by just doubling their respective ZPEs. The vibrational

harmonic energies are circa 30 - 40 times larger for the pure pH2@pH2 and 20 - 30 times

larger for the pure oD2@oD2 crystals than the corresponding translational ones depending

on the lattice model applied. The Cl2 internal vibrational frequency is between 13 and 16

times larger than the translational ones in the rigid and non-rigid EMs, and between 12

and 28 times larger than the librational frequencies in the four DMs, respectively. Thus,
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Table 5.20: Vibrational (gas phase), rotational (gas phase), translational and librational
(solid phase, i.e. 3D Einstein and Devonshire models, respectively) energies are compared.
Please note that vibrational, translational and librational energies are given in the harmonic
approximation. The subscripts g and l stand for the global and local minimum of the
respective rotational PESs. (∗ = 1D Einstein model)

matrix or fcc lattice[kJ/mol] hcp lattice [kJ/mol]

D
O
F specie

rigid non-rigid rigid non-rigid

L
ib
ra
ti
on
al

0.239g 0.286g 0.490g 0.400g
Cl2@pH2

0.540l 0.230l − 0.280l

T
ra
ns
la
ti
on
al

pH2@pH2 1.776 1.236 1.770 −

oD2@oD2 1.584 1.152 1.576 −

Cl2@pH2 0.500 0.420∗ − −

F
re
e
R
ot
or

pH2 4.087

oD2 2.099

Cl2 5.4× 10−3

V
ib
ra
ti
on
al

g
a
s
p
h
a
se

H2 49.75

D2 35.79

Cl2 6.632
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vibrational-translational and vibrational-librational couplings are probably small, but still

not entirely negligible. Finally, the AS of translational and rotational/librational DOFs in

the matrix is more troublesome, since the corresponding harmonic quanta lie in the same

energetic order of magnitude. Therefore, more advanced models should simultaneously

treat these DOFs and accurately evaluate the NACTs.

5.4 Conclusion

An extensive theoretical investigation is carried out on a Cl2 molecule embedded in a H2

crystal at cryogenic temperatures. Beside the many fascinating features of solid hydrogen

pointed out along this work, mostly connected to the translational and quantum nature

of the crystal, the energetics and structure of the doped crystal are characterized with

the aim of providing the initial state for quantum dynamics simulations of the Cl + H2

→ HCl + H reaction experimentally observed in the system upon simultaneous UV+IR

irradiation [15,204].

The multi-body system is completely treated in a pairwise fashion. The multi-dimensional

PES of a hydrogen molecule interacting with a chlorine molecule is calculated by using

ab-initio methods at the MP2:aug-cc-pVQZ level of theory. Later veri�cations on a sub-

part of the PES shows that the results extrapolated from the CCSD(T):aug-cc-pVQZ and

CCSD(T):aug-cc-pV5Z levels of theory to the complete basis-set are comparable. The

multi-dimensional PES of two interacting hydrogen molecules is calculated extrapolating

the results from the CCSD(T):aug-cc-pVQZ and CCSD(T):aug-cc-pV5Z levels of theory

to the complete basis-set limit. On the way, the electrostatic interactions between closed-

shell linear molecules, such as H2 and Cl2, are discussed on the base of the classical static

quadrupole-quadrupole interaction.

For the calculation of the multi-dimensional ab-initio H2-H2 and H2-Cl2 potential in-

teractions, all intramolecular bond lengths are �xed at their v = 0 vibrationally averaged

values, r̃ = 〈r〉v=0. This is referred through the thesis as �classical approximation�, since

practically an in�nitely narrow delta function centered at the equilibrium bond distance

is considered instead of the ground state vibrational distribution function. The ab-initio

PESs are numerically averaged over the spherical coordinates of the fast rotating hydrogen

molecules in order to obtain the rotationally adiabatic (RA) pH2-pH2, pH2-Cl2 (ground

state, l = 0) and three oH2-Cl2 (excited states, l = 1, 2, 3) pair potentials. This procedure

is based on the multi-stage adiabatic separation tool described in Chap. 2. The correspond-

ing RA interaction potentials with D2 instead of H2 are obtained as well, even though they

are based on the same ab-initio PESs, that is with the deuterium intramolecular bond

�xed at the r̃H2 bond length. However, since the v = 0 vibrationally averaged D2 bond

length, r̃D2 is only 0.005% shorter than r̃H2 distance, this is expected to introduce negli-

gible errors. This is also con�rmed by Hinde, who calculated similar (but not identical)
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5 Structure and Quantum Dynamics of Cl2 Embedded in Solid H2

vibrationally averaged multipole dispersion coe�cients [197]. The classical approximation

applied on the rotating H2 molecules, corresponding in the rotational adiabatization to

the rigid-rotor approximation, does not introduce a considerable systematic error in the

pair potentials. This is proved by the comparison to the vibrationally averaged (pH2)2 pair

potential by Hinde [190], i.e. not in the rigid-rotor approximation, and to the already men-

tioned (pH2)2 vibrationally averaged multipole dispersion coe�cients [197]. The (pH2)2
pair potential is also compared to the ab-initio curve by Li, Le Roy and Roy (LLR) [240]

at a higher level of theory and to the semi-empirical curves by Norman, Watts and Buck

(NWB) [193], Silvera-Goldmann [13] and to the Lennard-Jones potential based on Michels'

results [255]. No remarkably di�erences between all these curves are eventually found. In

contrast, the �classical approximation� applied on the Cl2 molecule introduces a systematic

error in the (l = 0) pH2-Cl2 and oD2-Cl2 potentials, which is estimated to be circa 8%

of the dissociation energies at the intermolecular equilibrium distances, RAB, and at the

collinear geometry, θA = 0◦. Since at the latter con�guration the H2 or D2 COMs lie

along the Cl2 bond, the solvent rotational coupling to the solute vibrations is the strongest

and the systematic error of 8% an upper limit. All H2-Cl2 and D2-Cl2 pair potentials

with l = 0, 1, 2 present a global and a local minimum at θA = 0◦ (collinear con�guration)

and θA = 90◦ (perpendicular con�guration), whereas for the corresponding pair potentials

with l = 3 the situation is reversed. A saddle point is always found between θA = 45◦ and

56◦. In general, all pairpotentials are highly anisotropic, with the intermolecular distance,

RAB, being much shorter at the perpendicular than at the collinear con�guration. It is

interesting to note that the rotationally excited oH2-Cl2 and pD2-Cl2 pair potentials with

quantum number l = 1, 2 present both at the local and global minima larger dissociation

energies than in their respective rotational ground states with l = 0. This is due to the

additional electrostatic quadrupole moment of oH2 and pD2 molecules interacting with

the Cl2 molecule. More in general, this supports the experimentally observed clustering of

residual oH2 molecules present in parahydrogen crystal around impurities with permanent

multipoles [7].

All RA potentials are �tted to HFD-functions and the resulting parameters found in

Sec. 5.3.5 and App. 6.4. Two main topics are investigated on the base of these pair

potentials: The growth of small pure (pH2)N and doped Cl2(pH2)N global minimum cluster

structures out of N dimensional PESs, and the calculation of translational and rotational

PESs of solvent and solute molecules in the matrix. Please note that all codes implement

the NWB-(pH2)2 �tting parameters, since the one from the present work was obtained in

a later stage, and that a systematic error is introduced by neglecting the three-body terms,

which in the case of pure parahydrogen cover up to a 10% of the crystal cohesive energy.

The cluster sequences are grown by means of classical molecular dynamics and does

not involve temperature. The growing process of the pure clusters closely follows the

Farges's series of interpenetrating icosahedrons [268] and could be easily compared to the
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cluster growing processes found in the literature in particular when using Lennard-Jones

potentials, see for example [267]. The latter ones, in fact, shares with the HFD-functions

the R−6 term in the attractive part of the potential. The growing process of the doped

clusters is essentially dominated by the solute-solvent interaction until completion of the

�rst coordination shell at N = 14. The structures of the �rst 14 clusters mirror the high

anisotropy of the H2-Cl2 pair potentials, showing a strong preference (when possible) to

coordinate the solvent molecules along the Cl2 bond. The Cl2(pH2)14 cluster presents a

distorted fcc symmetry with the solute lying along the <001> crystallographic direction

in a single substitutional site. In particular, the head-on molecules are slightly pushed

away by the impurity, and the equatorial ones are slightly attracted, so that the symmetry

is lowered from Oh to D4h. In the larger clusters with N > 14, the growing process is

dominated by the solvent-solvent interactions and an icosahedral phase forms leaving the

nearly fcc structure at the surface. The growing process could not be compared to other

investigations, since none was found in the literature, but interesting comparisons are made

with the RG systems Cl2HeN and Cl2ArN .

The pair potentials are also used to investigate the energetics of (pH2)13 and Cl2(pH2)12

�rst-shell clusters when imposing the fcc, hcp and icosahedral symmetries, since they all

coordinate 12 solvent molecules in their �rst shell. The results from the previous optimized

cluster structures are con�rmed. The most stable pure �rst-shell cluster has icosahedral

symmetry. The pure fcc and hcp �rst-shell clusters are found to have almost identical

energies supporting the possibility for the large icosahedral quasi-crystal (no translational

symmetry) to switch either to fcc or hcp according to the literature. In the doped �rst-

shell clusters, the Cl2 prefers to be surrounded by an fcc cage. By comparing the fcc pure

and doped �rst-shell clusters it is found that the crystal does not need to expand in order

to accommodate the Cl2 molecule in the single substitutional site, so that the elongated

D4h symmetry of the previous optimized Cl2(pH2)14 cluster is exclusively due to the high

anisotropy of the pH2-Cl2 pair potential.

In the subsequent stage, the simulation boxes for the fcc and hcp pure and doped crystals

are converged. The minimum image convention is used to calculate the cohesive energy

per molecule against the increasing sizes of the crystals. In all cases, a simulation box of at

least 4000 molecules is needed in order to have negligible surface e�ects at the boundaries.

This is in agreement with previous investigations [176]. The convergences show a negligible

preference for the fcc crystal structure.

In the last part of this work, two models are used for investigating the translational and

rotational DOFs of the Cl2 molecule embedded in the matrix as well as the translational

DOF of pH2 and oD2 in their respective pure crystals, separately: The Einstein [173] and

the Devonshire [174] models, respectively. They allow for the calculation of the e�ective

translational or rotational PESs felt by a molecule in the crystal and are further devel-

oped in order to include non-rigid lattices. Relaxation of the matrix around hosting and
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guest molecules tries to simulate the softness of translational quantum crystals, which is

connected to their typical high compressibility. However, only the positions of the �rst

two shells of solvent molecules are optimized, since the relaxation of the whole simulation

boxes would have been too expensive from the CPU-time point of view. Afterwards, the

PESs obtained within these models are inserted in the respective Schrödinger equations in

order to calculate the respective translational and rotational eigenvalues and eigenstates.

Translational eigenstates are calculated for the pH2@pH2, oD2@oD2 and Cl2@pH2 crys-

tals. For the doped crystal only the fcc crystal structure is taken into account with the

impurity lying along the <001> direction. It is observed that the simulation of a non-rigid

lattice may be more adequate for the doped crystal, whereas the pure crystals are still

better described by the rigid lattice approximation. This is explained on the base of the

di�erent translational frequencies of heavy solute and light solvent: The relaxing time-scale

of the hydrogen or deuterium molecules is, in fact, comparable to the slow translational

motions of Cl2, that is the solvent molecules are able to readily adapt to a new con�g-

uration (non-adiabaticity), whereas they cannot follow the fast pH2 or oD2 translations

(adiabaticity). Rigid and non-rigid lattices are considered for the calculation of the Cl2
rotational eigenstates in the matrix, as well. It is disclosed that, despite the softness of the

crystal, the Cl2 is not free to rotate in the matrix, but librates along one or two crystallo-

graphic directions depending on the lattice model considered. In fact, after relaxation of

the lattice the topology of the rotational PESs changes favouring a di�erent main direction

for the librations. In general, the librational ZPEs calculated are large with respect to the

depth of the minimum wells found on the rotational PESs. The librational eigenvalues lie

in a similar range of energies independently of the lattice model simulated, which implies

they are not strongly coupled to the relative positions of the host molecules, that is to the

translational modes of the solvent molecules. A comparison of the solute librational and

solvent translational ZPEs let us suppose that upon lattice relaxation the pH2 molecules

easily adjust their positions around the rotating Cl2 (non-adiabaticity).

The present investigation involves a long sequence of adiabatic separations in order

to investigate the several DOFs individually, even though approximately, which is called

�multi-stage adiabatic separation� through the thesis (please refer to Fig. 2.1). Stagem = 1:

The gas phase diatomic constants listed in Tab. 5.1 show that the electronically excited

states lie energetically high enough to consider the Born-Oppenheimer approximation safe

for both the H2 and Cl2 molecules. Stage m = 2: By assuming that the vibrational

frequencies are not shifted from the gas to the solid phase, the subsequent adiabatic sep-

aration between internal (vibrations) and external (rotations and translations) DOFs for

the individual species is safe only for the Cl2 molecule, whereas for the solvent molecules

the vibrationally excited states lie only one order of magnitude (or less than) higher in

energy than the corresponding rotational excited states (see Tab. 5.1), that is the solvent

rotational eigenstates may be coupled to the vibrational ones. Nevertheless, this stage of
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the multi-stage adiabatic separation is considered, a priori, to be valid. A posteriori, the

comparison of the pH2-pH2 potential curve from this work to the vibrationally averaged

one by Hinde suggests only small couplings. Comparison of the energies listed in Tab. 5.20

suggests that the vibrational and translational DOFs of solvent and solute are instead

coupled when embedded in the matrix. The H2-Cl2 and D2-Cl2 pair potentials eventu-

ally suggest that the Cl2 vibrational DOFs couple the H2 and D2 rotational DOFs. Stage

m = 3: Translational and rotational/librational (solvent/solute molecules) eigenvectors

are also coupled, since the respective eigenvalues listed in Tab. 5.20 are in the same order

of magnitude.

Hence, the model could be improved by implementing also three-body interactions, which

are important for the description of systems interacting in the van der Waals regime, such

as closed-shell molecules. Furthermore, the (H2)2 and H2-Cl2 pair potentials could be also

averaged with respect to the vibrational DOFs of H2 (as already done by Hinde [190]) as well

as of Cl2. Upon improved description of the crystal energy interactions, translational and

rotational DOFs of the guest molecule in the crystal could be trated simultaneously and in-

clude the respective NACTs. The 5D (2 rotational and 3 translational coordinates) e�ective

PES could be eventually treated in the MCTDH approximation using DVR in order to sim-

ulate the laser driven quantum dynamics of the solvent-solute reaction. For the treatment

of vibrational-translational, vibrational-rotational and vibrational-librational couplings dif-

ferent methods must eventually be implemented.
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6 Appendix

6.1 Kinematics of three-body Collisions X+Y2 [16]

From the laboratory frame to the center of mass frame.

Consider a molecular system, as depicted in Fig. 6.1, at the time t=ti, before collision.

X Y Y

R
X,YY

R
Y,Y

R
cm

1 2

The total kinetic energy of the molecular system in the laboratory frame is:

T =
P 2

X

2MX
+

P 2
Y1

2MY
+

P 2
Y2

2MY
= TX + TY1 + TY2 (6.1)

In order to describe the kinematics of a three-body collision, the expression of the kinetic

energy with respect to the center of mass frame needs to be calculated. This involves a

transformation from the laboratory frame to the center of mass frame coordinate system.

In matrix notation: q1

q2

q3

 =

 RY,Y

RX,YY

Rcm

 =

 0 −1 1

−1 1
2

1
2

cX cY cY

 ·
 RX

RY1

RY2

 (6.2)

or, in a more general notation:

q = RCF = T ·RLF (6.3)
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where CF means Center of mass Frame and LF means Laboratory Frame.

The coe�cients in the matrix are correlated to the masses involved in the collision. In

particular, cX = MX
Mtot

and cY = MY
Mtot

, where Mtot = MX + 2MY is the total mass of the

system. Finally, since these coe�cients are the ratios of the single masses with respect to

the total one, it also holds cX + 2cY = 1.

From coordinate space to momentum space

In the laboratory frame the momentum is given as:

PX = −i~ ∂

∂RX
, PY1 = −i~ ∂

∂RY1

and PY2 = −i~ ∂

∂RY2

(6.4)

In contrast, in the center of mass frame:

PCF,l = pl = −i~ ∂

∂ql
with l=1,2,3 (6.5)

Applying the chain rule one obtains:

PX = −i~
3∑
l=1

∂ql
∂RX

∂

∂ql

PY1 = −i~
3∑
l=1

∂ql
∂RY1

∂

∂ql

PY2 = −i~
3∑
l=1

∂ql
∂RY2

∂

∂ql
(6.6)

The relation between the momenta in the two frames is found to be the transposed of

the matrix T of Eq. 6.2, namely

PLF = T T · PCF (6.7)

with

T T =

 0 −1 cX

−1 1
2 cY

1 1
2 cY

 (6.8)

As a consequence, the inverse of the transposed matrix T relates the new momenta in

the center of mass frame to the momenta in the laboratory frame,

PCF = (T T )−1 · PLF (6.9)
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with

(T T )−1 =

 0 −1
2

1
2

−2cY cX cX

1 1 1

 (6.10)

Thus, the general solutions for the new momenta are:

p1 = −1

2
PY1 +

1

2
PY2

p2 = −2cYPX + cXPY1 + cXPY2

p3 = PX + PY1 + PY2 (6.11)

Substituting Eqs. 6.6 in the expression of the kinetic energy Eq. 6.1, after some calcula-

tion, one arrives at the following very simple equation for the kinetic energy in the center

of mass frame:

T =
p2

1

2µY,Y
+

p2
2

2µX,YY
+

p2
3

2Mtot
= TY,Y + TX,YY + Tcm (6.12)

where µY,Y indicates the reduced mass of the molecule Y2, and µX,YY indicates the reduced

mass of the molecular system, the halogen atom X and the mass of the molecule Y2.

Special case: Photodissociation

Let us now consider a special scenario, in which the initial Y2 molecule is at rest in the

laboratory frame, i.e. PY1 = PY2 = 0, and X has a momentum PX due to a photodissoci-

ation process. The corresponding total energy of the system is therefore given by (see Eq.

6.1):

T =
P 2

X

2MX
(6.13)

Applying Eq. 6.11, the resulting momenta in the center of mass frame are p1

p2

p3

 =

 0

−2MY
Mtot

PX

PX

 (6.14)

From this result, one concludes that:

1. The momentum for the two atoms Y with respect to their center of mass is zero.

2. The momentum for the halogen atom X with respect to the center of mass of the

molecule Y2 is −2MY
Mtot

times the momentum of the halogen atom. The magnitude of

this factor depends on the masses of the atoms X and Y involved.
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3. The momentum for the center of mass of the system is the same as PX.

Finally, the fraction of kinetic energy available for reaction is calculated as the ratio of

the kinetic energy of the center of mass and the initial total one,

TX,YY

TX
=

p2
2

2µX,YY

P 2
X

2MX

=

(2cY)2

2µX,YY

1
2MX

=
2MY

Mtot
(6.15)

If one now considers the photodissociated atom X being the halogen atom, Cl, and the

molecule Y2 being H2 or D2, these equations demonstrate that the quantity of energy,

which is really available for the reaction for this kind of three-body system, is just a small

fraction of the total energy at disposal.

In particular:

TCl,HH

TX
=

2MH

MCl + 2MH
≈ 5.4%

TCL,DD

TX
=

2MD

MCl + 2MD
≈ 10%

where MCl = 34.968852 a.m.u. , MH = 1.00794 a.m.u. and MD = 2.01355 a.m.u.
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6.2 The Gaussian Quadrature [321]

In numerical analysis, numerical quadrature is practically a synonym for numerical inte-

gration. They are often called quadrature methods or just quadrature. There is a very

broad family of algorithms for calculating the numerical value of a de�nite integral.∫ b

a
f(x)dx (6.16)

If f(x) is a smooth well-behaved function with bounded limits of integration, a and b,

there are many quadrature methods for approximating the integral with an arbitrary preci-

sion. In a very general fashion, quadrature methods can be described as a weighted sum of

integrand evaluations at a �nite set of points (integration points) in order to approximate

the integral. The integration points and weights depend merely on the method used and

the accuracy desired.

The probably largest class of quadrature rules consist in the use of polynomials as inter-

polating functions, since they are easy to integrate. The simplest of these quadratures is

the midpoint or rectangle rule, where the interpolating function is a polynomial of degree

zero passing through the middle points ( (a+ b)/2 , f((a+ b)/2) ).∫ b

a
f(x)dx ≈ f

(
a+ b

2

)
· (b− a) (6.17)

The interpolating function could be an a�ne function, which means a polynomial of

degree one, passing through the integration points. This is called the trapezoidal rule.∫ b

a
f(x)dx ≈ f(a) + f(b)

2
· (b− a) (6.18)

For both of these methods, higher accuracy is reached by dividing the intervals [a, b]

into an arbitrary number n of subintervals (nesting property). Quadrature methods based

on equidistant integration points belong to the more general Newton-Cotes formulas. In

contrast, if one allows the space intervals between the interpolation points to vary, the

quadrature methods are called Gaussian Quadrature formulas (GQ) and are typically more

accurate than a Newton-Cotes rules which requires the same number of function evalua-

tions. The two points GQ formula can be seen as an extension of the trapezoidal rule, where

the arguments of the function are not predetermined as a and b, but are the unknowns

(not equidistant anymore) x1 and x2, so that with the coe�cients there are altogether four

unknowns. ∫ b

a
ω(x)f(x)dx = ω1f(x1) + ω2f(x2) (6.19)
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Table 6.1: Di�erent kind of polynomials used in the Gaussian Quadrature methods listed
together with their properties [321].

Interval Weighting Function ω(x) Orthogonal Polynomials

[− 1, 1] 1 Legendre Polynomials
(−1, 1) (1− x)α(1 + x)β , with α, β > −1 Jacobi Polynomials
(−1, 1) 1√

1−x2
Chebyshev Polynomials of �rst kind

[− 1, 1]
√

1− x2 Chebyshev Polynomials of second kind
[0,+∞) e−x Laguerre Polynomials

(−∞,+∞) e−x
2

Hermite Polynomials

The general n-points GQ is thus de�ned as:∫ b

a
ω(x)f(x)dx =

n∑
α=1

ωαf(xα) (6.20)

The fundamental theorem of GQ states that, chosen an orthogonal polynomial q(x) of

order n, whose n roots are the integration points xα, for some set of ωα, Eq. 6.20 is exact,

if f(x) is a polynomial of degree < 2n. It is well known, that one always can �t an n− 1

degree polynomial to a set of n points. For example, 2 points de�ne a line, 3 points a

parabola, etc. The GQ theorem practically says that by carefully choosing the integration

points and weights, one can exactly �t a polynomial q(x) of degree n− 1 to a polynomials

of degree < 2n, which is computationally not expensive and very accurate. Depending on

the integral to be evaluated the best suited polynomial should be chosen, corresponding

to a di�erent class of GQ. Table 6.1 lists the most common polynomials used together

with the respective weighting function and interval of validity. The Chebyshev polynomials

form the one dimensional particle-in-the-box basis set functions [30]. They give equally

spaced integration points centered at x = cos−1(θ). The Legendre and associated Leg-

endre polynomials with x = cos(θ) are appropriate for angular functions and are closely

related to the Spherical Harmonics (SH) basis-set [30]. The Hermite polynomials form

the one dimensional Harmonic Oscillator basis set functions apart from a constant multi-

plication factor [30]. After the polynomials chosen for the integration, these quadrature

are respectively called Chebyshev-Gauss, Legendre-Gauss, Gauss-Hermite quadratures, re-

spectively [30].
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6.3 Quadrupole-Quadrupole Interactions

The quadrupole is the lowest non-vanishing electrostatic momentum possessed by a linear

molecule belonging to the D∞h symmetry point group, as for instance the H2 and Cl2
molecules. As a consequence, when considering a molecular system composed of two linear

molecules, the lowest possible electrostatic interaction is the Quadrupole-Quadrupole (QQ)

one. The higher electrostatic terms, like the Hexadecapole-Quadrupole and Hexadecapole-

Hexadecapole interactions, are not considered here, but are also present in such systems.

In the following appendix the QQ-interaction between the chlorine molecule A �xed in

the space and the rotating hydrogen molecule B will be explicitly calculated with the aim

of showing that for molecules with spherical rotational distributions, such as pH2 and oD2,

the quadrupolar (actually all) electrostatic momentum vanishes, whereas for molecules

with a non spherical rotational distribution, such as oH2 and pD2, it does not.

In more mathematical term, this is shown by integrating the QQ-interaction formula

over the absolute value of the respective spherical harmonics, |YL,M (θB, φB)|2.

∫ π

0

∫ 2π

0
QAQB · |YL,M (θB, φB)|2 sin θBdθBdφB (6.21)

where QAQB is the QQ-interaction formula and is given in the next equation.

QAQB = 1︸︷︷︸
I

− 5 cos2 θA︸ ︷︷ ︸
II

− 5 cos2 θB︸ ︷︷ ︸
III

+ 17 cos2 θA cos2 θB︸ ︷︷ ︸
IV

+ (6.22)

+ 2 sin2 θA sin2 θB cos2 φA cos2 φB︸ ︷︷ ︸
V

+ 2 sin2 θA sin2 θB sin2 φA sin2 φB︸ ︷︷ ︸
V I

+

+ 4 sin2 θA sin2 θB cosφA cosφB sinφA sinφB︸ ︷︷ ︸
V II

+

− 16 sin θA sin θB cos θA cos θB cosφA cosφB︸ ︷︷ ︸
V III

+

− 16 sin θA sin θB cos θA cos θB sinφA sinφB︸ ︷︷ ︸
IX

Inserting Eq. 6.23 into Eq. 6.21, for each of the addends of the QQ-interaction formula

enumerated with the roman numbers, a di�erent integral has to be solved. For each species

considered, a di�erent spherical harmonic has to be integrated. The spherical harmonic,

YL=0,M=0, for an isolated pH2 or oD2 molecule and the spherical harmonics, YL=1,M=−1,0,1

for an isolated oH2 or pD2 molecule. These four spherical harmonics are given below

together with their absolute values:

242



6.3 Quadrupole-Quadrupole Interactions

Y0,0(θB, φB) =

√
1

4π
⇒ |Y0,0(θB, φB)|2 =

1

4π

Y1,∓1(θB, φB) =

√
3

8π
sin θBe

∓iφ ⇒ |Y1,∓1(θB, φB)|2 =
3

8π
sin2 θB

Y1,0(θB, φB) =

√
3

4π
cos θB ⇒ |Y1,0(θB, φB)|2 =

3

4π
cos2 θB

The list of integrals needed for solving the integrals have been taken in [321] and are

listed below:

A :

∫
sin cxdx = −1

c
cos cx

B :

∫
sin cx cosn cxdx = − 1

c(n+ 1)
cosn+1 cx

C :

∫
cos2 cxdx =

cos cx sin cx

2
+

1

2
x

D :

∫
sin2 cxdx = −sin cx cos cx

2
+

1

2
x

E :

∫
cosn cxdx =

cosn−1 cx sin cx

nc
+
n− 1

n

∫
cosn−2 cxdx (for n > 0)

F :

∫
sinn cxdx = −sinn−1 cx cos cx

nc
+
n− 1

n

∫
sinn−2 cxdx (for n > 0)

G :

∫
sin cx cos cx =

1

2c
sin2 cx

H :

∫
cos cxdx =

1

c
sin cx

I :

∫
sinn cx cosm cxdx = −sinn−1 cx cosm+ 1cx

c(n+m)

+
n− 1

n+m

∫
sinn−2 cx cosm cxdx (for m, n > 0)
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6 Appendix

Integration over Y0,0(θB, φB) (pH2 and oD2 rotational ground states):

I =
1

4π

∫ 2π

0
dφB︸ ︷︷ ︸

=2π

∫ π

0
sin θBdθB︸ ︷︷ ︸

=2 because of A

·1 = 1

II = −5 cos2 θA ·
1

4π

∫ 2π

0
dφB︸ ︷︷ ︸

=2π

∫ π

0
sin θBdθB︸ ︷︷ ︸

=2 because of A

= −5 cos2 θA

III = −5 · 1

4π

∫ 2π

0
dφB︸ ︷︷ ︸

=2π

∫ π

0
cos2 θB sin θBdθB︸ ︷︷ ︸
2
3
because of B

= −5

3

IV = 17 cos2 θA ·
1

4π

∫ 2π

0
dφB︸ ︷︷ ︸

=2π

∫ π

0
cos2 θB sin θBdθB︸ ︷︷ ︸
2
3
because of B

=
17

3
cos2 θA

V = 2 sin2 θA cos2 φA ·
1

4π

∫ 2π

0
cos2 φBdφB︸ ︷︷ ︸

=π because of C

∫ π

0
sin3 θBdθB︸ ︷︷ ︸

4
3
because of F+A

=
1

3
sin2 θA cos2 φA

V I = 2 sin2 θA sin2 φA ·
1

4π

∫ 2π

0
sin2 φBdφB︸ ︷︷ ︸

=π because of D

∫ π

0
sin3 θBdθB︸ ︷︷ ︸

4
3
because of F+A

=
1

3
sin2 θA sin2 φA

V II = 4 sin2 θA cosφA sinφA ·
1

4π

∫ 2π

0
sinφB cosφBdφB︸ ︷︷ ︸

=0 because of G

∫ π

0
sin3 θBdθB︸ ︷︷ ︸

2
3
because of F+A

= 0

V III = −16 sin θA cos θA cosφA ·
1

4π

∫ 2π

0
cosφBdφB︸ ︷︷ ︸

=0 because of H

∫ π

0
sin2 θB cos θBdθB = 0

IX = −16 sin θA cos θA sinφA ·
1

4π

∫ 2π

0
sinφBdφB︸ ︷︷ ︸

=0 because of A

∫ π

0
sin θB cos θBdθB = 0

Finally, summing up all non-vanishing terms:

∫ π

0

∫ 2π

0
QAQB · |Y0,0(θB, φB)|2 sin θBdθBdφB

= 1− 5 cos2 θA −
5

3
+

17

3
cos2 θA +

2

3
sin2 θA cos2 φA︸ ︷︷ ︸

1−sin2 φA

+
2

3
π sin2 θA sin2 φA

= −2

3
+

2

3
cos2 θA +

2

3
sin2 θA =

2

3
+

2

3
= 0
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6.3 Quadrupole-Quadrupole Interactions

Integration over Y1,±1(θB, φB) (oH2 and pD2 rotational ground states):

I =
3

8π

∫ 2π

0
dφB︸ ︷︷ ︸

=2π

∫ π

0
sin3 θBdθB︸ ︷︷ ︸

4
3
because of F+A

= 1

II = −5 cos2 θA · I = −5 cos2 θA

III = −5 · 3

8π

∫ 2π

0
dφB︸ ︷︷ ︸

=2π

∫ π

0
cos2 θB sin3 θBdθB︸ ︷︷ ︸
4
15
because of I

=
1

5

IV = III · 1

−5
· 17 cos2 θA = −17

25
cos2 θA

V =
3

8π
· 2 sin2 θA cos2 φA

∫ 2π

0
cos2 φBdφB︸ ︷︷ ︸

=π because of C

∫ π

0
sin5 θBdθB︸ ︷︷ ︸

16
15
because of F+F

=
4

5
sin2 θA cos2 φA

V I =
3

8π
· 2 sin2 θA sin2 φA

∫ 2π

0
sin2 φBdφB︸ ︷︷ ︸

=π because of D

∫ π

0
sin5 θBdθB︸ ︷︷ ︸

16
15
because of F+F

=
4

5
sin2 θA sin2 φA

V II =
3

8π
· 4 sin2 θA cosφA sinφA

∫ 2π

0
sinφB cosφBdφB︸ ︷︷ ︸

=0 because of G

∫ π

0
sin5 θBdθB = 0

V III =
3

8π
· −16 sin θA cos θA cosφA

∫ 2π

0
cosφBdφB︸ ︷︷ ︸

=0 because of H

∫ π

0
sin4 θB cos θBdθB = 0

IX =
3

8π
· −16 sin θA cos θA sinφA

∫ 2π

0
sinφBdφB︸ ︷︷ ︸

=0 because of A

∫ π

0
sin θB cos θBdθB = 0

Finally, summing up all non-vanishing terms:

∫ π

0

∫ 2π

0
QAQB · |Y1,±(θB, φB)|2 sin θBdθBdφB

= 1− 5 cos2 θA +
1

5
− 17

25
cos2 θA +

4

5
sin2 θA cos2 φA︸ ︷︷ ︸

1−sin2 φA

+
4

5
sin2 θA sin2 φA

=
6

5
− 42

25
cos2 θA +

4

5
sin2 θA

=
6

5
+

20

25
sin2 θA +

20

25
cos2 θA −

62

25
sin2 θA

=
30

25
+

20

25
− 62

25
cos2 θA = 2− 62

25
cos2 θA
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6 Appendix

Integration over Y1,0(θB, φB) (oH2 and pD2 rotational ground states):

I =
3

4π

∫ 2π

0
dφB︸ ︷︷ ︸

=2π

∫ π

0
cos2 θB sin θBdθB︸ ︷︷ ︸
2
3
because of B

= 1

II = −5 cos2 θA · I = −5 cos2 θA

III = −5 · 3

4π

∫ 2π

0
dφB︸ ︷︷ ︸

=2π

∫ π

0
cos4 θB sin θBdθB︸ ︷︷ ︸
2
5
because of B

= −3

IV = III · 1

−5
· 17 cos2 θA =

51

5
cos2 θA

V =
3

4π
· 2 sin2 θA cos2 φA

∫ 2π

0
cos2 φBdφB︸ ︷︷ ︸

=π because of C

∫ π

0
sin3 θB cos2 θBdθB︸ ︷︷ ︸

4
15
because of I+B

=
2

5
sin2 θA cos2 φA

V I = V · sin2 φA
cos2 φA

=
2

5
sin2 θA sin2 φA

V II =
3

4π
· 4 sin2 θA cosφA sinφA

∫ 2π

0
sinφB cosφBdφB︸ ︷︷ ︸

=0 because of G

∫ π

0
sin3 θB cos2 θBdθB = 0

V III =
3

4π
· −16 sin θA cos θA cosφA

∫ 2π

0
cosφBdφB︸ ︷︷ ︸

=0 because of H

∫ π

0
sin2 θB cos3 θBdθB = 0

IX =
3

4π
· −16 sin θA cos θA sinφA

∫ 2π

0
sinφBdφB︸ ︷︷ ︸

=0 because of A

∫ π

0
sin2 θB cos3 θBdθB = 0

Finally, summing up all non-vanishing terms:

∫ π

0

∫ 2π

0
QAQB · |Y1,0(θB, φB)|2 sin θBdθBdφB

= 1− 5 cos2 θA − 3 +
51

5
cos2 θA +

2

5
sin2 θA cos2 φA︸ ︷︷ ︸

1−sin2 φA

+
2

5
sin2 θA sin2 φA

= −2 +
26

5
cos2 θA +

2

5
sin2 θA

= −2 +
24

5
cos2 θA +

2

5
cos2 θA +

2

5
sin2 θA

= −8

5
+

24

5
cos2 θA
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6.4 RA-PES Fitted Legendre Polynomials Expansion Coe�cients

6.4 RA-PES Fitted Legendre Polynomials Expansion

Coe�cients

Table 6.2: Coe�cients for the expansion in the �rst three even Legendre Poly-
nomials, Pn=0,2,4(θA), of the 8 angular dependent parameters in the HFD-function,

V
(l)
AB(RAB, θA) in Eq. 5.29, �tting the two-dimensional RA-PESs, W (n=v=0, l=0)

pH2−Cl2 (RAB, θA)

and W (n=v=0, l=0)
oD2−Cl2 (RAB, θA), are given in a.u. respectively in the left and right columns of

the table.

×P0(θA) ×P2(θA) ×P4(θA) ×P0(θA) ×P2(θA) ×P4(θA)

V (l=0) pH2 − Cl2 oD2 − Cl2

Rp(θA) 6.546083 2.457239 −0.961604 7.463068 2.376177 −1.238354

p(θA) 8.342770 10.81063 5.339028 4.235626 1.179803 3.617177

log a(θA) 0.123888 −0.1575050 0.1006369 0.312947 −0.342894 0.1995624

b(θA) 0.227439 0.2124749 −0.448644 0.987746 −0.7396689 0.242461

c(θA) 0.1137108 −0.1481077 0.1166428 −0.005826 0.015604 −0.0000019

C6(θA) 40.46230 127.8287 58.22363 139.1351 373.1690 164.2687

C8(θA) 1136.867 1496.881 185.1981 625.5885 754.4154 −710.9507

C10(θA) 4827.163 2567.031 −1152.398 4816.229 2553.961 −1373.243
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6 Appendix

Table 6.3: Coe�cients for the expansion in the �rst three even Legendre Poly-
nomials, Pn=0,2,4(θA), of the 8 angular dependent parameters in the HFD-function,

V
(l)
AB(RAB, θA) in Eq. 5.29, �tting the two-dimensional RA-PESs, W (n=v=0, l=1)

pH2−Cl2 (RAB, θA)

and W (n=v=0, l=1)
oD2−Cl2 (RAB, θA), are given in a.u. respectively in the left and right columns of

the table.

×P0(θA) ×P2(θA) ×P4(θA) ×P0(θA) ×P2(θA) ×P4(θA)

V (l=1) oH2 − Cl2 pD2 − Cl2

Rp(θA) 7.272212 2.457591 −1.132996 7.082789 2.580084 −1.198885

p(θA) 5.600052 1.155076 4.941181 5.628994 1.141327 5.068411

log a(θA) 0.153863 −0.173002 0.103477 0.222301 −0.252485 0.150700

b(θA) 0.873880 −0.698060 0.266102 0.955018 −0.773104 0.277703

c(θA) 0.005791 0.004250 0.01814 −0.001737 0.015031 −0.000332

C6(θA) 107.4460 283.5249 133.6542 120.0814 308.5875 130.9678

C8(θA) 533.6362 804.6727 −748.2995 404.4496 622.6149 −301.0167

C10(θA) 3182.611 1451.915 1340.984 2019.258 3997.051 −1.339907
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6.4 RA-PES Fitted Legendre Polynomials Expansion Coe�cients

Table 6.4: Coe�cients for the expansion in the �rst three even Legendre Poly-
nomials, Pn=0,2,4(θA), of the 8 angular dependent parameters in the HFD-function,

V
(l)
AB(RAB, θA) in Eq. 5.29, �tting the two-dimensional RA-PESs, W (n=v=0, l=2)

pH2−Cl2 (RAB, θA)

and W (n=v=0, l=2)
oD2−Cl2 (RAB, θA), are given in a.u. respectively in the left and right columns of

the table.

×P0(θA) ×P2(θA) ×P4(θA) ×P0(θA) ×P2(θA) ×P4(θA)

V (l=2) oH2 − Cl2 pD2 − Cl2

Rp(θA) 7.887075 2.241792 −1.066878 7.761789 0.018946 0.260517

p(θA) 3.789988 1.746207 2.585752 7.523380 15.02365 4.229105

log a(θA) 0.030453 −0.030127 0.018277 0.081839 −0.078861 0.002692

b(θA) 0.2851373 −0.4098456 0.195429 0.5533672 −0.538118 −0.657567

c(θA) 0.037022 −0.011143 0.001354 0.034101 0.016519 0.079221

C6(θA) 176.8759 443.7729 161.1696 37.75205 122.9202 68.46941

C8(θA) 721.6169 413.5156 −607.2996 1626.125 506.7775 −352.6596

C10(θA) 4788.124 2572.646 −1399.737 3226.777 1447.586 1298.371
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Table 6.5: Coe�cients for the expansion in the �rst three even Legendre Poly-
nomials, Pn=0,2,4(θA), of the 8 angular dependent parameters in the HFD-function,

V
(l)
AB(RAB, θA) in Eq. 5.29, �tting the two-dimensional RA-PESs, W (n=v=0, l=3)

pH2−Cl2 (RAB, θA)

and W (n=v=0, l=3)
oD2−Cl2 (RAB, θA), are given in a.u. respectively in the left and right columns of

the table.

×P0(θA) ×P2(θA) ×P4(θA) ×P0(θA) ×P2(θA) ×P4(θA)

V (l=3) oH2 − Cl2 pD2 − Cl2

Rp(θA) 7.659767 2.484850 −0.732845 7.053535 2.492342 −0.788342

p(θA) 4.181904 1.528093 2.288791 6.382567 1.797911 5.305201

log a(θA) 0.027879 −0.026671 0.014598 0.257607 −0.272980 0.164915

b(θA) 0.246792 −0.409352 0.220119 0.102531 −0.679282 0.290446

c(θA) 0.038907 −0.009858 −0.003952 −0.005042 0.008230 −0.004256

C6(θA) 190.5950 462.1301 168.0032 91.2944 233.7369 104.4669

C8(θA) 507.4645 599.0433 −341.9357 351.1368 542.6530 −526.6093

C10(θA) 4607.373 1142.824 −2738.211 3001.648 −3.794078 23.36125
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6.5 Einstein Model Computational Details

6.5 Einstein Model Computational Details

This Appendix gives information about the computational technicalities in order to set

up the Einstein models. The e�ective potentials VEM (R0) have been calculated at 16

di�erent Nearest-Neighbour distances (NNd), Rd between 0.30 and 0.45 nm with steps

δRd =0.01 nm. For the non-rigid Einstein model, eventually, this grid has been reduced

discarding few of the shorter and larger NNds, because of the computational cost. The

models have been generally applied to both the fcc and the hcp lattices except for the

non-rigid Einstein model, which has been applied only to the fcc lattice again because of

the computational cost. The simulation boxes are constituted by a number of cells nc =3

and 4 for each dimension for the rigid and non-rigid Einstein model, respectively. The

e�ective potential are very little in�uenced by the magnitude of the simulation box, since

by subtracting the fcc cohesive energy per molecule, Ec(Rd), in Eq. 5.54, the systematic

errors are cancelled out. The test-molecule at the center of the slab is displaced along

chosen directions, which are indicated by Miller indices for which we refer to Tab. 6.6.

The number of grid points Ng has been chosen case by case. The initial and �nal points

are always −Rd and Rd and the relative spacing δd between them is simply δd = 2Rd
(Ng−1) .

In the case of the 1D rigid model Ng was independent from the value of Rd and always

equal to 121. The 1D e�ective potentials, VEM , have been �tted to 128 grid points by a

spline interpolation, before calculating the ZPEs. In the case of the 1D non-rigid Einstein

model, Ng has been made dependent from the NNd, Rd, of the lattice. It has been varied

for increasing values of Rd between 21 to 51 and from 39 to 69 for the pH2/oD2 and the

Cl2 systems, respectively, with a step, δg, of 2 points. The total number of grid points

needed to be drastically decreased with respect to the rigid Einstein model, since the

optimization routine for the relaxation of the cage around the central molecule was highly

CPU-consuming. In contrast, the spacing, δd, does not increase drastically at large values

of Rd, as in the rigid Einstein model, such that the �t of the e�ective potentials, VEM ,

to 128 points by the spline interpolation is still accurate. In the 3D rigid and non-rigid

Einstein model Ng has been varied from 313 to 613 for both the fcc and the hcp lattices

with a step, δg, of 2 points. The e�ective potentials, VEM , have been �tted to a 643 grid by

using an spline interpolation before evaluating the ZPEs. All parameters are summarized

again in Tab. 6.6.
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6 Appendix

Table 6.6: The table summarizes the simulation box size in terms of number of primitive
cells, nc, the number of grid points, Ng, along the crystallographic directions of displace-
ments and the step size, δg, of the number of grid points used in the di�erent Einstein
models and lattice symmetry used. The minimum and maximum displacements are always
-Rd and Rd.

pH2/oD2

Einstein Model Lattice nc Ng δg Directions
< 100 >

1D rigid fcc 3 121 0 < 011 >
< 111 >

< 100 >
1D rigid hcp 3 121 0 < 010 >

< 001 >

< 100 >
1D non-rigid fcc 4 [21− 51] 2 < 110 >

< 111 >

< 100 >
1D non-rigid hcp 4 [21− 51] 2 < 010 >

< 001 >

< 100 >
3D rigid fcc/hcp 3 [313 − 613] 2 < 010 >

< 001 >

< 100 >
3D non-rigid fcc 4 [313 − 613] 2 < 010 >

< 001 >

Cl2
Einstein Model Lattice nc Ng δg Directions

< 100 >
1D rigid fcc/hcp 3 87 0 < 010 >

< 001 >

< 100 >
1D non-rigid fcc 4 [39− 69] 2 < 010 >

< 001 >

< 100 >
3D rigid fcc/hcp 3 [313 − 613] 2 < 010 >

< 001 >

< 100 >
3D non-rigid fcc 4 [313 − 613] 2 < 010 >

< 001 >
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