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Abstract

The thesis explores stochastic calculus for fractional Brownian motion. Our approach
builds upon a novel technique called stochastic sewing, originally introduced by Lê [Electron.
J. Probab. 25:1-55, 2020]. The stochastic sewing has been effectively used to obtain sharp
estimates on stochastic Riemann sums.

The main result of the thesis is an extension of Lê’s stochastic sewing, which we refer to
as the shifted stochastic sewing. This extension takes advantage of asymptotic decorrelation
in stochastic Riemann sums and can be seen as a combination of Lê’s stochastic sewing
and the asymptotic independence formulated by Picard [Ann. Probab. 36(6): 2235-2279,
2008].

As applications of the shifted stochastic sewing, we address two important problems
in fractional stochastic calculus. Firstly, we characterize the local time of the fractional
Brownian motion via level crossings, extending the classical work of Lévy to the fractional
setting. Secondly, we establish the pathwise uniqueness of Young and rough differential
equations driven by fractional Brownian motion. This result optimizes the regularity of the
noise coefficient, which is consistent with the Brownian setting.

Additionally, we demonstrate strong regularization by fractional noise for differential
equations with integrable drifts. This result can be viewed as a fractional analogue of the
celebrated work by Krylov and Röckner [Probab. Theory Relat. Fields 131: 154–196,
2005].
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Zusammenfassung

In dieser Arbeit wird der stochastische Kalkül für die gebrochene Brownsche Bewegung
untersucht. Unser Ansatz basiert auf einer neuen Technik namens “stochastic sewing”,
die ursprünglich von Lê [Electron. J. Probab. 25:1-55, 2020] eingeführt wurde. Das
“stochastic sewing” wird effektiv eingesetzt, um optimale Abschätzungen für stochastische
Riemann-Summen zu erhalten.

Das Hauptergebnis dieser Arbeit ist eine Erweiterung von Lês “stochastic sewing”, die
wir als verschobenes “stochastic sewing” bezeichnen. Diese Erweiterung macht sich die
asymptotische Dekorrelation in stochastischen Riemann-Summen zunutze und kann als eine
Kombination von Lês “stochastic sewing” und der von Picard formulierten asymptotischen
Unabhängigkeit gesehen werden [Ann. Probab. 36(6): 2235-2279, 2008].

Als Anwendungen des verschobenen “stochastic sewing” behandeln wir zwei wichtige
Probleme des gebrochenen stochastischen Kalküls. Zum einen charakterisieren wir die
Lokalzeit der gebrochenen Brownschen Bewegung durch Überquerungen von Niveaulinien,
und erweitern damit die klassische Arbeit von Lévy auf den gebrochenen Fall. Zum
anderen etablieren wir die pfadweise Eindeutigkeit von Young- und irregulären Differen-
tialgleichungen, die durch gebrochene Brownsche Bewegung angetrieben werden. Dieses
Ergebnis optimiert die Regularitätsannahmen des Diffusionskoeffizienten, in Einklang mit
dem Brownschen Fall.

Zusätzlich zeigen wir eine starke Regularisierung durch gebrochenes Rauschen für
Differentialgleichungen mit integrierbarem Drift. Dieses Ergebnis kann als ein gebrochenes
Analogon der berühmten Arbeit von Krylov und Röckner [Probab. Theory Relat. Fields
131: 154-196, 2005] angesehen werden.
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Introduction

During the 19th century, Robert Brown made a significant observation regarding the irregular
movement of particles within a medium. This motion, now widely recognized as Brownian
motion, or the Wiener process in honor of the mathematician who laid its mathematical
groundwork, has had a profound impact on various fields, including modern mathematics.
Brownian motion, denoted by W , is a centered Gaussian process characterized by the
following property (in one dimension):

E[(Wt −Ws)
2] = t− s, s < t.

The process exhibits independent increments and possesses martingale and Markovian
properties, which paved the way for the development of a comprehensive theory on Brownian
motion. In the 1940s, Itô initiated the field of stochastic calculus, which involves the
calculus with respect to Brownian motion. This field has evolved into one of the most
fruitful areas in mathematics, as demonstrated in the monograph [RY99].

However, in practical applications, Brownian motion is often considered too ideal. To
address this, the fractional Brownian motion BH , indexed by H ∈ (0, 1), was introduced.
It is a centered Gaussian process characterized by the following property:

E[(BH
t −BH

s )
2] = (t− s)2H , s < t.

The parameter H represents the roughness of the process, as depicted in Figure 1. When
H = 1/2, the process reduces to the standard Brownian motion. In other cases, the process
exhibits correlated increments and is neither a martingale nor Markovian. Kolmogorov
[Kol40] first introduced this process, and it was later popularized by Mandelbrot [MV68;
Man82]. Naturally, the field of fractional stochastic calculus emerged to handle calculus
involving fractional Brownian motion.

Since fractional Brownian motion is neither a martingale nor Markovian, many of the
arguments used in Itô’s stochastic calculus cannot be directly applied to fractional stochastic
calculus. Consequently, researchers have developed two main tools in fractional stochastic
calculus. The first tool involves pathwise arguments, such as Young’s integration theory

1



INTRODUCTION

0.0 0.2 0.4 0.6 0.8 1.0
Time

1.5

1.0

0.5

0.0

0.5

1.0

1.5

fB
m

 V
al

ue
H = 0.1

0.0 0.2 0.4 0.6 0.8 1.0
Time

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

fB
m

 V
al

ue

H = 0.5

0.0 0.2 0.4 0.6 0.8 1.0
Time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

fB
m

 V
al

ue

H = 0.7

Figure 1: Simulating fractional Brownian motions for H = 0.1, 0.5, 0.7.
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[You36], Lyons’ rough path theory [Lyo98], and Zähle’s fractional calculus [Zäh98]. These
approaches fix the realization of the fractional Brownian motion, and perform pathwise
analysis. The second tool is Malliavin calculus. This calculus was first invented by Malliavin
[Mal78] to obtain a probabilistic proof of Hörmander’s theorem [Hör67], but it turns out
to be also useful to study probabilistic aspects of the fractional Brownian motion [Nua06;
Nou12].

However, it is important to note that these tools often yield less precise results compared
to the classical Brownian setting. For example, consider the stochastic integral

∫ T

0

f(BH
r ) dB

H
r (1)

for H ∈ (1/4, 1), and for H < 1/2, the integral is understood as a rough integral.
Typically, the integral (in multi dimensions) is defined for functions f with Hölder regularity
(1−H)/H . However, it is natural to suspect that this definition is not optimal, as the Itô
integral (1) is well-defined for any bounded measurable f when H = 1/2.

Recently, Lê [Lê20] combined the martingale inequality (Burkholder–Davis–Gundy
inequality) and Gubinelli’s sewing lemma [Gub04] to obtain the stochastic sewing lemma.
This lemma provides sharp stochastic estimates on stochastic Riemann sums, including the
stochastic integral

∫ T

0

f(BH
r )dr,

where f can be an irregular function or even a distribution. The stochastic sewing lemma
quickly gained recognition for its innovation and has become a central force in the recent
development of regularization by noise.

This thesis aims to provide a new perspective on fractional stochastic calculus through
the stochastic sewing lemma. Our results are on par with their Brownian counterparts. For
instance, we establish the well-definedness of the integral (1) for f of Hölder regularity
(1/(2H) − 1 + ε), for any positive ε. Our main contribution is a novel version of the
stochastic sewing lemma, which we call the shifted stochastic sewing (Chapter 1). This
new version offers the advantage of capturing the asymptotic decorrelation in the stochastic
Riemann sums. It can be viewed as a combination of Lê’s stochastic sewing and the
asymptotic independence introduced by Picard [Pic08]. As applications of the shifted
stochastic sewing, we investigate partitions defined by level crossings of fractional Brownian
motions (Chapter 2) and study Young and rough differential equations driven by fractional
Brownian motions (Chapter 3). Additionally, we derive precise results on regularization by
fractional noise for integrable drifts (Chapter 4), which significantly improve upon previous
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works and align with the results obtained by Krylov and Röckner for the Brownian case
[KR05].

In the following sections, we provide more detailed descriptions of each chapter.

Chapter 1: Shifted stochastic sewing
Chapter 1 is the most important part of the thesis, which serves as the foundation for
Chapters 2 and 3. The content of this chapter is based on joint work with Nicolas Perkowski.

In the fields of analysis and probability theory, the convergence and the estimate of
Riemann sums plays a crucial role. These sums are expressed as

∑

[s,t]∈π

As,t, (2)

where π represents a partition of the interval [0, T ]. The focus lies on the limit as the mesh
size

|π| := max
[s,t]∈π

|t− s|

tends to 0. The termAs,t is called a germ. For example, whenAs,t := f(s)(t−s), we consider
a Riemann sum approximation of

∫ T
0
f(s) ds. Similarly, whenAs,t := Xs(Wt−Ws), where

W is a Brownian motion and X is an adapted process, we study the Itô approximation of
the stochastic integral

∫ T
0
Xr dWr.

Gubinelli [Gub04], inspired by Lyons’ results on almost multiplicative functionals in
the theory of rough paths [Lyo98], established the remarkable sewing lemma. This lemma
states that if the quantity

δAs,u,t := As,t − As,u − Au,t, 0 ≤ s < u < t ≤ T,

satisfies |δAs,u,t| ≲ |t−s|1+ε for some ε > 0, then the sums (2) converge. The sewing lemma
has proven to be immensely powerful, leading to numerous applications and extensions
in the field. Notably, it has been utilized for defining rough integrals, as described in the
monographs [Gub04; FH20].

When (As,t)s≤t is random and we aim to prove the convergence of the sums (2),
Gubinelli’s sewing lemma is often insufficient. For instance, if As,t := (Wt −Ws)

2, the
sums converge in Lm(P), m < ∞, to the quadratic variation of the Brownian motion.
However, we only expect the bound

∥δAs,u,t∥Lm(P) ≲m |t− s|,

4



and hence we cannot apply the sewing lemma.
In his seminal work, Lê [Lê20] obtained a stochastic version of Gubinelli’s sewing

lemma. Just as Gubinelli’s sewing lemma plays an important role in pathwise stochastic
calculus, Lê’s stochastic sewing lemma does so in probabilistic stochastic calculus. In
particular, the discovery of the stochastic sewing has significantly advanced the field of
regularization by noise.

A concrete statement of the stochastic sewing lemma is as follows. If (As,t)s<t is a
stochastic germ adapted to a filtration (Ft) and if

∥δAs,u,t∥2Lm(P) + ∥E[δAs,u,t|Fs]∥Lm(P) ≤ Γ(t− s)1+ε,

for s < u < t, m ∈ [2,∞), Γ ∈ (0,∞) and ε > 0, then the Riemann sums
∑

[s,t]∈π As,t,
where π is a partition of some fixed interval [0, T ], converge in Lm(P) as the mesh
size of π tends to 0. The strength of the stochastic sewing lemma lies in the fact that
we only need to assume

(
1
2
+ ε

)
-regularity for ∥δAs,u,t∥Lm(P), although we also need to

consider the regularization effect encoded in the estimate ∥E[δAs,u,t|Fs]∥Lm(P) ≲ (t−s)1+ε.
Furthermore, if we denote by AT the limit of the Riemann sums in the interval [0, T ], we
have a quantitative bound

∥As,t∥Lm(P) ≲m,ε Γ(t− s)
1+ε
2 .

That is, we can transfer the estimate of As,t to that of As,t.
Sometimes, it is difficult to observe the regularization effect through∥E[δAs,u,t|Fs]∥Lm(P).

The easiest example is As,t = |BH
t −BH

s |1/H , the 1/H-variation of the fractional Brownian
motion BH . For this example, it is not possible to estimate E[δAs,u,t|Fs], although the
convergence of the Riemann sums (along equipartitions) is well known.

Chapter 1 of the thesis presents an extension of Lê’s stochastic sewing (Theorem 1.1.1),
relaxing the estimate of the conditional expectation E[δAs,u,t|Fs]. We replaced it with

∥E[δAs,u,t|Fv]∥Lm(P) ≲ (s− v)−α(t− s)1+ε, v < s < u < t, α <
1

2
+ ε. (3)

Because of this new condition, where the conditioning is shifted from Fs to Fv, we call
this extension the shifted stochastic sewing lemma. The case where α = 0 and v = s
corresponds to Lê’s stochastic sewing. The version of the mild shifting, namely the case
where α = 0 and v = s−M(t−s) for a fixed positive constantM , is obtained by Gerencsér
[Ger22]. Our extension allows us to take advantage of the asymptotic effect of regularization,
inspired by [Pic08].

For the exampleAs,t = |Bt−Bs|1/H , we can prove estimates of the form (3). Additionally,
as a more interesting application, we demonstrate the convergence of Itô approximations
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and Stratonovich approximations under low regularity assumptions, which can be viewed as
a simplification and improvement of [Nou12, Theorem 3.5]. More precisely, in Section 1.3
we prove

∃ lim
|π|→0

∑

[s,t]∈π

f(BH
s )(B

H
t −BH

s ) in Lm(P) for H ∈ (1/2, 1) and f ∈ L∞(Rd)

and with H ∈ (1/4, 1/2) and γ > 1
2H

− 1 we prove

∃ lim
|π|→0

∑

[s,t]∈π

f(BH
s ) + f(BH

t )

2
(BH

t −BH
s ) in Lm(P) for f ∈ Cγ(Rd).

Furthermore, the shifted stochastic sewing lemma will be crucially applied in Chapters 2
and 3. The reader however can skip the proof of Theorem 1.1.1 (Section 1.2 and Section 1.4)
without any problem for further reading. The result of Section 1.3 will be used in Chapter 3.

Chapter 2: Level crossings of fractional Brownian motions
In this section, we provide a summary of Chapter 2, which is based on collaborative work
with Purba Das, Rafał Łochowski, and Nicolas Perkowski.

We consider a fractional Brownian motion BH with a Hurst parameter H ∈ (0, 1). It is
known that the following convergence holds:

lim
n→∞

2n−1∑

k=0

∣∣∣BH
k+1
2n

T
−BH

k
2n
T

∣∣∣
1/H

= E[|BH
1 |1/H ]T, a.s.

One of the key objectives of Chapter 2 is to investigate the (1/H)-variations along Lebesgue
partitions, which are random partitions defined by the level crossings of BH . To construct
these partitions, we start with T n0 := 0 and recursively define the stopping times T nk by

T nk := inf{t > T nk−1 : |BH
t −BH

Tn
k−1

| = 2−n}.

The reader can refer to Figure 2 for an illustration. Each nth Lebesgue partition consists
of intervals of the form [T nk−1, T

n
k ] for k ∈ N satisfying T nk ≤ T . The main objective

is to establish the convergence of (1/H)-variations along these Lebesgue partitions. In
particular, we aim to prove the existence of the limit:

lim
n→∞

2−n/H#{k : T nk ≤ T}, (4)

6
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where # denotes the cardinality.
Additionally, we can count level crossings specifically around the level 0 and investigate

the convergence of the number of these crossings towards the local time at 0.
The convergence of (4) and its local time counterpart is well-known for the Brownian

case, where the proof relies on martingale or Markovian properties, such as Itô’s formula
(see, e.g., [RY99]). However, such martingale or Markovian arguments are not applicable
whenH ̸= 1/2. Chapter 2 presents a completely different strategy to prove (4) forH ∈ (0, 1)
and its local time counterpart for H < 1/2. This novel approach resolves a conjecture
posed in [CP19].

To demonstrate our strategy, we denote by Ks,t(ε, w) the number of ε-level crossings of
the process w in the interval [s, t]. Then the limit (4) is equal to

lim
n→∞

2−n/HK0,T (2
−n, B).

The key observation is that the family (Ks,t(ε, B))0≤s<t≤T is superadditive and almost
subadditive. This leads to the approximation

K0,T (2
−n, B) ≈

∑

[s,t]∈πn

Ks,t(2
−n, B),

where πn is a partition of [0, T ] with a mesh size of order 2−n/H . Hence, we can approximate
K0,T (2

−n, B) by a stochastic Riemann sum, which can then be estimated by the shifted
stochastic sewing. To verify the conditions of the shifted stochastic sewing, the computations
will be carried out in the spirit of Picard [Pic08]. The strategy of proving the convergence
to the local time follows similar arguments, but due to the lack of stationarity, technicalities
dramatically increase.
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Our result also poses a very interesting conjecture on whether the limit (4) is equal to
that of (1/H)-variations along deterministic dyadic partitions. ForH = 1/2, they are equal.
Numerical simulation suggests that they are different for H ̸= 1/2. If this were indeed true,
it would be an interesting manifestation of non-Markovianity.

Chapter 3: Probabilistic Young and rough differential equa-
tions
This is the summary of Chapter 3, based on joint work with Avi Mayorcas. In this chapter,
we focus on the stochastic differential equation (SDE)

dXt = σ(Xt)dB
H
t , X0 = x ∈ Rd1 , (5)

where σ is a map valued in the space of d1 × d2 matrices, and BH is a d2-dimensional
fractional Brownian motion with Hurst parameterH ∈ (1/3, 1). The differential equation is
interpreted either as Young’s differential equation (H > 1/2) or as Lyons’ rough differential
equation [Lyo98] (H < 1/2). Our main result is on the pathwise uniqueness of (5) under
a low regularity assumption on σ. Rather than directly stating the result, we provide a
background review leading up to this outcome.

For H = 1/2, we often apply Itô’s theory to study (5); we will discuss the alternative
theory of Lyons later. In Itô’s theory, there are a few notions of solutions and their uniqueness,
among which the most relevant to us is the notion of pathwise uniqueness. It says that two
solutions, adapted to some filtration making the driving Brownian motion martingale, must
be indistinguishable. Hence, pathwise uniqueness is a probabilistic concept of uniqueness
(despite its name). It is a classical result, as can be found in all textbooks of stochastic
calculus, that pathwise uniqueness holds for (5) with H = 1/2 provided that σ is Lipschitz.
The proof is a consequence of Itô’s isometry: for an adapted process Y we have

E
[∣∣∣
∫ T

0

YrdB
1/2
r

∣∣∣
2]

= E
[ ∫ T

0

|Yr|2dr
]
.

Itô’s isometry is due to the martingale property of the Brownian motion. Since BH ,
H ̸= 1/2, is not a martingale (nor Markovian), Itô’s theory is not available for H ̸= 1/2.
Lack of probabilistic tools naturally motivates us to study the SDE (5) pathwisely. Based
on Young’s integration theory, Lyons [Lyo94] showed that the (deterministic) differential
equation

dxt = f(xt)dyt (6)

8



driven by a path y of finite p-variation with p ∈ [1, 2) has a unique solution provided that f
is α-Hölder with α > p. Furthermore, [Lyo98] extended the result for p ∈ [2,∞), provided
that we are additionally given “iterated integrals”

∫ t

s

∫ r1

s

dyr2dyr1 ,

∫ t

s

∫ r1

s

∫ r2

s

dyr3dyr2dyr1 , . . . ,

satisfying certain analytic and algebraic conditions. The tuple of y and its (sufficient number
of) iterated integrals is called a rough path of y. Later, Coutin and Qian [CQ02] proved that
the fractional Brownian motion BH , with H > 1/4, can be naturally lifted to a rough path.
Since BH has finite p-variation for any p > 1/H , we see that (5) has a unique solution
provided that σ ∈ Cγ with γ > 1/H and H ∈ (1/4, 1).

We remark two important differences in Itô’s probabilistic theory and Lyons’ pathwise
theory. One is that the former considers uniqueness among solutions adapted to a given
filtration, while the latter considers uniqueness among all solutions satisfying (6), which do
not need to be adapted. In other words, the notion of uniqueness is stronger in the pathwise
theory, referred to as path-by-path uniqueness, following the works of Davie [Dav07;
Dav08]. The other difference lies in the regularity assumption on σ. When H = 1/2, Itô’s
theory assumes that σ is only Lipschitz, while Lyons’ theory assumes that σ ∈ Cγ with
γ > 2. In summary, Itô’s theory requires less regularity assumption on σ at the cost of a
weaker notion of uniqueness.

Although Itô’s theory is not available forH ̸= 1/2, pathwise uniqueness is a well-defined
notion in this setting. Now it is natural to ask if we can prove pathwise uniqueness of (5) for
σ ∈ Cγ with γ < 1/H . Our main result in this chapter answers the question affirmatively.
That is, under the uniformly elliptic condition (σσT is non-degenerate), we prove pathwise
uniqueness under σ ∈ Cγ with γ > max{1/(2H), (1−H)/H}, as shown in Figure 3.

The proof follows Lê’s strategy [Lê20] to prove pathwise uniqueness. In fact, pathwise
uniqueness is deduced from a sharp estimate on the stochastic integral

∫
f(Xr)dBr,

where X is a path controlled by B and f is a map of low regularity. Specifically, we can
define the stochastic integral for f ∈ Cγ with γ > 1/(2H) − 1. The estimate is proven
using stochastic sewing techniques, including the shifted stochastic sewing.

9
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1/3 1/2 1
0

0.5

1

2

3

H

(1−H)/H
1/(2H)
1/H

Figure 3: Some graphs of H related to the main result of Chapter 3. Pathwise theory covers
σ ∈ Cγ with γ > 1/H (green), while the result of Chapter 3 says that pathwise uniqueness
holds if γ > 1/(2H) (blue) and if γ > (1−H)/H (red).

10



Chapter 4: Regularization by fractional noise for integrable
drift
This is the summary of Chapter 4, based on joint work with Oleg Butkovsky and Khoa Lê.
This chapter is relatively independent as it does not rely on the shifted stochastic sewing.
The main result focuses on the strong well-posedness of the fractional SDE

dXt = b(t,Xt)dt+ dBH
t . (7)

The well-posedness is straightforward when b is smooth, but our interest lies in the case of
non-smooth b. Here, we consider an integrable drift b ∈ Lq([0, T ];Lp(Rd)), and our goal is
to determine the condition on p, q, d,H for strong well-posedness. The topic discussed in
this chapter falls within the highly active field of regularization by noise, which will be
further explored and reviewed in the following paragraphs.

Ill-posed differential equations sometimes regain well-posedness by introducing noise.
For instance, the differential equation dXt =

√
|Xt|dt may have multiple solutions, while

the stochastic differential equation (SDE) dXt =
√

|Xt|dt + dB
1/2
t has a unique strong

solution (strongly well-posed). This phenomenon is known as regularization by noise.
Recently, there has been growing interest in understanding this phenomenon beyond the
Brownian setting; among them is regularization by fractional noise.

In their recent work [GG23], Galeati and Gerencsér introduced the notion of subcriticality
for fractional SDEs. Subcriticality refers to the domination of fractional noise under small
scales. If X solves the SDE (7), then the scaled process X(λ)

t = λ−HXλt solves the SDE

dX
(λ)
t = λ1−H− dH

p
− 1

q b(λ)(t,X
(λ)
t )dt+ dB

(λ)
t ,

where

b(λ)(t, x) = λ
dH
p

+ 1
q b(λt, λHx), B

(λ)
t = λ−HBλt.

It is worth noting that ∥b(λ)∥Lq
tL

p
x
= ∥b∥Lq

tL
p
x

and B(λ) has the same law as B. The
domination of the noise at small scales implies that the order of the drift term is smaller
than that of the driving noise as λ approaches 0. This leads to the condition

1−H − dH

p
− 1

q
> 0. (8)

Therefore, the condition (8) is natural for the solution theory of (7). In fact, the celebrated
result by Krylov and Röckner [KR05] proves strong well-posedness for H = 1/2 under
(8). The main result of Chapter 4 addresses the strong well-posedness of (7) in the

11
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Figure 4: Simulation of the SDE dXt =
√
|Xt|dt+ dB

1/2
t with X0 = 0. The differential

equation dxt =
√
|xt|dt with x0 = 0 has multiple solutions, but the SDE has a unique

strong solution. Heuristically, the solution of the SDE must behave like Brownian motion,
which enforces a unique way for the solution to escape the singularity at 0.
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fractional case H < 1/2. Specifically, we prove strong well-posedness for H < 1/2,
p ≥ max{(1 − H)−1, 2dH}, and (8). We also consider the case where p < (1 − H)−1

with an additional condition. Additionally, we establish the stability of (7) with respect
to the initial condition and the drift b. Our arguments are based on the stochastic sewing
with control [Lê23] and the notion of processes of vanishing mean oscillation introduced in
another seminal work by Lê [Lê22].

Reading guide

Section 1.1

Chapter 2

Section 1.3

Chapter 3 Chapter 4

The relation of each chapter is depicted in the above diagram. The statement of the
shifted stochastic sewing (Theorem 1.1.1) appears in Section 1.1, and the result will be used
in Chapters 2 and 3. However, the reader can skip its rather involved proof (Sections 1.2
and 1.4) for further reading. We remark that Chapter 4 is essentially independent of the
preceding chapters.

Introduction of each chapter includes a section on notation specific to that chapter.
Below, we collect the most frequently used notations:

• We use the notation A := B to indicate that A is defined by B.

• The symbol N represents the set of natural numbers {1, 2, . . .}, Q represents the set
of rational numbers, and R represents the set of real numbers.

• We denote by 1A the indicator function for the set A.

• We denote by (Ω,F ,P) the underlying probability space, which is often implicit. The
symbol E denotes the expectation. We write E[·|G] for the conditional expectation
given G. We set

∥F∥Lm(P) :=
(∫

Ω

|F (ω)|mdP(ω)
) 1

m

with usual convention for m = ∞.

13
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• The d-dimensional fractional Brownian motion with Hurst parameter H ∈ (0, 1) is
represented as BH = (BH,i)di=1. The components of BH are independent. In Chapter
2, it takes values in R (d = 1), and in Chapter 3, it takes values in Rd2 (d = d2). We
typically use the symbol W to denote the Brownian motion.

• For a given map f : [0, T ] → Rd, we write fs,t := ft − fs.

• The notation A ≲ B signifies that there exists a constant C depending only on
irrelevant parameters such that A ≤ CB. If we want to emphasize the dependency
on α, β, . . ., we write A ≲α,β,... B. We often write C = C(α, β, . . .) to emphasize
that the constant C depends on α, β, . . ..

I hope that you enjoy the reading :)
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Chapter 1

Shifted stochastic sewing lemma

We give an extension of Lê’s stochastic sewing lemma [Lê20]. The stochastic sewing
lemma proves convergence in Lm(P) of Riemann type sums

∑
[s,t]∈π As,t for an adapted

two-parameter stochastic process A, under certain conditions on the moments of As,t
and of conditional expectations ofAs,t given Fs. Our extension replaces the conditional
expectation given Fs by that given Fv for v < s, and it allows us to make use of
asymptotic decorrelation properties between As,t and Fv by including a singularity
in (s − v). As a first application, we prove the convergence of Itô or Stratonovich
approximations of stochastic integrals along fractional Brownian motions under low
regularity assumptions. Further applications can be found in the following chapters.

This chapter is based on joint work with Nicolas Perkowski.

Keywords and phrases. stochastic sewing lemma, fractional Brownian motion, stochastic
integrals.
MSC 2020. 60G22, 60H05.
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CHAPTER 1. SHIFTED STOCHASTIC SEWING LEMMA
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1.1 Introduction and the main theorem
In analysis and probability theory, we often consider the convergence of sums

∑

[s,t]∈π

As,t. (1.1)

Here π is a partition of an interval [0, T ], and we consider the limit of

|π| := max
[s,t]∈π

|t− s| → 0.

For instance, if As,t := f(s)(t − s), then we consider a Riemann sum approximation
of

∫ T
0
f(s)ds, and if As,t := Xs(Wt −Ws), where W is a Brownian motion and X is

an adapted process, then we consider the Itô approximation of the stochastic integral∫ T
0
XrdWr.
Gubinelli [Gub04], inspired by Lyons’ results on almost multiplicative functionals in

the theory of rough paths [Lyo98], showed that if

δAs,u,t := As,t − As,u − Au,t, 0 ≤ s < u < t ≤ T, (1.2)

satisfies |δAs,u,t| ≲ |t− s|1+ε for some ε > 0, then the sums (1.1) converge. This result is
now called the sewing lemma, named so in the work of Feyel and de La Pradelle [FL06].
This lemma is so powerful that many applications and many extensions are known. For
instance, it can be used to define rough integrals, see [Gub04] and the monograph [FH20]
of Friz and Hairer.

When (As,t)s≤t is random and when we want to prove the convergence of the sums
(1.1), the above sewing lemma is often not sufficient. For instance, if As,t := (Wt −Ws)

2,
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1.1. INTRODUCTION AND THE MAIN THEOREM

the sums converge in Lm(P), m <∞, to the quadratic variation of the Brownian motion.
However, we only have

∥δAs,u,t∥Lm(P) ≲m |t− s|,
and hence we cannot apply the sewing lemma.

Lê [Lê20] proved a stochastic version of the sewing lemma (stochastic sewing lemma):
if a filtration (Ft)t∈[0,T ] is given such that

• As,t is Ft-measurable and

• for some ε1, ε2 > 0 and m ∈ [2,∞), we have for every s < u < t,

∥E[δAs,u,t|Fs]∥Lm(P) ≲ |t− s|1+ε2 , (1.3)

∥δAs,u,t∥Lm(P) ≲ |t− s| 12+ε1 , (1.4)

then the sums (1.1) converge inLm(P). IfAs,t := (Wt−Ws)
2, then we haveE[δAs,u,t|Fs] =

0 and (1.4) is satisfied with ε1 = 1
2
. Therefore, we can prove the convergence of (1.1) in

Lm(P). The stochastic sewing lemma has been already shown to be very powerful in the
original work [Lê20] of Lê, and an increasing number of papers are appearing that take
advantage of the lemma.

However, there are situations where Lê’s stochastic sewing lemma seems insufficient.
For instance, consider

As,t := |Bt −Bs|
1
H , (1.5)

where B is a fractional Brownian motion with Hurst parameter H ∈ (0, 1). It is well known
that the sums (1.1) converge to cHT in Lm(P). Although we have the estimate (1.4), we fail
to obtain the estimate (1.3) unless H = 1

2
.

To get an idea on how Lê’s stochastic sewing lemma should be modified for this problem,
observe the following trivial fact:

E[δAs,u,t] = 0.

This suggests that we consider estimates that interpolate E[δAs,u,t] and E[δAs,u,t|Fs]. In
fact, we can obtain the following estimates:

∥E[δAs,u,t|Fv]∥Lm(P) ≲H

( t− s

s− v

)1−H
(t− s), 0 ≤ v < s < u < t ≤ T. (1.6)

We can prove (1.6) for instance by applying Picard’s result [Pic08, Lemma A.1] on the
asymptotic independence of fractional Brownian increments. This discussion motivates the
following main theorem of this chapter.
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CHAPTER 1. SHIFTED STOCHASTIC SEWING LEMMA

Theorem 1.1.1 (shifted stochastic sewing). Suppose that we have a filtration (Ft)t∈[0,T ]
and a family of Rd-valued random variables (As,t)0≤s≤t≤T such that As,s = 0 for every
s ∈ [0, T ] and such that As,t is Ft-measurable. We define δAs,u,t by (1.2). Furthermore,
suppose that there exist constants

m ∈ [2,∞), Γ1,Γ2,M ∈ [0,∞), α, β1, β2 ∈ [0,∞)

such that the following conditions are satisfied.

• For every 0 ≤ t0 < t1 < t2 < t3 ≤ T , we have

∥E[δAt1,t2,t3|Ft0 ]∥Lm(P) ≤ Γ1(t1 − t0)
−α(t3 − t1)

β1 , if M(t3 − t1) ≤ t1 − t0,
(1.7)

∥δAt0,t1,t2∥Lm(P) ≤ Γ2(t2 − t0)
β2 . (1.8)

• We have
β1 > 1, β2 >

1

2
, β1 − α >

1

2
. (1.9)

Then, there exists a unique, up to modifications, Rd-valued stochastic process (At)t∈[0,T ]
with the following properties.

• A0 = 0, At is Ft-measurable and At belongs to Lm(P).

• There exist non-negative constants C1, C2 and C3 such that

∥E[At2 −At1 − At1,t2 |Ft0 ]∥Lm(P) ≤ C1|t1 − t0|−α|t2 − t1|β1 , (1.10)

∥At2 −At1 − At1,t2∥Lm(P) ≤ C2|t2 − t1|β1−α + C3|t2 − t1|β2 , (1.11)

where t2 − t1 ≤M−1(t1 − t0) is assumed for the inequality (1.10).

In fact, we can choose C1, C2 and C3 so that

C1 ≲β1 Γ1, C2 ≲α,β1,β2,M κm,dΓ1, C3 ≲α,β1,β2,M κm,dΓ2,

where κm,d is the constant of the Burkholder-Davis-Gundy inequality, see (1.13). Further-
more, for τ ∈ [0, T ], if we set

Aπτ :=
∑

[s,t]∈π

As,t, where π is a partition of [0, τ ],

then the family (Aπτ )π converges to Aτ in Lm(P) as |π| tends to 0.
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1.1. INTRODUCTION AND THE MAIN THEOREM

Remark 1.1.2. The proof shows that if

1 + α− β1 < 2αβ2 − α, (1.12)

then we have C2 ≲α,β1,β2,M Γ1, and we can omit the factor κm,d. This is similar to [Lê20],
where C2 also does not depend on κm,d. If α = 0 and M = 0, Theorem 1.1.1 recovers Lê’s
stochastic sewing lemma [Lê20, Theorem 2.1]. If α = 0 and M > 0, it recovers a lemma
[Ger22, Lemma 2.2] by Gerencsér. The version of Gerencsér is often called the shifted
stochastic sewing, and we continue to call Theorem 1.1.1 the same way.

Remark 1.1.3. The proof shows that there exists ε = ε(α, β1, β2) > 0 such that

∥Aτ − Aπτ ∥Lm(P) ≲α,β1,β2,M,m,d,T (Γ1 + Γ2)|π|ε

for every τ ∈ [0, T ] and every partition π of [0, τ ].

Remark 1.1.4. As in another work [Lê23] of Lê, it should be possible to extend Theorem 1.1.1
so that the stochastic process (As,t)s,t∈[0,T ] takes values in a certain Banach space.

Remark 1.1.5. A multidimensional version of the sewing lemma is the reconstruction
theorem [Hai14, Theorem 3.10] of Hairer. A stochastic version of the reconstruction
theorem was obtained by Kern [Ker21]. It could be possible to extend Theorem 1.1.1 in the
multidimensional setting, but we will not pursue it here.

The proof of Theorem 1.1.1 is given in Section 1.2. If As,t is given by (1.5), then we
can apply Theorem 1.1.1 with

α = 1−H, β1 = 2−H, β2 = 1.

However, the application of Theorem 1.1.1 goes beyond this simple problem of 1
H

-variation
of the fractional Brownian motion. Indeed, in Section 1.3 we prove the convergence of Itô
and Stratonovich approximations to the stochastic integrals

∫ T

0

f(Bs)dBs and
∫ T

0

f(Bs) ◦ dBs

with H > 1
2

in Itô’s case and with H > 1
6

in Stratonovich’s case, under rather general
assumptions on the regularity of f , in fact f ∈ C2

b (Rd,Rd) works for all H > 1
6
.

More interesting applications can be found in the following chapters. In Chapter 2, we
will prove the convergence of the level-crossing counting of the fractional Brownian motion
to its local time, and in Chapter 3, we will consider fractional Young and rough differential
equations with irregular noise coefficients.
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CHAPTER 1. SHIFTED STOCHASTIC SEWING LEMMA

Notation

We write N0 := {0, 1, 2, . . .} and N := {1, 2, . . .}. Given a function f : [S, T ] → Rd, we
write fs,t := ft − fs. We denote by κm,d the best constant of the discrete Burkholder-Davis-
Gundy (BDG) inequality for Rd-valued martingale differences [BDG72]. Namely, if we are
given a filtration (Fn)

∞
n=1 and a sequence (Xn)

∞
n=1 of Rd-valued random variables such that

Xn is Fn-measurable for every n ≥ 1 and E[Xn|Fn−1] = 0 for every n ≥ 2, then

∥
∞∑

n=1

Xn∥Lm(P) ≤ κm,d∥
∞∑

n=1

X2
n∥

1
2

L
m
2 (P)

. (1.13)

Rather than (1.13), we mostly use the inequality

∥
∞∑

n=1

Xn∥Lm(P) ≤ κm,d

( ∞∑

n=1

∥Xn∥2Lm(P)

) 1
2 (1.14)

for m ≥ 2, which follows from (1.13) by Minkowski’s inequality. We write A ≲ B or
A = O(B) if there exists a non-negative constant C such that A ≤ CB. To emphasize the
dependence of C on some parameters a, b, . . ., we write A ≲a,b,... B.

1.2 Proof of the main theorem
The overall strategy of the proof is the same as that of the original work [Lê20] of Lê.
Namely, we combine the argument of the deterministic sewing lemma ([Gub04], [FL06]
and Yaskov [Yas18]) with the discrete BDG inequality [BDG72]. However, the proof of
Theorem 1.1.1 requires more labor at technical level. Some proofs will be postponed to
Appendix 1.4.

As in [Lê20], the following lemma, which originates from [Yas18], will be needed. It
allows us to replace general partitions by dyadic partitions.

Lemma 1.2.1 ([Lê20, Lemma 2.14]). Under the setting of Theorem 1.1.1, let

0 ≤ t0 < t1 < · · · < tN−1 < tN ≤ T.

Then, we have

At0,tN −
N∑

i=1

Ati−1,ti =
∑

n∈N0

2n−1∑

i=0

Rn
i , (1.15)

where
Rn
i := δAsn,i

1 ,sn,i
2 ,sn,i

3
+ δAsn,i

1 ,sn,i
3 ,sn,i

4
, (1.16)
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1.2. PROOF OF THE MAIN THEOREM

and

n ∈ N0, i ∈ {0, 1, . . . , 2n − 1}, sn,ij ∈ [t0 +
i(tN − t0)

2n
, t0 +

(i+ 1)(tN − t0)

2n
],

and where Rn
i = 0 for all sufficiently large n.

The next two lemmas correspond to the estimates [Lê20, (2.50) and (2.51)] respectively.

Lemma 1.2.2. Under the setting of Theorem 1.1.1, let

0 ≤ s < t0 < t1 < · · · < tN−1 < tN ≤ T, tN − t1 ≤
t0 − s

M
.

Then,

∥E[At0,tN −
N∑

i=1

Ati−1,ti|Fs]∥Lm(P) ≲β1 Γ1|t0 − s|−α|tN − t0|β1 .

Proof. In view of the decomposition (1.15), the triangle inequality gives

∥E[At0,tN −
N∑

i=1

Ati−1,ti |Fs]∥Lm(P) ≤
∑

n∈N0

2n−1∑

i=0

∥E[Rn
i |Fs]∥Lm(P).

By (1.7) and (1.16),

∥E[Rn
i |Fs]∥Lm(P) ≤ 2Γ1(t0 − s)−α(2−n|tN − t0|)β1 = 2Γ12

−nβ1 |t0 − s|−α|tN − t0|β1 .

Therefore, recalling β1 > 1 from (1.9), the claim follows.

Lemma 1.2.3. Under the setting of Theorem 1.1.1, let

0 ≤ t0 < t1 < · · · < tN−1 < tN ≤ T.

Then,

∥At0,tN −
N∑

i=1

Ati−1,ti∥Lm(P) ≲α,β1,β2,M κm,dΓ1|tN − t0|β1−α + κm,dΓ2|tN − t0|β2 .

Under (1.12), we can replace κm,dΓ1 by Γ1.
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Proof under (1.12). This lemma is the most important technical ingredient for the proof
of Theorem 1.1.1. To simplify the proof, here we assume (1.12), i.e. that the additional
technical condition 1 + α− β1 < 2αβ2 − α holds. The proof in the general setting will be
given in Appendix 1.4.

We again use the representation (1.15). We fix a largen ∈ N and setFn
k := Ft0+

k
2n

(tN−t0).
Fix an integer L = Ln ∈ [M + 1, 2n], which will be chosen later. We have

2n−1∑

i=0

Rn
i =

L−1∑

l=0

∑

j≥0:
Lj+l<2n

(
Rn
Lj+l − E[Rn

Lj+l|Fn
L(j−1)+l+1]1{j≥1}

)

+
L−1∑

l=0

∑

j≥0:
Lj+l<2n

E[Rn
Lj+l|Fn

L(j−1)+l+1]. (1.17)

We estimate the first term of (1.17). By the BDG inequality together with Minkowski’s
inequality (see (1.14)), we have

∥
∑

j≥0:
Lj+l<2n

(
Rn
Lj+l − E[Rn

Lj+l|Fn
L(j−1)+l+1]1{j≥1}

)
∥2Lm(P)

≤ κ2m,d
∑

j≥0:
Lj+l<2n

∥Rn
Lj+l − E[Rn

Lj+l|Fn
L(j−1)+l+1]1{j≥1}∥2Lm(P)

≤ 4κ2m,d
∑

j≥0:
Lj+l<2n

∥Rn
Lj+l∥2Lm(P).

Using (1.8) and (1.16) and noting that we include more terms in the sum by requiring
j ≤ 2n/L only instead of Lj + l ≤ 2n − 1, we get

∑

j≥0:
Lj+l<2n

∥Rn
Lj+l∥2Lm(P) ≤ 4Γ2

22
−n(2β2−1)L−1|tN − t0|2β2 .

Therefore,

∥
L−1∑

l=0

∑

j≥0:
Lj+l<2n

(
Rn
Lj+l − E[Rn

Lj+l|Fn
L(j−1)+l+1]1{j≥1}

)
∥Lm(P)

≲ κm,dΓ2L
1
22−n(β2−

1
2
)|tN − t0|β2 .
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We next estimate the second term of (1.17). The triangle inequality yields

∥
L−1∑

l=0

∑

j≥0:
Lj+l<2n

E[Rn
Lj+l|Fn

L(j−1)+l+1]∥Lm(P) ≤
L−1∑

l=0

∑

j≥0:
Lj+l<2n

∥E[Rn
Lj+l|Fn

L(j−1)+l+1]∥Lm(P).

By (1.7),

∥E[Rn
Lj+l|Fn

L(j−1)+l+1]∥Lm(P) ≤ Γ1(L− 1)−α2−(β1−α)n|tN − t0|β1−α.
Therefore,

∥
L−1∑

l=0

∑

j≥0:
Lj+l<2n

E[Rn
Lj+l|Fn

L(j−1)+l+1]∥Lm(P) ≲α Γ1L
−α2−(β1−α−1)n|tN − t0|β1−α.

In conclusion,

∥
2n−1∑

i=0

Rn
i ∥Lm(P) ≲α Γ1L

−α2−(β1−α−1)n|tN − t0|β1−α + κm,dΓ2L
1
22−n(β2−

1
2
)|tN − t0|β2 .

(1.18)
We wish to choose L = Ln so that (1.18) is summable with respect to n. We therefore set
Ln := ⌊2δn⌋, where

αδ + β1 − α− 1 > 0, 0 < δ < min{2β2 − 1, 1}. (1.19)

Such a δ exists exactly under the additional technical assumption (1.12), namely if 1 + α−
β1 < 2αβ2 − α. Then, (1.18) yields

∥
∑

n:2nδ≥M+2

2n−1∑

i=0

Rn
i ∥Lm(P) ≲α,β1,β2 Γ1|tN − t0|β1−α + κm,dΓ2|tN − t0|β2 .

To estimate the contribution coming from the small n with 2nδ < M + 2, we apply (1.8)
which yields

∥
2n−1∑

i=0

Rn
i ∥Lm(P) ≤ 2Γ2

2n−1∑

i=0

2−nβ2|tN − t0|β2 = Γ22
1+n(1−β2)|tN − t0|β2 .

Thus, we conclude

∥
∑

n∈N0

2n−1∑

i=0

Rn
i ∥Lm(P) ≲α,β1,β2,M Γ1|tN − t0|β1−α + κm,dΓ2|tN − t0|β2 ,

where the fact κm,d ≥ 1 is used.
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Lemma 1.2.4. Under the setting of Theorem 1.1.1, let π, π′ be partitions of [0, T ] such that
π refines π′. Suppose that we have

min
[s,t]∈π′

|s− t| ≥ |π′|
3
. (1.20)

Then, there exists ε ∈ (0, 1) such that

∥Aπ′

T − AπT∥Lm(P) ≲α,β1,β2,M,m,d,T (Γ1 + Γ2)|π′|ε.

Sketch of the proof. Here we give a sketch of the proof under (1.12). The complete proof
is given in Appendix 1.4. The argument is similar to Lemma 1.2.3.

Write
π′ =: {0 = t0 < t1 < · · · < tN−1 < tN = T}

and

{ [s, t] ∈ π : tj ≤ s < t ≤ tj+1 } =: {tj = tj0 < tj1 < · · · < tjNj−1 < tjNj
= tj+1}.

We set L := ⌊|π′|−δ⌋, where δ satisfies (1.19). We set

Z l
j := AtjL+l,tjL+l+1

−
NjL+l∑

k=1

AtjL+l
k−1 ,t

jL+l
k

.

As in Lemma 1.2.3, we consider the decomposition Aπ′
T − AπT = A+B, where

A :=
∑

l<L

∑

j:Lj<N−l

{
Z l
j − E[Z l

j|Ft(j−1)L+l+1
]
}
, B :=

∑

l<L

∑

j:Lj<N−l

E[Z l
j|Ft(j−1)L+l+1

].

Then, we estimate A by using the BDG inequality and Lemma 1.2.3, and B by using the
triangle inequality and Lemma 1.2.2.

Remark 1.2.5. In the setting of Lemma 1.2.4, assume that the adapted process (At)t∈[0,T ]
satisfies (1.10) and (1.11). Then we obtain for some ε > 0:

∥Aπ′

T −AT∥Lm(P) ≲α,β1,β2,M,m,d,T (Γ1 + Γ2)|π′|ε.

Indeed, it suffices to replace AtjL+l,tjL+l+1
by AtjL+l,tjL+l+1

in the previous proof.

Lemma 1.2.6. Let π be a partition of [0, T ]. Then, there exists a partition π′ of [0, T ] such
that π refines π′, |π′| ≤ 3|π| and

min
[s,t]∈π′

|t− s| ≥ 3−1|π′|.
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Proof. We write π = {0 = t0 < t1 < · · · < tN−1 < tN = T}. We set k0 := −1 and for
l ∈ N we inductively set

kl := inf{ j > kl−1 : tj+1 − tkl−1+1 ≥ |π| }, where inf ∅ := N.

Set L := sup{ l : kl < N }. Then, we define

sj :=

{
tkj+1 if j < L,

tN if j = L.

By construction, π′ = {sj}Lj=1 satisfies the claimed properties: sj+1−sj ≤ 2|π| if j < L−2,
and sL − sL−1 ≤ 3|π|, so |π′| ≤ 3|π|; moreover, min[s,t]∈π′ |t− s| ≥ |π| ≥ 3−1|π′|.
Proof of Theorem 1.1.1. We will not write down dependence on α, β1, β2,M,m, d, T . We
first prove the convergence of (Aπτ )π. Without loss of generality, we assume τ = T . Let
π1, π2 be partitions of [0, T ]. By Lemma 1.2.6, there exist partitions π′

1, π′
2 such that for

j ∈ {1, 2} the partition πj refines π′
j , |π′

j| ≤ 3|πj| and

min
[s,t]∈π′

j

|t− s| ≥ 3−1|π′
j|.

Lemma 1.2.4 shows that for some ε > 0 we have

∥AπjT − A
π′
j

T ∥Lm(P) ≲ (Γ1 + Γ2)|πj|ε.

Therefore, by the triangle inequality,

∥Aπ1T − Aπ2T ∥Lm(P) ≲ ∥Aπ
′
1
T − A

π′
2
T ∥Lm(P) + (Γ1 + Γ2)(|π1|ε + |π2|ε). (1.21)

Let π refine both π′
1 and π′

2. Lemma 1.2.4 implies that

∥Aπ
′
1
T −Aπ

′
2
T ∥Lm(P) ≤ ∥Aπ

′
1
T −AπT∥Lm(P)+∥Aπ

′
1
T −AπT∥Lm(P) ≲ (Γ1+Γ2)|π1|ε+|π2|ε. (1.22)

The estimates (1.21) and (1.22) show

∥Aπ1T − Aπ2T ∥Lm(P) ≲ (Γ1 + Γ2)(|π1|ε + |π2|ε).

Thus, {AπT}π forms a Cauchy net in Lm(P). We denote the limit by AT .
We next prove that (At)t∈[0,T ] satisfies (1.10) and (1.11). Let t0 < t1 < t2 be such that

M(t2 − t1) ≤ t1 − t0. Let πn = {t1 + k2−n(t2 − t1) : k = 0, . . . , 2n} be the nth dyadic
partition of [t1, t2], and we write

Ant1,t2 :=
∑

[s,t]∈πn

As,t.
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We have

E[At1,t2 − At1,t2|Ft0 ] = lim
n→∞

E[Ant1,t2 − At1,t2 |Ft0 ] in Lm(P). (1.23)

By Lemma 1.2.2,

∥E[At1,t2 − Ant1,t2|Ft0 ]∥Lm(P) ≲β1 Γ1|t1 − t0|−α|t2 − t1|β1 .

In this estimate, we can replaceAnt1,t2 by At1,t2 in view of (1.23). Similarly, by Lemma 1.2.3,
we obtain

∥At1,t2 − At1,t2∥Lm(P) ≲α,β1,β2,M κm,dΓ1|t2 − t1|β1−α + κm,dΓ2|t2 − t1|β2 .

Under (1.12), we can replace κm,dΓ1 by Γ1.
Finally, let us prove the uniqueness of A. Let (Ãt)t∈[0,T ] be another adapted process

satisfying Ã0 = 0, (1.10) and (1.11). It suffices to show AT = ÃT . Let πn be the nth
dyadic partition of [0, T ]. By Remark 1.2.5 we have

∥AT − ÃT∥Lm(P) ≤ ∥AT − Aπ
n

T ∥Lm(P) + ∥Aπn

T − ÃT∥Lm(P) ≲ 2−nεT ε.

Since n ∈ N is arbitrary we must have AT = ÃT .

1.3 Integration along fractional Brownian motions
The goal of this section is to prove the convergence of Itô and Stratonovich approximations
of ∫ t

0

f(Bs)dBs and
∫ t

0

f(Bs) ◦ dBs

along a multidimensional fractional Brownian motion B with Hurst parameter H , using
Theorem 1.1.1. For Itô’s case, we let H ∈ (1

2
, 1) and for Stratonovich’s case, we let

H ∈ (1
6
, 1
2
).

Let us recall the fractional Brownian motion.

Definition 1.3.1. Let H ∈ (0, 1). The fractional Brownian motion with Hurst parameter
H is a centered Gaussian process BH = (BH,i)di=1 such that BH

0 = 0, the components
BH,1, BH,2, . . . , BH,d are independent and identically distributed, and

E[(BH,i
t −BH,i

s )2] = cH(t− s)2H , cH :=
3/2−H

2H
B(2− 2H,H + 1/2)

with B being the usual Beta function.
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In particular, we have

E[Bi
sB

i
t] =

cH
2
(t2H + s2H − |t− s|2H). (1.24)

We will use the Mandelbrot–van Ness representation ([MV68])

Bt =

∫

R
KH(t, s)dWs, (1.25)

where
K(t, s) := KH(t, s) := (t− s)

H− 1
2

+ − (−s)H− 1
2

+ ,

and W = (Wt)t∈R is a two-sided Rd-valued Brownian motion. Regarding the expression of
the constant cH , see [Pic11, Appendix B].

We denote by (Ft)t∈R the filtration generated by W . An advantage of the representation
(1.25) is that given v < s, we have the decomposition

Bs =

∫ v

−∞
K(s, r)dWr +

∫ s

v

K(s, r)dWr,

where the second term
∫ s
v
K(s, r)dWr is independent of Fv. Later we will need to estimate

the correlation of ∫ s

v

K(s, r)dWr, s > v.

We note that for s ≤ t

E[
∫ s

v

K(s, r)dW i
r

∫ t

v

K(t, r)dW j
r ] = δij

∫ s

v

K(s, r)K(t, r)dr.

Lemma 1.3.2. Let H ̸= 1
2
. Let 0 ≤ v < s ≤ t be such that t− s ≤ s− v. Then,

∫ s

v

K(s, r)K(t, r)dr

=
1

2H
(s− v)2H +

1

2
(s− v)2H−1(t− s)− cH

2
(t− s)2H + gH(v, s, t)

where we have
|gH(v, s, t)| ≲H (s− v)2H−2(t− s)2

uniformly over such v, s, t.

Proof. See Appendix 1.4.
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We apply Theorem 1.1.1 to construct a stochastic integral
∫ T

0

f(Bs)dBs, H ∈ (1/2, 1)

as the limit of Riemann type approximations. An advantage of the stochastic sewing lemma
is that we do not need any regularity of f . We denote by L∞(Rd,Rd) the space of bounded
measurable maps from Rd to Rd. We write

x · y :=
d∑

i=1

xiyi, x = (xi)di=1, y = (yi)di=1

for the inner product of Rd.

Proposition 1.3.3. Let H ∈ (1/2, 1) and f ∈ L∞(Rd,Rd). Then, for any τ ∈ [0, T ] and
m ∈ [2,∞), the sequence

∑

[s,t]∈π

f(Bs) · (Bt −Bs), where π is a partition of [0, τ ],

converges in Lm(P) for every m <∞ as |π| → 0. Furthermore, if we denote the limit by∫ τ
0
f(Br)dBr and if we write

∫ t

s

f(Br)dBr :=

∫ t

0

f(Br)dBr −
∫ s

0

f(Br)dBr,

then for every 0 ≤ s < t ≤ T ,
∥∥∥
∫ t

s

f(Br)dBr

∥∥∥
Lm(P)

≲d,H,m ∥f∥L∞(Rd)|t− s|H (1.26)

Remark 1.3.4. We can replace f(Bs) by f(Bu) for any u ∈ [s, t]. It is well known that
the sums converge to the Young integral if f ∈ Cγ(R) with γ > H−1(1 − H). Yaskov
[Yas18, Theorem 3.7] proves that the sums converge in some Lp(P)-space if f is of bounded
variation.

Remark 1.3.5. We can actually improve the estimate (1.26). In fact, we can replace the
norm ∥f∥L∞(Rd) by ∥f∥

C
1

2H
−1+ε(Rd)

for any positive ε, see Theorem 3.3.2.

Proof. We will not write down dependence on d, H and m. We will apply Theorem 1.1.1
with As,t := f(Bs) · (Bt −Bs). Let m ≥ 2. We have

∥As,t∥Lm(P) ≲ ∥f∥L∞|t− s|H .
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To estimate conditional expectations, let 0 ≤ v < s < t be such that t− s ≤ s− v and set

Ys :=

∫ v

−∞
K(s, r)dWr, B̃s :=

∫ s

v

K(s, r)dWr.

We write ys := Ys, if conditioned under Fv. Namely, we write for instance

E[g(ys, B̃s)] := E[g(Ys, B̃s)|Fv] = E[g(y, B̃s)]|y=Ys .

For k ∈ Nd
0, we denote by X :k: =: Xk1

1 . . . Xkd
d : the kth Wick power of X = (X1, . . . , Xd).

We are going to compute E[As,t|Fv]. Conditionally on Fv, we have the Wiener chaos
expansion

f(Bs) = f(ys + B̃s) =
∑

k∈Nd
0

ak(s)B̃
:k:
s .

Although it is abuse of notation, for i ∈ {1, . . . , d} we write ai(s) := aei , where ei is ith
unit vector in Rd. Note that

a0(s) = E[f(ys + B̃s)],

ai(s) = E[(B̃i
s)

2]−1E[f(ys + B̃s)B̃
i
s]

Lem. 1.3.2
= 2H(s− v)−2HE[f(ys + B̃s)B̃

i
s].

Then, by the orthogonality of the Wiener chaos decomposition,

E[As,t|Fv] = a0(s) · Ys,t +
d∑

i=1

ai(s) · E[B̃i
sB̃s,t].

Hence, for u ∈ (s, t),

E[δAs,u,t|Fv] = A0
s,u,t +

d∑

i=1

Ais,u,t,

where

A0
s,u,t :=a0(s) · Ys,t − a0(s) · Ys,u − a0(u) · Yu,t = (a0(s)− a0(u)) · Yu,t,

Ais,u,t :=ai(s) · E[B̃i
sB̃s,t]− ai(s) · E[B̃i

sB̃s,u]− ai(u) · E[B̃i
uB̃u,t]

=[ai(s) · ei]E[B̃i
sB̃

i
s,t]− [ai(s) · ei]E[B̃i

sB̃
i
s,u]− [ai(u) · ei]E[B̃i

uB̃
i
u,t].

We first estimate A0
s,u,t, for which we begin with estimating a0(s)− a0(u). We set

F (m,σ) := E[f(m+ σX)], m ∈ Rd, σ ∈ (0,∞),
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where X has the standard normal distribution in Rd. Note that

a0(s) = F (Ys, (2H)−
1
2 (s− v)H)

and similarly for a0(u). we have

∂miF (m,σ) =
1

(2π)
d
2σd+2

∫

Rd

xie−
|x|2

2σ2 f(x+m)dx,

∂σF (m,σ) =
−d

(2π)
d
2σd+1

∫

Rd

f(m+ x)e−
|x|2

2σ2 dx

+
1

(2π)
d
2σd+3

∫

Rd

|x|2f(m+ x)e−
|x|2

2σ2 dx.

Therefore,
|∂mF (m,σ)|+ |∂σF (m,σ)| ≲ ∥f∥L∞(Rd)σ

−1.

This yields

|a0(s)− a0(u)|
≤|F (Ys, (2H)−

1
2 (s− v)H)− F (Yu, (2H)−

1
2 (s− v)H)|

+ |F (Yu, (2H)−
1
2 (s− v)H)− F (Yu, (2H)−

1
2 (u− v)H)|

≲∥f∥L∞(Rd)(s− v)−H |Ys,u|+ ∥f∥L∞(Rd)(s− v)−H(|u− v|H − |s− v|H)
≲∥f∥L∞(Rd)(s− v)−H |Ys,u|+ ∥f∥L∞(Rd)(s− v)−1(t− s).

Therefore,

|A0
s,u,t| ≲ ∥f∥L∞(Rd)(s− v)−H |Ys,u||Yu,t|+ ∥f∥L∞(Rd)(s− v)−1(t− s)|Yu,t|. (1.27)

The random variable Ys,u is Gaussian and

E[|Ys,u|2] =d
∫ v

−∞
(K(s, r)−K(u, r))2dr = d

∫ ∞

s−v
((u− s+ r)H− 1

2 − rH− 1
2 )2dr

≲(u− s)2
∫ ∞

s−v
r2H−3dr ≲ (s− v)2H−2(u− s)2. (1.28)

We have a similar estimate for Yu,t. Therefore,

∥A0
s,u,t∥Lm(P) ≲ ∥f∥L∞(Rd)(s− v)H−2(t− s)2 if t− s ≤ v − s.
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Now we move to estimate Ais,u,t. By Lemma 1.3.2, we have

E[B̃i
sB̃

i
s,t] =

∫ s

v

K(s, r)K(t, r)dr −
∫ s

v

K(s, r)K(s, r)dr

=
1

2
(s− v)2H−1(t− s) +O((t− s)2H).

Therefore, if we write aii(s) := ai(s) · ei,

Ais,u,t =
1

2

[
aii(s)(s− v)2H−1 − aii(u)(u− v)2H−1

]
(t− u)

+O((|aii(s)|+ |aii(u)|)|t− s|2H).

If we set
Gi(m,σ) := σ−1E[f i(m+ σX)X i], m ∈ Rd, σ ∈ (0,∞),

then aii(s) = Gi(Ys, (2H)−
1
2 (s− v)H) and similarly for aii(u). Since

Gi(m,σ) = (2π)−
d
2σ−d−2

∫

Rd

f i(y)(yi −mi)e−
|y−m|2

2σ2 dy,

we have
(2π)

d
2σ2∂mjGi(m,σ) =

∫

Rd

f i(m+ σx)[−δij + xixj]e−
|x|2
2 dx

(2π)
d
2σ2∂σGi(m,σ) =

∫

Rd

f i(m+ σx)xi[−(d+ 2) + |x|2]e− |x|2
2 dx.

Therefore,
|Gi(m,σ)| ≲ ∥f∥L∞(Rd)σ

−1,

|∂mGi(m,σ)| ≲ ∥f∥L∞(Rd)σ
−2, |∂σGi(m,σ)| ≲ ∥f∥L∞(Rd)σ

−2

and thus
|aii(s)| ≲ ∥f∥L∞(Rd)(s− v)−H ,

|aii(s)− aii(u)| ≲∥f∥L∞(Rd)(s− v)−2H
(
|Ys,u|+ (u− v)H − (s− v)H

)

≲∥f∥L∞(Rd)(s− v)−2H
(
|Ys,u|+ (s− v)H−1(u− s)

)
.

This yields

|Ais,u,t| ≲ ∥f∥L∞(Rd)

[
(s− v)−1(t− s)|ys,u|+ (s− v)H−2(t− s)2

+ (s− v)H−2(t− s)2 + (s− v)−H(t− s)2H
]
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and

∥Ais,u,t∥Lm(P) ≲ ∥f∥L∞(Rd)

[
(s− v)H−2(t− s)2 + (s− v)−H(t− s)2H

]

≲ ∥f∥L∞(Rd)(s− v)−H(t− s)2H (1.29)

if t− s ≤ s− v.
Therefore, by (1.27) and (1.29),

∥E[δAs,u,t|Fv]∥Lm(P) ≲ ∥f∥L∞(Rd)(s− v)−H(t− s)2H

if t− s ≤ s− v. Hence, (As,t) satisfies the assumption of Theorem 1.1.1 with

α = H, β1 = 2H, β2 = H, M = 1.

Next, we consider the case H ∈ (1
6
, 1
2
). The following result reproduces [Nou12,

Theorem 3.5], with a more elementary proof and with improvement of the regularity of f .
More precisely, the cited result requires f ∈ C6 while here f ∈ Cγ with γ > 1

2H
− 1 is

sufficient and thus in particular f ∈ C2 works for all H ∈ (1
6
, 1
2
). We denote by Cγ(Rd,Rd)

the space of γ-Hölder maps from Rd to Rd, with the norm

∥f∥Cγ := ∥f∥L∞(Rd) + sup
x ̸=y

|f(x)− f(y)|
|x− y|γ

if γ ∈ (0, 1) and

∥f∥Cγ := ∥f∥L∞(Rd) +
d∑

i=1

∥∂if∥Cγ−1

if γ ∈ (1, 2).

Proposition 1.3.6. Let H ∈ (1
6
, 1
2
), γ > 1

2H
− 1 and f ∈ Cγ(Rd,Rd). If H ≤ 1

4
and d > 1,

assume furthermore that

∂if
j = ∂jf

i, ∀i, j ∈ {1, . . . , d}. (1.30)

Then, for every m ∈ [2,∞) and τ ∈ [0, T ], the family of Stratonovich approximations
∑

[s,t]∈π

f(Bs) + f(Bt)

2
·Bs,t, where π is a partition of [0, τ ],

converges in Lm(P) as |π| → 0. Moreover, if we denote the limit by
∫ τ
0
f(Br) ◦ dBr and if

we write ∫ t

s

f(Br) ◦ dBr :=

∫ t

0

f(Br) ◦ dBr −
∫ s

0

f(Br) ◦ dBr,
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then for every 0 ≤ s < t ≤ T we have

∥∥∥
∫ t

s

f(Br) ◦ dBr −
f(Bs) + f(Bt)

2
·Bs,t

∥∥∥
Lm(P)

≲d,H,m,γ ∥f∥Cγ |t− s|(γ+1)H .

Proof. We will not write down dependence on d, H , m and γ. We can assume

γ < 1{H> 1
4
} + 21{H≤ 1

4
}.

We will apply Theorem 1.1.1 with

As,t := (f(Bs) + f(Bt)) ·Bs,t.

We first claim
∥δAs,u,t∥Lm(P) ≲ ∥f∥Cγ |t− s|(γ+1)H . (1.31)

Observe
δAs,u,t = f(B)u,t ·Bs,u + f(B)u,s ·Bu,t.

If H > 1
4
, the claim (1.31) follows from the estimates

|f(B)u,t| ≤ ∥f∥Cγ |Bu,t|γ, |f(B)u,s| ≤ ∥f∥Cγ |Bu,s|γ.

If H ≤ 1
4
, then γ > 1 and we have

δAs,u,t =
(
f(B)u,t −

d∑

j=1

∂jf(Bu)B
j
u,t

)
·Bs,u +

(
f(B)u,s −

d∑

j=1

∂jf(Bu)B
j
u,s

)
·Bu,t,

where (1.30) is used. Then, the claim (1.31) follows again from the Hölder estimate of f .
Note that the condition γ > 1

2H
− 1 is equivalent to (γ + 1)H > 1

2
.

The rest of the proof consists of estimating the conditional expectation E[δAs,u,t|Fv].
Let t− s ≤ s− v. We will use the same notation as in the proof of Proposition 1.3.3. We
have

E[δAs,u,t|Fv] = D0
s,u,t +

d∑

i=1

Di
s,u,t,

where

D0
s,u,t :=(a0(s) + a0(t)) · Ys,t − (a0(s) + a0(u)) · Ys,u − (a0(u) + a0(t)) · Yu,t

=(a0(t)− a0(u)) · Ys,u + (a0(s)− a0(u)) · Yu,t (1.32)
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and

Di
s,u,t := E[(aii(s)B̃i

s + aii(t)B̃
i
t)B̃

i
s,t|Fv]

− E[(aii(s)B̃i
s + aii(u)B̃

i
u)B̃

i
s,u|Fv]− E[(aii(u)B̃i

u + aii(t)B̃
i
t)B̃

i
u,t|Fv]

We first estimate D0
s,u,t. Suppose that H > 1

4
. Recall

∂miF (m,σ) =
1

(2π)
d
2σd+2

∫

Rd

xie−
|x|2

2σ2 [f(x+m)− f(m)]dx,

∂σF (m,σ) =
−d

(2π)
d
2σd+1

∫

Rd

[f(m+ x)− f(m)]e−
|x|2

2σ2 dx

+
1

(2π)
d
2σd+3

∫

Rd

|x|2[f(m+ x)− f(m)]e−
|x|2

2σ2 dx.

Therefore,
|∂miF (m,σ)|+ |∂σF (m,σ)| ≲ ∥f∥Cγσγ−1.

This yields

|D0
s,u,t| ≲ ∥f∥Cγ

[
(s− v)(γ−1)H |Ys,u||Yu,t|+ (s− v)γH−1(t− s)(|Ys,u|+ |Yu,t|)

]
. (1.33)

Therefore, by (1.28),

∥D0
s,u,t∥Lm(P) ≲ ∥f∥Cγ (s− v)(γ+1)H−2(t− s)2. (1.34)

Now suppose that H ≤ 1
4
. To simplify notation, we write I(m,σ) := F (m, (2H)−

1
2σ).

Since (1.30) gives ∂miIj = ∂mjI i for every i, j, we have

D0
s,u,t =[I(Ys, (u− v)H)− I(Yu, (u− v)H)−

d∑

i=1

∂miI(Yu, (u− v)H)Y i
u,s] · Yu,t

+ [I(Yt, (u− v)H)− I(Yu, (u− v)H)−
d∑

i=1

∂miI(Yu, (u− v)H)Y i
u,t] · Ys,u

+ [I(Ys, (s− v)H)− I(Ys, (u− v)H)] · Yu,t
+ [I(Yt, (t− v)H)− I(Yt, (u− v)H)] · Ys,u.

Since

∂mi∂mjF (m,σ) =
1

(2π)
d
2σd+2

∫

Rd

xie−
|x|2

2σ2 [∂jf(x+m)− ∂jf(m)]dx,
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we have

|I(Ys, (u− v)H)− I(Yu, (u− v)H)−
d∑

i=1

∂miI(Yu, (u− v)H)Y i
u,s|

≲ ∥f∥Cγ (s− v)(γ−2)H |Ys,u|2.

Notice

∂σF (m,σ) =
−d

(2π)
d
2σd+1

∫

Rd

[f(m+ x)− f(m)−
d∑

i=1

∂if(m)xi]e−
|x|2

2σ2 dx

+
1

(2π)
d
2σd+3

∫

Rd

|x|2[f(m+ x)− f(m)−
d∑

i=1

∂if(m)xi]e−
|x|2

2σ2 dx.

Therefore,
|∂σF (m,σ)| ≲ ∥f∥Cγσγ−1.

This yields

|I(Ys, (s− v)H)− I(Ys, (u− v)H)| ≲ ∥f∥Cγ (s− v)γH−1(t− s).

Hence, we obtain the estimate (1.34) when H ≤ 1
4
.

We move to estimate Di
s,u,t. By using the identity,

E[(B̃i
a + B̃i

b)B̃
i
a,b] = E[(B̃i

b)
2]− E[(B̃i

a)
2],

we obtain

Di
s,u,t = (aii(t)− aii(u))E[B̃i

tB̃
i
s,t] + (aii(s)− aii(u))E[B̃i

sB̃
i
s,t]

− (aii(s)− aii(u))E[B̃i
sB̃

i
s,u]− (aii(t)− aii(u))E[B̃i

tB̃
i
u,t]. (1.35)

Since the other terms can be estimated similarly, we only estimate (aii(t)− aii(u))E[B̃i
tB̃

i
s,t].

By Lemma 1.3.2,
|E[B̃tB̃s,t]| ≲ |t− s|2H .

Now we estimate |aii(t)− aii(u)|. Recall aii(s) = Gi(Ys, (2H)−
1
2 (s− v)H),

(2π)
d
2σ2∂mjGi(m,σ) = −δij

∫

Rd

[f i(m+ σx)− f i(m)]e−
|x|2
2 dx

+

∫

Rd

[f i(m+ σx)− f i(m)]xixje−
|x|2
2 dx,
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(2π)
d
2σ2∂σG(m,σ) = −(d+ 2)

∫

Rd

[f i(m+ σx)− f i(m)]xie−
|x|2
2 dx

+

∫

Rd

[f i(m+ σx)− f i(m)]xi|x|2e− |x|2
2 dx.

If H ≤ 1
4
, we can replace f i(m+ σx)− f i(m) by

f i(m+ σx)− f i(m)−
d∑

k=1

∂kf
i(m)σxk.

Therefore,
|∂mjGi(m,σ)|+ |∂σGi(m,σ)| ≲ ∥f∥Cγσγ−2.

This yields

|aii(t)− aii(u)| ≲ ∥f∥Cγ (s− v)(γ−2)H(|Yu,t|+ (s− v)H−1(t− s))

and hence
∥aii(t)− aii(u)∥Lm(P) ≲ ∥f∥Cγ (s− v)(γ−1)H−1(t− s).

Therefore, we obtain

∥Di
s,u,t∥Lm(P) ≲ ∥f∥Cγ (s− v)(γ−1)H−1(t− s)1+2H . (1.36)

By (1.34) and (1.36), we conclude

∥E[δAs,u,t|Fv]∥Lm(P) ≲ ∥f∥Cγ [(s− v)(1+γ)H−2(t− s)2 + (s− v)(γ−1)H−1(t− s)1+2H ]

≲ ∥f∥Cγ (s− v)(γ−1)H−1(t− s)1+2H

if t− s ≤ s− v. Therefore, we can apply Theorem 1.1.1 with

α = 1− (γ − 1)H, β1 = 1 + 2H, β2 = (γ + 1)H, M = 1.

1.4 Proofs of technical results
Proofs of Lemma 1.2.3 and Lemma 1.2.4

Proof of Lemma 1.2.3 without (1.12). Let us first recall our previous strategy under (1.12).
We used Lemma 1.2.1 to write

At0,tN −
N∑

i=1

Ati−1,ti =
∑

n∈N0

2n−1∑

i=0

Rn
i . (1.37)
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Then, we decomposed

2n−1∑

i=0

Rn
i =

L−1∑

l=0

2n/L∑

j=0

(
Rn
Lj+l − E[Rn

Lj+l|Fn
L(j−1)+l+1]1{j≥1}

)

+
L−1∑

l=0

2n/L∑

j=1

E[Rn
Lj+l|Fn

L(j−1)+l+1], (1.38)

where Fn
k := Ft0+

k
2n

(tN−t0). We estimated the first term of (1.38) by the BDG inequality
and (1.8):

∥
L−1∑

l=0

2n/L∑

j=0

(
Rn
Lj+l − E[Rn

Lj+l|Fn
L(j−1)+l+1]1{j≥1}

)
∥Lm(P)

≲ κm,dΓ2L
1
22−n(β2−

1
2
)|tN − t0|β2 . (1.39)

In the proof under (1.12), we estimated the second term of (1.38) by the triangle inequality
and (1.7):

∥
L−1∑

l=0

2n/L∑

j=1

E[Rn
Lj+l|Fn

L(j−1)+l+1]∥Lm(P) ≲α Γ1L
−α2−(β1−α−1)n|tN − t0|β1−α. (1.40)

Then, we chose L so that both (1.39) and (1.40) are summable with respect to n, for which
to be possible, we had to assume (1.12).

In order to remove the assumption (1.12), let us think again why we did the decomposition
(1.38). This is because we do not want to apply the simplest estimate, namely the triangle
inequality, since the condition (1.7) implies that (As,t)[s,t]∈π are not so correlated. This
point of view teaches us that, to estimate

L−1∑

l=0

2n/L∑

j=1

E[Rn
Lj+l|Fn

L(j−1)+l+1],

we should not simply apply the triangle inequality. That is, we should again apply the
decomposition as in (1.38).

To carry out our new strategy, set

S
(1),l
j := Rn

Lj+l, G(1),l
j := Fn

L(j−1)+l+1, j ∈ N.
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We use the convention E[X|G(1),l
j ] = 0 for j ≤ 0. Then,

L−1∑

l=0

2n/L∑

j=1

E[Rn
Lj+l|Fn

L(j−1)+l+1] =
L−1∑

l=0

L−12n∑

j=1

E[S(1),l
j |G(1),l

j ]

=
L−1∑

l1=0

L−1∑

l2=0

L−22n∑

j=0

E[S(1),l1
jL+l2

|G(1),l1
jL+l2

]. (1.41)

By setting
S
(2),l1,l2
j := S

(1),l1
jL+l2

, G(2),l1,l2
j := G(1),l1

(j−1)L+l2
,

the quantity (1.41) equals to

L∑

l1=0

L∑

l2=0

L−22n∑

j=0

(
E[S(2),l1,l2

j |G(2),l1,l2
j+1 ]− E[S(2),l1,l2

j |G(2),l1,l2
j ]

)

+
L∑

l1=0

L∑

l2=0

L−22n∑

j=0

E[S(2),l1,l2
j |G(2),l1,l2

j ]

The Lm(P)-norm of the first term can be estimated by the BDG inequality: it is bounded by

2κm,d
∑

l1,l2≤L

( ∑

j≤L−22n

∥E[S(2),l1,l2
j |G(2),l1,l2

j+1 ]∥2Lm(P)

) 1
2
. (1.42)

By (1.7), we have

∥E[S(2),l1,l2
j |G(2),l1,l2

j+1 ]∥Lm(P) ≤ Γ1(L2
−n|tN − t0|)−α(2−n|tN − t0|)β1 .

Therefore, the quantity (1.42) is bounded by

2κm,dΓ1L
1−α2−n(β1−α−

1
2
)|tN − t0|β1−α.

As the reader may realize, we will repeat the same argument for

L∑

l1=0

L∑

l2=0

L−22n∑

j=1

E[S(2),l1,l2
j |G(2),l1,l2

j−1 ]

and continue. To state more precisely, set inductively,

S
(k),l1,...,lk
j := S

(k−1),l1,...,lk−1

Lj+lk
, G(k),l1,...,lk

j := G(k−1),l1,...,lk−1

L(j−1)+lk
, j ∈ [1, L−k2n] ∩ N.

(1.43)
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We claim that, if Lk ≤ 2n, we have

∥
2n−1∑

i=0

Rn
i ∥Lm(P) ≤ 2κm,dΓ2L

1
22−n(β2−

1
2
)|tN − t0|β2

+ 2κm,dΓ1

( k−1∑

j=1

L
j
2
−(j−1)α

)
L

1
22−n(β1−α−

1
2
)|tN − t0|β1−α

+ ∥
∑

l1,...,lk≤L

∑

j≤L−k2n

E[S(k),l1,...,lk
j |G(k),l1,...,lk

j ]∥Lm(P).

The proof of the claim is based on induction. The case k = 1 and k = 2 is obtained.
Suppose that the claim is correct for k ≥ 2, and consider the case k + 1. Again, decompose

∑

l1,...,lk≤L

∑

j≤L−k2n

E[S(k),l1,...,lk
j |G(k),l1,...,lk

j ]

=
∑

l1,...,lk,lk+1≤L

∑

j≤L−(k+1)2n

(
E[S(k+1),l1,...,lk

j |G(k+1),l1,...,lk,lk+1

j+1 ]

− E[S(k+1),l1,...,lk
j |G(k+1),l1,...,lk,lk+1

j ]
)

+
∑

l1,...,lk,lk+1≤L

∑

j≤L−(k+1)2n

E[S(k+1),l1,...,lk
j |G(k+1),l1,...,lk,lk+1

j ].

To prove the claim, it suffices to estimate the first sum in the right-hand side. By the BDG
inequality, its Lm(P)-norm is bounded by

2κm,d
∑

l1,...,lk,lk+1≤L

( ∑

j≤L−(k+1)2n

∥E[S(k+1),l1,...,lk,lk+1

j |G(k+1),l1,...,lk,lk+1

j+1 ]∥2Lm(P)

)1/2

. (1.44)

By (1.7),

∥E[S(k+1),l1,...,lk,lk+1

j |G(k+1),l1,...,lk,lk+1

j+1 ]∥Lm(P) ≤ Γ1(L
k2−n|tN − t0|)−α(2−n|tN − t0|)β1 .

(1.45)
Therefore, the quantity (1.44) is bounded by

2κm,dΓ1L
1
2L( 1

2
−α)k2−n(β1−α−

1
2
)|tN − t0|(β1−α)

and the claim follows.
Now let us estimate

∥
∑

l1,...,lk≤L

∑

j≤L−k2n

E[S(k),l1,...,lk
j |G(k),l1,...,lk

j ]∥Lm(P) (1.46)
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by the triangle inequality:

∥
∑

l1,...,lk≤L

∑

j≤L−k2n

E[S(k),l1,...,lk
j |G(k),l1,...,lk

j ]∥Lm(P)

≤
∑

l1,...,lk≤L

∑

j≤L−k2n

∥E[S(k),l1,...,lk
j |G(k),l1,...,lk

j ]∥Lm(P).

By (1.7) (or essentially the estimate (1.45)),

∥E[S(k),l1,...,lk
j |G(k),l1,...,lk

j ]∥Lm(P) ≤ Γ1(L
k2−n|tN − t0|)−α(2−n|tN − t0|)β1

and hence the quantity (1.46) is bounded by

Γ1L
−αk2−n(β1−α−1)|tN − t0|β1−α

In conclusion, we obtained for Lk ≤ 2n,

∥
2n−1∑

i=0

Rn
i ∥Lm(P) ≲ κm,dΓ2L

1
22−n(β2−

1
2
)|tN − t0|β2

+ κm,dΓ1fk(L)2
−n(β1−α− 1

2
)|tN − t0|β1−α + Γ1L

−αk2−n(β1−α−1)|tN − t0|β1−α, (1.47)

where

fk(L) =

{
L

k
2
−α(k−1)1{k≥2}, if α < 1

2
,

(k − 1)L
1
2 , if α ≥ 1

2
.

(1.48)

We wish to choose L and k so that (1.47) is summable with respect to n.

• Assume α < 1
2
. For fixed k ≥ 2, we choose L so that

L
k
2
−α(k−1)2−n(β1−α−

1
2
) + L−αk2−n(β1−α−1)

is minimized. Namely, we set L := ⌊2n
k ⌋. Then,

∥
2n−1∑

i=0

Rn
i ∥Lm(P) ≲α κm,dΓ22

n
k 2−n(β2−

1
2
)|tN − t0|β2 + Γ1κm,d2

−n(β1−1−α
k
).

Now we set k so that 1
k
< min{2β2 − 1, β1−1

α
}.
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• If α ≥ 1
2
, we set L = ⌊2δn⌋, where

0 < δ < 2min{β2, β1 − α1} − 1.

Then, we choose k so that
αkδ + β1 − α− 1 > 0.

We also need to ensure kδ ≤ 1, but this is possible since 1+α−β1
α

< 1.

In any case, we note that (1.47) is summable with respect to n and

∥At0,tN −
N∑

i=1

Ati−1,ti∥Lm(P) ≲α,β1,β2,M κm,dΓ2|tN − t0|β2 + κm,dΓ1|tN − t0|β1−α1 .

Proof of Lemma 1.2.4. The proof is similar to Lemma 1.2.3. Write

π′ =: {0 = t0 < t1 < · · · < tN−1 < tN = T}

and

{ [s, t] ∈ π : tj ≤ s < t ≤ tj+1 } =: {tj = tj0 < tj1 < · · · < tjNj−1 < tjNj
= tj+1}.

By (1.20), we have N ≤ 3|π′|−1T . We fix a parameter L, which will be chosen later, and
set

Z
(1),l
j := AtjL+l,tjL+l+1

−
NjL+l∑

k=1

AtjL+l
k−1 ,t

jL+l
k

, H(1),l
j := Ft(j−1)L+l+1

.

Inductively, we set

Z
(k),l1,...,lk
j := Z

(k−1),l1,...,lk−1

jL+lk
, H(k),l1,...,lk

j := H(k−1),l1,...,lk−1

(j−1)L+lk
.

As in Lemma 1.2.3, for each k ∈ N, we consider the decomposition

Aπ
′

T − AπT = A+B

where

A :=
k∑

p=1

∑

l1,...,lp≤L

∑

j≤NL−p

{
E[Z(p),l1,...,lp

j |H(p),l1,...,lp
j+1 ]− E[Z(p),l1,...,lp

j |H(p),l1,...,lp
j ]

}

B :=
∑

l1,...,lk≤L

∑

j≤NL−k

E[Z(k),l1,...,lk
j |H(k),l1,...,lk

j ].
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By the BDG inequality and the Cauchy-Schwarz inequality,

∥A∥Lm(P) ≲ κm,d

k∑

p=1

L
p
2

( ∑

l1,...,lp≤L

∑

j≤NL−p

∥E[Z(p),l1,...,lp
j |H(p),l1,...,lp

j+1 ]∥2Lm(P)

) 1
2
.

By Lemma 1.2.3,

∥Z(1),l
j ∥Lm(P) ≲α,β1,β2 Γ1|tjL+l+1 − tjL+l|β1−α + κm,dΓ2|tjL+l+1 − tjL+l|β2 .

For p ≥ 2, by Lemma 1.2.2 and (1.20),

∥E[Z(p),l1,...,lp
j |H(p),l1,...,lp

j+1 ]∥Lm(P) ≲β1 Γ1L
−(p−1)α|π′|−α|π′|β1 .

Therefore, we obtain

∥A∥Lm(P) ≲α,β1,β2,m,d,T L
1
2 (Γ1|π′|β1−α− 1

2 + Γ2|π′|β2− 1
2 ) + Γ1fk(L)|π′|β1−α− 1

2 , (1.49)

where fk(L) is defined by (1.48).
We move to estimate B. By Lemma 1.2.2 and (1.20),

∥E[Z(k),l1,...,lk
j |H(k),l1,...,lk

j ]∥Lm(P) ≲β1 Γ1L
−αk|π′|β1−α.

Therefore,
∥B∥Lm(P) ≲β1,T Γ1L

−αk|π′|β1−α−1. (1.50)

Combining (1.49) and (1.50), we obtain

∥Aπ′

T − AπT∥Lm(P)

≲α,β1,β2,m,d,T L
1
2 (Γ1|π′|β1−α− 1

2 +Γ2|π′|β2− 1
2 )+Γ1fk(L)|π′|β1−α− 1

2 +Γ1L
−αk|π′|β1−α−1.

By choosing L and k as in the proof of Lemma 1.2.3 (replace 2n by |π′|−1), we complete
the proof.

Proof of Lemma 1.3.2

Let d = 1. For u > v, we set

B(1)
u :=

∫ v

−∞
K(u, r)dWr, B(2)

u :=

∫ u

v

K(u, r)dWr

44



1.4. PROOFS OF TECHNICAL RESULTS

so that Bu −B(0) = B
(1)
u +B

(2)
u and B(1)

· and B(2)
· are independent. Then, we have

E[B(2)
s B

(2)
t ] =

∫ s

v

K(s, r)K(t, r)dr,

and by (1.24), we have
cH
2
(s2H + t2H − |t− s|2H) = E[B(1)

s B
(1)
t ] + E[B(2)

s B
(2)
t ],

and thus, we will estimate E[B(1)
s B

(1)
t ]. We have

E[B(1)
s B

(1)
t ] =

∫ ∞

0

[
(s+ r)H−1/2 − rH−1/2

][
(t+ r)H−1/2 − rH−1/2

]
dr

+

∫ v

0

(s− r)H−1/2(t− r)H−1/2dr. (1.51)

By [Pic11, Theorem 33], the first term of (1.51) equals to

(cH−(2H)−1)s2H+

∫ ∞

0

[
(s+r)H−1/2−rH−1/2

][
(t+r)H−1/2−(s+r)H−1/2

]
dr. (1.52)

Since
(t+ r)H−1/2 − (s+ r)H−1/2 = (H − 1/2)(s+ r)H−3/2(t− s) +O((s+ r)H−5/2(t− s)2),

the second term of (1.52) equals to

s2H−1(t− s)(H − 1/2)

∫ ∞

0

[
(1+ r)H−1/2 − rH−1/2

]
(1+ r)H−3/2dr+O(s2H−2(t− s)2).

By [Pic11, Theorem 33],

(H − 1/2)

∫ ∞

0

[
(1 + r)H−1/2 − rH−1/2

]
(1 + r)H−3/2dr = −1

2
+HcH .

Similarly, the second term of (1.51) equals to
1

2H
(s2H − (s− v)2H) +

t− s

2
(s2H−1 − (s− v)2H−1) +O((s− v)2H−2(t− s)2).

Therefore, E[B(1)
s B

(1)
t ] equals to

cHs
2H+HcHs

2H−1(t−s)− 1

2H
(v−s)2H− 1

2
(s−v)2H−1(t−s)+O((s−v)2H−2(t−s)2).

Since
cH
2
(s2H + t2H − |t− s|2H)− cHs

2H +HcHs
2H−1(t− s)− 1

2H
(v − s)2H

= −cH
2
(t− s)2H +O((s− v)2H−2(t− s)2),

the proof is complete.
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Chapter 2

Level crossings of fractional Brownian
motions

We prove that the number of level crossings of the fractional Brownian motion, after
normalization, converges to its local time. This resolves a conjecture posed in [CP19],
and our result can be viewed as an extension of [Lem83] for the fractional Brownian
motion. We also prove the convergence of the (1/H)-variation, where H is the Hurst
parameter, along random partitions defined by level crossings. This result raises an
interesting conjecture, which seems to capture non-Markovianity of the fractional
Brownian motion.

This chapter is based on joint work with Purba Das, Rafał Łochowski and Nicolas
Perkowski.

Keywords and phrases. fractional Brownian motion, level crossings, local time,
excursions, stochastic sewing lemma.
MSC 2020. 60G22, 60J55
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CHAPTER 2. LEVEL CROSSINGS OF FBM
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2.1 Introduction
Level crossings of stochastic processes have been studied since the classical works of Kac
[Kac43] and Rice [Ric45]. Depending on whether the process is smooth or rough, the study
of its level crossings rely on different methods. As for the smooth case, which is not the
scope of this chapter, the reader can refer to the survey article [Kra06] and the textbook
[AW09].

By far the most prominent example of rough stochastic processes is the Brownian
motion. The first work on level crossings of the Brownian motion is attributed to Lévy
[Lév48] , who characterized its local time as a limit of the counting of level crossings. More
precisely, for a given process w, setting

U0,t(ε, w) := #
{
(u, v) : 0 ≤ u < v ≤ t, wu = 0, wv = ε,∀r ∈ (u, v) wr ∈ (0, ε)

}
,

we have for the Brownian motion W and a ∈ R,

lim
ε→0

εU0,t(ε,W − a) = Lt(a)

almost surely, where Lt(a) is the local time at time t at the level a. This result can now be
found in standard textbooks such as [IM74], [RY99] and [MP10], and it can be generalized
for semimartingales [El 78] and for Markov processes [FT83].
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2.1. INTRODUCTION

There are many rough stochastic processes that are neither semimartingale nor Markovian.
Among them is the fractional Brownian motion BH , a Gaussian process parametrized by
H ∈ (0, 1). (Precisely, BH is neither semimartingale nor Markovian for H ̸= 1

2
, and for

H = 1
2

it is the Brownian motion.) The processBH is known to have the local time. In view
of Lévy’s result on the Brownian local time, it is very natural to ask if an analogous result
holds for the fractional Brownian local time. So far, no complete answer is obtained. This is
surprising, considering the age of Lévy’s result and that of the fractional Brownian motion.

There are some works related to the question on the level crossing characterization of
the fractional Brownian local time. For instance, [Aza90; AW96] show that the number
of zeroes for some smoothed fractional Brownian motion converges in suitable sense to
the local time. We note that this question gets attention in the pathwise stochastic calculus
[DOS18; CP19; Łoc+21; Kim22; ACX20] as well as in some applied literatures [FHW94;
Kru98].

Constructing the local time via level crossings is not only a natural problem, but also
it can lead to a significant implication on the path property of the process. This was first
observed by the brilliant thesis [Lem83] of Lemieux. Therein he proved the existence of a
measurable set ΩW such that P(W ∈ ΩW ) = 1 (recall that W is Brownian motion) and for
every w ∈ ΩW , a ∈ R and t ≥ 0, the limit

lim
ε→0

εU0,t(ε, w − a)

exists. Hence, the existence of the limit of the normalized level-crossing counting is a path
property. This result explains why such construction of the local time receives attention in
the pathwise stochastic calculus. It is worth noting that Lemieux proved the result for a
large class of semimartingales.

Lemieux’s result has a remarkable consequence on pathwise quadratic variation,
calculated as a limit of sum square increments where the increments are taken along
partitions of a fixed interval with vanishing mesh. The precise definition of the pathwise
quadratic variation is as follows: given a sequence π of partitions πn (n ∈ N) with vanishing
mesh, the pathwise quadratic variation [w]π of a process w is defined by

[w]π := lim
n→∞

∑

[s,t]∈πn

|wt − ws|2

whenever the limit exists. In general, the pathwise quadratic variation (even when it exists)
may depend on the choice of a sequence of partitions [DOS18].

Hence, an obvious question is if, given a stochastic process X , there are any (big) class
P of partition sequences such that almost surely for any π,π′ ∈ P we have [X]π = [X]π′ .
The classical works [Lév40; Lév48] of Lévy show that for any refining partition sequence
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π of [0, t] with vanishing mesh we have

P([W ]π = t) = 1. (2.1)

Dudley [Dud73] proved that if the sequence π = (πn) satisfies |πn| = o(1/ log n) then
(2.1) holds. He even showed the optimality of the decaying condition. Among the works on
the quadratic variation of the Brownian motion, most relevant to us is Lemieux’s result,
which proves that the Brownian motion has a measure zero set outside which any quadratic
variation of the Brownian motion along any uniform Lebesgue partition (defined at the
beginning of Section 2.1.1) of [0, t] with vanishing mesh is equal to t. We remark that,
unlike Dudley’s result, there is no decaying condition on partition sequences in Lemieux’s
result.

In this chapter, we extend Levy’s construction of the local time and Lemieux’s result for
fractional Brownian motions.

2.1.1 Main results
We write B = BH for a fractional Brownian motion (fBm) with B0 = 0 and with Hurst
parameter H ∈ (0, 1). Given a partition π, we write

|π| := max
[s,t]∈π

|t− s|.

To define the Lebesgue partition, let us introduce some definitions. Given a process w and
a positive constant ε, we set T0(ε, w) := 0 and inductively

Tn(ε, w) := inf{t > Tn−1(ε, w) : wt ∈ εZ \ {wTn−1(ε,w)}}. (2.2)

(If Tn−1 = +∞, we set Tn := +∞.) Note that we do not assume w0 = 0. See Figure 2.1
for a graphics. We denote by Ks,t(ε, w) the number of ε-level crossings in [s, t], that is1

Ks,t(ε, w) := #{n ∈ N \ {1} : Tn(ε, ws+·) ≤ t}+ 1{ws∈εZ}1{T1(ε,ws+·)≤t}. (2.3)

Remark 2.1.1. Our notation for the total number of ε-level crossings is slightly different
from [Lem83]. Ks,t(ε, w) in (2.3) represents Kt

s(w, εZ) in Lemieux’s notation.

The partition

{[Tn−1(ε, w), Tn(ε, w)] : n ∈ N, Tn(ε, w) ≤ t} (2.4)

1Our convention is N = {1, 2, 3, . . .}. In particular 0 /∈ N.
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Figure 2.1: Visualisation of Tn(ε, w).

is called a Lebesgue partition. We observe
∑

n:Tn(ε,w)≤t

|wTn(ε,w) − wTn−1(ε,w)|
1
H = ε1/HK0,t(ε, w) + |wT1(ε,w) − w0|

1
H .

Note that |wT1(ε,w) − w0| ≤ ε. Therefore, the study of the 1/H-variation along a sequence
of Lebesgue partitions is equivalent to that of K0,t(ε, w) as ε ↓ 0.

.
For ρ ∈ R and a process w, the process w+ρ is defined by (w+ρ)t := wt+ρ. Our first

main result is on the 1/H-variation along Lebesgue partitions of the fractional Brownian
motion B.

Theorem 2.1.2 (Convergence of the variation along Lebesgue partitions). For every
H ∈ (0, 1), there exists a positive constant cH with the following property. Let ρ ∈ R,
T ∈ (0,∞) and (εn)

∞
n=1 be a sequence of positive numbers such that εn = O(n−η) for

some η > 0. Then, we have

lim
n→∞

ε1/Hn K0,T (εn, B
H + ρ) = cHT, almost surely. (2.5)

Theorem 2.1.2 concerns level crossings at all levels. We can also consider level crossings
at a specific level. For s < t, we set ∆s,t := {(u, v) : s ≤ u < v ≤ t}. For each ε ∈ (0, 1)
and w ∈ C([0, T ];R), we consider the number of upcrossings by setting

Us,t(ε, w) := #
{
(u, v) ∈ ∆s,t : wu = 0, wv = ε,∀r ∈ (u, v) wr ∈ (0, ε)

}
. (2.6)

See Figure 2.2. In the case of the Brownian motion (H = 1
2
), it is well-known (e.g. [IM74,
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"

0
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Figure 2.2: Visualisation of Us,t(ε, w). In the picture, Us,t(ε, w) = 3.

Section 2.2], [RY99, Chapter VI], [MP10, Section 6]) that we have

lim
ε→0

εU0,t(ε, B
1/2 − a) =

1

2
L
1/2
t (a) almost surely, (2.7)

where L1/2 is the local time of the Brownian motion B1/2. This representation of the local
time is extended for semimartingales by Karoui [El 78].

We recall that the notion of the local time exists for general H ∈ (0, 1).

Definition 2.1.3. We denote by (Lt(a))t≥0 = (LHt (a))t≥0 the local time of BH at the level
a. That is, L is a unique random field satisfying the following occupation density formula:

∫ t

0

f(Br)dr =

∫

R
f(a)Lt(a)da, ∀t ≥ 0,∀f ∈ C∞

c (R).

As for the existence of L, see e.g. [GH80].

Our next main result is to prove analogue of (2.7) for H < 1
2
.

Theorem 2.1.4 (Local time via level crossings). Let H < 1
2
, a ∈ R, T ∈ (0,∞). Then we

have

lim
ε→0,ε>0

ε
1
H
−1U0,T (ε, B

H − a) =
cH
2
LHT (a) almost surely.

More strongly, we have the following result.

Theorem 2.1.5 (Lemieux type result). Let H < 1
2
. Then, there exists a measurable set

ΩH ⊆ C([0,∞);R) with the following property.
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• We have P(BH ∈ ΩH) = 1.

• For every w ∈ ΩH , t ∈ [0,∞) and a ∈ R, the limit

Lt(a, w) := lim
ε→0,ε>0

ε
1
H
−1U0,t(ε, w − a)

exists and finite. The limit (Lt(a, w))a∈R satisfies the occupation density formula
∫ t

0

f(wr)dwr =

∫

R
f(a)Lt(a, w)da

for every t ≥ 0 and continuous f . Furthermore,

lim
ε→0,ε>0

ε
1
HK0,t(ε, B − a) = cHt.

Proof. See Theorems 2.3.21 and 2.3.22.
Remark 2.1.6. As noted in Remark 1.1.3, there exists a ε ∈ (0, 1) such that for every
m ∈ (0,∞) we have

∥∥∥
∑

[u,v]∈π

|Bv −Bu|
1
H − E

[
|B1|

1
H

]
t
∥∥∥
Lm(P)

≲m,t |π|ε

for any deterministic partition π of [0, t]. Therefore, by the Borel–Cantelli lemma, for any
sequence (πn)∞n=1 of partitions with

|πn| = O(n−δ), δ ∈ (0,∞), (2.8)

we have limn→∞
∑

[u,v]∈π |Bv −Bu|
1
H = E[|B1|

1
H ]t almost surely. Unlike Theorem 2.1.5,

we need the decaying condition (2.8). In view of [Dud73], the condition (2.8) is not optimal;
finding the optimal condition seems open.

Conjecture

There is an interesting aspect on the constant cH . For the Brownian motion, the quadratic
variation along any deterministic partition almost surely matches with the quadratic variation
along any uniform Lebesgue type partitions. That is,

c 1
2
= E[(B1/2

1 )2]. (2.9)

It is tempting to guess that such relation holds for H ̸= 1
2

as well. Indeed, such conjecture
is stated in [CP19]. However, the identity (2.9) is due to Markovianity of the Brownian
motion. Therefore, for H ̸= 1

2
, there is no reason to believe that cH and E[|BH

1 | 1
H ] are

equal. Motivated by the simulation shown in Figures 2.3 and 2.4, we propose the following
remarkable conjecture.
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Conjecture 2.1.7 (The constant cH). For the fractional Brownian motion with H ̸= 1
2
,

we conjecture that the 1
H

variation of the fractional Brownian motion along deterministic
partitions differs from the 1

H
variation of the fractional Brownian motion along uniform

Lebesgue partitions. To be more precise, we conjecture
{
cH > E[|BH

1 |1/H ] if H < 1
2
,

cH < E[|BH
1 |1/H ] if H > 1

2
.

If this is indeed the case, the constant cH captures non-Markovianity of the fractional
Brownian motion.

Notation

Given a path f : [0, T ] → Rd, we write fs,t := ft − fs and we denote by ḟ the derivative
df
dt

. We write A ≲ B if there exists a positive constant C, depending only on unimportant
parameters, such that A ≤ CB. If we want to emphasize the dependency on parameters
α, β, . . ., then we write A ≲α,β,... B. In this chapter we will not write down dependency
on H .

2.2 Variations along Lebesgue partitions
The goal of this section is to prove Theorem 2.1.2. We begin observing elementary results
on the counting K of level crossings, defined by (2.3).

2.2.1 Elementary results
Recall the definition of the fractional Brownian motion B from Definition 1.3.1 and the
Mandelbrot–van Ness representation (1.25), which will be used throughout the chapter.

Lemma 2.2.1 (scaling of K). For λ ∈ (0,∞), we have

(Ks,t(ε, B + ρ))s<t,ε>0,ρ∈R
d
= (Kλ1/Hs,λ1/H t(λε,B + λρ))s<t,ε>0,ρ∈R.

2We simulate the variation
Vt :=

∑

[u,v]∈π#,v≤t

|Bv −Bu|
1
H

up to time T with # ∈ {deterministic,Lebesgue}. The fractional Brownian motion is discretized with step
size T/n. We have πdeterministic = {kT/n}nk=1 and πLebesgue = {Tk(ε,B)}k. For H = 0.4, it is simulated
with T = 0.1, n = 30000, ε = 0.015. For H = 0.6, it is simulated with T = 2, n = 30000, ε = 0.013.

56



2.2. VARIATIONS ALONG LEBESGUE PARTITIONS

0.00 0.02 0.04 0.06 0.08 0.10

Time

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

V
ar

ia
ti

on

deterministic partition

Lebesgue partition

(a) H = 0.4

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

V
ar

ia
ti

on

deterministic partition

Lebesgue partition

(b) H = 0.6

Figure 2.3: Comparison between the variation along a deterministic uniform partition and
that along a Lebesgue partition. 2
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Figure 2.4: Plotting E[|BH
1 |1/H ]/cH for 0.4 ≤ H ≤ 0.6. The oscillation should be due to

simulation error. The graph is expected to be increasing, with E[|B1/2
1 |2]/c1/2 = 1.
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Proof. We set B(λ)
t := λBλ−1/H t. Note that B(λ) d

= B and observe that

Ks,t(ε, Bt + ρ) = Ks,t(λε, λ(B + ρ)) = Kλ1/Hs,λ1/H t(λε,B
(λ) + λρ).

Lemma 2.2.2 (superadditivity of K). Let r < s < t and w be a process. Then,

Kr,s(ε, w) +Ks,t(ε, w) ≤ Kr,t(ε, w) ≤ Kr,s(ε, w) +Ks,t(ε, w) + 1.

Proof. Recalling the definition of Tn from (2.2), we set

N := max{n ∈ N ∪ {0} : Tn(ε, wr+·) < s}.

• If wTN (ε,wr+·) = wT1(ε,ws+·), then Kr,t(ε, w) = Kr,s(ε, w) +Ks,t(ε, w).

• If wTN (ε,w) ̸= wT1(ε,ws+·), then Kr,t(ε, w) = Kr,s(ε, w) +Ks,t(ε, w) + 1.

For our arguments, the following variants of K will appear.

Definition 2.2.3. We set

K̄s,t(ε, w) := ε−1

∫ ε/2

−ε/2
Ks,t(ε, w + ρ)dρ, Js,t(ε, w) := sup

ρ∈R
Ks,t(ε, w + ρ).

Note that we have the obvious inequality K̄s,t(ε, w) ≤ Js,t(ε, w).

The advantage of K̄ is that in addition to the superadditivity, it is stationary.

Lemma 2.2.4 (scaling, superadditivity and stationarity of K̄). Let r < s < t and let w be a
process.

(i) For λ > 0, we have

(K̄s,t(ε, B))s<t,ε>0
d
= (K̄λ1/Hs,λ1/H t(λε,B))s<t,ε>0.

(ii) We have

K̄r,s(ε, w) + K̄s,t(ε, w) ≤ K̄r,t(ε, w). ≤ K̄r,s(ε, w) + K̄s,t(ε, w) + 1.

(iii) We have K̄s,t(ε, w) = K̄0,t−s(ε, ws+· − ws). In particular,

K̄s,t(ε, B)
d
= K̄0,t−s(ε, B).
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Proof. The claim (a) follows from Lemma 2.2.1 and the claim (b) follows from Lemma
2.2.2. For the claim (c), we observe that for every ρ ∈ R we have

K̄s,t(ε, w) = K̄s,t(ε, w + ρ) = K̄0,t−s(ε, ws+· + ρ)

In particular, we choose ρ := −ws.

Lemma 2.2.5. For every p, t, ε ∈ (0,∞) we have E[J0,t(ε, B)p] <∞.

Proof. For α ∈ (0, H), we set

JBKCα([0,t]) := sup
0≤r<s≤t

|Bs −Br|
(s− r)α

.

By the Kolmogorov continuity theorem, we have

E[JBKpCα([0,t])] <∞. (2.10)

We set
δ :=

⌈
ε−

1
α (1 + JBKCα([0,1]))

1
α

⌉−1

.

Suppose that there exists n such that

kδ ≤ Tn(ε, B + ρ) < Tn+1(ε, B + ρ) ≤ (k + 1)δ with Tn+1(ε, B + ρ) ≤ t.

Then,

ε = |BTn+1(ε,B+ρ) −BTn(ε,B+ρ)| ≤ JBKCα([0,t])δ
α

< εJBKCα([0,1])(1 + JBKCα([0,1]))
−1 < ε,

which is a contradiction. Thus, we must have

#{n : kδ ≤ Tn(ε, B + ρ) ≤ (k + 1)δ} ≤ 1 for each k

and

J0,t(ε, B) = sup
ρ∈R

K0,t(ε, B + ρ) ≤ δ−1 =
⌈
ε−

1
α (1 + JBKCα([0,1]))

1
α

⌉
, (2.11)

which is Lp(P)-integrable by (2.10).
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In view of Lemma 2.2.4, the family (E[K̄0,t(1, B)])t≥0 satisfies

E[K̄0,s+t(1, B)] ≥ E[K̄0,s(1, B)] + E[K̄0,t(1, B)].

Therefore, we have

cH := lim
t→∞

1

t
E[K̄0,t(1, B)] = sup

t>0

1

t
E[K̄0,t(1, B)].

The constant cH coincides with the one from Theorem 2.1.2. The following lemma shows
that the constant cH is non-trivial.

Lemma 2.2.6. We have cH ∈ (0,∞).

Proof. To see cH > 0, we observe

cH ≥ E[K̄0,1(1, B)] ≥ P(B1 ≥ 2) > 0.

To see cH <∞, we note by Lemma 2.2.4 that (K̄s,t + 1), s < t is subadditive. Therefore,

cH ≤ E[K̄0,1(1, B)] + 1 ≤ E[J0,1(1, B)] + 1,

which is finite by Lemma 2.2.5.

Remark 2.2.7. By the subadditivity, we have

E[K̄0,t(1, B)]

t
≤ cH ≤ E[K̄0,t(1, B)] + 1

t
.

In particular,
∣∣∣cH − E[K̄0,t]

t

∣∣∣ ≤ t−1. (2.12)

2.2.2 Convergence of the variations
The aim of this section is to prove Theorem 2.1.2. The following is the first observation.

Lemma 2.2.8. Let ζ ≥ 1 and v < s < t. We set ε := ( t−s
ζ
)H . Then, if t−s

s−v is sufficiently
small, we have

∥E[K̄s,t(ε, B)|Fv]− E[K̄0,ζ(1, B)]∥Lp(P) ≲p,ζ

( t− s

s− v

)1−H
.

61



CHAPTER 2. LEVEL CROSSINGS OF FBM

Lemma 2.2.8 is an easy consequence of the following result.

Lemma 2.2.9 (asymptotic independence, [Pic08, Lemma A.1]). Let 0 ≤ v < s < t. Let F
and G be respectively measurable with respect to

σ(Br : r < v) and σ(Bt′ −Bs′ : s ≤ s′ < t′ ≤ t),

and suppose that F,G ∈ Lp(P) with p ∈ (1,∞). If (t− s)(s− v)−1 is sufficiently small,
then we have

|E[FG]− E[F ]E[G]| ≲p

( t− s

s− v

)1−H
∥F∥Lp(P)∥G∥Lp(P).

In particular,

∥E[F |Fv]− E[F ]∥Lp(P) ≲p

( t− s

s− v

)1−H
∥F∥Lp(P). (2.13)

Proof of Lemma 2.2.8. By Lemma 2.2.4, the random variable K̄s,t(ε, B) is measurable
with respect to σ(Br −Bs : s ≤ r ≤ t). The estimate (2.13) implies

∥E[K̄s,t(ε, B)|Fv]− E[K̄s,t(ε, B)]∥Lp(P) ≲
( t− s

s− v

)1−H
∥K̄s,t(ε, B)∥Lp(P).

By the stationarity and the scaling (Lemma 2.2.4),

K̄s,t(ε, B)
d
= K̄0,ζ(1, B)

and the claim follows.

We recall the Mandelbrot–van Ness representation (1.25). The next lemma is a
consequence of Girsanov’s theorem.

Lemma 2.2.10. Let v < s < t, ε ∈ (0, 1), ρ, ρ′ ∈ [−ε/2, ε/2] and y : [v, t] → R be a
deterministic path. We set

B̃v
r :=

∫ r

v

(r − u)H−1/2dWu, v ≤ r ≤ t. (2.14)

Setting
aH :=

1

2

( 1

Γ(H + 1/2)Γ(3/2−H)

)2

,

we have the bound

|E[Ks,t(ε, B̃
v + y + ρ)]− E[Ks,t(ε, B̃

v + y + ρ′)]|
≲ eaH |ρ−ρ′|2(s−v)−2(t−v)2−2H

× E[Ks,t(ε, B̃
v + y + ρ)2]

1
2 |ρ− ρ′|(s− v)−1(t− v)1−H .
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Proof. The proof is inspired by [Pic08, Theorem A.1]. Let δ := ρ′ − ρ and

hr :=

{
(s− v)−1(r − v)δ if v ≤ r ≤ s,

δ if s ≤ r.

Note that the functions r 7→ B̃v
r + yr + ρ′ and r 7→ B̃v

r + yr + hr + ρ are equal on the
interval [s, t]. Thus,

Ks,t(ε, B̃
v + y + ρ′) = Ks,t(ε, B̃

v + y + h+ ρ).

We claim
hr =

∫ r

v

(r − u)H−1/2dgu,

where for r > v,

gr :=
δ{(r − v)3/2−H − (r − r ∧ s)3/2−H}

Γ(H + 1/2)Γ(3/2−H)(3/2−H)(s− v)
.

Indeed,

ġr :=
dgr
dr

=
1

Γ(H + 1/2)Γ(3/2−H)

δ

s− v
{(r − v)1/2−H − (r − s)1/2−H1{r>s}}

and
∫ r

v

(r − u)H−1/2(u− v)1/2−Hdu =

∫ r−v

0

(r − v − u)H−1/2u1/2−Hdu

= (r − v)

∫ 1

0

(1− u)H−1/2u1/2−Hdu

= Γ(H + 1/2)Γ(3/2−H)(r − v).

Therefore,
∫ r

v

(r − u)H−1/2dgu =
δ

s− v
{(r − v)− (r − s)1{r>s}} = hr.

If we set
F (w) := Ks,t

(
ε,

∫ ·

v

(· − u)H−1/2dwu + y + ρ
)
,
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then Ks,t(1, B̃
v + y+ ρ′) = F (W + g) and by Girasnov’s theorem (or the Cameron-Martin

theorem)
E[F (W + g)] = E

[
e
∫ t
v ġrdWr− 1

2

∫ t
v |ġr|2drF (W )

]
.

Thus,

E[Ks,t(ε, B̃
v + y + ρ′)]− E[Ks,t(ε, B̃

v + y + ρ)]

= E
[{
e
∫ t
v ġrdWr− 1

2

∫ t
v |ġr|2dr − 1

}
Ks,t(ε, B̃

v + y + ρ)
]
.

By the Cauchy-Schwarz inequality, it is bounded by

E
[(
e
∫ t
v ġrdWr− 1

2

∫ t
v |ġr|2dr − 1

)2]1/2
E[Ks,t(ε, B̃

v + y + ρ)2]
1
2 .

Since
∫ t
v
ġrdWr is centered Gaussian with variance

∫ t
v
|ġr|2dr,

E
[(
e
∫ t
v ġrdWr− 1

2

∫ t
v |ġr|2dr − 1

)2]

= e
∫ t
v |ġr|2dr − 1

≤
∫ t

v

|ġr|2dr × e
∫ t
v |ġr|2dr

≲ e2aH |ρ−ρ′|2(s−v)−2(t−v)2−2H |ρ− ρ′|2(s− v)−2(t− v)2−2H ,

which completes the proof.

Proof of Theorem 2.1.2. In view of the scaling, we may suppose that T = 1. The proof
takes advantage of Theorem 1.1.1, combined with lemmas prepared above.

Step 1, lower bound. Let ζ ≥ 1, and let πε,ζ be the partition of [0, 1] with identical
mesh size ζε 1

H . By the superadditivity (Lemma 2.2.2),

ε
1
HK0,1(ε, B + ρ) ≥

∑

[s,t]∈πε,ζ

ε
1
HKs,t(ε, B + ρ) = ζ−1

∑

[s,t]∈πε,ζ

As,t,

where A1
s,t := Ks,t((

t−s
ζ
)H , B + ρ)(t− s). Furthermore, we set

A2
s,t := K̄s,t

((t− s

ζ

)H
, B

)
(t− s), A3

s,t := E[K̄0,ζ(1, B)](t− s).

We see that As,t := A1
s,t − A3

s,t satisfies the condition of Theorem 1.1.1. Indeed, by scaling
we have

∥Ks,t(ε, B + ρ)∥Lp(P) + ∥K̄s,t(ε, B + ρ)∥Lp(P) ≲p,ζ 1
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and hence

∥As,t∥Lp(P) ≤ ∥A1
s,t∥Lp(P) + ∥A3

s,t∥Lp(P) ≲p,ζ (t− s).

Since

Ks,t(ε, B + ρ)− K̄s,t(ε, B) = ε−1

∫ ε/2

−ε/2
{Ks,t(ε, B + ρ)−Ks,t(ε, ρ

′)}dρ′,

by Lemma 2.2.10, we have

∥E[A1
s,t − A2

s,t|Fv]∥p ≲p,ζ

( t− s

s− v

)H
(t− s).

By Lemma 2.2.8,

∥E[A2
s,t − A3

s,t|Fv]∥Lp(P) ≲p,ζ

( t− s

s− v

)1−H
(t− s).

Therefore,

∥E[As,t|Fv]∥Lp(P) ≲p,ζ

( t− s

s− v

)min{H,1−H}
(t− s),

and we indeed see that (As,t)s<t satisfies the conditions of Theorem 1.1.1.
Consequently, we obtain

ε
1
HK0,1(ε, B) ≥ E[K̄0,ζ(1, B)]

ζ
−Rε,ζ ,

where

∥Rε,ζ∥Lp(P) ≲p,ζ ε
δ

for some δ depending only on H . By the Borel–Cantelli lemma, if εn = O(n−η) for some
η > 0, then Rεn,ζ → 0 a.s. This implies

lim inf
n→∞

ε
1
H
n K0,1(εn, B + ρ) ≥ E[K̄0,ζ(1, B)]

ζ
a.s.

Since ζ is arbitrary, the lower bound is obtained.
Step 2, upper bound. Since (Ks,t(ε, B + ρ) + 1)s<t is subadditive, we obtain

ε
1
HK0,1(ε, B) ≤ E[K̄0,ζ(1, B)]

ζ
+

1

ζ
+Rε,ζ ,

and we similarly obtain the upper bound.
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2.3 Local time via Lebesgue partitions
In this section, we are interested in level crossings at a specific level. That is, we prove
Theorem 2.1.4, and as an application we prove Lemieux type result Theorem 2.1.5. A more
quantitative version of Theorem 2.1.4 is the following. Recall the definition of Us,t(ε, w)
from (2.6), which counts the number of upcrossings from 0 to ε in the interval [s, t].

Theorem 2.3.1 (quantitative bound on U ). Let H < 1
2
, a ∈ R and (εn)

∞
n=1 be a sequence

of positive numbers tending to 0. Then, if εn = O(n−η) for some η > 0, we have

lim
n→∞

ε
1
H
−1

n U0,1(εn, B
H − a) =

cH
2
LH1 (a) a.s.

In fact, we have a quantitative bound
∣∣∣ε 1

H
−1U0,1(ε, B

H − a)− cH
2
LH1 (a)

∣∣∣ ≤ 1

ζ
LH1 (a) +Rε,ζ,a,

for all ε ∈ (0, 1) and ζ ∈ (1,∞), where there exists a κ > 0 such that for every p ∈ (0,∞)
we have

∥Rε,ζ,a∥Lp(P) ≤ Cp,ζε
κ

with Cp,ζ independent of a.

The proof of Theorem 2.3.1 is somewhat similar to that of Theorem 2.1.2. Indeed, it is
based on the super(sub)-additivity, Girsanov’s theorem and the shifted stochastic sewing.
However, a major difficulty here is that we cannot use any ergodic theorem. This leads
to more involved technical arguments. Instead of directly going to the proof, in the next
section we heuristically explain our strategy.

2.3.1 Heuristics
Herein we explain our heuristic strategy to prove Theorem 2.3.1. We set

As,t := Us,t((t− s)H , B − a)(t− s)1−H .

In view of Theorem 1.1.1, our goal is to show

E[As,t|Fv] ≈
cH
2
E[Ls,t(a)|Fv]. (2.15)

Indeed, once the estimate (2.15) is proven, the rest of the argument is similar to the proof of
Theorem 2.1.2.
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We thus explain heuristically how to prove (2.15). For simplicity, we set a = 0, and we
write ε := (t− s)H . (Strictly speaking, we actually introduce another parameter ζ going to
infinity and set ε := ( t−s

ζ
)H , but for simplicity here we set ζ = 1.) Let us introduce another

parameter u ∈ (v, s) (in mind t− s≪ s− u≪ u− v), and, recalling the Mandelbrot–van
Ness representation, for r ∈ [s, t] we decompose

Br =

∫ v

−∞
K(r, θ)dWθ +

∫ u

v

K(r, θ)dWθ +

∫ r

u

K(r, θ)dWθ

=: Xr + Yr + Zr.

In the interval [s, t] the smooth processes X and Y do not change much compared to Z.
Therefore, we can freeze time of X and Y (Lemma 2.3.8):

E[Us,t(ε, B)|Fv] ≈ E[Us,t(ε,Xs + Ys + Z)|Fv].

But we see

E[Us,t(ε,Xs + Ys + Z)|Fv] = E[Us,t(ε, x+ Ys + Z)]|x=Xs ,

and the Gaussian change of variable to Y yields

E[Us,t(ε, x+ Ys + Z)] = e
− 1

2
( x
σY

)2E
[
e

xYs
σ2
Y Us,t(ε, Ys + Z)

]
,

where σY is the variance of Ys (Lemma 2.3.10).
For Us,t(ε, Ys+Z) to be positive, Ys must be around 0. (In other words, if Ys is far away

from 0, the process Z must move quite a lot, which is costly.) Therefore (Lemma 2.3.11),

E
[
e

xYs
σ2
Y Us,t(ε, Ys + Z)

]
≈ E[Us,t(ε, Ys + Z)]

≈ E
[
Us,t(ε, Y + Z)

]
.

As v ≪ u≪ s, we have σY ≈ σY+Z , with σY+Z the variance of Y + Z (Lemma 2.3.14).
In the end, we have (Lemma 2.3.7)

E[Us,t(ε, B)|Fv] ≈ E
[
Us,t(1, Y + Z)

]
e
− 1

2
( Xs
σY +Z

)2

.

We now observe (Lemma 2.3.17)

E
[ ∫ t

s

δ0(Br)dr
∣∣∣Fv

]
≈

∫ t

s

E[δ0(Bs)|Fv]dr

=
1√

2πσY+Z

e
− X2

s
2σ2

Y +Z (t− s).
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It is not obvious, but in Lemma 2.3.16 we prove

√
2πσY+Z(t− s)−HE[Us,t(ε, Y + Z)] ≈ cH

2
.

Now we see (2.15). With this heuristic argument in mind, we move to a rigorous proof in
the next section.

2.3.2 Convergence to the local time
Estimates on level crossings

The following process will appear in our argument.

Definition 2.3.2. We denote by B = BH the Riemann-Liouville process

Bt :=
∫ t

0

K(t, r)dWr.

In view of the Mandelbrot–van Ness representation (1.25), we have

Bt =

∫ 0

−∞
K(t, r)dWr + Bt.

We begin with three elementary lemmas.

Lemma 2.3.3 (scaling of U ). We have the following scaling property: for λ > 0,

(Us,t(ε,B + ρ))s<t,ε>0,ρ∈R
d
= (Uλ1/Hs,λ1/H t(λε,B + λρ))s<t,ε>0,ρ∈R.

A similar result holds with B replaced by B.

Proof. As in Lemma 2.2.1, it follows from the scaling property of B.

Definition 2.3.4. We set

Ūs,t(ε, w) := Us,t(ε, w) + 1{ws∈(0,ε)}.

Lemma 2.3.5 (sub/super-additivity of U ). For s < u < t we have

Us,t(ε, w) ≥ Us,u(ε, w) + Uu,t(ε, w), Ūs,t(ε, w) ≤ Ūs,u(ε, w) + Ūu,t(ε, w).
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v u t
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Figure 2.5: Parameters for Lemma 2.3.7

Proof. We have

Us,t(ε, w) = Us,u(ε, w) + Uu,t(ε, w) + 1

if there exist a < u < b such that wa = 0, wb = ε and wr ∈ (0, ε) for all r ∈ (a, b), and
otherwise

Us,t(ε, w) = Us,u(ε, w) + Uu,t(ε, w).

Lemma 2.3.6. There exists a positive constant κ = κ(H) such that for a ∈ R, ρ ∈ (0,∞),
s < t and p ∈ (0,∞) we have

∥Us,t(ρ,B − a)∥Lp(P) ≲H,p,ρ (t− s)κ.

A similar estimate holds with B replaced by B.

Proof. This follows from the obvious inequalityUs,t(ρ,B−a) ≤ Js,t(ρ,B) and the estimate
(2.11).

We introduce some notation which will be used throughout Section 2.3.2. Fix ζ ≥ 1. At
the very end, we let ζ → ∞. (The parameter ζ corresponds to the parameter m in [Dur19,
Theorem 6.4.1].) We fix v < u < s < t with t− s≪ s− u≪ u− v and set ε := ( t−s

ζ
)H ,

as shown in Figure 2.5. We set

Xr :=

∫ v

−∞
K(r, θ)dWθ − a, Yr :=

∫ u

v

K(r, θ)dWθ, Zr :=

∫ r

u

K(r, θ)dWθ

for r ∈ [s, t]. Then

E[Us,t(ε, B − a)|Fv] = E[Us,t(ε, x+ Y + Z)]|x=X .
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Finally, we write

σ2
Y := E[Y 2

s ] =
1

2H
{(s− v)2H − (s− u)2H}, (2.16)

σ2
Y+Z := E[(Ys + Zs)

2] =
1

2H
(s− v)2H . (2.17)

In the spirit of the shifted stochastic sewing (Theorem 1.1.1), we will estimate

E[Us,t(ε, B − a)|Fv].

The goal of this section is to prove the following estimate.

Lemma 2.3.7. Let H < 1
2

and p ∈ (1,∞). We further let v < s < t and ζ ∈ [1,∞), and
set ε := ( t−s

ζ
)H . For κ ∈ (0, 1), if t−s

s−v is sufficiently small, we have

E[Us,t(ε, B − a)|Fv] =
E[K̄0,ζ(1, B)]

2
√
2πσY+Z

e
− 1

2
( Xs
σY +Z

)2
(t− s

ζ

)H
+Rv,s,t, (2.18)

where

∥Rv,s,t∥Lp(P) ≲p,ζ,κ

( t− s

s− v

)(2−κ)H(1−H)

(t− s)−κH .

The proof of Lemma 2.3.7 will be built on several technical lemmas. For the sake of the
next lemma, we recall the Riemann-Liouville operator (e.g. [Pic11])

Iαf(r) :=
1

Γ(α)

∫ r

s

(r − θ)α−1f(θ)dθ, for α > 0.

If f is Lipschitz with fs = 0 and α ∈ (−1, 0], we set

Iαf(r) :=
1

Γ(1 + α)

∫ r

s

(r − θ)αḟ(θ)dθ.

The family (Iα)α>−1 has the semigroup property IαIβ = Iα+β .

Lemma 2.3.8. For p ∈ (1,∞) and κ ∈ (1− p−1, 1), there exists a positive constant c such
that if (t− s)(s− u)−1 is sufficiently small, then

∥E[Us,t(ε, B − a)|Fu]− E[Us,t(ε,Xs + Ys + Z)|Fu]∥Lp(P)

≲p,ζ ∥Us,t(ε, B − a)∥1−κL1(P)e
−ca2

( t− s

s− u

)(1−H)

.
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Proof. The proof is similar to [Pic08, Lemma A.1]. We have

E[Us,t(ε,Xs + Ys + Z)|Fu] = E[Us,t(ε, xs + ys + Z)]|x,=X,y=Y

and
E[Us,t(ε, xs + ys + Z)] = E[Us,t(ε, x+ y + w + Z)]

where
wr := −(xr + yr − xs − ys).

Therefore, since ws = 0,
w = I1ẇ = IH− 1

2
I 3

2
−Hẇ

and
wr +

∫ r

s

K(r, θ)dWθ =

∫ r

s

K(r, θ)d
(
Wθ + c1

(
I 3

2
−Hẇ

)
θ

)

for some constant c1 depending only on H .
By Girsanov’s theorem,

E[Us,t(ε, x+ y + w + Z)] = E
[
Us,t(ε, x+ y + Z)

× exp
(
c1

∫ t

s

d

dθ
I 3

2
−HẇdWθ −

c21
2

∫ t

s

∣∣∣ d
dθ
I 3

2
−Hẇ

∣∣∣
2

dθ
)]
.

Therefore, if p−1 + q−1 = 1, by Hölder’s inequality,

|E[Us,t(ε, x+ y + Z)]− E[Us,t(ε, xs + ys + Z)]|

≲ E
[(

exp
(
c1

∫ t

s

d

dθ
I 3

2
−HẇdWθ −

c21
2

∫ t

s

∣∣∣ d
dθ
I 3

2
−Hẇ

∣∣∣
2

dθ
)
− 1

)q] 1
q

× E[Us,t(ε, x+ y + Z)p]
1
p .

Since the random variable ∫ t

s

d

dθ
I 3

2
−Hẇ(θ)dWθ

is Gaussian, we have

E
[(

exp
(
c1

∫ t

s

d

dθ
I 3

2
−HẇdWθ −

c21
2

∫ t

s

∣∣∣ d
dθ
I 3

2
−Hẇ

∣∣∣
2

dθ
)
− 1

)q] 1
q

≲q

(∫ t

s

∣∣∣ d
dθ
I 3

2
−Hẇ

∣∣∣
2

dθ
) 1

2
exp

(
Cq

∫ t

s

∣∣∣ d
dθ
I 3

2
−Hẇ

∣∣∣
2

dθ
)
.
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Hence, by setting

Ss,t :=

∫ t

s

∣∣∣ d
dθ
I 3

2
−H(Ẋ + Ẏ )

∣∣∣
2

dθ,

we have

∥E[Us,t(ε, B − a)|Fu]− E[Us,t(ε,Xs + Ys + Z)|Fu]∥Lp(P)

≲ E
[
Eu[Us,t(ε, B − a)p]S

p
2
s,te

pCqSs,t

] 1
p

≤ ∥Us,t(ε, B − a)∥Lp1 (P)

∥∥∥S
1
2
s,te

CqSs,t

∥∥∥
Lq1 (P)

,

where p−1
1 + q−1

1 = p−1. Choose p2 so that p−1
1 = (1− κ) + κp−1

2 (since κ > 1− p−1, this
is possible by choosing p1 close to p). By interpolation,

∥Us,t(ε, B − a)∥Lp1 (P) ≤ ∥Us,t(ε, B − a)∥1−κL1(P)∥Us,t(ε, B − a)∥κLp2 (P).

We have

∥Us,t(ε, B − a)∥Lp2 (P) ≤ P(∥B∥L∞([0,1]) ≥ a)
1
2∥Us,t(ε, B − a)∥L2p2 (P)

≲ e−c2a
2∥Us,t(ε, B − a)∥L2p2 (P).

The scaling property (Lemma 2.3.3) gives

∥Us,t(ε, B − a)∥L2p2 (P) = ∥Us/(t−s),t/(t−s)(ζ−H , B − (t− s)−Ha)∥L2p2 (P).

By Lemma 2.3.6,

∥Us/(t−s),t/(t−s)(ζ−H , B − (t− s)−Ha)∥L2p2 (P) ≲p2,ζ 1.

It remains to see
∥∥∥S

1
2
s,te

CqSs,t

∥∥∥
Lq1 (P)

≲
( t− s

s− u

)1−H
, if

t− s

s− u
is sufficiently small.

This was essentially proven in [Pic08, Lemma A.1] (our Ss,t corresponds to L therein).

Remark 2.3.9. We note that a similar reasoning shows that for p < p1 < ∞ if t−s
s−u is

sufficiently small, we have

∥Us,t(ε, Ys + Z)∥Lp(P) ≲ζ,p,p1 ∥Us,t(ε, Y + Z)∥Lp1 (P).
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Lemma 2.3.10. Recall σY from (2.16). We have the estimate

E[Us,t(ε,Xs + Ys + Z)|Fv] = e
− 1

2
(Xs
σY

)2E
[
e

XsYs
σ2
Y Us,t(ε, Ys + Z)

∣∣∣Fv

]
.

Proof. Since X, Y and Z are independent,

E[Us,t(ε,Xs + Ys + Z)|Fv] = E[E[Us,t(ε, xs + ys + Z)]|(x,y)=(X,Y )|X].

If we set F (η) := E[Us,t(ε, η + Z)] (η ∈ R), then

E[F (xs + Ys)] =
1√
2π

∫

R
F (xs + σY η)e

− η2

2 dη

=
1√
2π

∫

R
F (σY η)e

− 1
2
(η−σ−1

Y xs)2dη

= e
− 1

2
( xs
σY

)2E
[
e

Ysxs
σ2
Y F (Ys)

]
.

The claim thus follows.

Lemma 2.3.11. For every p1 ∈ (1,∞), if t−s
s−u is sufficiently small, then

∣∣∣E
[
e

xsYs
σ2
Y Us,t(ε, Ys + Z)

]
− E[Us,t(ε, Ys + Z)]

∣∣∣

≲H,p1

|xs|(t− u)H

σ2
Y

e
c(

|xs|(t−u)H

σ2
Y

)2∥Us,t(ε, Y + Z)∥Lp1 (P)

with c depending only on H and p1.

Proof. For Us,t(ε, Ys +Z) to be non-zero, we must have infr∈[s,t] |Ys +Zr| = 0. Therefore,

E
[
e

xsYs
σ2
Y Us,t(ε, Ys + Z)

]
− E[Us,t(ε, Ys + Z)]

= E
[(
e

xsYs
σ2
Y − 1

)
Us,t(ε, Ys + Z)1{∥Z∥L∞([s,t])≥|Ys|}

]
.

Using the inequality
|eλ − 1| ≤ e|λ||λ|, λ ∈ R,

we estimate
∣∣∣E

[(
e

xsYs
σ2
Y − 1

)
Us,t(ε, Ys + Z)1{∥Z∥L∞([s,t])≥|Ys|}

]∣∣∣

≤ |xs|
σ2
Y

E
[
e

|xs|∥Z∥L∞([s,t])

σ2
Y ∥Z∥L∞([s,t])Us,t(ε, Ys + Z)

]
,
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which, by Hölder’s inequality, is bounded by

E[Us,t(ε, Ys + Z)p1 ]
1
p1E[∥Z∥p2L∞([s,t])]

1
p2E

[
e

p3|xs|∥Z∥L∞([s,t])

σ2
Y

] 1
p3 ,

where p1, p2, p3 ∈ (1,∞) satisfy

1

p1
+

1

p2
+

1

p3
= 1.

By Remark 2.3.9, if t−s
s−u is sufficiently small, we have

E[Us,t(ε, Ys + Z)p1 ]
1
p1 ≲p1 E[Us,t(ε, Y + Z)p4 ]

1
p4 , p4 := p21.

Recalling B from Definition 2.3.2, the scaling property yields

E[∥Z∥p2L∞([s,t])]
1
p2 ≤ E[∥Z∥p2L∞([u,t])]

1
p2 = (t− u)HE[∥B∥p2L∞([0,1])]

1
p2

and similarly

E
[
e

p3|xs|∥Z∥L∞([s,t])

σ2
Y

]
≤ E

[
e

p3|xs|(t−u)H

σ2
Y

∥B∥L∞([0,1])
]
.

Since ∥B∥L∞([0,1]) has a Gaussian tail by Fernique’s theorem, there exists a constant c
depending only on H such that

E
[
e

p3|xs|(t−u)H

σ2
Y

∥B∥L∞([0,1])
]
≲ e

c(
p3|xs|(t−u)H

σ2
Y

)2

.

Now the claim is proved.

Lemma 2.3.12. For every p1, p2 ∈ (1,∞) we have

∥Us,t(ε, Y + Z)∥Lp1 (P) ≲ζ,p1,p2

( t− s

s− v

) H
p1p2 .

Proof. By the scaling,

∥Us,t(ε, Y + Z)∥Lp1 (P) = ∥Us−v,t−v(ε,B)∥Lp1 (P) = ∥U s−v
t−s

, t−v
t−s

(ζ−H ,B)∥Lp1 (P).
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We set k1 := s−v
t−s and k2 := t−v

t−s , and note that k2 − k1 = 1. We observe

∥Uk1,k2(ζ−H ,B)∥p1Lp1 (P)

=
∑

a∈Z

E
[
Uk1,k2(ζ

−H ,B)p11{Bk1
∈(a−1,a]}

]

=
∑

a∈Z

E
[
Uk1,k2(ζ

−H ,B)p11{Bk1
∈(a−1,a]}1{maxr∈[k1,k2]

|Br−Bk1
|≥|a|−1}

]

≤
∑

a∈Z

E[Uk1,k2(ζ−H ,B)p1q2 ]
1
q2 P( max

r∈[k1,k2]
|Br − Bk1| ≥ |a| − 1)

1
q2

× P(Bk1 ∈ (a− 1, a])
1
p2 ,

where
1

p2
+

1

2q2
= 1.

By Lemma 2.3.6,

E[Uk1,k2(ζ−H ,B)p1q2 ]
1
q2 ≲p1,p2,ζ 1.

Since

∥Br1 − Br2∥2L2(P) ≤ ∥Br1 −Br2∥2L2(P) ≲ |r1 − r2|2H ,

by Kolmogorov’s continuity theorem and Fernique’s theorem we obtain

P( max
r∈[k1,k2]

|Br − Bk1| ≥ |a| − 1) ≲ e−ca
2

.

Finally, we see P(Bk1 ∈ (a− 1, a]) ≲ k−H1 , and the claim follows.

Lemma 2.3.13. For every p1 ∈ (1,∞), if t−s
s−u is sufficiently small, we have

|E[Us,t(ε, Ys + Z)]− E[Us,t(ε, Y + Z)]| ≲ζ,p1

( t− s

s− v

)H/p1( t− s

s− u

)1−H
.

Proof. As in Lemma 2.3.8, we get

|E[Us,t(ε, Ys + Z)]− E[Us,t(ε, Y + Z)]| ≲ζ,p1 ∥Us,t(ε, Y + Z)∥Lp1

( t− s

s− u

)1−H
.

We then apply Lemma 2.3.12.
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Lemma 2.3.14. If s−u
s−v ≤ 1

2
, for every p1 ∈ (1,∞), we have

∣∣∣e−
1
2
( Xs
σY +Z

)2 − e
− 1

2
(Xs
σY

)2
∣∣∣ ≲p1 e

− 1
2p1

( Xs
σY +Z

)2
(s− u

s− v

)2H

.

Proof. Recalling (2.16), we have

|σ−2
Y+Z − σ−2

Y | = σ−2
Y+Zσ

−2
Y

(s− u)2H

2H
≲ σ−2

Y+Z

(s− u

s− v

)2H

.

Using the inequality 1− e−λ ≤ λ for λ ≥ 0, we observe

e
− 1

2
( Xs
σY +Z

)2 − e
− 1

2
(Xs
σY

)2
= e

− 1
2
( Xs
σY +Z

)2
{
1− e−

X2
s
2

(σ−2
Y −σ−2

Y +Z)
}

≲ e
− 1

2
( Xs
σY +Z

)2

X2
s (σ

−2
Y − σ−2

Y+Z)

≲ e
− 1

2
( Xs
σY +Z

)2

σ−2
Y+ZX

2
s

(s− u

s− v

)2H

.

Since supλ≥0 λe
−ελ <∞ for every ε > 0, we obtain the claimed estimate.

Lemma 2.3.15. Let p ∈ (1,∞). For κ ∈ (1− p−1, 1) and p1 ∈ (1, 2), if t−s
s−u and t−u

u−v are
sufficiently small, we have

E[Us,t(ε, B − a)|Fv] = E[Us−v,t−v(ε,B)]e−
1
2
( Xs
σY +Z

)2

+R1
v,u,s,t +R2

v,u,s,t,

where

∥R1
v,s,t∥Lp(P) ≲p,ζ,κ E[Us,t(ε, B − a)]1−κe−ca

2
( t− s

s− u

)1−H

with c being a constant depending only on H, κ, p, and almost surely

|R2
v,u,s,t| ≲p1,ζ e

− 1
2p1

( Xs
σY +Z

)2 (t− u)H

σY+Z

( t− s

s− v

)H/p1

+ e
− 1

2
(Xs
σY

)2
( t− s

s− v

)H/p1( t− s

s− u

)1−H
.

Proof. In view of Lemma 2.3.10, we decompose

E[Us,t(ε, B − a)|Fv] = R1 +R2 +R3 +R4 +R5,
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where

R1 := E[Us,t(ε, B − a)|Fv]− E[Us,t(ε,Xs + Ys + Z)|Fv],

R2 := e
− 1

2
(Xs
σY

)2E
[
e

XsYs
σ2
Y Us,t(ε, Ys + Z)

∣∣∣Fv

]
− e

− 1
2
(Xs
σY

)2E[Us,t(ε, Ys + Z)],

R3 := e
− 1

2
(Xs
σY

)2E[Us,t(ε, Ys + Z)]− e
− 1

2
(Xs
σY

)2E[Us,t(ε, Y + Z)],

R4 := e
− 1

2
(Xs
σY

)2E[Us,t(ε, Y + Z)]− e
− 1

2
( Xs
σY +Z

)2E[Us,t(ε, Y + Z)],

R5 := e
− 1

2
( Xs
σY +Z

)2E[Us,t(ε, Y + Z)] = E[Us−v,t−v(ε,B)]e−
1
2
( Xs
σY +Z

)2

.

By Lemma 2.3.8 ,

∥R1∥Lp(P) ≲H,p,ζ E[Us,t(ε, B − a)]1−κe−ca
2
( t− s

s− u

)1−H
.

By Lemma 2.3.13,

|R3| ≲ζ,p1 e
− 1

2
(Xs
σY

)2
( t− s

s− v

)H/p1( t− s

s− u

)1−H
.

To estimate R2, by Lemma 2.3.11,

|R2| ≲ e
− 1

2
(Xs
σY

)2 |Xs|(t− u)H

σ2
Y

e
c(

|Xs|(t−u)H

σ2
Y

)2∥Us,t(ε, Y + Z)∥Lp1 (P).

If t−u
u−v is sufficiently small, we have

c
(t− u)H

σY
≤ 1

2
− 1

2p1
,

hence

|R2| ≲ e
− 1

2p1
(Xs
σY

)2 |Xs|(t− u)H

σ2
Y

∥Us,t(ε, Y + Z)∥Lp1 (P).

Using the estimate supλ≥0 λe
−ελ2 <∞ and Lemma 2.3.12, we get

|R2| ≲ e
− 1

2p21
(Xs
σY

)2 (t− u)H

σY

( t− s

s− v

)H/p21

≲ e
− 1

2p21
( Xs
σY +Z

)2 (t− u)H

σY+Z

( t− s

s− v

)H/p21
.
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Finally, we estimate R4. By Lemma 2.3.14, we get

|R4| ≲p1 ∥Us,t(ε, Y + Z)∥L1(P)e
− 1

2p1
( Xs
σY +Z

)2
(s− u

s− v

)2H

By Lemma 2.3.12, we obtain

|R4| ≲ e
− 1

2p1
( Xs
σY +Z

)2
(s− u

s− v

)2H( t− s

s− v

)H/p21

≲ e
− 1

2p21
( Xs
σY +Z

)2 (t− u)H

σY+Z

( t− s

s− v

)H/p21
.

Therefore, we set R1
v,u,s,t := R1 and R2

v,u,s,t := R2 +R3 +R4.

As a final ingredient in the proof of Lemma 2.3.7, we estimate E[Us−v,t−v(ε,B)].
Lemma 2.3.16. For every κ ∈ (0, 1) we have the estimate
∣∣∣
√
2πζH(t− s)−HσY+ZE[Us−v,t−v(ε,B)]−

1

2
E[K̄ζ

0 (1, B)]
∣∣∣

≲κ,ζ (t− s)−κH
( t− s

s− u

)1−H
+
( t− s

s− u

)−H( t− s

s− v

)(1−κ)H
.

Proof. By taking the expectation in (2.18) and integrating over R with respect to a, we
get the claimed estimate. Indeed, by the scaling (Lemma 2.3.3) and the stationarity of K̄
(Lemma 2.2.4),∫

R
E[Us,t(ε, B − a)]da =

∫

R
E[U s

t−s
ζ, t

t−s
ζ(1, B − ζH(t− s)−Ha)]da

= ζ−H(t− s)H
∫

R
E[U s

t−s
ζ, t

t−s
ζ(1, B − a)]da

=
(t− s)H

2ζH
E[K̄0,ζ(1, B)]. (2.19)

We see ∫

R
e
− 1

2
( Xs−a
σY +Z

)2

da =
√
2πσY+Z ≲ (s− v)H .

Therefore,
∣∣∣
√
2πσY+ZE[Us−v,t−v(ε,B)]−

1

2
E[K̄ζ

0 (1, B)]
(t− s

ζ

)H∣∣∣

≲ζ,κ

( t− s

s− u

)1−H
∫

R
E[Us,t(ε, B − a)]1−κe−ca

2

da+ (t− u)H
( t− s

s− v

)(1−κ)H

+ (s− v)H
( t− s

s− v

)(1−κ)H( t− s

s− u

)1−H
.

78



2.3. LOCAL TIME VIA LEBESGUE PARTITIONS

By Jensen’s inequality and (2.19),
∫

R
E[Us,t(ε, B − a)]1−κe−ca

2

da ≲
(∫

R
E[Us,t(ε, B − a)]e−ca

2

da
)1−κ

≲ζ (t− s)(1−κ)H .

The claimed estimate is now established.

Proof of Lemma 2.3.7. By Lemma 2.3.15 and Lemma 2.3.16, we have

∥∥∥Us,t(ε, B − a)− 1

2
E[K̄ζ

0 (1, B)]
1√

2πσY+Z

e
− 1

2
( Xs
σY +Z

)2
(t− s

ζ

)H∥∥∥
Lp(P)

≲
( t− s

s− u

)1−H
(t− s)−κ +

( t− s

s− u

)−H( t− s

s− v

)H(2−κ)

if t−s
s−u and t−u

u−v are sufficiently small. To optimize, we choose u so that

t− s

s− u
=

( t− s

s− v

)(2−κ)H
.

Note that, as H < 1
2
, the exponent (2− κ)H is less than 1. Therefore, if t−s

s−v is sufficiently
small, then t−s

s−u and t−u
u−v are sufficiently small as well. This gives the claimed bound.

Estimates on the local time

The following is the last technical ingredient for Theorem 2.3.1.

Lemma 2.3.17. Let H < 1
2
. We set

Ãs,t :=E[δ0(Bs − a)|Fs−(t−s)](t− s) (2.20)

=

√
H

π
e
− H

(t−s)2H
E[Bs−a|Fs−(t−s)]

2

(t− s)1−H .

Then, there exists a δ > 0 such that for any p <∞ and for any partition π of [0, 1],
∥∥∥L1(a)−

∑

[s,t]∈π

Ãs,t

∥∥∥
Lp(P)

≲p |π|δ.

Proof. We use the shifted stochastic sewing (Theorem 1.1.1). To this end, it suffices to
check

∥Ls,t(a)∥Lp(P) ≲ (t− s)1−H , ∥Ãs,t∥Lp(P) ≲ (t− s)1−H (2.21)
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and

∥E[Ls,t(a)− Ãs,t|Fv]∥Lp(P) ≲ (s− v)−1−H(t− s)2, s− v ≤ t− s. (2.22)

The estimates (2.21) are trivial, hence we focus on the estimate (2.22).
We have

E[Ls,t(a)− Ãs,t|Fv] =

√
H

π

∫ t

s

{
e
− H

(r−v)2H
E[Br−a|Fv ]2

(r − v)−H

− e
− H

(s−v)2H
E[Bs−a|Fv ]2

(s− v)−H
}
dr.

For simplification, we replace B − a by B. We decompose the integrand as R1 +R2 +R3,
where

R1 := e
− H

(r−v)2H
E[Br|Fv ]2

(r − v)−H − e
− H

(r−v)2H
E[Br|Fv ]2

(s− v)−H ,

R2 := e
− H

(r−v)2H
E[Br|Fv ]2

(s− v)−H − e
− H

(s−v)2H
E[Br|Fv ]2

(s− v)−H ,

R3 := e
− H

(s−v)2H
E[Br|Fv ]2

(s− v)−H − e
− H

(s−v)2H
E[Bs|Fv ]2

(s− v)−H .

Since
0 ≤ (s− v)−H − (r − v)−H ≲ (s− v)−H−1(r − s),

we have
|R1| ≲ (s− v)−H−1(t− s).

We observe

e
− H

(r−v)2H
E[Br|Fv ]2 − e

− H

(s−v)2H
E[Br|Fv ]2

= e
− H

(r−v)2H
E[Br|Fv ]2

(1− e−H((s−v)−2H−(r−v)−2H)E[Br|Fv ]2)

≲ e
− H

(r−v)2H
E[Br|Fv ]2E[Br|Fv]

2((s− v)−2H − (r − v)−2H)

≲ e
− H

(r−v)2H
E[Br|Fv ]2E[Br|Fv]

2(s− v)−2H−1(r − s)

≲ (r − v)2H(s− v)−2H−1(r − s).

Hence,
|R2| ≲ (s− v)−1−H(t− s).

Finally, we estimate R3. Suppose that E[Br|Fv]
2 ≤ E[Bs|Fv]

2. Then,
∣∣∣e−

H

(s−v)2H
E[Br|Fv ]2 − e

− H

(s−v)2H
E[Bs|Fv ]2

∣∣∣

≤ e
− H

(s−v)2H
E[Br|Fv ]2 H

(s− v)2H
(E[Bs|Fv]

2 − E[Br|Fv]
2).
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Since
e
− H

(s−v)2H
E[Br|Fv ]2

(s− v)−H |E[Br|Fv]| ≲ 1,

we obtain
∣∣∣e−

H

(s−v)2H
E[Br|Fv ]2 − e

− H

(s−v)2H
E[Bs|Fv ]2

∣∣∣
≲ (s− v)−H |E[Bs|Fv]− E[Br|Fv]|+ (s− v)−2H |E[Bs|Fv]− E[Br|Fv]|2.

A similar estimate holds if E[Br|Fv]
2 ≥ E[Bs|Fv]

2. Therefore, it remains to note

∥E[Bs|Fv]− E[Br|Fv]∥Lp(P) ≲p (s− v)H−1(t− s).

Concluding estimates

Now we can finish the proof of Theorem 2.3.1. Let π be a partition of [0, 1]. By Lemma
2.3.5,

ε
1
H
−1U0,1(ε, B − a) ≥

∑

[s,t]∈π

ε
1
H
−1Us,t(ε, B − a), (2.23)

ε
1
H
−1U0,1(ε, B − a) ≤

∑

[s,t]∈π

ε
1
H
−1Ūs,t(ε, B − a). (2.24)

Lemma 2.3.18. Let H < 1
2
, p ∈ [2,∞), ε ∈ (0, 1) and ζ ∈ [1,∞). Then, we have

ε
1
H
−1U0,1(ε, B − a) ≥ 1

2ζ
E[K̄0,ζ(1, B)]L1(a)−Rε,

where for some δ depending only on H we have

∥Rε∥Lp(P) ≲p,ζ ε
δ.

Proof. We define Ã by (2.20), and we set

Âs,t := Us,t(ζ
−H(t− s)H , B − a)

(t− s

ζ

)1−H
.

By Lemma 2.3.6, we have

∥Âs,t∥Lp(P) ≲ (t− s)1−H .
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By Lemma 2.3.7,

E[Âs,t|Fv] =
1

2ζ
E[K̄ζ

0 (1, B)]

√
H

π(s− v)2H
e
−HE[Bs|Fv ]

2

(s−v)2H (t− s) +Rv,s,t

=
1

2ζ
E[K̄ζ

0 (1, B)]E[Ãs,t|Fv] +Rv,s,t,

where

∥Rv,s,t∥Lp(P) ≲p,ζ,κ

( t− s

s− v

)(2−κ)H(1−H)

(t− s)1−(1+κ)H .

for any κ ∈ (0, 1). Since H < 1
2
, choosing κ sufficiently small, we can suppose that

1− (1 + κ)H >
1

2
, 1− (1 + κ)H + (2− κ)H(1−H) > 1.

Hence, by Theorem 1.1.1, with some δ = δ(H),
∥∥∥
∑

[s,t]∈π

(
Âs,t −

1

2ζ
E[K̄ζ

0 (1, B)]Ãs,t

)∥∥∥
Lp(P)

≲p,ζ |π|δ.

In particular, considering a partition of size ζε 1
H , the claim follows in view of (2.23) and

Lemma 2.3.17.

Lemma 2.3.19. Let H < 1
2
, p ∈ [2,∞), ε ∈ (0, 1) and ζ ∈ [1,∞). Then, we have

ε
1
H
−1U0,1(ε, B − a) ≤ 1

2ζ
(E[K̄0,ζ(1, B)] + 1)L1(a) + R̄ε,

where for some δ depending only on H we have

∥R̄ε∥Lp(P) ≲p,ζ ε
δ.

Proof. In view of (2.24), the proof is similar to Lemma 2.3.18.

Proof of Theorem 2.3.1. It readily follows from Lemma 2.3.18 and Lemma 2.3.19, and the
estimate (2.12).
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2.3.3 Lemiuex type result
Theorem 2.3.1 tells that for any a ∈ R and for any ε = (εn)

∞
n=1 with polynomial decay,

there exists a measurable set Ωa,ε such that P(B ∈ Ωa,ε) = 1 and for every w ∈ Ωa,ε the
limit

lim
n→∞

ε
1
H
−1

n U0,t(εn, w − a)

exists for every t ≥ 0. As observed by Lemieux [Lem83], the quantitative estimate in
Theorem 2.3.1 implies that we can take Ωa,ε uniformly over a and ε. Furthermore, we can
remove the polynomial decaying condition.

We begin with the following lemma.

Lemma 2.3.20. We define the grid

Gk := {ik−7 : i ∈ Z, |i| ≤ k8}, k ∈ N.

We then have

lim
k→∞

max
x∈Gk

∣∣k−6( 1
H
−1)U0,t(k

−6, BH − x)− cH
2
LHt (x)

∣∣ = 0 a.s.

Proof. In the notation of Theorem 2.3.1, we have

max
x∈Gk

∣∣k−6( 1
H
−1)U0,t(k

−6, BH − x)− cH
2
LHt (x)

∣∣ ≤ ζ−1 sup
x∈R

Lt(x) + max
x∈Gk

Rk,ζ,x.

Since x 7→ Lt(x) is continuous and Lt(·) is supported on

{x ∈ R : |x| ≤ ∥B∥L∞([0,t])},
we see that supx∈R Lt(x) <∞ a.s. By Theorem 2.3.1,

∥max
x∈Gk

Rk,ζ,x∥pp ≤
∑

x∈Gk

∥Rk,ζ,x∥pp ≲p,ζ k
−pδ+8,

where δ is independent of p. Since p can be arbitrarily large, the Borel–Cantelli lemma
implies that almost surely we have

lim
k→∞

max
x∈Gk

Rk,ζ,x = 0

and

lim sup
k→∞

max
x∈Gk

∣∣k−6( 1
H
−1)U0,t(k

−6, BH − x)− cH
2
LHt (x)

∣∣ ≤ ζ−1 sup
x∈R

Lt(x).

Since ζ is arbitrary, we complete the proof.
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Theorem 2.3.21. Let H ∈ (0, 1
2
). Almost surely, we have

lim
ε→0

sup
a∈R

∣∣ε 1
H
−1U0,t(ε, B − a)− cH

2
Lt(a)

∣∣ = 0 ∀t ≥ 0.

Proof. The proof follows [Lem83, Theorem II.2.4]. Due to the monotonicity of U and
L, we can fix a time t ≥ 0. By Lemma 2.3.20, we can find an Ω1 ⊆ Ω with P(Ω1) = 1
such that for any δ ∈ (0, 1) and ω ∈ Ω1 there exists an N = N(δ, ω) with the following
inequalities:

(k − 1)−6 − k−7 > k−6 ∀k ≥ N, (2.25)
∥B(ω)∥L∞([0,t]) < N − 1, (2.26)

sup
k≥N

max
x∈Gk

∣∣k−6( 1
H
−1)U0,t(k

−6, BH(ω)− x)− cH
2
LHt (x)(ω)

∣∣ < δ. (2.27)

The argument below holds on the event Ω1. For ε ≤ (N + 1)−6, there exists a unique
m = mε ≥ N + 1 such that

(m+ 1)−6 < ε
1
H
−1 ≤ m−6.

If |x| ≥ N − 1, then by (2.26) we have LHt (x) = 0. On the other hand, if |x| < N − 1, then
we define

xk := max
y∈Gk

{y ≤ x}

for all k ≥ N . Since x < xm−1 + (m− 1)−7, we have

• xm−1 ≤ x < x+ ε < xm−1 + (m− 1)−7 and

• x < xm+2 + (m+ 2)−7 < xm+2 + (m+ 2)−7 + (m+ 2)−6 < x+ ε,

where (2.25) is applied in the inequality of the second item. Hence, defining the two sets
Im−1 and Īm+2 as

Im−1 :=
[
xm−1, xm−1 + (m− 1)−7

]
, Īm+2 :=

[
x̄m+2, x̄m+2 + (m+ 2)−6

]
,

where x̄m+2 := xm+2 + (m+ 2)−7, we have the inclusions

Īm+2 ⊆ [x, x+ ε] ⊆ Im−1. (2.28)

Now we move to the bound on U . We first observe the monotonicity of U :

U0,t(ε1, B − x1) ≤ U0,t(ε2, B − x2)
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provided that [x2, x2 + ε2] ⊆ [x1, x1 + ε1]. The relation (2.28) thus yields

U0,t((m− 1)−7, B − xm−1) ≤ U0,t(ε, B − x) ≤ U0,t((m+ 2)−7, B − x̄m+2).

Hence,

sup
x∈R

∣∣ε 1
H
−1U0,t(ε, B − x)− cH

2
Lt(x)

∣∣ ≤ Aε + Āε +
cH
2

sup
x,y:|x−y|≤2ε

|Lt(x)− Lt(y)|,

where

Aε := sup
x∈Rmε−1

∣∣ε 1
H
−1U0,t((mε − 1)−6, BH − x)− cH

2
Lt(x)

∣∣,

Āε := sup
x∈Rmε+2

∣∣ε 1
H
−1U0,t((mε + 2)−6, BH − x)− cH

2
Lt(x)

∣∣.

By (2.27),

lim sup
ε→0

Aε + lim sup
ε→0

Āε ≤ 2δ.

Since δ is arbitrary, we conclude the proof.

Analogous to Us,t, we denote by Ds,t the total number of downcrossings

Ds,t(ε, w) := #
{
(u, v) ∈ ∆s,t : wv = 0, wu = ε, ∀r ∈ (u, v) wr ∈ (0, ε)

}
. (2.29)

By definition, we have the identity

K0,t(ε, w) =
∑

x∈εZ

{U0,t(ε, w − x) +D0,t(ε, w − x)}.

Furthermore, since the total number of upcrossings and that of downcrossings can differ by
at most 1, almost surely we have

lim
ε→0

sup
x∈R

∣∣ε 1
H
−1D0,t(ε, B − x)− cH

2
Lt(x)

∣∣ = 0 ∀t ≥ 0,

or

lim
ε→0

sup
x∈R

∣∣ε 1
H
−1(U0,t(ε, B − x) +D0,t(ε, B − x))− cHLt(x)

∣∣ = 0 ∀t ≥ 0, (2.30)

Theorem 2.3.22. Let H ∈ (0, 1
2
). Almost surely, we have

lim
ε→0

sup
ρ∈R

|ε 1
HK0,t(ε, B − ρ)− cHt| = 0, ∀t ≥ 0.
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Proof. We observe

sup
ρ

|ε1/HK0,t(ε, B − ρ)− cHt|

= sup
ρ

∣∣∣ε1/HK0,t(ρ,B − ρ)− cH

∫

R
LHt (a)da

∣∣∣

= sup
ρ

∣∣∣
∑

x∈ρ+εZ

∫ x+ε

x

{
ε

1
H
−1(U0,t(ε, B − x) +D0,t(ε, B − x))− cHLt(a)

}
da

∣∣∣

≲∥B∥L∞([0,t])
sup
x

{
ε

1
H
−1(U0,t(ε, B − x) +D0,t(ε, B − x))− cHLt(x)

}

+ sup
x,y:|x−y|≤ε

|Lt(x)− Lt(y)|.

In view of (2.30) and the uniform continuity of Lt(·), the claim follows.

2.4 A fractional excursion measure
Instead of counting level crossings, we can similarly count excursions. By so doing, we can
define a natural notion of an excursion measure of the fractional Brownian motion.

Definition 2.4.1. Let w be a continuous path and s < t. The set {r ∈ [s, t] : wr > 0} is
open in [s, t]. Therefore, we can write

{r ∈ [s, t] : w(r) > 0} =
⋃

λ∈Λ̄s,t(w)

Iλ(w),

where Iλ(w), λ ∈ Λ̄s,t(w), are disjoint intervals of the form [s, a), (a, b), (b, t] or [s, t]. We
set

Λs,t(w) := {λ ∈ Λ̄s,t(w) : w(inf Iλ(w)) = w(sup Iλ(w)) = 0}.
Note that removed intervals are of the form [s, a), (b, t] or [s, t]. For λ ∈ Λs,t(w) we define
eλ : R+ → R+ by

eλ(t) := w((t+ inf Iλ) ∧ sup Iλ).

We say that eλ is an excursion of w (see Figure 2.6). For a Borel subset Γ of C(R+,R+) we
set

ms,t(Γ, w) := #{λ ∈ Λs,t(w) : e
λ ∈ Γ}.

Note that m(·, w) is a measure on C(R+,R+) and that m(·, w) is supported on

E := {w ∈ C(R+,R+) : w(0) = 0, σ(w) > 0,∀t ≥ σ(w), wt = 0} \ {0},
where σ(w) := inf{t > 0 : wt = 0}.
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Figure 2.6: Excursions

The family (ms,t(Γ, w))s<t is similar to (Us,t(ε, w))s<t. As in Lemma 2.3.5, we can
prove the following.

Lemma 2.4.2. The two-parameter family (ms,t(Γ, w))s<t is superadditive: for r < s < t
we have

mr,t(Γ, w) ≥ mr,s(Γ, w) +ms,t(Γ, w).

Definition 2.4.3. We set

Ms,t(Γ, w) :=

∫

R
ms,t(Γ, w − ρ)dρ.

Lemma 2.4.4. Regarding M, we have the following.
(i) The family (M(Γ, w))s<t is superadditive.

(ii) (stationarity) For s < t we have Ms,t(Γ, B)
d
= M0,t−s(Γ, B).

Proof. The proof is similar to Lemma 2.2.4.

Definition 2.4.5. For Γ ∈ B(E) and t ∈ (0,∞) we consider

a(t) := E[M0,t(Γ, B)].

Then, by Lemma 2.4.4 we have a(s + t) ≥ a(s) + a(t). Therefore, the following limit
exists:

P̂ (Γ) := P̂H(Γ) := lim
t→∞

1

t
a(t) = sup

t∈(0,∞)

1

t
a(t) ∈ [0,∞].

Now we would like to show that P̂ is non-trivial. We begin with the lower bound. We
set

Eδ := {e ∈ E : max
t
e(t) ≥ δ}.
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Lemma 2.4.6. We have P̂ (Eδ) > 0.

Proof. By the superadditivity it suffices to show E[M0,1(Γ, B)] > 0. Then we note

E[M0,1(Γ, B)] ≥ P(max
t∈[0,1]

B(t) ≥ δ, B(1) < 0) > 0.

To prove the upper bound P̂ (Eδ) <∞, we introduce the following.

Definition 2.4.7. For Γ ∈ B(E) and a continuous path w, we set

ns,t(Γ, w) := ms,t(Γ, w) + 1{minr∈[s,t] w(r)≤0,w(t)>0},

and Ns,t(Γ, w) :=
∫
R ns,t(Γ, w − ρ)dρ.

Lemma 2.4.8. Regarding N, we have the following.
(i) The family (ns,t(Γ, w))s<t is subadditive.

(ii) (stationarity) For s < t we have Ns,t(Γ, B)
d
= N0,t−s(Γ, B).

Proof. We only prove (i), since the proof of (ii) is similar to Lemma 2.4.4-(ii). To prove (i),
we separate cases.

• Suppose that w(s) ≤ 0. In this case we have

nr,s(Γ, w) = nr,s(Γ, w) + ns,t(Γ, w).

• Suppose that w(s) > 0.

– If infu∈[s,t]w(s) > 0 then ns,t(Γ, w) = 0 and

nr,t(Γ, w) = nr,s(Γ, w) = nr,s(Γ, w) + ns,t(Γ, w).

The case is similar if infu∈[r,s]w(u) > 0.
– If infu∈[s,t]w(u) ≤ 0 and infu∈[r,s]w(u) ≤ 0, let e be the excursion of w such

that the starting point is less than s and the ending point is greater than s. Then,

mr,t(Γ, w) = mr,s(Γ, w) +ms,t(Γ, w) + 1{e∈Γ},

nr,t(Γ, w)−mr,t(Γ, w) = ns,t(Γ, w)−ms,t(Γ, w),

nr,s(Γ, w) = mr,s(Γ, w) + 1.

Therefore, we have nr,t(Γ, w) + 1{e/∈Γ} = nr,s(Γ, w) + ns,t(Γ, w).
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Again, by the subadditive ergodic theorem, the limit

P̃ (Γ) := lim
T→∞

1

T
E[N0,T (Γ, B)] = inf

T>0

1

T
E[N0,T (Γ, B)] (2.31)

exists. We will see that P̂ (Γ) = P̃ (Γ). But before that we see the following.

Lemma 2.4.9. We have P̃ (Eδ) <∞.

Proof. By (2.31), it suffices to show E[N0,1(Γ, B)] < ∞. Then, the proof is similar to
Lemma 2.2.5.

Lemma 2.4.10. We have P̂ = P̃ . In particular, P̂ (Eδ) <∞ for all δ > 0.

Proof. We have the inequalities

m0,T (Γ, B − ρ) ≤ n0,T (Γ, B − ρ) ≤ m0,T (Γ, B − ρ) + 1{|ρ|≤∥B∥L∞([0,T ])}.

Therefore,
P̂ (Γ) ≤ P̃ (Γ) ≤ P̂ (Γ) + lim sup

T→∞

2

T
E[∥B∥L∞([0,T ])].

By the scaling we have E[∥B∥L∞([0,T ])] = THE[∥B∥L∞([0,1])] and the claim follows.

Now we show that P̂ is a measure.

Lemma 2.4.11. The map B(E) ∋ Γ 7→ P̂ (Γ) ∈ [0,∞] defines a σ-finite measure on E .

Proof. We have E =
⋃
n∈N E1/n, and by Lemma 2.4.10 we have P̂ (E1/n) < ∞. Thus, it

suffices to show that P̂ is a measure. Let (Γn)∞n=1 be disjoint subsets from B(E). Since

T 7→ 1

T
E
[
M(Γ, B|[0,T ])

]

is non-decreasing, by the monotone convergence theorem,

P̂
(⋃

n

Γn

)
= lim

T→∞

1

T
E
[
M0,T

(⋃

n

Γn, B
)]

= lim
T→∞

∑

n

1

T
E[M0,T (Γn, B)]

=
∑

n

P̂ (Γn).
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Definition 2.4.12. We call the σ-finite measure P̂ = P̂H on E an excursion measure of the
fractional Brownian motion BH .

To see that P̂ is a natural notion of an excursion measure of B, we show that it satisfies
the self similar property (Proposition 2.4.13) and that for H = 1

2
it coincides with the usual

Brownian excursion measure (Proposition 2.4.16).

Proposition 2.4.13 (Self-similarity). For Γ ∈ B(E) and λ ∈ (0,∞) we set

λΓ := {λw : w ∈ Γ}, Γλ := {w ∈ E : wλ−1· ∈ Γ}.
Then we have

P̂ (λΓ) = λ1−1/HP̂ (Γλ1/H ).

Proof. We observe

P̂ (λΓ) = lim
T→∞

1

T

∫

R
E[m0,T (λΓ, B − ρ)]dρ

= lim
T→∞

1

T

∫

R
E[m0,T (Γ, λ

−1(B − ρ))]dρ

= lim
T→∞

1

T

∫

R
E[m0,T (Γ, λ

−1B − η)]λdη λ−1ρ = η

= λ lim
T→∞

1

T

∫

R
E[m0,T (Γ, Bλ−1/H · − η)]dη λ−1B

d
=Bλ−1/H ·

= λ lim
T→∞

1

T

∫

R
E[m0,λ−1/HT (Γλ−1/H , B − η)]dη

= λ1−1/HP̂ (Γλ−1/H ).

Corollary 2.4.14. For δ ∈ (0,∞) we have P̂H(Eδ) = cH
2
δ1−1/H .

Proof. By Proposition 2.4.13, we have

P̂H(Eδ) = P̂H(δE1) = δ1−1/HP̂ (E1).
It therefore remains to show P̂ (E1) = cH/2. To this end, we observe

m0,T (E1, B − ρ) ≤ U0,T (1, B − ρ) ≤ n0,T (E1, B − ρ). (2.32)

Integrating (2.32) with respect to ρ over R, we get

M0,T (E1, B) ≤
∫

R
U0,T (1, B − ρ)dρ ≤ N0,T (E1, B).

Taking the expectation, dividing them by T and letting T → ∞, we complete the proof.
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Corollary 2.4.15. We set σ(w) := inf{s > 0 : ws = 0} for w ∈ E . Then P̂ (σ > t) =
P̂ (σ > 1)t−(1−H).

Proof. If we set Γ := {w ∈ E : σ(w) > 1}, then using the notation in Proposition 2.4.13
we have λΓ = Γ and Γλ = {w ∈ E : σ(w) > λ}. Therefore, by Proposition 2.4.13 we have

P̂ (Γ) = λ1−1/HP̂ (Γλ−1/H ).

Setting λ := t−H we obtain the result.

Next, we show that P̂ 1
2 coincides with the standard Brownian excursion measure. To

distinguish it from the fractional Brownian motion, we write W := B1/2 for the Brownian
motion. A standard construction of its excursion measure P̌ for the Brownian motion is as
follows (e.g. [Blu92]). Let (Lt(x))t≥0 be the (occupation density) local time of W and let
β be the inverse local time at 0:

β(t) := inf{s : Ls(0) ≥ t}.

Then, recalling notation from Definition 2.4.1, the measure P̌ is given by3

P̌ (Γ) = E
[ ∑

λ∈Λ0,β(1)(W )

1{eλ∈Γ}

]
.

A natural question is if P̂ = P̌ for W . The answer is affirmative:

Proposition 2.4.16. For the Brownian motion W , we have P̂ = P̌ .

Proof. This is an easy consequence of the excursion formula ([Blu92, Eq.(3.27)]):

E
[ ∑

λ∈Λ(W+x)

Zinf Iλ(W+x)1{eλ∈Γ}

]
= P̌ (Γ)E

[ ∫ ∞

0

ZsdLs(x)
]
, (2.33)

where (Zs)s≥0 is an adapted non-negative process and Γ ∈ B(E). For T ∈ (0,∞), if
Zs = 1{s≤T}, we have

E
[ ∑

λ:inf Iλ(W+x)≤T

1{eλ∈Γ}

]
= P̌ (Γ)E[LT (x)]. (2.34)

3The measure P̌ is different from the Brownian excursion measure constructed in [Blu92] by factor of
√
2.

This is because the book [Blu92] considers the local time with normalized Laplace transform, which differs
from the occupation density local time by factor of

√
2. More discussion can be found in [Blu92, Section

VI.2.b].
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Observing the inequalities

m0,T (Γ,W + x) ≤
∑

λ:inf Iλ(W+x)≤T

1{eλ∈Γ} ≤ n0,T (Γ,W + x)

and the identity
∫
R LT (x)dx = T , we obtain

1

T
E [M0,T (Γ,W )] ≤ P̌ (Γ) ≤ 1

T
E [N0,T (Γ,W )] .

Now the claim follows by Lemma 2.4.10.

When H < 1
2
, the relation (2.34) holds asymptotically. That is:

Theorem 2.4.17. Let H < 1
2
. Provided P̂ (Γ) <∞, we have

lim
T→∞

T−(1−H)|m0,T (Γ, B)− P̂ (Γ)LT (0)| = 0 in Lp(P) for all p <∞.

In particular, if P̂ (Γi) <∞ (i = 1, . . . , n), then

lim
T→∞

T−(1−H)(m0,T (Γ1, B), . . . ,m0,T (Γn, B))

= (P̂ (Γ1), . . . , P̂ (Γn))L1(0) in law.

Proof. For Γ ∈ B(E) and λ ∈ (0,∞) we set

λΓ := {λw : w ∈ Γ}, Γλ := {w ∈ E : wλ−1· ∈ Γ}

and Γ(λ) := λ−HΓλ, B(λ) := λ−HBλ·. Since

m0,T (Γ, B) = m0,1(Γ
(T ), B(T )),

we see

(m0,T (Γ, B), LT (0))
d
= (m0,1(Γ

(T ), B), T 1−HL1(0)). (2.35)

As in Theorem 2.3.1, we have

|T−(1−H)m0,1(Γ
(T ), B)− P̂ (Γ)L1(0)|p ≤ δζL1(0) +RT,ζ ,

where δζ is non-random with limζ→0 δζ = 0 and RT,ζ satisfies

∥RT,ζ∥p ≲ζ,p T
−ε

for some ε > 0 independent of ζ and p. In view of (2.35), this proves the claim.
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Chapter 3

Young and rough differential equations
driven by fractional Brownian motion

We consider Young or rough differential equations dXt = σ(Xt)dB
H
t driven by

fractional Brownian motion BH with Hurst parameter H ∈ (1
3
, 1). When H ̸= 1

2
, the

equation is usually treated either by Young’s theory or by Lyons’ rough path theory,
whereby we assume that σ ∈ Cγ with γ ≥ 1

H
. However, for H = 1

2
, Itô’s theory covers

the case where σ is Lipschitz. The aim of this chapter is to fill the gap, by proving that
for any H ∈ (1

3
, 1) pathwise uniqueness holds for σ ∈ Cγ with γ > max{ 1

2H
, 1−H

H
},

under a natural elliptic condition on σ. The result relies on new probabilistic estimates
on stochastic integrals along fractional Brownian motions, proven by stochastic sewing
techniques.

This chapter is based on joint work with Avi Mayorcas.

Keywords and phrases. Stochastic differential equations, fractional Brownian motion,
regularization by noise, stochastic sewing, processes of vanishing mean oscillation,
rough paths.
MSC 2020 – 60H10, 60H50, 60G22, 60L20.
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3.1 Introduction
In this chapter we consider the stochastic differential equation (SDE)

dXt = σ(Xt)dB
H
t , X0 = x ∈ Rd1 , (3.1)

where σ is a map valued in the space of d1 × d2 matrices, and BH is a d2-dimensional
fractional Brownian motion with Hurst parameterH ∈ (1/3, 1). The differential equation is
interpreted either as Young’s differential equation (H > 1/2) or as Lyons’ rough differential
equation [Lyo98] (H < 1/2). We will review such SDEs in Section 3.2.2.

For H = 1/2, we often apply Itô’s theory to study (3.1); we will discuss the alternative
theory of Lyons later. In Itô’s theory, there are a few notions of solutions and their uniqueness,
among which the most relevant to us is the notion of pathwise uniqueness. It says that two
solutions, adapted to some filtration making the driving Brownian motion martingale, must
be indistinguishable. Hence, pathwise uniqueness is a probabilistic concept of uniqueness
(despite it is called “pathwise” uniqueness). It is a classical result, as can be found in all
textbooks of stochastic calculus, that pathwise uniqueness holds for (3.1) with H = 1/2
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provided that σ is Lipschitz. The proof is a consequence of Itô’s isometry: for an adapted
process Y we have

E
[∣∣∣
∫ T

0

YrdB
1/2
r

∣∣∣
2]

= E
[ ∫ T

0

|Yr|2dr
]
.

Itô’s isometry is a consequence of the martingale property of the Brownian motion.
Since BH , H ̸= 1/2, is not a martingale (nor Markovian), Itô’s theory is not available
for H ̸= 1/2. Lack of probabilistic tools naturally motivates us to study the SDE (3.1)
pathwisely. Starting from Young’s integration theory [You36], Lyons [Lyo94] showed that
the differential equation

dxt = f(xt)dyt (3.2)

driven by a path y of finite p-variation with p ∈ [1, 2) has a unique solution provided that
f is α-Hölder with α > p. Since BH has finite p-variation for any p > 1/H , we see that
(3.1) has a unique solution provided that σ ∈ Cγ with γ > 1/H . The reader can also refer
to [NR02] or [Nua06, Section 5.3], where the approach is based on fractional stochastic
calculus of Zähle [Zäh98]. The critical case γ = 1/H is covered by [Dav08].

When H ≤ 1/2, the path BH is too irregular to apply Young’s integration theory.
The earliest work towards pathwise Itô calculus can be dated back to Föllmer [Föl81].
Afterwards, in his groundbreaking work [Lyo98], Lyons develops the theory of rough paths.
The theory tells that we can make sense of (3.2) for y of finite p-variation for any p <∞,
provided that we are additionally given “iteraged integrals”

∫ t

s

∫ r1

s

dyr2dyr1 ,

∫ t

s

∫ r1

s

∫ r2

s

dyr3dyr2dyr1 , . . . ,

satisfying certain analytic and algebraic conditions. The tuple of y and its (sufficient
number of) iterated integrals is called a rough path of y. Furthermore, [Lyo98] proved
well-posedness of (3.2) if f ∈ Cα with α > p. Later, Coutin and Qian [CQ02] proved
that the fractional Brownian motion BH , with H > 1/4, can be naturally lifted to a rough
path. This means that we can make sense of and prove well-posedness of (3.1) with
H ∈ (1/4, 1/2), provided that σ ∈ Cγ with γ > 1/H .

We remark two important differences in Itô’s probabilistic theory and Lyons’ pathwise
theory. One is that the former considers uniqueness among solutions adapted to a given
filtration, while the latter considers that among all solutions satisfying (3.2) that do not
need to be adapted. That is, notion of uniqueness is stronger in the pathwise theory. Such
uniqueness is called path-by-path uniqueness, after the works of Davie [Dav07; Dav08].
The other difference is the regularity assumption on σ: when H = 1/2, Itô’s theory assume
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that σ is only Lipschitz, while Lyons’ theory assume that σ ∈ Cγ with γ ≥ 2 (the critical
case γ = 2 is covered by [Dav08]). In summary, Itô’s theory requires less regularity
assumption on σ, at the cost of weaker notion of uniqueness.

Although Itô’s theory is not available for H ̸= 1/2, notion of pathwise uniqueness is
well-defined in this setting (Definition 3.2.6). Now we find it natural to ask if we can prove
pathwise uniqueness of (3.1) for σ ∈ Cγ with γ < 1/H . Our main result of this chapter
answers the question affirmatively.

Theorem 3.1.1. Let H ∈ (1/3, 1) and σ ∈ Cγ with

γ > max
{ 1

2H
,
1−H

H

}
=

{
1
2H
, if H > 1

2
,

1−H
H
, if H ≤ 1

2
.

(3.3)

Furthermore, suppose that σσT is uniformly elliptic, i.e. there exists a K ∈ (1,∞) such
that

K−1 ≤ σ(x)σ(x)T ≤ K

for all x ∈ Rd1 . Then pathwise uniqueness holds for (3.1).

Proof. See Theorem 3.3.3 for H > 1/2 and Theorem 3.4.7 for H < 1/2. (The case
H = 1/2 is well known.)

Remark 3.1.2. It is expected that a similar result holds for H ∈ (1/4, 1/3]. However,
studying this case will surely increase the amount of technical computation, and in order to
present our main ideas clearly, we restrict to the case H > 1/3.

Remark 3.1.3. By standard compactness argument, we can prove weak existence under
γ > 1−H

H
. By the Yamada–Watanabe theorem (Proposition 3.2.7 below), weak uniqueness

and strong existence hence hold under the assumptions of Theorem 3.1.1.

Before explaining the strategy of the proof, let us further explain connections of our
result to recent literatures. After Lyons’ groundbreaking works, pathwise approach has
become central in stochastic analysis. Precisely, pathwise approach here means the approach
that separates almost completely probabilistic argument (e.g. lifting to a rough path) and
pathwise argument (e.g. analysis of differential equations driven by rough paths). It is
worth mentioning that this pathwise approach is behind the breakthrough of singular SPDEs
[Hai14; GIP15].

With flavor of pathwise approach, Catellier and Gubinelli [CG16] study fractional SDE

dXt = b(Xt)dt+ dBH
t (3.4)

98



3.1. INTRODUCTION

1/3 1/2 1
0

0.5

1

2

3

H

(1−H)/H
1/(2H)
1/H

Figure 3.1: Some graphs of H from Theorem 3.1.1. Pathwise theory covers σ ∈ Cγ with
γ ≥ 1/H (green), while our result says that pathwise uniqueness holds if γ > 1/(2H)
(blue) and if γ > (1−H)/H (red).
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with irregular b, which can even be a distribution such as Dirac’s delta function. Study of
such SDEs belongs to the field called regularization by noise; the name comes from the fact
that we can restore certain well-posedness of ill-posed ordinary differential equations by
adding a noise. The argument of Catellier & Gubinelli is based on the nonlinear Young
integration (cf. [Gal21]), and their work led to further developments, [GG22; HP21;
GHM22; GH22; CD22] to name just a few.

On the other hand, Lê [Lê20] introduced a new method for regularization by fractional
noise. Lê relates well-posedness of (3.4) to the stochastic integral

∫ t

s

∇b(BH
r )dB

H
r ,

which is then estimated by the stochastic sewing lemma, introduced in the same paper. (See
[BNP20] for the approach based on Malliavin calculus.) The work [Lê20] is a landmark in
that it is based on more probabilistic viewpoints than on pathwise viewpoints. However,
it is worth noting that many ideas of [Lê20] are inspired by those developed in pathwise
stochastic calculus; obviously the stochastic sewing lemma is inspired by Gubinelli’s sewing
lemma [Gub04]. Since the work [Lê20], the probabilistic approach based on the stochastic
sewing has witnessed tremendous progress, see [BDG21; Ath+21; Ger22; FHL23; GG23;
DG22; BLM23] and references therein.

Our main result is another contribution to the trend initiated by Lê. However, unlike
the mentioned previous works, we are interested in the noise coefficient rather than the
drift coefficient. We also mention the work [HTV22] of Hinz, Tölle and Viitasaari, where
studied is the differential equation (3.2) with irregular f that can even be discontinuous.
However, their argument is based on Doss transformation, which imposes some restrictions
on the coefficient f , especially for uniqueness (e.g. [HTV22, Assumption 3.15]).

Strategy of the proof

Our argument is inspired by [Lê20]. Let us review here his strategy to prove the pathwise
uniqueness. For simplicity, suppose that H ∈ (1/2, 1). Let X and Y be two adapted
solutions to (3.1). If σ ∈ C1/H+ε,

Xt − Yt =

∫ t

0

{σ(Xr)− σ(Yr)}dBr

=

∫ t

0

{ d1∑

k=1

∫ 1

0

(Xk
r − Y k

r )∂kσ(θXr + (1− θ)Yr)dθ
}
dBr

=

d1∑

k=1

∫ t

0

(Xk
r − Y k

r )dV
k
r , (3.5)
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where
V k
t :=

∫ t

0

∫ 1

0

∂kσ(θXr + (1− θ)Yr)dθdBr. (3.6)

Then, Z := X − Y satisfies the linear Young SDE

Zt =

∫ t

0

ZrdVr,

by uniqueness of the Young SDE, we see Z = 0 or X = Y .
If σ is less regular, then the Young integration theory does not make sense of (3.6).

However, we can still hope to give a natural meaning to (3.6) for such irregular σ, by taking
advantage of randomness of the fractional Brownian motion. Indeed, our main ingredient is
to give a probabilistic estimate on the integral

∫ t

s

f(Yr)dB
H
r (3.7)

for some irregular f , where Y is a path controlled by B (Definition 3.2.5). When H = 1/2,
we can apply Itô’s isometry to estimate (3.7). WhenH ̸= 1/2, Itô’s isometry is not available,
and we replace it by the stochastic sewing estimate. ForH ∈ (1/2, 1), we apply Gerencser’s
shifted stochastic sewing [Ger22], and our choice of the germs resemble the one from
[DG22]. For H ∈ (1/3, 1/2), we apply the stochastic sewing twice; first by Lê’s original
stochastic sewing, and second by the fully shifted stochastic sewing (Theorem 1.1.1). See
Theorem 3.3.2 (H > 1/2) and Theorem 3.4.4 (H < 1/2) for the precise estimates.

Notation

Throughout the chapter, we fix the dimensions d1 (the dimension for the solution) and d2
(the dimension for the fractional Brownian motion). Given a function f on some interval
[0, T ], we write fs,t := ft − fs (s < t). Given a two parameter map (As,t)s<t, we set

δAs,u,t := As,t − As,u − Au,t, s < u < t.

We denote by aT the transpose of the matrix a. We write A ≲α,β,... B if there exists a
constant C, depending on irrelevant parameters α, β, . . . such thatA ≤ CB. We will ignore
dependence of constants on d1, d2 and the Hurst parameter H .

3.2 Preliminaries
Here we review some estimates in function spaces and SDEs driven by fractional Brownian
motion.
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3.2.1 Function spaces and heat semigroup estimates
We follow the convention of [DGL21]. For k ∈ N, we denote by Ck the space of (k − 1)-
times differentiable functions such that their (k − 1)-derivatives are Lipschitz continuous,
and we write

∥f∥Ck :=
∑

l∈Nd
0,|l|<k

∥∂lf∥L∞ +
∑

l∈Nd1
0 ,|l|=k

sup
x,y∈Rd1

|∂lf(x)− ∂lf(y)|
|x− y| .

For γ ∈ (0,∞) \ N, we denote by Cγ the space of γ-Hölder functions. That is, f ∈ Cγ if

∥f∥Cγ :=
∑

l∈Nd1
0 ,|l|<⌊γ⌋

∥∂lf∥L∞ +
∑

l∈Nd1
0 ,|l|=⌊γ⌋

sup
x,y∈Rd

|∂lf(x)− ∂lf(y)|
|x− y|γ−⌊γ⌋ .

We set C0 := L∞ and for α < 0 we denote by Cγ the space of distributions f such that

∥f∥Cγ := sup
t∈(0,1)

t−γ/2∥Ptf∥L∞ ,

where Pt is the heat semigroup (3.8) defined just below. If γ ∈ R \ N0 the space Cγ

coincides with the Hölder–Besov space constructed by Littlewood-Paley blocks [Tri92,
Theorem 2.6.4].

We prepare two lemmas on heat semigroups. We denote by M the space of d1 × d1
matrices and by M+ the space of d1 × d1 positive-definite matrices. By identifying M
with R(d1)2 , we can equip M with the Euclidean norm |·|. Given a Γ ∈ M+ we set

pΓ(x) :=
1

(2π)d/2(det Γ)1/2
exp

(
− ⟨x,Γ−1x⟩

2

)

and for a function f on Rd1 we set PΓf := pΓ ∗ f . For t ∈ (0,∞) we simply write

Pt := PtId1 , (3.8)

where Id1 is the d1 × d1 identity matrix.

Lemma 3.2.1. LetK ∈ (1,∞) and Γ ∈ M+ such thatK−1 ≤ Γ ≤ K. Then, for α, β ∈ R
with β ≥ 0 ∨ α and t ∈ (0, T ) we have

∥PΓtf∥Cβ ≲K,α,β,T t
−β−α

2 ∥f∥Cα .
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Proof. We write
ΛΓf(x) := f(

√
Γx). (3.9)

Then PΓtf = ΛΓ−1PtΛΓf . Since

∥ΛΓf∥Cγ ≲K ∥f∥Cγ ≲K ∥ΛΓf∥Cγ ,

we can assume that Γ = Id. Then the claim follows from [DGL21, Lemma 2.3].

Lemma 3.2.2. Let K ∈ (1,∞) and let Γi ∈ M+ (i = 1, 2) be such that K−1 ≤ Γi ≤ K.
Then, for α, β ∈ R with β ≥ α ∨ 0 and t ∈ (0, T ) we have

∥(PΓ1t − PΓ2t)f∥Cβ ≲K,α,β,T t
−β−α

2 |Γ1 − Γ2|∥f∥Cα . (3.10)

Proof. We first claim

∥(PΓ1t − PΓ2t)f∥L∞ ≲K |Γ1 − Γ2|∥f∥L∞ . (3.11)

Indeed, we have

(PΓ1t − PΓ2t)f(x) =

∫

Rd1

{pΓ1t(y)− pΓ2t(y)}f(x− y)dy.

By [DGL21, Proposition 2.7],

|pΓ1t(y)− pΓ2t(y)| ≲K |Γ1 − Γ2|(pΓ1t/2(y) + pΓ2t/2(y)), (3.12)

which yields the estimate (3.11).
Next we prove the estimate (3.10) for α = β /∈ N. The case for α = β = 0 is proved

by (3.11). Let {∆j}∞j=−1 be Littlewood–Paley blocks. Since ∆j and PΓit commute, the
estimate (3.11) yields

∥∆j(PΓ1t − PΓ2t)f∥L∞ ≲K |Γ1 − Γ2|(∥∆jf∥L∞ + ∥∆jf∥L∞).

Therefore,
∥(PΓ1t − PΓ2t)f∥Cβ ≲K |Γ1 − Γ2|(∥f∥Cβ + ∥f∥Cβ).

Next we prove the estimate (3.10) for α = β ∈ N. Since we only need the case
α = β = 1, we only prove that case. We have

|(PΓ1t − PΓ2t)f(x)− (PΓ1t − PΓ2t)f(y)|

≤
∫

Rd1

|pΓ1t(z)− pΓ2t(z)||f(x− z)− f(y − z)|dz.
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By (3.12),

|(PΓ1t − PΓ2t)f(x)− (PΓ1t − PΓ2t)f(y)|

≲K |Γ1 − Γ2|
∫

Rd1

|pΓ1t/2(z) + pΓ2t/2(z)||f(x− z)− f(y − z)|dz

≤ 2|Γ1 − Γ2|∥f∥C1|x− y|,

which prove the claim.
Finally, we prove the general case. Since

PΓ1t − PΓ2t = (PΓ1t/2 − PΓ2t/2)PΓ1t/2 + PΓ2t/2(PΓ1t/2 − PΓ2t/2),

we have

∥(PΓ1t − PΓ2t)f∥Cβ

≤ ∥(PΓ1t/2 − PΓ2t/2)PΓ1t/2f∥Cβ + ∥PΓ2t/2(PΓ1t/2 − PΓ2t/2)f∥Cβ .

As for the first term, the estimate (3.10) with α = β and Lemma 3.2.1 imply

∥(PΓ1t/2 − PΓ2t/2)PΓ1t/2f∥Cβ ≲K |Γ1 − Γ2|∥PΓ1t/2f∥Cβ

≲K,α,β,T |Γ1 − Γ2|t−
β−α
2 ∥f∥Cα .

The estimate of the second term is similar.

3.2.2 SDE driven by fractional Brownian motion
The goal of this section is to review the notion of solutions to (3.1). First we review the
fractional Brownian motion. We define the kernel KH by for H > 1/2

KH(t, s) := cHs
1
2
−H

∫ t

s

(u− s)H− 3
2uH− 1

2du

and for H < 1/2

KH(t, s) := cH

[( t
s

)H− 1
2
(t− s)H− 1

2 −
(
H − 1

2

)
s

1
2
−H

∫ t

s

uH− 3
2 (u− s)H− 1

2du
]
.

Then given a Brownian motion W the process

KHW (t) :=

∫ t

0

KH(t, s)dWs
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is a fractional Brownian motion with Hurst parameter H (recall Definition 1.3.1). The
constant cH is chosen to have the correct covariance. We refer the reader to [Nua06,
Section 5.1.3] for more details. In fact, the operatorKH is bĳective, hence given a fractional
Brownian motion BH we can recover a Brownian motion K−1

H BH . Recall that a Brownian
motion W is called a (Ft)-Brownian motion if it is a (Ft)-martingale.

Definition 3.2.3. Given a complete filtered space (Ω, (Ft)t≥0,P), an adapted process
(BH

t )t≥0 is called a (Ft)-fractional Brownian motion if the process K−1
H BH is a (Ft)-

Brownian motion.

When H < 1/2, we need the theory of rough paths to interpret the SDE (3.1). Let us
recall the rough path of BH for H < 1/2, and the notion of controlled paths.

Definition 3.2.4 ([FH20, Chapter 10]). Let H ∈ (1/3, 1/2) and (B(n))∞n=1 be a piecewise
linear approximation of the fractional Brownian motion B = BH . Then the canonical lift
of B(n)

(B(n),B(n)) :=
(
B(n), (

∫ t

s

B(n)
s,r ⊗ dB(n)

r )s<t

)

converges in the space of α-Hölder rough paths for any α ∈ (1/3, H) to some geometric
rough path (B,B), called the canonical lift of the fractional Brownian motion B.

Definition 3.2.5 ([FH20, Chapter 4]). LetH ∈ (1/3, 1/2), α ∈ (1/3, H) and β ∈ (1−α, 1).
A pair (X,X ′) of continuous paths is said to be controlled by BH , and we write (X,X ′) ∈
Dβ , if

∥X,X ′∥Dβ := ∥X ′∥Cβ−α([0,T ]) + sup
0≤s<t≤T

|Xs,t −X ′
sB

H
s,t|

|t− s|β <∞. (3.13)

The process X ′ is called a Gubinelli derivative. When no confusion is expected, we simply
write ∥X∥Dβ . It was shown in [Gub04] and is now standard that for (X,X ′) ∈ Dβ we can
define the rough integral

∫ t

s

XrdB
H
r := lim

π is a partition of [s,t],
|π|→0

∑

[u,v]∈π

XuB
H
u,v +X ′

uBHu,v.

We assume that the coefficient σ of the SDE (3.1) belongs to the Hölder space Cγ with

γ >
1−H

H
. (3.14)

The lower bound is necessary to make sense of the integral
∫
σ(Xr)dB

H
r as Young integral

(H > 1/2) or rough integral (H < 1/2). If H < 1/2, we have γ > 1 and

|σ(Xt)− σ(Xs)−Dσ(Xs)Xs,t| ≤ ∥σ∥Cγ |Xs,t|γ.
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Therefore, provided (X,X ′) ∈ Dγα, where α < H is sufficiently close to H , we have
(σ(X), σ′(X)X ′) ∈ Dγα. Thus, for any H ∈ (1/3, 1), by writing ei for the ith unit vector,
the integral ∫ t

s

σ(Xr)dB
H
r :=

∑

1≤i≤d1,
1≤j≤d2

(∫ t

s

σij(Xr)dB
H,j
r

)
ei

is well-defined either as Young integral (H > 1/2) or as rough integral (H < 1/2).
For H > 1/2 we say that a path X solves (3.1) if it satisfies the integral equation

Xt = x+

∫ t

0

σ(Xr)dB
H
r , ∀t. (3.15)

Similarly, for H < 1/2 we say that a controlled path (X,X ′) solves (3.1) if it satisfies
(3.15). In this case, the fundamental estimate of the rough integral yields

∣∣∣
∫ t

s

σ(Xr)dB
H
r − σ(Xs)B

H
s,t −Dσ(Xs)X

′
sBHs,t

∣∣∣

≲H ∥σ∥Cγ∥X∥Dγα∥BH∥Cα |t− s|(γ+1)α,

hence (X, σ(X)) ∈ Dγα. In particular, due to the uniqueness of the Gubinelli derivative
for the fractional Brownian rough path [FH20, Chapter 6], we have σ(X) = X ′. Therefore,
without loss of generality, we say that X solves (3.1) if (X, σ(X)) ∈ Dγα and the pair
solves (3.1).

We review the notion of solutions in the probabilistic setting. We fix α that is less than
but sufficiently close to H .

Definition 3.2.6. Let H > 1/2. We say that a quintuple (Ω, (Ft)t≥0,P, BH , X) is a weak
solution to (3.1) if (BH , X) are random variables defined on the filtered probability space
(Ω, (Ft),R), if BH is a (Ft)-fractional Brownian motion, if X ∈ Cα([0, T ]) is adapted to
(Ft) and ifX solves the Young differential equation (3.1). Given a filtered probability space
(Ω, (Ft)t≥0,P) and a (Ft)-fractional Brownian motion BH , we say that a Cα([0, T ])-valued
random variable X defined on (Ω, (Ft)t≥0,P) is a strong solution if it solves (3.1) and if it
is adapted to the natural filtration generated by B. We say that the pathwise uniqueness
holds for (3.1) if, for any two adapted Cα([0, T ])-valued random process X and Y defined
on a common filtered probability space that solve (3.1) driven by a common (Ft)-fractional
Brownian motion, we have X = Y almost surely.

For H < 1/2, such notion of solutions naturally extend: we replace X and Y by
controlled paths in Dγα and (3.1) is interpreted as rough differential equation.
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As in the SDE driven by Brownian motion, we have the following Yamada–Watanabe
theorem.

Proposition 3.2.7. Regarding the SDE (3.1), if weak existence and pathwise uniqueness
hold, then weak uniqueness and strong existence hold as well.

Proof. This follows from a generalized Yamada-Watanabe theorem of Kurtz [Kur07].

A standard compactness argument allows us to construct a weak solution to (3.1) for
σ ∈ Cγ with γ > (1−H)/H . Hence, weak uniqueness and strong existence follow under
the assumptions of Theorem 3.1.1.

3.2.3 Stochastic estimates
Here we provide technical estimates on integrals involving Gaussian processes. Skipping
their proofs will not affect further reading.

Definition 3.2.8. We define the Riemann–Liouville process by

BHt :=

∫ t

0

(t− r)H− 1
2dWr.

In computations later, we use the Mandelbrot–van Ness representation [MV68]: for
t ≥ 0 we have

BH
t =

∫ t

−∞
KH(t, r)dW̃r, KH(t, r) := (t− r)H− 1

2 − (−r)H− 1
2

+ , (3.16)

where (W̃t)t∈R is a two-sided Brownian motion. We note that the process

(BH
v+t − E[BH

v+t|σ(W̃r : r ≤ v)])t≥0

has the law of B. Due to this relation, we need some computations involving BH .
As in BH , throughout the chapter the process BH takes values in Rd2 . We remark that

for H ∈ (1/3, 1/2) the process BH can be lifted to the second order geometric rough path
(e.g. [FH20, Chap. 10]). Below, integrals with respect to BH are understood as rough
integral.

Lemma 3.2.9. Let H ∈ (1/3, 1), g ∈ C1(Rd1 ,R) and a be a d1 × d2 matrix. We have the
identity

E
[ ∫ t

s

g(aBHr )dBH,ir

]
=

1

2

d1∑

j=1

aji
∫ t

s

r2H−1∂jP r2H

2H
aaT
g(0)dr.
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Proof. We will drop superscripts of H . We first note that, due to Gaussianity,

g(aBr)− crBir, cr := E[(Bir)2]−1E[g(aBr)Bir]

is orthogonal to Bi in L2(P). Therefore,

E
[ ∫ t

s

g(aBr)dBir
]
= E

[ ∫ t

s

crBirdBir
]

=
1

2
E
[ ∫ t

s

crd(Bir)2
]
=

1

2

∫ t

s

crdE[(Bir)2]

and we obtain

E
[ ∫ t

s

g(aBr)dBir
]
=

1

2

∫ t

s

E[g(aBr)Bir]
d

dr
logE[(Bir)2]dr.

Since E[(Bir)2] = 1
2H
r2H , we obtain

1

2

∫ t

s

E[g(aBr)Bir]
d

dr
logE[(Bir)2]dr = H

∫ t

s

r−1E[g(aBr)Bir]dr

or
E
[ ∫ t

s

g(aBr)dBir
]
= H

∫ t

s

r−1E[g(aBr)Bir]dr.

To compute further, let N be the standard normal distribution on Rd, so that

E[g(aBr)Bir] =
rH√
2H

E
[
g
( rH√

2H
aN

)
N i

]
.

The Gaussian integration by parts yields

E
[
g
( rH√

2H
aN

)
N i

]
=

rH√
2H

d1∑

j=1

ajiE
[
∂jg

( rH√
2H

aN
)]

Therefore,

E
[ ∫ t

s

g(aBr)dBir
]
=
1

2

d1∑

j=1

aji
∫ t

s

r2H−1E
[
∂jg

( rH√
2H

aN
)]

dr

=
1

2

d1∑

j=1

aji
∫ t

s

r2H−1∂jP r2H

2H
aaT
g(0)dr.
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Lemma 3.2.10. Let g : Rd2 → R be such that g(Bs) ∈ L2(P). Then we have

E[g(BHs )
∫ t

s

BH,is,r dBH,jr ] =
1

2
E[g(BHs )BH,is,t BH,js,t ].

Proof. We drop scripts on H . If i = j, the identity is trivial, since the rough path of B is
geometric. We therefore assume below that i ̸= j. Since i ̸= j, the random variable

∫ t

s

Bis,rdBjr

belongs to the second order Wiener chaos. The Wiener chaos expansion yields

E
[
g(Bs)

∫ t

s

Bis,rdBjr
]
= E[(BisBjs)2]−1E[g(Bs)BisBjs]E

[
BisBjs

∫ t

s

Bis,rdBjr
]
.

Since (Bi,Bj) d
= (Bj,Bi), we have

E
[
BisBjs

∫ t

s

Bis,rdBjr
]
= E

[
BisBjs

∫ t

s

Bjs,rdBir
]

and

E
[
BisBjs

∫ t

s

Bis,rdBjr
]
=

1

2
E
[
BisBjs

(∫ t

s

Bis,rdBjr +
∫ t

s

Bjs,rdBir
)]

=
1

2
E[BisBjsBis,tBjs,t].

Therefore,

E
[
g(Bs)

∫ t

s

Bis,rdBjr
]
=

1

2
E[(BisBjs)2]−1E[g(Bs)BisBjs]E[BisBjsBis,tBjs,t]

=
1

2
E[g(Bs)Bis,tBjs,t],

and the proof is established.

3.3 Young case
Throughout the section we fix the Hurst parameter H ∈ (1/2, 1) and the final time
T ∈ (0,∞). We simply write B for the fractional Brownian motion. Our goal is to prove
pathwise uniqueness of the Young SDE

dXt = σ(Xt)dBt, X0 = x
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for σ ∈ Cγ with γ > 1/(2H), or Theorem 3.1.1 for H > 1/2. As explained in Section 3.1,
the key is to obtain a stochastic estimate on

∫ t

s

f(Xr)dBr

for an irregular f and a path X controlled by B, which is the subject of the next section.

3.3.1 Young integral with irregular integrand
The following is a probabilistic notion of controlled path.

Definition 3.3.1. Let β ∈ (0, 1] and B be a (Ft)-fractional Brownian motion. For
K ∈ (1,∞) and (Ft)-adapted processes (X,X ′), valued in Rd1 and in the space of d1 × d2
matrices respectively, we write (X,X ′) ∈ Dβ,K if

• we have

sup
0≤s<t≤T

||X ′
s,t||Lp(P)

(t− s)βH
<∞ ∀p <∞

and
Rs,t := Xs,t −X ′

sBs,t, 0 ≤ s < t ≤ T

satisfies
sup

0≤s<t≤T

||Rs,t||Lp(P)

(t− s)(1+β)H
<∞, ∀p <∞;

• we have K−1 ≤ X ′
t(X

′
t)

T ≤ K for all t ∈ [0, T ].

We write

|||X|||p := sup
0≤t≤T

∥X ′
t∥Lp(P) + sup

0≤s<t≤T

||X ′
s,t||Lp(P)

(t− s)βH
+ sup

0≤s<t≤T

||Rs,t||Lp(P)

(t− s)(1+β)H
.

The main goal of this section is the following.

Theorem 3.3.2. Let H ∈ (1/2, 1), β ∈ ( 1
2H
, 1], (X,X ′) ∈ Dβ,K , f ∈ C1(Rd1 ,R),

p ∈ [2,∞) and γ ∈ ( 1
2H

− 1, 0). Then for s < t we have

∥∥∥
∫ t

s

f(Xr)dBr

∥∥∥
Lp(P)

≲K,β,p,γ ∥f∥Cγ

[
(t− s)(1+γ)H + |||X|||2p(t− s)(1+β+γ)H

]
.
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Proof. We decompose the proof into five steps.
Step 1. Firstly, we can assume that B has Mandelbrot–van Ness representation (3.16).

Indeed, by Skorokhod’s theorem (e.g. [Kal21, Theorem 8.17]), we can enlarge the original
probability space so that we have W̃ and (3.16) holds. Set

F̃t := σ(Xs, X
′
s, W̃s : s ≤ t).

We claim that W̃ is a (F̃t)-Brownian motion. Indeed, fix s ≥ 0, and set

Iw(t) := c̃H

∫ t

s

(t− r)H− 1
2dwr, t > s.

We observe the identity

IW̃t =

∫ t

s

KH(t, r)dWr +

∫ s

0

KH(t, r)dWr −
∫ s

−∞
K(t, r)dW̃r.

As I corresponds to the fractional differential/integral operator of order H − 1/2, it is
invertible. Since (Wr)r≤s is measurable with respect to Gs := σ(W̃r : r ≤ s), we can write

W̃t − W̃s = F ((Wr −Ws)s≤r≤t, (W̃r)r≤s)

with some measurable map F . Since (Wr −Ws)s≤r≤t is independent of Fs, we see that
W̃t − W̃s is independent of Hs := σ(Xr, X

′
r : r ≤ s) conditionally on Gs. On the other

hand, W̃t− W̃s is independent of Gs. Hence, by the chain rule (e.g. [Kal21, Theorem 8.12]),
Wt −Ws is independent of F̃s = Gs ∨Hs.

Below, although it is an abuse of notation, we write W and Ft for W̃ and F̃t. We write
Es[·] := E[·|Fs].

Step 2. Our strategy is to apply Gerencsér’s shifted stochastic sewing (Theorem 1.1.1
with α = 0 and v = s− (t− s)) to the germ

As,t := Es−(t−s)

∫ t

s

f(Xs−(t−s) +X ′
s−(t−s)Bs−(t−s),r)dBr. (3.17)

In this step, we will show that in Lp(P)
∫ t

s

f(Xr)dBr = lim
π is a partition of [s,t],

|π|→0

∑

[s′,t′]∈π

As′,t′ . (3.18)

We set v := s− (t− s) and

A0
s,t :=

∫ t

s

f(Xv +X ′
vBv,r)dBr.
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We first see that
∫ t

s

f(Xr)dBr = lim
π is a partition of [s,t],

|π|→0

∑

[s′,t′]∈π

A0
s′,t′ . (3.19)

Indeed, we have
∣∣∣
∫ t

s

f(Xr)dBr − A0
s,t

∣∣∣ ≤
∣∣∣
∫ t

s

f(Xr)dBr − f(Xs)Bs,t

∣∣∣

+ |A0
s,t − f(Xv +X ′

vBv,r)Bs,t|
+ |f(Xs)Bs,t − f(Xv +X ′

vBv,r)Bs,t|.
By the fundamental estimate of Young’s integral, we obtain

∥∥∥
∫ t

s

f(Xr)dBr − f(Xs)Bs,t

∥∥∥
p
≲ ∥f∥C1|||X|||2p(t− s)(1+β)H ,

∥A0
s,t − f(Xv +X ′

vBv,r)Bs,t∥p ≲ ∥f∥C1|||X|||2p(t− s)(1+β)H .

In addition, since

|f(Xs)− f(Xv +X ′
vBv,r)| ≤ ∥f∥C1|Rv,s|,

we get

∥f(Xs)Bs,t − f(Xv +X ′
vBv,r)Bs,t∥p ≤ ∥f∥C1|||X|||2p(t− s)(2+β)H .

Therefore, by the uniqueness part of the sewing lemma, the identity (3.19) is established.
To see (3.18), we note that

∥As,t∥p ≲ (t− s)H , ∥A0
s,t∥p ≲ (t− s)H

and Ev[As,t − A0
s,t] = 0. Therefore, the identity (3.18) is proved by the uniqueness part of

the stochastic sewing lemma.
Step 3. We set

Y v
t :=

∫ v

−∞
K(t, r)dWr, B̃v

t :=

∫ t

v

K(t, r)dWr.

Let B̃ = B̃v for some v < s. By Lemma 3.2.9, for g ∈ C1(Rd2 ,R) and for a d1 × d2
matrix a,

E
[ ∫ t

s

g(aB̃r)dB̃
i
r

]
=

1

2

d1∑

j=1

aji
∫ t

s

(r − v)2H−1∂jP (r−v)2H

2H
aaT
g(0)dr. (3.20)
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Step 4. Recall the germ As,t from (3.17). Here we prove

∥As,t∥p ≲ ∥f∥Cγ (t− s)(1+γ)H .

For v := s− (t− s), we observe

As,t =

∫ t

s

E[f(x+ x′(yv,r + B̃r))]|x=Xv ,x′=X′
v ,y=Y

v Ẏ v
r dr

+ E
∫ t

s

f(x+ x′(yv,r + B̃r))dB̃r

∣∣∣
x=Xv ,x′=X′

v ,y=Y
v

=: I1 + I2.

We compute

I1 =

∫ t

s

P (r−v)2H

2H
X′

v(X
′
v)

T
f(Xv +X ′

vyv,r)Ẏ
v
r dr

and by Lemma 3.2.1

∥P (r−v)2H

2H
X′

v(X
′
v)

T
f∥L∞ ≲K ∥f∥Cγ (r − v)γH .

Since

Ẏ v
r =

(
H − 1

2

)∫ v

−∞
(r − u)H− 3

2dWu

and Ẏ is Gaussian, we have

∥Ẏ v
r ∥p ≲ ∥Ẏ v

r ∥2 ≲ (r − v)H−1. (3.21)

Therefore,

∥I1∥p ≲ ∥f∥Cγ

∫ t

s

(r − v)γH+H−1dr ≲ ∥f∥Cγ (t− s)(1+γ)H .

To estimate I2, note by (3.20) that

I2 =
1

2

d1∑

j=1

(X ′
v)
ji

∫ t

s

(r − v)2H−1∂jP (r−v)2H

2H
X′

v(X
′
v)

T
f(Xv +X ′

vY
v
v,r)dr.
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Since by Lemma 3.2.1

∥P (r−v)2H

2H
X′

v(X
′
v)

T
f i(Xv +X ′

vY
v
v,r))∥C1 ≲ (r − v)H(γ−1)∥f∥Cγ ,

we obtain

∥I2∥p ≲ ∥f∥Cγ

∫ t

s

(r − v)2H−1+H(γ−1)dr ≲ ∥f∥Cγ (t− s)(γ+1)H .

Step 5. We prove for s < t

∥Es−(t−s)δAs,u,t∥p ≲ ∥f∥Cγ |||X|||2p(t− s)(1+β+γ)H , u := s+
t− s

2
.

In view of Theorem 1.1.1, this step will complete the proof.
We set

s1 := s− (t− s), s2 := s− (u− s), s3 := u− (t− u).

We have

Es1δAs,u,t = Es1 [I3 + I4],

where

I3 := Es2
∫ u

s

{f(Xs1 +X ′
s1
Bs1,r)− f(Xs2 +X ′

s2
Bs2,r)}dBr,

I4 := Es3
∫ t

u

{f(Xs1 +X ′
s1
Bs1,r)− f(Xs3 +X ′

s3
Bs3,r)}dBr.

Since the estimate of I3 and that of I4 are similar, we only estimate I3. For j = 1, 2, we
observe

Es2
∫ u

s

f(Xsj +X ′
sj
Bsj ,r)dBr =Es2

∫ u

s

f(Xsj +X ′
sj
Bsj ,r)Ẏ

s2
r dr

+ Es2
∫ u

s

f(Xsj +X ′
sj
Bsj ,r)dB̃

s2
r .

The first term is equal to
∫ u

s

P (r−s2)
2H

2H
X′

sj
(X′

sj
)T
f(Xsj +X ′

sj
(Bsj ,s2 + Y s2

s2,r
))Ẏ s2

r dr
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and by (3.20) the second term is equal to

1

2
X ′
sj

∫ u

s

(r − s2)
2H−1∇P (r−s2)

2H

2H
X′

sj
(X′

sj
)T
f(Xsj +X ′

sj
(Bsj ,s2 + Y s2

s2,r
))dr.

Hence, I3 = I5 + I6, where

I5 :=

∫ u

s

{
P (r−s2)

2H

2H
X′

s1
(X′

s1
)T
f(Xs1 +X ′

s1
(Bs1,s2 + Y s2

s2,r
))

− P (r−s2)
2H

2H
X′

s2
(X′

s2
)T
f(Xs2 +X ′

s2
Y s2
s2,r

)
}
Ẏ s2
r dr,

I6 :=
1

2

∫ u

s

(r − s2)
2H−1

×
{
X ′
s1
∇P (r−s2)

2H

2H
X′

s1
(X′

s1
)T
f(Xs1 +X ′

s1
(Bs1,s2 + Y s2

s2,r
))

−X ′
s2
∇P (r−s2)

2H

2H
X′

s2
(X′

s2
)T
f(Xs2 +X ′

s2
Y s2
s2,r

)
}
dr.

Since both estimates are similar, we only estimate I5. We decompose I5 = I7 + I8, where

I7 :=

∫ u

s

{
P (r−s2)

2H

2H
X′

s1
(X′

s1
)T
f(Xs1 +X ′

s1
(Bs1,s2 + Y s2

s2,r
))

− P (r−s2)
2H

2H
X′

s1
(X′

s1
)T
f(Xs2 +X ′

s2
Y s2
s2,r

)
}
Ẏ s2
r dr,

I8 :=

∫ u

s

{
P (r−s2)

2H

2H
X′

s1
(X′

s1
)T

− P (r−s2)
2H

2H
X′

s2
(X′

s2
)T

}
f(Xs2 +X ′

s2
Y s2
s2,r

)Ẏ s2
r dr.

Estimating I7, by Lemma 3.2.1,

∥P (r−s2)
2H

2H
X′

s1
(X′

s1
)T
f∥C1 ≲ (r − s2)

H(γ−1)∥f∥Cγ

and

|I7| ≲ ∥f∥Cγ

∫ u

s

(r − s2)
H(γ−1)|Es2 [Rs1,r −Rs2,r]||Ẏ s2

r |dr.

Therefore, using (3.21)

∥I7∥p ≲ ∥f∥Cγ

∫ u

s

(r − s2)
H(γ−1)|||X|||2p(r − s1)

(1+β)H(r − s2)
H−1dr

≲ ∥f∥Cγ |||X|||2p(t− s)(1+β+γ)H .
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Estimating I8, by Lemma 3.2.2,
∥∥{P (r−s2)

2H

2H
X′

s1
(X′

s1
)T

− P (r−s2)
2H

2H
X′

s2
(X′

s2
)T

}
f
∥∥
L∞

≲ |X ′
s1
(X ′

s1
)T −X ′

s2
(X ′

s2
)T|(r − s2)

Hγ∥f∥Cγ .

By (3.21)

∥I8∥p ≲ ∥f∥Cγ |||X|||2p
∫ t

s

(r − s2)
Hγ(t− s)βH(r − s2)

H−1dr

≲ ∥f∥Cγ |||X|||2p(t− s)(1+β+γ)H .

3.3.2 Pathwise uniqueness
Theorem 3.3.3. Suppose that σ ∈ Cγ with γ > 1

2H
. Furthermore, suppose that σσT is

uniformly elliptic, that is, there exists a positive K such that

K−1 ≤ σ(y)σT(y) ≤ K

for all y ∈ Rd. Then, pathwise uniqueness holds for (3.1).

Before going to the proof of Theorem 3.3.3, we prepare the following lemma.

Lemma 3.3.4. In the setting of Theorem 3.3.3, let X be a pathwise solution. Then, we have
(X, σ(X)) ∈ Dγ,K .

Proof. Let α < H , but sufficiently close to H . The fundamental estimate of the Young
integral gives

|Xs,t − σ(Xs)Bs,t| ≤ ∥σ∥Cγ∥X∥Cα∥B∥Cα(t− s)2α. (3.22)

This implies

∥X∥Cα([s,t]) ≤ 2∥σ∥L∞∥B∥Cα([s,t]) (3.23)

provided ∥σ∥Cγ∥B∥Cα([0,T ])(t− s)α ≲α 1. Therefore,

∥∥X∥Cα([0,T ])∥p ≲p,∥σ∥Cγ 1 (3.24)

for all p <∞. Combining (3.22) and (3.24), we get

∥Xs,t∥p ≲p,∥σ∥Cγ (t− s)H .
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In particular, we have ∥σ(X)s,t∥p ≲p,σ (t− s)γH . To get an estimate of the remainder

Rs,t = Xs,t − σ(Xs)Bs,t,

it suffices to apply the sewing lemma in Lp(P) with germ

As,t := σ(Xs)Bs,t.

Proof of Theorem 3.3.3. Let α < H , but sufficiently close to H . Let X and Y be two
pathwise solutions. The fundamental estimate of the Young integral gives

∣∣∣
∫ t

s

σ(Zr)dBr − σ(Zs)Bs,t

∣∣∣ ≲ ∥σ∥Cγ∥Z∥Cα∥B∥Cα (t− s)2α (3.25)

for Z ∈ {X, Y }. Let (σn)∞n=1 be a smooth approximation in Cγ of σ. The estimate (3.25)
yields

lim
n→∞

∫ ·

0

σn(Zr)dBr = lim
n→∞

∫ ·

0

σ(Zr)dBr

uniformly in [0, T ]. As the computation (3.5) shows, we have
∫ t

0

{σn(Xr)− σn(Yr)}dBr =
∑

k

∫ t

0

(Xk
r − Y k

r )dV
k
n (r),

where

V k
n (r) :=

∫ 1

0

∫ r

0

∂kσn(θXu + (1− θ)Yu)dBudθ.

Hence, we obtain

Xt − Yt = lim
n→∞

∑

k

∫ t

0

(Xk
r − Y k

r )dV
k
n (r). (3.26)

Now our task is to prove the convergence of Vn. By Lemma 3.3.4, we have

θXs,t + (1− θ)Ys,t = (θσ(Xs) + (1− θ)σ(Ys))Bs,t +Rθ
s,t

with

∥Rθ
s,t∥p ≲p,σ (t− s)(1+γ)H .
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One technical problem is that the Gubinelli derivative θσ(X) + (1 − θ)σ(Y ) might be
degenerate. (In the end, we will show that X = Y , hence it must be non-degenerate; but a
priori we do not know this.) Because of this technical problem, we proceed as follows.

Step 1. To clarify our argument, we first assume that

sup
x,y∈Rd

|σ(x)− σ(y)| ≤ K−2

4
. (3.27)

This condition implies that for all x and y we have

[θσ(x) + (1− θ)σ(y)][θσ(x) + (1− θ)σ(y)]T

=[σ(x) + (1− θ)(σ(y)− σ(x))][σ(x) + (1− θ)(σ(y)− σ(x))]T

≥K−1 − K−1

2
− K−2

4
≥ K−1

4
.

Therefore, in combination of Lemma 3.3.4, we see that

(θX + (1− θ)Y, θσ(X) + (1− θ)σ(Y )) ∈ Dγ,K/4.

Theorem 3.3.2 yields

∥∥∥
∫ t

s

∂k(σn − σm)(θX
1
r + (1− θ)X2

r )dBr

∥∥∥
p
≲p,γ,K,σ ∥σn − σm∥Cγ (t− s)γH .

By Kolmogorov’s continuity theorem, we see that there exists a process V k such that for
any β < γH ,

lim
n→∞

∥∥V k − V k
n ∥Cβ∥p = 0.

Since γH > 1/2, we may take β > 1/2. Therefore, recalling (3.26) we observe

Xt − Yt =
∑

k

∫ t

0

(Xk
r − Y k

r )dV
k
r a.s.

As this shows that X − Y solves the linear Young differential equation

dxt =
∑

k

xkt dV
k
t , x0 = 0,

we see that X − Y = 0 a.s.

118



3.3. YOUNG CASE

Step 2. Now we do not assume (3.27). The new ingredient is a stopping time argument.
We choose ε > 0 so that

sup
x,y:|x−y|≤ε

|σ(x)− σ(y)| ≤ K−2

5
,

and we set

T (1) := inf{ t ≥ 0 : |Xt − x| ≥ ε/2 or |Yt − x| ≥ ε/2 }

and inductively

T (i) := inf{ t ≥ T (i−1) : |Xt −XT (i−1)| ≥ ε/2 or |Yt − YT (i−1) | ≥ ε/2 }.

If T (i) ≤ T ,
ε

2
= max{|XT (i) −XT (i−1)|, |YT (i) − YT (i−1)|}
≤ max{∥X∥Cα([0,T ]), ∥Y ∥Cα([0,T ])}(T (i) − T (i−1))α.

The a priori estimate (3.23) implies that

max{∥X∥Cα , ∥Y ∥Cα} ≲σ,∥B∥Cα([0,T ])
1

and hence

T (i) − T (i−1) ≳σ,∥B∥Cα([0,T ])
1. (3.28)

uniformly over i, as long as T (i) ≤ T .
To see that X = Y up to time T (1), let σ(1) be a γ-Hölder map such that σ(1) = σ in an

ε-neighborhood of the initial condition x and such that

sup
x,y

|σ(1)(x)− σ(1)(y)| ≤ K−2

4
.

For Z ∈ {X, Y }, we set

Z
(1)
t := x+

∫ t

0

σ(1)(Zr)dr,

and

V (1),k
n (t) :=

∫ t

0

∫ 1

0

∂kσn(θX
(1)
r + (1− θ)Y (1)

r )dθdBr.
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Up to time T (1), we have

Xt − Yt = lim
n→∞

∑

k

∫ t

0

(Xk
r − Y k

r )dV
(1),k
n (r).

Due to our choice of σ(1), the argument of Step 1 shows that V (1),k
n converges to some V (1),k

in Cβ , and that X = Y up to time T (1).
Step 3. Obviously we want to repeat the operation of Step 2, but now there is a small

problem that XT (1) is random. For this sake, let (xm)m∈N be a countable dense set of Rd,
and let σm be a γ-Hölder map such that σm = σ in an ε-neighborhood of xm and such that

sup
x,y

|σm(x)− σm(y)| ≤ K−2

4
. (3.29)

For each m and Z ∈ {X, Y }, we set

ΣZ,m(t) :=

{
σ(Zt)1{t≤T (1)} + σm(Zt)1{t>T (1)}, if |xm −XT (1) | ≤ ε/2,

σ(Zmin{t,T (1)}), otherwise ,

Z
(2,m)
t := x+

∫ t

0

ΣZ,m(r)dBr,

V (2,m),k
n (t) :=

∫ t

0

∫ 1

0

∂kσn(θX
(2,m)
r + (1− θ)Y (2,m)

r )dθdBr.

Notice that Z(2,m) is adapted. We claim that

|Z(2,m)
s,t − ΣZ,m(s)Bs,t| ≲ (∥σ∥Cγ + ∥σm∥Cγ )∥Z∥γCα∥B∥Cα(t− s)(1+γ)α. (3.30)

Indeed, by the fundamental estimate of Young’s integral, (3.30) is obvious if t ≤ T (1) or if
s ≥ T (1). Suppose that s < T (1) < t. If |xm −XT (1)| ≤ ε/2, then

|Z(2,m)

s,T (1) − σ(Zs)Bs,T (1)| ≲ ∥σ∥Cγ∥Z∥γCα∥B∥Cα(t− s)(1+γ)α,

|Z(2,m)

T (1),t
− σm(ZT (1))BT (1),t| ≲ ∥σm∥Cγ∥Z∥γCα∥B∥Cα(t− s)(1+γ)α.

Since |xm −XT (1) | = |xm − YT (1) | ≤ ε/2, we have

|σm(ZT (1))− σ(Zs)| = |σ(ZT (1))− σ(Zs)| ≤ ∥σ∥Cγ∥Z∥γCα(T (1) − s)γα,

and the estimate (3.30) follows. The case where |xm −XT (1) | > ε/2 is similar.
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Now we check that the Gubinelli derivative Σθ,m := θΣX,m + (1 − θ)ΣY,m is non-
degenerate. Indeed, for t ≤ T (1) we have

Σθ,m(t)Σθ,m(t)T = σ(Xt)σ(Xt)
T ≥ K−1,

and for t > T (1) the condition (3.29) implies that Σθ,m(t)Σθ,m(t)T ≥ K−1/4. Therefore,
Theorem 3.3.2 and the Kolmogorov continuity theorem show that V (2,m)

n converges to some
V (2,m) in Lp(P). By the diagonalization argument, we may suppose that almost surely for
every m ∈ N and δ ∈ (0, γH) we have

lim
n→∞

∥V (2,m) − V (2,m)
n ∥CγH−δ = 0.

We can find a random m so that |xm −XT (1)| < ε/2. We then have

Xt − Yt =
∑

k

∫ t

0

(Xk
r − Y k

r )dV
(2,m),k(r)

up to t ≤ T (2), hence X = Y on [0, T (2)]. It is now clear that this algorithm can be
continued, and at some point we must have T (i) ≥ T due to (3.28).

3.4 Rough case
Throughout this section we fix H ∈ (1/3, 1/2), and we will drop scripts on H . We always
interpret the integral of the form ∫ t

s

YrdBr

as the rough integral with respect to the canonical lift of B (Definition 3.2.4). We consider
the rough differential equation

dXt = σ(Xt)dBt, X0 = x.

Given two adapted solutions X and Y , if we pretend that σ and B are smooth, then

Xt − Yt =

d1∑

k=1

∫ t

0

(Xk
r − Y k

r )dG
k
r , (3.31)

where

Gk
t :=

∫ t

0

[ ∫ 1

0

∂kσ(θXr + (1− θ)Yr)dθ
]
dBr
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Yet, as H < 1/2, we must appropriately interpret the integral in the right-hand side of
(3.31). Since X and Y are controlled by B, it is natural to construct a joint rough path of B
and (Gk)d1k=1:

(B,Gk,

∫
B ⊗ dB,

∫
B ⊗ dGk,

∫
Gk ⊗ dB,

∫
Gk ⊗ dGl). (3.32)

As in the Young case, the problem here is that σ is too irregular to make sense of the
lift (3.32) by pathwise method. One obvious difference from the Young case is that we
have to make sense of iterated integrals. However, even for constructing Gk, there is a new
difficulty, which we explain now. Our task is to make sense of

∫ t

0

f(Xr)dBr (3.33)

for an irregular f , where X is controlled by B with Gubinelli derivative X ′. A similar
problem for H > 1/2 was already solved in Section 3.3 by considering the germ

As,t := Es−(t−s)

∫ t

s

f(Xs−(t−s) +X ′
s−(t−s)Bs−(t−s),r)dBr. (3.34)

The very crucial advantage for the case H > 1/2 is that we can take conditional expectation
on Fs−(t−s), which allows us to perform Gaussian computations. The reason why we can
take the conditional expectation in this case is that the Hölder exponent of the process (3.33)
is greater than 1/2. For H < 1/2, this is not the case, and hence we are not allowed to
consider the germ (3.34). To see further why taking the conditional expectation does not
help, we can consider the case H = 1/2; if the integral is understood in Itô’s sense, (3.34)
is just 0, and this observation also implies that the germ (3.34) is not correct even for the
Stratonovich integral, in view of the Itô–Stratonovich correction.

Therefore, in the rough case we have to consider the germ without conditional expectation:

As,t :=

∫ t

s

f(Xs +X ′
sBs,r)dBr. (3.35)

To get (1/2 + ε)-exponent, we must estimate δAs,u,t rather than just As,t. To this end, we
apply the shifted stochastic sewing again. That is, we apply the stochastic sewing twice —
first to estimate ∥δAs,u,t∥p by applying the fully shifted version, then to apply Lê’s version
with (As,t)s<t.
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3.4.1 Rough integral with irregular integrand
Technical estimates

Let us recall the Riemann–Liouville process B from Definition 3.2.8. Here we give technical
estimates involving B, which will be necessary to estimate ∥δAs,u,t∥p. Our computations
here resemble Section 1.3.

Lemma 3.4.1. Let g : Rd2 → R be a bounded measurable function. We set

A1
s,t := g(Bs)Bis,tBjs,t, A2

s,t := g(Bs)
∫ t

s

Bis,rdBjr.

Then, for p ∈ [2,∞) and v < s < t with t− s ≤ s− v, we have

∥E[A1
s,t − 2A2

s,t|Fv]∥p ≲p ∥g∥L∞(Rd2 )

( t− s

s− v

)1−H
(t− s)2H .

Proof. We set

Yt :=

∫ v

0

K(t, r)dWr, B̃t :=
∫ t

v

K(t, r)dWr.

Note that Y = E[B|Fv] and B̃ is independent of Fv. We have

A1
s,t = g(Ys + B̃s)[Y i

s,tY
j
s,t + Y i

s,tB̃js,t + B̃is,tY j
s,t + B̃is,tB̃js,t].

To estimate the first three terms, observe that

∥Ys,t∥p ≲p (s− v)H−1(t− s), ∥B̃s,t∥p ≲p (t− s)H .

Hence, we obtain

∥A1
s,t − g(Ys + B̃s)B̃is,tB̃js,t∥p ≲p ∥g∥L∞(Rd2 )

( t− s

s− v

)1−H
(t− s)2H .

Similarly, A2
s,t equals to

g(Ys + B̃s)
[ ∫ t

s

Y i
s,rẎ

j
r dr +

∫ t

s

Y i
s,rdB̃jr +

∫ t

s

B̃is,rẎ j
r dr +

∫ t

s

B̃is,rdB̃jr
]

and
∥∥∥A2

s,t − g(Ys + B̃s)

∫ t

s

B̃is,rdB̃jr
∥∥∥
p
≲p ∥g∥L∞(Rd2 )

( t− s

s− v

)1−H
(t− s)2H .
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To complete the proof, it remains to observe

E
[
g(Ys + B̃s)

∫ t

s

B̃is,rdB̃jr
∣∣∣Fv

]
=

1

2
E[g(Ys + B̃s)B̃is,tB̃js,t|Fv], (3.36)

which follows from Lemma 3.2.10.

Lemma 3.4.2. Let H ∈ (1/3, 1/2) and let E be a measurable space. Let ξ be a random
variable valued in E and let η be a random path valued in Rd such that

∥ηs,t∥p ≲p s
−(1−H)(t− s)

for all p ∈ [1,∞) and s < t with t− s ≤ s. Suppose that F : E × Rd → R satisfies

|F (x, y1)− F (x, y2)| ≤M(x)|y1 − y2|γ

for all x ∈ E and y1, y2 ∈ Rd, with γ ∈ ( 1
2H

− 1, 1]. Finally, suppose that ξ, η are
independent of B. We set

As,t := (F (ξ, ηs + Bs) + F (ξ, ηt + Bt))Bis,t

and Ft := σ(ξ, η,Br : r ≤ t). We then have

∥δAs,u,t∥p ≲p,γ ∥M(ξ)∥2p(t− s)(1+γ)H , (3.37)

∥E[δAs,u,t|Fv]∥p ≲p,γ ∥M(ξ)∥2p
( t− s

s− v

)1+(1−γ)H
(t− s)(1+γ)H . (3.38)

Proof. We essentially repeat the argument of Proposition 1.3.6. We first consider the
estimate (3.37). By [LL22, Lemma 3.4], we see that

∥ηs,t∥p ≲p (t− s)H

for all s < t. We compute

δAs,u,t = F (ξ, η + B)u,tBis,u − F (ξ, η + B)s,uBiu,t,

and

|δAs,u,t| ≲γ M(ξ)
[
|ηu,t + Bu,t|γ|Bs,u|+ |ηs,u + Bs,u|γ|Bu,t|

]
.

Now it is easy to see the estimate (3.37).
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We turn to the estimate (3.38). We set

Ys := ηs +

∫ v

0

K(s, r)dWr, B̃s :=
∫ s

v

K(s, r)dWr

and

a0(s) := E[F (x, ys + B̃s)]|x=ξ,y=Y ,
ai(s) := E[(B̃is)2]−1E[F (x, ys + B̃s)B̃i

s]|x=ξ,y=Y .

We note that

∥Ys,t∥p ≲p s
−(1−H)(t− s) + (s− v)−(1−H)(t− s)

≤ (s− v)−(1−H)(t− s). (3.39)

As in Proposition 1.3.6, especially (1.32) and (1.35), we have

E[δAs,u,t|Fv] = D0
s,u,t +Di

s,u,t,

where

D0
s,u,t := (a0(t)− a0(u))Y

1
s,u + (a0(s)− a0(u))Y

i
u,t

and

Di
s,u,t := (ai(t)− ai(u))E[B̃i

tB̃
i
s,t] + (ai(s)− ai(u))E[B̃i

sB̃
i
s,t]

− (ai(s)− ai(u))E[B̃i
sB̃

i
s,u]− (ai(t)− ai(u))E[B̃i

tB̃
i
u,t].

The estimate as in (1.33) gives

|D0
s,u,t| ≲γ M(ξ)

[
(s− v)(γ−1)H |Ys,u||Yu,t|+ (s− v)γH−1(t− s)(|Ys,u|+ |Yu,t|)

]
.

In view of (3.39), we obtain

∥D0
s,u,t∥p ≲p,γ ∥M(ξ)∥2p(s− v)(γ+1)H−2(t− s)2.

Similarly, the estimate as in (1.36) gives

∥Di
s,u,t∥p ≲p,γ ∥M(ξ)∥2p(s− v)(γ−1)H−1(t− s)1+2H .

Now the estimate (3.38) is proven.
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Lemma 3.4.3. In the setting of Lemma 3.4.2, suppose further that for every x the map
F (x, ·) is locally C2, that

|∇F (x, y)|+ |∇2F (x, y)| ≤ N(x)(1 + |y|)
for all x and y, and that

sup
r∈[s,t]

∥N(ξ)(1 + |ηr|)∥2p <∞.

Then we have
∥∥∥
∫ t

s

F (ξ, ηr + Br)dBr −
F (ξ, ηs + Bs) + F (ξ, ηt + Bt)

2
Bs,t

∥∥∥
p

≲p,γ ∥M(ξ)∥2p(t− s)(1+γ)H .

Proof. The integral
∫ t
s
F (ξ, ηr + Br)dBr is understood as rough integral:

∫ t

s

f(Br)dBr = lim
|π|→0

∑

[s′,t′]∈π

A1
s′,t′ , (3.40)

where π is a partition of [s, t] and

A1
s,t := F (ξ, ηs + Bs)Bs,t +∇F (ξ, ηs + Bs)

∫ t

s

Bs,rdBr.

(The operator ∇ acts only on the second variable.) In view of Theorem 1.1.1 and
Lemma 3.4.2, it suffices to show

∫ t

s

F (ξ, ηr + Br)dBr = lim
|π|→0

∑

[s′,t′]∈π

A2
s′,t′ , (3.41)

where

A2
s,t :=

F (ξ, ηs + Bs) + F (ξ, ηt + Bt)
2

Bs,t.

To this end, we apply the sewing technique. We have

A2
s,t − A1

s,t

=
F (ξ, ηt + Bt)− F (ξ, ηs + Bs)

2
Bs,t −∇F (ξ, ηs + Bs)

∫ t

s

Bs,rdBr

=
1

2
∇F (ξ, ηs + Bs)Bs,t ⊗ Bs,t −∇F (ξ, ηs + Bs)

∫ t

s

Bs,rdBr +Rs,t, (3.42)
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where

|Rs,t| ≲ω,F (t− s)3H .

Since H > 1/3, we have
∣∣∣
∑

[s′,t′]∈π

Rs,t

∣∣∣ ≲ω,F |π|3H−1.

Setting A3
s,t := A2

s,t − A1
s,t −Rs,t, we therefore see that

lim
|π|→0

∑

[s′,t′]∈π

(A1
s,t − A2

s,t) = lim
|π|→0

∑

[s′,t′]∈π

A3
s,t a.s.

To estimate the right-hand side, we will apply the uniqueness part of Theorem 1.1.1. By the
representation (3.42), we easily obtain

∥A3
s,t∥p ≲ ∥N(ξ)(1 + |ηs + Bs|)∥2p(t− s)2H ,

and note that the exponent 2H is greater than 1/2. By Lemma 3.4.1,

∥E[A3
s,t|Fv]∥p ≲p ∥N(ξ)(1 + |ηs|)∥p

( t− s

s− v

)1−H
(t− s)2H .

Hence, (3.41) is proven in view of (3.40) and Theorem 1.1.1.

Main estimate

The following is the most important technical result of this section.

Theorem 3.4.4. Let H ∈ (1/3, 1/2), (X,X ′) ∈ D1,K , f ∈ C2(Rd), γ ∈ (1/H − 2, 1) and
ε ∈ (0, 1). Then, if |t− s| ≤ 1, we have

∥∥∥
∫ t

s

f(Xr)dBr − f(Xs)Bs,t

∥∥∥
p
≲p,K,γ,ε ∥f∥Cγ (1 + |||X|||(1+ε)p)(t− s)(1+γ)H .

Proof. We set

As,t :=

∫ t

s

f(Xs +X ′
sBs,r)dBr. (3.43)

The integral is understood as rough integral: the map

r 7→ f(Xs +X ′
sBs,r)
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is controlled by B with Gubinelli derivative f ′(Xs +X ′
sBs,r)X

′
s. In particular, we have

|As,t − f(Xs)Bs,t − f ′(Xs)X
′
sBs,t| ≲ (t− s)3α

for α ∈ (1/3, H), and hence
∫ t

s

f(Xr)dBr = lim
|π|→0

∑

[s′,t′]∈π

As′,t′ ,

where π is a partition of [s, t]. As in Theorem 3.3.2, we apply the stochastic sewing to
As,t. This time, the version of Lê is sufficient (that is α = 0 and v = s in Theorem 1.1.1).
Furthermore, as valided in Step 1 of Theorem 3.3.2, we assume the Mandelbrot–van Ness
representation.

Step 1. We estimate ∥δAs,u,t∥p. We observe

δAs,u,t =

∫ t

u

{f(Xs +X ′
sBs,r)− f(Xu +X ′

uBu,r)}dBr

=

∫ t

u

{f(Xs +X ′
sBs,r)− f(Xu +X ′

uBu,r)}Ẏrdr (3.44)

+

∫ t

u

{f(Xs +X ′
sBs,r)− f(Xu +X ′

uBu,r)}dB̃r, (3.45)

where

Yt :=

∫ u

−∞
K(t, r)dWr, B̃r :=

∫ t

u

K(t, r)dWr. (3.46)

The integral (3.44), by the triangle inequality, is bounded by

∥f∥Cγ

∫ t

u

|Xs +X ′
sBs,r − (Xu +X ′

uBu,r)|γ|Ẏr|dr.

Since

Xs +X ′
sBs,r − (Xu +X ′

uBu,r) = −(Xs,u −X ′
sBs,u)−X ′

s,uBu,r,

and ∥Ẏr∥p ≲ (r − u)H−1, we obtain

∥∥∥
∫ t

u

{f(Xs +X ′
sBs,r)− f(Xu +X ′

uBs,r)}Ẏrdr
∥∥∥
p
≲ |||X|||γq∥f∥Cγ (t− s)(1+2γ)H .
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To estimate (3.45), by Lemma 3.4.2 for v ∈ {s, u} we have

∥∥∥
∫ t

u

f(Xv +X ′
vBv,r)dB̃r −

f(Xv +X ′
vBv,u) + f(Xv +X ′

vBv,t)

2
B̃u,t

∥∥∥
p

≲γ,K ∥f∥Cγ (t− s)(1+γ)H .

Since
∣∣∣f(Xs +X ′

sBs,u) + f(Xs +X ′
sBs,t)

2
− f(Xu) + f(Xu +X ′

uBu,t)

2

∣∣∣
≲ ∥f∥Cγ

(
|Xs,u −X ′

sBs,u|γ + |X ′
s,uBu,t|γ

)
,

we see that the Lp(P)-norm of the integral (3.45) is bounded by (up to constant)

∥f∥Cγ (t− s)(1+γ)H + |||X|||γq∥f∥Cγ (t− s)(1+2γ)H

Step 2. Next we estimate E[δAs,u,t|Fs], which is essentially done in Theorem 3.3.2. As
in Step 1, Y and B̃ are defined by (3.46). We have

EuδAs,u,t =Eu
∫ t

u

{f(Xs +X ′
sBs,r)− f(Xu +X ′

uBs,r)}Ẏrdr

+ Eu
∫ t

u

{f(Xs +X ′
sBs,r)− f(Xu +X ′

uBs,r)}dB̃r.

For v ∈ {s, u}, we observe

Eu
∫ t

u

f(Xv +X ′
vBv,r)Ẏrdr =

∫ t

u

P (r−u)2H

2H
X′

v(X
′
v)

T
f(Xv +X ′

v(Bv,u + Yu,r))Ẏrdr

and by Step 2 of the proof of Theorem 3.3.2 we observe

Eu
∫ t

u

f(Xv +X ′
vBv,r)dB̃r

=
1

2
X ′
v

∫ t

u

(r − u)2H−1∇P (r−u)2H

2H
X′

v(X
′
v)

T
f(Xv +X ′

v(Bv,u + Yu,r))dr.

Hence, EuδAs,u,t = J1 + J2 + J3, where

J1 :=

∫ t

u

P (r−u)2H

2H
X′

s(X
′
s)

T
{f(Xs +X ′

s(Bs,u + Yu,r))− f(Xu +X ′
uYu,r)}Ẏrdr
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J2 :=

∫ t

u

(P (r−u)2H

2H
X′

s(X
′
s)

T
− P (r−u)2H

2H
X′

u(X
′
u)

T
)f(Xu +X ′

uYu,r)Ẏrdr

J3 :=
1

2

∫ t

u

(r − u)2H−1

×
{
X ′
s∇P (r−u)2H

2H
X′

s(X
′
s)

T
f(Xs +X ′

s(Bs,u + Yu,r))

−X ′
u∇P (r−u)2H

2H
X′

u(X
′
u)

T
f(Xu +X ′

uYu,r)
}
dr.

Then the rest of the argument is identical to Step 4 of Theorem 3.3.2. (J1 corresponds to I7,
J2 to I8 and J3 to I6.) In particular, we obtain

∥Es[δAs,u,t]∥Lp(P) ≲ ∥f∥Cγ |||X|||(1+ε)p(t− s)(2+γ)H .

Step 3. By Theorem 1.1.1,

∥∥∥
∫ t

s

f(Xr)dBr − As,t

∥∥∥
p
≲ ∥f∥Cγ

[
(t− s)(1+γ)H

+ |||X|||γ(1+ε)pγ(t− s)(1+2γ)H + |||X|||(1+ε)p(t− s)(2+γ)H
]
.

By Lemma 3.4.3,
∥∥∥As,t −

f(Xs) + f(Xs +X ′
sBs,t)

2
Bs,t

∥∥∥
p
≲ ∥f∥Cγ (t− s)(1+γ)H .

It remains to observe
∥∥∥f(Xs) + f(Xs +X ′

sBs,t)

2
Bs,t − f(Xs)Bs,t

∥∥∥
p
≲ ∥f∥Cγ (t− s)(1+γ)H .

3.4.2 Iterated integrals
The goal of this section is to estimate iterated integrals in (3.32). This turns out to be easy
corollaries of Theorem 3.4.4.

Lemma 3.4.5. Let H ∈ (1/3, 1/2), (X,X ′) ∈ D1,K , f ∈ C2(Rd), γ ∈ (1/H − 2, 1) and
ε ∈ (0, 1). Then, if |t− s| ≤ 1, we have

∥∥∥
∫ t

s

f(Xr)B
i
s,rdB

j
r − f(Xs)Bi,js,t

∥∥∥
p
≲p,K,ε,γ ∥f∥Cγ (1 + |||X|||(1+ε)p)(t− s)(2+γ)H .
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Proof. We fix a τ ≤ s, and we set

Ās,t := Bi
τ,s

∫ t

s

f(Xr)dB
j
r + f(Xs)Bi,js,t.

Step 1. We show that Ās,t is a correct approximation. For this sake, we set

Ā′
s,t := f(Xs)B

i
τ,sB

j
s,t + f(Xs)Bi,js,t +

∑

k,l

Bi
τ,s∂kf(Xs)(X

′
s)
klBljs,t.

By definition of the rough integral, we have
∫ t

s

f(Xr)B
i
τ,rdB

j
r = lim

π is a partition of [s,t],
|π|→0

∑

[u,v]∈π

Ā′
u,v.

Our goal is to prove |Ās,t − Ā′
s,t| ≲f,ω (t− s)3H . We compute

Ās,t − Ā′
s,t = Bi

τ,s

(∫ t

s

f(Xr)dBr − f(Xs)B
j
s,t −

∑

k,l

∂kf(Xs)(X
′
s)
klBljs,t

)

By the fundamental estimate of the rough integral, we have
∣∣∣
∫ t

s

f(Xr)dBr − f(Xs)B
j
s,t −

∑

k,l

∂kf(Xs)(X
′
s)
klBljs,t

∣∣∣ ≲f,ω (t− s)3H ,

hence Ā is a correct approximation.
Step 2. This time we do not need the stochastic sewing; the usual sewing in Lp(P)

suffices. We compute

δĀs,u,t = −Bi
s,u

∫ t

u

f(Xr)dB
j
r + f(Xs)(Bi,js,t − Bi,js,u)− f(Xu)Bi,ju,t.

Using Chen’s relation

Bi,ju,t = Bi,js,t − Bi,js,u −Bi
s,uB

j
u,t,

we obtain

δAs,u,t = −Bi
s,u

(∫ t

u

f(Xr)dB
j
r − f(Xu)B

j
u,t

)
− f(X)s,u(Bi,js,t − Bi,js,u).
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Since

∥Bi
s,u∥p ≲ (t− s)H , ∥Bi,js,t∥p ≲ (t− s)2H ,

∥f(X)s,u∥p ≲ ∥f∥Cγ |||X|||γpγ(t− s)γH ,

and by Theorem 3.4.4

∥∥∥
∫ t

u

f(Xr)dB
j
r − f(Xu)B

j
u,t

∥∥∥
p
≲ ∥f∥Cγ (1 + |||X|||(1+ε)p)(t− s)(1+γ)H ,

we obtain

∥δAs,u,t∥p ≲ ∥f∥Cγ (1 + |||X|||(1+ε)p)(t− s)(2+γ)H .

As (2 + γ)H > 1, the sewing lemma in Lp(P) gives

∥∥∥
∫ t

s

f(Xr)B
i
s,rdB

j
r − Ās,t

∥∥∥
p
≲p,K,ε,γ ∥f∥Cγ (1 + |||X|||(1+ε)p)(t− s)(2+γ)H .

It remains to set τ = s.

Lemma 3.4.6. Let H ∈ (1/3, 1/2), (X,X ′), (Y, Y ′) ∈ D1,K , g, h ∈ C2(Rd), γ ∈ (1/H −
2, 1) and ε ∈ (0, 1). Then, if |t− s| ≤ 1, we have

∥∥∥
∫ t

s

(∫ r2

s

g(Xr1)dB
i
r1

)
h(Yr2)dB

j
r2
− g(Xs)h(Ys)Bi,js,t

∥∥∥
p

≲p,K,ε,γ ∥g∥Cγ∥h∥Cγ (1 + |||X|||2(1+ε)p)(1 + |||Y |||2(1+ε)p)(t− s)(2+γ)H .

Proof. Let τ ≤ s. This time our germ is

Ãs,t :=
(∫ s

τ

g(Xr)dB
i
r

)
×
∫ t

s

h(Yr)dB
j
r + g(Xs)

∫ t

s

Bi
s,rh(Yr)dB

j
r .

Step 1. To see that Ãs,t is a correct approximation, we set

Ã′
s,t :=

(∫ s

τ

g(Xr)dB
i
r

)
h(Ys)B

j
s,t

+ g(Xs)h(Ys)Bijs,t +
∑

k,l

(∫ s

τ

g(Xr)dB
i
r

)
∂kh(Ys)(Y

′
s )
klBljs,t.
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By definition of the rough integral, we have
∫ t

s

(∫ r2

τ

g(Xr1)dB
i
r1

)
h(Yr2)dB

j
r2
= lim

π is a partition of [s,t],
|π|→0

∑

[u,v]∈π

Ã′
u,v.

Our goal is to prove |Ãs,t − Ã′
s,t| ≲ω (t− s)3H . We observe

Ãs,t − Ã′
s,t

=
(∫ s

τ

g(Xr)dB
i
r

)(∫ t

s

h(Yr)dB
j
r − h(Ys)B

j
s,t −

∑

k,l

∂kh(Ys)(Y
′
s )
klBljs,t

)

+ g(Xs)
(∫ t

s

Bi
s,rh(Yr)dB

j
r − h(Ys)Bijs,r

)
.

By the fundamental estimate of the rough integral, we have
∣∣∣
∫ t

s

h(Yr)dB
j
r − h(Ys)B

j
s,t −

∑

k,l

∂kh(Ys)(Y
′
s )
klBljs,t

∣∣∣ ≲ω (t− s)3H ,

∣∣∣
∫ t

s

Bi
s,rh(Yr)dB

j
r − h(Ys)Bijs,r

∣∣∣ ≲ω (t− s)3H .

Hence, Ãs,t is a correct approximation.
Step 2. Again we do not need the stochastic sewing; the usual sewing in Lp(P) suffices.

We compute

δÃs,u,t = −
(∫ u

s

g(Xr)dB
i
r − g(Xs)B

i
s,u

)∫ t

u

h(Yr)dB
j
r

− g(X)s,u

∫ t

u

h(Yr)B
i
u,rdB

j
r .

By Theorem 3.4.4 and Lemma 3.4.5,
∥∥∥
∫ u

s

g(Xr)dB
i
r − g(Xs)B

i
s,u

∥∥∥
2p

≲ ∥g∥Cγ (1 + |||X|||2(1+ε)p)(t− s)(1+γ)H ,

∥∥∥
∫ t

u

h(Yr)dB
j
r

∥∥∥
2p

≲ ∥h∥Cγ (1 + |||Y |||2(1+ε)p)(t− s)H ,

∥g(X)s,u∥2p ≲ ∥g∥Cγ |||X|||2p(t− s)γH ,
∥∥∥
∫ t

u

h(Yr)B
i
u,rdB

j
r

∥∥∥
2p

≲ ∥h∥Cγ (1 + |||Y |||2(1+ε)p)(t− s)2H .
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Since (2 + γ)H > 1, we obtain

∥∥∥
∫ t

s

(∫ r2

s

g(Xr1)dB
i
r1

)
h(Yr2)dB

j
r2
− Ãs,t

∥∥∥
p

≲ ∥g∥Cγ∥h∥Cγ (1 + |||X|||2(1+ε)p)(1 + |||Y |||2(1+ε)p)(t− s)(2+γ)H .

Setting τ = s, we get

∥∥∥
∫ t

s

(∫ r2

s

g(Xr1)dB
i
r1

)
h(Yr2)dB

j
r2
− g(Xs)

∫ t

s

h(Yr)B
i
s,rdB

j
r

∥∥∥
p

≲ ∥g∥Cγ∥h∥Cγ (1 + |||X|||2(1+ε)p)(1 + |||Y |||2(1+ε)p)(t− s)(2+γ)H .

By Lemma 3.4.5,
∥∥∥
∫ t

s

h(Yr)B
i
s,rdB

j
r − h(Ys)Bi,js,t

∥∥∥
p
≲ ∥h∥Cγ (1 + |||X|||2(1+ε)p)(t− s)(2+γ)H ,

and the proof is complete.

3.4.3 Pathwise uniqueness
Our final result is the following.

Theorem 3.4.7. Let H ∈ (1/3, 1/2), γ ∈ (1−H
H
, 2) and σ ∈ Cγ . Suppose that σσT is

uniformly elliptic. Then, pathwise uniqueness holds for (3.1).

Before going into the proof, we need some preparations. Let ρ be a smooth map from
Rd1 to the space of d1 × d2 matrices, and let (X,X ′), (Y, Y ′) be paths controlled by B. We
set

Gk
t := G[ρ]kt :=

∫ t

0

(∫ 1

0

∂kρ(θXr + (1− θ)Yr)dθ
)
dBr.

The integral is understood as the rough integral, since the path

t 7→
∫ 1

0

∂kρ(θXt + (1− θ)Yt)dθ

is controlled by B with Gubinelli derivative

t 7→
∫ 1

0

∇∂kρ(θXt + (1− θ)Yt)(θX
′
t + (1− θ)Y ′

t )dθ.
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We furthermore set

Gks,t := G[ρ]ks,t =
∫ t

s

(∫ 1

0

∂kρ(θXt + (1− θ)Yt)dθ
)
Bs,r ⊗ dBr.

We set Gk := (Gk,Gk). Note that for α ∈ (1/3, H) we have

|||Gk|||α := sup
0≤s<t≤T

{ |Gk
s,t|

(t− s)α
+

|Gks,t|
(t− s)γα

}
<∞, (3.47)

for any γ ∈ (1−H
H
, 2). We choose α so close to H to have

(1 + γ)α > 1.

Finally, we observe the following modified Chen’s relation

Gks,t = Gks,u + Gku,t +Bs,u ⊗Gk
u,t. (3.48)

More abstractly, we can consider any pair G = (G,G) satisfying the analytic condition
(3.47) and the algebraic condition (3.48). Let Z be a path controlled by B. It is not difficult
to see (simply by repeating the arguments in the usual rough path setting, e.g. [FH20,
Theorem 4.10]) that the integral

∫ t

s

ZrdGr := lim
|π|→0

∑

[u,v]∈π

(ZuGu,v + Z ′
uGu,v)

exists, and we have the quantitative estimate
∣∣∣
∫ t

s

ZrdGr − ZsGs,t − Z ′
sGs,t

∣∣∣ ≲ ∥Z∥Dγα|||G|||α(t− s)(1+γ)α. (3.49)

Furthermore, as in [FH20, Theorem 4.17], we have the stability estimate: by setting

dα(G, Ḡ) := sup
0≤s<t≤T

( |Gs,t − Ḡs,t|
(t− s)α

+
|Gs,t − Ḡs,t|
(t− s)γα

)
, (3.50)

and provided that

|||G|||α + |||Ḡ|||α ≤M

for some M ≥ 1, we have
∣∣∣
∫ t

s

ZrdGr −
∫ t

s

ZrdḠr

∣∣∣ ≲M ∥Z∥Dγαdα(G, Ḡ)(t− s)α. (3.51)

To rigorously derive the identity (3.31), we use the following.
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Lemma 3.4.8. Let ρ be a smooth map from Rd1 to the space of d1 × d2 matrices, and let
(X,X ′), (Y, Y ′) be paths controlled by B. We then have

∫ t

0

{ρ(Xr)− ρ(Yr)}dBr =

d1∑

k=1

∫ t

0

(Xk
r − Y k

r )dG
k
r [ρ].

Proof. We set

A1
s,t := {ρ(Xs)− ρ(Ys)}Bs,t + {ρ(Xs)X

′
s − ρ(Ys)Y

′
s}Bs,t,

A2
s,t :=

d1∑

k=1

(Xk
s − Y k

s )G
k
s,t + {(X ′

s)
k − (Y ′

s )
k}Gks,t,

where (Z ′
s)
k is the kth row of the matrix Z ′

s (Z ∈ {X, Y }). Note that
∫ t

0

{ρ(Xr)− ρ(Yr)}dBr = lim
π is a partition of [0,t],

|π|→0

∑

[u,v]∈π

A1
u,v,

d1∑

k=1

∫ t

0

(Xk
r − Y k

r )dG
k
r [ρ] = lim

π is a partition of [0,t],
|π|→0

∑

[u,v]∈π

A2
u,v.

Therefore, it suffices to show |A1
s,t − A2

s,t| ≲ (t − s)3H . By the mean value theorem for
integrals,

ρ(Xs)− ρ(Ys) =

d1∑

k=1

∫ 1

0

∂kρ(θXs + (1− θ)Ys)(X
k
s − Y k

s )dθ

and

∇ρ(Xs)X
′
s −∇ρ(Ys)Y ′

s

=

d1∑

k=1

{∫ 1

0

(Xk
s − Y k

s )∂k∇ρ(θXs + (1− θ)Ys)(θX
′
s + (1− θ)Y ′

s )dθ

+

∫ 1

0

∇ρ(θXs + (1− θ)Ys)(X
′
s − Y ′

s )dθ
}
.

We compute

A2
s,t − A1

s,t =

d1∑

k=1

[
(Xk

s − Y k
s )∆

1,k
s,t + {(X ′

s)
k − (Y ′

s )
k}∆2,k

s,t

]
,
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where

∆1,k
s,t :=

∫ t

s

(∫ 1

0

∂kρ(θXr + (1− θ)Yr)dθ
)
dBr

−
(∫ 1

0

∂kρ(θXs + (1− θ)Ys)dθ
)
Bs,t

−
(∫ 1

0

∂k∇ρ(θXs + (1− θ)Ys)(θX
′
s + (1− θ)Y ′

s )dθ
)
Bs,t

and

∆2,k
s,t :=

∫ t

s

(∫ 1

0

∂kρ(θXr + (1− θ)Yr)dθ
)
Bs,r ⊗ dBr

−
(∫ 1

0

∂kρ(θXs + (1− θ)Ys)dθ
)
Bs,t.

By the fundamental estimate of the rough integral, we have

|∆1,k
s,t |+ |∆2,k

s,t | ≲ |t− s|3H ,

and the proof is complete.

Proof of Theorem 3.4.7. We assume that (3.27) holds, as the general case can be handled
as in the proof of Theorem 3.3.3 by stopping time arguments. Let (X, Y ) be two solutions
to (3.1). Let (σn)∞n=1 be a smooth approximation to σ. We have

Xt − Yt = lim
n→∞

∫ t

0

{σn(Xr)− σn(Yr)}dBr.

By Lemma 3.4.8,

Xt − Yt = lim
n→∞

d1∑

k=1

∫ t

0

(Xk
r − Y k

r )dG
k
r [σn].

By repeating the argument of Lemma 3.3.4, we can show that (X, σ(X)) ∈ D1,K and
similarly for Y . Therefore, by Theorem 3.4.4, Lemma 3.4.5 and the Kolmogorov criterion
for rough paths ([FH20, Theorem 3.1]), the sequence of the lifts Gk[σn] converges in Lp(P)
to some limit Gk in the metric dα defined by (3.50). The stability estimate (3.51) yields

Xt − Yt =

d1∑

k=1

∫ t

0

(Xk
r − Y k

r )dG
k
r .
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The remainder estimate (3.49) shows thatX−Y is controlled by (Gk)d1k=1 with Gubinelli
derivative X − Y . Moreover, by Lemma 3.4.6 and the Kolmogorov criterion for rough
paths, the sequence of the rough paths

Ĝ[σn] :=
(
(Gk[σn])

d1
k=1,

(∫
Gk[σn]⊗ dGl[σn]

)d1
k,l=1

)

converges to some limit Ĝ. We claim that
∫ t

0

(Xk
r − Y k

r )dG
k
r =

∫ t

0

(Xk
r − Y k

r )dĜ
k
r a.s. (3.52)

Indeed, by definition we have
∫ t

0

(Xk
r − Y k

r )dG
k
r −

∫ t

0

(Xk
r − Y k

r )dĜ
k
r = lim

π is a partition of [0,t],
|π|→0

∑

[u,v]∈π

∆u,v,

where

∆s,t := (σ(Xs)− σ(Ys))Gks,t −
d1∑

l=1

(X l
s − Y l

s )

∫ t

s

Gl
s,r ⊗ dGk

r

=

d1∑

l=1

(X l
s − Y l

s )
{(∫ 1

0

∂lσ(θXs + (1− θ)Ys)dθ
)
Gks,t −

∫ t

s

Gl
s,r ⊗ dGk

r

}
.

By Lemma 3.4.5 and Lemma 3.4.6,

∥∥∥
(∫ 1

0

∂lσ(θXs + (1− θ)Ys)dθ
)
Gks,t −

∫ t

s

Gl
s,r ⊗ dGk

r

∥∥∥
p
≲ (t− s)(1+γ)H ,

and as (1 + γ)H > 1 the identity (3.52) is established.
Hence, X − Y solves the linear rough differential equation

dZt =

d1∑

k=1

Zk
t dĜ

k
t , Z0 = 0,

and its uniqueness implies that X = Y .
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Chapter 4

Strong regularization of differential
equations with integrable drifts by
fractional noise

We prove well-posedness and stability for stochastic differential equations with inte-
grable time-dependent drift driven by additive fractional Brownian noise whose Hurst
parameter is less than 1/2. Our result can be considered as an extension of that from
Krylov and Röckner [KR05] for Brownian motion. It holds under the entire subcritical
regime observed earlier by Galeati and Gerencsér [GG23], and improves upon previous
results of Nualart and Ouknine [NO03] for dimension one and of Lê [Lê20]. Our
methods are built around Lyons’ rough path theory, Girsanov’s theorem, the stochastic
sewing lemma, and the quantitative John–Nirenberg inequality for stochastic processes
of vanishing mean oscillation.

This chapter is based on joint work with Oleg Butkovsky and Khoa Lê.

Keywords and phrases. Stochastic differential equations, fractional Brownian motion,
regularization by noise, stochastic sewing, processes of vanishing mean oscillation,
rough paths.
MSC 2020 – 60H10, 60H50, 60G22, 60L20.
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4.1 Introduction
We consider the stochastic differential equation (SDE)

dXt = bt(Xt)dt+ dBH
t , X0 = x ∈ Rd, (4.1)

where b ∈ LqtL
p
x := Lq([0, T ];Lp(Rd)) and BH is a fractional Brownian motion with Hurst

parameterH on a fixed filtered probability space (Ω,F ,P, (Ft)t≥0). The aim of this chapter
is to prove well-posedness of (4.1) and its stability under the following conditions:

p, q ∈ [1,∞], H ∈
(
0,

1

2

)
, (4.2a)

dH

p
+

1

q
< 1−H, (4.2b)

p ≥ 2dH (4.2c)
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and

dH

p
<
p−1 − q−1

p−1 − 2−1

(1
2
−H

)
if p < (1−H)−1 and q > 2. (4.2d)

Theorem 4.1.1 (Well-posedness). Weak existence, weak uniqueness, pathwise uniqueness
and strong existence for (4.1) hold under (4.2).

For a function b ∈ LqtL
p
x, Mb is the smallest constant M satisfying

∥b1{|b|≥M}∥Lq
tL

p
x
≤ c, (4.3)

for some constant c = c(d,H, p, q, T ), precisely defined in (4.60).

Theorem 4.1.2 (Stability). Suppose that the condition (4.2) is satisfied. For each i ∈ {1, 2},
let xi ∈ Rd and bi ∈ LqtL

p
x, and let X i solve (4.1) with (b, x) replaced by (bi, xi). Then we

have the following stability estimates.
(i) (Pathwise stability) There exist some non-negative random variables A and D such

that

∥A∥Lm(P) ≲d,p,q,H,T,m,Mb1 ,Mb2
1 + ∥b1∥Lq

tL
p
x
,

∥D∥Lm(P) ≲d,p,q,H,T,m,Mb1 ,Mb2
∥b1 − b2∥Lq

tW
−1,p
x

for all m ∈ (0,∞), and

sup
t∈[0,T ]

|X1
t −X2

t | ≤ eA(|x1 − x2|+D) almost surely.

(ii) (Stability in moment norms) For every m ∈ (0,∞) and

γ ∈
(
0, 1−H − dH

p
− 1

q

)
,

we have

∥∥X1 −X2∥Cγ∥Lm(P) ≲d,p,q,H,T,Mb1 ,Mb2 ,m,γ
|x1 − x2|+ ∥b1 − b2∥Lq

tW
−1,p
x

.

In the above theorem and throughout the article, Cγ is the space of Rd-valued functions
on [0, T ] with Hölder regularity γ and W−1,p is the Sobolev space on Rd of regularity −1
and integrability p.
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Remark 4.1.3. In the publication version, we will use Theorem 4.1.2 to establish so called
path-by-path uniqueness, as in [ALL23].

Remark 4.1.4. When p > 2Hd, we can choose θ > 1 so that (p̄, q̄) = (θ−1p, θ−1q) still
satisfies (4.2). For any M , we have

∥bi1{|bi|≥M}∥Lq̄
tL

p̄
x
≤M1−θ∥bi∥θLq

tL
p
x
.

It is evident that there exists a constantMi =Mi(p, q,H, d, ∥bi∥Lq
tL

p
x
) such that the condition

∥bi1{|bi|≥M}∥Lq̄
tL

p̄
x
≤ c becomes trivial. In this case, the stability estimates in Theorem 4.1.2

are uniform with respect to the size of maxi ∥bi∥Lq
tL

p
x
.

When p = 2Hd, such choices are no longer possible and it is not expected to have
uniform stability estimates with respect to the norms of b1, b2. This phenomenon also
happens for SDEs with Brownian motion and drift b ∈ Ldx, see [Kry21, Theorem 3.7].

On parameters

If p ≥ max{2dH, (1−H)−1}, our results hold under the entire subcritical regime (4.2b)
under which the fractional noise dominates at small scales. Indeed, following Galeati and
Gerencsér in [GG23], if X solves the SDE (4.1), then the scaled process X(λ)

t := λ−HXλt

solves the SDE

dX
(λ)
t = λ1−H− dH

p
− 1

q b(λ)(t,X
(λ)
t )dt+ dB

(λ)
t , (4.4)

where

b(λ)(t, x) := λ
dH
p

+ 1
q b(λt, λHx), B

(λ)
t := λ−HBλt.

We note that ∥b(λ)∥Lq
tL

p
x
= ∥b∥Lq

tL
p
x

and that B(λ) is equal to B in law. Domination of the
noise at small scales entails that the order of the drift term is smaller than that of the driving
noise as λ vanishes. This enforces that

1−H − dH

p
− 1

q
> 0,

which is exactly the last condition (4.2b).
Let us explain technical conditions (4.2c) and (4.2d). Both conditions are due to

Girsanov’s arguments. The condition (4.2d) ensures that the drift term

t 7→
∫ t

0

br(Xr)dr
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belongs to the Cameron–Martin space HH of the fractional Brownian motion, and the
condition (4.2c) ensures that the Cameron–Martin norm of the drift satisfies the strong
Novikov’s condition, that is

E
[
exp

(
λ
∥∥∥
∫ ·

0

br(Xr)dr
∥∥∥
2

HH

)]
<∞, ∀λ ≥ 0.

If q = ∞, which includes the case where b is time-independent, our condition (4.2)
simplifies as follows. The condition (4.2d) becomes

H +
Hd

p
<

1

2
+
Hd

2
, p < (1−H)−1. (4.5)

Hence, the condition (4.2) reduces to H ∈ (0, 1
2
) and

p ∈





[1,∞] ∩ (2H/(1−H),∞], if d = 1,

[max{1, 4H},∞] \ {4H}, if d = 2,

[2dH,∞], if d ≥ 3.

In particular, for d = 1 it allows b ∈ L1
x provided H < 1

3
.

Krylov and Röckner in [KR05] obtained similar results for the Brownian motion. Setting
H = 1

2
in our condition (4.2), we recover their condition

d

2p
+

1

q
<

1

2
, p ≥ 2. (4.6)

In this sense, our results can be viewed as an extension of their work when the driving
process is a fractional Brownian with H < 1/2. In the case when H > 1/2, we expect
that certain positive regularity, say in Sobolev scale, is necessary for uniqueness of strong
solutions. However, this situation will not be considered herein.

Organization of the chapter

The rest of the chapter is organized as follows. In Section 4.1.1, we review some literatures
and discuss their connections with our results. In Section 4.1.2, we explain our strategy to
prove Theorem 4.1.1 and Theorem 4.1.2. Section 4.2 reviews basics of SDEs with fractional
Brownian motion and prove weak well-posedness. In Section 4.3 we prove Theorem 4.1.1,
and in Section 4.4 we prove Theorem 4.1.2.
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4.1.1 Literatures and discussions
Ill-posed differential equations sometimes become well-posed by an addition of an irregular
noise. This phenomenon is called regularization by noise. The study of regularization by
Brownian noise has a long history and can be dated back to classical works of Zvonkin [Zvo74]
and Veterennikov [Ver81]. In the seminal work [KR05] of Krylov and Röckner, the first
result on strong well-posedness with LqtLpx-drift in arbitrary finite dimensions is obtained.
More precisely, they prove strong well-posedness (pathwise uniqueness and strong existence)
of (4.1) with H = 1

2
under (4.6). The work [KR05] has inspired many others, notably

Zhang’s extension to multiplicative noise in [Zha10]. More recently, the critical case
is addresses by Röckner and Zhao in [RZ23; RZ21] and independently by Krylov in
[Kry21]. Other directions include stability and numerical approximations with sharp rates,
as discussed in [LL22; GL23; Lê22].

Surprisingly, prior to [KR05], Nualart and Ouknine [NO03], building upon their earlier
work [NO02], showed regularization by fractional noise for SDEs with integrable drifts
although only in dimension one. Their arguments are based on Girsanov’s theorem and the
comparison principle, the latter being specific to dimension one. It is worth noting that the
arguments from [NO03] also works for the case of driving Brownian noise. Yet, due to the
use of the comparison principle, their arguments cannot translate to higher dimensional
settings. Proving regularization by fractional noise in multi-dimensions requires more
robust methods, which forego both one-dimensional and Markovian techniques.

Different approaches have been developed for regularization by fractional Brownian
noise in multi-dimensions. Catellier and Gubinelli in [CG16], building upon [Dav07],
introduce a path-by-path approach lying on the framework of nonlinear Young differential
equations. Baños, Nilssen and Proske in [BNP20] employ tools from Malliavin calculus to
construct strong solutions. The Lê in [Lê20] initiates the stochastic sewing techniques and
proves the strong well-posedness of (4.1) provided that

dH

p
+

1

q
<

1

2
−H, p ≥ 2, q > 2. (4.7)

Stochastic sewing techniques are also used in [GG23] to show strong well-posedness for
equation (4.1) where the drift belongs to LqtCα

x for α ∈ R and q ∈ (1,∞] satisfying

−Hα +
1

min(q, 2)
< 1−H. (4.8)

In view of the embedding Lp(Rd) ↪→ C−d/p(Rd), their results allow drifts in LqtLpx with
p ∈ [1,∞], q ∈ (1,∞] satisfying

dH

p
+

1

min(q, 2)
< 1−H. (4.9)
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Yet, this is still not optimal compared to (4.2) because for q > 2, the condition (4.9) renders
to dH

p
< 1

2
−H . The arguments from [GG23] are not applicable under (4.2). In fact, for

q > 2, any similar strategy using the embedding Lp(Rd) ↪→ C−d/p(Rd) would eventually
lead to the non-optimal condition (4.7). Therefore, our results are complementary to [GG23]
and improve upon the previous related works.

Stability estimates of SDEs with irregular drift play an important intermediate role to
derive other applications in distribution dependent SDEs [GH22], reflected SDEs [GM23],
deriving sharp strong convergence rate of numerical approximations [DGL21; LL22; Lê22].
For Brownian noise, a typical approach to derive stability is the Zvonkin transformation,
[DGL21; LL22; GL23]. For fractional Brownian noise, Zvonkin transformation is no longer
available, nevertheless, one can utilize Hölder regularity and deduce stability results from
that of Young–Lyons equations ([Lyo94]). This connection was observed in [Lê20] and
developed further in [Ath+21; GH22; GG23; GM23]. In our situation, the relevant Hölder
exponent vanishes, and we propose two different ways to capture regularity, one is to use
pathwise variations and the other is to use stochastic mean oscillations in combination
with Lyons’ signature. Using pathwise variations, we can resort to stability properties of
Young–Lyons equations once again to obtain some desirable stability estimates in pathwise
sense (but not in any moment norm, because of some issues of exponential integrability).
Using the latter method, we can resort to stability properties of (random) Lyons rough
differential equations to obtain stability estimates in any positive moments.

When H ∈ (1
4
, 1
2
), one may consider the multiplicative noise by the rough path theory

of Lyons [Lyo98], with recent progress reported by Dareiotis and Gerencsér [DG22] and
Catellier and Duboscq [CD22]. Yet another interesting program is to extend our results to
stochastic partial differential equations as in [BM19; Ath+21].

4.1.2 Strategies of proofs
Weak existence

It is known that the validity of Girsanov’s theorem implies existence of a weak solution.
In [NO03; Lê20], using moment calculations, the authors verify Novikov’s condition for
Girsanov’s theorem under the condition

dH

p
+

1

q
<

1

2
, p ≥ 2.

Instead of moment methods, we apply the quantitative John–Nirenberg inequality for
stochastic processes of vanishing mean oscillation (VMO) from [Lê22] (or alternatively,
the quantitative Khasminski lemma from [LL22]) to establish exponential integrability for
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certain random integrals related to the Novikov’s condition. This allows us to extend the
arguments from [NO03; Lê20] under the regime (4.2).

Uniqueness and stability

We continue with the setup in Theorem 4.1.2. The difference X∆ = X1 − X2 of two
solutions solves the equation

dX∆ = X∆dV + dR, X∆
0 = x1 − x2, (4.10)

where

Vt =

∫ t

0

∫ 1

0

∇b1(r, θX1
r + (1− θ)X2

r )dθdr, Rt =

∫ t

0

(b1 − b2)(r,X2
r )dr.

If b1 has continuous bounded derivative, equation (4.10) is a perturbed ODE, whose known
properties can be utilized to derive estimations on X∆. When b1 is irregular, it is noted
in [Lê20] that (4.10) can be interpreted as a Young–Lyons differential equation ([Lyo94]).
The aforementioned work, however, treated (4.10) in the framework of Hölder continuous
functions, which only works under the non-optimal condition (4.7). In contrast, we show
that the process V has finite ρ-variation for a ρ which is less than but arbitrarily close to 2.
This allows employment of Lyons’ approach to (4.10) in [Lyo94] to derive pathwise stability
and hence, pathwise uniqueness.

To show that V has the necessary variational regularity, we apply the stochastic sewing
lemma with control. A change of measure links V directly to the process

Ut :=

∫ t

0

∇b1r(Br)dr. (4.11)

The stochastic sewing lemma relates the moment norm of Ut − Us to that of the germ

As,t := Es
∫ t

s

b1r(Br)dr = Es
∫ t

s

b1r(Es(Br) + (Br − EsBr))dr.

In [Lê20], moments of As,t are estimated from above by constant multiples of

∥b1∥Lq
tL

p
x
(t− s)1−H−Hd

p
− 1

q

by utilizing the local nondeterminism property that Var(Br − EsBr) ≳ (r − s)2H . In our
argument, we take into account the randomness of the Fs-measurable part EsBr additionally,
which leads to the following estimate with improved variational regularity

∥As,t∥Lp(P) ≲ s−
dH
p ∥b1∥Lq([s,t];Lp

x)(t− s)1−H− 1
q .
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As in [GG23], we make use of the fact that (s, t) 7→ ∥b1∥Lq([s,t];Lp
x) is a control. The

stochastic sewing lemma with control then yields that

∥Ut − Us∥Lp(P) ≲ s−
dH
p ∥b1∥Lq([s,t];Lp

x)(t− s)1−H− 1
q . (4.12)

When regularity is measured by variations, this estimate has higher regularity counting,
(1 − H) to be exact. This allows us to show that the path U given by (4.11) has finite
ρ-variation for any ρ > 1

1−H , and hence for some ρ < 2.
The estimate (4.54) does not imply stability in any moment norm because of the lack

of exponential integrability of ∥V ∥ρρ-var and ∥U∥ρρ-var. Although similar problems involving
exponential integrability have been resolved in literatures ([CLL13] uses a clever argument
based on Gaussian concentration inequality, [GG23] uses a stochastic sewing argument built
on Azuma–Hoeffding inequality), we are not able to apply these methods in our situation.

We thus adopt a different perspective, inspired by [FHL23; Ath+21], by estimating
moments of X∆ directly from equation (4.10). To employ this approach, one relies on the
modulus of mean oscillation of the driving process V . In fact, we have

[V ]VMOγ := sup
s<t

∥E[Vt − Vs|Fs]∥L∞(P)

(t− s)γ
<∞, γ := 1−H − dH

p
− 1

q
.

Under (4.2), γ is positive but can be arbitrarily small. Therefore, in view of Lyons’ rough
path theory, to obtain closed estimates for X∆ from (4.10), we have to construct a rough
path lift V on V and consider (4.10) as a rough differential equation. The construction and
the estimate of such rough path lift (see Lemma 4.4.8) are based upon VMO-type estimate
of the ρ-variation of V . We then apply the John–Nirenberg inequality (Proposition 4.2.8)
and the sewing lemma to obtain moment estimates for the integral

∫ t
s
X∆dV . Combined

with (4.10), we obtain that

∥X∆
t −X∆

s ∥Lm(P) ≲ ∥X∆
s ∥Lm(P)(t− s)γ + ∥X∆∥CγLm(P)(t− s)2γ

+ ∥Rt −Rs∥Lm(P)

Another stochastic sewing argument in combination with John–Nirenberg inequality
(Lemma 4.4.3) shows that

∥Rt −Rs∥Lm(P) ≲ ∥b1 − b2∥Lq
tW

−1,p
x

(t− s)γ.

From here, standard Gronwall argument is applied, which yields strong stability in moment
norms.
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Notation

Throughout the chapter we fix the dimension d, the Hurst parameter H ∈ (0, 1
2
), the

integrability parameters p, q ∈ [1,∞) and the final time T ∈ [0,∞). Note that T is a fixed
positive number, not a stopping time. We will write

∥b∥Lq([s,t];Lp
x)
:=

(∫ t

s

∥br∥qLp(Rd)
dr

) 1
q
, ∥b∥Lq

tL
p
x
:= ∥b∥Lq([0,T ];Lp).

Remark 4.1.5. We can assume without loss of generality that both p, q are finite. This
allows us to approximate any element of LqtLpx by smooth functions. Since we consider the
fixed time interval [0, T ], the condition q <∞ causes no harm. The case p = ∞ is already
covered by [GG23]. Indeed, we can use the embedding LqtL∞

x ↪→ LqtC
α
x for some α < 0

such that (4.8) holds.

Given a path f : [0, T ] → E we write fs,t := ft − fs. Given a two-parameter maps
(As,t)s<t we write

δAs,u,t := As,t − As,u − Au,t. (4.13)

We denote by ∥·∥ρ-var;[s,t] the ρ-variation norm [FV10, Definition 5.1]. That is,

∥w∥ρ-var;[s,t] :=
(
sup
π

∑

[u,v]∈π

|ws,t|ρ
) 1

ρ
,

where the supremum is over all partitions π of the interval [s, t]. We simply write
∥·∥ρ-var := ∥·∥ρ-var;[0,T ]. The following inequalities hold: for s < u < t

(∥w∥ρρ-var;[s,u] + ∥w∥ρρ-var;[u,t])
1
ρ ≤ ∥w∥ρ-var;[s,t] ≤ ∥w∥ρ-var;[s,u] + ∥w∥ρ-var;[u,t]. (4.14)

We write ∥·∥m := ∥·∥Lm(P), Es[·] := E[·|Fs] (when the filtration (Fs) is obvious from the
context) and

∥X|G∥m := E[|X|m|G] 1
m , ∥∥X|G∥m∥n := ∥∥X|G∥m∥n. (4.15)

We write A ≲ B if there exists a constant C ∈ (0,∞) depending on irrelevant parameters
such that A ≤ CB. If we want to emphasize dependency on parameters, say α, β, . . ., we
write A ≲α,β,... B. In this chapter, we will not write down dependency on d,H, p, q.

4.2 Weak well-posedness
The goal of this section is to prove weak well-posedness for (4.1) and Girsanov’s theorem
for the solutions.
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4.2.1 Preliminaries
Review of fractional SDEs

Recall the notion of (Ft)-fractional Brownian motion from Definition 3.2.3.

Definition 4.2.1. We say that a quintuple

(Ω, (Ft)t∈[0,T ],P, (Bt)t∈[0,T ], (Xt)t∈[0,T ])

is a weak solution to (4.1) if the following conditions are satisfied.
(i) The triplet (Ω, (Ft)t∈[0,T ],P) is a complete filtered probability space.

(ii) The process B is a (Ft)-fractional Brownian motion.

(iii) The process X is (Ft)-adapted and satisfies a.s.

t 7→ bt(Xt) ∈ L1([0, T ]), K−1
H

(∫ ·

0

br(Xr)dr
)
∈ H1([0, T ]).

(iv) We have

Xt = x+

∫ t

0

br(Xr)dr +Bt ∀t ∈ [0, T ].

We say that weak uniqueness holds for (4.1) if the law of X is unique.

Remark 4.2.2. The technical second condition of (iii) is expected to be removed for the
publication, by proving path-by-path uniqueness.

Definition 4.2.3. Given a filtered probability space (Ω, (Ft)t≥0,P) with (Ft)-fractional
Brownian motion B, we say that a process X is a pathwise solution to (4.1) if X satisfies
the conditions (iii) and (iv) of Definition 4.2.1. We say that pathwise uniqueness for (4.1)
holds if two pathwise solutions to (4.1) are indistinguishable. A pathwise solution is called
a strong solution if it is adapted to the natural filtration generated by B. We say that strong
existence holds if there exists a strong solution.

Remark 4.2.4. In view of a general version of the Yamada-Watanabe theorem proved by
Kurtz [Kur07], to prove Theorem 4.1.1 it suffices to prove weak existence and pathwise
uniqueness. Following the arguments of [Lê20, Theorem 6.1] with new ingredient of
a VMO-type estimate from [Lê22], we will prove weak existence in Proposition 4.2.11.
Pathwise uniquness will be proven in Section 4.3.
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Girsanov’s theorem

Our argument relies on the following Girsanov’s theorem. Since the Cameron–Martin space
of the Brownian motion is

{ϕ ∈ H1([0, T ]) : ϕ0 = 0 },

the Cameron–Martin space HH of the fractional Brownian motion BH is

{ϕ : ϕ0 = 0, K−1
H ϕ ∈ H1([0, T ]) }

with

∥ϕ∥HH :=
(∫ T

0

∣∣∣ d
dt
K−1
H ϕ

∣∣∣
2

(t)dt
) 1

2
.

For an adapted process ϕ belonging to HH and a stopping time τ , we set

ξτ (ϕ) := exp
{
−

∫ τ

0

d

dt
K−1
H ϕ(t)dWt −

1

2

∫ τ

0

∣∣∣ d
dt
K−1
H ϕ(t)

∣∣∣
2

dt
}
. (4.16)

Lemma 4.2.5. For an adapted process ϕ with ϕ0 = 0, we define the measure P̃ by
dP̃ := ξT (ϕ)dP. If

E exp
(
λ∥ϕ∥2HH

)
<∞, ∀λ ∈ [0,∞), (4.17)

then P̃ is a probability measure and the law of B + ϕ under P̃ is that of B under P.
Furthermore, for any λ ∈ R, we have

E[ξT (ϕ)λ] ≤ E[exp(λ2∥ϕ∥2HH )]
1
2 . (4.18)

Proof. We have B+ϕ = KH(W +K−1
H ϕ). The condition (4.17) corresponds to the strong

Novikov’s condition, and the first claim follows from Girsanov’s theorem of the Brownian
motion. To obtain the last inequality, by the Cauchy–Schwarz inequality,

E[ξT (ϕ)λ] ≤ E[ξT (−2λϕ)]
1
2E[exp(λ2∥ϕ∥2HH )]

1
2 .

Note that t 7→ ξt(−2λϕ) is a martingale, hence E[ξT (−2λϕ)] = 1.
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VMO estimates

In order to prove weak well-posedness of (4.1), we rely on Girsanov’s theorem (Lemma 4.2.5).
To this end (and also for later purposes), we need the notion of processes of vanishing mean
oscillation (VMO processes) and sharp inequalities for those processes.

Definition 4.2.6. We say that a map (s, t) 7→ w(s, t) (s ≤ t) is a control if it is continuous
with w(s, s) = 0 and

w(s, u) + w(u, t) ≤ w(s, t) for all s < u < t.

Note that the map (s, t) 7→ ∥b∥q
Lq([s,t];Lp

x)
is a control. Given two controls w1 and w2 and

two nonnegative numbers ν1, ν2 with ν1 + ν2 ≥ 1, the map

(s, t) 7→ w1(s, t)
ν1w2(s, t)

ν2

is again a control, see [FV10, Exercise 1.9]. In particular, if dH
p
+ 1

q
< 1, the map

(s, t) 7→
(
∥b∥Lq([s,t];Lp

x)(t− s)1−
dH
p

− 1
q
)(1− dH

p
)−1

is a control. These facts will be used throughout the chapter.

Definition 4.2.7 ([Lê22, Definitions 1.1 and 3.2]). Recall the definition of the conditional
moment from (4.15). A (Ft)-adapted continuous process (Zt)t∈[0,T ] is called a process of
vanishing mean oscillation, which will be called a VMO process afterwards, if

lim
h↓0

sup
0≤s<t≤T,t−s≤h

∥∥Zs,t|Fs∥1∥∞ = 0.

For a VMO process Z and r ∈ [1,∞), we write Z ∈ VMOr-var if there exists a control w
such that

∥∥Zs,t|Fs∥1∥∞ ≤ w(s, t)
1
r , ∀s ≤ t. (4.19)

The following result is called the quantitative John–Nirenberg inequality for VMO
processes.

Proposition 4.2.8 ([Lê22, Corollary 3.5]). Let Z ∈ VMOr-var with r ∈ (1,∞) and (4.19)
satisfied. Then, there exists a constant c = cr, depending only on r, such that provided
λw(0, T )

1
r−1 ≤ c we have

E[eλ supt≤T |Zt−Z0|
r

r−1
] ≲r,λ,w(0,T ) 1. (4.20)

The proportional constant depends increasingly on λ and w(0, T ). Furthermore, for every
m ∈ [1,∞) we have

∥∥Zs,t|Fs∥mm∥∞ ≲r Γ(1 +m(1− 1/r))w(s, t)
m
r . (4.21)
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4.2.2 Weak solutions and stochastic estimates
To construct a weak solution, we apply Girsanov’s theorem. To this end, the following
quantitative bounds will be important.

Lemma 4.2.9. Under dH
p
+ 1

q
< 1, let f ∈ LqtL

p
x and set

ϕt :=

∫ t

0

f(r, Br)dr.

Then, for any ε ∈ (0, 1− dH
p
− 1

q
), there exists a constant Λ depending only on d,H, p, q, ε

such that

E
[
exp

{
Λ
(

sup
0≤s<t≤T

|ϕs,t|
∥b∥Lq([s,t];Lp

x)(t− s)1−
dH
p

− 1
q
−ε

) p
dH

}]
≲ 1. (4.22)

Proof. In view of Kolmogorov-type estimate (e.g. [GG23, Lemma A.2]1), it suffices to
show

sup
0≤s<t≤T

E
[
exp

{
λ
( |ϕs,t|
∥b∥Lq([s,t];Lp

x)(t− s)1−
dH
p

− 1
q

) p
dH

}]
≲ 1 (4.23)

for some small λ. To this end, we will apply the quantitative John–Nirenberg inequality
(4.21). By [Lê20, Lemma 6.4], we have

Es
∫ t

s

|f(r, Br)|dr ≲ ∥f∥Lq([s,t];Lp
x)(t− s)1−

dH
p

− 1
q .

That is, ϕ belongs to VMO(1−dH/p)−1-var. Hence, the estimate (4.21) yields

∥ϕs,t∥m ≤ CΓ
(
1 +

dHm

p

) 1
m∥f∥Lq([s,t];Lp

x)(t− s)1−
dH
p

− 1
q (4.24)

for every m ∈ [1,∞) and for some C depending only on H, p, q, d. For simplicity, we set
α := p

dH
and

η(s, t) := ∥f∥Lq([s,t];Lp
x)(t− s)1−

dH
p

− 1
q .

Applying (4.24), we obtain

E
[
exp

{
λ
( |ϕs,t|
η(s, t)

)α}]
=

∞∑

n=0

1

n!

( λ

η(s, t)

)nα
E[|ϕs,t|nα] ≤

∞∑

n=0

(Cλ)nα,

which gives the desired estimate provided λ ≤ (2C)−1.
1In the cited reference, the estimate is given only for dH/p = 2, but it is evident that the same argument

yields the estimate for the general case.
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Lemma 4.2.10. In the setting of Lemma 4.2.9, there exists a constant C, depending only on
d,H, p, q, with the following property: for any λ,M ∈ [0,∞) with

λ(∥f1{|f |≥M}∥Lq
tL

p
x
T 1− 1

q
− dH

p )
p

dH
−1 ≤ C,

we have

E[eλ supt≤T |ϕt|
p

dH ] ≲T,λ e
λ(2TM)

p
dH .

Proof. It is shown that ϕ belongs to VMO(1−dH/p)−1-var in the proof of Lemma 4.2.9.
Therefore, the estimate (4.20) yields

E[eλ supt≤T |ϕt|
p

dH ] ≲T,λ,∥f∥
L
q
tL

p
x
1

provided that

λ∥f∥
p

dH
−1

Lq
tL

p
x
T (1− 1

q
− dH

p
)( p

dH
−1) ≤ c,

where c is a constant depending only on d,H, p, q. To deal with large λ, as in [GG23,
Lemma C.3], we decompose b by f = f (1) + f (2), where f (1)(t, x) := f(t, x)1{|f(t,x)|≥M}.
We observe, with α := p

dH
, that

|ϕt|α ≤
(
MT +

∫ T

0

|f (1)
r (Br)|dr

)α

≤ 2α−1(MT )α + 2α−1
(∫ T

0

|f (1)
r (Br)|dr

)α

Hence,

E[eλ supt≤T |ϕt|α ] ≤ e2
α−1λ(MT )αE exp

{
2α−1λ

(∫ T

0

|f (1)
r (Br)|dr

)α}
.

We choose M so that

2αλ∥f (1)∥
p

dH
−1

Lq
tL

p
x
T (1− 1

q
− dH

p
)( p

dH
−1) ≤ c,

and we complete the proof.

Now we can prove weak existence.

Proposition 4.2.11. Under (4.2), there exists a weak solution to (4.1) such that the law of
the solution is equivalent to that of B.
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Proof. We set

ϕt :=

∫ t

0

br(Br)dr.

As in [Lê20, Theorem 6.1], it suffices to check (strong) Novikov’s condition:

E exp(λ∥ϕ∥2HH ) <∞, ∀λ ≥ 0.

To estimate it, as used in [GG23, Appendix C], we introduce the Besov–Nikolskii norm:

∥f∥Nβ,r := sup
h∈[0,T ]

h−β
(∫ T−h

0

|fs,s+h|rds
) 1

r
.

Fix a small ε ∈ (0, H). According to [GG23, Proposition C.1], we have

∥ϕ∥HH ≲T,ε ∥ϕ∥NH+1
2+ε,2 .

We will estimate ∥ϕ∥
NH+1

2+ε,2 . Decomposing b by

b = b1{|b|<M} + b1{|b|≥M},

we can assume that ∥b∥Lq
tL

p
x
≤ 1, which eases the task of tracking constants.

Case 1: p ≥ (1−H)−1. By Hölder’s inequality, we obtain

|ϕs,t| ≤ (t− s)H
(∫ t

s

|br(Br)|
1

1−H dr
)1−H

.

Therefore, by setting

ψt :=

∫ t

0

|b|p(r, Br)dr,

we obtain ∫ T−h

0

|ϕs,s+h|2ds ≤ h2H
∫ T−h

0

ψ
2(1−H)
s,s+h ds.

Note that |b| 1
1−H ∈ L

q(1−H)
t L

p(1−H)
x and, due to (4.2),

p(1−H) ≥ 1, q(1−H) ≥ 1,
dH

p(1−H)
+

1

q(1−H)
< 1.
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By Lemma 4.2.9, there exists a constant Λ, depending only on d,H, p, q, ε, such that

E[exp(Λ∥ψ∥
p(1−H)

dH

C
1− dH

p(1−H)
− 1

q(1−H)
−ε
)] ≲ 1. (4.25)

We deonote by M(b, λ) the smallest M such that

λ(2∥|b| 1
1−H 1

{|b|
1

1−H ≥M}
∥
L
q(1−H)
t L

p(1−H)
x

T 1− 1
q(1−H)

− dH
p(1−H) )

p(1−H)
dH

−1 ≤ C,

where C is the constant from Lemma 4.2.10. Then, by Lemma 4.2.10,

E[eλψ
p(1−H)

dH
T ] ≲T,λ,M(b,λ) 1, ∀λ. (4.26)

We thus estimate
∫ T−h

0

|ψs,s+h|2(1−H)ds

≤∥ψ∥1−2H

C
1− dH

p(1−H)
− 1

q(1−H)
−ε
h(1−2H)(1− dH

p(1−H)
− 1

q(1−H)
−ε)

∫ T−h

0

|ψs,s+h|ds

≤∥ψ∥1−2H

C
1− dH

p(1−H)
− 1

q(1−H)
−ε
ψTh

(1−2H)(1− dH
p(1−H)

− 1
q(1−H)

−ε)+1

and
∫ T−h

0

|ϕs,s+h|2ds ≤ h2H+1+(1−2H)(1− dH
p(1−H)

− 1
q(1−H)

−ε)∥ψ∥1−2H

C
1− dH

p(1−H)
− 1

q(1−H)
−ε
ψT .

Choosing ε so small that 1− dH
p(1−H)

− 1
q(1−H)

− ε > ε, we obtain

∥ϕ∥2
NH+1

2+ε,2
≲T ∥ψ∥1−2H

C
1− dH

p(1−H)
− 1

q(1−H)
−ε
ψT

≲ δ(2λ)−1Λ∥ψ∥2(1−H)

C
1− dH

p(1−H)
− 1

q(1−H)
−ε

+ (2δ−1Λ−1λ)
1−2H
2(1−H)ψ

2(1−H)
T .

Hence, for an appropriately small δ = δ(d,H, p, q, T ) we have

2∥ϕ∥2
NH+1

2+ε,2
≤ λ−1Λ∥ψ∥2(1−H)

C
1− dH

p(1−H)
− 1

q(1−H)
−ε

+ Cλ
1−2H
2(1−H)ψ

2(1−H)
T

for some C = C(d,H, p, q, T, ε). In view of (4.25) and (4.26), setting

M̃ :=M(b, 2(2Λ−1λ)
1−2H
2(1−H) )
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we have

E[e
λ∥ϕ∥2

N
H+1

2+ε,2 ] ≤ E[e
Λ∥ψ∥2(1−H)

C
1− dH

p(1−H)
− 1

q(1−H)
−ε
]
1
2E[eCλ

1−2H
2(1−H) ψ

2(1−H)
T ]

1
2

≲T,λ,M̃ 1

provided that 2(1−H) ≤ p(1−H)
dH

, but this is the condition (4.2c).
Case 2: q ≤ 2. Set

JϕK := sup
0≤s<t≤T

|ϕs,t|
∥b∥Lq([s,t];Lp

x)(t− s)1−
dH
p

− 1
q
−ε
.

We estimate
∫ T−h

0

|ϕs,s+h|2ds ≤ JϕK2h2(1−
dH
p

− 1
q
−ε)

∫ T−h

0

∥b∥2Lq([s,s+h];Lp
x)
ds

≲ JϕK2h2(1−
dH
p

− 1
q
−ε)+1∥b∥2Lq

tL
p
x
.

Therefore, if ε is small,

∥ϕ∥
NH+1

2+ε,2 ≲ ∥b∥Lq
tL

p
x
JϕK,

and, noting that p
dH

> 2 due to (4.2b), it remains to apply Lemma 4.2.9.
Case 3: p < (1−H)−1 and q > 2. We define ν ∈ [0, 1] by

ν :=
2−1 − q−1

p−1 − q−1

so that the relation

2ν

p
+

2(1− ν)

q
= 1

holds. We then bound

|ϕs,t| = |ϕs,t|1−ν |ϕs,t|ν ≤ JϕK1−νh(1−ν)(1−
dH
p

− 1
q
−ε)∥b∥1−ν

Lq([s,t];Lp
x)
|ϕs,t|ν .

By Hölder’s inequality,

|ϕ|s,t ≤ (t− s)1−
1
p

(∫ t

s

|b|p(r, Br)dr
) 1

p
.
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Hence,

∫ T−h

0

|ϕs,s+h|2ds ≤ JϕK2(1−ν)h2(1−ν)(1−
dH
p

− 1
q
−ε)+2ν(1− 1

p
)

×
∫ T−h

0

∥b∥2(1−ν)
Lq([s,s+h];Lp

x)

(∫ s+h

s

|b|p(r, Br)dr
) 2ν

p
ds.

Since

(s, t) 7→ ∥b∥2(1−ν)
Lq([s,t];Lp

x)

(∫ t

s

|b|p(r, Br)dr
) 2ν

p

is a control, we have

∫ T−h

0

∥b∥2(1−ν)
Lq([s,s+h];Lp

x)

(∫ s+h

s

|b|p(r, Br)dr
) 2ν

p
ds

≲ h∥b∥2(1−ν)
Lq
tL

q
x

(∫ T

0

|b|p(r, Br)dr
) 2ν

p
.

We therefore arrive at the estimate
∫ T−h

0

|ϕs,s+h|2ds ≲ JϕK2(1−ν)h2(1−ν)(1−
dH
p

− 1
q
−ε)+2ν(1− 1

p
)+1

× ∥b∥2(1−ν)
Lq
tL

q
x

(∫ T

0

|b|p(r, Br)dr
) 2ν

p
.

The condition (4.2d) exactly ensures that the exponent

2(1− ν)
(
1− dH

p
− 1

q
− ε

)
+ 2ν

(
1− 1

p

)
+ 1

is greater than 2H + 1 + ε for small ε. Thus,

∥ϕ∥
NH+1

2+ε,2 ≲ JϕK2(1−ν)
(∫ T

0

|b|p(r, Br)dr
) 2ν

p

≤ λ−1ΛJϕK2 + (Λ−1λ)1−ν
(∫ T

0

|b|p(r, Br)dr
) 2

p
.

It remains to apply Lemma 4.2.9 and Lemma 4.2.10.
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Remark 4.2.12. The above proof shows that there exist d = d(d,H, p) and D =
D(d,H, p, q, T ) such that provided that

∥b1{|b|≥M}∥Lq
tL

p
x
≤ Dλ−d

we have

E exp(λ∥ϕ∥2HH ) ≲T,λ,M 1, (4.27)

where ϕt :=
∫ t
0
br(Br)dr. This is carefully demonstrated in Case 1 of the proof.

Proposition 4.2.13. Weak uniqueness holds for (4.1).

Proof. Let f : Rn → R be a bounded continuous function and

t1, . . . , tn ∈ [0, T ].

Let X be a solution to (4.1). We need to show that

E[f(Xt1 , . . . , Xtn)]

is uniquely characterized. For M ≥ 1, we set

τM(w) := inf
{
t ≤ T :

∫ t

0

∣∣∣K−1
H

(∫ ·

0

br(wr)dr
)
(s)

∣∣∣
2

ds ≥M
}

with inf ∅ := T . By the condition (iii) of Definition 4.2.1, it suffices to show that

E[F (X)], F (X) := f(Xt1∧τM (X), . . . , Xtn∧τM (X)),

is uniquely characterized. We set ξ := ξτ (
∫ ·
0
br(Xr)dr) and dP̃(ω) := ξ(ω)dP(ω). By

Girsanov’s theorem, the law of (Xt − x)t≤τ(X) under P̃ is equal to that of (Bt)t≤τ(B+x)

under P. Furthermore, since

W = K−1
H

(
X − x−

∫ ·

0

br(Xr)dr
)
,

with some measurable map G : C([0, T ];Rd) → R, we can write

ξ−1F (X) = G(X).

Therefore,

E[F (X)] = E[G(B)],

and the right-hand side depends only on the law of B.
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As the final result of this section, we prove a quantitative version of Girsanov’s theorem.

Lemma 4.2.14. Let X be a pathwise solution to (4.1) and set

ϕt :=

∫ t

0

br(Xr)dr.

Under (4.2), there exist e = e(d,H, p) and E = E(d,H, p, q, T ) such that for any λ ≥ 2
provided that

∥b1{|b|≥M}∥Lq
tL

p
x
≤ Eλ−e

we have

E exp(λ∥ϕ∥HH ) ≲T,λ,M 1. (4.28)

In particular, the law of X − x is equivalent to that of B.

Proof. In view of Lemma 4.2.5, it suffices to show (4.28). By Proposition 4.2.13, weak
uniqueness is established. Therefore, we can prove the estimate for a particular solution,
which will be the one constructed in Proposition 4.2.11. Namely, we will show that for

ϕ̃t :=

∫ t

0

br(Br)dr,

we have

E[ξT (ϕ̃)eλ∥ϕ̃∥
2
HH ] ≲T,λ,M 1

for all λ ≥ 0. To this end, let d and D be the constants in Remark 4.2.12. By the
Cauchy–Schwarz inequality,

E[ξT (ϕ̃)eλ∥ϕ̃∥
2
HH ] ≤ E

[
exp

(
2

∫ T

0

d

dt
K−1
H ϕ̃(t)dWt

)] 1
2E[e2λ∥ϕ̃∥

2
HH ]

1
2 .

By Lemma 4.2.5,

E
[
exp

(
2

∫ T

0

d

dt
K−1
H ϕ̃(t)dWt

)] 1
2 ≤ E[e4∥ϕ̃∥

2
HH ]

1
4 .

Hence,

E[ξT (ϕ̃)eλ∥ϕ̃∥
2
HH ] ≤ E[e2λ∥ϕ̃∥

2
HH ]

3
4 .

We can set e := d and E := 2−dD.
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The following observation will be used in Section 4.4.1. Let B̃ be the Riemann–Liouville
process

B̃t := cH

∫ t

0

(t− r)H− 1
2dWr, (4.29)

for some constant cH ∈ (0,∞). Then, we have analogous results of this section for X̃ . In
fact, we replace the operator KH by the Riemann–Liouville operator

IHw(t) := cH

∫ t

0

(t− r)H− 1
2dwr,

and repeat the argument.
The operator IH , H < 1

2
, corresponds to the fractional derivative ∂ 1

2
−H , and it is

invertible with

I−1
H w(t) = c̄H

∫ t

0

(t− r)−H− 1
2wrdr

for some constant c̄H . The operator I−1
H corresponds to the fractional integral J 1

2
−H of

order 1
2
−H . The Cameron–Martin space H̃H of B̃ is

{w : w0 = 0, I−1
H w ∈ H1([0, T ]) } = {w : w0 = 0, ∂H+ 1

2w ∈ L2([0, T ]) }.
To see an analogue of Proposition 4.2.11, first observe that the local nondeterminism

estimate

Var(B̃t − Es[B̃t]) ≳ (t− s)2H

holds. Therefore, we have the VMO estimate

Es
∫ t

s

|f(r, B̃r)|dr ≲ ∥f∥Lq([s,t];Lp
x)(t− s)1−

dH
p

− 1
q .

To estimate the Cameron–Martin norm of ϕ̃ :=
∫ ·
0
br(B̃r)dr, by [GLY15, Theorem 3.1], we

have

∥ϕ̃∥H̃H = ∥∂H+ 1
2 ϕ̃∥L2([0,T ]) ≲T ∥ϕ̃∥

WH+1
2 ,2([0,T ])

.

Thus, by [GG23, Proposition C.1],

∥ϕ̃∥H̃H ≲T,ε ∥ϕ̃∥NH+1
2+ε,2 .

Hence, repeating the arguments of Proposition 4.2.11 and Lemma 4.2.14, we obtain the
following.
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Lemma 4.2.15. Let η be a deterministic continuous path in Rd with η0 = 0, and let X̃ be a
pathwise solution to the SDE

dX̃t = b̃t(Xt)dt+ dηt + dB̃t, X̃0 = x̃

with b̃ ∈ LqtL
p
x, and set

ϕ̃t :=

∫ t

0

b̃r(X̃r)dr.

Under (4.2), there exist ẽ = ẽ(d,H, p) and Ẽ = Ẽ(d,H, p, q, T ) such that for any λ ≥ 2
provided that

∥b̃1{|b̃|≥M}∥Lq
tL

p
x
≤ Ẽλ−ẽ

we have

E exp(λ∥ϕ̃∥H̃H ) ≲T,λ,M 1.

In particular, the law of X̃ − x̃− η is equivalent to that of B̃.

Proof. Setting X̄t := X̃t − ηt and b̄t(x) := bt(x+ ηt), we have

dX̄t = b̄t(X̄t)dt+ dB̃t.

Since ∥b̄1{|b̄|≥M}∥Lq
tL

p
x
= ∥b1{|b|≥M}∥Lq

tL
p
x
, we can assume that η = 0. Then, as the

preceeding discussion shows, the claim follows as in Lemma 4.2.14.

4.3 Strong well-posedness
As explained in Remark Remark 4.2.4, in order to prove Theorem 4.1.1, it remains to prove
pathwise uniqueness. We essentially follow the idea from [Lê20] which deduces pathwise
uniqueness from pathwise regularity of the stochastic integral

∫ t

0

∇b(r, Br)dr. (4.30)

The main difference in our approach is that, instead of using Hölder regularity, we use
variational regularity, which only requires estimations of moments up to order p-th. This
allows us to obtain a desirable estimate on (4.30) beyond the regime of the previous work
[Lê20]. Before estimating (4.30), we prepare some technical lemmas.
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4.3.1 Some technical estimates
We will need two technical lemmas: taming singularity (Lemma 4.3.1) and Kolmogorov’s
continuity theorem for ρ-variation (Lemma 4.3.2).

Lemma 4.3.1. Let (Y , ∥·∥) be a normed vector space and let Y : [0, T ] → Y be continuous.
Suppose that for 0 < η ≤ α <∞ and C ∈ [0,∞) we have

∥Ys,t∥ ≤ Csη−α(t− s)α, for 0 < s < t ≤ T.

Then

∥Ys,t∥ ≲α,η C(t
η/α − sη/α)α, for 0 ≤ s < t ≤ T.

Proof. To get rid of the singularity, as in [BFG21], we set τ(t) := tβ for some β ≥ 1. Then

∥Yτ(s),τ(t)∥ ≤ Csβ(η−α)|tβ − sβ|α.

If t− s ≤ s, we have

tβ − sβ =

∫ t

s

βrβ−1dr ≤ βtβ−1(t− s) ≲β s
β−1|t− s|.

Therefore,

∥Yτ(s),τ(t)∥ ≲β s
β(η−α)+(β−1)α(t− s)α.

We choose β = α/η so that β(η − α) + (β − 1)α = 0. Hence, if (t− s) ≤ s, we have

∥Yτ(s),τ(t)∥ ≲α,η C(t− s)α. (4.31)

To remove the condition (t − s) ≤ s, we use an idea from [LL22, Lemma 3.4]. For
s < t, without assuming (t− s) ≤ s, we set

tn := s+ (t− s)2−n.

By the continuity of Y ,

Yτ(s),τ(t) = lim
n→∞

n∑

i=1

Yτ(ti),τ(ti−1)

and

∥Yτ(s),τ(t)∥ ≤
∞∑

n=1

∥Yτ(tn),τ(tn−1)∥.
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By our choice of tn, we have |tn − tn−1| = (t− s)2−n ≤ tn. Therefore,

∥Yτ(s),τ(t)∥ ≲α,η C
∞∑

n=1

2−nα(t− s)α ≲α C(t− s)α.

The estimate therefore (4.31) holds without the condition |t−s| ≤ s. We obtain the claimed
estimate by change of variables (s, t) 7→ (s1/β, t1/β).

Lemma 4.3.2. Let (Vt)t∈[0,T ] be a stochastic process. Suppose that

∥Vs,t∥m ≤ w(s, t)α

for some control w, m ∈ (1,∞) and α ∈ ( 1
m
, 1]. Then for every α′ < α with mα′ > 1

∥∥∥V ∥(1/α′)-var
∥∥
m
≲m,α,α′ w(0, T )α.

Proof. Replacing w(s, t) by w(s, t) + ε(t− s), we may assume that s 7→ w(0, s) is strictly
increasing. If we set

τ(t) := (w(0, ·))−1(t), Ṽt := Vτ(t), T̃ := τ−1(T ) = w(0, T ),

then for 0 ≤ s < t ≤ T̃

∥Ṽs,t∥m ≤ (t− s)α.

Thus, for any α′ < α we have

E
[ ∫ T̃

0

∫ T̃

0

|Ṽs,t|m
|t− s|1+mα′ dtds

]
≲m,α,α′ T̃ 1+m(α−α′).

By [FV10, Corollary A.3], if mα′ > 1,

∥Ṽ ∥(1/α′)-var ≲m,α′ T̃α
′− 1

m

∫ T̃

0

∫ T̃

0

|Ṽs,t|m
|t− s|1+mα′ dtds.

Therefore, since the variation is invariant under reparametrization, we obtain

∥∥V ∥(1/α′)-var∥m ≲m,α,α′ T̃α = w(0, T )α.
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4.3.2 Pathwise uniqueness
Now we prove the most important estimate of Section 4.3.

Lemma 4.3.3. We consider

Ut :=

∫ t

0

∇fr(Br)dr, for f ∈ C([0, T ], C2(Rd)).

Let p, q satisfy

dH
(1
p
− 1

p ∨ 2

)
< min

{
1−H − 1

q
,
1

2
−H

}
. (4.32)

For 0 < s < t ≤ T , we have the estimate

∥Us,t∥p∨2 ≲ s−
dH
p∨2∥f∥Lq([s,t];Lp

x)(t− s)1−H− 1
q
−dH( 1

p
− 1

p∨2
). (4.33)

Furthermore, under (4.2a), (4.2b) and (4.5), in which case (4.32) is satisfied, for any ρ with

ρ−1 < 1−H − dH
(1
p
− 1

p ∨ 2

)
, (4.34)

we have

∥∥U∥ρ-var∥p∨2 ≲ρ ∥f∥Lq
tL

p
x
T 1−H− dH

p
− 1

q . (4.35)

Remark 4.3.4. It is straightforward to see that (4.5) follows from (4.2d). Hence, the
estimates of Lemma 4.3.3 hold under (4.2). Note also that the condition (4.32) enforces
that the right-hand side of (4.34) is greather than 1

2
.

Remark 4.3.5. In fact, the estimate (4.35) holds in higher moments, see Lemma 4.4.3.

Proof. It is convenient to use the Mandelbrot–van Ness representation (1.25). We denote by
(Ft)t∈R the filtration generated by W . Since U is measurable with respect to B, assuming
such representation does not lose generality. To apply the stochastic sewing with control
[Lê23, Theorem 3.1], we consider the germ

As,t :=

∫ t

s

Es[∇f(Br)]dr =

∫ t

s

∇Pσ(s,r)2fr(Es[Br])dr, (4.36)

where
Pσf(x) := (2πσ)−

d
2

∫

Rd

e−
|x−y|2

2σ f(y)dy,
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σ(s, r)2 := E
[( ∫ r

s

K(r, u)dW i
u

)2]
=

1

2H
|r − s|2H .

Using the estimate

|As,t −∇f(Bs)(t− s)| ≤ ∥f∥C2∥B∥CH/2(t− s)1+
H
2 ,

we easily see that a.s.

Us,t = lim
π is a partition of [s,t],

|π|→0

∑

[u,v]∈π

Au,v.

Obviously we have E[δAs,u,t|Fs] = 0. We observe that

(s, t) 7→ ∥f∥q
Lq([s,t];Lp

x)

is a control, and by [FV10, Exercise 1.9]

(s, t) 7→ ∥f∥
1

1−H

Lq([s,t];Lp
x)
(t− s)

1−H−1/q
1−H

is a control. By the stochastic sewing with control [Lê23, Theorem 3.1], in order to obtain
the estimate (4.33), it suffices to show

∥As,t∥p⋆ ≲ s−
dH
p⋆ ∥f∥Lq([s,t];Lp

x)(t− s)1−H− 1
q
−dH( 1

p
− 1

p⋆
) (4.37)

with p⋆ := p ∨ 2. Indeed, the condition (4.32) ensures that the sum of the exponents

1

q
+
(
1−H − 1

q
− dH

(1
p
− 1

p⋆

))

is greater than 1
2
.

Recalling (4.36) and applying Minkowski’s inequality, we get

∥As,t∥p⋆ ≤
∫ t

s

∥∇Pσ(s,r)2fr(Es[Br])∥p⋆dr.

To compute further, we set gσ(x) := (2πσ)−d/2e−
|x|2
2σ and

ρ2(s, t) := E
[( ∫ s

−∞
K(t, r)dW i

r

)2]
,
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which is the variance of the Gaussian Es[Bi
t]. We denote by ∗ the convolution in space.

Then

∥∇Pσ(s,r)2fr(Es[Br])∥p⋆
=

(∫

Rd

|∇(gσ(s,r)2 ∗ fr)(x)|p⋆gρ(s,r)2(x)dx
)1/p⋆

≤ ∥∇gσ(s,r)2 ∗ fr∥Lp⋆ (Rd)∥gρ(s,r)2∥
1
p⋆

L∞(Rd)

≤ ∥∇gσ(s,r)2∥Lp′ (Rd)∥fr∥Lp(Rd)∥gρ(s,r)2∥
1
p⋆

L∞(Rd)
, (4.38)

where we applied Young’s convolution inequality in the last step with

1 +
1

p⋆
=

1

p
+

1

p′
. (4.39)

We have

∥gρ(s,r)2∥L∞(Rd) = (2π)−d/2ρ(s, r)−d

and

∥∇gσ(s,r)2∥p
′

Lp′ (Rd)
=

∫

Rd

1

(2πσ(s, r)2)dp′/2

∣∣∣ x

σ(s, r)2

∣∣∣
p′

e
− p′|x|2

2σ(s,r)2 dx

≲ σ(s, r)−(d+1)p′+d.

Therefore,

∥∇Pσ(s,r)2fr(Es[Br])∥p⋆ ≲ ∥fr∥Lp(Rd)σ(s, r)
−(d+1)+d/p′ρ(s, r)−

d
p⋆

= ∥fr∥Lp(Rd)σ(s, r)
−1−d( 1

p
− 1

p⋆
)ρ(s, r)−

d
p⋆ .

Since

σ(s, r) ≳ (r − s)H (4.40)

and

ρ(s, r)2 ≥
∫ s

0

(r − u)2H−1dr ≳ r2H − (r − s)2H ≥ s2H , (4.41)

we obtain

∥∇Pσ(s,r)2fr(Es[Br])∥p ≲ s−
dH
p⋆ (r − s)−H−dH( 1

p
− 1

p⋆
)∥fr∥Lp(Rd). (4.42)

170



4.3. STRONG WELL-POSEDNESS

Then,

∥As,t∥p ≲ s−
dH
p⋆

∫ t

s

(r − s)−H−dH( 1
p
− 1

p⋆
)∥fr∥Lpdr

≤ s−
dH
p⋆

(∫ t

s

(r − s)−(H+dH( 1
p
− 1

p⋆
)) q

q−1

)1− 1
q ∥f∥Lq([s,t];Lp

x)

≲ s−
dH
p⋆ ∥f∥Lq([s,t];Lp

x)(t− s)1−H− 1
q
−dH( 1

p
− 1

p⋆
),

where (4.32) is used in the second inequality to have the integral finite. The estimate (4.37)
is now proven, hence so is the estimate (4.33).

We notice that the conditions (4.2a), (4.2b) and (4.5) imply (4.32). Indeed, the only
non-trivial part is to see

dH

p
+H <

1

2
+
dH

2
(4.43)

for p ∈ [(1−H)−1, 2). If Hd > 1− 2
q
, then 1

2
+ Hd

2
> 1− 1

q
and the (4.43) follows from

(4.2b). If Hd < 1− 2
q
, then

Hd
(1
p
− 1

2

)
<

1

p
− 1

2
≤ 1

2
−H

thanks to the condition p > (1−H)−1.
To show (4.35), we thus apply Lemma 4.3.1 to obtain that

∥Us,t∥p ≲ ∥f∥Lq([s,t];Lp
x)(t

β − sβ)1−H− 1
q
−dH( 1

p
− 1

p⋆
),

where β := (1−H − dH
p
− 1

q
)/(1−H − 1

q
− dH(1

p
− 1

p⋆
)). We set

w(s, t) := (∥f∥q
Lq([s,t];Lp

x)
)

1/q

1−H−dH( 1p− 1
p⋆

) (tβ − sβ)

1−H−1/q−dH( 1p− 1
p⋆

)

1−H−dH( 1p− 1
p⋆

) .

Note that the function (s, t) 7→ w(s, t) is a control by [FV10, Exercise 1.9]. Applying
Lemma 4.3.2, for any ρ satisfying (4.34), we have

∥∥U∥ρ-var∥p ≲ w(0, T )1−H−dH( 1
p
− 1

p⋆
),

which deduces the estimate (4.35).
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Remark 4.3.6. The only places where the specific property ofB is used are (4.40) and (4.41).
Hence, the above proof works if B is replaced by a Gaussian process G such that

∥Gs,t − E[Gs,t|Fs]∥2 ≳ (t− s)H , ∥E[Gs,t|Fs]∥2 ≳ sH .

In particular, it works for the Riemann–Liouville process (4.29).

Remark 4.3.7. Since W s,p can be identified with the Triebel–Lizorkin space F s
p,2, Young’s

convolution inequality for the Triebel–Lizorkin space [KS22, Theorem 2.2] yields

∥g ∗ f∥Lp⋆ ≲ ∥g∥W 1,p′∥f∥W−1,p , (4.44)

where p⋆ = p ∨ 2 and p′ is defined by (4.39). Using this, under (4.32) we have
∥∥∥
∫ t

s

f(Br)dr
∥∥∥
p⋆

≲ s−
dH
p⋆ ∥f∥Lq([s,t];W−1,p

x )(t− s)1−H−dH( 1
p
− 1

p⋆
)

if |t− s| ≤ 1. Indeed, by the reasoning of the above proof, it suffices to show that
∥∥∥Es

∫ t

s

f(Br)dr
∥∥∥
p⋆

≲ s−
dH
p⋆ ∥f∥Lq([s,t];W−1,p

x )(t− s)1−H−dH( 1
p
− 1

p⋆
),

which, as demonstrated above, follows from the estimate

∥Pσ(s,r)2fr(Es[Br])∥p⋆ ≲ s−
dH
p⋆ ∥fr∥W−1,p

x
(r − s)−H−dH( 1

p
− 1

p⋆
), (4.45)

corresponding to (4.42). To prove (4.45), as in the computation (4.38),

∥Pσ(s,r)2fr(Es[Br])∥p⋆ ≤ ∥gσ(s,r)2 ∗ fr∥Lp⋆ (Rd)∥gρ(s,r)2∥
1
p⋆

L∞(Rd)

≲ ∥gσ(s,r)2∥W 1,p′ (Rd)∥fr∥W−1,p(Rd)∥gρ(s,r)2∥
1
p⋆

L∞(Rd)
,

where the last inequality is a consequence of (4.44). Since

∥gσ(s,r)2∥W 1,p′ (Rd) = ∥gσ(s,r)2∥Lp′ (Rd) + ∥∇gσ(s,r)2∥Lp′ (Rd)

≲ 1 + σ(s, r)−1−d( 1
p
− 1

p⋆
),

we obtain the estimate (4.45).

Proof of Theorem Theorem 4.1.1. As noted in Remark Remark 4.2.4, it suffices to prove
pathwise uniqueness. Let X(i) (i = 1, 2) be two pathwise solutions to (4.1). Set

ϕ(i) := X(i) −B − x.

172



4.3. STRONG WELL-POSEDNESS

Then, we have

ϕ
(i)
t =

∫ t

0

br(x+Br + ϕ(i)
r )dr.

Replacing br by br(x + ·), we can assume x = 0. If (bn) is a smooth approximation of b
(see Remark Remark 4.1.5), then by [Lê20, Proposition 6.8],

lim
n→∞

∥∥∥
∫ ·

0

b(n)r (Br + ϕ(i)
r )dr −

∫ ·

0

br(Br + ϕ(i)
r )dr

∥∥∥
L∞([0,T ])

= 0

in Lm(P) for every m ∈ [2,∞). As in [Lê20, Lemma 6.12], we write
∫ t

0

b(n)(r, Br + ϕ(1)
r )dr −

∫ t

0

b(n)(r, Br + ϕ(2)
r )dr

=

∫ t

0

(ϕ(1)
r − ϕ(2)

r ) · dV (n)
r (4.46)

where
V (n)
r :=

∫ r

0

∫ 1

0

∇b(n)(Bu + θϕ(1)
u + (1− θ)ϕ(2)

u )dθdu.

Thus,

ϕ
(1)
t − ϕ

(2)
t = lim

n→∞

∫ t

0

(ϕ(1)
r − ϕ(2)

r ) · dV (n)
r . (4.47)

Our goal is to show that V (n) has some limit V .
Let p1 ∈ (1, 2) be sufficiently close to 1 and set m := p/p1. Let ρ satisfy (4.34), and we

can suppose that ρ < 2. We see that

∥∥V (n1) − V (n2)∥ρ-var∥m

≤
∫ 1

0

∥∥∥
∥∥∥
∫ ·

0

∇(b(n1) − b(n2))u(Bu + θϕ(1)
u + (1− θ)ϕ(2)

u )du
∥∥∥
ρ-var

∥∥∥
m
dθ.

By Lemma 4.2.14, we have

Eeλ∥θϕ
(1)+(1−θ)ϕ(2)∥2

HH ≲λ,b 1, ∀λ ≥ 0.

Therefore, by Lemma 4.2.5 and Hölder’s inequality,
∥∥∥
∥∥∥
∫ ·

0

∇(b(n1) − b(n2))u(Bu + θϕ(1)
u + (1− θ)ϕ(2)

u )du
∥∥∥
ρ-var

∥∥∥
m

≲p1,b

∥∥∥
∥∥∥
∫ ·

0

∇(b(n1) − b(n2))u(Bu)du
∥∥∥
ρ-var

∥∥∥
p
. (4.48)
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Applying the estimate (4.35) of Lemma Lemma 4.3.3, we get

∥∥V (n1) − V (n2)∥ρ-var∥m ≲p1,b,T ∥b(n1) − b(n2)∥Lq
tL

p
x
.

Therefore, there exists a stochastic process (Vt)t∈[0,T ] such that

lim
n→∞

E[∥V − V (n)∥mρ-var] = 0.

Now observe that ϕ(i) has a finite 1-variation, as dominated by the increasing process

t 7→
∫ t

0

|b|r(X(i)
r )dr.

Therefore, by (4.47) a.s.

ϕ
(1)
t − ϕ

(2)
t =

∫ t

0

{ϕ(1)
r − ϕ(2)

r } · dVr, ϕ
(1)
0 − ϕ

(2)
0 = 0. (4.49)

The uniqueness of Young’s differential equation implies ϕ(1) = ϕ(2) orX(1) = X(2) a.s.

4.4 Stability
We have shown that under (4.2), for given x and b, there exists a unique strong solution to
the SDE (4.1). In this section we are interested in the stability of the solution with respect
to the input data (x, b). Throughout this section, we assume (4.2).

With the result of Section 4.3, a standard argument easily enables us to prove the
pathwise stability. For i ∈ {1, 2}, let X i be the solution to

dX i
t = bit(X

i
t)dt+ dBt, X i

0 = xi. (4.50)

We define

Vt :=

∫ t

0

∫ 1

0

∇b1r(θX1
r + (1− θ)X2

r )dθdr, (4.51)

whose construction was discussed in the proof of Theorem 4.1.1. Therein we showed that
∥V ∥ρ-var <∞ a.s. for any ρ satisfying (4.34), and in particular we can suppose that ρ < 2.
We also set

Rt :=

∫ t

0

(b1 − b2)(r,X2
r )dr. (4.52)
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Let X∆ := X1 −X2. We observe

X∆
s,t =

∫ t

s

{b1r(X1
r )− b1r(X

2
r )}dr +

∫ t

s

(b1 − b2)(r,X2
r )dr.

Then, as in [Lê20, Lemma 6.12] (or repeating the argument leading to (4.49)), we have
∫ t

s

{b1r(X1
r )− b1r(X

2
r )}dr =

∫ t

s

X∆
r dVr,

and

X∆
s,t =

∫ t

s

X∆
r dVr +Rs,t, (4.53)

where the integral
∫ t
s
X∆
r dVr is understood in pathwise Young sense.

Proposition 4.4.1. In the above setting, let ρ < 2 satisfy (4.34), and let T ∈ (0,∞). Then
there exists a positive constant c = c(ρ) such that a.s.

sup
t∈[0,T ]

|X1
t −X2

t | ≤ ec(1+∥V ∥ρ
ρ-var;[0,T ]

)(|x1 − x2|+ ∥R∥ρ-var;[0,T ]). (4.54)

Consequently, if Xn is the solution to (4.1) with drift bn and initial condition xn such that
limn b

n = b∞ in LqtLpx and limn x
n = x∞, then

lim
n

sup
t∈[0,T ]

|Xn
t −X∞

t | = 0 in probability.

Proof. From (4.53), we apply the Gronwall’s estimate in ρ-variation (e.g. [CDH18,
Lemma 3.3], [GG23, Lemma B.1]) to obtain the estimate (4.54).

To prove the claim on the convergence in probability, we estimate as in (4.48), but this
time we pay more attention to proportional constants so that estimates are uniform with
respect to n. We set

V ∞,n
t :=

∫ t

0

∫ 1

0

∇b∞r (θX∞
r + (1− θ)Xn

r )dθdr,

R∞,n
t :=

∫ t

0

(b∞ − bn)(r,Xn
r )dr.

We set

ϕnt :=

∫ t

0

∇bnr (Xn
r )dr
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and ϕn,θ := θϕ∞ + (1− θ)ϕn. Let m < p ∨ 2 and m′ be such that

1

m
=

1

p ∨ 2
+

1

m′ . (4.55)

By Lemma 4.2.5 and Hölder’s inequality we have
∥∥∥
∥∥∥
∫ ·

0

∇b∞r (Br + ϕn,θr )dr
∥∥∥
ρ-var

∥∥∥
m
≤ E[ξT (ϕn,θ)−m

′+1]
1
m′

∥∥∥
∥∥∥
∫ ·

0

∇b∞r (Br)dr
∥∥∥
ρ-var

∥∥∥
p∨2

By (4.18),

E[ξT (ϕn,θ)−m
′+1] ≤ E[e(m

′−1)2∥ϕn,θ∥2
HH ]

1
2

≤ E[e4(m
′−1)2∥ϕn∥2

HH ]
1
4E[e4(m

′−1)2∥ϕ∞∥2
HH ]

1
4 . (4.56)

Let e and E be the constants of Remark 4.2.12. We denote by M(λ) the smallest M such
that

sup
n
∥bn1{|bn|≥M}∥Lq

tL
p
x
≤ Eλ−e.

By (4.28),

E[e4(m
′−1)2∥ϕn∥2

HH ] + E[e4(m
′−1)2∥ϕ∞∥2

HH ] ≲T,m′,M(4(m′−1)2) 1.

On the other hand, Lemma 4.3.3 yields
∥∥∥
∥∥∥
∫ ·

0

∇b∞r (Br)dr
∥∥∥
ρ-var

∥∥∥
p∨2

≲ρ,T ∥b∞∥Lq
tL

p
x
.

Hence, we get

∥∥V ∞,n∥ρ-var∥m ≲ρ,m,M(4(m′−1)2),T ∥b∞∥Lq
tL

p
x
. (4.57)

In view of Remark 4.3.7, we similarly obtain

∥∥R∞,n∥ρ-var∥m ≲ρ,m,M(4(m′−1)2),T ∥b∞ − bn∥Lq
tW

−1,p
x

. (4.58)

It is important that the proportional constants do not depend on n.
Let δ > 0 and N ≥ 1 be arbitrary. By (4.54),

P( sup
t∈[0,T ]

|X∞
t −Xn

t | ≥ δ)

≤ P(∥V ∞,n∥ρ-var ≥ N) + P(ec(1+N)(|x∞ − xn|+ ∥R∞,n∥ρ-var) ≥ δ).
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By (4.57), we have

lim
N→∞

sup
n

P(∥V ∞,n∥ρ-var ≥ N) = 0,

and by (4.58), for each N we have

lim
δ→0

P(ec(1+N)(|x∞ − xn|+ ∥R∞,n∥ρ-var) ≥ δ) = 0.

The convergence in probability now readily follows.

Remark 4.4.2. Proposition 4.4.1 shows that the solution to (4.1) is strong, without resorting
to the Yamada–Watanabe theorem.

Proposition 4.4.1 proves the first part of Theorem 4.1.2. The rest of the section is
devoted to the second part (stability in moment norms).

4.4.1 VMO estimates
The easiest way to deduce the stability estimate in Lm(P) is via the pathwise stability
estimate (4.54). However, this is only possible provided that

E[eλ∥V ∥ρρ-var ] <∞ for any λ > 0. (4.59)

As shown in Remark 4.4.6 below, the VMO technique allows us to obtain

E[eλ∥V ∥
(H+ dH

p )−1

ρ-var ] <∞ for any λ > 0.

For (4.59) to hold, in view of (4.34) we must have
dH

p
+H ≤ 1−H − dH

(1
p
− 1

p ∨ 2

)
,

which does not necessarily hold under (4.2).
Hence, in the full regime of (4.2) the pathwise stability estimate in Proposition 4.4.1

does not imply stability in moment norms, and we propose a new method. Our strategy is
to view (4.53) as a rough differential equation driven by a rough path lifted from V and R,
and to employ Gronwall’s argument in the probabilistic setting. To this end, we need to
control VMO norms of the rough path lifted from V and R. In this regard, the key is to
obtain a VMO-type estimate on ρ-variations of V and R, which is the goal of this section.
Recall the notation of the conditional moment from (4.15). Let ẽ and Ẽ be the constants of
Lemma 4.2.15, and set

BM := {b ∈ LqtL
p
x : ∥b1{|b|≥M}∥Lq

tL
p
x
≤ Ẽ4−ẽ}. (4.60)

The constant c in (4.3) is given by Ẽ4−ẽ.
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Lemma 4.4.3. Let b1, b2 be smooth, let M be large enough to have b1, b2 ∈ BM , and
let ρ < 2 satisfy (4.34). We define V and R by (4.51) and (4.52) respectively. For any
m ∈ (0,∞) and s < t, we have

∥∥∥V ∥ρ-var;[s,t]|Fs∥m∥∞ ≲T,ρ,m,M ∥b1∥Lq([s,t];Lp
x)(t− s)1−H− dH

p
− 1

q ,

∥∥∥R∥ρ-var;[s,t]|Fs∥m∥∞ ≲T,ρ,m,M ∥b1 − b2∥Lq([s,t];W−1,p
x )(t− s)1−H− dH

p
− 1

q .

Remark 4.4.4. To proceed further, we make the following simple observation. Our goal is
to estimate

∥∥X1 −X2∥Cγ∥m. (4.61)

As we know from Theorem 4.1.1 that X1, X2 are strong solutions, (4.61) is determined by
the law of the driver B. In particular, for the sake of estimating (4.61), we can assume that
B has the Mandelbrot–van Ness representation (1.25).

As validated in the above remark, without loss of generality, we assume the representation
(1.25). This will simplify our arguments. We denote by (Ft)t∈R the filtration generated by
W in the representation (1.25).

To prove Lemma 4.4.3, our strategy is to redo the argument of Lemma 4.3.3 under
conditioning. For a while, as assumed in Lemma 4.4.3, we suppose that b1 and b2 are
smooth. Furthermore, we fix a v ∈ [0, T ). For any continuous function η, the differential
equation

dxt = biv+t(xt)dt+ dηt, x0 = y

has a unique solution. Recall that we write B̃ for the Riemann–Liouville process defined by
(4.29). We denote by X̃ i[y, η] the unique solution to the SDE

dX̃ i
t [y, η] = biv+t(X̃

i
t [y, η])dt+ dηt + dB̃t, X̃ i

0[y, η] = y.

Note that X̃ i[y, η] is adapted to the filtration generated by B̃.
We then have

E[F ((X1
r , X

2
r )v≤r≤r+t)|Fv]

= E[F ((X̃1
r [y

1, η], X̃2
r [y

2, η]))]|yi=Xi
v ,η=

∫ v
−∞ K(v+·,r)dWr

. (4.62)
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Due to this relation, we will work on X̃ i[y, η]. We set

Ṽt[y
1, y2, η] :=

∫ t

0

∫ 1

0

∇b1v+r(θX̃1
r [y

1, η] + (1− θ)X̃2
r [y

2, η])dθdr, (4.63)

Ũt :=

∫ t

0

∇b1v+r(B̃r)dr. (4.64)

As in the proof of Theorem 4.1.1, we deduce the estimate of Ṽ from Ũ by Girsanov’s
theorem (Lemma 4.2.15). The following is an improvement of the estimate (4.35), in that
we can remove the restriction on the moment.

Lemma 4.4.5. Let ρ < 2 satisfy (4.34) and m ∈ (0,∞). We define Ũ by (4.64) with a
smooth b1. We then have

∥∥Ũ∥ρ-var;[0,t]∥m ≲ρ,m ∥b1∥Lq([v,v+t];Lp
x)t

1−H− dH
p

− 1
q .

Proof. Let (Gt) be the filtration generated by B̃. We first prove

∥∥∥Ũ∥ρ-var;[s,t]|Gs∥p∨2∥∞ ≲ρ ∥b1∥Lq([v+s,v+t];Lp
x)(t− s)1−H− dH

p
− 1

q . (4.65)

Setting

Ūt[η] :=

∫ t

0

∇b1v+r(ηr + B̃r)dr,

we have

∥∥Ũ∥ρ-var;[s,t]|Gs∥p∨2 = ∥∥Ū [η]∥ρ-var;[0,t−s]∥p∨2|η=∫ s
0 K(·,r)dWr

.

Since b̄1v+t(x) := b1v+t(x+ ηt) satisfies ∥b̄1∥Lq
tL

p
x
= ∥b1∥Lq

tL
p
x
, it suffices to prove (4.65) with

s = 0, i.e.

∥∥Ũ∥ρ-var;[0,t]∥p∨2 ≲ρ ∥b1∥Lq([v,v+t];Lp
x)t

1−H− dH
p

− 1
q ,

which is essentially proven in Lemma 4.3.3 as noted in Remark 4.3.6.
Now we set Ut := ∥Ũ∥ρ-var;[0,t]. The process U is continuous (recall that b1 is smooth),

and due to the second inequality of (4.14), we have Us,t ≤ ∥Ũ∥ρ-var;[s,t]. Therefore, the
estimate (4.65) implies that

∥∥Us,t|Fs∥1∥∞ ≲ρ ∥b1∥Lq([v+s,v+t];Lp
x)(t− s)1−H− dH

p
− 1

q .

The John–Nirenberg inequality (4.21) thus completes the proof.
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Remark 4.4.6. Setting Ut :=
∫ t
0
∇b1r(Br)dr, we similarly get

∥∥∥U∥ρ-var;[s,t]|Fs∥p∨2∥∞ ≲ρ ∥b1∥Lq([s,t];Lp
x)(t− s)1−H− dH

p
− 1

q .

Hence, the John–Nirenberg inequality (4.20) yields

E[eλ∥U∥
(H+ dH

p )−1

ρ-var ] <∞
for small λ. As in Lemma 4.2.10, we can remove the smallness condition of λ. Furthermore,
by Girsanov’s theorem we can replace U by V defined by (4.51).
Corollary 4.4.7. Let ρ < 2 satisfy (4.34) and m ∈ (0,∞). If M is large enough to have
b1, b2 ∈ BM and if Ṽ [y1, y2, η] is defined by (4.63), then for any t ≤ T we have

∥∥Ṽ [y1, y2, η]∥ρ-var;[0,t]∥m ≲T,ρ,m,M ∥b1∥Lq([v,v+t];Lp
x)t

1−H− dH
p

− 1
q . (4.66)

Proof. We drop dependence on y1, y2, η. Setting

ϕ̃it :=

∫ t

0

biv+r(X
1
r [y

i, ηr])dr,

then

Ṽs,t =

∫ t

s

∫ 1

0

∇b̃1r(θX̃1
r + (1− θ)X̃2

r )dθdr.

The Girsanov theorem (Lemma 4.2.15) and the bound similar to (4.56) yield

∥∥V ∥ρ-var;[0,t]∥m ≲T,m E
[
e4∥ϕ̃

1∥2
H̃H

] 1
4E

[
e4∥ϕ̃

2∥2
H̃H

] 1
4

×
∫ 1

0

∥∥∥
∥∥∥
∫ ·

0

∇b1v+r(B̃r + θy1 + (1− θ)y2)dr
∥∥∥
ρ-var;[0,t]

∥∥∥
2m

dθ,

where m′ is defined by (4.55). By Lemma 4.4.5,
∥∥∥
∥∥∥
∫ ·

0

∇b1v+r(B̃r + θy1 + (1− θ)y2)dr
∥∥∥
ρ-var;[0,t]

∥∥∥
2m

≲ρ,m ∥b1∥Lq([v,v+t];Lp
x)t

1−H− dH
p

− 1
q .

By Lemma 4.2.15, if bi ∈ BM , we get

E
[
e4∥ϕ̃

i∥2
H̃H

]
≲T,M 1,

and the proof is complete.

Proof of Lemma 4.4.3. In view of (4.62) and Corollary 4.4.7, the estimate for V follows.
As for R, the proof is similar in view of Remark 4.3.7.
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4.4.2 Lifting paths
As in the previous section, we assume that b1, b2 are smooth, and we define V and R by
(4.51) and (4.52) respectively. Lemma 4.4.3 shows that

∥∥Vs,t|Fs∥m∥∞ ≲m ∥b1∥Lq([s,t];Lp
x)(t− s)1−H− dH

p
− 1

q ,

that is the VMO regularity of V , and similarly that of R, is 1−H − dH
p

. This exponent can
be arbitrarily close to 0 under (4.2). To get a closed estimate of X∆ from the Young–Lyons
affine equation (4.53), we have to lift V and R as a rough path of sufficient order. Here we
recall notation and very basic properties of rough paths.

Let I and Θ be the index sets defined by

I := {1, 2, . . . , d}2 and Θ :=
∞⋃

n=1

I{ 1,2,...,n }. (4.67)

For w ∈ Θ, we write |w| = n if w ∈ I{ 1,2,...,n }. For w ∈ Θ and k < |w| we set

w+
k := w|{1,2,...,k}, w−

k := w|{|w|−k+1,|w|−k+2,...,|w|}.

We define the lift V = (Vw)w∈Θ from V as follows. If |w| = 1 then we set Vw
s,t :=

V
w(1)
t − V

w(1)
s . For |w| = n, we define inductively

Vw
s,t :=

∫ t

s

Vw+
n−1

s,r dV w(|w|)
r

as Young’s integral [You36]. The lift V satisfies the algebraic condition called Chen’s
relation:

Vw
s,t − Vw

s,u − Vw
u,t =

n−1∑

k=1

Vw+
n−k

s,u Vw−
k

u,t , ∀s ≤ u ≤ t. (4.68)

It also follows from [Lyo98] that for each w ∈ Θ, there exists a (deterministic) constant
C(w) such that

|Vw
s,t| ≤ C(w)∥V ∥|w|ρ-var;[s,t], ∀s ≤ t. (4.69)

In the same way, we can construct a joint lift

(Ujw)j∈{1,...,d};w∈Θ

181



CHAPTER 4. STRONG REGULARIZATION BY FRACTIONAL NOISE

of R and V as follows. For |w| = 1 we set

Ujw
s,t :=

∫ t

s

Rj
s,rdV

w(1)
r

and inductively for |w| > 1,

Ujw
s,t :=

∫ t

s

U
jw+

|w|−1
s,r dV w(|w|)

r ,

where integrals are defined in Young sense. We similarly have Chen’s identity and

|Ujw
s,t | ≲w ∥R∥ρ-var;[s,t]∥V ∥|w|ρ-var;[s,t]. (4.70)

Lemma 4.4.8. LetM be large enough to have b1, b2 ∈ BM . For everym ∈ (0,∞), we have

∥∥Vw
s,t|Fs∥m∥∞ ≲m,M,w ∥b1∥Lq([s,t];Lp

x)(t− s)1−H− dH
p

− 1
q ,

∥∥Ujw
s,t |Fs∥m∥∞ ≲m,M,w ∥b1 − b2∥Lq([s,t];W−1,p

x )(t− s)1−H− dH
p

− 1
q .

Proof. It easily follows from Lemma 4.4.3, (4.69) and (4.70).

4.4.3 Gronwall’s argument in the probabilistic setting
The goal of this section is to prove the second part of Theorem 4.1.2, see the end of this
section. As in the previous sections, we define V andR by (4.51) and (4.52). The signatures
(Vw)w and (Ujw)j,w are discussed in Section 4.4.2. We assume that b1 and b2 are smooth,
until we come to the proof of Theorem 4.1.2.

In the rest of this section, we fix m ∈ [2,∞) and set

γ := 1−H − dH

p
− 1

q
.

Recalling (4.53), set Z := X∆ and z := x1 − x2 so that

Zi
t = zi +

d∑

j=1

∫ t

0

Zj
rdV

ij
r +Ri

t, i = 1, 2, . . . , d. (4.71)

Our strategy is to employ Gronwall’s arguments directly in Lm(P), using VMO estimates
from Lemma 4.4.8.
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For w ∈ Θ with w(i) = (a1, a2) we write w(i)(j) := aj (j = 1, 2). We denote by Ξjin
the subset of Θ such that w ∈ Ξjin if and only if

|w| ≤ n, w(1)(1) = j, w(|w|)(2) = i,

w(i)(2) = w(i+ 1)(1) ∀i ≤ |w| − 1.

We then set

JZKs,t := sup
s≤u<v≤t

∥Zu,v∥m
(v − u)γ

+
d∑

i=1

⌊γ−1⌋−1∑

k=1

sup
s≤u<v≤t

(v − u)−(k+1)γ

×
∥∥∥Zi

u,v −Ri
u,v −

d∑

j=1

∑

w∈Ξji
k

Zj
uVw

u,v −
d∑

j=1

∑

w∈Ξji
k−1

Ujw
u,v

∥∥∥
m
.

Since b1, b2 are smooth, we have JZK ≲∥b1∥C1 ,∥b2∥C1
1.

Lemma 4.4.9. Let b1, b2 ∈ BM . If we set

Ais,t :=
d∑

j=1

( ∑

w∈Ξji
n

Zj
sVw

s,t +
∑

w∈Ξji
n−1

Ujw
s,t

)
,

then with n = ⌊γ−1⌋

∥∥∥
d∑

j=1

∫ t

s

Zj
rdV

ji
r − Ais,t

∥∥∥
m

≲T,m,M (∥b1∥Lq([s,t];Lp
x) ∨ ∥b1∥nLq([s,t];Lp

x)
)JZKs,t(t− s)(n+1)γ.

Proof. Since

|Vw
s,t| ≲∥b1∥C1

(t− s)|w|, |Ujw
s,t | ≲∥b1−b2∥L∞ (t− s)1+|w|,

we have

lim
π is a partition of [s,t],

|π|→0

∑

[u,v]∈π

Aiu,v = lim
π is a partition of [s,t],

|π|→0

∑

[u,v]∈π

d∑

j=1

Zj
uV

ji
u,v

=
d∑

j=1

∫ t

s

Zj
rdV

ji
r .
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Hence, to obtain the claimed estimate, we apply the sewing lemma in Lm(P). We have

δAis,u,t =
d∑

j=1

{
−

∑

w∈Ξji
n

Zj
s,uVw

u,t

+
∑

w∈Ξji
n

Zj
s(Vw

s,t − Vw
s,u − Vw

u,t) +
∑

w∈Ξji
n−1

(Ujw
s,t − Ujw

s,u − Ujw
u,t)

}
.

By Chen’s identity (4.68),

Vw
s,t − Vw

s,u − Vw
u,t =

|w|−1∑

k=1

V
w+

|w|−k
s,u Vw−

k
u,t ,

Ujw
s,t − Ujw

s,u − Ujw
u,t = Rj

s,uVw
u,t +

|w|−1∑

k=1

U
jw+

|w|−k
s,u Vw−

k
u,t .

Therefore,

δAis,u,t =−
d∑

j=1

∑

w∈Ξji
n−1

(
Zj
s,u −Rj

s,u

−
d∑

l=1

∑

w1∈Ξlj
n−|w|

Z l
sVw1

s,u −
d∑

l=1

∑

w2∈Ξlj
n−1−|w|

Ulw2
s,u

)
Vw
u,t

−
d∑

j=1

∑

w∈Ξji
n \Ξji

n−1

Zj
s,uVw

u,t.

Using the estimate ∥∥Vw
u,t|Fu∥m∥∞ ≲T,m,M,w ∥b∥|w|

Lq([u,t];Lp
x)
(t− s)|w|γ from Lemma 4.4.8,

we obtain

∥δAis,u,t∥m ≲m (∥b∥Lq([u,t];Lp
x) ∨ ∥b∥nLq([u,t];Lp

x)
)JZKs,t(t− s)(n+1)γ.

By our choice of n, the exponent is greater than 1. The claimed estimate follows from the
sewing lemma.

Lemma 4.4.10. Let b1, b2 ∈ BM . With some positive constant

C = C(d,H, p, q, T,m,M)
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we have

∥Zs,t∥m ≤ C(1 ∨ Γn)eC(1∨Γ)
n
γ {|z|+ ∥b1 − b2∥Lq

tW
−1,p
x

}
(t− s)γ,

where n = ⌊γ−1⌋, Γ := ∥b1∥Lq
tL

p
x

and z = Z0 = x1 − x2.

Proof. By (4.71) we have

Zi
s,t −Ri

s,t −
d∑

j=1

( ∑

w∈Ξji
n

Zj
sVw

s,t +
∑

w∈Ξji
n−1

Ujw
s,t

)

=
d∑

j=1

∫ t

s

Zj
rdV

ji
r −

d∑

j=1

( ∑

w∈Ξji
n

Zj
sVw

s,t +
∑

w∈Ξji
n−1

Ujw
s,t

)
.

Note by Lemma 4.4.8 that

∥Zj
sVw

s,t∥m ≲T,m,M ∥b1∥Lq
tL

p
x
∥Zj

s∥m(t− s)|w|γ,

∥Ujw
s,t∥m ≲T,m,M ∥b1∥|w|

Lq
tL

p
x
∥b1 − b2∥Lq

tW
−1,p
x

(t− s)(|w|+1)γ.

Therefore, if t− s ≤ 1, Lemma 4.4.9 yields (with Γ = ∥b1∥Lq
tL

p
x
)

∥∥∥Zi
s,t −Ri

s,t −
d∑

j=1

( ∑

w∈Ξji
k

Zj
sVw

s,t +
∑

w∈Ξji
k−1

Ujw
s,t

)∥∥∥
m

≲T,m,M (Γ ∨ Γn)
{

JZKs,t(t− s)(n+1)γ + ∥Zs∥m(t− s)(k+1)γ

+ ∥b1 − b2∥Lq
tW

−1,p
x

(t− s)(k+1)γ
}
.

This implies

JZKs,t ≤ C(1 ∨ Γn)
{
JZKs,t(t− s)γ + sup

r∈[s,t]
∥Zr∥m + ∥b1 − b2∥Lq

tW
−1,p
x

}

for some C = C(d,H, p, q, T,m,M). Hence, if

(t− s)γ ≤ 1

2
(C(1 ∨ Γn))−1,

we have

JZKs,t ≤ 2C(1 ∨ Γn)
{

sup
r∈[s,t]

∥Zr∥m + ∥b1 − b2∥Lq
tW

−1,p
x

}
.
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In particular,

∥Zs,t∥m ≲T,m,M (1 ∨ Γn)
{

sup
r∈[s,t]

∥Zr∥m + ∥b1 − b2∥Lq
tW

−1,p
x

}
(t− s)γ. (4.72)

Now set Gt := ∥Zt∥m + ∥b1 − b2∥Lq
tW

−1,p
x

. By (4.72)

|Gs,t| ≲T,m,M (1 ∨ Γn)Gs(t− s)γ if t− s ≲T,m,M (1 ∨ Γn)−
1
γ .

By the Gronwall lemma (e.g. [Dey+19, Lemma 2.12]), we obtain

sup
t∈[0,T ]

Gt ≲ eCT (Γ∨1)
n
γ
G0 = eCT (Γ∨1)

n
γ {|z|+ ∥b1 − b2∥Lq

tW
−1,p
x

}
.

Plugging this estimate into (4.72), we obtain the claimed estimate.

Proof of Theorem 4.1.2. The pathwise stability is proven by Proposition 4.4.1, with A =
c(1 + ∥V ∥ρρ-var) and D = ∥R∥ρ-var. To prove the stability in moment norms, thanks to the
pathwise stability, we may suppose that b1, b2 are smooth. Then the claim follows from
Lemma 4.4.10.
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