
A. Frequently Used Quantities and
Abbreviations

Quantities

b Bose-Einstein distribution function; band index
bQ occupation number of phonon mode Q
c vacuum light speed
ε single-electron energy
f Fermi-Dirac or classical distribution function
fk occupation number of electronic Bloch state k
k electronic Bloch state
k wavevector
n refractive index
D electronic density of states
E electric field
P induced electric polarization
Q phonon mode
T temperature
ε dielectric function
τ temporal delay between pump and probe pulse
ω angular frequency
ω/2π frequency
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A. Frequently Used Quantities and Abbreviations

Abbreviations

BZ Brillouin zone
DFG difference-frequency generation
DFT density-functional theory
DOT direct optical transition
e electron
eDOS electronic density of states
HiPCO high-pressure carbon monoxide
HOPG highly oriented pyrolytic graphite
i ion
imp impurity
interDOT direct optical interband transition
intraDOT direct optical intraband transition
IOT indirect optical transition
n neutral particle
NC nanocylinder, short straight segment of a NT
NT single-wall carbon nanotube
ph phonon
SCOP strongly coupled optical phonon
SFG sum-frequency generation
TRTS time-resolved THz spectroscopy
TS THz (time-domain) spectroscopy
2TM 2-temperature model
N set {1, 2, . . . } of all positive integer numbers
Z set {0,±1,±2, . . . } of all integer numbers
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B. Mathematical Definitions and
Theorems

Fourier Transformation

x(ω) = F [x(t)] (ω) =

∞∫

−∞

dt x(t)
exp(iωt)√

2π

x(t) = F−1 [x(ω)] (t) =

∞∫

−∞

dω x(ω)
exp(−iωt)√

2π

(B.1)

Convolution

(x ∗ y)(t) =
1√
2π

∞∫

−∞

dt′ x(t − t′) y(t′) (B.2)

Convolution Theorem

F(x ∗ y) = F(x)F(y)

F−1(x ∗ y) = F−1(x)F−1(y)

Comparison

x ≈ y: x is approximately equal to y
x ∼ y: x and y are of the same order of magnitude
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C. Details of Numerical Calculations for
Graphite

C.1. Direct Optical Transitions in Graphite

The contribution εinterDOT to the dielectric function of graphite is given by Eq. (1.19). The
integration over k can be reduced to the vicinity of the HKH line where 1 Fermi surface
pocket is located. The other pocket around H′K′H′ is accounted for by a factor of 2.

The eigenenergies εk required are obtained by diagonalizing the SWM Hamiltonian (4.4);
the momentum matrix elements are obtained by applying the unitary transformation,
which diagonalizes (4.4), to the 2nd term on the right-hand side of Eq. (4.4).

The diagonalization and integration are performed numerically for a mesh of frequencies ω
and electronic temperatures Te whereas εinterDOT for all other ω and Te is obtained by
2-dimensional interpolation.

For the contribution εintraDOT, the calculation of the plasma frequency (1.22) is sufficient
which requires the knowledge of the velocity-weighted eDOS (1.23). For this purpose, the
ε axis was divided in intervals [εj, εj + ∆ε]. Scanning the k space and the band structure
εkb point by point, the resulting band velocity vkb was added to the jth interval fulfilling
εkb ∈ [εj, εj + ∆ε]. The ordinary eDOS (1.7) was calculated similarly.

C.2. 2-Temperature Model for Graphite

The temporal dynamics of the electron temperature Te is obtained from that of the total
electronic energy Ee by

Ce(Te)
∂Te

∂t
=

∂Ee

∂t
.

The electronic heat capacity Ce is taken from Ref. [Nih03], and ∂Ee/∂t is given by Eq. (1.6)
which requires the evaluation of the Eliashberg function

H(ε, ε′, Ω) =
∑

kk′r

|M r
k′k|2δ(ε − εk)δ(ε

′ − εk′)δ(Ω − ΩQ). (C.1)

In graphite, the usual approximation ε = ε′ = εF [All87] is not justified because of the
strongly varying eDOS at the Fermi edge. To avoid the 6-dimensional integration over
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C. Details of Numerical Calculations for Graphite

transition (k⊥, b) −→ (k′
⊥, b′) r = LO r = TO

(
−→
ΓK + κ, π) −→ (

−→
ΓK + κ′, π∗) gr

Γ[1 − cos(α − α′)] gr
Γ[1 + cos(α − α′)]

(
−→
ΓK + κ, π∗) −→ (

−→
ΓK + κ′, π∗) gr

Γ[1 + cos(α − α′)] gr
Γ[1 − cos(α − α′)]

(
−−→
ΓK′ + κ, π) −→ (

−−→
ΓK′ + κ′, π∗) ≈ 0 gr

K[1 + cos(α − α′ − 60◦)]

(
−→
ΓK + κ, π∗) −→ (

−−→
ΓK′ + κ′, π∗) ≈ 0 gr

K[1 − cos(α − α′ − 60◦)]

Table C.1.: Electron-phonon matrix elements for the relevant electronic transitions in graphene taken
from Ref. [Pis04]. The kz component can change arbitrarily. Transitions within the π band are assumed
to have the same matrix element as those within the π∗ band.

k space some simplifications are introduced: We assume that the e-ph coupling and the
phonon dispersion of the SCOPs is the same like in graphene. Moreover, we neglect trigonal
warping of the electronic π and π∗ bands. It is important to take care of all prefactors
since the absolute values of H are required.

According to Section 4.4, the small Fermi surface of graphite allows only for wavevector
changes ∆k⊥ close to the Γ or K point. In Eq. (C.1), this is enforced by the first two δ func-
tions together with ε ≈ ε′ ≈ εF. In other words, the electron either stays in the pocket
around K or K′, or it jumps into the other pocket. We choose the electron BZ (eBZ) and
phonon BZ (phBZ) differently such that umklapp processes do not occur for scattering
from the K to the K′ pocket. For reasons of symmetry, transitions from the K′ to the K
pocket give identical results and will be taken into account by a factor of 2. The eBZ used
is the alternative eBZ in Fig. 4.6(a); the phBZ should be chosen such that Γ and K point
are far away from the BZ boundary. Then, the sum in (C.1) is split up by using

k = kc + k⊥ = kc +
−→
ΓX + κ with X ∈ {K, K′}

where kc = (0, 0, kc) and k⊥ are parallel and perpendicular to the c axis, respectively. The
small translation κ is expressed in cylindrical coordinates as

κ = κ




cos α
sin α

0





where α is the angle between κ and
−→
ΓK. The definitions for k′ are analog. This yields

H =
1

A2

∑

bb′

∑

jj′

∑

kzk′
z

∫∫∫∫
dκ dκ′ κκ′ dα dα′ δ(ε − εk)δ(ε

′ − εk′)︸ ︷︷ ︸
(i)

∑

r

δ(Ω − ΩQ)︸ ︷︷ ︸
(ii)

|M r
kk′|2︸ ︷︷ ︸

(iii)

,

(C.2)
where the summation over the κ mesh has been approximated by an integration with A
being the volume of a cell in the 2-dimensional κ space.

We now make the following assumptions for the labeled terms in Eq. (C.2): (i) We neglect
the α-dependence of the electron bands which is reasonable since trigonal warping is weak
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C.3. Indirect Optical Transitions in Graphite

at the energies considered here. (ii) We neglect phonon dispersion along qz and around Γ

and K which implies q⊥ ≈
−−→
X′X ∈ {Γ, K}. (iii) The matrix elements |M r

kk′|2 are those of
graphene and listed in Table C.1. This implies their independence of kz.

Consequently, the angular integration in (C.2) affects only the e-ph matrix elements. To-
gether with

∑
r, this yields 4π2gr

Γ for the Γ phonons since the angular dependence of LO
and TO branch cancel each other, whereas the K phonons yield 4π2gr

K and 0 for the LO
and TO branch, respectively. Going back to Cartesian coordinates gives

H = 2
∑

bb′r

[gr
Γδ(Ω − Ωr

Γ) + gr
Kδ(Ω − Ωr

K)]
∑

κκ′

δ(ε − εk)δ(ε
′ − ε′k)

where
gLO
Γ = gTO

Γ = 0.0405 eV2, gTO
K = 0.0994 eV2, and gLO

K ≈ 0

have been introduced [Pis04]. Since these quantities do not depend on the electron band
indices b and b′ we finally obtain

H(ε, ε′, Ω) =
1

8

∑

r

[gr
Γδ(Ω − Ωr

Γ) + gr
Kδ(Ω − Ωr

K)] D(ε)D(ε′)

where we have exploited
∑

κ δ(ε− εk) = D(ε)/4; the factor 1
4

is due to the spin degeneracy
and summation over only 1 of the 2 Fermi surface pockets.

This analytic formula for the Eliashberg function may have applications in all areas where
the coupling between SCOPs and electrons in graphite is important. In particular, the
2TM (1.6) now reduces to an integration over 1 energy ε only which can be performed
numerically without further ado.

C.3. Indirect Optical Transitions in Graphite

The IOT contribution of e-ph coupling to the dielectric function is, according to Eqs. (1.24)
and (1.25),

Im εIOT
ββ = 2

(2π~e)2

(~ω)4V

∑

kk′r

∑

±⊕
	

S
±⊕
	
(k, k′, Q)|M r

k′k|2(vkβ − vk′β)2

and can be transformed into

Im εIOT
αα = 2

(2π~e)2

(~ω)4V

∑

±⊕
	

∫∫∫
dε dε′ dΩS

±⊕
	
(ε, ε′, Ω)Htr

ββ(ε, ε′, Ω).

Here, ⊕
	 is related to photon absorption/emission and ± to phonon emission/annihilation,

respectively, and the factor

S
±⊕
	
(ε, ε′, Ω) =

[
b(Ω) + 1

2
± 1

2

]
f(ε) · [1 − f(ε′)] · [⊕	δ(ε′ − ε ± ~Ω	

⊕~ω)]
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C. Details of Numerical Calculations for Graphite

embraces all electronic and phononic occupation numbers. The auxiliary function

Htr
ββ(ε, ε′, Ω) =

∑

kk′r

|M r
kk′|2(vkβ − vk′β)2δ(ε − εk)δ(ε

′ − εk′)δ(Ω − ΩQ)

is proportional to the Eliashberg function α2
trF (ε, ε′, Ω) for transport which contains all

information on electron-phonon-photon interaction [Gri81, All71]. Its evaluation is very
similar to that of H in Appendix C.2 and results in

Htr
ββ(ε, ε′, Ω) =

1

8

∑

r,X

gr
Xδ(Ω−Ωr

X)
[
(v2

βD)(ε)D(ε′) + D(ε)(v2
βD)(ε′) + ΠX(uβD)(ε)(uβD)(ε′)

]
.

Here, v2
βD(ε) is the velocity-weighted eDOS (1.23) in β direction with β ∈ {x, y, z}, and

uβD(ε) :=
∑

k ukβδ(ε − εk). In the last expressions one has ukβ := vkβ/ cos α. The latter
term only contributes for ΠX = 1

2
which happens if X = K. Since the THz probe pulse is

polarized perpendicularly to the graphite c axis only the x direction is relevant.

Now the summation over k space is reduced to an integral over an energy which can be
performed numerically without further ado.
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