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Introduction: Psychotic-like experiences (PLEs) may occur due to changes

in weighting prior beliefs and new evidence in the belief updating process.

It is still unclear whether the acquisition or integration of stable beliefs is

altered, and whether such alteration depends on the level of environmental and

belief precision, which reflects the associated uncertainty. This motivated us to

investigate uncertainty-related dynamics of belief updating in relation to PLEs

using an online study design.

Methods: We selected a sample (n = 300) of participants who performed a belief

updating task with sudden change points and provided self-report questionnaires

for PLEs. The task required participants to observe bags dropping from a

hidden helicopter, infer its position, and dynamically update their belief about

the helicopter’s position. Participants could optimize performance by adjusting

learning rates according to inferred belief uncertainty (inverse prior precision)

and the probability of environmental change points. We used a normative

learning model to examine the relationship between adherence to specific model

parameters and PLEs.

Results: PLEs were linked to lower accuracy in tracking the outcome (helicopter

location) (β = 0.26 ± 0.11, p = 0.018) and to a smaller increase of belief

precision across observations after a change point (β = −0.003 ± 0.0007, p <

0.001). PLEs were related to slower belief updating when participants encountered

large prediction errors (β = −0.03 ± 0.009, p = 0.001). Computational modeling

suggested that PLEs were associated with reduced overall belief updating in

response to prediction errors (βPE = −1.00 ± 0.45, p = 0.028) and reduced

modulation of updating at inferred environmental change points (βCPP = −0.84

± 0.38, p = 0.023).

Discussion: We conclude that PLEs are associated with altered dynamics of belief

updating. These findings support the idea that the process of balancing prior

belief and new evidence, as a function of environmental uncertainty, is altered

in PLEs, which may contribute to the development of delusions. Specifically,

slower learning after large prediction errors in people with high PLEs may result
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in rigid beliefs. Disregarding environmental change points may limit the flexibility

to establish new beliefs in the face of contradictory evidence. The present

study fosters a deeper understanding of inferential belief updating mechanisms

underlying PLEs.

KEYWORDS

reward learning, belief updating, uncertainty, psychotic-like experience (PLE), online

study, precision

Introduction

Conceptualized as the “extended psychosis phenotype,”

psychotic phenomena presumably exist on a dimension, ranging

from manifest psychosis to mild subclinical psychotic-like

experiences (PLEs) (1). PLEs involve unusual subjective

experiences that resemble subtle psychotic symptoms but do

not necessarily cause distress (2). PLEs are not uncommon among

the general population (3, 4) and may be grounded in similar

underlying cognitive and neurobiological mechanisms as manifest

psychotic symptoms (5). Theoretical accounts of psychotic

experiences suggest alterations in belief updating processes as

underlying mechanisms, which can be described in a Bayesian

framework of belief updating (6–10). In this framework, new

evidence is constantly integrated into prior beliefs to minimize

prediction errors (PEs) and to optimally predict future states (6, 7).

Crucially, the degree to which some new sensory evidence updates

prior beliefs to posterior beliefs depends upon the precision

afforded by the sensory evidence and prior beliefs. Precision can be

regarded as a measure of reliability or certainty about prior beliefs

or sensory evidence. New observations will more influentially

update the prior belief if they are considered reliable, meaning

that the observer is very certain about this new piece of evidence.

On the other hand, new evidence will be less influential if the

observer is very certain about the prior belief. Consequently, the

observer must accumulate sufficient new evidence (e.g., sustained

and large prediction errors) to revise the prior belief. While the

former strategy may lead to belief instability, the latter may cause

belief rigidity. Thus, in the setting of evidence accumulation and

belief updating, the precision ratio (inverse belief uncertainty)

determines the learning rate. Our analysis below leverages this

intimate relationship between learning rates and prior precision.

Recent studies report altered integration of prior beliefs and

new evidence in people on the subclinical and clinical psychosis

spectrum (10, 11). However, there are mixed results regarding

the directionality, with some studies suggesting over-updating of

beliefs in patients with schizophrenia (12, 13) and others in belief

perseverance (14, 15). Novel change point detection paradigms

highlighted that patients with schizophrenia show a mixture of

both over-updating and perseveration of beliefs (16). Patients

with schizophrenia seemed to update beliefs in an “all or nothing”

manner. When belief uncertainty was high, they updated their

beliefs completely (“all”), instead of moderately integrating new

evidence into the prior (16). During other times, they perseverated

on the prior belief (“nothing”). This strategy hampers the balanced

integration of new and old information, thereby limiting belief-

flexibility and -precision. Research on the jumping-to-conclusion

bias also suggests that patients with schizophrenia rely more

heavily on initial observations, quickly manifest beliefs, and fail

to keep integrating later information (15, 17). These findings have

in common that the weighting of evidence and prior differed

between control participants and patients as a function of belief

uncertainty. As an example, in clinical delusions, this could

manifest as a person quickly adapting, e.g., a paranoid belief during

an initial state of belief uncertainty and consequently sticking

to this belief with high certainty despite conflicting evidence.

Multiple accounts suggested that not only updating toward the

precision of the outcome belief plays a role in psychosis but also

the adaptation toward the precision of the environment. As such,

previous studies showed that patients with schizophrenia (18) or

a first episode of psychosis (19, 20) and healthy people with high

schizotypy (20) adapt learning signals less toward the precision of

the environment. Similar alterations pertaining to belief updating

behavior have been reported in other psychiatric disorders (21).

This includes obsessive–compulsive disorder (22, 23) or anxiety

and depression (24, 25) and opens up the debate as to whether

these alterations can be considered as a mechanism that is specific

to psychotic experiences.

The present study aimed to examine belief updating in

the general population and explore possible associations with

PLEs. We administered a previously established feedback-driven

change point detection task (16, 26–29). Although variants of

these tasks have been used successfully as online versions (30),

helicopter gamification for the first time is presented here as

an online study. In this paradigm, optimal learning requires

updating the estimate (belief) of a hidden helicopter’s location. The

helicopter usually stays in one place and drops bags whose exact

location noisily oscillates around the helicopter (uncertainty). The

helicopter sometimes changes location completely (environmental

change point), which introduces unexpected uncertainty in the

paradigm. Thus, the task requires participants to integrate the

uncertainty about the helicopter location relative to the noise

in the outcome process and the unexpected uncertainty due to

sudden change points. Upon these change points, participants

have to disregard their prior belief of the helicopter location

and quickly learn the new position. The learning rate should

increase (1) when an environmental change point occurred and

(2) when the observer is uncertain about their current belief.

Belief uncertainty about the next bag drop depends on the

contextual noise, i.e., how much the bag locations vary around the
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helicopter’s position, and on the relative uncertainty that decreases

with the number of observations since the last change point.

We investigated how PLEs relate to feedback-driven learning in

different noise contexts and examined how participants integrate

change point probability and uncertainty within each context.

To the best of our knowledge, there is no gold standard to

assess PLEs comprehensively in the general population. Therefore,

we used three different questionnaires (31–33) to assess PLEs

and calculated a composite score to combine these measures.

Finally, we probed the relationship of model parameters of change

point probability and uncertainty with self-reported obsessive–

compulsiveness, anxiety, apathy, and alcohol use to test for the

specificity of our results with PLEs.

Methods

The present project and analysis strategy were preregistered in

the Open Science Framework (DOI 10.17605/OSF.IO/E8UXC).

Participants

The sample size was oriented toward a prior online study

with similar tasks and hypotheses (30). We adopted a linear

multiple regression approach, where a sample size of n = 300

allowed us to detect small effect sizes of f ² = 0.058 (34) with

a power of 95% at a confidence level of 95%. Sampling was

terminated as soon as n = 300 datasets that fulfilled inclusion

criteria were collected. Exclusion criteria involve incompleteness

of questionnaire data, failure of more than three attention

checks, and missing task data that exceeds 25% of the trials

per run. Single trials in which participants were not attentive,

indexed by reaction time larger than 3 s after the target were

excluded as well. Recruitment took place via the online platform

Prolific (www.prolific.co [accessed 11–20 November 2021]), which

provides a means to recruit people who are interested in

participating in online studies. Participants were prescreened

for age (between 18 and 60 years) and fluency in English.

Participants were reimbursed financially (£7,50/hr) via Prolific after

study completion.

Procedure

First, all participants were presented with the study information

and the consent forms. Upon completion, they were asked to

provide non-identifying demographic data, followed by the belief

updating task hosted in JATOS (35). Next, they were asked to

complete self-reports hosted in the clinical data management

software RedCap at Charité (36) and finally, they were allowed to

report problems during the study. The study procedures received

approval from the ethics committee at Charité Berlin, and all online

procedures were conducted in compliance with the guidance of the

data protection committee (EA2/156/18).

Measures

Psychiatric questionnaires
Measures of PLEs included Peters Delusion Inventory

(PDI) (25), Cardiff Anomalous Perceptions Scale (CAPS) (26),

and the Aberrant Salience Inventory (ASI) (27). We used

these complementary measures to derive a comprehensive

assessment of PLEs for the general population. Scores of all

PLE measures were z-scored and summed up to compute

individual PLE sum scores. Since the PLE score comprises

overlapping constructs covered by the three questionnaires

(PDI, ASI, and CAPS), we conducted a factor analysis to

distinguish and cluster the items of all questionnaires into coherent

scales, allowing us to examine the subcomponents of PLEs and

their relationship with belief updating more closely (details

in Supplementary material). To test for the specificity of our

results, we collected self-reports of the Obsessive-Compulsive

Inventory-Revised (OCI-R) (37), State-Trait-Anxiety-Inventory

(trait scale) (38), Apathy Evaluation Scale (AES) (39), and

the Alcohol Use Disorder test (AUDIT) (40). Data quality

was ensured by the implementation of attendance checks in

multiple questionnaires.

Belief updating task
We administered an established feedback-driven belief

updating task (16, 27, 28, 41) for the first time presented as

an online study. In this paradigm (Figure 1), participants are

instructed to place buckets on a scale via a button press to

catch bags falling from a hidden and moving helicopter. In

order to perform accurately, they are thus required to track the

location of the helicopter (belief), which noisily oscillates around

a certain spot (uncertainty) and sometimes changes location

completely (change point). To indicate their current belief about

the helicopter’s position, participants were instructed to click

on a scale, which initiated the bag drop (Figure 1A). The bags

that dropped from the helicopter were either blank or marked

with a e sign. Blank bags were introduced as containing no

monetary reward for the participant, whereas e bag would result

in a monetary reward after the game to incentivize accuracy.

Which bag the helicopter dropped was unknown to the participant

and was only revealed after participants indicated their belief of

the helicopter location. The bag drop was followed by feedback

on how far the prediction deviated from the actual helicopter

location (PE). Then, the feedback vanished and a new trial started

with the mouse cursor initialized at the location of choice of

the previous trial. All participants observed the same outcomes

(location of the bag drops) (Figure 1B). Outcomes were sampled

from a normal distribution with a mean ranging from 0 to 100

and fixed variance. The mean was randomly reset with a chance

level of .125 and represents the probability of change points (often

termed as hazard rate). We manipulated environmental precision

by altering the level of “noise” in the variation of the helicopter

around the underlying mean. Therefore, we altered the variance of

the generative distribution from which we sampled the helicopter’s

location. This variance was either low (SD = 3.33 units) or high

(SD = 8.33 units). Participants completed two high-noise and
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FIGURE 1

Belief updating task where participants place a bucket (response) to catch dropping bags and receive feedback about the deviation between their

belief and the actual outcome (bag drop location). (A) Depiction of a trial with a timeline in seconds from the trial onset. (B) The trajectory of the

helicopter location with the outcomes (white dots) and underlying mean (black dashed line) for the four runs. Blue shaded blocks represent the four

runs. (C) Responses were averaged across subjects (white dots), the underlying mean of the outcome (black dashed line), and average absolute

prediction errors (orange bars). (D) The trajectory of change point probability (CPP in orange) and relative uncertainty (RU in blue) was derived from

the computational model approximating optimal Bayesian learning and averaged across subjects (16).

two low-noise runs, each comprising 70 trials (a total of 280

trials). The order of runs was randomized across participants.

Each run consisted of 4–6 stable phases that were segregated

by change points. Our main outcome variable was participant’s

bucket placements that they logged in on the horizontal scale of

the screen.

Analysis

The present study comprises three main analyses: (1) Raw data

analysis of observed behavior that is directly calculated from the

participant responses. (2) Computational modeling of Bayesian

learning, where we ran a normative model on the observed PEs of
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TABLE 1 Descriptive statistics of self-reports.

Self-report [Range] Total sampleMean
± SD

Psychotic-like experience score

(z-transformed) [−1.31, 3.11]

0± .88

Peters delusion inventory [0.40] 7.43± 5.65

Aberrant salience inventory [0.29] 11.60± 7.06

Cardiff anomalous perception scale

[0.32]

4.35± 4.45

Obsessive-compulsiveness

inventory-revised [0.72]

18.88± 11.72

State-trait-anxiety inventory - trait

[20.80]

47.46± 11.54

Apathy evaluation scale [18.72] 54.79± 7.95

Alcohol use disorder identification test

[0.40]

5.09± 5

each participant to infer individual trial-wise estimates of change

point probability (CPP) and relative uncertainty (RU). We then

predicted individual trial-wise belief updates by these Bayesian

model trajectories (CPP and RU) with linear regression to examine

to what extent belief updates are informed by CPP and RU. (3)

Associations between belief updating and PLEs, where we used

indices of belief updating calculated from (1) and (2) and probed

associations with PLEs.

Raw data analyses of observed behavior
We computed trial-wise PEs (δt) by subtracting the true

position where the bag dropped (Xt) from the participant’s

prediction (Bt) (formula 1) and performance error by subtracting

the helicopter location (underlying mean of the sampling

distribution) from the participant prediction. We computed

learning rates by dividing the belief update of the current trial by the

PE of the previous trial (formula 2). These quantify learning speed

and describe how much participants update their beliefs relative to

the prediction error. Learning rates larger than 1 were rounded to 1

and learning rates smaller than 0 were rounded to 0. Learning rates

scale the PE to determine how the evidence is weighted against the

prior belief to form the posterior belief (Bt+1) (formula 3).

δt = Xt − Bt (1)

αt =
− (Bt+1 − Bt)

δt−1
(2)

Bt+1 = Bt + α∗
t δt (3)

In order to check whether participants understood and

performed the task as intended, we investigated how performance

errors evolved across trials after change points (TAC) in the low

and high noise conditions using a linear mixed regression model

(details in Supplementary material). Crucially, we added PLE to

this model to investigate the relationship with performance. All

terms (TAC, noise, and PLE) were allowed to interact with each

other. Additionally, we specified a random intercept for subjects

and random slopes for TAC, noise, and the interaction of both

terms. We then compared the full model to all reduced model

versions and evaluated the best-fitting model using the buildmer

function from the R-toolbox. In the results section, we report the

best converging model. The best model was determined according

to a likelihood-ratio test (LRT) based on chi-square mixtures

to test for the contribution of terms to model fit, which is the

default in the “buildmer” toolbox. Additionally, we report model

selection based on the Akaike Information Criterion (AIC) in

Supplementary material.

In an exploratory analysis, we probed the association between

PLEs and learning rates in trials with high and low absolute PE

magnitudes. Thereby, we tried to delineate whether learning speed

is differentially related to PLE for small and large PEs. To this end,

we aggregated learning rates per subject for trials when participants

observed large absolute PEs (PE > 50) or small absolute PEs (PE <

5). We then set up a regression model for each category to predict

average learning rates per participant by PLEs.

Next, we computed a raw data measure of belief precision using

a previously outlined method (16) to describe how participants

integrate observations across time. In theory, the precision of

beliefs increases as participants integrate new and old information

by using moderate or small learning rates, remains the same

if participants stick to their previous belief, and resets to 1 if

participants completely update beliefs to reflect the most recent

outcome. For each trial, precision is computed as a ratio of the

influence of the most recent observation on the present belief,

as compared to the previous observations. After a change point,

precision should first drop since only the most recent observation

can accurately inform the belief. Then it should increase across

subsequent observations as they are integrated into the belief. As

soon as a learning rate of 1 occurs, the previous samples do not play

into the current belief and precision goes back to 0. The number

of previous observations in combination with the variance of the

weighted sum constitutes a measure of precision (for the formula,

see Supplementary material). To analyze how precision evolves

across TAC, noise conditions, and whether this relates to PLE,

we used the same linear mixed regression model for performance

errors described above and in Supplementary material.

Computational modeling of optimal Bayesian
learning

To formalize optimal belief updating in our paradigm, we

applied the normative model that approximates optimal Bayesian

learning as implemented (16) and described in previous work

(26, 42). This model updates beliefs via PEs that are weighted by

a learning rate (formulas 1–3). Unlike in the raw data analyses, the

learning rate of the computational model αt is adjusted according to

trial-wise estimates of relative belief uncertainty (RU) and change

point probability (CPP). If a large PE occurs, CPP approaches

1 indexing that the most recent observation is likely generated

after a meaningful environmental change. RU is also updated on

every trial and evolves as an estimate of the number of trials

since the last change point—it decreases as more observations are

made. Together these factors determine the learning rate αt in the
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FIGURE 2

(A) Histogram of the performance error in high and low noise conditions. (B) Trajectory of performance error magnitude across trials after a change

point. (C) Relationship between PLE and the average performance error per subject. (D) Precision of high and low noise runs across trials after

change point in high (PLE 75% quartile), medium (PLE 25–75% quartile), and low PLE groups (25% quartile). (E) Histogram of learning rates (in

percentage) showing the distribution at 1, 5, 10, or 15 trials after the change point (TAC).

normative model (formula 4).

α = CPPt + RUt + CPPt ∗ RUt (4)

The optimal learner should scale the influence of a PE according

to CPP and RU to optimally update their expectation and eventually

maximize rewards. An example trajectory of these parameters is

shown in Figure 1D. Intuitively, as long as observations are sampled

in a stable environment, CPP is low, uncertainty slowly decreases,

and beliefs become more precise. As soon as a large PE occurs, CPP

peaks and RU increases subsequently. This scales up the learning

rate so that rapid adaptations in belief updating as a response to

a change point are possible. For each participant, we applied this

model to the individual observed behavior and feedback (PEs and

belief updates) to compute individual estimates of CPP and RU. To
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investigate how participants integrate PEs in the formation of new

beliefs, we set up individual linear regression models (all regressors

mean-centered) to predict each participant’s belief updates from

trial-wise PEs. To examine how participants scale PEs according to

these CPP and RU when forming subsequent updates, we included

the interaction of the absolute PE with the individual estimates of

(1) CPP and (2) RU as effects (27, 28, 30). Thus, by referring to CPP-

and RU-effects on belief updating, we mean the modulation of PE-

driven learning by CPP and RU. Crucially, the regression β-weights

of PE, PE∗CPP, and PE∗RU quantify to what extent a participant

used the respective parameter to inform the update, whereas CPP

and RU itself representmodulators of PE-driven belief updating. To

evaluate the effect of each parameter at the group level, we tested the

β-weights aggregated across participants against zero.

Association between PLE and Bayesian belief
updating

To evaluate if the usage of PE, CPP, and RU differs as a function

of PLE, we used multiple regression analyses. For each participant,

we extracted the β-weights of each Bayesian model parameter

(βPE, βCPP, and βRU), from the regression described in the

previous section and used these to predict PLE. To elucidate how

well participants adhered to optimal Bayesian learning overall, we

correlated the variance explained by individual regression models

on Bayesian updating (R2) with PLE.

Association between other self-report measures
and Bayesian belief updating

To test for specificity of the relationship between PLE and

altered belief updating, we repeated the regression analyses

described in the previous paragraph and used the individual

regression weights (βPE, βCPP, and βRU) to predict obsessive–

compulsiveness (OCI-R), trait-anxiety (STAI-T), self-reported

apathy (AES), alcohol use disorder (AUDIT), and the three self-

report scores that constitute the PLE score (PDI, ASI, and CAPS).

All self-report scores were normalized before being entered into

the regression.

Results

Participants

The final sample included 300 participants (mean age = 25.63

± 6.95 years) of whom 47.3% were identified as women (n = 142),

51.3%were identified as men, and 1.3%were identified as diverse (n

= 4). The sample was international, with participants reporting an

origin from 28 different countries (Supplementary Figure 1). Of all

participants, 44% reported working full- or part-time, 43% being

university students (overlap possible), and 18% reported being

unemployed. Consumption of marihuana within the last month

was reported by 14.3% (n=43) of the participants and consumption

of amphetamines by one participant. Summary statistics of the

psychiatric questionnaires are shown in Table 1 and distributions

are displayed in Supplementary material.

TABLE 2 Regression coe�cients (averaged across subjects) of PE, CPP,

and RU predicting individual updates across high and low noise

conditions.

Aggregated regression coe�cients across
subjects

β-weight [95% KI] t-value P

PE 0.77 [.76, 0.79] 90.52 <0.001

PE: CPP 0.08 [.06, 0.10] 7.87 <0.001

PE: RU 0.07 [0.04, 0.11] 4.77 <0.001

Raw data analysis of observed behavior

The average trial-wise performance error (i.e., the deviation

of individual predictions from the true mean) across subjects was

M = 8.64 ± SD = 1.53 units (scale 0–100 units). Performance

errors decreased after change points (the main effect of TAC: β =

−0.3, SE= 0.009, 95% CI= [−0.32,−0.28], p < 0.001, Figure 2B),

suggesting that participants made an effort to approximate the

helicopter’s locations after repeated observations. Reflecting that

our noise manipulation increased the difficulty to track the

helicopter’s location, performance errors were higher in the high

noise condition (main effect noise: β = −5.83 SE = 0.145, 95% CI

= [−6.05, −5.62], p < 0.001, Figure 2A). Performance improved

more across trials after a change point in the low noise compared to

the high noise condition (interaction of TAC and noise: β = 0.13,

SE = 0.012, 95% CI = [0.11, 0.16], p < 0.001). These results assure

us that participants in our online study understood and performed

the task as intended.

Raw behavior in relation to psychotic-like
experiences

To investigate our main research question, how PLEs were

related to belief updating, we added individual PLE scores to the

previous regression model. We found that participants with higher

PLEs committed more performance errors overall (main effect of

PLE: β = 0.26, SE = 0.11, 95% CI = [0.11, 0.16], p = 0.018, see

Figure 2C). There were no significant interaction effects of PLE,

TAC, and noise (full model reported in Supplementary material).

Next, we computed the theoretical precision of participant

beliefs across trials after change points as a measure that reflects

how many observations participants integrated to form their

posterior beliefs. As shown in Figure 2E, participants mostly used

learning rates of 0 or 1, limiting the overall precision. Precision

significantly increased across trials after a change point (main effect

TAC: β = 0.008, SE = .001, 95% CI [0.004, 0.008], p < 0.001,

Figure 2D) and was higher when noise was low (main effect noise:

β = −0.079, SE = 0.010, 95% CI [−0.071, −0.024], p < 0.001).

Precision increased more across trials after a change point in the

low compared to the high noise condition (interaction of TAC and

noise: β = 0.025, SE = 0.001, 95% CI [0.019, 0.025], p < 0.001.

Across trials after a change point, precision increased less in people

with high PLE (interaction TAC and PLE: β =−0.003, SE= 0.0007,

95% CI [−0.004, −0.001], p < 0.001, Figure 2D), particularly in
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FIGURE 3

(A) Regression coe�cients of prediction error (PE), change point probability (CPP), and relative uncertainty (RU) predicting PLE. (B–D) Marginal

e�ects of each parameter on psychotic-like experiences (PLEs).

the low noise condition (interaction of noise, TAC and PLE: β =

−0.016, SE= 0.006, 95% CI [−0.031–0.005], p= 0.012).

We found that PLEs were associated with slower learning (β =

−0.03, t(298) = −3.326, p = 0.001), when participants observed

large PEs (PE > 50), but not when participants observed small

PEs (PE < 5) (β = −0.0006, t(298) = −0.046, p = 0.963).

Repetition of this analysis with varying cutoffs is reported in the

Supplementary material.

Association between PLE and Bayesian
belief updating

Averaged across all participants, the linear models predicting

each participant’s belief updates by PE, PE∗CPP, and PE∗RU

accounted for 78% of the variance in participant’s updates (R2

= 0.78 ± 0.14), and regression coefficients were all significantly

different from zero (all p≤ 0.001, Table 2), suggesting that the belief

updating model captured participant’s behavior well. As indicated

by the regression coefficients (Table 2, participants updated their

beliefs consistently according to PEs and adjusted the magnitude

of their updates slightly according to CPP and RU, as indicated by

small but positive coefficients for interaction terms. Overall, the

variance explained by the computational model (R2 of individual

regressions) decreased with higher PLE (r =−0.17, p= 0.003).

To examine whether belief updating according to PE and the

model parameters (CPP and RU) were related to PLE, we entered

the individual regression coefficients βPE, βPE∗CPP, and βPE∗RU from

the subject-wise regression into a second linear model on PLE score

(PLE ∼ βPE+βPE∗CPP+βPE∗RU ). PLEs were predicted by lower βPE

(β = −1.00, t = −2.21, p = 0.028) and lower βPE∗CPP (β = −0.84,

t = −2.19, p = 0.030), but not by βPE∗RU (β = 0.02, t = 0.09, p =

0.932) (see Figure 3). Thus, people with higher PLE updated beliefs

less in response to prediction errors and failed to increase their

updating after likely change points (additional analyses reported in

Supplementary material).

Association between other self-report
measures and Bayesian belief updating
psychiatric self-report measures

In order to test the specificity of the relationship with PLE,

we regressed the individual βPE, βCPP, and βRU on self-reported

obsessive–compulsiveness (OCI-R), trait-anxiety (STAI-T), apathy

(AES), alcohol use disorder (AUDIT), and the three self-report
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FIGURE 4

(A) Correlation matrix of z-scored self-reported psychiatric traits. (B) Matrix of regression weights predicting z-scored self-reported psychiatric trait

scores from the individual Bayesian model-derived coe�cients. Crossed cells p < 0.1, after p-value correction for multiple comparisons. PE,

prediction error; CPP, change-point probability; RU, relative uncertainty; PDI, Peters Delusion Inventory; ASI, Aberrant Salience Inventory; CAPS,

Cardi� Anomalous Perception Scale; OCI-R Obsessive Compulsiveness Inventory-Revised; STAI-T, State Trait Anxiety Inventory—Trait; AES, Apathy

Evaluation Scale; AUDIT, Alcohol Use Disorder Identification Test.

scores that constitute the PLE score (PDI, ASI, and CAPS).

Intercorrelations of the self-report scores, and the relationship

between individual βPE, βCPP, and βRU and self-reports are shown

in Figure 4. Corroborating our results, only the relationship of PDI

with βPE (p = 0.060) and with βCPP (p = 0.077) was trend-

level significant after Benjamini–Hochberg correction for multiple

comparisons. This suggests that people with high subclinical

delusions update less according to PE magnitude and in response

to likely change points. Without correction, these associations were

significant (p < 0.05), as well as the relationship of ASI scores with

βPE and βCPP. Limiting the specificity claims, we also observed

a negative relationship of βCPP with trait anxiety and of βRU

with alcohol use disorder scores (both only significant without

p-value correction).

Discussion

In order to gain a deeper understanding of the relationship

between PLEs and altered belief updating, we conducted a

behavioral online study among the general population. Participants

had to update their beliefs about upcoming events based on noisy

feedback in a task environment with sudden, unannounced change

points. We found that PLEs were associated with overall less

accurate beliefs, and a smaller increase in belief precision across

observations after a change point has occurred. Participants with

higher PLEs updated their beliefs less according to the observed

prediction error (PE) and to likely change points.

The formation of beliefs about the world and oneself are

critical in our conception of psychiatric disorders. They are also

related to unspecific distress in non-psychiatric populations (43).

Questioning the content and meta-cognition (e.g., truth claims,

rationality, and function) of maladaptive beliefs is one of the central

pillars of cognitive behavioral therapy (44). Therefore, a better

understanding of how beliefs are developed and sustained may

help us improve cognitive therapy and eventually mental wellbeing.

This is particularly relevant for the hallmarks of PLEs, such as

delusions, which are defined as false beliefs that are firmly sustained

despite contrary evidence (45). Altered belief updating in dynamic

environments is an established research finding in psychosis

and can contribute to a mechanistic explanation for psychotic

experiences (8, 10, 46). Yet, the exact inferential mechanisms to

characterize these alterations remain to be clarified. Moreover, it is

still unclear whether such alterations specifically underlie PLEs or

are related to other dimensions of psychopathology.

First, in our belief updating paradigm, PLEs were associated

with lower performance accuracy. Lower performance in

probabilistic belief updating paradigms is an established finding

in patients with schizophrenia (12, 13, 47) or first-episode

psychosis (19) but also subclinical populations such as people

with high paranoia (47–49), however not in people at a clinical

high risk for psychosis (50, 51). Second, we observed that PLEs

were associated with a smaller increase in belief precision across

observations after a change point. This indicates that people with

high PLEs integrated fewer previous observations to form their

beliefs, although intuitively, sampling across more observations

increases precision and consequently performance (16). Lower

belief precision in the same task is also reported in patients with

schizophrenia (16). Importantly, this measure of precision is based

on behavioral data rather than the normative Bayesian estimate

of precision. In particular, this measure uses the sequence of

learning rates employed by the participant to infer how many

prior observations are combined into the belief (52). In volatile

environments, behavioral performance benefits not only from

updating beliefs in responses to prediction errors but also from

scaling the degree of updating according to the estimated belief
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uncertainty and the probability of environmental changes (53).

This aligns with our findings that higher PLEs were not only

associated with lower accuracy and precision but also with reduced

belief updating and dynamic modulation of updating according to

change point probability (CPP). In practice, this would drive slower

learning after very large prediction errors, which often flag change

points. Increasing the learning rate after an environmental change

is crucial to facilitate disregarding an obsolete representation of

the world and acquiring a new belief. This is in line with the

conceptualization of delusions as rigid beliefs that resist contrary

evidence, since beliefs are adjusted slower despite large prediction

errors, which reflect contrary evidence in our task.

From a computational perspective, the slower updating of

beliefs following environmental change points suggests a strong

prior belief that is resitant to modification. Although in prior

research, strong (perceptual) priors and a bias toward top–down

information were mostly related to hallucinations (54, 55), it is

possible that similar mechanisms in hallucinations and delusions

are at play (46). As such, plenty of research studies support the

relationship between delusions and a jumping-to-conclusion bias,

which reflects the fast acquisition of a strong prior (if no belief

existed before). A previous study, using a variant of the beads task

(15), refined this by showing that delusions were specifically related

to overweighting of initial evidence early in the learning process,

and to a failure to adequately integrate later information. A meta-

analysis on evidence integration biases supports this further (56).

They found that psychosis was not only related to jumping-to-

conclusion bias but also to a bias against disconfirmatory evidence,

suggesting reduced integration of conflicting evidence into this

prior. This resembles our findings that PLEs were associated with

slower updating behavior in response to large prediction errors.

In future studies, it would be interesting to specifically investigate

whether reduced belief acquisition is equally altered in PLEs when

a novel belief must be established or when an already established

belief must be overridden, by integrating contradictory evidence in

favor of a new belief.

Although not the main goal of our task, we tried to tap into

the aberrant salience construct (57, 58). The aberrant salience

hypothesis poses that anomalous percepts or beliefs result from

neutral events, such as noise, that are erroneously interpreted

as salient or meaningful (8, 57). We found some evidence for

an aberrant salience phenomenon in higher PLEs since PLEs

were related to less adherence to belief updating to the quasi-

optimal Bayesian computational model, resembling a more noisy

response process.

We assessed other psychiatric traits to test for the specificity

of our results and examined the subcomponents of the PLE score

(Peters Delusion Inventory [PDI], Aberrant Salience Inventory

[ASI], and Cardiff Anomalous Perceptions Scale [CAPS]). We

observed a trend-wise negative relationship between updating

adherence to PE magnitude and unexpected environmental

changes (CPP) with self-reported subclinical delusions (PDI).

We observed no relationship with any other psychiatric trait.

In line with this, the previous study using a similar task did

not find a relationship between updating behavior and the

transdiagnostic factors “anxious depression,” “social withdrawal,”

or “compulsive behavior and intrusive thought” either (30),

suggesting that altered belief updating is specifically related

to psychosis.

Limitations and implications for future work

The present study has several limitations. First, the reported

effects are rather small. Yet, our main analyses were preregistered,

lending trust in the a priori hypotheses, and replication of these

results is needed to increase confidence in our findings. Ideally,

future studies could adopt larger sample sizes and as suggested

by one reviewer, adopt a strategy to increase the sample size until

a point where the evidence for findings exceeds a pre-defined

Bayes Factor. Unfortunately, the online administration limited

our ability to control possible distractions from the task and the

self-assessment, and we did not acquire neurocognitive measures.

Indeed, cognitive performance is often reported to account for

altered belief updating in psychosis (10, 16), although our sample

was not clinical but had rather subclinical symptoms. In our

paradigm, the mouse on each new trial is located at the position of

the previous trial. While this prevents confounds due to working

memory demands, it may lead to confounds due to motion or

perseverance, as pointed out by a reviewer. Therefore, the mouse

could on every new trial be located at a random position on

the scale. Prior work has shown that this prevents perseverance

on previous mouse locations, but does not result in qualitative

changes in normative learning and may even introduce a random

bias (41). Yet, these potential confounds should be taken into

consideration for future task designs. We strongly encourage

longitudinal designs for future work on belief updating in psychosis

that would allow investigating if certain metrics of belief updating

are associated with subsequent increase or decrease of PLEs or

progression of subclinical PLEs to clinically relevant psychotic

symptoms. This could be achieved by investigating groups at high

risk for psychosis, such as first-degree relatives or individuals

with subclinical psychotic experiences. Not only groups at high

risk for psychosis could be of interest but also those at high

risk for other psychiatric traits. We would like to highlight the

great potential of online studies to collect data from multinational

samples. In psychological research, western, industrialized, and rich

nationalities are often considered representational, as suggested

by the fact that the nationality of these samples, as compared to

minorities, is less often mentioned in the title of a paper (59, 60).

Although the present sample is of course not representative of the

world’s population, a great number of participants originate from

South Africa and Mexico. Conducting online studies may aid in

reaching out to these populations and eventually increase their

representation in research.

Conclusion

In summary, the present study highlights that altered belief

updating is related to psychotic-like experiences (PLEs) in

subclinical populations. Our results support the notion that people

with high PLEs show a lower belief accuracy and update less

in response to prediction errors and likely change points. They

seemed to stick with an established prior belief and updated this

belief slower when faced with contradictory evidence. Slower belief

updating and less accurate predictions about future states of the

environment may be involved in the formation of delusion-like

rigid beliefs.
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