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Abstract

The thesis explores stochastic calculus for fractional Brownian motion. Our approach
builds upon a novel technique called stochastic sewing, originally introduced by L& [Electron.
J. Probab. 25:1-55, 2020]. The stochastic sewing has been effectively used to obtain sharp
estimates on stochastic Riemann sums.

The main result of the thesis is an extension of L&’s stochastic sewing, which we refer to
as the shifted stochastic sewing. This extension takes advantage of asymptotic decorrelation
in stochastic Riemann sums and can be seen as a combination of Lé’s stochastic sewing
and the asymptotic independence formulated by Picard [Ann. Probab. 36(6): 2235-2279,
2008].

As applications of the shifted stochastic sewing, we address two important problems
in fractional stochastic calculus. Firstly, we characterize the local time of the fractional
Brownian motion via level crossings, extending the classical work of Lévy to the fractional
setting. Secondly, we establish the pathwise uniqueness of Young and rough differential
equations driven by fractional Brownian motion. This result optimizes the regularity of the
noise coefficient, which is consistent with the Brownian setting.

Additionally, we demonstrate strong regularization by fractional noise for differential
equations with integrable drifts. This result can be viewed as a fractional analogue of the
celebrated work by Krylov and Rockner [Probab. Theory Relat. Fields 131: 154-196,
2005].
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Zusammenfassung

In dieser Arbeit wird der stochastische Kalkiil fiir die gebrochene Brownsche Bewegung
untersucht. Unser Ansatz basiert auf einer neuen Technik namens ‘“‘stochastic sewing”,
die urspriinglich von L& [Electron. J. Probab. 25:1-55, 2020] eingefiihrt wurde. Das
“stochastic sewing” wird effektiv eingesetzt, um optimale Abschétzungen fiir stochastische
Riemann-Summen zu erhalten.

Das Hauptergebnis dieser Arbeit ist eine Erweiterung von Lés “stochastic sewing”, die
wir als verschobenes “stochastic sewing” bezeichnen. Diese Erweiterung macht sich die
asymptotische Dekorrelation in stochastischen Riemann-Summen zunutze und kann als eine
Kombination von Lés “stochastic sewing” und der von Picard formulierten asymptotischen
Unabhingigkeit gesehen werden [Ann. Probab. 36(6): 2235-2279, 2008].

Als Anwendungen des verschobenen “stochastic sewing”” behandeln wir zwei wichtige
Probleme des gebrochenen stochastischen Kalkiils. Zum einen charakterisieren wir die
Lokalzeit der gebrochenen Brownschen Bewegung durch Uberquerungen von Niveaulinien,
und erweitern damit die klassische Arbeit von Lévy auf den gebrochenen Fall. Zum
anderen etablieren wir die pfadweise Eindeutigkeit von Young- und irreguldren Differen-
tialgleichungen, die durch gebrochene Brownsche Bewegung angetrieben werden. Dieses
Ergebnis optimiert die Regularitidtsannahmen des Diffusionskoeffizienten, in Einklang mit
dem Brownschen Fall.

Zusitzlich zeigen wir eine starke Regularisierung durch gebrochenes Rauschen fiir
Differentialgleichungen mit integrierbarem Drift. Dieses Ergebnis kann als ein gebrochenes
Analogon der berithmten Arbeit von Krylov und Rockner [Probab. Theory Relat. Fields
131: 154-196, 2005] angesehen werden.
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Introduction

During the 19th century, Robert Brown made a significant observation regarding the irregular
movement of particles within a medium. This motion, now widely recognized as Brownian
motion, or the Wiener process in honor of the mathematician who laid its mathematical
groundwork, has had a profound impact on various fields, including modern mathematics.
Brownian motion, denoted by W, is a centered Gaussian process characterized by the
following property (in one dimension):

E[(W; - W)* =t—s, s<t.

The process exhibits independent increments and possesses martingale and Markovian
properties, which paved the way for the development of a comprehensive theory on Brownian
motion. In the 1940s, It6 initiated the field of stochastic calculus, which involves the
calculus with respect to Brownian motion. This field has evolved into one of the most
fruitful areas in mathematics, as demonstrated in the monograph [RY99].

However, in practical applications, Brownian motion is often considered too ideal. To
address this, the fractional Brownian motion B, indexed by H € (0, 1), was introduced.
It is a centered Gaussian process characterized by the following property:

E[(Bf — B! = (t —s)*, s<t.

The parameter H represents the roughness of the process, as depicted in Figure 1. When
H = 1/2, the process reduces to the standard Brownian motion. In other cases, the process
exhibits correlated increments and is neither a martingale nor Markovian. Kolmogorov
[Kol40] first introduced this process, and it was later popularized by Mandelbrot [MV68;
Man82]. Naturally, the field of fractional stochastic calculus emerged to handle calculus
involving fractional Brownian motion.

Since fractional Brownian motion is neither a martingale nor Markovian, many of the
arguments used in It0’s stochastic calculus cannot be directly applied to fractional stochastic
calculus. Consequently, researchers have developed two main tools in fractional stochastic
calculus. The first tool involves pathwise arguments, such as Young’s integration theory
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[You36], Lyons’ rough path theory [Lyo98], and Zihle’s fractional calculus [Zdh98]. These
approaches fix the realization of the fractional Brownian motion, and perform pathwise
analysis. The second tool is Malliavin calculus. This calculus was first invented by Malliavin
[Mal78] to obtain a probabilistic proof of Hormander’s theorem [Hor67], but it turns out
to be also useful to study probabilistic aspects of the fractional Brownian motion [Nua06;
Noul?2].

However, it is important to note that these tools often yield less precise results compared
to the classical Brownian setting. For example, consider the stochastic integral

T
/ f(B")dB/! (1)
0

for H € (1/4,1), and for H < 1/2, the integral is understood as a rough integral.
Typically, the integral (in multi dimensions) is defined for functions f with Holder regularity
(1 — H)/H. However, it is natural to suspect that this definition is not optimal, as the It6
integral (1) is well-defined for any bounded measurable f when H = 1/2.

Recently, L€ [Lé20] combined the martingale inequality (Burkholder—Davis—Gundy
inequality) and Gubinelli’s sewing lemma [Gub04] to obtain the stochastic sewing lemma.
This lemma provides sharp stochastic estimates on stochastic Riemann sums, including the
stochastic integral

/O LB,

where f can be an irregular function or even a distribution. The stochastic sewing lemma
quickly gained recognition for its innovation and has become a central force in the recent
development of regularization by noise.

This thesis aims to provide a new perspective on fractional stochastic calculus through
the stochastic sewing lemma. Our results are on par with their Brownian counterparts. For
instance, we establish the well-definedness of the integral (1) for f of Holder regularity
(1/(2H) — 1 + ¢), for any positive €. Our main contribution is a novel version of the
stochastic sewing lemma, which we call the shifted stochastic sewing (Chapter 1). This
new version offers the advantage of capturing the asymptotic decorrelation in the stochastic
Riemann sums. It can be viewed as a combination of Lé&’s stochastic sewing and the
asymptotic independence introduced by Picard [PicO8]. As applications of the shifted
stochastic sewing, we investigate partitions defined by level crossings of fractional Brownian
motions (Chapter 2) and study Young and rough differential equations driven by fractional
Brownian motions (Chapter 3). Additionally, we derive precise results on regularization by
fractional noise for integrable drifts (Chapter 4), which significantly improve upon previous
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works and align with the results obtained by Krylov and Rockner for the Brownian case
[KROS].
In the following sections, we provide more detailed descriptions of each chapter.

Chapter 1: Shifted stochastic sewing

Chapter 1 is the most important part of the thesis, which serves as the foundation for
Chapters 2 and 3. The content of this chapter is based on joint work with Nicolas Perkowski.

In the fields of analysis and probability theory, the convergence and the estimate of
Riemann sums plays a crucial role. These sums are expressed as

> A )

[s,t]lem

where 7 represents a partition of the interval [0, 7). The focus lies on the limit as the mesh
size
|| := max |t — s]
[s,tlem

tends to 0. The term A, ; is called a germ. For example, when A, ; := f(s)(t—s), we consider
a Riemann sum approximation of fOT f(s)ds. Similarly, when A, ; := X (W; — W), where
W is a Brownian motion and X is an adapted process, we study the Itd approximation of
the stochastic integral fOT X, dW,.

Gubinelli [Gub04], inspired by Lyons’ results on almost multiplicative functionals in
the theory of rough paths [Lyo98], established the remarkable sewing lemma. This lemma
states that if the quantity

(51457“715 = A&t — As,u — Au,t) 0 S s<u<t S T,

satisfies [0 A .| < |t—s|'* for some e > 0, then the sums (2) converge. The sewing lemma
has proven to be immensely powerful, leading to numerous applications and extensions
in the field. Notably, it has been utilized for defining rough integrals, as described in the
monographs [Gub04; FH20].

When (As;)s<: is random and we aim to prove the convergence of the sums (2),
Gubinelli’s sewing lemma is often insufficient. For instance, if A, := (W, — W,)?, the
sums converge in L™ (IP), m < oo, to the quadratic variation of the Brownian motion.
However, we only expect the bound

H(SAs,u,tHL’"(JP’) Sm |t - 5’7
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and hence we cannot apply the sewing lemma.

In his seminal work, Lé [LL€20] obtained a stochastic version of Gubinelli’s sewing
lemma. Just as Gubinelli’s sewing lemma plays an important role in pathwise stochastic
calculus, Lé’s stochastic sewing lemma does so in probabilistic stochastic calculus. In
particular, the discovery of the stochastic sewing has significantly advanced the field of
regularization by noise.

A concrete statement of the stochastic sewing lemma is as follows. If (Ag;)s<; is a
stochastic germ adapted to a filtration (F;) and if

H(;As,u,tH%m(]P’) + ||E[5As,u,t|~Fs]||Lm(P) < F(t - S)H_ea

fors <u <t,me [2,00), " € (0,00) and € > 0, then the Riemann sums Z[s,t]eﬂ Ay,
where 7 is a partition of some fixed interval [0, 7], converge in L™ (P) as the mesh
size of 7 tends to 0. The strength of the stochastic sewing lemma lies in the fact that
we only need to assume (% + 5) -regularity for ||0.A, ., +| zm(p), although we also need to
consider the regularization effect encoded in the estimate |E[0 A, ¢| F] || Ly S (6 — ).

Furthermore, if we denote by A7 the limit of the Riemann sums in the interval [0, T'], we
have a quantitative bound

1+e

| Astllzm@) Sme Tt —5)2 .

That is, we can transfer the estimate of A, to that of A, ,.

Sometimes, itis difficult to observe the regularization effect through || E[0 A ., ¢| F ]| L ().
The easiest example is A, ; = |Bff — BH|'/H the 1/H-variation of the fractional Brownian
motion B¥. For this example, it is not possible to estimate E[0 A, , ;|Fs], although the
convergence of the Riemann sums (along equipartitions) is well known.

Chapter 1 of the thesis presents an extension of L&’s stochastic sewing (Theorem 1.1.1),
relaxing the estimate of the conditional expectation E[0 A; ,, +|Fs]. We replaced it with

1
|E[0As el Folllzmey S (s —v) *(t—s)'", v<s<u<t, a< 3 +e. ()

Because of this new condition, where the conditioning is shifted from F; to F,, we call
this extension the shifted stochastic sewing lemma. The case where « = 0 and v = s
corresponds to Lé’s stochastic sewing. The version of the mild shifting, namely the case
where o« = 0 and v = s — M (t — s) for a fixed positive constant M, is obtained by Gerencsér
[Ger22]. Our extension allows us to take advantage of the asymptotic effect of regularization,
inspired by [Pic08].

Forthe example A, ; = | B;— B;| IVH e can prove estimates of the form (3). Additionally,
as a more interesting application, we demonstrate the convergence of Itd approximations

5
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and Stratonovich approximations under low regularity assumptions, which can be viewed as
a simplification and improvement of [Noul2, Theorem 3.5]. More precisely, in Section 1.3
we prove

3 lim > f(BIYBf — Bl') in L™(P)for H € (1/2,1) and f € L®(R?)
[s,t]lem

|7|—0

and with H € (1/4,1/2) and v > 5 — 1 we prove

Furthermore, the shifted stochastic sewing lemma will be crucially applied in Chapters 2
and 3. The reader however can skip the proof of Theorem 1.1.1 (Section 1.2 and Section 1.4)
without any problem for further reading. The result of Section 1.3 will be used in Chapter 3.

Chapter 2: Level crossings of fractional Brownian motions

In this section, we provide a summary of Chapter 2, which is based on collaborative work
with Purba Das, Rafal L.ochowski, and Nicolas Perkowski.

We consider a fractional Brownian motion B with a Hurst parameter H € (0, 1). It s
known that the following convergence holds:

. = H H 1/H H\|1/H
lim 37 |Bly, — B, | =EIBIT. as,
k=0

k+1 K
n—oo on T an

One of the key objectives of Chapter 2 is to investigate the (1/H )-variations along Lebesgue
partitions, which are random partitions defined by the level crossings of B*. To construct
these partitions, we start with 7§’ := 0 and recursively define the stopping times 7} by

Ty =inf{t > T, : |B) = By, |=27"}.

The reader can refer to Figure 2 for an illustration. Each nth Lebesgue partition consists
of intervals of the form [7}* |, 7] for k € N satisfying 7' < 7. The main objective
is to establish the convergence of (1/H )-variations along these Lebesgue partitions. In
particular, we aim to prove the existence of the limit:

lim 2~HA4{k . TP < T}, (4)

n—oo

6
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where # denotes the cardinality.

Additionally, we can count level crossings specifically around the level 0 and investigate
the convergence of the number of these crossings towards the local time at 0.

The convergence of (4) and its local time counterpart is well-known for the Brownian
case, where the proof relies on martingale or Markovian properties, such as [t6’s formula
(see, e.g., [RY99]). However, such martingale or Markovian arguments are not applicable
when H # 1/2. Chapter 2 presents a completely different strategy to prove (4) for H € (0, 1)
and its local time counterpart for H < 1/2. This novel approach resolves a conjecture
posed in [CP19].

To demonstrate our strategy, we denote by K (e, w) the number of e-level crossings of
the process w in the interval [s, t]. Then the limit (4) is equal to

lim 27" K, (27", B).

n—oo
The key observation is that the family (K (e, B))o<s<t<r is superadditive and almost
subadditive. This leads to the approximation

Kor(2™, B) ~ Z K,.,(27", B),

[s,t]emn

where 7, is a partition of [0, 7'] with a mesh size of order 27"/#. Hence, we can approximate
Ko7(27™, B) by a stochastic Riemann sum, which can then be estimated by the shifted
stochastic sewing. To verify the conditions of the shifted stochastic sewing, the computations
will be carried out in the spirit of Picard [PicO8]. The strategy of proving the convergence
to the local time follows similar arguments, but due to the lack of stationarity, technicalities
dramatically increase.
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Our result also poses a very interesting conjecture on whether the limit (4) is equal to
that of (1/H)-variations along deterministic dyadic partitions. For H = 1/2, they are equal.
Numerical simulation suggests that they are different for H # 1/2. If this were indeed true,
it would be an interesting manifestation of non-Markovianity.

Chapter 3: Probabilistic Young and rough differential equa-
tions

This is the summary of Chapter 3, based on joint work with Avi Mayorcas. In this chapter,
we focus on the stochastic differential equation (SDE)

dX, = o(X,)dB, X,=2¢cR%", 5)

where o is a map valued in the space of d; x dy matrices, and B* is a d,-dimensional
fractional Brownian motion with Hurst parameter H € (1/3,1). The differential equation is
interpreted either as Young’s differential equation (H > 1/2) or as Lyons’ rough differential
equation [Lyo98] (H < 1/2). Our main result is on the pathwise uniqueness of (5) under
a low regularity assumption on o. Rather than directly stating the result, we provide a
background review leading up to this outcome.

For H = 1/2, we often apply Itd’s theory to study (5); we will discuss the alternative
theory of Lyons later. In [td’s theory, there are a few notions of solutions and their uniqueness,
among which the most relevant to us is the notion of pathwise uniqueness. It says that two
solutions, adapted to some filtration making the driving Brownian motion martingale, must
be indistinguishable. Hence, pathwise uniqueness is a probabilistic concept of uniqueness
(despite its name). It is a classical result, as can be found in all textbooks of stochastic
calculus, that pathwise uniqueness holds for (5) with H = 1/2 provided that o is Lipschitz.
The proof is a consequence of It0’s isometry: for an adapted process Y we have

sf] [ v < e[ [ ]

1td’s isometry is due to the martingale property of the Brownian motion. Since BY,
H # 1/2, is not a martingale (nor Markovian), It6’s theory is not available for H # 1/2.
Lack of probabilistic tools naturally motivates us to study the SDE (5) pathwisely. Based
on Young’s integration theory, Lyons [Lyo94] showed that the (deterministic) differential
equation

dz, = f(:vt)dyt (6)



driven by a path y of finite p-variation with p € [1,2) has a unique solution provided that f
is a-Holder with v > p. Furthermore, [Lyo98] extended the result for p € [2, 00), provided
that we are additionally given “iterated integrals”

t r1 t 1 T2
// dymdym// / dyr, dyr,dy,,, .. -,

satisfying certain analytic and algebraic conditions. The tuple of y and its (sufficient number
of) iterated integrals is called a rough path of . Later, Coutin and Qian [CQO2] proved that
the fractional Brownian motion B, with H > 1/4, can be naturally lifted to a rough path.
Since B has finite p-variation for any p > 1/H, we see that (5) has a unique solution
provided that o € C" withy > 1/H and H € (1/4,1).

We remark two important differences in [t6’s probabilistic theory and Lyons’ pathwise
theory. One is that the former considers uniqueness among solutions adapted to a given
filtration, while the latter considers uniqueness among all solutions satisfying (6), which do
not need to be adapted. In other words, the notion of uniqueness is stronger in the pathwise
theory, referred to as path-by-path uniqueness, following the works of Davie [Dav07;
Dav08]. The other difference lies in the regularity assumption on 0. When H = 1/2, It6’s
theory assumes that o is only Lipschitz, while Lyons’ theory assumes that o € C"7 with
v > 2. In summary, Itd’s theory requires less regularity assumption on o at the cost of a
weaker notion of uniqueness.

Although It6’s theory is not available for H # 1/2, pathwise uniqueness is a well-defined
notion in this setting. Now it is natural to ask if we can prove pathwise uniqueness of (5) for
o € C7 with v < 1/H. Our main result in this chapter answers the question affirmatively.
That is, under the uniformly elliptic condition (co! is non-degenerate), we prove pathwise
uniqueness under o € C7 with v > max{1/(2H), (1 — H)/H?}, as shown in Figure 3.

The proof follows Lé’s strategy [Le20] to prove pathwise uniqueness. In fact, pathwise
uniqueness is deduced from a sharp estimate on the stochastic integral

| s,

where X is a path controlled by B and f is a map of low regularity. Specifically, we can
define the stochastic integral for f € C7 with v > 1/(2H) — 1. The estimate is proven
using stochastic sewing techniques, including the shifted stochastic sewing.

9
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Figure 3: Some graphs of H related to the main result of Chapter 3. Pathwise theory covers
o € C7 with v > 1/H (green), while the result of Chapter 3 says that pathwise uniqueness
holds if v > 1/(2H) (blue) and if v > (1 — H)/H (red).
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Chapter 4: Regularization by fractional noise for integrable
drift

This is the summary of Chapter 4, based on joint work with Oleg Butkovsky and Khoa Lé.
This chapter is relatively independent as it does not rely on the shifted stochastic sewing.
The main result focuses on the strong well-posedness of the fractional SDE

dX, = b(t, X,)dt + dBf. (7

The well-posedness is straightforward when b is smooth, but our interest lies in the case of
non-smooth b. Here, we consider an integrable drift b € L?([0, T]; LP(R?)), and our goal is
to determine the condition on p, ¢, d, H for strong well-posedness. The topic discussed in
this chapter falls within the highly active field of regularization by noise, which will be
further explored and reviewed in the following paragraphs.

Ill-posed differential equations sometimes regain well-posedness by introducing noise.
For instance, the differential equation dX; = /| X;|d¢ may have multiple solutions, while

the stochastic differential equation (SDE) dX; = /| X;|dt + dBt1 /? has a unique strong
solution (strongly well-posed). This phenomenon is known as regularization by noise.
Recently, there has been growing interest in understanding this phenomenon beyond the
Brownian setting; among them is regularization by fractional noise.

In their recent work [GG23], Galeati and Gerencsér introduced the notion of subcriticality
for fractional SDEs. Subcriticality refers to the domination of fractional noise under small
scales. If X solves the SDE (7), then the scaled process Xt(’\) = A" X, solves the SDE

dX = NS00 (¢, xMyde 4 dBYY,

where
bV (t,x) = A7 Tab(M, A z), BYY = AH By,
It is worth noting that [[b™]|zs;z = [|b]|zsr2 and BY) has the same law as B. The

domination of the noise at small scales implies that the order of the drift term is smaller
than that of the driving noise as A approaches 0. This leads to the condition
dH 1
1-H———->0. (8)
p q
Therefore, the condition (8) is natural for the solution theory of (7). In fact, the celebrated
result by Krylov and Rockner [KRO5] proves strong well-posedness for H = 1/2 under
(8). The main result of Chapter 4 addresses the strong well-posedness of (7) in the

11
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1254 —— Solution

Brownian Motion
1.00 -
0.75 A

0.50 A

Value
o
N
w

0.00 A

—0.25 A

—0.50

—0.75 A

010 0?2 014 0?6 018 1?0
Time
Figure 4: Simulation of the SDE d X; = /| X;|dt + dBtl/2 with Xy = 0. The differential
equation dz; = +/|z;|dt with 2y = 0 has multiple solutions, but the SDE has a unique

strong solution. Heuristically, the solution of the SDE must behave like Brownian motion,
which enforces a unique way for the solution to escape the singularity at 0.
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fractional case H < 1/2. Specifically, we prove strong well-posedness for H < 1/2,
p > max{(l — H)™',2dH}, and (8). We also consider the case where p < (1 — H)™!
with an additional condition. Additionally, we establish the stability of (7) with respect
to the initial condition and the drift b. Our arguments are based on the stochastic sewing
with control [Lé23] and the notion of processes of vanishing mean oscillation introduced in
another seminal work by L& [L&22].

Reading guide
Section 1.1 Section 1.3
A 4 Y
Chapter 2 Chapter 3 Chapter 4

The relation of each chapter is depicted in the above diagram. The statement of the
shifted stochastic sewing (Theorem 1.1.1) appears in Section 1.1, and the result will be used
in Chapters 2 and 3. However, the reader can skip its rather involved proof (Sections 1.2
and 1.4) for further reading. We remark that Chapter 4 is essentially independent of the
preceding chapters.

Introduction of each chapter includes a section on notation specific to that chapter.
Below, we collect the most frequently used notations:

* We use the notation A := B to indicate that A is defined by B.

* The symbol N represents the set of natural numbers {1, 2, ...}, Q represents the set
of rational numbers, and R represents the set of real numbers.

* We denote by 14 the indicator function for the set A.

» We denote by (2, F, P) the underlying probability space, which is often implicit. The
symbol E denotes the expectation. We write [E[-|G] for the conditional expectation
given G. We set

1

IFllimey = [ 1P ap@) "

with usual convention for m = oo.

13



INTRODUCTION

* The d-dimensional fractional Brownian motion with Hurst parameter H € (0, 1) is
represented as B = (B*%)L_ . The components of B are independent. In Chapter
2, it takes values in R (d = 1), and in Chapter 3, it takes values in R%? (d = d,). We
typically use the symbol W to denote the Brownian motion.

e Fora givenmap f: [0,T] — R%, we write f; := f; — fs.

* The notation A < B signifies that there exists a constant C' depending only on
irrelevant parameters such that A < C'B. If we want to emphasize the dependency
ona,pf,..., wewrite A S, 4. B. We often write C' = C(a, 3, . ..) to emphasize
that the constant C' depends on o, 3, . . ..

I hope that you enjoy the reading :)

14
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Chapter 1

Shifted stochastic sewing lemma

We give an extension of L&’s stochastic sewing lemma [LLE20]. The stochastic sewing
lemma proves convergence in L™ (IP) of Riemann type sums . A for an adapted
two-parameter stochastic process A, under certain conditions on the moments of A, ,
and of conditional expectations of A, ; given F,. Our extension replaces the conditional
expectation given J by that given F, for v < s, and it allows us to make use of
asymptotic decorrelation properties between A, and F, by including a singularity
in (s —v). As a first application, we prove the convergence of It6 or Stratonovich
approximations of stochastic integrals along fractional Brownian motions under low
regularity assumptions. Further applications can be found in the following chapters.

This chapter is based on joint work with Nicolas Perkowski.

Keywords and phrases. stochastic sewing lemma, fractional Brownian motion, stochastic

integrals.
MSC 2020. 60G22, 60HOS.
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CHAPTER 1. SHIFTED STOCHASTIC SEWING LEMMA
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1.1 Introduction and the main theorem

In analysis and probability theory, we often consider the convergence of sums

> A (1.1)

[s,t]em

Here 7 is a partition of an interval [0, 7], and we consider the limit of

|| := max|t — s| — 0.
[s,tlem
For instance, if As; := f(s)(t — s), then we consider a Riemann sum approximation

of fOT f(s)ds, and if Ay, := X (W — W), where W is a Brownian motion and X is
an adapted process, then we consider the Itd approximation of the stochastic integral
T
Jo XdW,.
Gubinelli [Gub04], inspired by Lyons’ results on almost multiplicative functionals in
the theory of rough paths [Lyo98], showed that if

5AAs,u,t = As,t - As,u - Au,t7 0<s<u<t< T7 (12)

satisfies [0 Ag 4| S [t — s|'¢ for some £ > 0, then the sums (1.1) converge. This result is
now called the sewing lemma, named so in the work of Feyel and de La Pradelle [FLO6].
This lemma is so powerful that many applications and many extensions are known. For
instance, it can be used to define rough integrals, see [Gub04] and the monograph [FH20]
of Friz and Hairer.

When (A;;)s<; is random and when we want to prove the convergence of the sums
(1.1), the above sewing lemma is often not sufficient. For instance, if A, := (W, — WS)Q,

18



1.1. INTRODUCTION AND THE MAIN THEOREM

the sums converge in L™ (IP), m < oo, to the quadratic variation of the Brownian motion.
However, we only have
10 AsuillLm@y Sm [t —sl,

and hence we cannot apply the sewing lemma.
L& [Le20] proved a stochastic version of the sewing lemma (stochastic sewing lemma):
if a filtration (F;).c(0,77 is given such that

» A, is F;-measurable and
e for some 1,69 > 0 and m € [2,00), we have for every s < u < t,
B[O As el Folllmee) S 1t = 572, (1.3)
16Asuillme S It = 5|2+, (14)

then the sums (1.1) converge in L™ (P). If Ay, := (W, —W,)?, then we have E[0 A, ., ;| F,] =
0 and (1.4) is satisfied with ; = % Therefore, we can prove the convergence of (1.1) in
L™(P). The stochastic sewing lemma has been already shown to be very powerful in the
original work [Lé20] of L¢, and an increasing number of papers are appearing that take
advantage of the lemma.

However, there are situations where LL.&’s stochastic sewing lemma seems insufficient.

For instance, consider )
As,t = |Bt_Bs|ﬁ7 (15)

where B is a fractional Brownian motion with Hurst parameter H € (0, 1). It is well known
that the sums (1.1) converge to cy T in L™(IP). Although we have the estimate (1.4), we fail
to obtain the estimate (1.3) unless H = %

To get an idea on how L&’s stochastic sewing lemma should be modified for this problem,
observe the following trivial fact:

E[(SAs,u,t] = O

This suggests that we consider estimates that interpolate E[0 A; ;] and E[0 A, ¢|F]. In
fact, we can obtain the following estimates:

t— g\1-H
B[S Aq e Folll ey S ( S) (t—s), 0<v<s<u<t<T. (16
S —7

We can prove (1.6) for instance by applying Picard’s result [PicO8, Lemma A.1] on the
asymptotic independence of fractional Brownian increments. This discussion motivates the
following main theorem of this chapter.
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CHAPTER 1. SHIFTED STOCHASTIC SEWING LEMMA

Theorem 1.1.1 (shifted stochastic sewing). Suppose that we have a filtration (F;).cjo11
and a family of R%-valued random variables (Ast)o<s<t<r such that As s = 0 for every

s € [0, T and such that A, is F;-measurable. We define § As .+ by (1.2). Furthermore,
suppose that there exist constants

m e [2,00), T'1,T9,M €[0,00), «,pB, B € [0,00)
such that the following conditions are satisfied.
e Forevery() <ty <ty <ty <ty <T, wehave

IE[0As bt | Fio )|l Ly < Talts — to) ™ (ts — t1)7,  if M(ts — 1) < t; — to,

(1.7)
16 Atg 11t | Lm(py < Talta — t0)™. (1.8)

e We have . .
fr>1, By > 3 pfr— o> 5 (1.9)

Then, there exists a unique, up to modifications, R%-valued stochastic process (At)tefo,r
with the following properties.

o Ay =0, A, is Fy-measurable and A; belongs to L™ (P).
* There exist non-negative constants C, Co and C3 such that
IE[Ar, — Ai, — Apy 1| Foo) || ey < Cilts — to] *|t2 — t4]7", (1.10)
| Ay, — Ay — Ap o || omey < Calty — 8] + Cylta — 1], (L.11)
where ty — t; < M~Y(t; — to) is assumed for the inequality (1.10).
In fact, we can choose Cy, Cy and Cj5 so that
CrSo Ty Co Sappod mal't, Cs Sapypo Fmal2,

where K, q is the constant of the Burkholder-Davis-Gundy inequality, see (1.13). Further-
more, for T € [0,T), if we set

AT = Z Agy,  where T is a partition of [0, 7],

[s,t]lem

then the family (A7), converges to A. in L™ (IP) as || tends to 0.
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1.1. INTRODUCTION AND THE MAIN THEOREM

Remark 1.1.2. The proof shows that if
1+Oé—61 <20462—Oé, (1.12)

then we have Cy S, 5, 8,.m 1'1, and we can omit the factor &, 4. This is similar to [Lé20],
where C also does not depend on k,, 4. If « = 0 and M = 0, Theorem 1.1.1 recovers Lé&’s
stochastic sewing lemma [Lé20, Theorem 2.1]. If « = 0 and M > 0, it recovers a lemma
[Ger22, Lemma 2.2] by Gerencsér. The version of Gerencsér is often called the shifted
stochastic sewing, and we continue to call Theorem 1.1.1 the same way.

Remark 1.1.3. The proof shows that there exists € = £(«, 51, f2) > 0 such that

A, — A7

Ln(®) Sapy,faMmdT (It + To)|m]®
for every 7 € [0, T] and every partition 7 of [0, 7].

Remark 1.1.4. Asinanother work [Lé23] of L&, it should be possible to extend Theorem 1.1.1
so that the stochastic process (Asjt)&te[()?T] takes values in a certain Banach space.

Remark 1.1.5. A multidimensional version of the sewing lemma is the reconstruction
theorem [Hail4, Theorem 3.10] of Hairer. A stochastic version of the reconstruction
theorem was obtained by Kern [Ker21]. It could be possible to extend Theorem 1.1.1 in the
multidimensional setting, but we will not pursue it here.

The proof of Theorem 1.1.1 is given in Section 1.2. If A, , is given by (1.5), then we
can apply Theorem 1.1.1 with

Oé:].—H, ﬁ1:2—H, 52:1

However, the application of Theorem 1.1.1 goes beyond this simple problem of %—Variation
of the fractional Brownian motion. Indeed, in Section 1.3 we prove the convergence of 1td
and Stratonovich approximations to the stochastic integrals

T T
/ f(Bs)dBs and / f(Bs) o dBs
0 0

with H > % in Itd’s case and with H > % in Stratonovich’s case, under rather general
assumptions on the regularity of f, in fact f € CZ(R? R?) works for all H > %.

More interesting applications can be found in the following chapters. In Chapter 2, we
will prove the convergence of the level-crossing counting of the fractional Brownian motion
to its local time, and in Chapter 3, we will consider fractional Young and rough differential
equations with irregular noise coefficients.
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CHAPTER 1. SHIFTED STOCHASTIC SEWING LEMMA

Notation

We write Ny := {0,1,2,...} and N := {1,2,...}. Given a function f : [S,T] — R%, we
write fs; := f; — fs. We denote by k,, 4 the best constant of the discrete Burkholder-Davis-
Gundy (BDG) inequality for R%-valued martingale differences [BDG72]. Namely, if we are
given a filtration (F,,)°° ; and a sequence (X,,)>° , of R%-valued random variables such that
X, is F,,-measurable for every n > 1 and E[X,,|F,,_1] = 0 for every n > 2, then

||ZX|yLm </~;md||ZX2||2 . (1.13)

Rather than (1.13), we mostly use the inequality

o0 oo 1
2
I3 Xallzm@ < (D1 XnlEne)) (1.14)
n=1 n=1

for m > 2, which follows from (1.13) by Minkowski’s inequality. We write A < B or
A = O(B) if there exists a non-negative constant C' such that A < C'B. To emphasize the
dependence of C' on some parameters a, b, . . ., we write A <., . B.

geee

1.2 Proof of the main theorem

The overall strategy of the proof is the same as that of the original work [Lé20] of L&.
Namely, we combine the argument of the deterministic sewing lemma ([Gub04], [FLO6]
and Yaskov [Yas18]) with the discrete BDG inequality [BDG72]. However, the proof of
Theorem 1.1.1 requires more labor at technical level. Some proofs will be postponed to
Appendix 1.4.

As in [LE€20], the following lemma, which originates from [Yas18], will be needed. It
allows us to replace general partitions by dyadic partitions.

Lemma 1.2.1 ([Lé20, Lemma 2.14]). Under the setting of Theorem 1.1.1, let
0<tg<ti < - <ty_1 <ty <T.

Then, we have

N on_1
Aty = > A= > Y R, (1.15)
i=1 neNg =0
where
R? = 5Asn,i Sn,i Sn,i + (5A5n,i sn,i sn,i, (1.16)
1 22 »°3 1 293 194
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1.2. PROOF OF THE MAIN THEOREM

and

n € Ny, iG{O,l,...,Q”—l}, S?’Zé[to“‘

and where R} = 0 for all sufficiently large n.
The next two lemmas correspond to the estimates [L€20, (2.50) and (2.51)] respectively.

Lemma 1.2.2. Under the setting of Theorem 1.1.1, let

to—S

0<s<ty<t1 < - <ty 1 <ty <T, tyn—1:< i

Then,

N
HE[AtoﬂfN - Z Atiflytz‘

i=1

FollLmey Spy Talto — 8|7 |tn — to]

Proof. In view of the decomposition (1.15), the triangle inequality gives

N 2n—1
HE[AtoﬂfN - ZAtiflyti Fsl @) < Z Z HE[R?“FS]HL"L(P)'
=1 TLENO =0

By (1.7) and (1.16),

B[R | Fllmpy < 2T1(to — 5) (27" |ty — to)™ = 20127 [to — 7|t — to] ™.
Therefore, recalling 5, > 1 from (1.9), the claim follows. O
Lemma 1.2.3. Under the setting of Theorem 1.1.1, let

0<tg<ti < ---<ty_1 <ty <T.

Then,

N

HAtoﬂfN - Z Atiﬂ,tz‘

i=1

Ln(P) Sabr,ge,M Fmal 1|ty — to|517°‘ + Kmal'2|tn — to|52-

Under (1.12), we can replace k,, 41'1 by I'y.
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CHAPTER 1. SHIFTED STOCHASTIC SEWING LEMMA

Proof under (1.12). This lemma is the most important technical ingredient for the proof
of Theorem 1.1.1. To simplify the proof, here we assume (1.12), i.e. that the additional
technical condition 1 + o — 31 < 282 — v holds. The proof in the general setting will be
given in Appendix 1.4.

We again use the representation (1.15). We fixalargen € Nand set f! := F,

Fix an integer L = L,, € [M + 1,2"|, which will be chosen later. We have

0+ 2% (tn—to)”

2" —1 L—1
D RI=) Z ( T~ E[ Zj+l|f3(j_1)+l+1]1{j21}>
=0 =0

L]+l<2”

+Z Z E| j"'l’]-—g(j—l)—i-l-l-l]' (1.17)

=0 ;>0
Lj+l<2m

We estimate the first term of (1.17). By the BDG inequality together with Minkowski’s
inequality (see (1.14)), we have

I Z <R2j+l - E[szﬂ’}-E(jfl)JrHl]l{jzl}) 12 (p)

§>0:
Lj+l<2"

< ’fib,d Z ||R2j+l - E[ 2j+l|-7:g(j—1)+l+1]1{j21}H%m(P)
ij+2l0<:2n
< 4“7271,(1 Z ||sz+l||%m(m>)
Jj=0:
Lj+i<2m
Using (1.8) and (1.16) and noting that we include more terms in the sum by requiring
j <2"/L only instead of Lj + [ < 2™ — 1, we get

Z | R} ]HHLm < 4r2e- (2*8271)L*1|tN—t0\252.
Jj=>0:
Lj+i<2n

Therefore,

HZ Z ( Lij+l — [Rzﬁrl‘«7:2(]'—1)+l+1]1{j21}>HL’"(IP’)

L]+l<2"
< hmal2 L2272 3) |1y — to| P2,
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1.2. PROOF OF THE MAIN THEOREM

We next estimate the second term of (1.17). The triangle inequality yields

L—
HZ Z ]+l’Fn] D+i+1 HLm Z Z [E[ ]+l|f2(j71)+l+l]HLm(P)

=0 j>0: =0 7>0:

Lj+l<2m Lj+l<2™
By (1.7),
HE[ ]+l‘f£(j 1 +l+1” L™ (P) < FI(L 1)—(127(61704)71“]\7 - tO‘Blia-
Therefore,
HZ Z j+l|~7:£(j—1)+l+1wLm(lP’) Sa 1—‘1L_OCQ_(’BI_OC_D”|75N - to‘ﬁl_a-
N L]j—i->lo<2”

In conclusion,
2n 1
1 1
||Z R mpy S TiL727 om0 4k, qTo L2272 72 [ — |72

(1.18)
We wish to choose L. = L,, so that (1.18) is summable with respect to n. We therefore set
L, := [2°"], where

ad+ P —a—-1>0, 0<d<min{28, —1,1}. (1.19)
Such a  exists exactly under the additional technical assumption (1.12), namely if 1 + o —
B1 < 2afs — . Then, (1.18) yields

2" —1

| Z Z R 2@y Saprse Liltn — o] ™ + kmalaltn — to]™.
n:2n8> M 42 i=0

To estimate the contribution coming from the small n with 2™ < M + 2, we apply (1.8)
which yields

2" —1 2"—1

1D Ry < 22 ) 272 |ty — to|® = T2 5|ty — )2,
=0 =0

Thus, we conclude

2m—1

| Z Z RMzm@y Saprpass Diltn — to ™ + kmalalty — to]™,

n€eNg =0

where the fact x,,, 4 > 1 is used. O
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Lemma 1.2.4. Under the setting of Theorem 1.1.1, let , 7" be partitions of |0, T'] such that
7 refines 7'. Suppose that we have

i)

(1.20)

min (s —t| >
[st]€7r| | 3

Then, there exists € € (0,1) such that

|AT — A%\ ) Saprpotmar (D1 + To)||f.

Sketch of the proof. Here we give a sketch of the proof under (1.12). The complete proof
is given in Appendix 1.4. The argument is similar to Lemma 1.2.3.
Write
= {O:t0<t1 < s < tnoy <tN:T}

and
{[stlem:t;<s<t<tp}={t; =t <t <--- <t _, <th, =t;}
We set L := | |7'| =% |, where § satisfies (1.19). We set

jL+l

l.__ E
Zj = A ]L+l th+l+1 A ]L+l7 ].L-H

As in Lemma 1.2.3, we consider the decomposition A%. — A% = A 4 B, where

A= Z Z { ZZ|E(J 1)L+1+1 } B = Z Z Zl|]:tg 1)L+l+1]

I<L j:Lj<N-I I<L j:Lj<N-I

Then, we estimate A by using the BDG inequality and Lemma 1.2.3, and B by using the
triangle inequality and Lemma 1.2.2. L

Remark 1.2.5. In the setting of Lemma 1.2.4, assume that the adapted process (A;)¢cjo,r]
satisfies (1.10) and (1.11). Then we obtain for some £ > 0:

/|€

|AT — Azl Lme) Sasysemmar (C1+ Do)|m

Indeed, it suffices to replace A, by Ay, 1,t;140., 10 the previous proof.

GLAU G L4I+1

Lemma 1.2.6. Let 7 be a partition of [0, T]. Then, there exists a partition 7' of [0, T'] such
that 7 refines 7', |'| < 3|m| and

min [t — s| > 37|7|.
[s,tlen’
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1.2. PROOF OF THE MAIN THEOREM

Proof. Wewrite m = {0 =ty <t < --- <ty_1 <ty =T}. Wesetky:= —1 and for
[ € N we inductively set

ky:=1inf{j > ki_y : tj41 — tg,_,+1 > |w| }, where inf@ := N.
Set L :=sup{!: k; < N }. Then, we define
thje1 17 <L,
Sj = L
tN lfj = L.

By construction, 7’ = {s;}/_, satisfies the claimed properties: s;,1—s; < 2|n|if j < L—2,
and s, — sp—1 < 3|, so 7’| < 3|x|; moreover, ming, gen |t — s| > |7| > 37| O

Proof of Theorem 1.1.1. We will not write down dependence on «, 31, B2, M, m,d, T. We
first prove the convergence of (A7),. Without loss of generality, we assume 7 = 7. Let
m1, T2 be partitions of [0, 7]. By Lemma 1.2.6, there exist partitions 7}, 75 such that for
j € {1, 2} the partition 7; refines 77, || < 3|r;| and

min [t — s| > 37"|x}].
[S,t]Eﬂ';-

Lemma 1.2.4 shows that for some ¢ > 0 we have
|AY — Af||Lm@) S (T1 4 Do) w7
Therefore, by the triangle inequality,
AT — AR |lmey S AT — AP lm@) + (T1 + Do) (|m | + [ma°). (1.21)

Let 7 refine both 7} and 7}. Lemma 1.2.4 implies that

A7 —AZ om@) < AT — ATl Lm@y+HI AR — ATl Lm@) S (C1+T2)|m | +|ml®. (1.22)
The estimates (1.21) and (1.22) show

AT — AP |Lm@) S (T1 4+ To)(Im|* + [m2[7).

Thus, { A7}, forms a Cauchy net in L™ (P). We denote the limit by .<77.

We next prove that (.27 );c[o,) satisfies (1.10) and (1.11). Let ¢, < ¢; < 5 be such that
M(tg — t1> S tl — to. Let Th = {tl + k2_n<t2 — tl) k= 0, ey 2n} be the nth dyadlc
partition of [t1, ], and we write

A=Y A

[s,tlemn
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We have
Elt, 1, — Aty 1, Fto] = hm IE[At1 1o — At s Fro)  in L™(P). (1.23)
By Lemma 1.2.2,
IE[Ar e — AL o1 Fro) lomeey Spu Talts — ol [ta — ™.

In this estimate, we can replace A} , by &, 4, in view of (1.23). Similarly, by Lemma 1.2.3,
we obtain

H”Q%tl,tQ - At1,t2

L) Saprpast Kmalilts — t1|" ™ + K alalts — t1]72.

Under (1.12), we can replace ~,, 41"y by I'y.
Finally, let us prove the uniqueness of 4. Let (-At)te[o 1) be another adapted process

satisfying Ay = 0, (1.10) and (1.11). It suffices to show Ay = A;. Let 7, be the nth
dyadic partition of [0, T'|. By Remark 1.2.5 we have

A7 = Arl|zm@) < A7 = AT |[ime) + 14T — Azl mey S 27T

Since n € N is arbitrary we must have A; = Ar. O

1.3 Integration along fractional Brownian motions

The goal of this section is to prove the convergence of Itd and Stratonovich approximations

of
/f(BS)dBS and /f(BS)odB5
0 0

along a multidimensional fractional Brownian motion B with Hurst parameter H, using
Theorem 1.1.1. For Itd’s case, we let H ¢ (%, 1) and for Stratonovich’s case, we let
He (6’ 2)

Let us recall the fractional Brownian motion.

Definition 1.3.1. Let H € (0, 1). The fractional Brownian motion with Hurst parameter
H is a centered Gaussian process BY = (B#%)4_| such that B{! = 0, the components
Bl BH2  BHd are independent and identically distributed, and

3/2— H

B[(BI — BIP) = eult — 57", oy =

B(2—2H, H+1/2)
with ‘B being the usual Beta function.
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1.3. INTEGRATION ALONG FRACTIONAL BROWNIAN MOTIONS

In particular, we have
ipil _ CH /20 2H 2H
E[B.B;] = > (%7 + s°7 — |t — s|*7). (1.24)

We will use the Mandelbrot—van Ness representation ((MV68])

B, = / Kyt s)dW,, (1.25)
R

where ) )
H-1 H-}

K(t,s) =Ku(t,s)=(t—s)y >—(—s); 2,

and W = (W););er is a two-sided R%-valued Brownian motion. Regarding the expression of
the constant ¢y, see [Picl1, Appendix B].

We denote by (F;);er the filtration generated by . An advantage of the representation
(1.25) is that given v < s, we have the decomposition

Bs:/ IC(s,r)dWr+/ K(s,r)dW,,

—0o0

where the second term fvs KC(s, r)dW, is independent of F,,. Later we will need to estimate
the correlation of

/IC(s,r)dWT, 5> w.

‘We note that for s < ¢

E[/:K(s,r)dwg /vth(t,r)dWﬂ] s, /vsn(s,r)/c(t,mdr.

Lemma 1.3.2. Let H # % Let 0 < v < s<tbesuchthatt —s < s —v. Then,

/v T K(s, K r)dr

1 1 c
= 55— 0 5 =0t = 8) = (= ) + g (v.s,1)

where we have
lgm (v, 5,)] Su (s —v)*"2(t - s)?

uniformly over such v, s, t.

Proof. See Appendix 1.4. ]
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CHAPTER 1. SHIFTED STOCHASTIC SEWING LEMMA

We apply Theorem 1.1.1 to construct a stochastic integral

/T f(Bs)dBs, H € (1/2,1)

as the limit of Riemann type approximations. An advantage of the stochastic sewing lemma
is that we do not need any regularity of f. We denote by L>(R? R?) the space of bounded
measurable maps from R¢ to R?. We write

d
poyi= Y aty, w= (), y= ()L
=1

for the inner product of R,

Proposition 1.3.3. Let H € (1/2,1) and f € L>°(R%,R?). Then, for any T € [0,T] and
m € [2,00), the sequence

Z f(Bs) - (B — Bg), where w is a partition of |0, 7],

[s,tlem

converges in L™ (P) for every m < oo as || — 0. Furthermore, if we denote the limit by
Js f(B,)dB, and if we write

/Stf(Br)dBT = /Otf(Br)dBr — /Osf(Br)dBr,

then for every 0 < s <t < T,

| / (8,45,

Remark 1.3.4. We can replace f(B;) by f(B,) for any u € [s,t]. It is well known that
the sums converge to the Young integral if f € C7(R) with v > H~!(1 — H). Yaskov
[Yas18, Theorem 3.7] proves that the sums converge in some L?(IP)-space if f is of bounded
variation.

Satm | fllpeemalt — 57 (1.26)

Lm(P)

Remark 1.3.5. We can actually improve the estimate (1.26). In fact, we can replace the
norm || f| zeo (ray by Hchﬁst(Rd) for any positive ¢, see Theorem 3.3.2.

Proof. We will not write down dependence on d, [/ and m. We will apply Theorem 1.1.1
with Ay, := f(B;s) - (B: — Bs). Let m > 2. We have

1Asellmeey S I fllpelt — s|™.
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1.3. INTEGRATION ALONG FRACTIONAL BROWNIAN MOTIONS

To estimate conditional expectations, let 0 < v < s < t be such that t — s < s — v and set

YS::/ K(s,r)dW,, B, ::/ K(s,r)dW,

We write y; := Y, if conditioned under F,,. Namely, we write for instance

Elg(ys, By)] := Elg(Ys, B)|F] = Elg(y, By)]ly=v..-

For k € N¢, we denote by X% =: X ... X% . the kth Wick power of X = (X1,..., X).
We are going to compute E[A;,|F,]. Conditionally on F,, we have the Wiener chaos
expansion

F(Bs) = flys+ Bs) = Y ax(s) B

keNg
Although it is abuse of notation, for i € {1,...,d} we write a;(s) := ae,, Wwhere e; is ith
unit vector in R, Note that
ao(S) = E[f( s+ Bs)]a

Lem. 1.3.2

ai(s) = E[(B;)*)'E[f(ys + B;) 5] 2H (s —v)*"E[f (y, + B,)By).

Then, by the orthogonality of the Wiener chaos decomposition,

[ st|F]—a0 : st+zaz s s,]'

Hence, for u € (s,1),
]E[(SASMJ"F sut +ZAsut7
where

Asut i=ao(s) - Y. st ao(s) - You— ao(u) Y = (ao(s) — ao(u)) Yt

AL s =ai(s) - E[BByy] — ails) - E[B.By] — ai(u) - E[B,Bu]
=lai(s) - &]E[B.B.,] — [ai(s) - e]E[B.B, ] — [ai(u) - e|E[B, B, ).

We first estimate A°

o.u¢» for which we begin with estimating ag(s) — ao(u). We set

F(m,o) :=E[f(m+0cX)], meR% oec(0,00),
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CHAPTER 1. SHIFTED STOCHASTIC SEWING LEMMA

where X has the standard normal distribution in R?. Note that

(s —v)")

N

aog(s) = F(Ys, (2H)™

and similarly for ag(u). we have

1 a2
OmiF(m, o) = W /d x'e” 207 f(x + m)dz,
—d ok
aO—F(m,O') = W f(m—}—x)e_%dx
1

e
e J ot + DS

Therefore,
|00 F (m, 0)| + |0, F (m, )| S || fll oo gaye -
This yields
|a0(5) - ao(u)|
<|F(Y,, (2H) 3 (s — v)T) — F(Y,, (2H) "2 (s — v)7)|
+|F(Ya, (2H) 2 (s —0)T) — F(Y,, (2H) 72 (u — v)™))|
Sl zoo ey (s — o) Yol 4+ 1| fll oo ey (s — 0) " (Ju — 0] = |s — v|)
S llseqray(s — ) Yol + 1 f ] oo ray (s — 0) 71 (E = s).
Therefore,

[ AQ il S oy (5 = )™ Vsl Vel + [f oo ey (s — 0) 7t = 8)[¥ael. - (1.27)

The random variable Y ,, is Gaussian and

E[|Y, 2] =d / (K(s,7) — K(u, 7)) 2dr = d/oo((u I

—0o0 —v

<(u—s)? /00 r?=3dr < (s —0)* 72 (u — 5)* (1.28)

~Y
—v

We have a similar estimate for Y,, ;. Therefore,
IAS , llzm@y S I fllpseay(s =) 72t —5)* ift —s <v—s.
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1.3. INTEGRATION ALONG FRACTIONAL BROWNIAN MOTIONS

Now we move to estimate A7, ,.

By Lemma 1.3.2, we have

B;B;t /ICST trdr—/ler s,r)d

= 5(s =)t = 5) + O((t = 5)*).

Therefore, if we write al(s) := a;(s) - e;,

ALy = 5 lals) s — 0" — ai(u) (u — 0] (¢ )
+O((Jai(s)| + lab(u) DIt — 5.
If we set

Gi(m, o) = o 'E[f{(m+0X)X"], mecR oc(0,00),
then ai(s) = G;(Y, (2H) 2 (s — v)¥) and similarly for a’ (). Since

_ly=m|?

Gilm,0) = (2m) 20~ | Fy)y' = mi)e 5 dy,

we have ,
(27?)%028ij¢(771, o)= [ fim+oz)[-5;+ a:ixj]e_%d:p
R4
(27)2020,Gi(m,0) = [ fi(m + ox)a'[—(d +2) + 2”7 da.
Rd
Therefore,
|Gi(m, 0)] S HfHLOO(]Rd)Uila
0mGi(m, )| S || flle@ao ™ 10:Gi(m, o) S || £l Lo @ayo™
and thus 4
|a;()] S I1f ] poeqaey (s —v) 7,
jai(s) — ai(u)] S| fll oo @a (s — 0) 2 (|Yul + (u = 0)" = (s —0)")
Sl pogay (s = 0) 2 ([Yaul + (s — 0) 7 Hu = 5)).
This yields

|AL il S llpoeray [(5 = 0) M (E = 8) |yl + (s = 0)T2(t — 5)°
+ (s =)t = s)* + (s —v) " (t — 5)*7]
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and
IAS il m ey S 1F oo ey [(5 = 0) 772 = )% 4 (s — v) 7 (t — )]
Sl peoqay(s —v)~ 7 (8 — 5)*H (1.29)
ift—s<s—w.
Therefore, by (1.27) and (1.29),
VB[ Ayt Flllm ey S I e (5 — v) 7 (¢ — 52
if t —s < s —v. Hence, (A,,) satisfies the assumption of Theorem 1.1.1 with

a=H, Bi=2H PB=H M=1. 0

Next, we consider the case H € (%, %) The following result reproduces [Noul2,

Theorem 3.5], with a more elementary proof and with improvement of the regularity of f.
More precisely, the cited result requires f € C° while here f € C7 with v > ﬁ —1is
sufficient and thus in particular f € C? works for all H € (%, 1). We denote by C7(R?, R?)

62
the space of ~-Hélder maps from R? to R?, with the norm
|f(z) — f(y)]
Iler 5= 1l + sup LE =L@
aty T =Y

if v € (0,1) and
d
e = N fllioe ey + D _lIOuf lons
i=1

ity e (1,2).

Proposition 1.3.6. Ler H € (3,3),7 > 55 — land f € CT(RY,RY). If H < L and d > 1,
assume furthermore that

ofl =0;f, Vi,je{l,...,d}. (1.30)
Then, for every m € [2,00) and T € [0, T), the family of Stratonovich approximations

> 1B

[s,it]lem

st, Where T is a partition of [0, 7],

converges in L™ (IP) as |x| — 0. Moreover, if we denote the limit by [ f(B,) o dB, and if
we write

/:f(BT) odB, = /Otf(Br)odBT _/Osf(Br)och
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1.3. INTEGRATION ALONG FRACTIONAL BROWNIAN MOTIONS

then for every 0 < s <t < T we have

I/ f(B)oan, - I BB

t — s|OFDH

Sy [1flles]

2 Lm(P)

Proof. We will not write down dependence on d, H, m and . We can assume
We will apply Theorem 1.1.1 with
As,t = (f(Bs) + f(Bt)) : Bs,t

We first claim

16 Aguillmeey S || fllon|t — s|OTHE. (1.31)

Observe
5As,u,t = f(B)u,t : Bs,u + f(B)u,s : Bu,t~

IftH > %, the claim (1.31) follows from the estimates

[f(B)utl < I fllcr|Bual”s  1f(B)usl < [[flle|Bus|™-
It H<; 1 then v > 1 and we have

d d

OAsue = (FBluy = 301 f(BBL) - Bust (Bl — D 0,/ (B)BL.) - Bus

j:l j:l

where (1.30) is used. Then, the claim (1.31) follows again from the Holder estimate of f.
Note that the condition v > ﬁ — lisequivalentto (y+ 1)H > %

The rest of the proof consists of estimating the conditional expectation E[0 A , ;| F].
Lett — s < s —v. We will use the same notation as in the proof of Proposition 1.3.3. We
have

[6ASUt|‘F sut+ZDsut’

DY, =(ao(s) + ao(t)) - Yoy — (ao(s) + ao(u)) - You — (ao(u) + ao(t)) - Y
=(ap(t) —ap(u)) - Ysu + (ao(s) — ap(u)) - Yat (1.32)
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and

%
Ds,u,t

= E|(aj(s)B: + ai(t) B}) B, ,| F.]
— E[(a}(s)B: + aj(u) B,) B, | F.] — El(ai(w) By, + aj(t) B) B, | F.]

We first estimate D? ,. Suppose that H > %. Recall

s,u,t*
1 i _ﬁ
O F'(m, o) = m/ﬂwx e 27 [f(z +m) — f(m)]dz,
—d _l=2
Oy F(m, o) = W/Rd[f(mJﬂﬂ) — f(m)]e” 27 dx
1 ) e
S x m+x) — f(m)le 2-2dx.
Gt )~ g
Therefore,
|0 F(m, 0)| + 0, F(m, o) S || fllevo™ ™
This yields

D%l S Il [(s = 0) O DY ullYial + (s = 0) 74t — ) (| Yol + [Yiul)]. (1.33)
Therefore, by (1.28),
1D illimey S I fllom(s — )TVt — s)2. (1.34)

Now suppose that / < 1. To simplify notation, we write I(m, o) := F(m, (2H) 20).
Since (1.30) gives 0,,: 17 = 0,,,I" for every 1, j, we have

Dg e = (Vs (w = 0)) = I(Yy, (u —0)") — Z Oi [ (Yo, (w = 0) )Y, ] Yoy
Y (= 0)") = 1Y (1= 0)") = 37 0l (Vs (a = )Y ] Yo
(Y (s = 0)) = I(Ys, (u = 0)")] - Y
(Y (= 0)") = I(Yi, (u = 0)")] - Y,
Since

1

8mi8ij(m,a) =
(27T)§0'd+2

[ ate 50+ m) - 0yl
Rd
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we have
d
1Yy, (u—0)") = I(Ye, (u = 0)) = 0 d (Yo, (u— 0)™")Y], |
i=1
S Ifller (s =) 02y, )2
Notice
—d d o Ll
0, F(m,0) = W/Rd[f(erx) — f(m) — ;@f(m)f Je 27 dx
1 d |2
_— z2[f(m+z) — f(m) — 0; m)azle 22 d.
(2 Eiss Rd\ “[f( ) — f(m) Z; f(m)a']
Therefore,
|0, F (m,0)| S | flleva™™
This yields

1Yz, (s = 0)") = I(Ys, (w = 0)")] S [ fllen (s = v)™7H(E = s).

Hence, we obtain the estimate (1.34) when H < i.
We move to estimate D By using the identity,

s,u,t*

E[(B, + B})B,,] = E[(5;)*] - E[(5,)?],

a

we obtain
D.,,, = (ai(t) — aj(u)E[B{B ] + (ai(s) — a{(u) E[B{B! ]
— (ai(s) — ai(w)E[BLBL ] — (aj(t) — aj(u))E[B{B, . (1.35)

Since the other terms can be estimated similarly, we only estimate (ai(t) — aﬁ(u))E[BﬁB@t]
By Lemma 1.3.2, o
[E[BBy]| < |t — s*.

Now we estimate |ai(t) — ai(u)|. Recall a’(s) = G;(Y,, (2H) "2 (s — v)H),

2
||

(2m) 00, Gim, ) = b [ [f'm +0w) — Fim)le”F da
R

_ =2

+ [ [+ oa) = Fomlese ¥ e
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(27)40%0,G(m, o) = —(d +2) /R [Fm et ow) = fimateF da

||

+ Ad[fi(m +ox) — fi(m)]a'|z|*e” = da.

If H < %, we can replace f(m + ox) — fi(m) by

fim+ox) = f'(m) = > Opf (m)ox”.

Therefore,
|0 Gi(m, )| + 0,Gi(m, 0)| S | fllevo™™2.
This yields
jai(t) — ai(u)] S 1 fller (s — 0) T2 (Yl + (s — o)t = 5))
and hence

lai(t) — ai()llzm@) S [1fllo (s — v) 07 DE(E —5).

Therefore, we obtain
1D5 willim@e) S I fllew (s —0) 07 DEL(E — 5)1+2H, (1.36)
By (1.34) and (1.36), we conclude

IEBAsuel Folllmey S Ifllenlls = 0) P72 — 5)% + (s — 0)07DHI7H(E = 5)142H]

S fllen (s = 0) 07 DE(E — 5) 120
if t — s < s — v. Therefore, we can apply Theorem 1.1.1 with

1.4 Proofs of technical results

Proofs of Lemma 1.2.3 and Lemma 1.2.4

Proof of Lemma 1.2.3 without (1.12). Let us first recall our previous strategy under (1.12).
We used Lemma 1.2.1 to write

N 2" —1
Ato,tN - ZAtiflyti = Z Z R;L (137)
i=1 neNy =0
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Then, we decomposed

on—1 L—12"/L
Z Ry = Z Z ( Li+t — Lj+l‘f2<j—1)+z+1]1{j21}>
1=0 =0 j=0
L—12"/L
T Z Z E[R7 ;| FL—1)i41)s (1.38)
=0 j=1

where F! = F,
and (1.8):

ot (tx—to)" We estimated the first term of (1.38) by the BDG inequality

L— 127L/L

HZ Z <RLJ+I szH’fg(jfl)JrHl]l{jZl}) [Lmee)

=0 35=0
< himala L2272 3) |ty — 1|2 (1.39)

In the proof under (1.12), we estimated the second term of (1.38) by the triangle inequality
and (1.7):

L-12"/L

D0 BRI oy lome) Sa ThL™27 ey —go| e (1.40)

=0 j=1

Then, we chose L so that both (1.39) and (1.40) are summable with respect to n, for which
to be possible, we had to assume (1.12).

In order to remove the assumption (1.12), let us think again why we did the decomposition
(1.38). This is because we do not want to apply the simplest estimate, namely the triangle
inequality, since the condition (1.7) implies that (Asyt)[&t]e7r are not so correlated. This
point of view teaches us that, to estimate

2" /L

~
—_

~

E[ zjﬂ‘fg(jfl)HJrl]a

l 1

Il
=)

J

we should not simply apply the triangle inequality. That is, we should again apply the
decomposition as in (1.38).
To carry out our new strategy, set

S( M= RL;H; g( ) JT" 1)+1+1> JEN.

J L(j—
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We use the convention E[X|g](.1)’l] = 0 for j < 0. Then,

L-12"/L L—1L~12n
n 1,0y ~(1),1
Z E RLJJrl’Fn] 1)+z+1] = E[S]( ) ’g]( ) ]
1=0 j=1 =0 j=1
L-1L-1L22"
- [JL+I2| L+lz] (L.41)
11=01s=0 j=0
By setting
2)l1d2 . (D)) 2)ll2 . (D))
Sj V= SjL+l12’ gj v= g(y ll)L—Hz
the quantity (1.41) equals to
L L L- 22n
211 )ilasl 2),11,l2 | ~(2),1,1
> G - B g)
l1 0l2 0 ] =0
L L2227

+ZZ Z 2 lllglg(Q)hlg]

11=012=0 j=0

The L™(P)-norm of the first term can be estimated by the BDG inequality: it is bounded by

201,02 ~(2),01,1 2
ona > (D IESPOPIGE ) (1.42)

lilo<L j<L—22n

-

By (1.7), we have
1L G ey < Ta(L27" [t = tol) ™ (27" |t = to])™
Therefore, the quantity (1.42) is bounded by
2y, al1 L' 02702 gy — |1,

As the reader may realize, we will repeat the same argument for

L L—22n

ZZ Z E5(2) i, l2|g] 111 l2]

11=012=0 j=1
and continue. To state more precisely, set inductively,

()1l . a(k=1)00,0lp 1 (k)11
S S gj

ol . —ken
; =Sy : Loje, LR NN

gL (j— 1 +lk ) (1 43)
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We claim that, if LF < 2", we have
2" —1

| Z R | ey < 2himal2L227 P D[ty — to|*

k—1
+ 26 drl( L%—U—l)a)L%Q—"(Bl—a—%)|tN —toh

=1
Z Z k:)ll, lk|g(k )l el iome)-

ll, W <L J<L— kon

.

The proof of the claim is based on induction. The case £ = 1 and £ = 2 is obtained.
Suppose that the claim is correct for k& > 2, and consider the case k£ 4+ 1. Again, decompose

Z Z S(k )i, ,lk|g Vliseenl ]

byl <L j<L—k2n

= Z Z (E[S§k+1),l1,...,lk|g§i—&l-1),l17,,_,lk7lk+1]

l17"'7lk7lk+l SL jSL_(k+1)2”

(k1)1 5l | A (R0l g
E[S; G ])
(k4+1),01,. 5 (E+1),01 el I gn
+ D > ElS 9 J-
Uyl g1 <L j<L—(k+1)9n

To prove the claim, it suffices to estimate the first sum in the right-hand side. By the BDG
inequality, its L™ (IP)-norm is bounded by

1/2
ma Do (DD RIStttz YT (1.44)

Iyl g 1L j<L—(k+1)9n

By (1.7),

HE[S(k—H l1,...,lk,lk+1| ]Tl_l) l1,...,lk,lk+1]||Lm(]P) S Fl(LkQ—n|tN . tOl)_a(Q_n|tN . t0|)61.
(1.45)
Therefore, the quantity (1.44) is bounded by

2ﬁm7dF1L%L(%—a)kQ—n(&—a—%) |ty — to‘(bﬁ—a)

and the claim follows.
Now let us estimate

1Y Y B[S (1.46)

I, g <L j<L—k2n
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by the triangle inequality:

k)1, k)10
Yoo YT g

I, <L j<L—k2n
k)1, k)1,
ST B[S g ) .

I1,0eey L. <L jSL_an
By (1.7) (or essentially the estimate (1.45)),
B[Stk Gt | oy < Ty (EF27" ity — to]) ™27 b — tol)™

and hence the quantity (1.46) is bounded by

FlL—akz—n(ﬁl—a—l) ’tN _ t0|,81—o4

In conclusion, we obtained for L* < 27,

on—1
H Z R?“L’”(]P’) S limdFQL%Q_"(ﬁ?_%)ﬁN _ t0|'82

=0

+ K Dy fi(L) 27O Dty — 10 4 Dy Lk 2 me |y — 070, (1.47)

where

(1.48)

Li—alk-17 if o < 1
fk(L) _ { 2 % {k>2}7 1I &« 29

(k—1)Lz, if a > %

We wish to choose L and k so that (1.47) is summable with respect to n.

e Assume a < % For fixed k& > 2, we choose L so that
L5—ok—Ng—n(fi—a—3) 4 | —akg—n(fi—a-1)

is minimized. Namely, we set L := 2% |. Then,

2" —1

HZR

1 : -1
Now we set k so that ¢ < min{2f; — 1, ﬁlT}

(@) Sa Kmd[22827" Dty — o] + Ty g2 "0,
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e Ifa>1 weset L =|2"], where
0<d< 2min{ﬁ2,ﬂ1 - Oél} —1.

Then, we choose k so that
akd+pr—a—1>0.

We also need to ensure k0 < 1, but this is possible since % < 1.

In any case, we note that (1.47) is summable with respect to n and

N
HAtoﬂfN - Z Atiflyti
=1

Proof of Lemma 1.2.4. The proof is similar to Lemma 1.2.3. Write

®) Sepr ot Fmal2lty — o] + malilty — to . O

W,:I{O:t0<t1<"'<tN_1<tN:T}
and
{[stlem:t;<s<t<tja}={t; =t <] <--- <th _, <th, =t;}

By (1.20), we have N < 3|x/|~'T. We fix a parameter L, which will be chosen later, and

set
]L+l

Z]('l)’l = A Z A HIH L H = ft(i*l)LHJrl'

gL+l7 JL+1+1 ¥l

Inductively, we set

(B)1seslie o o (k=1)01, k-1
Zj T ZjL+lk ’

’}_[(‘k)yllv"’lk . H(kil)le'“?lkfl

=D)L+

As in Lemma 1.2.3, for each £ € N, we consider the decomposition
AT —AZ=A+B

where

k
d1,0lp NATN) Ji,0lp Ji,0lp
A=Y e R A ]

p=111,...l,<L j<NL-P

k)11, B) 1yl
Bm T B

l1, g <L j<NL-k
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By the BDG inequality and the Cauchy-Schwarz inequality,

1

k

D 1,000 A1yl 2

[l S mma 3 LE( D0 D0 IEZP )
p=1

yedp<L j<NL-P
By Lemma 1.2.3,

’ﬁl*

1Z ey Saprnge Diltiories — tio® ™ + Kmaloltisin — tipul™.

For p > 2, by Lemma 1.2.2 and (1.20),

B[ZPH ) | oy gy DLL™ @0 |7 ||

Therefore, we obtain
1 1 1 1
Al Lm By Saprgomar L2 (Cr|a' |77 7 4+ To|a|%272) 4+ Ty fi(L) || 7272, (1.49)

where fi(L) is defined by (1.48).
We move to estimate 5. By Lemma 1.2.2 and (1.20),

B[ZH 0t g boti ) S g Ty L1,

Therefore,
1Bl m ey Spor TiL™ [ |7 (1.50)

Combining (1.49) and (1.50), we obtain

145 — AZ[| ey
Sasrpomar L7 (Ty|n|P17072 4 To|a|%273) 4Ty fio(L) | |P1=0~ 2 4 Ty L= |’ Prmet,

By choosing L and k as in the proof of Lemma 1.2.3 (replace 2" by |7’| ), we complete
the proof. L

Proof of Lemma 1.3.2

Letd = 1. For u > v, we set



1.4. PROOFS OF TECHNICAL RESULTS

so that B, — B(0) = BY" + B and B and B® are independent. Then, we have
E[B(Z)sz)] = / K(s,m)K(t,r)dr,

and by (1.24), we have
(24 2 |t ) = BB BY] + BB B,

and thus, we will estimate E[Bél)Bt(l)]. We have

E[BS)Bt(l)] _ / [(S + T)H—I/Q . 7“H—1/2} [(t + T)H—I/Q . T,H—l/?]dr
0

+ /v(s — ) HV2 (¢ — ) HEY2q (1.51)
0

By [Picl1, Theorem 33], the first term of (1.51) equals to

o)

(cH—(QH)_1)32H+/O [(s+r) A2 —p B2 (44 ) 712 — (s 40) 2] dr. (1.52)

Since
(t4+r) A2 (s )2 = (H—=1/2)(s + )32t — 5) + O((s + )T 5/2(t — 5)?),
the second term of (1.52) equals to
S2H_1(t . S)(H _ 1/2) / [(1 —I—?")H_l/2 o TH—l/Z] (1 +T)H_3/2d’l"—|— O(S2H_2(t _ 8)2).
0
By [Picl1, Theorem 33],
o 1
(H — 1/2)/ (14 )72 — pHEL2Y (1 4 ) H 32 = —5 + He.
0
Similarly, the second term of (1.51) equals to

L om 2H t—5, og1 2H—1 2H—2 2
ﬁ(s — (s —v)") + —(s —(s—w) )+ O((s —v) (t—s)%).

2
Therefore, E[B{" B™] equals to

cgs*® +Hegs® 7t —s) L (v—s5)*H — %(s—v)QH_l(t—s)+O((s—v)2H_2(t—s)2).

C2H
Since
1
%{(32[{ + 27—t — s|*) — cys* + Heys®™ 71t — s) — ﬁ(v —5)2H
=~ = sP"H O((s = 02t = 5)?),
the proof is complete. []
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Chapter 2

Level crossings of fractional Brownian
motions

We prove that the number of level crossings of the fractional Brownian motion, after
normalization, converges to its local time. This resolves a conjecture posed in [CP19],
and our result can be viewed as an extension of [Lem8&83] for the fractional Brownian
motion. We also prove the convergence of the (1/H )-variation, where H is the Hurst
parameter, along random partitions defined by level crossings. This result raises an
interesting conjecture, which seems to capture non-Markovianity of the fractional
Brownian motion.

This chapter is based on joint work with Purba Das, Rafat L.ochowski and Nicolas
Perkowski.

Keywords and phrases. fractional Brownian motion, level crossings, local time,

excursions, stochastic sewing lemma.
MSC 2020. 60G22, 60J55
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2.1 Introduction

Level crossings of stochastic processes have been studied since the classical works of Kac
[Kac43] and Rice [Ric45]. Depending on whether the process is smooth or rough, the study
of its level crossings rely on different methods. As for the smooth case, which is not the
scope of this chapter, the reader can refer to the survey article [Kra06] and the textbook
[AW09].

By far the most prominent example of rough stochastic processes is the Brownian
motion. The first work on level crossings of the Brownian motion is attributed to Lévy
[Lév48] , who characterized its local time as a limit of the counting of level crossings. More
precisely, for a given process w, setting

Uos(e,w) :=#{(u,v) : 0 <u<v<t, w, =0,w, =¢,Vr € (u,v) w, € (0,¢)},
we have for the Brownian motion W and a € R,

limeUp, (e, W — a) = Li(a)
e—0

almost surely, where L (a) is the local time at time ¢ at the level a. This result can now be
found in standard textbooks such as [IM74], [RY99] and [MP10], and it can be generalized
for semimartingales [El 78] and for Markov processes [FT83].
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There are many rough stochastic processes that are neither semimartingale nor Markovian.
Among them is the fractional Brownian motion B, a Gaussian process parametrized by
H € (0,1). (Precisely, B is neither semimartingale nor Markovian for H # % and for
H = % it is the Brownian motion.) The process B! is known to have the local time. In view
of Lévy’s result on the Brownian local time, it is very natural to ask if an analogous result
holds for the fractional Brownian local time. So far, no complete answer is obtained. This is
surprising, considering the age of Lévy’s result and that of the fractional Brownian motion.

There are some works related to the question on the level crossing characterization of
the fractional Brownian local time. For instance, [Aza90; AW96] show that the number
of zeroes for some smoothed fractional Brownian motion converges in suitable sense to
the local time. We note that this question gets attention in the pathwise stochastic calculus
[DOS18; CP19; Loc+21; Kim22; ACX20] as well as in some applied literatures [FHW94;
Kru98].

Constructing the local time via level crossings is not only a natural problem, but also
it can lead to a significant implication on the path property of the process. This was first
observed by the brilliant thesis [Lem83] of Lemieux. Therein he proved the existence of a
measurable set 2y, such that P(W € Q) = 1 (recall that W' is Brownian motion) and for
every w € Qu,a € Rand ¢t > 0, the limit

lim eUp (e, w — a)
e—0

exists. Hence, the existence of the limit of the normalized level-crossing counting is a path
property. This result explains why such construction of the local time receives attention in
the pathwise stochastic calculus. It is worth noting that Lemieux proved the result for a
large class of semimartingales.

Lemieux’s result has a remarkable consequence on pathwise quadratic variation,
calculated as a limit of sum square increments where the increments are taken along
partitions of a fixed interval with vanishing mesh. The precise definition of the pathwise
quadratic variation is as follows: given a sequence 7r of partitions 7,, (n € N) with vanishing
mesh, the pathwise quadratic variation [w], of a process w is defined by

[W]x := lim Z lwy — w,|?
n—oo

[s,t]€mn

whenever the limit exists. In general, the pathwise quadratic variation (even when it exists)
may depend on the choice of a sequence of partitions [DOS18].

Hence, an obvious question is if, given a stochastic process X, there are any (big) class
P of partition sequences such that almost surely for any 7, 7w’ € P we have [ X |, = [X|..
The classical works [Lév40; Lév48] of Lévy show that for any refining partition sequence
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7 of [0, t] with vanishing mesh we have
P([Wl.=1t)=1. (2.1)

Dudley [Dud73] proved that if the sequence w = (m,,) satisfies |7,| = o(1/logn) then
(2.1) holds. He even showed the optimality of the decaying condition. Among the works on
the quadratic variation of the Brownian motion, most relevant to us is Lemieux’s result,
which proves that the Brownian motion has a measure zero set outside which any quadratic
variation of the Brownian motion along any uniform Lebesgue partition (defined at the
beginning of Section 2.1.1) of [0, ¢] with vanishing mesh is equal to . We remark that,
unlike Dudley’s result, there is no decaying condition on partition sequences in Lemieux’s
result.

In this chapter, we extend Levy’s construction of the local time and Lemieux’s result for
fractional Brownian motions.

2.1.1 Main results

We write B = B for a fractional Brownian motion (fBm) with B, = 0 and with Hurst
parameter H € (0, 1). Given a partition 7, we write

7| := max |t — s].
[s,t]em

To define the Lebesgue partition, let us introduce some definitions. Given a process w and
a positive constant ¢, we set 7j(e, w) := 0 and inductively

To(e,w) == inf{t > T,,_1(c,w) : wy € €Z\ {wr,_,(cw)}}- (2.2)

(If 7,1 = +o00, we set T,, := 4+00.) Note that we do not assume wy = 0. See Figure 2.1
for a graphics. We denote by K ;(¢, w) the number of e-level crossings in [s, t], that is!

Koi(e,w) :i=#{n e N\ {1} : T, (e, wey.) <t} + Lpw,cczy Lim (cwns)<t}- (2.3)

Remark 2.1.1. Our notation for the total number of c-level crossings is slightly different
from [Lem83]. K (e, w) in (2.3) represents K’(w,eZ) in Lemieux’s notation.

The partition

{[Th-1(e,w), Tp(e,w)] :n € N, T, (e, w) <t} (2.4)

10ur convention is N = {1,2,3,...}. In particular 0 ¢ N.
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4e
3e Iy
T T
2e
- //\
€
Ty Ts

0

Figure 2.1: Visualisation of 7}, (e, w).

is called a Lebesgue partition. We observe

1 1
Z ’an(e,w) - an,l(a,w)|H = 51/HKO,t(€7 w) + |wT1(a,w) - w0| 7,
n:Ty(ew)<t

Note that |wy, ¢,y — wo| < €. Therefore, the study of the 1/H-variation along a sequence
of Lebesgue partitions is equivalent to that of Ky +(c, w) as e | 0.

For p € R and a process w, the process w + p is defined by (w + p); := w; + p. Our first
main result is on the 1/ H-variation along Lebesgue partitions of the fractional Brownian
motion B5.

Theorem 2.1.2 (Convergence of the variation along Lebesgue partitions). For every
H € (0,1), there exists a positive constant ¢y with the following property. Let p € R,
T € (0,00) and (e,)52, be a sequence of positive numbers such that €, = O(n™") for
some 1 > 0. Then, we have

lim grll/HKQT(gn, BT + p) = cgT, almost surely. (2.5)

n—oo

Theorem 2.1.2 concerns level crossings at all levels. We can also consider level crossings
at a specific level. For s < t, weset A, := {(u,v) : s <u < v <t}. Foreache € (0,1)
and w € C([0,T]; R), we consider the number of upcrossings by setting

Usi(e,w) == #{(u,v) €Nyt wy, =0,w, =¢,Vr € (u,v) w, € (0,8)}. (2.6)
See Figure 2.2. In the case of the Brownian motion (H = %), it is well-known (e.g. [IM74,
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Wy

Figure 2.2: Visualisation of Uy ;(e, w). In the picture, Us (e, w) = 3.

Section 2.2], [RY99, Chapter VI], [MP10, Section 6]) that we have

1
lir% eUps(e, BY? —a) = iLi/Q(a) almost surely, (2.7)
e—

where L'/? is the local time of the Brownian motion B'/2. This representation of the local
time is extended for semimartingales by Karoui [El 78].
We recall that the notion of the local time exists for general H € (0, 1).

Definition 2.1.3. We denote by (L;(a))i>0 = (L (a)):>0 the local time of B at the level
a. Thatis, L is a unique random field satisfying the following occupation density formula:

/Otf(Br)dr = /Rf(a)l}t(a)da7 Yt > 0,Yf € C=(R).

As for the existence of L, see e.g. [GH80].
Our next main result is to prove analogue of (2.7) for H < %

Theorem 2.1.4 (Local time via level crossings). Let H < % a € R, T € (0,00). Then we
have

¢
lim 7', r(e, B —a) = ZLLE(a)  almost surely.
e—0,e>0 ’ 2

More strongly, we have the following result.

Theorem 2.1.5 (Lemieux type result). Let H < % Then, there exists a measurable set
Qy C C(]0,00); R) with the following property.
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e We have P(BY € Qp) = 1.
» Foreveryw € Qy, t € [0,00) and a € R, the limit

Li(a,w) := gi%ril>0€H Wo(e,w — a)

exists and finite. The limit (L,(a,w)).cr satisfies the occupation density formula

/fwrdwr /f )Ly(a, w)d

for everyt > 0 and continuous f. Furthermore,

li 7 K, B — t.
7 oo, B =) = cn

Proof. See Theorems 2.3.21 and 2.3.22. ]

Remark 2.1.6. As noted in Remark 1.1.3, there exists a ¢ € (0, 1) such that for every
m € (0, 00) we have
| > 1= BuF —E[BUH]| St e

Lm(P)
[u,v]en

for any deterministic partition 7 of [0, ¢t]. Therefore, by the Borel-Cantelli lemma, for any
sequence (7,,)°° ; of partitions with

m| = O0(n™%), &€ (0,00), (2.8)

we have lim,,_, Z fuplen |B, — Bu|% =E[|B]| %]t almost surely. Unlike Theorem 2.1.5,
we need the decaying condition (2.8). In view of [Dud73], the condition (2.8) is not optimal,;
finding the optimal condition seems open.

Conjecture

There is an interesting aspect on the constant ¢;. For the Brownian motion, the quadratic
variation along any deterministic partition almost surely matches with the quadratic variation
along any uniform Lebesgue type partitions. That is,

1 = E[(B%)?]. (2.9)

1
2
It is tempting to guess that such relation holds for H # % as well. Indeed, such conjecture
is stated in [CP19]. However, the identity (2.9) is due to Markovianity of the Brownian
motion. Therefore, for H # L, there is no reason to believe that ¢; and E[|B|#] are
equal. Motivated by the simulation shown in Figures 2.3 and 2.4, we propose the following
remarkable conjecture.

55



CHAPTER 2. LEVEL CROSSINGS OF FBM

Conjecture 2.1.7 (The constant cg). For the fractional Brownian motion with H # %,
we conjecture that the % variation of the fractional Brownian motion along deterministic
partitions differs from the % variation of the fractional Brownian motion along uniform
Lebesgue partitions. To be more precise, we conjecture

cp > E[|BI|VH] if H < 1,
cw < E[|BI|VH] if H > 1.

If this is indeed the case, the constant ¢y captures non-Markovianity of the fractional
Brownian motion.

Notation

Given a path f: [0,7] — RY, we write f,; := f; — f; and we denote by f the derivative
%. We write A < B if there exists a positive constant C', depending only on unimportant
parameters, such that A < C'B. If we want to emphasize the dependency on parameters
a, 3, ..., then we write A <, .. B. In this chapter we will not write down dependency
on f.

2.2 Variations along Lebesgue partitions

The goal of this section is to prove Theorem 2.1.2. We begin observing elementary results
on the counting K of level crossings, defined by (2.3).

2.2.1 Elementary results

Recall the definition of the fractional Brownian motion B from Definition 1.3.1 and the
Mandelbrot—van Ness representation (1.25), which will be used throughout the chapter.

Lemma 2.2.1 (scaling of K). For A € (0, 00), we have

d
(Ks4(e, B+ P))s<t,a>o,peR = (K)\l/Hs,)\l/Ht()‘€7 B+ )\P)>5<t,e>0,p€R‘

2We simulate the variation

Vi= > |By— BT

[u,v]en# v<t

up to time 7" with # € {deterministic, Lebesgue}. The fractional Brownian motion is discretized with step
size T'/n. We have gdeterministic. — fpT/pin_and ghebesee = (T} (e, B)},. For H = 0.4, it is simulated
with T = 0.1, n = 30000, ¢ = 0.015. For H = 0.6, it is simulated with 7" = 2, n = 30000, ¢ = 0.013.
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0141 — deterministic partition

Lebesgue partition
0.12 A

0.10 1

0.08 1

Variation
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0.00 1
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(aH =04

171 —— deterministic partition
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(b) H=10.6

Figure 2.3: Comparison between the variation along a deterministic uniform partition and
that along a Lebesgue partition. 2
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Figure 2.4: Plotting E[| B |'/H]/c;; for 0.4 < H < 0.6. The oscillation should be due to
simulation error. The graph is expected to be increasing, with E[|B;/*[?] /¢, o= 1.
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Proof. We set BYY := AB, 1/, Note that B® £ B and observe that

Koi(e, Bi+ p) = Koy(Ae, N(B + p)) = Ky (Mg, BY + Ap). O
Lemma 2.2.2 (superadditivity of K). Let r < s < t and w be a process. Then,
K, (g,w) + Ksi(e,w) < Ky i(e,w) < K, 5(e,w) + Kgi(e,w) + 1.
Proof. Recalling the definition of 7}, from (2.2), we set
N :=max{n € NU{0} : T,,(e,w,4.) < s}.
o fwry(ew,y) = W (e w,s.) then Koy (e,w) = K o(e,w) + K i(e,w).
o If Wiy (e ) 7 W (e, then Ky (e,w) = K (e, w) + Kyy(e,w) + 1. O
For our arguments, the following variants of K will appear.

Definition 2.2.3. We set

€/2
K (e,w) == gt / K, w+ p)dp, Jsi(e,w) :=sup K, (e, w+ p).
—€/2 pER

Note that we have the obvious inequality K ;(¢,w) < J, (g, w).
The advantage of K is that in addition to the superadditivity, it is stationary.

Lemma 2.2.4 (scaling, superadditivity and stationarity of K). Letr < s < t and let w be a
process.

(i) For A > 0, we have
(Ks,t(ga B))S<t,6>0 i (K)\l/Hs,)\l/Ht(/\ga B))s<t,s>0~

(ii) We have

K’r,s(ga U)) + Ks,t(57w> S Kr,t(gaw)~ S Kr,s(ga U)) + Ks,t<57w> + 1
(iii) We have K, (e, w) = Ko (g, wsy. — w,). In particular,

Koi(e,B) L Koy s(, B).
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Proof. The claim (a) follows from Lemma 2.2.1 and the claim (b) follows from Lemma
2.2.2. For the claim (c), we observe that for every p € R we have

Ks,t(gv U)) = Ks,t(ga w + P) = KO,t—s(€7 Ws+. + P)
In particular, we choose p := —ws. ]
Lemma 2.2.5. For every p,t.c € (0,00) we have E[Jy (e, B)P] < oc.

Proof. Fora € (0, H), we set

|Bs — BT|
Blca = sup —.
[Ble=go O§T<E)§t (s — 1)~
By the Kolmogorov continuity theorem, we have
E[[Blao.9] < oo (2.10)

We set .
6= [e75 (14 [Blewqou)®| -

Suppose that there exists n such that
ko <T,(e,B+p) <Tpy1(e,B+p) < (k+1)0 withT,1(c,B+p) <t.
Then,

€ = |Br,,1(.B+p) — Broe.B4p)| < [Bloa(omd®
< e[Bleaqoy(1 + [Blowqoa) " <&,

which is a contradiction. Thus, we must have

#{n: ko <T,(e,B+p) <(k+1)0} <1 foreachk

and
Joi(e, B) = Sulg Koi(e, B+ p) < ot = {8 a(l + [Blce(o,1) ){‘ (2.11)
pE
which is L?(IP)-integrable by (2.10). O
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2.2. VARIATIONS ALONG LEBESGUE PARTITIONS

In view of Lemma 2.2.4, the family (E[K (1, B)]);>o satisfies
E[Kos14(1, B)] = E[Ko(1, B)] + E[Ko(1, B)].

Therefore, we have

1. - 1=
Cg ‘= hm ;]E[Ko’t<1,B>] = Sup ;E[Ko,t(17B)]

The constant ¢ coincides with the one from Theorem 2.1.2. The following lemma shows
that the constant ¢ is non-trivial.

Lemma 2.2.6. We have ¢y € (0, 00).

Proof. To see ¢y > 0, we observe

Cy > E[Kg)l(l,B)] > P(Bl > 2) > 0.

To see ¢y < 0o, we note by Lemma 2.2.4 that (K st T+ 1), s < t is subadditive. Therefore,
cg < E[Ko1(1,B)] +1<E[Jy(1,B)] + 1,

which is finite by Lemma 2.2.5. []

Remark 2.2.7. By the subadditivity, we have

E[Ko(1,B)] _  _ E[RKou(1,B)]+1
t - t '

In particular,
E[K,
cH—¥ <t (2.12)
2.2.2 Convergence of the variations

The aim of this section is to prove Theorem 2.1.2. The following is the first observation.

Lemma 2.2.8. Let ( > landv < s <t. We setec := ("/’TS)H Then, if == is sufficiently
small, we have

_ _ t—s\1-H
B[R .ile, B)E) — ElRoc(L B)llle Sne () -

S —v
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Lemma 2.2.8 is an easy consequence of the following result.

Lemma 2.2.9 (asymptotic independence, [Pic08, Lemma A.1]). Let 0 < v < s < t. Let I
and G be respectively measurable with respect to

o(B,:r<wv) and o(By—By:s<s <t <t),

and suppose that F,G € LP(P) withp € (1,00). If (t — s)(s — v) ™! is sufficiently small,
then we have
t—s\1-H

— ) 1Flwe Gl

[E[FG] - EIFIEG]| S, (-

In particular,

~Pp

t—s\1-H
[E[F|F] = E[F]llr@) S (S — v) I1F|| Lo ). (2.13)

Proof of Lemma 2.2.8. By Lemma 2.2.4, the random variable K, (¢, B) is measurable
with respect to o (B, — By : s < r < t). The estimate (2.13) implies

_ _ t—s\1-H _
IEIR oe BIVF) ~ ElKuale, Bl S (5=)  I1Koele Bl

By the stationarity and the scaling (Lemma 2.2.4),
Ky, B) & Koc(1,B)
and the claim follows. U

We recall the Mandelbrot—van Ness representation (1.25). The next lemma is a
consequence of Girsanov’s theorem.

Lemma 2.2.10. Letv < s < t, e € (0,1), p,p' € [—¢/2,¢/2] and y : [v,t] — R be a
deterministic path. We set

BY = / (r—w)12aw,, v<r<t (2.14)

Setting
1

%(F(H +1/2)r(3/2 — H))Q’

ayg ‘=

we have the bound

IE[K(e, B +y + p)] — E[Ks (e, B +y + )]

< panlp—p/P(s—v)~2(t—v)2~2H
~ e

X E[K, (e, B' +y + p)2z|p — p|(s —v) 1t — )1,
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2.2. VARIATIONS ALONG LEBESGUE PARTITIONS

Proof. The proof is inspired by [PicO8, Theorem A.1]. Let § := p’ — p and

e (s—v) Hr—wv)d ifv<r<s,
) if s <r.

Note that the functions r B’ff +y.+p and r — E’}f + y, + h, + p are equal on the
interval [s, ¢]. Thus,

Ko(e,B° +y+p) = Ko(e, B +y+h+p).

We claim .
h, = / (r— u)H_l/ngu,

where for r > v,

I e !
I = TH + 12032 — H)3/2 - H)(s —v)

Indeed,
.. dg,
I
1 0

STy s ot S =) )

and
/ (r —w) =12 (u — )2 Hdy = / (r—v—u)d=V2% 21y
v 0
1
=(r— v)/ (1— u)H_l/Qul/Q_Hdu
0
=I'(H+1/2)I'(3/2 — H)(r —v).

Therefore,

/ ) dg, = 2 () — (r — $)1pony} = .

S —U

If we set .
F(w) = K, (5,/ (-— u)Hfl/zdwu +y+ ,0),

(2
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then K, (1, B’ +y + p') = F(W + g) and by Girasnov’s theorem (or the Cameron-Martin
theorem)

E[F(W + g)] = E[eﬁf grdW,— 4 [t \gr\'é’drF(W)].
Thus,
E[K, (e, B' +y+p)] = E[K,(e, B’ +y + p)]
- E[{efvtg’rdwr*% JolgrPPar _ 1}Ks,t(€, B +y+p)|.
By the Cauchy-Schwarz inequality, it is bounded by
t 1ot 211/2 . 1
e (T P

. t . . . . . t).
Since [ ¢.dW, is centered Gaussian with variance | |g,|*dr,

E [(eﬁf GrdWo—1 [£1g,[2dr _ 1)1

t-
= efv |gT|2dT — 1

t
< / g [*dr el lor e
v
S 62aH\p—p’|2(s—v)*2(t—v)2’2H’p . pl|2(8 _ U)_2(t o ’U)2_2H,
which completes the proof. L

Proof of Theorem 2.1.2. In view of the scaling, we may suppose that 7' = 1. The proof
takes advantage of Theorem 1.1.1, combined with lemmas prepared above.

Step 1, lower bound. Let ¢ > 1, and let 7. - be the partition of [0, 1] with identical
mesh size (5%. By the superadditivity (Lemma 2.2.2),

enKou(e,B+p) > Y WK (e,B+p)=¢" Y A,

[s,t]eme ¢ [s,t]eme ¢

where A}, = Ks,t((“Ts)H, B + p)(t — s). Furthermore, we set

A, = Ks,t((t . S)H, BY(t—s), A, =ElKy((LB)|t~s).

We see that A, := A}, — A3, satisfies the condition of Theorem 1.1.1. Indeed, by scaling
we have

1 Ks4(e, B+ p)ll ey + |1 Ksi(e, B+ p)|lre) Spe 'l
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and hence
[Asillr@) < I1A; o) + 143, @) Spe (E = 5).
Since
3 €/2
Koi(e,B+p) — Kyy(e,B) = ¢! {Ksi(e, B+ p) — Kou(e,p)}dp,
—e/2

by Lemma 2.2.10, we have

t—s
S—v

H
IE[AL, = A2\l Spe (=) (=),

By Lemma 2.2.8,

t—s\1-#H
IBLA2, — A2 F )l Soc (F—)  (t—s).

S —v

Therefore,

t— s )min{H,l—H}

IE[Aual Follove) o ( (t=s).

and we indeed see that (A, ;). satisfies the conditions of Theorem 1.1.1.
Consequently, we obtain

S —v

E[Ko(1, B)]

€%K0,1(€, B) > c

- Rs,(a

where

1Rz ¢l o) Spe €
for some § depending only on H. By the Borel-Cantelli lemma, if £,, = O(n~") for some
n > 0, then R,  — 0 a.s. This implies

1 E(Ko:(1,B
liminf el Ko1(en, B+ p) > w a.s.
n—oo
Since ( is arbitrary, the lower bound is obtained.
Step 2, upper bound. Since (K (e, B + p) + 1)s<, is subadditive, we obtain
E[Koc(1,B)] | 1

+ =+ R,
¢ ¢ ¢

and we similarly obtain the upper bound. [

€%Ko,1(5aB) <
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CHAPTER 2. LEVEL CROSSINGS OF FBM

2.3 Local time via Lebesgue partitions

In this section, we are interested in level crossings at a specific level. That is, we prove
Theorem 2.1.4, and as an application we prove Lemieux type result Theorem 2.1.5. A more
quantitative version of Theorem 2.1.4 is the following. Recall the definition of U, ;(e, w)
from (2.6), which counts the number of upcrossings from 0 to ¢ in the interval [s, t].

Theorem 2.3.1 (quantitative bound on U). Let H < 3, a € R and (£,);2, be a sequence
of positive numbers tending to 0. Then, if £, = O(n~") for some n > 0, we have

1
nh_}rgo el on,l(gn,BH —a) = %{L{I(a) a.s.

In fact, we have a quantitative bound

e B 0~ )] < L) + R

N =

foralle € (0,1) and ¢ € (1,00), where there exists a k > 0 such that for every p € (0, 00)
we have
IRecallr@) < Cpce”

with C, ¢ independent of a.

The proof of Theorem 2.3.1 is somewhat similar to that of Theorem 2.1.2. Indeed, it is
based on the super(sub)-additivity, Girsanov’s theorem and the shifted stochastic sewing.
However, a major difficulty here is that we cannot use any ergodic theorem. This leads
to more involved technical arguments. Instead of directly going to the proof, in the next
section we heuristically explain our strategy.

2.3.1 Heuristics

Herein we explain our heuristic strategy to prove Theorem 2.3.1. We set
Ay i=Usy((t —s)", B —a)(t —s)' 1.
In view of Theorem 1.1.1, our goal is to show

E[A,,|F,] ~ %E[Ls,t(a)m]. (2.15)

Indeed, once the estimate (2.15) is proven, the rest of the argument is similar to the proof of
Theorem 2.1.2.
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2.3. LOCAL TIME VIA LEBESGUE PARTITIONS

We thus explain heuristically how to prove (2.15). For simplicity, we set a = 0, and we
write € := (t — s)#. (Strictly speaking, we actually introduce another parameter ¢ going to
infinity and set € := (t’TS)H , but for simplicity here we set ( = 1.) Let us introduce another

parameter v € (v, s) (inmind t — s < s — u < u — v), and, recalling the Mandelbrot-van
Ness representation, for r € [s, t| we decompose

BT:/ /C(r,9>dwg+/ lC(r,G)dWe—l—/ K(r,0)dW,

—00

:Xr‘{‘}/;_'_Zr

In the interval [s, t| the smooth processes X and Y do not change much compared to Z.
Therefore, we can freeze time of X and Y (Lemma 2.3.8):

E[Us+(g, B)|F,] = E[Us (e, X5 + Ys + Z)| F].
But we see
E[Usi(e, Xs + Ys + 2)|Fo) = E[Us (e, 2+ Ys + Z)]|a=x.,

and the Gaussian change of variable to Y yields

zYs

EW@@x+K+Zﬂ:faﬁﬁqW%mﬂam+Z%

where oy is the variance of Y, (Lemma 2.3.10).
For U, +(e, Ys + Z) to be positive, Y; must be around 0. (In other words, if Y is far away
from 0, the process Z must move quite a lot, which is costly.) Therefore (Lemma 2.3.11),

zYs

E|e Ussle, Y+ 2)| # EU,(e. Vs + 2)]

~E [Us,t(g, Y + Z)} .

As v < u < s, we have oy = oy, 7, with oy, 7 the variance of Y + Z (Lemma 2.3.14).
In the end, we have (Lemma 2.3.7)

1( Xs )2

E[Us*t(g’ B)|‘Fv] ~E |:Us,t(17 Y + Z)] e 2\ov4z

We now observe (Lemma 2.3.17)

E[/:(SO(Br)dr).Fv} o /:]E[(SO(BS)VU]dr

1 . x2

S
270y

e ¥Viz(t —s).
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CHAPTER 2. LEVEL CROSSINGS OF FBM

It is not obvious, but in Lemma 2.3.16 we prove
c
V2royz(t — ) HE[Us (e, Y + Z)] = 7H

Now we see (2.15). With this heuristic argument in mind, we move to a rigorous proof in
the next section.

2.3.2 Convergence to the local time
Estimates on level crossings

The following process will appear in our argument.

Definition 2.3.2. We denote by B = BY the Riemann-Liouville process

t
Bt = / IC(t,T)dWT
0

In view of the Mandelbrot—van Ness representation (1.25), we have

0
Bt = / ’C(t, T)dWT + Bt.

—00
We begin with three elementary lemmas.

Lemma 2.3.3 (scaling of U). We have the following scaling property: for A > 0,

(Usi(e, B+ p))s<tes0,per - (Ui parmi(Ae, B4 Ap))sctes0,per-
A similar result holds with B replaced by B.
Proof. As in Lemma 2.2.1, it follows from the scaling property of B. U
Definition 2.3.4. We set
Usi(e,w) := Ugy(e,w) + Liw.c0.0)}-

Lemma 2.3.5 (sub/super-additivity of U). For s < u < t we have

Us,t(ga w) Z Us,u(ga w) + Uu,t(gy 'UJ), Us,t(€7 U)) S Us,u<57 w) + Uu,t<€7 U))
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2.3. LOCAL TIME VIA LEBESGUE PARTITIONS

t—s<K<Ks—ukKu—v

Figure 2.5: Parameters for Lemma 2.3.7

Proof. We have
Usi(e,w) = Us (e, w) + Uyi(e,w) + 1

if there exist a < u < b such that w, = 0,w, = ¢ and w, € (0,¢) for all r € (a,b), and
otherwise

Usi(e,w) = Us (e, w) + Uyy(e, w). O

Lemma 2.3.6. There exists a positive constant k = k(H ) such that for a € R, p € (0, 00),
s < tandp € (0,00) we have

|Us(p; B — CL)HLP(P) Stpp (t—5)".
A similar estimate holds with B replaced by B.

Proof. This follows from the obvious inequality Us ;(p, B—a) < J,.(p, B) and the estimate
Q2.11). 0

We introduce some notation which will be used throughout Section 2.3.2. Fix ¢ > 1. At
the very end, we let ( — oo. (The parameter ¢ corresponds to the parameter m in [Dur19,

Theorem 6.4.1].) We fix v < u < s < twitht — s < s —u < u — v and set ¢ := (“TS)H
as shown in Figure 2.5. We set

b

X, = / K(r,0)dWy —a, Y, := / K(r,0)dW,, Z, := / K(r,0)dW,
for r € [s,t]. Then
E[Usi(e, B —a)|Fy] = E[Uss(e, 2+ Y + Z)]|o=x-
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Finally, we write

o2 = E[Y? = %{(3 C )2 (s — u)?Y, (2.16)
03z =E[(Ys + Z,)?] = %(s — ), (2.17)

In the spirit of the shifted stochastic sewing (Theorem 1.1.1), we will estimate
E[Us(e, B —a)|F,).
The goal of this section is to prove the following estimate.

Lemma 2.3.7. Let H < § and p € (1 00). We furtherletv < s <tand( € [1,00), and

set € = (t_TS)H For k € ( 1), if =2 is sufficiently small, we have

E[Koc(1, B)] B)] ;<Xs>2<t—8

E|Us (e, B — a)|F, Y +Z
[ ,t( )’ ] 2\/%0'Y+Z

H
) R @19)

where

t—s ) (2—k)H(1—H)

t—g)7"H,
o (t—s)

| Rosillioe) Spcn (

The proof of Lemma 2.3.7 will be built on several technical lemmas. For the sake of the
next lemma, we recall the Riemann-Liouville operator (e.g. [Picl1])

I f(r) = L ) /T(r —0)*"'f(0)dd, fora > 0.

I«
If f is Lipschitz with f; = 0 and @ € (—1, 0], we set

1 " o

The family (/,,).~—1 has the semigroup property I,Is = I, 3.

I.f(r):=

Lemma 2.3.8. Forp € (1,00) and r € (1 — p~', 1), there exists a positive constant ¢ such
that if (t — s)(s — u) ™! is sufficiently small, then

[E[Us (e, B = a)|Fu] = E[Us (e, Xs + Y + Z)| Fulll ooy

—_ca? t—s\(1-H)
Sp [1Usile, B — )”Ll(]p (s—u) :
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Proof. The proof is similar to [PicO8, Lemma A.1]. We have
E[Us (e, Xs + Yo 4 Z2)|Fu] = E[Uss(e, T4 + Ys + Z))|omxy—y
and
E[U, e, 00 + 9+ 2)) = ElUusle, 0+ y +w + 2)

where
Wy = _(IT + Y — X5 — ys)‘

Therefore, since w, = 0,
2 2

and

w, + / K(r,0)dW, = / IC(T,H)d(W9+cl(]%_Hw)9>

for some constant ¢; depending only on .
By Girsanov’s theorem,

E[Us(e, +y +w + 2)] =E|Uyle, 2 +y + 2)

t
d
><€Xp<6/d0-73_HUJdW6

Therefore, if p~! + ¢~* = 1, by Holder’s inequality,

b1 d

C1

I Hw‘ d@)]

|E[US¢(€7$ +y+ Z)} - E[Ust(guws + ys + Z)H

gﬁ[(exp(c /tfeb id Wy — 2/t

aatynif 40) 1)

X ElUs (e, +y+ Z)P].

B =

Since the random variable »
/5 oL (8)1V

1s Gaussian, we have
t d c t

E[(exp (c / d(9]3 gwdWy — 1/

t

s (f

510]3 Hw! @)-1) T

w) e (c, [

@),

d
do:

K
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Hence, by setting

4, v
@%*H( + ) )

t
Ss,t = /

|E[Usi(e, B — a)|Fu] — E[Us (e, Xs + Y5 + Z)|~FU]HLP(P)

we have

1

SE [EU[UM(& B— a)p]s’ftequSS’t} v

1
< |Usi(e, B — a)HLPl([P’)‘ S;tequs,t

La(p)’

where p;* + ¢; ' = p~'. Choose py so that p;* = (1 — k) + kp, * (since kK > 1 — p~, this
is possible by choosing p; close to p). By interpolation,

1Usi(e, B = a)llem @) < [|Usi(e, B = a)|l1a(p1Usi(e; B = a) |2 w)-
‘We have

1Us,i(e, B = a)l[r2@y < P(|[Blloe(o)) = @) |Us (e, B = a)l[z2rae)

<
< e Usa(e, B — a) | p2rae).
The scaling property (Lemma 2.3.3) gives
[Us (g, B = a) || p2os ey = | Us/t—s)/0—) (T, B = (t = 5) ") || 20 -
By Lemma 2.3.6,
1Us/t-9,87-5) (™, B = (t = 5) " a) || 2w ) Spac 1-

It remains to see

|

This was essentially proven in [Pic08, Lemma A.1] (our S, corresponds to L therein). [J

1
2 CqSs,t
Ssvte s

t— g\1-H b
N ( S) i s sufficiently small.
L1 (P) s—u s—u

Remark 2.3.9. We note that a similar reasoning shows that for p < p; < oo if ;:—Z is
sufficiently small, we have

1Us,i(e, Ys + 2)leoe) Scpmn 1Usi(e,Y + Z)l[1m ey
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Lemma 2.3.10. Recall oy from (2.16). We have the estimate

XsYs

E[Uile, Xy + Y, + Z)F) = ¢ 25 B[e 3 Usyle, Y+ 2)| 7.
Proof. Since X, Y and Z are independent,
EUsi(e, Xs + Y + 2)|F,] = EE[Ust(e, 25 + ys + Z)]|z)=x,v) | X].
If we set F'(n) := E[Us(e,n + Z)] (n € R), then

1 72
E[F(l’s + Y;)] = E /RF(I'S + O'y77)6_7d7’]

1 1 —1 2
= | F(oyn)e 2oy @s)°q
m/R (o) !

The claim thus follows. ]

Lemma 2.3.11. For every p; € (1,00), if =2 is sufficiently small, then

TsYs
)E [e U, (e, Y+ 2)| — ElU4(e, Y, + Z)}‘
x| (t — u)H c(lzsleznTy
<t Me T NUsh(e, Y + 2) || e ey
Oy
with c depending only on H and p;.
Proof. For U, (¢, Y, + Z) to be non-zero, we must have inf, ¢, 1 |Ys + Z,.| = 0. Therefore,

ZsYs

E[e? U,(2, Y, + Z)] CE[U, (e, Y, + 2)]

zsYs
- E[<€ - 1) Us’t(g’ Y+ Z>1{||ZHL°°([S,t])Z\YgI} .

Using the inequality
e* =1 <AL X eR,

we estimate

)]E [(6 T 1) Us’t(g’ Y+ Z)l{”Z”LOO([s,t])z‘YS‘}:|

o] e
=5 E[e v N2l (s Usa(e, Yo + Z) |,
Y
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which, by Holder’s inequality, is bounded by

p3lzsllZll poo((s,e) o 1
3

BVl Yo+ 2P RE(IZ g 5B % |7,

where p1, pa, p3 € (1, 00) satisfy

1 1 1

Sl T

D1 P2 P3

By Remark 2.3.9, if £=2 is sufficiently small, we have

1 1
ElUse(e,Ys + Z)7 )7 Spy ElUse(e, Y + Z)P]71,  pyi=pi.

Recalling B from Definition 2.3.2, the scaling property yields

1 1 1
Bl 21 o op)? < B Z N o)) = (& = w) "ElIBI T2 0,17
and similarly
E [ewlmsnié D ] - E [6”3"”1%")H HBnLooao,m]

Since ||B||re([o,1)) has a Gaussian tail by Fernique’s theorem, there exists a constant ¢
depending only on H such that

S (t—u H —uw)H
7173'%(‘,(; ) 1Bl oo ([0,17) C(ipgms[l,(zt Wy
Ele Y Se ¥ :

Now the claim is proved. ]

Lemma 2.3.12. For every p1,ps € (1,00) we have

t—s _H
1Usale Y + D)l @) Seomm ()™

Proof. By the scaling,

1Us (e, Y + Z)|| 1) = |Us—v—o(&, B) | zrr @) = [|Uszv 120 (7, B) || 101 )

t—s’t—s
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We set ky := 3=~ and ky := i:—;’, and note that ko — k; = 1. We observe

Uy s (¢ B o )
= ZE |:Uk1,k2 *H’ B)pll{gkle(a—l,a]}]

a€Z
= Z E [Ukl,kg(C_H, B)"' 15y, e(a—1,a} L{mas, oy sy 1Br—Br, |2|a\71}]
a€Z
1
< %E Ukl k2(<_H B)pup]q <ren[ll<ca}152 |B Bk1| > |a| - 1)

x P(By, € (a—1,a])7,

where

By Lemma 2.3.6,

]E[UkLkQ (C_H7 B)plqg] q2 <p1 ,02,¢ L.
Since
HB7’1 - BT2H%2(]P’) < ”Bm - BT2H%2(]P>) 5 |7‘1 - T2|2H7

by Kolmogorov’s continuity theorem and Fernique’s theorem we obtain
2

P( max |B, — By,| > |a| — 1) S e,

relki,ka]

Finally, we see P(By, € (a — 1,a]) < k¥, and the claim follows. O

~Y

Lemma 2.3.13. For every p; € (1,00), if =2

t—s\H/p st —s\1-H
ElUsile,Ys + 2)] = ElU(e,Y + 20| S () (=) -

S —v S—U

Proof. As in Lemma 2.3.8, we get

t—s\1-H
ElUst e, Ys + 2)) = EUsele Y + 2)]| Sen 1Ueale,Y + 2) 1o (=)

We then apply Lemma 2.3.12. ]
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Lemma 2.3.14. [f = < 5, for every p; € (1, 00), we have

_1l(_Xs y2 1 Xsy2 1l (—Xs y2 /5 —u\2H
e 2(°Y+Z) —e 2(05) < e 21)1(0Y+Z) ( >
~P s—v/

Proof. Recalling (2.16), we have

2H
loy2, — 0y = 042 0_2—(S_u) < o2 (S_u>2H
v+z — 9y v+29%y of  ~%v+z\o_,
Using the inequality 1 — e=* < X for A > 0, we observe
S S Y s 2 — —
6_%(U§ﬁ)2 — 67%(%)2 —e é(<’;(+Z)2{1 — e_%(UYQ_”Yiz)}

—3(E)2 9, o 2
- _ _
e viz' X (oy® —oyiy)

_1 Xs 2 S — U 2H
3 ( )? 2 2
Se trroyvigX, (3 — v) '

N

Since sup, > Ae™#* < oo for every € > 0, we obtain the claimed estimate. [

Lemma 2.3.15. Letp € (1,00). Forx € (1 —p~',1) and py € (1,2), if =2 and =2 are
sufficiently small, we have

_%( Xs )2

E[Us(e, B — a)|F)] = E[Us—ps—o(e, B)le 2 v+2" + R, , ., + R)

V,U,8,t)

where

t—s\1-H
||R11;,s,tHLP(]P>) N E[Us (e, B — a)]l—ﬁe—caz( >

S—U

with c being a constant depending only on H, k, p, and almost surely

T 21 oytz

R < L (_Xs )Q(t—u)H(t—S)H/m
v,u,8,t1 ~oP1,

Oy4+z \S—U

—|—6_%(‘% 2(t—s>H/m<t—5)1—H
S—0 s —u ’

Proof. In view of Lemma 2.3.10, we decompose
E[Us (e, B —a)|F,) = R + Ry + R3 + Ry + Rs,
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where

Ry :=E[U.,(e, B — )v] E[Us (e, Xs +Y; + Z)|F),

X

By = e M Ele F UL (e Y+ 2)| R - eSSV E, (6, + 2))
Ry = *&VE[U, (e, Y, + 2)] — e TS E[UL(e,Y + 2)),

_1l_Xs
Ry = e 2 SVEU (e, Y + 7)) — ¢ ¥ EUL (6, Y + 2)),

1( Xs ( Xs )2

Ry i= ¢ * iz BU(e,Y + 2)) = Bl imu(e, Ble 2747

By Lemma 2.3.8 ,

5/t —s\1-H
||R1||LP(]P’) §H’p7< E[Us,t(€7 B _ a)]l—lﬁe—ca < > .

S—U

By Lemma 2.3.13,

X t—s H/p1 t—s 1-H
|R3| ¢ € Q(GY) ( ) ( ) '

S —v S—U

To estimate Ry, by Lemma 2.3.11,

2 | X,|(t — u C(M)z
Ryl < 3G Il T R e Y 4 D

If Z‘T’j} is sufficiently small, we have

(t—uwf 1 1
c—— <= - —
Oy -2 2
hence
Xs\2 X H
Ry| < e ooy W—ﬂ——lwmxgy+zmm
Y
—e\2

Using the estimate sup, -, Ae < oo and Lemma 2.3.12, we get

|Ro| < e (- W) <t - S)H/P?
2~ oy s—v

-l (G )Q(t—u)H<t—s>H/p?
Py )

<e

Y+Z

Oy+z §—=v
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Finally, we estimate R4. By Lemma 2.3.14, we get

1 Xs )2 _
Rl S Ude,Y + ) 7 (2

By Lemma 2.3.12, we obtain

s 2 /66— y\2H ,f _ o\ H/p?
Rl 5 e (22 (L)

s—v s—v
< e—ﬁ(gszf (t —u)¥ (t — 3>H/p?.
~ Oyiz \S—U

Therefore, we set R, , ,, = Ry and R, ., = Ry + R3 + Ry.

%

As a final ingredient in the proof of Lemma 2.3.7, we estimate E[U_, ;_, (¢, B)].

Lemma 2.3.16. For every r € (0, 1) we have the estimate

\/%CH(t — 8)7H0'Y+ZE[U871)¢7,U(€, B)] - %E[Ré(la B)]‘

Suc =9 (222) T4 (222

Proof. By taking the expectation in (2.18) and integrating over R with respect to a, we
get the claimed estimate. Indeed, by the scaling (Lemma 2.3.3) and the stationarity of K

(Lemma 2.2.4),

t—s
sS—v

/RE[US,t(s, B —a)]da = /R]E[Utss(,ttsgu, B — ¢t —s)a)|da

= H(t—s) /RIE[US ¢t¢(l, B —a)lda

=

We see

Xs—a
/e 2 da—v Toysz < (s —v).
R

Therefore,

[VBroy s BV vicale B) - yEIRS 1 2 (22) ]

t— s\1-H ,
NI ( 8) / E[U, (g, B — a)]' e~ da + (t — u)H<
: . ,

S—Uu

+(S_U)H<t—s>(1H)H<

S —v

78

t—s

S —U

t—s

S—U

> (1-k)H

(2.19)

) (1-k)H
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2.3. LOCAL TIME VIA LEBESGUE PARTITIONS

By Jensen’s inequality and (2.19),

1—-k
/E[Usyt(a, B - a)}l”"e’dea < (/ E[Us (e, B — a)]e’ca2da>
R R
Se (t = s)t7m,

The claimed estimate is now established. L]

Proof of Lemma 2.3.7. By Lemma 2.3.15 and Lemma 2.3.16, we have

|

1. = 1 _lXs y2rt— s\ H
Udie, B —a) — ~E[KS(1, B)|————¢ 2 (7iz ( ) ‘
ﬂf(5 CL) 2 [ O( )]\/%UYJFZG + C

N <t—s)1H(t_S>_H+ (t_S>H<t—5>H(2,€)

S—U S—U S —v

Lp(P)

if z:—i and ﬁ are sufficiently small. To optimize, we choose u so that

t—s (t—s>(QN)H

S—Uu s —0

Note that, as H < % the exponent (2 — ) H is less than 1. Therefore, if z:—fj is sufficiently
small, then ;:—Z and % are sufficiently small as well. This gives the claimed bound. [

Estimates on the local time

The following is the last technical ingredient for Theorem 2.3.1.

Lemma 2.3.17. Let H < % We set

Aqy =E[b0(Bs — a)|Fu_qt_o)](t — 5) (2.20)

JH —__H g, oF 2
— ?e (tfs)QH [ | s—(t—s)] (t—S)I_H.

Then, there exists a § > 0 such that for any p < oo and for any partition = of [0, 1],

Proof. We use the shifted stochastic sewing (Theorem 1.1.1). To this end, it suffices to
check i
I Lss(@)|rey S (=) Asllire S (=) (2.21)
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and
IE[Lss(a) — Agt| Flllrey S (s —0) 72t —5)?, s—v<t—s. (2.22)

The estimates (2.21) are trivial, hence we focus on the estimate (2.22).
We have

]E[ st( )— St|F 1/ / e (7‘ v)2H Br al]'-v] ( —U)_H

_ ¢ o ElBemalZ ]

(s — U)_H}dT.

For simplification, we replace B — a by B. We decompose the integrand as R, + Ry + R3,
where

Ry = e — e BB, | Fo)? (r—v)H ¢ Bl g [Br\fuP(S _——
Ry 1= ¢ oot R (o gyt o R ()
Ry = ¢ Gomm SR (g gy o amm B (o
Since
0<(s—v) "= (=)< (s=v)"(r—s),
we have
[Ra| S (s —v)7"7H(t = s).
We observe
efﬁE[BAFH]Z B e—ﬁE[Br\fv]Q
_ efﬁlE[BAfu}Q(l B efH((sfq;)_2H7(r7v)_2H)E[BT|]:u]2)
S e o R B (s — v) 2 — (1 — 0)72H)
5 e v)ngE[Brlfv] E[BT\]:UP(S B U>72H71(r _ 5)
<0 =05 =) N )
Hence,

[Ral S (s —v)77(t = ).
Finally, we estimate R3. Suppose that E[B,|F,|* < E[B,|F,]?. Then,

E[Br|Fy]? E[Bs|Fu]?

e (s v)2H —e (s 11)2H

BB |F)2  H
o m(E[Bva]Q — E[B,|F.]%).

<6 (s—v
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Since .
__H 2
e (S,U)QHE[BT\}'U] (8 . U)_H’E[Br| T—v” 5 1,

we obtain

e_(s,f)QH E[Br|Fo)® e—ﬁﬁl[&l}}]?

S (s = v) M [E[B| Fo] — E[B|F)| + (s — v) 2" [E[B| F.] — E[B|F) .

~Y

A similar estimate holds if E[B,|.F,]? > E[B;|F,]*. Therefore, it remains to note

[E[By|Fo] = E[Br|Follo@) Sp (s —0) 7t — ). 0

Concluding estimates

Now we can finish the proof of Theorem 2.3.1. Let 7 be a partition of [0, 1]. By Lemma
235,

e Wpi(e, B—a) > Y e 'Uyy(e, B —a), (2.23)
[s,t]em

8%’1U071(5, B—a)< Z 6%’1(7“(5, B —a). (2.24)
[s,t]em

Lemma 2.3.18. Let H < 1, p € [2,00), ¢ € (0,1) and ¢ € [1,00). Then, we have
1 1 _
et 'Uy,(e, B —a) > ZE[KM(L B)|Li(a) — R,

where for some § depending only on H we have
IRe Loy Spc €.

Proof. We define A by (2.20), and we set

Avr = Un(CF(t = )" B —a) (t - 3>1_H.

By Lemma 2.3.6, we have

1Asellne) S (¢ —s)'71.
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By Lemma 2.3.7,

1 —¢ H ,HE[BS\QI]?
QE[KO(L B)] me P (t —8) + Ry sy

_ ¢ A
= ZE[K (1 B)] [As,t|Fv] + Rv,s,tu

]E[A&t ’fv] -

where

(t — 5)t-(HRH

I—s > (2—rk)H(1—H)

|Rosillre Spee (—

for any x € (0,1). Since H < 1, choosing « sufficiently small, we can suppose that
1
1-(1+k)H > 3 l1-(1+r)H+(2—-K)H(1—-H)>1.

Hence, by Theorem 1.1.1, with some § = §(H ),

|5 (4 yeimiaoia)

StET(

6
LP(]P’) vaC |7T| .

In particular, considering a partition of size ¢ e, the claim follows in view of (2.23) and
Lemma 2.3.17.

[
Lemma 2.3.19. Let H < 1, p € [2,00), £ € (0,1) and ¢ € [1,00). Then, we have
B Wy (e, B — a) < %(E[Ko,c(l, B)] + 1)L (a) + R..
where for some ¢ depending only on H we have
1R: | Loy Spc €
Proof. In view of (2.24), the proof is similar to Lemma 2.3.18. ]

Proof of Theorem 2.3.1. 1t readily follows from Lemma 2.3.18 and Lemma 2.3.19, and the
estimate (2.12). O
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2.3.3 Lemiuex type result

Theorem 2.3.1 tells that for any a € R and for any € = (&,,)2; with polynomial decay,
1

n
there exists a measurable set 2, . such that P(B € €, ) = 1 and for every w € €, . the
limit

1

N -
lim e Ups(en, w —a)
n—oo

exists for every ¢ > 0. As observed by Lemieux [Lem83], the quantitative estimate in
Theorem 2.3.1 implies that we can take (2, . uniformly over a and €. Furthermore, we can
remove the polynomial decaying condition.

We begin with the following lemma.

Lemma 2.3.20. We define the grid
Gp:=1{ik"":i€Z]|i| <k}, keN.
We then have

. —6(L-1) -6 pH .\ _ SH . H _
1}1—{202%%}:‘]{ H Uy (K7, B x) 2Lt (m){ 0 as.

Proof. In the notation of Theorem 2.3.1, we have

¢
max‘k:_G(%_l)UO (k7% BY — 1) — —HLfI(m)‘ < ¢"'sup Ly(7) + max Ry ¢ ..
2€Gy ’ 2 z€R xeGy, >

Since = +— L;(x) is continuous and L,(-) is supported on
{z eR:|z] < |[Blleqon}

we see that sup, g Li(z) < oo a.s. By Theorem 2.3.1,

Imax Ry ¢l < D MRkl Spe k77,
z€Gy

where 0 is independent of p. Since p can be arbitrarily large, the Borel-Cantelli lemma
implies that almost surely we have

lim max Ry ¢, =0

k—o0 z€G,
and
hgl_ilolp i%%ﬁk_G(%_l)Uo,t(k_G, BT — ) — %{Lf(x)‘ <! iléng L(z).
Since ( is arbitrary, we complete the proof. ]
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Theorem 2.3.21. Let H € (0, 3). Almost surely, we have

lim sup}&?%’lUO’t(s, B—a)— c—HLt(a)‘ =0 VvVt>0.

e—=0 4er 2
Proof. The proof follows [Lem83, Theorem I1.2.4]. Due to the monotonicity of U and
L, we can fix a time ¢ > 0. By Lemma 2.3.20, we can find an Q; C Q with P(€;) =1
such that for any § € (0,1) and w € € there exists an N = N(J,w) with the following
inequalities:

(k—1)%—k ">k Vk>N, (2.25)

1B@)llz=(og) <N =1, (2.26)

sup max‘k:_(s(%_l)Uo,t(k:_G, B (w) —z) — c—HL,{{(as)(w)| < 0. (2.27)
k>N =€Gh 2

The argument below holds on the event ;. Fore < (N + 1)*6, there exists a unique
m = m. > N + 1 such that

(m+1)°< ent <m S

If || > N — 1, then by (2.26) we have L (z) = 0. On the other hand, if |z| < N — 1, then
we define

= <

zx = max{y < z}

forall k > N. Since z < x,,_1 + (m — 1)~7, we have
e Ty 1 <z <x+e<Tpy i+ (m—1)"and

T < Tpyat+ (M+2) " <zpio+(m+2)"+(m+2)%<z+e,

where (2.25) is applied in the inequality of the second item. Hence, defining the two sets
I,—1and [, as

Iy = [xmfla L1+ (M — 1)77] R [fm+2, Trmg2 + (M + 2)76] )
where Z,, 12 = Ty10 + (m + 2)77, we have the inclusions
]_m+2 Q [JZ,ZE + 6] g ]m—l' (228)

Now we move to the bound on U. We first observe the monotonicity of U:

Uoi(e1, B — x1) < Upylea, B — 12)
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provided that [zq, x9 + €3] C [21, 21 + £1]. The relation (2.28) thus yields
Upi((m — 1), B — 2 1) < Ups(e, B —2) < Ups((m+2)"", B~ Zpia).
Hence,

¢ — C
suple® U(e, B — ) = ' L(@)| < Ac+ Ak 0 sup |Lu(x) = Li(y)),

z€R zy:|lz—y|<2e

where

145 ‘= sup ‘g%?illﬁlt((ﬂlg-— 1)76,13f{<—'$) —'Efilq(lﬂ|,
TERm, —1 2

A= sup |5%_1U0,t((m6 +2)7% B — ) - C—HLt(x)’
xERmE+2 2
By (2.27),
limsup A, + limsup A, < 26.
e—0 e—0
Since ¢ is arbitrary, we conclude the proof. ]

Analogous to Uy ;, we denote by D;, the total number of downcrossings
Dgy(e,w) = #{(u,v) €N iw, =0,w, =¢,Vr € (u,v) w, € (0,5)}. (2.29)

By definition, we have the identity
Ko(e.w) =Y {Uple,w — x) + Doyle,w — x)}.
TEEZ

Furthermore, since the total number of upcrossings and that of downcrossings can differ by
at most 1, almost surely we have

limsup|5%_1D0t(5,B —z)— C—HLt(x)‘ =0 Vt>0,
e—=0 zeR ’ 2

or

lim sup’eﬁ_l(Uo,t(e, B —x)+ Dy(e,B—x)) — cHLt(:zz)} =0 Vt>D0, (2.30)

e=0 LeRr

Theorem 2.3.22. Let H € (0, 3). Almost surely, we have

lim sup |5%K07t(5, B —p)—cyt| =0, Vt>D0.
&AOpER
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Proof. We observe

sup |51/HK0¢(5, B —p) — cyt|

= sup
p
T+e 1
= sup Z {en ™ (Ups(e, B — ) + Doy(e, B — x)) — ¢y Ly(a) }da
P zeptenV®

SHBHLOO([O,t]) Sl;p {8%71<U0,t(87 B — x) + DO,t(Ea B — l’)) - cHLt(x)}

+  sup |Li(x) — Li(y)|-

zy:|le—y|<e

In view of (2.30) and the uniform continuity of L,(-), the claim follows. U

2.4 A fractional excursion measure

Instead of counting level crossings, we can similarly count excursions. By so doing, we can
define a natural notion of an excursion measure of the fractional Brownian motion.

Definition 2.4.1. Let w be a continuous path and s < ¢. The set {r € [s,t] : w, > 0} is
open in [s, t]. Therefore, we can write

{refst:wr)>0= [J Lw),

AeAs,t (’U})

where I (w), A € A, ;(w), are disjoint intervals of the form [s, a), (a, ), (b, t] or [s,t]. We
set
Agi(w) :={\ € A, (w) : w(inf I)(w)) = w(sup I\(w)) = 0}.

Note that removed intervals are of the form [s, a), (b, t] or [s,t]. For A € A4 :(w) we define
6/\ . R+ — R+ by
eMt) == w((t +1inf I,) Asup ).

We say that e* is an excursion of w (see Figure 2.6). For a Borel subset I' of C(R,, R, ) we
set
mg (D, w) = #{\ € Ag(w) : e* € T}

Note that m(-, w) is a measure on C'(R,, R ) and that m(-, w) is supported on
E={weCRLRy) :w(0)=0,0(w)>0,Vt>oc(w),w =0}\ {0},

where o(w) := inf{t > 0 : w, = 0}.
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Figure 2.6: Excursions

The family (mg . (I", w))s<¢ is similar to (Us (e, w))s<;. As in Lemma 2.3.5, we can
prove the following.

Lemma 2.4.2. The two-parameter family (m (', w))s< is superadditive: forr < s <t
we have
m, (I, w) > m, (T, w) + mg (I, w).

Definition 2.4.3. We set
M (T, w) = /m&t(f‘,w — p)dp.
R

Lemma 2.4.4. Regarding N, we have the following.

(i) The family (ON(L', w))s<s is superadditive.

(ii) (stationarity) For s < t we have M (', B) 4 Mo.—s(L, B).
Proof. The proof is similar to Lemma 2.2.4. ]
Definition 2.4.5. For I' € B(€) and ¢t € (0, 00) we consider

a(t) == EMy (T, B)].

Then, by Lemma 2.4.4 we have a(s + t) > a(s) + a(t). Therefore, the following limit
exists:

P(T) := PY(T) := lim 1a(t) = sup 1a(zf) € [0, o0.

t—oo t t€(0,00)

Now we would like to show that P is non-trivial. We begin with the lower bound. We
set

E={ect: mfuxe(t) > 0}.
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Lemma 2.4.6. We have P(Es) > 0.

Proof. By the superadditivity it suffices to show E[91, 1 (I", B)] > 0. Then we note

E[ (T, B)] > P(max B(t) > 6, B(1) < 0) > 0. O

te(0,1]
To prove the upper bound P(&;) < 00, we introduce the following.

Definition 2.4.7. For I' € B(£) and a continuous path w, we set
ns,t(ra w) = ms,t(Fa w) + 1{minre[s’t] w(r)<0,w(t)>0}s
and N, (I, w) := [ ng4(C,w — p)dp.

Lemma 2.4.8. Regarding ‘2, we have the following.
(i) The family (n,,(I',w))s<; is subadditive.

(ii) (stationarity) For s < t we have N, (L', B) 4 No+—s(I', B).

Proof. We only prove (i), since the proof of (ii) is similar to Lemma 2.4.4-(ii). To prove (1),
we separate cases.

* Suppose that w(s) < 0. In this case we have

n, (0 w) = n, (0, w) 4+ ng (T, w).

* Suppose that w(s) > 0.
- Ifinf,cfs g w(s) > 0 then n, (I, w) = 0 and
(0 w) =0, (T, w) = n, (T, w) + ng (T, w).

The case is similar if inf, ¢, g w(u) > 0.

- If inf ¢ g w(u) < 0and inf,cp g w(u) <0, let e be the excursion of w such
that the starting point is less than s and the ending point is greater than s. Then,

mr,t<F’ ’LU) - mT,S(F> IU) + ms,t(F7 ’LU) + 1{e€F}>

nr,t(ra UJ) - mr,t<ra U}) - ns,t(F7 U)) - ms,t(ra UJ),
n, (0 w) =m, (I, w) + 1.
Therefore, we have n, (I, w) + 1iegry = n, (I, w) 4+ ng (I, w). O
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Again, by the subadditive ergodic theorem, the limit

1
P(T) = lim TE[mOT(F B)| = inf ~E[Nor(T, B) (2.31)
exists. We will see that P(I') = P(T'). But before that we see the following.

Lemma 2.4.9. We have P () < oc.

Proof. By (2.31), it suffices to show E[91 (I, B)] < oo. Then, the proof is similar to
Lemma 2.2.5. ]

Lemma 2.4.10. We have P = P. In particular, P(s) < oo for all § > 0.
Proof. We have the inequalities
mor (I, B = p) < nor(', B = p) < mor(I', B = p) + L{jo|<iB) e .77}

Therefore,

PT) < P(T) < P(T) +limsup ZE{| Bl =0
By the scaling we have E[|| B|| (0,1 = T"E[|| B|| 1o ([o,1)] and the claim follows. [
Now we show that P is a measure.
Lemma 2.4.11. The map B(E) > T — P(T') € [0, 00| defines a o-finite measure on .

Proof. We have & = |J,,c €1/n, and by Lemma 2.4.10 we have P(El/n) < oo. Thus, it
suffices to show that P is a measure. Let (I',,)22, be disjoint subsets from B(E). Since

1
T =B [T, Blo.n)]
is non-decreasing, by the monotone convergence theorem,
PUL) = im [ (Ur..5)]
= i —E Mo, B
1m Z T [D,7( )]

T—oo

=> P(T,). O
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Definition 2.4.12. We call the o-finite measure P = P on £ an excursion measure of the
fractional Brownian motion B,

To see that P is a natural notion of an excursion measure of B, we show that it satisfies
the self similar property (Proposition 2.4.13) and that for = % it coincides with the usual
Brownian excursion measure (Proposition 2.4.16).

Proposition 2.4.13 (Self-similarity). ForI' € B(E) and X € (0, 00) we set
A ={ w:weTl}, Thr={we: wy-. €T}

Then we have

POAT) = NYHEP(Dum).

Proof. We observe

T—o00

- 1
P(AT") = lim ?/RE[mQT()\F,B —p)]dp

~ lim % /R Efmo.r (T, A (B — p))]dp

T—o0
1
= lim —/E[mOT(F, A'B —n)]Ady Mlp=n
T—oo T R ’
1
~ )\ lim — / Efmo (T, By-1/n. — m)]dn NBLB
T—o00 R

T—o00

1
- )\ 11111 _ / E[mo A—l/HT(F)\—l/H, B - T])]dn
T Jr ’
= NTVEPT, um). m
Corollary 2.4.14. For § € (0,00) we have P (&) = 4rst-V/H,
Proof. By Proposition 2.4.13, we have
PH(&) = PH(5&) = ' VHP(&)).
It therefore remains to show P(&;) = ¢z /2. To this end, we observe
mo (&1, B —p) < Upr(1, B —p) <ngr(E1, B —p). (2.32)

Integrating (2.32) with respect to p over R, we get

Mor(&E1, B) < / Upr(1, B — p)dp < Ny r(&1, B).
R

Taking the expectation, dividing them by 7" and letting 7" — oo, we complete the proof. [
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Corollary 2.4.15. We set o(w) := inf{s > 0 : wy = 0} for w € E. Then Plo > t) =
P(o > 1)t~0=H),

Proof. If we set " := {w € £ : o(w) > 1}, then using the notation in Proposition 2.4.13
we have \[' =T and 'y = {w € € : o(w) > A}. Therefore, by Proposition 2.4.13 we have

A

P(F) = Alil/Hp<F)\f1/H).
Setting A := ¢t~ we obtain the result. O

Next, we show that P3 coincides with the standard Brownian excursion measure. To
distinguish it from the fractional Brownian motion, we write W := B'/? for the Brownian
motion. A standard construction of its excursion measure P for the Brownian motion is as
follows (e.g. [Blu92]). Let (L(x)):>o be the (occupation density) local time of 1V and let
[ be the inverse local time at 0:

B(t) :==inf{s : Ls(0) > t}.

Then, recalling notation from Definition 2.4.1, the measure P is given by3

PO =E[ > 1wl

)\GAOﬁ(l)(W)

A natural question is if P = P for W. The answer is affirmative:
Proposition 2.4.16. For the Brownian motion W, we have P=P
Proof. This is an easy consequence of the excursion formula ([Blu92, Eq.(3.27)]):
Z meb\ W+x) l{eAEF}} p(F)E[/ ZSdLs(x)]7 (233)
AEA(W+2) 0

where (Z)s>0 is an adapted non-negative process and I' € B(E). For T' € (0, 00), if
Zs = 1y<7}, We have

E[ 3 1{@@}}:15@)1@@(:5)}. (2.34)

Minf Iy (W+2)<T

3The measure P is different from the Brownian excursion measure constructed in [BIu92] by factor of V2.
This is because the book [BIu92] considers the local time with normalized Laplace transform, which differs
from the occupation density local time by factor of v/2. More discussion can be found in [Blu92, Section
VI.2.b].
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Observing the inequalities
mor(C W) < Y Loery < nor(D W + 1)
Xinf I (W+z)<T
and the identity [, Ly(z)dx = T, we obtain

FE[Mor (I, )] < P(T) <

Now the claim follows by Lemma 2.4.10.

LB [(0(T, )]

When H < %, the relation (2.34) holds asymptotically. That is:

Theorem 2.4.17. Let H < % Provided P(F) < 00, we have

lim 7~ |m (T, B) — P(D)Lp(0)| =0 in LP(P) for all p < .

T—o00

In particular, lfﬁ’(Fz) <o (i=1,...,n), then

lim T_(I_H)(m(),T(Fl, B), ce ,m(),T(Fn, B))

T—o00

= (P(T)),...,P(T,))L1(0) in law.

Proof. ForT" € B(€) and \ € (0, 00) we set

AN ={ w:wel}, Th={we&:wy-1 €T}
and TV .= \=HT,, BN := \~# B, . Since

mo. (T, B) = mg,(I'D), BT),

we see

(mor (T, B), Lr(0)) £ (mg (T, B), T' 7 L, (0)).
As in Theorem 2.3.1, we have

T~ mg (T, B) = P(T)L1(0)], < 6:L1(0) + Ry,

where d is non-random with lim¢_,o 0, = 0 and Ry satisfies

|Rrclly Scp T7°

for some € > 0 independent of ¢ and p. In view of (2.35), this proves the claim.
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Chapter 3

Young and rough differential equations
driven by fractional Brownian motion

We consider Young or rough differential equations dX; = o(X;)dBf driven by
fractional Brownian motion B with Hurst parameter H € (%, 1). When H # % the
equation is usually treated either by Young’s theory or by Lyons’ rough path theory,
whereby we assume that o € C7 with v > . However, for H = 1, Itd’s theory covers
the case where o is Lipschitz. The aim of this chapter is to fill the gap, by proving that
for any H € (3, 1) pathwise uniqueness holds for o € C7 with v > max{55, 2},
under a natural elliptic condition on o. The result relies on new probabilistic estimates
on stochastic integrals along fractional Brownian motions, proven by stochastic sewing

techniques.
This chapter is based on joint work with Avi Mayorcas.

Keywords and phrases. Stochastic differential equations, fractional Brownian motion,
regularization by noise, stochastic sewing, processes of vanishing mean oscillation,
rough paths.

MSC 2020 - 60H10, 60H50, 60G22, 60L20.
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3.1 Introduction
In this chapter we consider the stochastic differential equation (SDE)
dX, = o(X,)dBf, X,=1z¢cR%", (3.1)

where o is a map valued in the space of d; x d, matrices, and B¥ is a d,-dimensional
fractional Brownian motion with Hurst parameter H € (1/3, 1). The differential equation is
interpreted either as Young’s differential equation (H > 1/2) or as Lyons’ rough differential
equation [Lyo98] (H < 1/2). We will review such SDEs in Section 3.2.2.

For H = 1/2, we often apply Itd’s theory to study (3.1); we will discuss the alternative
theory of Lyons later. In [td’s theory, there are a few notions of solutions and their uniqueness,
among which the most relevant to us is the notion of pathwise uniqueness. It says that two
solutions, adapted to some filtration making the driving Brownian motion martingale, must
be indistinguishable. Hence, pathwise uniqueness is a probabilistic concept of uniqueness
(despite it is called “pathwise” uniqueness). It is a classical result, as can be found in all
textbooks of stochastic calculus, that pathwise uniqueness holds for (3.1) with H = 1/2
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3.1. INTRODUCTION

provided that o is Lipschitz. The proof is a consequence of It6’s isometry: for an adapted

process Y we have
T 9 T
o] [ viaef] =] [ crar].
0 0

It6’s isometry is a consequence of the martingale property of the Brownian motion.
Since B¥, H # 1/2, is not a martingale (nor Markovian), Itd’s theory is not available
for H # 1/2. Lack of probabilistic tools naturally motivates us to study the SDE (3.1)
pathwisely. Starting from Young’s integration theory [You36], Lyons [Lyo94] showed that
the differential equation

driven by a path y of finite p-variation with p € [1, 2) has a unique solution provided that
f is a-Holder with o > p. Since B* has finite p-variation for any p > 1/H, we see that
(3.1) has a unique solution provided that o € C'7 with v > 1/H. The reader can also refer
to [NRO2] or [Nua06, Section 5.3], where the approach is based on fractional stochastic
calculus of Zihle [Z&h98]. The critical case v = 1/H is covered by [Dav08].

When H < 1/2, the path BY is too irregular to apply Young’s integration theory.
The earliest work towards pathwise Itd calculus can be dated back to Follmer [FoI81].
Afterwards, in his groundbreaking work [Lyo98], Lyons develops the theory of rough paths.
The theory tells that we can make sense of (3.2) for y of finite p-variation for any p < oo,
provided that we are additionally given “iteraged integrals”

t r1 t r1 T2
/ / dy,, Ay, , / / / Ay, dYr, Ay s . - -,

satisfying certain analytic and algebraic conditions. The tuple of y and its (sufficient
number of) iterated integrals is called a rough path of y. Furthermore, [Lyo98] proved
well-posedness of (3.2) if f € C* with a > p. Later, Coutin and Qian [CQO02] proved
that the fractional Brownian motion B¥, with H > 1/4, can be naturally lifted to a rough
path. This means that we can make sense of and prove well-posedness of (3.1) with
H € (1/4,1/2), provided that o € C7 with v > 1/H.

We remark two important differences in [t6’s probabilistic theory and Lyons’ pathwise
theory. One is that the former considers uniqueness among solutions adapted to a given
filtration, while the latter considers that among all solutions satisfying (3.2) that do not
need to be adapted. That is, notion of uniqueness is stronger in the pathwise theory. Such
uniqueness is called path-by-path uniqueness, after the works of Davie [Dav07; Dav08].
The other difference is the regularity assumption on o: when H = 1/2, 1td’s theory assume
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that o is only Lipschitz, while Lyons’ theory assume that 0 € C” with v > 2 (the critical
case v = 2 is covered by [Dav08]). In summary, It6’s theory requires less regularity
assumption on o, at the cost of weaker notion of uniqueness.

Although Itd’s theory is not available for H # 1/2, notion of pathwise uniqueness is
well-defined in this setting (Definition 3.2.6). Now we find it natural to ask if we can prove
pathwise uniqueness of (3.1) for 0 € C7 with v < 1/H. Our main result of this chapter
answers the question affirmatively.

Theorem 3.1.1. Let H € (1/3,1) and o € C” with

1 1-H 1 ifH > 1
> max { o —— = = 4T 2" 33
! 2i’ H {% ifH < 1. )

Furthermore, suppose that oo’ is uniformly elliptic, i.e. there exists a K € (1,00) such
that

K'<o(@)o(2)' <K
for all x € R4, Then pathwise uniqueness holds for (3.1).

Proof. See Theorem 3.3.3 for H > 1/2 and Theorem 3.4.7 for H < 1/2. (The case
H = 1/2 is well known.) O

Remark 3.1.2. It is expected that a similar result holds for H € (1/4,1/3]. However,
studying this case will surely increase the amount of technical computation, and in order to
present our main ideas clearly, we restrict to the case H > 1/3.

Remark 3.1.3. By standard compactness argument, we can prove weak existence under
v > % By the Yamada—Watanabe theorem (Proposition 3.2.7 below), weak uniqueness
and strong existence hence hold under the assumptions of Theorem 3.1.1.

Before explaining the strategy of the proof, let us further explain connections of our
result to recent literatures. After Lyons’ groundbreaking works, pathwise approach has
become central in stochastic analysis. Precisely, pathwise approach here means the approach
that separates almost completely probabilistic argument (e.g. lifting to a rough path) and
pathwise argument (e.g. analysis of differential equations driven by rough paths). It is
worth mentioning that this pathwise approach is behind the breakthrough of singular SPDEs
[Hail4; GIP15].

With flavor of pathwise approach, Catellier and Gubinelli [CG16] study fractional SDE

dX, = b(X,)dt +dBF (3.4)
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0.5 1

0

N

1/3 1/2 1
H

Figure 3.1: Some graphs of H from Theorem 3.1.1. Pathwise theory covers o € C" with
~v > 1/H (green), while our result says that pathwise uniqueness holds if v > 1/(2H)
(blue) and if v > (1 — H)/H (red).
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with irregular b, which can even be a distribution such as Dirac’s delta function. Study of
such SDEs belongs to the field called regularization by noise; the name comes from the fact
that we can restore certain well-posedness of ill-posed ordinary differential equations by
adding a noise. The argument of Catellier & Gubinelli is based on the nonlinear Young
integration (cf. [Gal21]), and their work led to further developments, [GG22; HP21;
GHM?22; GH22; CD22] to name just a few.

On the other hand, Lé [Lé20] introduced a new method for regularization by fractional
noise. Lé relates well-posedness of (3.4) to the stochastic integral

t
/ Vh(B!)dB!,

which is then estimated by the stochastic sewing lemma, introduced in the same paper. (See
[BNP20] for the approach based on Malliavin calculus.) The work [L&20] is a landmark in
that it is based on more probabilistic viewpoints than on pathwise viewpoints. However,
it is worth noting that many ideas of [L€20] are inspired by those developed in pathwise
stochastic calculus; obviously the stochastic sewing lemma is inspired by Gubinelli’s sewing
lemma [Gub04]. Since the work [L&20], the probabilistic approach based on the stochastic
sewing has witnessed tremendous progress, see [BDG21; Ath+21; Ger22; FHL23; GG23;
DG?22; BLM23] and references therein.

Our main result is another contribution to the trend initiated by Lé. However, unlike
the mentioned previous works, we are interested in the noise coefficient rather than the
drift coeflicient. We also mention the work [HTV22] of Hinz, T6lle and Viitasaari, where
studied is the differential equation (3.2) with irregular f that can even be discontinuous.
However, their argument is based on Doss transformation, which imposes some restrictions
on the coeflicient f, especially for uniqueness (e.g. [HTV22, Assumption 3.15]).

Strategy of the proof

Our argument is inspired by [L&20]. Let us review here his strategy to prove the pathwise
uniqueness. For simplicity, suppose that H € (1/2,1). Let X and Y be two adapted
solutions to (3.1). If ¢ € CV/H+e,

X, -V — / {0(X,) - o(¥,)}dB,
t d1

_ /0 [y /Ol(Xf ~ V)00 (0X, + (1~ 0)Y;)d0 b B,

k=1

dq t
=> / (XF-YF)av?F, (3.5)
k=10
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where -
Vb / / o (0X, + (1 — 0)Y,)d0dB,. (3.6)
0o Jo
Then, Z := X — Y satisfies the linear Young SDE

t
Z - / Z.dv.,
0

by uniqueness of the Young SDE, wesee Z =0or X =Y.

If o is less regular, then the Young integration theory does not make sense of (3.6).
However, we can still hope to give a natural meaning to (3.6) for such irregular o, by taking
advantage of randomness of the fractional Brownian motion. Indeed, our main ingredient is
to give a probabilistic estimate on the integral

t
/ f(Y,)aB! (3.7)

for some irregular f, where Y is a path controlled by B (Definition 3.2.5). When H = 1/2,
we can apply Itd’s isometry to estimate (3.7). When H # 1/2,1td’s isometry is not available,
and we replace it by the stochastic sewing estimate. For H € (1/2, 1), we apply Gerencser’s
shifted stochastic sewing [Ger22], and our choice of the germs resemble the one from
[DG22]. For H € (1/3,1/2), we apply the stochastic sewing rwice; first by L&’s original
stochastic sewing, and second by the fully shifted stochastic sewing (Theorem 1.1.1). See
Theorem 3.3.2 (H > 1/2) and Theorem 3.4.4 (H < 1/2) for the precise estimates.

Notation

Throughout the chapter, we fix the dimensions d; (the dimension for the solution) and d»
(the dimension for the fractional Brownian motion). Given a function f on some interval
[0, T], we write f; := f; — fs (s < t). Given a two parameter map (A ;)s<t, We set

5As,u,t = As,t - As,u - Auﬂf, s<u<t.

We denote by a” the transpose of the matrix a. We write A <, 5. B if there exists a

goue

constant C', depending on irrelevant parameters «, (3, . . . such that A < C'B. We will ignore
dependence of constants on dy, d> and the Hurst parameter H.

3.2 Preliminaries

Here we review some estimates in function spaces and SDEs driven by fractional Brownian
motion.
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3.2.1 Function spaces and heat semigroup estimates

We follow the convention of [DGL21]. For k € N, we denote by C* the space of (k — 1)-
times differentiable functions such that their (k — 1)-derivatives are Lipschitz continuous,
and we write

l _ Al
| fllow == Z 101f || Lo + Z sup |0°f(x) 8f(y)!‘

x,yeR1 |'T - y|

leNd i<k IeN |1|=k
For v € (0,00) \ N, we denote by C the space of y-Holder functions. That is, f € C7 if

S 1@ =250

z,ycRd |[L’ - y|'yf\_'yj

Iflev=" > louflle=+

leNg!Jil< ) leNg® ltl=1v)
We set C” := L> and for o < 0 we denote by C” the space of distributions f such that

1 fllow = sup ¢ Pyf e,
te(0,1)

where P, is the heat semigroup (3.8) defined just below. If v € R\ Ny the space C”
coincides with the Holder—Besov space constructed by Littlewood-Paley blocks [Tri92,
Theorem 2.6.4].

We prepare two lemmas on heat semigroups. We denote by M the space of d; X d;
matrices and by M, the space of d; x d; positive-definite matrices. By identifying M
with R(%)*, we can equip M with the Euclidean norm |-|. Given aI' € M, we set

o 1 (x,T1z)
rr(®) = Goi e Tz P ( T2 )

and for a function f on R% we set Prf := pr * f. Fort € (0, 00) we simply write
P, = Ptldla (3.8
where [, is the d; X d; identity matrix.

Lemma 3.2.1. Let K € (1,00) and T € M suchthat K~' < T < K. Then, for o, 3 € R
with > 0V aandt € (0,T) we have

_8-a
[Preflles Skaprt™ 2 [fllox
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Proof. We write

Arf(z) := f(VTx). (3.9)
Then Pryf = Ar-1P,Arf. Since
[Arfller Sk l[fller S Arfller,
we can assume that I' = ;. Then the claim follows from [DGL21, Lemma 2.3]. ]

Lemma 3.2.2. Let K € (1,00) and letT; € M, (i = 1,2) be such that K~!' <T,; < K.
Then, for o, 5 € Rwith > aV 0andt € (0,T) we have

_B—«a
| (Pryt — Prot) fllos Skaprt 2 [T —Tolllfllce. (3.10)

Proof. We first claim

|(Pryt — Proe) fllzee Sk [T1— Tall[ fll 2o (3.11)

Indeed, we have

(Prye — Proe) f(2) = | Apre(y) — proe(y) Hf (2 — y)dy.

R91
By [DGL21, Proposition 2.7],
Iprye(y) — proc(v)] Sk 101 — Lol (Proe2(y) + pro2(y), (3.12)

which yields the estimate (3.11).

Next we prove the estimate (3.10) for & = 5 ¢ N. The case for « = § = 0 is proved
by (3.11). Let {A;}32 , be Littlewood—Paley blocks. Since A; and Pr,; commute, the
estimate (3.11) yields

1A;(Prye — Proe) fllzee Sk [T — Do|([A; fllzee + A f][).

Therefore,
[(Prye = Prye) flles Sxe 01— Tal([[flles + [[flles)-

Next we prove the estimate (3.10) for « = g € N. Since we only need the case
a = 3 =1, we only prove that case. We have

|(Pryt = Prye) f(2) — (Prye — Proe) f(y)]
< [ prals) = el =) = o= )l
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By (3.12),
|(Pryt = Proyt) f(x) = (Prit — Prot) f(y)]
Sk [T — Ty » [prit2(2) + proy2(2) | f(z — 2) — fy — 2)|dz
< 2|1y = Dofl[fller |z = vl

which prove the claim.
Finally, we prove the general case. Since

PF1t - PFQt = (Pl“lt/2 - Pth/Q)Pl“lt/2 + PI‘gt/Q(PI‘lt/Q - PFQt/2)7

we have

||(PF1t - PF2t)f||C’5
< |(Pryej2 = Prots2)Proa flles + | Pray2(Pritjz — Prat) flles-

As for the first term, the estimate (3.10) with & =  and Lemma 3.2.1 imply

| (Pryt/2 = Prat2) Prosaflles Sk [T — Dol Pryejaflles

_B=a
Skasr U1 —Tolt™ 2 || fllce.

The estimate of the second term is similar. O]

3.2.2 SDE driven by fractional Brownian motion

The goal of this section is to review the notion of solutions to (3.1). First we review the
fractional Brownian motion. We define the kernel Ky by for H > 1/2

t
Ky(t,s) = CHSé_H/ (u— S)H‘guH—%du
and for H < 1/2

Ky(t,s) =cy [(2)11_%(75 - S)H’% - (H - %)séH /St uH’%(u - S)H’%du].

Then given a Brownian motion I the process

KHW(t) = /t KH(t,S)dWS
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is a fractional Brownian motion with Hurst parameter H (recall Definition 1.3.1). The
constant cyg is chosen to have the correct covariance. We refer the reader to [Nua06,
Section 5.1.3] for more details. In fact, the operator /K is bijective, hence given a fractional
Brownian motion B we can recover a Brownian motion K ;' B, Recall that a Brownian
motion W is called a (F;)-Brownian motion if it is a (F;)-martingale.

Definition 3.2.3. Given a complete filtered space (€2, (F¢)¢>0,P), an adapted process
(Bf)>0 is called a (F;)-fractional Brownian motion if the process K;' B is a (F;)-
Brownian motion.

When H < 1/2, we need the theory of rough paths to interpret the SDE (3.1). Let us
recall the rough path of B for H < 1/2, and the notion of controlled paths.

Definition 3.2.4 ([FH20, Chapter 10]). Let H € (1/3,1/2) and (B™)2°_, be a piecewise
linear approximation of the fractional Brownian motion B = B¥ . Then the canonical lift
of B™

t
(B(n)’[Bg(n)) e (B(”), (/ ngﬂ) X dBﬁn))Kt)

converges in the space of a-Holder rough paths for any o € (1/3, H) to some geometric
rough path (B, B), called the canonical lift of the fractional Brownian motion B.

Definition 3.2.5 (([FH20, Chapter4]). Let H € (1/3,1/2),a € (1/3,H)and 8 € (1—a, 1).
A pair (X, X') of continuous paths is said to be controlled by B, and we write (X, X') €
9P, if
| Xos — XB,
”X, X/H@ﬁ = HX/HCB*OC([O,T]) + sup ’ — < 0OQ0. (3.13)

0<s<t<T It — s|?

The process X" is called a Gubinelli derivative. When no confusion is expected, we simply
write || X|| 5. It was shown in [Gub04] and is now standard that for (X, X’) € 2” we can
define the rough integral

t
/ X,dBH = lim > X.BI, +XBl,.
s m is a partition of [s,t],
|7|—0 [uv]en

We assume that the coefficient o of the SDE (3.1) belongs to the Holder space C” with
1-—H
T

The lower bound is necessary to make sense of the integral [ o(X,)dBY as Young integral
(H > 1/2) or rough integral (H < 1/2). If H < 1/2, we have v > 1 and

v > (3.14)

|0(Xy) — 0(Xs) = Do(Xo) Xeu| < loflov]Xol™.
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Therefore, provided (X, X') € 27%, where o < H is sufficiently close to H, we have
(0(X),0'(X)X') € 27, Thus, for any H € (1/3, 1), by writing e; for the ith unit vector,

the integral
t t
/U(XT)dBf =y (/ aij(Xr)dBf’j>ei

1<i<dy,
1<j<d>

is well-defined either as Young integral (H > 1/2) or as rough integral (H < 1/2).
For H > 1/2 we say that a path X solves (3.1) if it satisfies the integral equation

t
Xt:x—i—/ o(X,)dB?, vt (3.15)
0

Similarly, for H < 1/2 we say that a controlled path (X, X’) solves (3.1) if it satisfies
(3.15). In this case, the fundamental estimate of the rough integral yields

ss,t

t
) / o(X,)dBY — o(X,)BY, — Do(X,)X/B!

Su lloller | X zve ||BHHCa|t — S|(7—H)a7

hence (X, 0(X)) € 27*. In particular, due to the uniqueness of the Gubinelli derivative
for the fractional Brownian rough path [FH20, Chapter 6], we have o(X) = X’. Therefore,
without loss of generality, we say that X solves (3.1) if (X,0(X)) € D?* and the pair
solves (3.1).

We review the notion of solutions in the probabilistic setting. We fix « that is less than
but sufficiently close to H.

Definition 3.2.6. Let H > 1/2. We say that a quintuple (€2, (F;)i0, P, BY, X) is a weak
solution to (3.1) if (B, X) are random variables defined on the filtered probability space
(9, (F),R), if B is a (F;)-fractional Brownian motion, if X € C*([0,T]) is adapted to
(F:) and if X solves the Young differential equation (3.1). Given a filtered probability space
(2, (Fi)t>0, P) and a (F;)-fractional Brownian motion B, we say that a C*([0, T])-valued
random variable X defined on (€2, (F3):>0, P) is a strong solution if it solves (3.1) and if it
is adapted to the natural filtration generated by 5. We say that the pathwise uniqueness
holds for (3.1) if, for any two adapted C'*([0, T'])-valued random process X and Y defined
on a common filtered probability space that solve (3.1) driven by a common (F;)-fractional
Brownian motion, we have X = Y almost surely.

For H < 1/2, such notion of solutions naturally extend: we replace X and Y by
controlled paths in 27* and (3.1) is interpreted as rough differential equation.
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As in the SDE driven by Brownian motion, we have the following Yamada—Watanabe
theorem.

Proposition 3.2.7. Regarding the SDE (3.1), if weak existence and pathwise uniqueness
hold, then weak uniqueness and strong existence hold as well.

Proof. This follows from a generalized Yamada-Watanabe theorem of Kurtz [Kur07]. [

A standard compactness argument allows us to construct a weak solution to (3.1) for
o € C7 withy > (1 — H)/H. Hence, weak uniqueness and strong existence follow under
the assumptions of Theorem 3.1.1.

3.2.3 Stochastic estimates

Here we provide technical estimates on integrals involving Gaussian processes. Skipping
their proofs will not affect further reading.

Definition 3.2.8. We define the Riemann—Liouville process by

t
B ::/ (t—r)H’%dWr.
0

In computations later, we use the Mandelbrot—van Ness representation [MV68]: for
t > 0 we have

t 1
BtH:/ Ku(t,r)dW,, Kg(t,r) =t —r)T2 — (=) 2, (3.16)

where (W;)icr is a two-sided Brownian motion. We note that the process
(Bﬁt - E[Bﬁt‘U(Wr 17 < v)])exo

has the law of B. Due to this relation, we need some computations involving B.

As in B throughout the chapter the process B takes values in R%2. We remark that
for H € (1/3,1/2) the process B can be lifted to the second order geometric rough path
(e.g. [FH20, Chap. 10]). Below, integrals with respect to B” are understood as rough
integral.

Lemma 3.2.9. Let H € (1/3,1), g € C*(R%,R) and a be a d, x dy matrix. We have the
identity
d1

t ) 1 . t
E[/ g(an)dBf”} = 52&”/ rQH_lﬁjPﬂaaTg(O)dr.

j=1 s
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Proof. We will drop superscripts of H. We first note that, due to Gaussianity,
g9(aB,) — e.B,, ¢ :=E[(B})*|'E[g(aB,)B}]

is orthogonal to B¢ in L?(IP). Therefore,

E[ / t g(azsr)dzz:;} :E[ / t chidBfi]
_ Ly / cdB)?] - : / ' dE[(BiY]

and we obtain

B [ otesas] = 5 [ Blotas)815 log B Pr

Since E[(B!)?] = 5-r*!, we obtain

/t lg(aB, )B%]—log]E[(B%) dr_H/ o(aB,)Bi]dr

N —

) E[ / t g(aB3, )dlS” —H / g(alB,)Bi]dr.

To compute further, let NV be the standard normal distribution on R?, so that

7nH H

(5w

The Gaussian integration by parts yields

E[g(aB,)B] = aN> N]

Therefore,

E[/: dlS” ;Zaﬂ/ 2H - 115: Jg mNﬂd

1

:§Zaﬁ/ TQH_lﬁjP%ng(O)dr. O
j=1 s
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Lemma 3.2.10. Let g: R% — R be such that g(Bs) € L*(P). Then we have

t
E[g(BH) [ BHEiaB?I] = 11{2
S s,T T 2

Proof. We drop scripts on H. If i = j, the identity is trivial, since the rough path of B is
geometric. We therefore assume below that 7 # j. Since i # j, the random variable

t
| B.a5;

belongs to the second order Wiener chaos. The Wiener chaos expansion yields

l9(BI)B.Y B

t
]E[g(BS) / Bg,rng} — E[(BiB) ‘E[¢(B,)B.B|E BlBﬂ / B, dBJ

Since (B, B) £ (7, B'), we have

BZBJ/ B’ dBJ = B’BJ/ B” dl’)’Z
and
B’B’/ Bl dB” = B‘BJ /l’)’Z dB? + /BJ de
[BiBiBitB] il-
Therefore,
o) [, 08)) =SB Bl (B BB B,

— JElo(B)B, Bl

and the proof is established. [

3.3 Young case

Throughout the section we fix the Hurst parameter H € (1/2,1) and the final time
T € (0,00). We simply write B for the fractional Brownian motion. Our goal is to prove
pathwise uniqueness of the Young SDE

dXt = O'(Xt)dBt, XO =X
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for o € C" withy > 1/(2H), or Theorem 3.1.1 for H > 1/2. As explained in Section 3.1,
the key is to obtain a stochastic estimate on

/s F(X,)dB,

for an irregular f and a path X controlled by B, which is the subject of the next section.

3.3.1 Young integral with irregular integrand

The following is a probabilistic notion of controlled path.

Definition 3.3.1. Let 5 € (0,1] and B be a (F;)-fractional Brownian motion. For
K € (1,00) and (F;)-adapted processes (X, X'), valued in R% and in the space of d; X da
matrices respectively, we write (X, X') € DK if

e we have H H
X;t Lr(P)
sup ————— <00 Vp < oo
o<s<t<T (t— 8)PH
and
R37t = Xs,t — X;Bs,ta 0 S s<t S T
satisfies

sup M <00, Wp< oo
o<s<i<T (t — 5)1+AH ; 7
* we have K~ < Xj(X))" < K forall t € [0,T].

We write

|| X5 ol o) || Rs tl| o)
X[ := sup || X’ + sup = =
i1l OStET 1Xell oo 0§s<£)§T (t—s)PH  gcscicr (t — 5)U+AH

The main goal of this section is the following.

Theorem 3.3.2. Let H € (1/2,1), 8 € (55,1, (X,X’) € DK, f € CY(R",R),

oH >
p € [2,00) and y € (57 — 1,0). Then for s < t we have

ks Il [(8 = )T 41X, (¢ — 5)HFAEDH],

~Y

Lr(P)

H / (X8,
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Proof. We decompose the proof into five steps.

Step 1. Firstly, we can assume that B has Mandelbrot—van Ness representation (3.16).
Indeed, by Skorokhod’s theorem (e.g. [Kal21, Theorem 8.17]), we can enlarge the original
probability space so that we have W and (3.16) holds. Set

Fp = U(XS,X;,WS 15 < t).

We claim that W is a (ft)—Brownian motion. Indeed, fix s > 0, and set

t
Tw(t) == EH/ (t — T)H’%dwﬁ t>s.

We observe the identity
t s s
W, = / Ky(t,r)dW, + / Ky (t,r)dW, — / K(t,r)dW,.
s 0 —00

As I corresponds to the fractional differential/integral operator of order H — 1/2, it is
invertible. Since (W,),<; is measurable with respect to G; := o (W, : r < s), we can write

Wi = W = F(W, = Wo)szrer, (Wo)s)

with some measurable map F'. Since (W, — W;)s<,<; is independent of F;, we see that
W, — W, is independent of H, := o(X,, X/ : r < s) conditionally on G,. On the other
hand, Wt — WS is independent of G,. Hence, by the chain rule (e.g. [Kal21, Theorem 8.12]),
W, — W is independent of Fo=G,V H,.

Below, although it is an abuse of notation, we write ¥ and JF; for W and .7}15 We write
E,[] := E[|F,].

Step 2. Our strategy is to apply Gerencsér’s shifted stochastic sewing (Theorem 1.1.1
witha =0and v = s — (t — $)) to the germ

t
Ay i=Eo iy / (Xt + X!y Barny)dB,. (3.17)
In this step, we will show that in L?(PP)
t
/; f(XT)dBT B wisaparlt%tIif)ln of [s,t], Z AS/’t,. (318)
|7|—0 [s.t']em

We setv := s — (t — s) and

t
A, = / f(X, + X'B,,)dB,.
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We first see that

t
/ f(Xr)dBT B 7r1§apar1t}t11£1n of [s,t], Z AO/ it (3.19)
s |7|—0 [s' t']em

Indeed, we have

X,)dB, — AY,| < X,)dB, — f(X,)Bs,

+ ’Ag,t - f(Xv + X;Bv,r)Bs,t|
+ ’f(Xs)Bs,t - f(Xv + X;Bv,r)Bs,t|-

By the fundamental estimate of Young’s integral, we obtain

Xr)dBr - f(Xs)Bs,t

o S Il X, (8 = s) I,
1AS: = f(Xo + X\ Buy) sth 1 Fller 12X [l (2 = 5) .
In addition, since
[f(Xo) = f(Xo + X, Bug)l < | fller| Rosl,
we get

1F(Xo)Bss = F(Xo + X[ Bos) Baallpy < [ fllor 1X [l (2 — ).

Therefore, by the uniqueness part of the sewing lemma, the identity (3.19) is established.
To see (3.18), we note that

1Asall, S (8 =) ALl S (= 9)"

and E,[As; — Ag’t] = (. Therefore, the identity (3.18) is proved by the uniqueness part of
the stochastic sewing lemma.

Step 3. We set
v B t
:/ K@t r)dw,, B ::/ K(t, r)dW,

Let B = B for some v < s. By Lemma 3.2.9, for g € C"'(R%,R) and for a d; x d,
matrix a,

t
E[ / g(aB dB’ Zaﬂ / 2H-1aj7>(r_2132HaaTg(0)dr. (3.20)
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Step 4. Recall the germ A, ; from (3.17). Here we prove
1Asillp S I fllen(t — 5)FDH.
For v := s — (t — s), we observe
t ~ .
As :/ E[f(z + J‘J(yw + B,))] |w:Xu7x’:X£7y:Y”YrUdT

t
+ E/ f(x+ 2 (yo, + B,))dB,

=: 1 + .

r=X,,r’ :X,{) Y=Y

We compute

t
_ / .
h= /s Povest v ryrd (Xo + Koo )Y, dr
and by Lemma 3.2.1
H,P%XL(X{))T]CHLOO /SK HfHC“/(T — U)'YH.

Since

and Y is Gaussian, we have
1Vl S Yl S (r—v)f 3.21)

Therefore,

t
Il S 1ler [ =0 5 (s = )

To estimate /5, note by (3.20) that
1 a7 - )
I =3 (X)) / (r = 00 Pon o FX + XY
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Since by Lemma 3.2.1
||P(T v) X/(X/)Tf (X + X’UY;JUT))HCl 5 (T - U)H(’Y_l)HfHCW
we obtain

¢
[ L2]lp S ||f||07/ (r — )2 HHHODar < || Fllov (t — s)OHDE,

Step 5. We prove for s < ¢

B e 4unilly S 17 Ier Xyt = )45, i s 25
In view of Theorem 1.1.1, this step will complete the proof.
We set
spi=s—(t—s), Ssyi=s—(u—35), sz =u—(t—u).
We have
Es, 0Asu: = Eg, (I3 + 1],
where

Iy = K, / (F(Xo + X! Boy) — f(Xo, + X', By, ) }dB,,

= S3/ {f(Xs, + X By, ) — f(Xs, + X, By ) YdB,.

Since the estimate of /3 and that of I, are similar, we only estimate /3. For j = 1,2, we
observe

B / f(ij + X‘;J BSJ’T)dBT =E,, / f(XSj + X;jBSj,T)K*SZdT
+ E,, / f(Xo, + X[ By, »)dB.
The first term is equal to

/ P(r_égi?{)QH Xé.(Xé.)Tf(ij + X;j (BSJ:SZ Y;’?r»y;&dr
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and by (3.20) the second term is equal to
1 " _ s
§X;J /8 (7, _ 82)2H 1V'P<r7;?{)2H X, (ng)Tf(ij + X;J (st,32 + }/;Q%T))d’f‘.

Hence, I3 = I5 + Is, where

b [ Pogpt g O+ X0 V2
s s1 R

F(Xg, + XL Y2 )Y 2dr,

- P(T*SQ)ZH 827 82,1
2H

X1, (X1,)T

1 u

X {Xglvlp(r*;%fHX Tf(XS1 + X;l (BS1,82 + Ytssjr))

f( X, + XY dr.

§2 7 82,7

LX)
~ XLV
2 VPt (g

Since both estimates are similar, we only estimate /5. We decompose [5 = I7 + I, where

I ;:/ (P ) o (X + XL, (B + Vi)
s s1 s1

F(Xs, + XL Y2 )Y,

— Piosy2n 5o Yo
2H

Xo (Xe)™

_ N
b= / Pocgen g g yr = Pzt gy g o 1 (Koo + XYY

Estimating /7, by Lemma 3.2.1,

1Py, oy yefler S = 52" D) f o

and

|]7| 5 ||f||07/ (T - SQ)H(7_1)|E82 [RSM’ - R827T]||Y:2|dr~

Therefore, using (3.21)

1zllp S I flle / (r = 52) OV |y, (r = s) "D (r — )" dr

Sl XNy, (¢ = )0 o
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Estimating /g, by Lemma 3.2.2,
H {P(T*;?{)QH Xél (Xél)T - P“*;?{)ZH Xég (X22)T}fHL°°
SIXG (X)) = XX = s2)™]| fllen

By (3.21)

t
Hslly < IIfIImIIIXlllzp/ (r = s2)™7(t = 5)(r — 52)"dr

S I ler X [l (8 — )0 O

3.3.2 Pathwise uniqueness

Theorem 3.3.3. Suppose that o € C7 with v > ﬁ Furthermore, suppose that oo™ is

uniformly elliptic, that is, there exists a positive K such that
K <a(yo'(y) <K
for all y € R%. Then, pathwise uniqueness holds for (3.1).
Before going to the proof of Theorem 3.3.3, we prepare the following lemma.

Lemma 3.3.4. In the setting of Theorem 3.3.3, let X be a pathwise solution. Then, we have
(X,0(X)) € DK,

Proof. Let a < H, but sufficiently close to H. The fundamental estimate of the Young
integral gives

| Xst = 0(Xo)Bog| < lloller | X [lca | Bllo (t — 5)*. (3.22)
This implies
[XNcesay < 2llollze | Blloasa (3.23)
provided ||o||cv || B|ca(jo,r) (t — 5)* Sa 1. Therefore,
X llexqomllp Spiolior 1 (3.24)
for all p < co. Combining (3.22) and (3.24), we get

1 Xaallp Spolier (=)™
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In particular, we have ||o(X)s4|l, Spo (8 — s)77. To get an estimate of the remainder
Rs,t = Xs,t - O-(XS)BS,tv
it suffices to apply the sewing lemma in L?(P) with germ
Agy = 0(Xs)Bsy. O

Proof of Theorem 3.3.3. Let o < H, but sufficiently close to H. Let X and Y be two
pathwise solutions. The fundamental estimate of the Young integral gives

t
/ 0(Z:)dB, — 0(Z:)Bsy| S llollcallZ ool Blloe (¢ — 5)* (3.25)

for Z € {X,Y}. Let (0,,)5°, be a smooth approximation in C7 of o. The estimate (3.25)
yields

lim on(Z,)dB, = lim o(Z,)dB,

uniformly in [0, T]. As the computation (3.5) shows, we have
t t
o) = aujas, = 3 [ oxt - vhavte),
0 . Jo
where

//8k0n9X + (1= 0)Y,)dB,df.

Hence, we obtain

—Y, = lim Z / (XE—YFYAVE(r). (3.26)

n=00
Now our task is to prove the convergence of V,,. By Lemma 3.3.4, we have

6X,i+ (1= )Yy = (00(X,) + (1 = 0)a(Y)) Bo + R,
with

HR th ~p,o (t - 3)(1+W)H'
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One technical problem is that the Gubinelli derivative 0o (X) + (1 — #)o(Y') might be

degenerate. (In the end, we will show that X = Y, hence it must be non-degenerate; but a

priori we do not know this.) Because of this technical problem, we proceed as follows.
Step 1. To clarify our argument, we first assume that

K72
sup [ () = o(y)| < =
z,y€R4

(3.27)

This condition implies that for all = and y we have

(o () + (1 = O)ay)]lfo(x) + (1= O)a(y)]"

(

=[o(x) + (1= 0)(o(y) — o(@))][o(z) + (1 = O)(o(y) — ()]
. K—l K_2 K—l

>K ™ — — >

- 2 4 — 4

Therefore, in combination of Lemma 3.3.4, we see that
(0X + (1 —0)Y,00(X) + (1 —0)o(Y)) € D/,

Theorem 3.3.2 yields

By Kolmogorov’s continuity theorem, we see that there exists a process V* such that for
any 8 < vH,

Seako |00 — Omllor (t — )7
p

t
/ Onloy — o) (0X} + (1 —0)X?)dB,

Tim [[[V* = V¥ sl = 0
Since vH > 1/2, we may take § > 1/2. Therefore, recalling (3.26) we observe

t
X, =Y, =) / (X; —YHdv!  as.
k 0

As this shows that X — Y solves the linear Young differential equation

dxy = fod%k, x9 =0,
k

we see that X — Y =0 a.s.
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Step 2. Now we do not assume (3.27). The new ingredient is a stopping time argument.
We choose ¢ > 0 so that

K72

swp_Jo(x) —o(y) < o
z,y:|le—y|<e

and we set

TW :=inf{t>0:|X;, —z| >¢/20r |V, — 2| > ¢/2}
and inductively

TO :=inf{t > TV | X, — Xpan| > e/20r [Y; — Yyay| >e/2}.

IfTO <T,

g = max{|Xrw» — Xpa-v|, [Yro — Yra-n [}
co(or) Y oo oy HTW — T
The a priori estimate (3.23) implies that

max{ || Xllce, [[Yllce} So.Bliceorm 1

< max{]| X|

and hence

7@ _ pli=1) >

~a,||Bllce (0,17

1. (3.28)

uniformly over 7, as long as 7 < T.
To see that X = Y up to time 7™, let ™) be a y-Holder map such that ) = ¢ in an
e-neighborhood of the initial condition = and such that

1 1 K2
suplo () — 0V )] < *
x7y
For Z € {X,Y}, we set
t
z" —I—i-/ oW (Z,)dr,
0

and

v (Dk / / Deon(0XWY + (1 — 0)Y,V)dodB,.
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CHAPTER 3. FRACTIONAL YOUNG AND ROUGH DIFFERENTIAL EQUATIONS

Up to time TV, we have
k Byqy Wk
-Y = nhm E / (X =Y7T) (r).

Due to our choice of o(!), the argument of Step 1 shows that AR converges to some 1/ (1)-#
in C?, and that X = Y up to time 7).

Step 3. Obviously we want to repeat the operation of Step 2, but now there is a small
problem that X« is random. For this sake, let (z™),,cn be a countable dense set of R,
and let 0™ be a y-Holder map such that 0™ = ¢ in an e-neighborhood of 2™ and such that

K72
sup|o™(z) — o™ (y)| < :

(3.29)
T,y 4

For each m and Z € {X, Y}, we set

S () = U(Zt)l{thﬂ)} + O-m(Zt)l{t>T(1)}u if 2™ — Xpo| < €/2,
‘ o(Z in{t,Tu)}), otherwise ,

m:

t
Zt(Q m) — +/ EZ,m(T)dBT7
0
t pl
VZmhk () = / / Do (0X 2™ 4 (1 — 0)Y.>™)d0dB,.
0o Jo
Notice that Z(>™ is adapted. We claim that

2,m m m «
125" = 52 (5)Bayl < (lloller + o™ e 1 21| Bllea (t — 5) % (3.30)

Indeed, by the fundamental estimate of Young’s integral, (3.30) is obvious if t < 7'M or if
s > TW. Suppose that s < TW < t. If |z, — X7 | < /2, then

2,m N
1257 — 0(Z3) B, ro0| S Nlollen | 2]/ el Blloa (t — s)E02,

()
2
|Z;<1Tt 0" (Zrw)Bray o] S o™ e[| 2]/ &al| Bllca (t — 5)H1.
Since |, — Xy | = |2 — Yro| < /2, we have

(0" (Zrw) = 0(Zs)| = |o0(Zron) = 0(Z,)| < oller | Z)1a (TD — )™

and the estimate (3.30) follows. The case where |z,,, — Xra)| > €/2 is similar.
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3.4. ROUGH CASE

Now we check that the Gubinelli derivative 3™ := §5X™ + (1 — 0)S¥™ is non-
degenerate. Indeed, for ¢t < T we have

S ()" = o(X)o(X)T = K

and for t > T the condition (3.29) implies that 3™ (¢)%0™ ()T > K1 /4. Therefore,
Theorem 3.3.2 and the Kolmogorov continuity theorem show that Vn(z’m) converges to some
V(@m) in LP(P). By the diagonalization argument, we may suppose that almost surely for
every m € Nand 0 € (0,7H) we have

lim [|[V&™ — V@™ s = 0.
n—0o0

We can find a random m so that |x,, — X;a)| < €/2. We then have
t
Xo-Yi= 3 [ (- yhavem)
k O

up to t < T, hence X = Y on [0,T7®)]. It is now clear that this algorithm can be
continued, and at some point we must have T@ > T due to (3.28). O

3.4 Rough case

Throughout this section we fix H € (1/3,1/2), and we will drop scripts on H. We always
interpret the integral of the form
t
| v,

as the rough integral with respect to the canonical lift of B (Definition 3.2.4). We consider
the rough differential equation

dXt = U(Xt)dBt, XO =X.

Given two adapted solutions X and Y, if we pretend that 0 and B are smooth, then

dq t
X, -Yi=) / (X} —YFdar, (3.31)
k=10
where

Gh = /Ot [/01 Opor (X, + (1 — e)mde] dB,
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CHAPTER 3. FRACTIONAL YOUNG AND ROUGH DIFFERENTIAL EQUATIONS

Yet, as H < 1/2, we must appropriately interpret the integral in the right-hand side of
(3.31). Since X and Y are controlled by B, it is natural to construct a joint rough path of B
and (G*)iL;:

(RGE/B@da/}wmmh/G%®uz/G%mm@ (3.32)

As in the Young case, the problem here is that o is too irregular to make sense of the
lift (3.32) by pathwise method. One obvious difference from the Young case is that we
have to make sense of iterated integrals. However, even for constructing G*, there is a new
difficulty, which we explain now. Our task is to make sense of

t
[ rxas, (3.33)
0

for an irregular f, where X is controlled by B with Gubinelli derivative X’. A similar
problem for H > 1/2 was already solved in Section 3.3 by considering the germ

t
As,t = IE:s—(t—s)/ f(Xs—(t—s) + X‘;f(tfs)Bs—(t—s),JdBr- (3.34)

The very crucial advantage for the case H > 1/2 is that we can take conditional expectation
on F,_(;—s), which allows us to perform Gaussian computations. The reason why we can
take the conditional expectation in this case is that the Holder exponent of the process (3.33)
is greater than 1/2. For H < 1/2, this is not the case, and hence we are not allowed to
consider the germ (3.34). To see further why taking the conditional expectation does not
help, we can consider the case H = 1/2; if the integral is understood in It0’s sense, (3.34)
is just 0, and this observation also implies that the germ (3.34) is not correct even for the
Stratonovich integral, in view of the It6—Stratonovich correction.

Therefore, in the rough case we have to consider the germ without conditional expectation:

t
AM:/ﬂ&+ﬁ&mww (3.35)

To get (1/2 + ¢)-exponent, we must estimate 0 A, ,, , rather than just A, ;. To this end, we
apply the shifted stochastic sewing again. That is, we apply the stochastic sewing twice —
first to estimate |0 A ||, by applying the fully shifted version, then to apply Lé&’s version
with (As ) s<t
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3.4. ROUGH CASE

3.4.1 Rough integral with irregular integrand
Technical estimates

Let us recall the Riemann-Liouville process B from Definition 3.2.8. Here we give technical
estimates involving 53, which will be necessary to estimate |0 A, +||,. Our computations
here resemble Section 1.3.

Lemma 3.4.1. Let g: R® — R be a bounded measurable function. We set
t
A= g(BIBL B, A2 = g(B) [ BB
Then, forp € [2,00) and v < s < t witht — s < s — v, we have

E[A! — 9242 < t—s\*"H — on
IE[ st 2 s,t|}—v]||p N ||g||L°°(Rd2) s — (t—s)™".

Proof. We set
Y, = / K(t,r)dW,, B, := /t K(t,r)dW,.
0 v
Note that Y = E[B|F,] and B is independent of F,. We have
Ay = g(Ye + BOIYLYY, + YIBL, + B Y, + BBl
To estimate the first three terms, observe that
Yeillp Sp (s = )" 71t = 5),  [IBually Sp (£ = 9)".

Hence, we obtain

~ S i t— s 1-H
AL, = Y. + BB Bl S gl (=) 0= 92

Similarly, A2, equals to

t t t t
oot B)| [ vidpars [ viaB [ B Ypare [ BLaB)

S S S

and

il (t S>1_ (t— )2
[e @) S .
o, P 9l Loo (R2) s — o

t
|2, - gv+ B [ B a8
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To complete the proof, it remains to observe

9(Y, + B,) /Bl dB’\F,| = IE[ (Y, + By)B. B2 ,| F.), (3.36)

which follows from Lemma 3.2.10. L]

Lemma 3.4.2. Let H € (1/3,1/2) and let E be a measurable space. Let £ be a random
variable valued in E and let 1) be a random path valued in R? such that

17s.¢llp p s~ (t—s)
forallp € [1,00) and s < t witht — s < s. Suppose that F': E x R? — R satisfies

[F (2, y1) = F(z,99)| < M(2)[yr — 9o

forall x € E and y,,y» € RY, with v € (5% — 1,1]. Finally, suppose that £,m are

independent of B. We set !
Agi = (F(& s+ Bo) + F(&,my + By)) By,
and Fy = o(&,n, B, : v < t). We then have
16Asuelly S IM(E)l2p(t — )01, (3.37)

t— g ) 1+(1-y)H

B0 As wil Folllp Spr HM(ﬁ)Hzp(s — (t — s) A (3.38)

Proof. We essentially repeat the argument of Proposition 1.3.6. We first consider the
estimate (3.37). By [LL22, Lemma 3.4], we see that

Insallp Sp (6= 5)"

for all s < ¢t. We compute
0Asup = F(En+ B)uiBy — F(&n+ B)suBy,
and
10 A el Sy M(E) [ + Butl|Bsul + 50 + Boul | Bul] -

Now it is easy to see the estimate (3.37).
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3.4. ROUGH CASE

We turn to the estimate (3.38). We set

and

; o= y=v
ai(s) == E[(BL)’] "E[F (2, ys + Bs) B o—e y—v-

5
©
I
=
b
=
=
_l’_
S\

‘We note that

IYaillpy Sps™ (=) + (s —0) (1t —s)
< (s—0) ().

As in Proposition 1.3.6, especially (1.32) and (1.35), we have

E[5A87u7t|]:v] = Dg,uyt + D

where
Dy, = (ao(t) — ao(u))Yy, + (ao(s) — ao(w))Y,,
and
Di,,, = (ai(t) — a;(w))E[B{B] ] + (ai(s) — a;(u))E[B.B! ]

(3.39)

— (ai(s) = ai(w)E[B; B, ] — (ai(t) — ai(w) E[B] B, ]

s su

The estimate as in (1.33) gives

| D2ual S5 M (s = 0) VYl |Vl + (5 — 0) 74 (E = 8)(|Yaul + [Yae))].

In view of (3.39), we obtain
1D2 0 illp Spy 1M ()12 (s = 0)OFIH=2( — )2,
Similarly, the estimate as in (1.36) gives
1D5 wtllp Spr 1M ()12 (s — 0) O DHH( — )142H,

Now the estimate (3.38) is proven.
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Lemma 3.4.3. In the setting of Lemma 3.4.2, suppose further that for every x the map
F(x,-) is locally C?, that

[VE(2,y)| + |V F(z,y)| < N(2)(1+ |y|)
for all x and vy, and that

sup [[N(§)(1 + [n:[)]2p < o0

rée[s,t]

Then we have

|

Proof. The integral fst F (&, + B,)dB, is understood as rough integral:

t
/ f(B,)dB, = lim Z ALy, (3.40)

=0 =
temr

t F F
/ F(ﬁ,nr—i-Br)dBr o (57778—1_88)_2'_ (fant‘i_Bt)BS,t ,

Sper [M(E)[l2p(t — ).

where 7 is a partition of [s, ] and

t
AL, = F(€,n, + B)Bay + VF(E, 1, + By) / B,,dB,.

(The operator V acts only on the second variable.) In view of Theorem 1.1.1 and
Lemma 3.4.2, it suffices to show

t
/ F(&m, + By)dB, = lim Z A2, (3.41)
s || — s ter
where
F F
Ag,t — (57 Ns + Bs) ;‘ (5, M + Bt)BS,t,
To this end, we apply the sewing technique. We have
AL — Ay
_ F(£7Ut+8t) - F(gans +Bs)

t
. B~ VF(€n.+B.) [ BL,d5,

1 t
= §VF(§7 Ms + Bs)Bs,t ® Bs,t - VF<£7 Ns + Bs) / Bs,rdBr + Rs,b (342)
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3.4. ROUGH CASE

where
’Rs,tl S F (t— 3)3H~
Since H > 1/3, we have

|3H—1‘

’Z Rs,t <

~w, F ‘ﬂ-
[s" t/]em

Setting A3, := A2, — AL, — R, we therefore see that

lim Al A2 = hm A a.s.
|ﬂ_‘*>0 Z ( s,t st Z

1 ‘7T| ! 4!
[ ten [s tlen

To estimate the right-hand side, we will apply the uniqueness part of Theorem 1.1.1. By the
representation (3.42), we easily obtain

1AL Ml S N + s + Bal)[l2p(t — )*,

and note that the exponent 2H is greater than 1/2. By Lemma 3.4.1,

ELASIE I S IN©Q+ Dl (=) = .

Hence, (3.41) is proven in view of (3.40) and Theorem 1.1.1. O

Main estimate

The following is the most important technical result of this section.

Theorem 3.4.4. Let H € (1/3,1/2), (X, X') € DVE, f € C?*(RY), vy € (1/H —2,1) and
€ (0, 1). Then, if |t — s| < 1, we have

dB f( s) s,t NpK'ys HfHC’y(l + |||XH| 14e)p )(t _ S)(1+’Y)H.

Proof. We set

t
Agyi= / f(X, + X'B,,)dB,. (3.43)

The integral is understood as rough integral: the map

r— f(Xs+ X.Bs,)
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is controlled by B with Gubinelli derivative f'(X; + X!B;,)X.. In particular, we have
|Asi — f(X)Bss — /(X)) XB | S (8 —s)*

for o € (1/3, H), and hence

t
/ f(X,)dB, = lim >~ Agy,

|7|—=0
[s',t']em

where 7 is a partition of [s,¢]. As in Theorem 3.3.2, we apply the stochastic sewing to
As . This time, the version of L& is sufficient (that is « = 0 and v = s in Theorem 1.1.1).
Furthermore, as valided in Step 1 of Theorem 3.3.2, we assume the Mandelbrot—van Ness
representation.

Step 1. We estimate ||0 A .||, We observe

t
§Auus = / (f(X,+ X'B,,) = f(Xu+ X'By,)}dB,

= [+ XBL) — X0+ XLBu W (3.44)
b [ U0 XBL) ~ JX 4 XBNB, (49

where
Y, = /u K(t,r)dW,, B, := /tIC(t,r)dWT. (3.46)

The integral (3.44), by the triangle inequality, is bounded by

t
I£ller [ 1+ XiBuy = (X + XiBu)P Vol
Since
Xs + XéBS,T - (Xu + X’;BU,T) = _(Xs,u - X;Bs,u) - X;uBu,r;

and HYer < (r —u)®~1, we obtain

|

t
SO 2B = St KB Yot S ISl (0 00"
“ P
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3.4. ROUGH CASE

To estimate (3.45), by Lemma 3.4.2 for v € {s,u} we have

Since

f(Xv + X{;Bv,u) + f(Xv + X:;Bv,t) B
2 u,t

t
/ f(X, + X'B,,)dB, —

p
St I fllen (8 — 5)VH.

2 2
SJ HfHCV (|Xs,u - X;Bs,up + |X;,uBu,t|7)a

we see that the L”(IP)-norm of the integral (3.45) is bounded by (up to constant)
1 llen (t = )T+ XTI fllen (8 = )0 208

Step 2. Next we estimate E[§ A, ,, ;| F,], which is essentially done in Theorem 3.3.2. As
in Step 1, Y and B are defined by (3.46). We have

t
EuéAs,u,t :Eu/ {f(Xs + X;Bs,r) - f(Xu + X;BS,T)}Y;dT
t
+E, / {f(X, + X!B,,) — f(X, + X.B,,)}dB,.
For v € {s,u}, we observe

t t
E, / F(Xo+ X\ B, ,)Vdr = / Pos e (Ko + XU(Bu 4 Yi)Vodr
u u 2H vittY

and by Step 2 of the proof of Theorem 3.3.2 we observe

t
B [ (X, + X(B., B,

1 ! _
— 5)(1/) /u (r — u)?H 1V'P(r7;22H X;(X;)Tf(X” + X} (Byu + Yu,))dr.

Hence, E,0A;.,: = Ji1 + Jo + J3, where

t
= / Pt g UK X (Ba+ Vi) = F(X 4 XY, )} dr
u 2H s\ As

129



CHAPTER 3. FRACTIONAL YOUNG AND ROUGH DIFFERENTIAL EQUATIONS
t .
b= /u (Pasert s e = Pt s o) (K X Yoy )Yodr

1 t
J3 = 5/ (r —u)?ft

X {X;VP(T_;ZQH X;(Xg)Tf(Xs + X(Bsu + Yur))

B X;VP%XJL(X;)Tf(Xu + X\ Yir) pdr.

Then the rest of the argument is identical to Step 4 of Theorem 3.3.2. (.J; corresponds to I,
Js to Ig and J3 to Ig.) In particular, we obtain

”Es[(SA&uj]HLP(]P’) 5 ”f||C’Y|||X|||(1+6)p(t _ 8)(2+7)H.

Step 3. By Theorem 1.1.1,

/5 F(X,)dB, - A,

|

By Lemma 3.4.3,

S llen [ = )"
A MX ey (8 = O 4 (1 4 (8 = ) EHDH].

f(X) + f(Xs + X(Bss)
2

HAS,t - Bs,t

Sl (e = 5)

It remains to observe

H f(Xs) + f(Xs + X.Bgy)
2

By — f(Xo)Boa| SN fllen(t = )08 -l

p

3.4.2 Iterated integrals

The goal of this section is to estimate iterated integrals in (3.32). This turns out to be easy
corollaries of Theorem 3.4.4.

Lemma 3.4.5. Let H € (1/3,1/2), (X, X’") € DYK, f € C*(RY), v € (1/H — 2,1) and
e € (0,1). Then, if |t — s| < 1, we have

|

t
/ F(X,)B dBI — f(X,)B]

S Seke 1 llor (U Xl ) (= 5) I,
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3.4. ROUGH CASE

Proof. We fix a1 < s, and we set
—_ . t . ..
A= BL, [ FOCIAB] + X,
Step 1. We show that A, ; is a correct approximation. For this sake, we set
A; t (XS)Bi,ng,t + Z B akf )legr
By definition of the rough integral, we have

/ f(X,)B.,dB! = lim Z A,

m is a partition of [s,t],
|7t|—0 [up)er

Our goal is to prove [A,, — AL | Sy (£ — )3, We compute
Ay — AL, =B, / f(X,)dB, — f(X,)BI, - Z Of(X “Bl;t)
By the fundamental estimate of the rough integral, we have

w (t=s)™,

dB f Bﬁ it Z akf le?t

N

hence A is a correct approximation.
Step 2. This time we do not need the stochastic sewing; the usual sewing in L?(IP)
suffices. We compute

t
Using Chen’s relation

BY = IB%;:Jt _ IB%;’J Bz BJ

u,t s, u " u,t

we obtain

s = =B [ SOCIABE = FOXIBL) = X, u(BE — B

131



CHAPTER 3. FRACTIONAL YOUNG AND ROUGH DIFFERENTIAL EQUATIONS

Since

1BLully S (=), B, S (E— )",
1F (X siallp S MF e XN, (¢ = ),

and by Theorem 3.4.4

Bl — f(X,)BY,

S llor (14 11X ) (= ),

we obtain

164l < 11l (14 T1X )8 = 5) .

As (2+v)H > 1, the sewing lemma in L”(IP) gives

BZ LABI — A,

Spsceey 170 (11X (8 = )7

It remains to set 7 = s. O

Lemma 3.4.6. Let H € (1/3,1/2), (X, X"),(Y,Y') € @YK, g h € C*(R?), v € (1/H —
2,1)and e € (0,1). Then, if |t — s| < 1, we have

|

t r2 . . .
[ ([ ot0aB: Yviass, - gxomvmid]

Sexen I9llerllhlles (1 + H’X|H2(1+E)P)(1 + |||Y|||2(1+6)p)(t - 5)(2“)]{-

Proof. Let 7 < s. This time our germ is

s t t
A= ([ 9(X)aB) x [ nVdBy +g(x) [ BL,h(v,)B].

S

Step 1. To see that flm 1S a correct approximation, we set

Lo=(f sg(X»dBi)h(n)Bz,t
+ OB + Y [ 9B oun(v) (v B,
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3.4. ROUGH CASE

By definition of the rough integral, we have
t T2
X, )AB, h(Y,,)AB), = A
/s (/T g( 1) m ( ) "2 Wisapart%tirgl of [s,t], Z w
|7|—0 [u,vlen
Our goal is to prove |A,, — A’ o Sw (t—s)*". We observe

AS,t - Als,t
= ([ axam)( [ h(Y)AB] — A(Y,) B, > o ()8,

+ 00 ([ BB, - hBY, ),

s

By the fundamental estimate of the rough integral, we have

t
/ h(Yr)dBi Bgt Zak lei]t

~w (t—S) H

s,r Nw (t - S)SH

t
/ Bl h(Y;)ABI — h(Y,)BY

s

Hence, fls,t 1S a correct approximation.
Step 2. Again we do not need the stochastic sewing; the usual sewing in LP(PP) suffices.
We compute

A= ([ o0xiam —gxsL) [ s
o000 [ BB
By Theorem 3.4.4 and Lemma 3.4.5,
| [ otxam: g B,
| 0am]|, £ Wbl 1Y g0~ 97,
190X sl S gllen 1 XTI (6 — 57,

t
[ o)

gy 5 Ml9ller (11X 14D (2 = 5) A,

oS ller (A 1Y o 4e) (0 s)*
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Since (2 + v)H > 1, we obtain
Setting 7 = s, we get

|

By Lemma 3.4.5,

and the proof is complete. []

/S | / 00X )AB, (Y ABE, — A

S NlgllerlItllor (1 + X llpgaeyp) (4 MY ey, (2 = ).

t T2 t
[ (] axeas, uvpasy, - o) [ nvB,dB;
S S s p

< llgllerlhllen (1 4+ M lpqreyp) (14 1Y g, (E = ).

t
JRCAERESTAL

s,t

oS Wolle (U 11Xl 4ep) (- 5)EHH,

3.4.3 Pathwise uniqueness
Our final result is the following.

Theorem 3.4.7. Let H € (1/3,1/2), v € (*z2,2) and o € C". Suppose that oo™ is

uniformly elliptic. Then, pathwise uniqueness holds for (3.1).

Before going into the proof, we need some preparations. Let p be a smooth map from
R to the space of d; x d, matrices, and let (X, X"), (Y, Y”) be paths controlled by B. We
set

GF = G[p|l = /t (/1 Oep(0X, + (1 — G)YT)dG)dBT.

The integral is understood as the rough integral, since the path

1
tis / Dup(0X, + (1 — 0)Y;)do
0

is controlled by B with Gubinelli derivative

1
ts / VOp(0X, + (1 — 0)Y,)(0X! + (1 — 0)Y/)do.
0
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3.4. ROUGH CASE

We furthermore set

t 1
G*, = GlolF, = / ( / Oup(0X, + (1~ 0)Y;)d6) B, @ dB,.
s 0

We set G* := (G*, G*). Note that for o € (1/3, H) we have

GLl 16|
16, = swp {5+ ) < (3.47)

o<s<t<r L(t—s8)*  (t—s)
for any v € (1, 2). We choose « so close to H to have
(1+7y)a>1.
Finally, we observe the following modified Chen’s relation
b =G, +Gh +Bu®Gy . (3.48)

More abstractly, we can consider any pair G = (G, G) satisfying the analytic condition
(3.47) and the algebraic condition (3.48). Let Z be a path controlled by B. It is not difficult
to see (simply by repeating the arguments in the usual rough path setting, e.g. [FH20,
Theorem 4.10]) that the integral

t
/ ZrdGr = lim (ZuGu,v + Z;guﬂ))
s Il=0 [u,vlen

exists, and we have the quantitative estimate

S Zllpell Gl (¢ = 5) e (3.49)

t
/ ZTdG’r - ZSGSJ - Z§g57t

Furthermore, as in [FH20, Theorem 4.17], we have the stability estimate: by setting

d.(G,G) == sup (’Gs’t ~ Gl | [Gue = Oul ) (3.50)
o<s<t<r v (L —8)° (t—s)e
and provided that
G, + NG, < M
for some M > 1, we have
t t
/ 2,dG, — / 2,4G| a1 Z]lpoeda (G, G (E — 5)°. (3.51)

To rigorously derive the identity (3.31), we use the following.
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Lemma 3.4.8. Let p be a smooth map from R4 to the space of di x dy matrices, and let
(X, X", (Y,Y") be paths controlled by B. We then have

t di t
[ o) = pa, =3 [ 6t - vt
Proof. We set

Ai,t = {p<Xs> - p(K)}Bs,t + {p(Xs>X; - p(K)YZ}Bs,b

dy

AL =) (XE - YOG, +{(XDF = (V) )G,

k=1

where (Z')* is the kth row of the matrix Z’ (Z € {X,Y}). Note that

[0t —ptrpas = > A

m is a partition of [0,¢],
7|0 [uv)em

d1 t
) / e = 3 A
k=170

 is a partition of [0,¢],
|7|—0 [u,v]en

Therefore, it suffices to show [A}, — A2,| < (t — 5)*". By the mean value theorem for
integrals,

X, Z / Oup(0X, + (1 = O)Y,) (X4 — vF)0
and

Vp(Xo) X{ = Vp(Yo)Y]
= Zl { /1(Xf —YF0Vp(0X, + (1 —0)Y,)(0X, + (1 —0)Y/)do

+ / VpOX, + (1 - B (X, v))do}.

We compute

di
AL, = AL =) (X = YHAL +{(XDF = (Y)azl],

k=1
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where
t 1
AL — / ( / Oup(0X, + (1 - 0)Y,)d0 ) dB,
s 0
1
- ( / Dep(6X, + (1 — e)Ys)de)Bs,t
0

- (/1 V(O + (1 - 0)Y,) (9X] + (1 - 0)Y])d9 ) B

and
t 1
st = [ ([ ouptox, + (1~ 0)v,)00) B, 0 aB,
s 0

1
- (/ Dep(0X, + (1 — Q)YS)de)IBa t
0
By the fundamental estimate of the rough integral, we have
AT+ AT S 1t = s,
and the proof is complete. ]

Proof of Theorem 3.4.7. We assume that (3.27) holds, as the general case can be handled
as in the proof of Theorem 3.3.3 by stopping time arguments. Let (X, Y") be two solutions
to (3.1). Let (0,,)5°, be a smooth approximation to o. We have

t

X, =Y, = lim | {o,(X,) = 0n(Y,)}dB,.

n—o0 0

By Lemma 3.4.8,

—Y; = lim Z/ (XF —YF)AGF[o,).

n—oo

By repeating the argument of Lemma 3.3.4, we can show that (X, 0 (X)) € DX and
similarly for Y. Therefore, by Theorem 3.4.4, Lemma 3.4.5 and the Kolmogorov criterion
for rough paths ([FH20, Theorem 3.1]), the sequence of the lifts G¥[c,,] converges in L?(IP)
to some limit G* in the metric d,, defined by (3.50). The stability estimate (3.51) yields

dy t
Xe-vi=Y [ (xF-vhack,
k=10
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The remainder estimate (3.49) shows that X — Y is controlled by (G*){, with Gubinelli
derivative X — Y. Moreover, by Lemma 3.4.6 and the Kolmogorov criterion for rough
paths, the sequence of the rough paths

Glou) = (@ o ( [ 6ol @ d6m)’ )

k=1

converges to some limit G. We claim that

t
/ (XF —vFdGk = / (XF—YF)dGE  as. (3.52)

0 0

Indeed, by definition we have

t t
/ (XF —v?)dGF — / (XF —v*)dGF = lim > Aua
0 0

m is a partition of [0,¢],
7| =0 [u,v]em

dy t
Agii= (0(X) — o (V)G — S (X! = 1)) / ¢, ®
=1 s

d1 1
:Z(Xg—y;){</ Q00X + (1 — 0)Y, / G ®de
=1 0
By Lemma 3.4.5 and Lemma 3.4.6,

< (t— 8)(1+7)H

?

1 t
I( / 00 (6X. + (1 - 0)Y.)d9) Gk, - / G, @ dG"
0 s »

and as (1 +v)H > 1 the identity (3.52) is established.
Hence, X — Y solves the linear rough differential equation

dy
Az, =Y Z}Gf, Zy =0,
k=1
and its uniqueness implies that X =Y. U
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Chapter 4

Strong regularization of differential
equations with integrable drifts by
fractional noise

We prove well-posedness and stability for stochastic differential equations with inte-
grable time-dependent drift driven by additive fractional Brownian noise whose Hurst
parameter is less than 1/2. Our result can be considered as an extension of that from
Krylov and Rockner [KROS] for Brownian motion. It holds under the entire subcritical
regime observed earlier by Galeati and Gerencsér [GG23], and improves upon previous
results of Nualart and Ouknine [NOQ3] for dimension one and of L& [LE20]. Our
methods are built around Lyons’ rough path theory, Girsanov’s theorem, the stochastic
sewing lemma, and the quantitative John—Nirenberg inequality for stochastic processes
of vanishing mean oscillation.

This chapter is based on joint work with Oleg Butkovsky and Khoa Lé.

Keywords and phrases. Stochastic differential equations, fractional Brownian motion,
regularization by noise, stochastic sewing, processes of vanishing mean oscillation,
rough paths.

MSC 2020 — 60H10, 60H50, 60G22, 60L20.
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4.1 Introduction
We consider the stochastic differential equation (SDE)
dX, = b(X,)dt +dB, X,=1x€cR? (4.1)

where b € L{LP := L([0, T]; LP(R?)) and B¥ is a fractional Brownian motion with Hurst
parameter H on a fixed filtered probability space (2, F, P, (F;)>0). The aim of this chapter
is to prove well-posedness of (4.1) and its stability under the following conditions:

1
paceflod, He(03). (4.20
H 1
d—+—<1—H, (4.2b)
p q
p>2dH (4.2¢)
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and

dH _p'—q 1
<P (5-H) ifp<(-H) andg>2 (4.2d)
P

Theorem 4.1.1 (Well-posedness). Weak existence, weak uniqueness, pathwise uniqueness
and strong existence for (4.1) hold under (4.2).

For a function b € L{L?, M, is the smallest constant M satisfying
101 o>yl Loy < ¢, (4.3)
for some constant ¢ = ¢(d, H, p, q,T'), precisely defined in (4.60).

Theorem 4.1.2 (Stability). Suppose that the condition (4.2) is satisfied. Foreachi € {1,2},
let v' € R and b € LILP, and let X' solve (4.1) with (b, x) replaced by (b', z"). Then we
have the following stability estimates.

(i) (Pathwise stability) There exist some non-negative random variables A and D such
that

||AHLW(P) fidvp)q’H’TvvablyMbQ ]' + ||b1||L§L€7

1D L2y Sdpg b zm, iy 0y 10" — b2||L§W;1’p
forallm € (0,00), and

sup | X} — X?| < e?(|z' — 2®| + D)  almost surely.
te[0,7

(ii) (Stability in moment norms) For every m € (0, 00) and

dH 1
ye(o1-H-" -2,
pq

we have

NXY = X2llerllme) Sdparransams 28— 2|+ 168 = 0 gy 10

In the above theorem and throughout the article, C” is the space of R<-valued functions
on [0, T'] with Holder regularity  and W =17 is the Sobolev space on R? of regularity —1
and integrability p.
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Remark 4.1.3. In the publication version, we will use Theorem 4.1.2 to establish so called
path-by-path uniqueness, as in [ALL23].

Remark 4.1.4. When p > 2Hd, we can choose 6 > 1 so that (p,q) = (67 p, 07 1q) still
satisfies (4.2). For any M, we have

163 ii=any g < M0N0 Gy e

Itis evident that there exists a constant M; = M;(p, q, H, d, ||V*]| ra1z) such that the condition
10" L g i > any | 7z < ¢ becomes trivial. In this case, the stability estimates in Theorem 4.1.2
are uniform with respect to the size of max; [|0°[| g1z .

When p = 2Hd, such choices are no longer possible and it is not expected to have
uniform stability estimates with respect to the norms of b, b%. This phenomenon also
happens for SDEs with Brownian motion and drift b € L¢, see [Kry21, Theorem 3.7].

On parameters

If p > max{2dH, (1 — H)~'}, our results hold under the entire subcritical regime (4.2b)
under which the fractional noise dominates at small scales. Indeed, following Galeati and
Gerencsér in [GG23], if X solves the SDE (4.1), then the scaled process Xtm =\"HX,,
solves the SDE

H 1

AX® = NI 0N ¢, Xt + dBY, (4.4)
where
bV, z) == A7 Tab(At, A\ z), BY = \HB,,.

We note that |6 | jazz = ||b| ;2 and that BV is equal to B in law. Domination of the
noise at small scales entails that the order of the drift term is smaller than that of the driving
noise as A vanishes. This enforces that
dH 1
1-H— ——->0,
p q
which is exactly the last condition (4.2b).
Let us explain technical conditions (4.2c) and (4.2d). Both conditions are due to
Girsanov’s arguments. The condition (4.2d) ensures that the drift term

t
Fs / by (X,)dr
0
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belongs to the Cameron—Martin space H of the fractional Brownian motion, and the
condition (4.2c) ensures that the Cameron—Martin norm of the drift satisfies the strong
Novikov’s condition, that is

E[exp ()\H/O bT(XT)dr“iH>] < oo, VYA>0.

If ¢ = oo, which includes the case where b is time-independent, our condition (4.2)
simplifies as follows. The condition (4.2d) becomes

Hd 1 Hd
H+7<§+7, p<(1—H)71. 4.5)

Hence, the condition (4.2) reduces to H € (0, %) and

[1,00]N(2H/(1 — H), 00|, ifd=1,
p € ¢ [max{l,4H} oo| \ {4H}, ifd=2,
2dH, o), ifd >3

In particular, for d = 1 it allows b € L. provided H < %
Krylov and Rockner in [KROS5] obtained similar results for the Brownian motion. Setting

H = % in our condition (4.2), we recover their condition
d 1 1
—t+—-<—=, p>2 (4.6)
2p  q 2

In this sense, our results can be viewed as an extension of their work when the driving
process is a fractional Brownian with H < 1/2. In the case when H > 1/2, we expect
that certain positive regularity, say in Sobolev scale, is necessary for uniqueness of strong
solutions. However, this situation will not be considered herein.

Organization of the chapter

The rest of the chapter is organized as follows. In Section 4.1.1, we review some literatures
and discuss their connections with our results. In Section 4.1.2, we explain our strategy to
prove Theorem 4.1.1 and Theorem 4.1.2. Section 4.2 reviews basics of SDEs with fractional
Brownian motion and prove weak well-posedness. In Section 4.3 we prove Theorem 4.1.1,
and in Section 4.4 we prove Theorem 4.1.2.
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4.1.1 Literatures and discussions

[ll-posed differential equations sometimes become well-posed by an addition of an irregular
noise. This phenomenon is called regularization by noise. The study of regularization by
Brownian noise has along history and can be dated back to classical works of Zvonkin [Zvo74]
and Veterennikov [Ver81]. In the seminal work [KROS5] of Krylov and Rockner, the first
result on strong well-posedness with L] L2-drift in arbitrary finite dimensions is obtained.
More precisely, they prove strong well-posedness (pathwise uniqueness and strong existence)
of (4.1) with H = % under (4.6). The work [KROS5] has inspired many others, notably
Zhang’s extension to multiplicative noise in [Zhal0]. More recently, the critical case
is addresses by Rockner and Zhao in [RZ23; RZ21] and independently by Krylov in
[Kry21]. Other directions include stability and numerical approximations with sharp rates,
as discussed in [LL22; GL23; Lé22].

Surprisingly, prior to [KR05], Nualart and Ouknine [NOO3], building upon their earlier
work [NOO2], showed regularization by fractional noise for SDEs with integrable drifts
although only in dimension one. Their arguments are based on Girsanov’s theorem and the
comparison principle, the latter being specific to dimension one. It is worth noting that the
arguments from [NOO3] also works for the case of driving Brownian noise. Yet, due to the
use of the comparison principle, their arguments cannot translate to higher dimensional
settings. Proving regularization by fractional noise in multi-dimensions requires more
robust methods, which forego both one-dimensional and Markovian techniques.

Different approaches have been developed for regularization by fractional Brownian
noise in multi-dimensions. Catellier and Gubinelli in [CG16], building upon [Dav07],
introduce a path-by-path approach lying on the framework of nonlinear Young differential
equations. Bafios, Nilssen and Proske in [BNP20] employ tools from Malliavin calculus to
construct strong solutions. The L& in [L.é20] initiates the stochastic sewing techniques and
proves the strong well-posedness of (4.1) provided that

dH 1 1
—+-<=-—H, p>2, q>2. 4.7)
pq 2
Stochastic sewing techniques are also used in [GG23] to show strong well-posedness for

equation (4.1) where the drift belongs to L{C2 for &« € R and ¢ € (1, oo] satisfying

1
“Hat—— <1-H 4.8)
min(q, 2)

In view of the embedding L?(RY) — C~%?(R?), their results allow drifts in L{L2 with
p € [1,00], ¢ € (1, 00] satisfying
dH
— + —<1-H. (4.9)
p  min(g,2)
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Yet, this is still not optimal compared to (4.2) because for ¢ > 2, the condition (4.9) renders
to % < % — H. The arguments from [GG23] are not applicable under (4.2). In fact, for

q > 2, any similar strategy using the embedding L?(R?) — C~%/?(R?) would eventually
lead to the non-optimal condition (4.7). Therefore, our results are complementary to [GG23]
and improve upon the previous related works.

Stability estimates of SDEs with irregular drift play an important intermediate role to
derive other applications in distribution dependent SDEs [GH22], reflected SDEs [GM23],
deriving sharp strong convergence rate of numerical approximations [DGL21; LL22; L.&22].
For Brownian noise, a typical approach to derive stability is the Zvonkin transformation,
[DGL21; LL22; GL23]. For fractional Brownian noise, Zvonkin transformation is no longer
available, nevertheless, one can utilize Holder regularity and deduce stability results from
that of Young—Lyons equations ([Lyo94]). This connection was observed in [L&20] and
developed further in [Ath+21; GH22; GG23; GM23]. In our situation, the relevant Holder
exponent vanishes, and we propose two different ways to capture regularity, one is to use
pathwise variations and the other is to use stochastic mean oscillations in combination
with Lyons’ signature. Using pathwise variations, we can resort to stability properties of
Young—Lyons equations once again to obtain some desirable stability estimates in pathwise
sense (but not in any moment norm, because of some issues of exponential integrability).
Using the latter method, we can resort to stability properties of (random) Lyons rough
differential equations to obtain stability estimates in any positive moments.

When H € (i, %), one may consider the multiplicative noise by the rough path theory
of Lyons [Lyo98], with recent progress reported by Dareiotis and Gerencsér [DG22] and
Catellier and Duboscq [CD22]. Yet another interesting program is to extend our results to
stochastic partial differential equations as in [BM19; Ath+21].

4.1.2 Strategies of proofs
Weak existence

It is known that the validity of Girsanov’s theorem implies existence of a weak solution.
In [NOO3; Lé20], using moment calculations, the authors verify Novikov’s condition for
Girsanov’s theorem under the condition

dH 1 1

+-<=, p=>2.
P q 2

Instead of moment methods, we apply the quantitative John—Nirenberg inequality for
stochastic processes of vanishing mean oscillation (VMO) from [L&22] (or alternatively,
the quantitative Khasminski lemma from [LL22]) to establish exponential integrability for
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certain random integrals related to the Novikov’s condition. This allows us to extend the
arguments from [NOO3; Lé20] under the regime (4.2).

Uniqueness and stability

We continue with the setup in Theorem 4.1.2. The difference X* = X' — X? of two
solutions solves the equation

dX? = X2dV +dR, X& =z —2? (4.10)

where
t ol t
Vim [ [ wieextea-oxisan ko= [0 - )0 X2
o Jo 0

If b has continuous bounded derivative, equation (4.10) is a perturbed ODE, whose known
properties can be utilized to derive estimations on X . When b! is irregular, it is noted
in [Le20] that (4.10) can be interpreted as a Young—Lyons differential equation ([Lyo94]).
The aforementioned work, however, treated (4.10) in the framework of Holder continuous
functions, which only works under the non-optimal condition (4.7). In contrast, we show
that the process V' has finite p-variation for a p which is less than but arbitrarily close to 2.
This allows employment of Lyons’ approach to (4.10) in [Lyo94] to derive pathwise stability
and hence, pathwise uniqueness.

To show that V' has the necessary variational regularity, we apply the stochastic sewing
lemma with control. A change of measure links V" directly to the process

t
Uy = / Vbl (B,)dr. (4.11)
0

The stochastic sewing lemma relates the moment norm of U; — Uj to that of the germ

t t
Ay = ES/ bl (B,)dr = ]ES/ b (Ey(B,) + (B, — E,B,))dr.

s

In [L&20], moments of A, ; are estimated from above by constant multiples of
Hd
10" gz (¢ — )5

by utilizing the local nondeterminism property that Var(B, — E,B,) 2 (r — s)?". In our
argument, we take into account the randomness of the Fs-measurable part E; B, additionally,
which leads to the following estimate with improved variational regularity

_dH _g_1
HAs,tHLP([P) Ssor HblHLq([s,t];Lg)(t—S)l =g,
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As in [GG23], we make use of the fact that (s,t) > [|b'||fa(js.22) is a control. The
stochastic sewing lemma with control then yields that

_dH _H-1
HUt - Us”LP(P) S s P ”blqu([s’t];Lg)(t - 8)1 H q. (412)

When regularity is measured by variations, this estimate has higher regularity counting,
(1 — H) to be exact. This allows us to show that the path U given by (4.11) has finite
p-variation for any p > ﬁ, and hence for some p < 2.

The estimate (4.54) does not imply stability in any moment norm because of the lack
of exponential integrability of ||V'||7 . and [|[U]|? . Although similar problems involving
exponential integrability have been resolved in literatures ([CLL13] uses a clever argument
based on Gaussian concentration inequality, [GG23] uses a stochastic sewing argument built
on Azuma—-Hoeffding inequality), we are not able to apply these methods in our situation.

We thus adopt a different perspective, inspired by [FHL23; Ath+21], by estimating
moments of X2 directly from equation (4.10). To employ this approach, one relies on the

modulus of mean oscillation of the driving process V. In fact, we have

EiV, — V| Flll oo dH 1
[VIvmor = sup IELV: ol <oo, yi=1—-H-——"—"_-2,
s<t (t—5>7 P q

Under (4.2), v is positive but can be arbitrarily small. Therefore, in view of Lyons’ rough
path theory, to obtain closed estimates for X from (4.10), we have to construct a rough
path lift V on V' and consider (4.10) as a rough differential equation. The construction and
the estimate of such rough path lift (see Lemma 4.4.8) are based upon VMO-type estimate
of the p-variation of V. We then apply the John—Nirenberg inequality (Proposition 4.2.8)
and the sewing lemma to obtain moment estimates for the integral fst X2dV. Combined
with (4.10), we obtain that

IX2 = X3 emy S IXEzm(t = 8) + 1X 2 ler o (t — 5)*
+ [ Be = Bl )

Another stochastic sewing argument in combination with John—Nirenberg inequality
(Lemma 4.4.3) shows that

1R = Ryllomy S 10" = %[l a1 (t — 5)7.

From here, standard Gronwall argument is applied, which yields strong stability in moment
norms.
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CHAPTER 4. STRONG REGULARIZATION BY FRACTIONAL NOISE

Notation

Throughout the chapter we fix the dimension d, the Hurst parameter H € (0, 2) the
integrability parameters p, ¢ € [1,00) and the final time 7" € [0, c0). Note that 7" is a fixed
positive number, not a stopping time. We will write

161/ Lo ts.:8) += /||b 170 gy dr q, 10l a2y = 110l Lagom; ey

Remark 4.1.5. We can assume without loss of generality that both p, ¢ are finite. This
allows us to approximate any element of L] L2 by smooth functions. Since we consider the
fixed time interval [0, T, the condition ¢ < oo causes no harm. The case p = oo is already
covered by [GG23]. Indeed, we can use the embedding L{L° — L{C% for some o < 0
such that (4.8) holds.

Given a path f: [0,7] — E we write f;, := f; — f;. Given a two-parameter maps
(Ast)s<t We write

5As,u,t = As,t — As,u — Au,t- (413)

We denote by ||| p-var;[s, the p-variation norm [FV10, Definition 5.1]. That is,

1

Hpr—var;[s,t] = (Sup Z |ws,t|p>pa

T [uv]en

where the supremum is over all partitions 7 of the interval [s,t]. We simply write

||*[| p-var := ||| p-var; 0,77 The following inequalities hold: for s < u <t
U012 vaggong + 1018 vag)? < MNllaris < N0l pvasiond + 0l pvasgug: — @.14)
We write |||/, := ||-||zm @), Es[-] := E[-|Fs] (When the filtration (F) is obvious from the

context) and

1 X1G [ = E[XG], I XIG mlln == TIX]G |- (4.15)
We write A < B if there exists a constant C' € (0, c0) depending on irrelevant parameters
such that A < C'B. If we want to emphasize dependency on parameters, say «, 3, . . ., we
write A <, 5. B. In this chapter, we will not write down dependency on d, H, p, q.

4.2 Weak well-posedness

The goal of this section is to prove weak well-posedness for (4.1) and Girsanov’s theorem
for the solutions.
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4.2.1 Preliminaries
Review of fractional SDEs

Recall the notion of (F;)-fractional Brownian motion from Definition 3.2.3.

Definition 4.2.1. We say that a quintuple

(Qu (E)te[O,Tb P? (Bt>t€[O,T]; (Xt)te[o,T])

is a weak solution to (4.1) if the following conditions are satisfied.
(i) The triplet (€2, (F;)ico,r), ) is a complete filtered probability space.
(i) The process B is a (F;)-fractional Brownian motion.

(iii) The process X is (F;)-adapted and satisfies a.s.

Fis by(X)) € LM([0,T]), K;Il(/' b (X, )dr) € H'(0.7))

(iv) We have
t
Xt:x—i—/ b,(X,)dr + B, Vt€[0,T).
0

We say that weak uniqueness holds for (4.1) if the law of X is unique.

Remark 4.2.2. The technical second condition of (iii) is expected to be removed for the
publication, by proving path-by-path uniqueness.

Definition 4.2.3. Given a filtered probability space (€2, (F;):>0, P) with (F;)-fractional
Brownian motion B, we say that a process X is a pathwise solution to (4.1) if X satisfies
the conditions (iii) and (iv) of Definition 4.2.1. We say that pathwise uniqueness for (4.1)
holds if two pathwise solutions to (4.1) are indistinguishable. A pathwise solution is called
a strong solution if it is adapted to the natural filtration generated by 5. We say that strong
existence holds if there exists a strong solution.

Remark 4.2.4. In view of a general version of the Yamada-Watanabe theorem proved by
Kurtz [Kur(7], to prove Theorem 4.1.1 it suffices to prove weak existence and pathwise
uniqueness. Following the arguments of [LL20, Theorem 6.1] with new ingredient of
a VMO-type estimate from [L&22], we will prove weak existence in Proposition 4.2.11.
Pathwise uniquness will be proven in Section 4.3.
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CHAPTER 4. STRONG REGULARIZATION BY FRACTIONAL NOISE

Girsanov’s theorem

Our argument relies on the following Girsanov’s theorem. Since the Cameron—Martin space
of the Brownian motion is

{6 € H'([0,T]): o =0},

the Cameron—Martin space H!! of the fractional Brownian motion B¥ is

{¢ tgo =0, KI:IIQS S H1<[07T]>}

with
folhar = ([ |sia'e] )

For an adapted process ¢ belonging to H*! and a stopping time 7, we set

T d T
(o) = exp{ — —Kﬁlgb(t)th — %/0

d 2
3 EK,;lgzs(zf)‘ dt}. (4.16)

Lemma 4.2.5. For an adapted process ¢ with ¢g = 0, we define the measure P by
dP := &7 (¢)dP. If

Eexp (A||¢][3) < oo, VA€ [0,00), 4.17)

then P is a probability measure and the law of B + ¢ under P is that of B under P.
Furthermore, for any \ € R, we have

Elér(9)"] < Elexp(X[[9][5)]*. (4.18)
Proof. Wehave B+ ¢ = Ky(W + K Ij,lgzﬁ). The condition (4.17) corresponds to the strong

Novikov’s condition, and the first claim follows from Girsanov’s theorem of the Brownian
motion. To obtain the last inequality, by the Cauchy—Schwarz inequality,

Elr(6)"] < Elér(~200)) Elexp(X ]3]
Note that t — &(—2\¢) is a martingale, hence E[{7(—2\¢)] = 1. O
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VMO estimates

In order to prove weak well-posedness of (4.1), we rely on Girsanov’s theorem (Lemma 4.2.5).
To this end (and also for later purposes), we need the notion of processes of vanishing mean
oscillation (VMO processes) and sharp inequalities for those processes.

Definition 4.2.6. We say that a map (s, t) — w(s,t) (s < t) is a control if it is continuous
with w(s, s) = 0 and
w(s,u) +w(u,t) <w(s,t) foralls <u <t.

Note that the map (s, t) — ||b||%q([s 4.z 18 a control. Given two controls w; and w; and
two nonnegative numbers vy, v5 with 1y + v5 > 1, the map

(s,t) = wi(s,t) ws(s,t)"?
1s again a control, see [FV10, Exercise 1.9]. In particular, if % + % < 1, the map

dH _ 1 (1,ﬂ)71

(87 t) = (HbHLq([s,t];Lg)(t - 8)17775)
is a control. These facts will be used throughout the chapter.

Definition 4.2.7 ([Lé22, Definitions 1.1 and 3.2]). Recall the definition of the conditional
moment from (4.15). A (F;)-adapted continuous process (Z;);c(o,7 is called a process of
vanishing mean oscillation, which will be called a VMO process afterwards, if

lim sup 11 Zs,e| Fsll1]lso = O.
hl0 g<s<t<T,t—s<h

For a VMO process Z and r € [1,00), we write Z € VMO if there exists a control w
such that
Zetl Fellilloo < w(s, )7, Vs <t. (4.19)

The following result is called the quantitative John—Nirenberg inequality for VMO
processes.

Proposition 4.2.8 ([Lé22, Corollary 3.5]). Let Z € VMO™ with r € (1, 00) and (4.19)

satisfied. Then, there exists a constant ¢ = c,, depending only on r, such that provided
1

Aw (0, 7)1 < ¢ we have

E[e?supesrlZe=Zol ™1 Sraw,r) 1. (4.20)

The proportional constant depends increasingly on X and w(0,T'). Furthermore, for every
m € [1,00) we have

1 Zsel Fllmlloo e T(L+m(1 = 1/r))w(s, 1)

m
T

(4.21)
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4.2.2 Weak solutions and stochastic estimates

To construct a weak solution, we apply Girsanov’s theorem. To this end, the following
quantitative bounds will be important.

Lemma 4.2.9. Under % + 2 <1, let f € L{L? and set

¢ = /Ot f(r, B,)dr

Then, for any ¢ € (0,1 — ‘%H - %), there exists a constant \ depending only on d, H,p, q, ¢
such that

0<s<t<T ||b| a((s,;22) (t — s)' T T

E[exp{A( sup Gsal )‘”’H <1 4.22)

Proof. In view of Kolmogorov-type estimate (e.g. [GG23, Lemma A.2]'), it suffices to
show

sup E[exp{A( sal 1)“}} <1 (4.23)

0<s<i<T ”bHL‘I([s,t};Lg)(t - S) B

for some small A. To this end, we will apply the quantitative John—Nirenberg inequality
(4.21). By [Le20, Lemma 6.4], we have

dH 1

t
. [ 170 Bldr £ [ oaan (¢ — 9% %

That is, ¢ belongs to VMOU—dH/p)™ var, Hence, the estimate (4.21) yields

dHm _am 1
65l < CT (14 T) 1 llogsaazy (6 = ) (4.24)
for every m € [1,00) and for some C' depending only on H, p, q, d. For simplicity, we set
« = - and

aH

1(s,0) = [|fllLo(nzny(t =)' 7 "o,
Applying (4.24), we obtain

E[eXp{wZﬁ;’tt'))aH_;%(n(iw) Ellgs™] < Z

which gives the desired estimate provided A < (2C") 1. O

!In the cited reference, the estimate is given only for dH/p = 2, but it is evident that the same argument
yields the estimate for the general case.
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4.2. WEAK WELL-POSEDNESS

Lemma 4.2.10. In the setting of Lemma 4.2.9, there exists a constant €, depending only on
d, H,p, q, with the following property: for any A\, M € [0, co0) with

1 dH _ p

(||f1{|f|>M}||LquT 7)011{—1 <€,

we have

P P
Asu an 2T M)aH
Ele Pi<r|9t] | <rae rM)am.

Proof. Tt is shown that ¢ belongs to VMOU®—4#/ P70 iy the proof of Lemma 4.2.9.
Therefore, the estimate (4.20) yields

P
Asup;<r|¢i| 4H
[P ST 1

provided that
)‘”f“LqLP _l_dTH)(dLH_l) <cg,

where c is a constant depending only on d, H, p,q. To deal with large A, as in [GG23,
Lemma C.3], we decompose b by f = f) + f@) where fV (¢, 2) := f(t,2)L1{(40) >0}

We observe, with o := d’}{, that

|| < MT+/ | f |dr)
<2 () 42 / O B)ar)”

Hence,

T 6
B ol'] < ¢ O B exp {207 / O Br) )
0

We choose M so that

20| F¢ HLqu <c

and we complete the proof. O]
Now we can prove weak existence.

Proposition 4.2.11. Under (4.2), there exists a weak solution to (4.1) such that the law of

the solution is equivalent to that of B.

157



CHAPTER 4. STRONG REGULARIZATION BY FRACTIONAL NOISE

Proof. We set

t
¢t = / bT(BT)dT
0
As in [LE20, Theorem 6.1], it suffices to check (strong) Novikov’s condition:
Eexp(A|¢l[3,) < 00, YA >0.

To estimate it, as used in [GG23, Appendix C], we introduce the Besov—Nikolskii norm:

T—h 1
£l = sup 00( [ funalds)”
hel0,T] 0

Fix a small ¢ € (0, H). According to [GG23, Proposition C.1], we have
I8l S 1911 e e

We will estimate [|¢|| .. Decomposing b by

b= blypj<nry + blgp>nry,

we can assume that ||b|| s> < 1, which eases the task of tracking constants.
Case 1: p > (1 — H)~'. By Holder’s inequality, we obtain

o < =9 ( [ moraar) ™

Therefore, by setting

t
wp:/an&Mn
0

we obtain

T—h T—h 2(1 H)
/ |@ﬁums§MH/ Yy,
0 0

Note that |b| =7 € LI 20 454, due to (4.2),

dH 1
pl—H)>1, q(1—H)>1, + < 1.
(1-4) A=m=zl o —m T =
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By Lemma 4.2.9, there exists a constant A, depending only on d, H, p, q, €, such that
p(1—
Elexp(MIl 7 g o ST (4.25)

We deonote by M (b, \) the smallest M such that

p(1—H)
,\(2|||b‘ﬁ1 ||LQ<1*H>LP<1*H>T T p(fHH)) 1 ¢
t xT

(6T >}
where € is the constant from Lemma 4.2.10. Then, by Lemma 4.2.10,

p(1—H)

E[er ™ | <ramon 1, VA (4.26)

We thus estimate

T—h
/ P ds
0

<|Jp||' 2 L RO iy gy )+
*7( H) q1-H) ©
and
T—h
/ 0ssnfPds < RO S S g Ly
0 p(l—H) q(i—-H) ¢
Choosing ¢ so small that 1 — p(ffH) — q(liH) — £ > £, we obtain
1-2H
||¢||NH+ +e,2 NT ||¢| ,W,W,E@D

+ (26 AN 2 20D,
Hence, for an appropriately small § = 6(d, H, p, ¢, T") we have

H 1-2H _H
2N gree S AT gy O

p(1-H) q(1-H)

for some C' = C(d, H,p, q,T,¢). In view of (4.25) and (4.26), setting

M = M(b,2(2A )25 1)
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we have
2(1 H) 1-2H
o] Al __dH _ 2(1—H) ,,2(1—H)
E[ ol NH+3+e 2] SE[@ o' Tpa-m q(l H) E]%E[@CAM My ]%
ST,A,M 1

provided that 2(1 — H) < - (1 H) , but this is the condition (4.2¢).
Case 2: ¢ < 2. Set

[
[[¢]] ‘= sup |_dH _1
0<s<t<T ||b]| pa(s,g;zn)(t —8) 7 "«

‘We estimate

T—h 21 : T—h
| tonanls < [P0 [ b s
S [olPR 0 b2 .

Therefore, if ¢ is small,

101l s 2 S 0l g2 91,

and, noting that % > 2 due to (4.2b), it remains to apply Lemma 4.2.9.
Case 3: p < (1 — H) ' and ¢ > 2. We define v € [0,1] by

L 2—1 _ q—l
pl—qg!
so that the relation
2_1/ . 2(1 —v) _1
p q
holds. We then bound
—v v —v —v) *df*** v
|¢s,t’ = |¢s,t’1 ‘¢s,t| S [[¢]]1 h(l ”bHLq(St];Lg)‘QSSA .

By Holder’s inequality,
1 t 1
olus < (6= 55 ([ b Bar)”
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Hence,

T—h
/ ‘¢s s+h‘2d8 S [[¢]]2(1_V)h2(1*’/)(1*%f%75)+2y(1,%)
0
2v

T— (1-v) s+h 2v
X/o HbHLq ([5,5+H]; Lp)(/ b|P (r, Br)dr> ds.

Since

2v

(s,8) > B2 0 /|b]prB )ar)

18 a control, we have

2v

T—h s+h 2u
/0 ||bHLq [S S+h] LP)(/ |b|p(’r’7 BT)dT) dS

2v

< mo ([ e mar)

‘We therefore arrive at the estimate

T—h
/ |Gssin]ds < [S2E RO G g -p)+
0

2v

< b2 /|b]prB jar) *.

The condition (4.2d) exactly ensures that the exponent

dH 1 1
20-1)(1- =2 - - =)+ 2w(1--) +1
p q p
is greater than 2 + 1 + ¢ for small €. Thus,
1010 10 S [61207( / P (r. B >dr)
< A A[G]% + / bP(r, B,)dr *.
It remains to apply Lemma 4.2.9 and Lemma 4.2.10. [
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Remark 4.2.12. The above proof shows that there exist 0 = 0(d,H,p) and © =
D(d, H,p,q,T) such that provided that

161 ez ary |z < DA
we have
Eexp(A|@l56) Sranm 1, 4.27)
where ¢; := fg b, (B, )dr. This is carefully demonstrated in Case 1 of the proof.

Proposition 4.2.13. Weak uniqueness holds for (4.1).

Proof. Let f: R™ — R be a bounded continuous function and
t,...,t, €10,7).

Let X be a solution to (4.1). We need to show that
E[f (X, .-, X,)]

is uniquely characterized. For M > 1, we set

r(w) = n {1 gT:/Ot K;(/O' by )ar ) s)

with inf @ :=T'. By the condition (iii) of Definition 4.2.1, it suffices to show that
E[F(X)]7 F<X> = f(th/\TM(X)J o 7th/\7'M(X))7

is uniquely characterized. We set £ := &-( [, b,(X,)dr) and dP(w) := &(w)dP(w). By
Girsanov’s theorem, the law of (X; — x):<,(x) under P is equal to that of (Bt)i<r(B+a)
under P. Furthermore, since

2
dSZM}

W= K (X -2 / b(X,)dr ),
0
with some measurable map G': C([0, T]; RY) — R, we can write
ER(X) = G(X).
Therefore,
E[F(X)] = E[G(B)],

and the right-hand side depends only on the law of B. ]
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As the final result of this section, we prove a quantitative version of Girsanov’s theorem.

Lemma 4.2.14. Let X be a pathwise solution to (4.1) and set

o ::/0 b (X, )dr.

Under (4.2), there exist ¢ = ¢(d, H,p) and € = &(d, H,p,q,T) such that for any \ > 2
provided that

101 (= ary [ pary < €A
we have
Eexp(Al|@||3r) Srawm 1. (4.28)
In particular, the law of X — x is equivalent to that of B.

Proof. In view of Lemma 4.2.5, it suffices to show (4.28). By Proposition 4.2.13, weak
uniqueness is established. Therefore, we can prove the estimate for a particular solution,
which will be the one constructed in Proposition 4.2.11. Namely, we will show that for

t
3, = / by (B,)dr,
0
we have

]E[ST(Q;)€)\H$”§"H] <pam 1

for all A > 0. To this end, let 0 and ® be the constants in Remark 4.2.12. By the
Cauchy—Schwarz inequality,

Bler(6)eMohn) < E[exp (2 /0 T% ,;%(t)dwtﬂ IS

By Lemma 4.2.5,
T d ~ % T2 1
E[exp (2 /0 aK,;1¢(t)clv1/t)] < B[t
Hence,
Eler(3)eNn] < Bl o3a1s
We cansete :=0and € :=27°D. O
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The following observation will be used in Section 4.4.1. Let B be the Riemann—Liouville
process

t
B, :=cy / (t —r)?-2aw,, (4.29)
0

for some constant cy € (0, 00). Then, we have analogous results of this section for X.In
fact, we replace the operator K; by the Riemann-Liouville operator

t
Tqw(t) == CH/ (t—r)H_%dwr,
0

and repeat the argument.
. . . 1 P
The operator Iy, H < %, corresponds to the fractional derivative 0z H and it is
invertible with

¢
I w(t) = EH/ (t — T)*H*%wrdr
0

for some constant ;. The operator I;;* corresponds to the fractional integral J1_py of

order  — H. The Cameron-Martin space H? of B is
{w:we=0, Ij'we H'([0,T))} = {w: wy =0, 8" 2w € L*([0,T]) }.

To see an analogue of Proposition 4.2.11, first observe that the local nondeterminism
estimate

Var(Bt — Es [Bt]) z (t — S)2H
holds. Therefore, we have the VMO estimate

1_dH _1

t
E. / £ BIAr S oz ( — )54,

To estimate the Cameron—Martin norm of gzNS = fo br(Br)dr, by [GLY15, Theorem 3.1], we
have

- 5 - -
161l = 102 Bl 2oy S 19140

Thus, by [GG23, Proposition C.1],

(o))’

quH?-lH St H¢HNH+%+5,2-

Hence, repeating the arguments of Proposition 4.2.11 and Lemma 4.2.14, we obtain the
following.
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Lemma 4.2.15. Let 1) be a deterministic continuous path in R with ny = 0, and let X be a
pathwise solution to the SDE
dXt = Z;t(Xt)dt + d’r]t + dBt, XO = 57

with b € LILP, and set

b= | B (X)dr

Under (4.2), there exist ¢ = ¢(d, H,p) and ¢ = (}E(d, H,p,q,T) such that for any \ > 2
provided that

”81{|I§\2M}HL§L§ O
we have
E exp(A| 6]l ) Sroan L.
In particular, the law of X — & — 1 is equivalent to that of B.
Proof. Setting X, := X, — 1, and b () := by(x + 1), we have
dX, = b,(X;)dt + dB,.

Since |01 (psanyllzeze = 01gp=anyllzezz. we can assume that 7 = 0. Then, as the
preceeding discussion shows, the claim follows as in Lemma 4.2.14. [

4.3 Strong well-posedness

As explained in Remark Remark 4.2.4, in order to prove Theorem 4.1.1, it remains to prove
pathwise uniqueness. We essentially follow the idea from [L.é20] which deduces pathwise
uniqueness from pathwise regularity of the stochastic integral

t
/ Vb(r, B,)dr. (4.30)
0

The main difference in our approach is that, instead of using Holder regularity, we use
variational regularity, which only requires estimations of moments up to order p-th. This
allows us to obtain a desirable estimate on (4.30) beyond the regime of the previous work
[LE20]. Before estimating (4.30), we prepare some technical lemmas.
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4.3.1 Some technical estimates

We will need two technical lemmas: taming singularity (Lemma 4.3.1) and Kolmogorov’s
continuity theorem for p-variation (Lemma 4.3.2).

Lemma 4.3.1. Let (), ||-||) be a normed vector space and let Y : [0,T] — ) be continuous.
Suppose that for 0 < n < a < oo and C € [0, 00) we have

|Yer|| S Cs" %t —s)Y, forO<s<t<T.
Then
|Yarll S CEV* —s7) for0<s<t<T.
Proof. To get rid of the singularity, as in [BFG21], we set 7(t) := t” for some 3 > 1. Then
Yr(o).rio | < OOt — 7|
If t — s < s, we have
th— s’ = /t Bri=tdr < ptP7t — s) g 7Pt — 5.
Therefore,
Yrroll S 870Dt — 5).

We choose 5 = a/n so that 3(n — a) + (5 — 1)a = 0. Hence, if (t — s) < s, we have

Yrs)roll Sam C(E—5)% (4.31)

To remove the condition (f — s) < s, we use an idea from [LL22, Lemma 3.4]. For
s < t, without assuming (¢ — s) < s, we set

th =5+ (t—s)27"

By the continuity of Y,

Yoo e = nh_{IOlo Z Yo rtioy)
=1

and

Yool <D 1Y rtranll-
n=1
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By our choice of t,,, we have |t,, — t,_1| = (t — $)27™ < t,,. Therefore,
1Yz().r) | Sam 022 "= 5)" Sa CE—5)"

The estimate therefore (4.31) holds without the condition |t — s| < s. We obtain the claimed
estimate by change of variables (s,t) — (s/7,¢t1/5). O

Lemma 4.3.2. Let (V;):c(0,1) be a stochastic process. Suppose that
[Vatllm < w(s, £)®
for some control w, m € (1,00) and o € (%, 1]. Then for every o/ < o with ma’ > 1
IVl aryvae ], Somavar (0, T)%

Proof. Replacing w(s,t) by w(s,t) + (t — s), we may assume that s — w(0, s) is strictly
increasing. If we set

7(t) := (w(0,-))"1(¢), V, = Vi) T = 7 HT) = w(0,T),

thenfor0<s<t¢t<T
[Vaellm < (T —s)".

Thus, for any o < a we have

|‘/St’m ~1+m(o¢—o¢’)

By [FV10, Corollary A.3], if ma’ > 1,

—1 |Vst\m
HVH (1/a’)-var Nma’ T / / ’t—8|1+ma dtds.

Therefore, since the variation is invariant under reparametrization, we obtain
o «
”HVH(I/a’)-vaer Smaa T = w(0, 7). L
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4.3.2 Pathwise uniqueness

Now we prove the most important estimate of Section 4.3.

Lemma 4.3.3. We consider
t

U, ::/ Vf.(By)dr, for f € C([0,T],C*R%)).
0

Let p, q satisfy

1 1 11
dH(——W) <min{1—H——,§—H}. (4.32)
p p q
For (0 < s <t <T, we have the estimate
_dH CH_ Ll gi(l_ 1
[Ustllpve S s ”V2||f||Lq([s,t};Lg)(t - 5)1 Hogmdi =), (4.33)

Furthermore, under (4.2a), (4.2b) and (4.5), in which case (4.32) is satisfied, for any p with

1 1
pl < 1—H—dH(];—m), (4.34)
we have
_g_dH _1
U Nl pvarllpve Sp I1f lpar2 T 7o (4.35)

Remark 4.3.4. It is straightforward to see that (4.5) follows from (4.2d). Hence, the
estimates of Lemma 4.3.3 hold under (4.2). Note also that the condition (4.32) enforces
that the right-hand side of (4.34) is greather than %

Remark 4.3.5. In fact, the estimate (4.35) holds in higher moments, see Lemma 4.4.3.

Proof. Itis convenient to use the Mandelbrot—van Ness representation (1.25). We denote by
(F1)ier the filtration generated by W. Since U is measurable with respect to B, assuming
such representation does not lose generality. To apply the stochastic sewing with control
[Lé23, Theorem 3.1], we consider the germ

t t
Ay / E,[V £(B,)]dr / VP, o fy (o[ By )dr, (436)

where

P, f(z) = (2m0) " / 2 )y,
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o(s, )’ :=E[(/;/c(r, u)dwz;)Q] . 22\7“—3\21{

Using the estimate
H
[Ase = VBt = 5)| < [ flle=lIBllonsz(t — )" 2,

we easily see that a.s.

Ust = lim E Ay
 is a partition of [s,t],
|7|—0 [u,v]en

Obviously we have E[0A; .| Fs] = 0. We observe that

(s,t) — ||f||Lq ([s,4];L2)

is a control, and by [FV 10, Exercise 1.9]

1-H—1/q

(8 t) = HfHLq [St] LP)(t - 5) 1—H

is a control. By the stochastic sewing with control [Lé23, Theorem 3.1], in order to obtain
the estimate (4.33), it suffices to show

1Asilly, S 5% || Fll ooz (t — )73 G=70 (4.37)

with p, := p V 2. Indeed, the condition (4.32) ensures that the sum of the exponents
E (1—H———dH(——i>>
q P D«
is greater than %

Recalling (4.36) and applying Minkowski’s inequality, we get
t
Al < [ IV Patur o ulBD .

To compute further, we set g,(z) := (270) %%~ $2a and

S

o0 =E[( |
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which is the variance of the Gaussian E,[B;]. We denote by * the convolution in space.

Then
||VPO'(S,T‘)2f7“( s[ ||p*
1/p«
/ ‘V g0'37“2*fr)< )’ Gp(s,r)? (x)d:z:)

< HVgo(s,r)2 * fr ||LP* (R4) ng(s,r)2 ||Z*oo(Rd)

1
< VG0 gl ety 902 1 e

where we applied Young’s convolution inequality in the last step with

1 1 1
D+ p p
‘We have
ng(s,r)2 HLOO(Rd) = (27T)7d/2p(8, T.)fd
and
/ 1 €T p/ _ p’lx\2
I - a(s,r)2
||v90(s,r)2 HLp’ (R9) /Rd (27r0(3’ 7")2)dp//2 ‘ 0'(8, 7”)2 e 2 dz
< o(s, r)*(d+1)p’+d.
Therefore,
/ _d
1V Pye o BB lpe S N1 Folloqearo (s, 7) =057 (s )~
A d(i_ 1 d
= [1frl oy (s,m) "G5 p(s, 7)o
Since
o(s,r) 2z (r— S)H
and
ple,r)’” 2 / (r—w® e 2 — (r = ) > 21,
0
we obtain

_dH 11
IV oz fr (B [B)lp S 577 (r = )65 £ oy
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Then,
t
_dH _H_ 1_ 1
1Al < 55 / (r — &) HHG=3 | £, odr

t 1—1
<sczlvf(/ (r—s)” (H+dH(%7pi))qL1> q||f||Lq([S7ﬂ;Lg)

_dH 1
5 § B ”fHLq([s,t];Lg)(t - 8)1 " dH(P p*)’

where (4.32) is used in the second inequality to have the integral finite. The estimate (4.37)
is now proven, hence so is the estimate (4.33).

We notice that the conditions (4.2a), (4.2b) and (4.5) imply (4.32). Indeed, the only
non-trivial part is to see

dH 1 dH
i gt (4.43)
P 2 2
forpe[(1-H)',2).IfHd>1-2 then Ly dd - and the (4.43) follows from

(4.2b). If Hd < 1 — 2, then

N | —

thanks to the condition p > (1 — H) L.
To show (4.35), we thus apply Lemma 4.3.1 to obtain that

_g_1_ 1_1
||Usth ||fHLq(st]Lp)(t - S )1 HogmdH(y p*),

where 1= (1—H—%—%)/(1—H—%—d}[(%—p%)). We set

1 1
1/q 1-H-1/q— dH(E_pT)

( ) (“fHLq (Is,1];L2) )m(tﬂ _ 86) 1—H-an(i-1)

Note that the function (s,t) — w(s,t) is a control by [FV10, Exercise 1.9]. Applying
Lemma 4.3.2, for any p satisfying (4.34), we have

H—dH(=——
N Tl S w(0, 7)1 HHG=3),

which deduces the estimate (4.35). O]
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Remark 4.3.6. The only places where the specific property of B is used are (4.40) and (4.41).
Hence, the above proof works if B is replaced by a Gaussian process G such that

|1Gse = E[Gs  Filllz 2 (t =), |E[Gsil Flll2 2 s
In particular, it works for the Riemann—Liouville process (4.29).

Remark 4.3.7. Since W*? can be identified with the Triebel-Lizorkin space F},, Young’s

convolution inequality for the Triebel-Lizorkin space [KS22, Theorem 2.2] yields

lg* fllze S Ngllwrw 1f lw -1, (4.44)

where p, = p vV 2 and p’ is defined by (4.39). Using this, under (4.32) we have

| ssar

if |t — s| < 1. Indeed, by the reasoning of the above proof, it suffices to show that

—dfa 1-H—dH(:1-L
) ST ||f||Lq([s,t];W;1»P)(t —5) o)

t
‘ ]Es/ f(Br>d7" ,S S_CI%IHfHLq([s t]-W*LP)(t _ S)l_H_dH(%—p%)’
s P+ AW,
which, as demonstrated above, follows from the estimate
||PO'(S,T')2fT(ES[BT])||p* 5 3_% f7’||W;1,p(’r . S)_H_dH(%_p%)7 (445)

corresponding to (4.42). To prove (4.45), as in the computation (4.38),

a1
HPU(S,T)QfT(ES [BT])HP* < Hga(S,r)2 * fTHLf’* (Rd)ng(S,r)2 Hzgo(Rd)
1
< Wt gL ol o 5

where the last inequality is a consequence of (4.44). Since

19o(s.m2 lwrer way = 9ozl o may + 1V Go(s,m2 | Lo ey
1 1

<14 o0(s, r)_l_d(ﬁ_f*),
we obtain the estimate (4.45).

Proof of Theorem Theorem 4.1.1. As noted in Remark Remark 4.2 .4, it suffices to prove
pathwise uniqueness. Let X @) (; = 1,2) be two pathwise solutions to (4.1). Set

PV :=XO _B_ g
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Then, we have .
of) = [ bnla+ B+ of0)ar
0

Replacing b, by b,(x + -), we can assume z = 0. If (b") is a smooth approximation of b
(see Remark Remark 4.1.5), then by [Lé20, Proposition 6.8],

lim H/ b§”>(B,,+¢$i>)dr—/ (B, + 6) dr” —0
n—00 0 0 Le°(]0,17)

in L' (P) for every m € [2,00). As in [L€20, Lemma 6.12], we write

t t
/ b™ (r, B, + ¢M)dr — / o™ (r, B, + ¢\?)dr
0 0

t
= [ o) v @ao)
0

where R
v = / / Vb (B, + 061 + (1 — 0)¢?)dodu.
0 0
Thus, .
o) — o = lim [ (oY — ) - dV,™. (447)
n—oo 0

Our goal is to show that V(™ has some limit V.
Let p; € (1,2) be sufficiently close to 1 and set m := p/p;. Let p satisfy (4.34), and we
can suppose that p < 2. We see that

H”V(nl) - V ||p var m

BBy + 090 + (1= 0)6P)du|| | do.
By Lemma 4.2.14, we have
E MO8 +0=06@ 3 <wl, VA0
Therefore, by Lemma 4.2.5 and Holder’s inequality,
[ w0 b+ 060 + 1 = 0|
0 -var [l m
S | / Y — b)), (B,)du ol
0 -var
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Applying the estimate (4.35) of Lemma Lemma 4.3.3, we get
Ve = VOl Sy 167 = 00 g
Therefore, there exists a stochastic process (%)te[O,T] such that
i _ymym =
JL)IIC}O]E[HV V Hp-var] = 0.
Now observe that ¢(*) has a finite 1-variation, as dominated by the increasing process

t
tr—>/|b|r(X,§i))dr.
0

Therefore, by (4.47) a.s.

t
60 _ 5 _ / (M — ™ av,, o — 6@ 0. (4.49)
0

The uniqueness of Young’s differential equation implies (1) = ¢ or XV = X@ a5, O

4.4 Stability

We have shown that under (4.2), for given x and b, there exists a unique strong solution to
the SDE (4.1). In this section we are interested in the stability of the solution with respect
to the input data (x, b). Throughout this section, we assume (4.2).

With the result of Section 4.3, a standard argument easily enables us to prove the
pathwise stability. For i € {1,2}, let X" be the solution to

dX; =b)(X])dt +dB,, X} =2 (4.50)
We define
t pl
V, = / / Vb (X} + (1 — ) X2)dddr, (4.51)
0o Jo
whose construction was discussed in the proof of Theorem 4.1.1. Therein we showed that

| V]| pvar < 00 a.s. for any p satisfying (4.34), and in particular we can suppose that p < 2.
We also set

t
R; = / (b' — %) (r, X2)dr. (4.52)
0
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Let X2 := X! — X2, We observe

X8 = [ 0Hx) - B+ [ 0= ) X

Then, as in [L€20, Lemma 6.12] (or repeating the argument leading to (4.49)), we have

t t
/ {B(XY) — BL(X2)}dr = / X24v,
and

t
X5 = / XA2dV, + Ry, (4.53)

where the integral f; X2dV, is understood in pathwise Young sense.

Proposition 4.4.1. In the above setting, let p < 2 satisfy (4.34), and let T € (0,00). Then
there exists a positive constant ¢ = ¢(p) such that a.s.

sup X} - X < OV wtom) (12 — 22| 4 | R pvario.11)- (4.54)
te[0,T

Consequently, if X" is the solution to (4.1) with drift b" and initial condition x™ such that
lim,, b = b in L{L? and lim, 2" = 2, then

lim sup |X{' — X;°| =0 in probability.
™ t€[0,T]

Proof. From (4.53), we apply the Gronwall’s estimate in p-variation (e.g. [CDHIS,
Lemma 3.3], [GG23, Lemma B.1]) to obtain the estimate (4.54).

To prove the claim on the convergence in probability, we estimate as in (4.48), but this
time we pay more attention to proportional constants so that estimates are uniform with
respect to n. We set

t 1
yom / / VEO(0X + (1 — 6)X™)d6dr,
0 0

t
R = / (0> = ™) (r, X )dr.
0
We set

t
o i / VH(XM)dr
0

175



CHAPTER 4. STRONG REGULARIZATION BY FRACTIONAL NOISE

and ¢ := 0> + (1 — 0)¢". Let m < p V 2 and m’ be such that

1 1 1
- 4= 4.55
m p\/2+m’ ( )

By Lemma 4.2.5 and Holder’s inequality we have

Il /O VKE(B, + 61)dr

< Eler(e™") ) || /0 VbR (B,)dr

p-var llm p-varllpv2
By (4.18),
E[€T<¢n,0>—m’+1] < E[e(m/*l)QW”’eHiH]%
< ]E[64(m/_1)2”¢n”i‘H]%]E[64(m/_1)2”¢00”311{]i' (4.56)

Let ¢ and € be the constants of Remark 4.2.12. We denote by M () the smallest M/ such
that

sup|[0" Lyyr > ary [l ngre < €A
By (4.28),
E[e4(m/_1)2”¢n”§-[}]] +]E[64(m/_1)2H¢°°”iH] ST,m’,M(4(m/_1)2) 1.

On the other hand, Lemma 4.3.3 yields

HH/O Vb2 (B,)dr

pvar | pv2 Sp,T ||boo||LgL§é-

Hence, we get
IV | pvar o Spimoprcaqm—1y2y,r 1% Lage- (4.57)
In view of Remark 4.3.7, we similarly obtain
122 | pvarl b Spomprcamr—1y2),z 0% = 0% | pagy—1- (4.58)

It is important that the proportional constants do not depend on n.
Letd > 0and N > 1 be arbitrary. By (4.54),

P( sup |X}® — X{'| = 0)
te[0,T
<PV pvar = N) + PV (|27 — 2 4 [[R"| pvar) > 6).
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By (4.57), we have
. oo, > —
i sup B[Vl 2 N) = 0,

and by (4.58), for each N we have

Lim P(eU N (|22 — 27| + [| R pvar) > 6) = 0.
6—0

The convergence in probability now readily follows. ]

Remark 4.4.2. Proposition 4.4.1 shows that the solution to (4.1) is strong, without resorting
to the Yamada—Watanabe theorem.

Proposition 4.4.1 proves the first part of Theorem 4.1.2. The rest of the section is
devoted to the second part (stability in moment norms).

4.4.1 VMO estimates

The easiest way to deduce the stability estimate in L™(IP) is via the pathwise stability
estimate (4.54). However, this is only possible provided that

E[eMVIFw] < 0o forany A > 0. (4.59)

As shown in Remark 4.4.6 below, the VMO technique allows us to obtain

dH \—1
H+4l)

(
[V llovar ] < oo forany A > 0.

For (4.59) to hold, in view of (4.34) we must have

d—H+H§1—H—dH<1—L>,
p p pV2
which does not necessarily hold under (4.2).

Hence, in the full regime of (4.2) the pathwise stability estimate in Proposition 4.4.1
does not imply stability in moment norms, and we propose a new method. Our strategy is
to view (4.53) as a rough differential equation driven by a rough path lifted from V" and R,
and to employ Gronwall’s argument in the probabilistic setting. To this end, we need to
control VMO norms of the rough path lifted from V' and R. In this regard, the key is to
obtain a VMO-type estimate on p-variations of V' and R, which is the goal of this section.
Recall the notation of the conditional moment from (4.15). Let ¢ and ¢ be the constants of
Lemma 4.2.15, and set

Bar = {b € LILE : |b1gysany | pope < 4, (4.60)

The constant ¢ in (4.3) is given by E4F,
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Lemma 4.4.3. Let b',b* be smooth, let M be large enough to have b',b*> € By, and
let p < 2 satisfy (4.34). We define V and R by (4.51) and (4.52) respectively. For any
m € (0,00) and s < t, we have

_Hg—d4dH 1

IVl pvarss,nl Fsllm oo S, ar 10" paqgs,gszey (8 = ) =77 7,
_H-—d4dH _ 1
||||||R||p-var;[s,t]|~7:8||m||oo STpm,M ||b1 - b2||Lq([5,t};W;17P)(t - 3)1 oot

Remark 4.4.4. To proceed further, we make the following simple observation. Our goal is
to estimate

X = X2 [l (4.61)

As we know from Theorem 4.1.1 that X!, X? are strong solutions, (4.61) is determined by
the law of the driver B. In particular, for the sake of estimating (4.61), we can assume that
B has the Mandelbrot—van Ness representation (1.25).

As validated in the above remark, without loss of generality, we assume the representation
(1.25). This will simplify our arguments. We denote by (F;);cr the filtration generated by
W in the representation (1.25).

To prove Lemma 4.4.3, our strategy is to redo the argument of Lemma 4.3.3 under
conditioning. For a while, as assumed in Lemma 4.4.3, we suppose that b' and b* are
smooth. Furthermore, we fix a v € [0, T)). For any continuous function 7, the differential
equation

dz, = bf)+t(:pt)dt +dn, wme=vy

has a unique solution. Recall that we write B for the Riemann—Liouville process defined by
(4.29). We denote by X[y, n] the unique solution to the SDE

AX([y,n) = b (X [y, n))dt + dn, + dB,, X[y, n] = y.

Note that X[y, 7] is adapted to the filtration generated by B.
We then have

E[F<(X1}7X3)v§r§r+t)‘fv]
= E[F((X:[y'sn), Xl n))yi=xim=p" _ kor-maw, - (4.62)
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Due to this relation, we will work on X[y, 7]. We set
Vily's 2] / / Vb, (0 [yt ) + (1= 0)X7[y?, n))dodr, (4.63)
U, = / Vbr,,(B,)dr. (4.64)
0

As in the proof of Theorem 4.1.1, we deduce the estimate of V from U by Girsanov’s
theorem (Lemma 4.2.15). The following is an improvement of the estimate (4.35), in that
we can remove the restriction on the moment.

Lemma 4.4.5. Let p < 2 satisfy (4.34) and m € (0,00). We define U by (4.64) with a
smooth b*. We then have

~ _g_dH 1
11T | pvarso.q lm Spam 10| coqoasazzyt’ "7 4.

Proof. Let (G,) be the filtration generated by B. We first prove

~ _H—d4H 1
T N pvarsts 1 Gs vz lloo So 10" a(usssgszny (E = ) =77 % 7o (4.65)

Setting

/ Vbl (. + B,)dr,

we have
1T | pmvarsts. 1 Gsllpvz = 1T 1] pmvarsfo.—s) vl 2 s oryaw, -

Since by, , () := by, (x +n,) satisfies [|0"|| zazz = [|b"]| o1z, it suffices to prove (4.65) with
s=0,1i.e.

> 1-H—4H_1
Ul pvaroa vz So 108l zaquoraznyt 777,

which is essentially proven in Lemma 4.3.3 as noted in Remark 4.3.6.

Now we set i, := ||(7 || p-varsf0,y- The process &l is continuous (recall that b' is smooth),
and due to the second inequality of (4.14), we have {,; < HU || p-var;[s,- Therefore, the
estimate (4.65) implies that

_p_dH_1
et el Follilloo Sp 161 naqossorany (€ — )"~ 7.

The John—Nirenberg inequality (4.21) thus completes the proof. ]
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Remark 4.4.6. Setting U, := fg VbL(B,)dr, we similarly get

_H—d4dH 1
NNl s Fsllpvzlloo Sp 10l magis,emy (2 = 8)' =% .

Hence, the John—Nirenberg inequality (4.20) yields

AU
B[Vl 7 ] < o

for small A. Asin Lemma 4.2.10, we can remove the smallness condition of A. Furthermore,
by Girsanov’s theorem we can replace U by V' defined by (4.51).

Corollary 4.4.7. Let p < 2 satisfy (4.34) and m € (0,00). If M is large enough to have
b, 6% € By and if V[y', y?, 0] is defined by (4.63), then for any t < T we have

| Hf/[?/la QQa 7] Hp-var;[O,t] [l ST,pm,M ||bl||L‘1([v,v+t];L§)t17H777§' (4.60)
Proof. We drop dependence on y', y?, 7. Setting
t
5= [ W (X
0
then
7, = / / VIL(OX! + (1 — 0)X2)d0dr.
s JO

The Girsanov theorem (Lemma 4.2.15) and the bound similar to (4.56) yield

1

1
51112 7212 2
IV | pvarso. [l S E[e4ll¢ ||,%H] 4E[e4“¢’ H,QH} i

1 .
X / ‘ / VL (B, + 0y + (1 — 0)y2)dr a8,
0 0 p-var;[0,t] 112m
where m’ is defined by (4.55). By Lemma 4.4.5,
[ 9B+ 00 (- s
0 p-var;[0,¢] 112m
_g_dH_1
§P7m Hbl HL‘?([v,v-i-t};Lg)tl pod.
By Lemma 4.2.15, if b* € B,,, we get
E{@MWH;H] <o 1,
and the proof is complete. []

Proof of Lemma 4.4.3. In view of (4.62) and Corollary 4.4.7, the estimate for V' follows.
As for R, the proof is similar in view of Remark 4.3.7. ]
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4.4.2 Lifting paths

As in the previous section, we assume that b', b? are smooth, and we define V and R by
(4.51) and (4.52) respectively. Lemma 4.4.3 shows that

1

_Hg—4H_1
Vel Follmlloo S 18] s,y (t = )7 s,

that 1s the VMO regularity of V, and similarly that of R,is 1 — H — %. This exponent can

be arbitrarily close to 0 under (4.2). To get a closed estimate of X from the Young—Lyons
affine equation (4.53), we have to lift IV and R as a rough path of sufficient order. Here we
recall notation and very basic properties of rough paths.

Let I and O be the index sets defined by

I:={1,2,...,d}* and ©:= U [{t2end, (4.67)

n=1

For w € ©, we write |w| = n if w € I{12+"} Forw € © and k < |w| we set

Wi = Wl kWt Wk el 42, )

We define the lift V = (V*),co from V' as follows. If |w| = 1 then we set V¢, :=
V,*W — v For |w| = n, we define inductively

b
VY, = / Ve gD

S

as Young’s integral [You36]. The lift V satisfies the algebraic condition called Chen’s
relation:

n—1 : B
VO, = VR, =V, =) VTV Vs <u <t (4.68)
k=1

It also follows from [Lyo98] that for each w € O, there exists a (deterministic) constant
C'(w) such that

Ve < C) VMg s <t (4.69)

In the same way, we can construct a joint lift

(ij)je{l ..... d};weO
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of R and V as follows. For |w| = 1 we set
U = / R}, dv;*®
and inductively for |w| > 1,

) t ot
e = / Ul gyt

s

where integrals are defined in Young sense. We similarly have Chen’s identity and
U251 S IR gt VI g (4.70)
Lemma 4.4.8. Let M be large enough to have b', b* € Byy. For everym € (0, 00), we have

_H—dH_1
NVEAFllmlloc St 16 nas,gnny(t = s)' 7 73,

jw 1-
I ||Uj's,t|F8||m||oo S Mw bt — bQHLq([s,t];WQLP)(t —s) P

Proof. It easily follows from Lemma 4.4.3, (4.69) and (4.70). O

4.4.3 Gronwall’s argument in the probabilistic setting

The goal of this section is to prove the second part of Theorem 4.1.2, see the end of this
section. As in the previous sections, we define V" and R by (4.51) and (4.52). The signatures
(V*),, and (U7*);,, are discussed in Section 4.4.2. We assume that b" and b? are smooth,
until we come to the proof of Theorem 4.1.2.

In the rest of this section, we fix m € [2, 00) and set

dH 1
yi=1—H— " — -
p q

Recalling (4.53), set Z := X2 and z := 2! — 22 so that
d t
Z;’:sz/ ZIAVI 4+ R, i=1,2,....d. 4.71)
j=1"0

Our strategy is to employ Gronwall’s arguments directly in L™(P), using VMO estimates
from Lemma 4.4.8.
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For w € © with w(i) = (ay, az) we write w(i)(j) := a; (j = 1,2). We denote by =7’
the subset of © such that w € =7’ if and only if

wl <n, w@)(1)=7j, w(w])(2) =1
w(i)(2) = w(i +1)(1) Vi < |w| - 1.

‘We then set
1 Zualln | 5~
Zlss = sup — 4 sup (v —u)~*H)
[[ ]],t s§u<11)1§t (U_u)’y ; ; s<u<13<t( )
Jo -3 X ALY Y v
= werj2 = wecﬂl

Since b', b? are smooth, we have [ 7] Siot e I8l L

Hcl

Lemma 4.4.9. Let b*,b? € By,. If we set

A;t:_i<22gv + Z ),

=Jt —*]7,

J=1 wWEEy, wEE,

then withn = |y~ 1]

d ¢
|3 [ zavy - i,
j=1"% "

SJTvm»M <||b1||Lq([syt];L§) \% ||bl||Zq([s,t];L§)>[[Z]]s,t(t - S)WHM'

Proof. Since
V2 Siptier (8= 8)" UL Sy —eypee (8= 5) 1,

we have

lim Z AZ - lim Z Z fLVuﬂv

 is a partition of [s,t],  is a partition of [s,t],
7|0 [u,v]en 7|0 [upler j=1

d t
=> / Zidvi,
j=17%
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Hence, to obtain the claimed estimate, we apply the sewing lemma in L™ (IP). We have

d
6L =D { = >z,
PR —
Y AV - VE -V Y (U - U |
wEE?«f wEEZLl
By Chen’s identity (4.68),
w1 wt _
]~k
ngt - ngu - V;:U,t - Z Vs,u Vu,]; )
k=1
w|—1 ot _
j ' jw _ pj ]~k
ULy — Ul — UL = RLVE, + D U™V
k=1
Therefore,
d
5A?s,u,t == Z Z (Zg,u - Rg,u
J=1 weEZfﬁl
d d
I I
DS S SRR )
=1 wlegqu\ =1 “’2653717@\
d
- Z Zg,uvit'
=1 wezi\ali |
. . [w]
Using the estimate |||V | Fullinlloo Srumara 18]]0 .02 (¢ — $)“17 from Lemma 4.4.8,

we obtain

H(SAi,u,th Sm (HbHL‘I([u,t];Li) \ HbHZI([u,t];L’;))[[Z]]s,t(t - 3)(n+1)’y-

By our choice of n, the exponent is greater than 1. The claimed estimate follows from the
sewing lemma. U

Lemma 4.4.10. Let b, b* € By,. With some positive constant

C=C(d,H,p,qT,m M)
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we have
1Zsllm < C(LV ™) DT {Jz] 4 [0 = 02| pygyo10 } (= 5)7,
wheren = [y~ |, T == ||b"]| g2 and 2 = Zy = x' — 2°.
Proof. By (4.71) we have
d .
Zu~Ru=3 (X Avi+ 3 i)
=1 wesl wesl
d t d '
— Z/ ngvrji_z< Z ZIVY + Z Ugj’;).
j=1"% =1 ypesd we:Zf 1

Note by Lemma 4.4.8 that
1ZIV o St 108 2o 2| Z2 | (E = 5)117,
L Nl St (10115 1Y = B2 gy (8 = )07,

Therefore, if t — s < 1, Lemma 4.4.9 yields (with I' = ||b"[| 14,2)

|22 - i - Z(ZZ”V + 3w,

wezy! wesy" |

St (DVT "){[[Z]]s,t(t — )T || Z [l (8 — 5) DY

6 = Pl gyt = ).

This implies
[2]se < CAAVIM{[Z]s4(t = 5)7 + sup [ Z; ]l + (16" = 0]l a1 }

re(s,t]

for some C' = C(d, H,p,q, T, m, M). Hence, if

(t— s < S(CO v

we have

[Z]s0 <201V T™){ sup | Z,||lm + [|B" — bQHLqW—lp}

rels,t]
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In particular,

| Zstllm Srmar (1V F”){ sup || Z,||m + ||b" — b2HLgWI_1,p}(t — )7, (4.72)

r€(s,t]

Now set Gy := [|Z¢]| + [[D* — b?[| jayy-10. By (4.72)

|Gs,t| <T,m,M (1 V Fn>Gs(t — S)7 ift—s sT,m,M (1 V Fn)_%

~Y

By the Gronwall lemma (e.g. [Dey+19, Lemma 2.12]), we obtain

sup Gt 5 €CT(FV1)7 GO _ €CT(F\/1)7 {|Z‘ + Hbl . b2HL§W;1”’}'
te[0,7

Plugging this estimate into (4.72), we obtain the claimed estimate. [

Proof of Theorem 4.1.2. The pathwise stability is proven by Proposition 4.4.1, with A =
c(1+IV||%.y) and D = || R||yvar- To prove the stability in moment norms, thanks to the
pathwise stability, we may suppose that b!, b? are smooth. Then the claim follows from

Lemma 4.4.10. ]
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