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1 Introduction

We are witnessing rapid progress in the experimental abilities to manipulate

physical systems in their inner quantum properties such as state superposition

and entanglement.
1

Most importantly, we begin to have precise control over

complex quantum systems on scales that are out of reach of simulations on the

existing even most-powerful classical computing devices [Aru+19]. Harnessing

their computational power promises the development of digital quantum com-

puters that solve important problems much faster than any classical computer

[NC10; Fey86]. Other envisioned applications of quantum technologies include

the study of complex phases of matter in analogue simulations [CZ12] and cryp-

tographically secure communication [Ací+18]. Quantum technology promises

highly useful devices with diverse domains of application ranging from funda-

mental research to commercial businesses.

With the advent of these novel technologies comes the necessity for character-

izing their functioning. Precise characterization of quantum devices is an ubiq-

uitous task in their development. But also in the long term, it is indispensable

for the diagnostic of more advanced devices during run-time. Characterization

yields information about the actual inner-working of a quantum device such as

its imperfections. The resulting understanding is crucial in order to interpret

the output of a quantum device and eventually to improve the device’s perfor-

mance.

The characterization of quantum devices is a particularly daunting task in the

interesting regime of high complexity: For a complex quantum device full char-

acterization of a current state or the prediction of its time-evolution quickly ex-

hausts the available classical computing power, in both time and memory. But

these two tasks are crucial routines for many straight-forward approaches to

characterization. For example, a direct approach to certifying the correct func-

tioning of a quantum device is to compare its output with the prediction obtained

1

We are witnessing . . . in the last decades.] The paragraphs are based on a text published in

Ref. [4] as an introduction to quantum certi�cation protocols.
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1 Introduction

by a classical simulation of the same task. Obstacles originating in the complex-

ity of quantum devices are already encountered in the characterization and cali-

bration of the measurement devices that are used for the characterization tasks.

Ironically, it is the same complexity that makes quantum technology powerful

that hinders their characterization. This challenging prospective has motivated

extensive e�ort in developing characterization tools for quantum devices in the

last decades [5].

In this thesis, we study approaches to the identi�cation of models of the abstract

physical layer of a quantum device. The abstract physical layer is modelled by

quantum states, processes, gate sets and generators of time evolutions. The focus

shall be on approaches that relax the assumptions on the quantum measurement

device that is used in the data acquisition. Typically, inaccuracy in the imple-

mentation and characterization of the measurement device reduce the precision

of the result of a characterization protocol. We study methods for the identi�ca-

tion of quantum states, processes, gate sets and Hamiltonians that are to some

degree robust against imperfections in the measurement device. We refer to such

protocols as semi-device-dependent. The emphasis of this work is on a rigorous

study of the resource requirements of the protocol and in particular the scaling

of the resources. An omni-present theme in this work is the e�cient exploita-

tion of structural assumption on the quantum system that allow for a reduction

in resource requirements. We aim at giving rigorous mathematical guarantees

for the protocols that delineate their realm of applicability in practice. The ana-

lytical work is accompanied by evaluations of the performance of the protocols

in numerical simulations. In the last part of the thesis we demonstrate one of

the methods on experimental data from a superconducting qubit device. Occa-

sionally, the development of technical methods will brie�y bring us to further

applications and questions outside the �eld of quantum characterization, such

as the requirements for the equilibration of quantum systems, and the nature of

the sign problem arising in the classical Monte-Carlo simulations of quantum

systems.

In the centre of the thesis are three di�erent identi�cation tasks:

1. The identi�cation of a low-rank quantum state from measurements taken

with a partially uncalibrated measurement device—Blind quantum state
tomography.

2. The identi�cation of a unitary quantum process from data that is robust

against imperfections in the state preparation and measurement device—

Compressive randomized benchmarking tomography

12



1.1 Semi-device-dependent quantum characterization—an overview

3. The high-precision and robust identi�cation of non-interacting Hamilto-

nians in an analogue quantum simulation—Hamiltonian identi�cation for
analogue simulations.

These tasks of quantum system identi�cation can be seen as special instances of

tasks that aim at gaining information about a quantum system. In the following

section we outline a unifying, abstract framework to more broadly classify and

discuss quantum characterization protocols. Taking this abstract view point al-

lows us to develop a convenient language to present our identi�cation schemes

and compare them to other approaches in the literature.

1.1 Semi-device-dependent quantum
characterization—an overview

Quantum characterization is the task of extracting information from a quantum

system. Such information can for example be a detailed description of the sys-

tem’s state, speci�c quantities such as an entanglement measure between two

subsystems, or a certi�cate ensuring the compliance of a quantum device with

its speci�cation.

Some quantum characterization tasks are among the most fundamental chal-

lenges in the physical sciences itself. For example, the question to infer a Hamil-

tonian that governs a system’s time evolution from measured data is essential

to uncovering the laws of nature. Results in quantum characterization can po-

tentially provide valuable tools to advance our understanding of nature as well

as identifying fundamental obstacles to gaining knowledge about nature itself,

e.g. [CEW12]. The need for diagnostic tools in the quantum technologies in addi-

tion provides a very concrete motivation to enhance our abilities of characteriz-

ing quantum systems. Concrete technological challenges are also the motivation

of the protocols in this work.

In the context of quantum technologies, one is interested in characterizing quan-
tum devices. A full-�edged quantum device is described using multiple layers

of abstraction from the physical layer over, e.g. abstract physical and logical

gate layers, to an application layer, see Figure 1.1. On the ‘lowest’ physical

layer of quantum devices is a physical system that can be prepared and ma-

nipulated coherently in its quantum states. The idea of digital quantum com-

puters [NC10] is to control two states of a quantum system, giving rise to the

two-dimensional state space of a quantum bit (qubit), and construct arrays of

13



1 Introduction

such two-level systems. Gate-based quantum computing further implements a

set of coherent operations to manipulate the states of multiple qubit systems si-

multaneously, allowing for the creation of entanglement in between. The most

prominent implementation for qubits and gates today are trapped atomic ions

[BW08; MK13; Hom+09] and super-conducting circuits [NPT99; DS13; Che+14].

Other candidates include nitrogen vacancy centres [HA08] and integrated pho-

tonics [Lan+09]. In this work we already substantially abstract from the under-

lying physical system of a quantum device. We describe a quantum device in

terms of quantum states and processes that already live in and operate on the

abstract two-level Hilbert spaces introducing an abstract physical layer. Thereby

we model the imperfect functioning of the device in its abstract description in-

dependent of the underlying physical system. At the same time this makes the

characterization protocols and theoretical results widely applicable to a variety

of di�erent quantum technology platforms provided that they already allow for

the required degree of abstraction. In the following we will often refer to the

abstract physical layer simply as the physical layer.

On top of the abstract physical layer comes the manipulation of the quantum

system in terms of quantum gates, a set of unitary operation that constitute the

basic computational operations of the quantum computing device. In the circuit

model a computation of a quantum computer is described by a sequence of dif-

ferent quantum gates (a circuit) operating on the registers of qubits. In the plain

vanilla model, the qubit registers are initialized in a certain coherent quantum

states and after the execution of the circuit a measurement is performed. It is

widely believed that the envisioned quantum algorithms require accurately im-

plemented large circuits of gates and can only be run on a quantum computer

that, on top of the physical qubit and gate layers, implement a logical layer. Here

multiple physical qubits encode the information of a single logical qubit such

that the system can be corrected against errors that appear when manipulating

the physical qubits [CTV17]. On top of such a stack of layers, one can build an

application layer that actually implements the speci�c tasks of the device, such

as running a quantum algorithm [NC10]. Note that the layer stack sketched

here is adequate to abstractly model current quantum devices for our purposes.

Other task might require a considerably more re�ned description, especially as

the technological development progresses.

When a device already comes with multiple layers of abstraction, one can also

characterize the device on the higher levels. A simple quantum device—say, a de-

vice that prepares a photon pair in a certain quantum state on demand—might be

fully described by its physical layer that coincides with its application layer. For

14



1.1 Semi-device-dependent quantum characterization—an overview

Figure 1.1: A complex quantum device comprises multiple abstraction layers. Di�erent protocols

aim at certifying the functioning of the device on di�erent layers. NISQ devices are

not expected to feature a powerful logical gate layer. Instead applications are directly

tailored to the physical gate layer.

simple devices, thus, the terms quantum system characterization and quantum
device characterization are often used interchangeably.

Current and near-term quantum computing devices are still expected to be fairly

noisy and of intermediate size, so-called noisy and intermediate scale quantum

(NISQ) devices [Pre18]. NISQ devices only allow for few abstractions above the

physical layer in terms of (noisy) gate sets. This becomes apparent when looking

at one of the major milestones, that was recently achieved [Aru+19], in the de-

velopment of quantum computers, so-called quantum (computational) supremacy
[Pre13]. In the past decade theoretical evidence has been collected that it is in-

tractable to produce samples from the measurement output distribution of cer-

tain ensembles of quantum states on a classical computer [AA11; BJS10; TD04;

BH13; Han+18; Bou+18; Haf+20a; Dal+20; MT19; MT20]. The idea of quan-

tum supremacy demonstrations is to prepare quantum states of such ensembles

and perform the measurements on a quantum device, thus, outperforming cur-

rent classical computers in this speci�c task. Proposals exist in many �avours

for di�erent platforms [Boi+18; BJS10; BMZ16; Mor17; BMS17; BFK18; GWD17;

Ber+18; FU16; FH16; MB17]. The task is obviously custom-tailored to the way

quantum computing devices work and not necessarily understood to have an-

other useful application beyond the demonstration of quantum supremacy. In

our abstract model, the application layer of such a NISQ device performing a

quantum supremacy demonstration is described by its output measurement dis-

tribution and directly docks to the physical gate layer.

Numerous �elds within the quantum sciences have tackled the problem of char-

acterization on di�erent levels of abstraction and from a variety of perspectives.

Over the last decades, a large landscape of di�erent protocols has been devel-
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1 Introduction

oped. These protocols operate under distinct assumptions and resource require-

ments that are well-motivated by the di�erent perspectives. For example, certi-

fying the correct function of a small-scale quantum device used in basic research

allows one to invest sizeable e�ort, might aim at plenty of discriminative infor-

mation, and can rely on a precise model of the physics of the device. A very

di�erent example is the certi�cation of a server, correctly performing a quantum

computation, by a remote client with standard desktop hardware. Such a proto-

col should be light-weight on the client-side and not rely on a detailed model of

the server. Nonetheless, as we outline below identifying the information gain,

the underlying model assumptions and resource requirements allows one to get

a panoramic view of the landscape of quantum characterization protocols in an

abstract framework.
2

Characterization can refer to multiple di�erent tasks which in the literature is

referred to by di�erent names and sometimes contradictory names.
3

For this rea-

son, it is instructive to begin with brie�y collecting the di�erent tasks of quan-

tum characterization, we have encountered in the literature. This glossary also

makes the narrower focus of this thesis on identi�cation tasks more precise. We

do not claim that the list is exhaustive.

The tasks of quantum device characterization

Identification (⊃ tomography). Given a set, a hypothesis class, of elements

each potentially describing the device, identi�cation is the task to deter-

mine the unique element describing the device from data. For example,

a device producing a physical system in a certain quantum state, a state-

preparation device, is described by the quantum state it produces. Quan-
tum state tomography [Hra97; Jam+01] refers to the identi�cation task of,

given measurement data on multiple output states of the device, to deter-

mine the quantum state it produces. The hypothesis class can be further

2

We described this framework together with colleagues in the overview article, Ref. [5]. The

version presented here is re�ned and adapted to the context of the thesis and pro�ted greatly

from repeated discussions with Dominik Hangleiter and Nathan Walk. The basic organizing

principles of the framework are widely used in the presentation of many works and to a large

degree common knowledge in the �eld. See also Ref. [Fla17].

3

Wallman, Emerson & Hincks [WFH18] coined the term quantum characterization, veri�ca-

tion and validation (QCVV) for a collection of protocols in the context of digital quantum

computation. We perceive the emphasis in QCVV on veri�cation and validation among other

potentially relevant tasks such as estimation, identi�cation and benchmarking that all qualify

as quantum characterization as rather unmotivated. For this reason we refer to the broad �eld

as quantum (device) characterization.

16



1.1 Semi-device-dependent quantum characterization—an overview

restricted, e.g. assuming that the state is pure [Gro+10]. The task of quan-

tum state tomography, the related quantum process tomography [CN97]

and Hamiltonian identi�cation take the key roles in this thesis. This al-

lows us to be very brief at this point.

Learning. A related task to identi�cation is learning. Given a hypothesis class,

learning is the task to determine an element within the class that repro-

duces the measurement outcomes including those that the device has not

yet seen. In contrast to identi�cation, learning is not required to have a

unique result. Ref. [CT21] gives an introduction into neural-networks-

based methods for quantum characterization and provides references to

recent seminal examples.

Estimation. Instead of asking for an entire description of a quantum state or

process, one might be interested in a single quantity, e.g. the expectation

value of an observable or the distance to a reference state in a certain mea-

sure. We refer to a protocol that infers a speci�c quantity of the device as

an estimation protocol. Of course there exist many quantities one can be

interested in and accordingly a plethora of estimation protocols. In Ref. [4]

we review a couple of estimation protocols for di�erent distance measures

on quantum states and processes. Fidelity measures with respect to pure

reference states and unitary processes in particular are linear functions

on the state and process giving rise to particularly simple protocols. In

this context, there are two �avours of protocols. One common set of tech-

niques uses importance sampling to classically select the measurements

that reveal most information about the quantity, e.g. [FL11]. The second

class, nowadays sometimes referred to as shadow estimation [HKP20; 4;

9], �xes an informationally complete and even over-complete frame for

the measurement. Thereby, in the measured samples, information of the

quantum state is revealed with high-probability and a large class of quan-

tities can be estimated from the samples.

Tomography protocols will typically build upon an estimation protocol

that produces the classical input to the reconstruction protocol. Such in-

put can be expectation values of observables or so-called average gate �-

delities, see Chapter 5.

Certification (⊃ verification, property testing) is the task of either ‘accept-

ing’ or ‘rejecting’ the hypothesis that the device is functioning correctly

according to a given speci�cation. As there are many ways to write a spec-

i�cation for a quantum device on the di�erent levels of abstraction, there

are multiple types of certi�cation tasks arising. We give a panoramic tour
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through the zoo of existing certi�cation protocols for quantum devices in

the review Ref. [5]. Abstractly, robust notions of certi�cation typically

make use of a measure of quality that quanti�es the deviation from the

ideal implementation. The speci�cation is then formulated as a threshold

ε for this measure of quality. If the deviation according to the measure

of quality is above the threshold the ε-certi�cation protocol should ‘re-

ject’ with high probability and ‘accept’ an ideal implementation, see e.g.

Ref. [4, Section B] or Ref. [Han20] for a formal de�nition. On the physical

layer the device is abstractly modelled by quantum states and processes.

The ideal functioning of the device might require it to arrive in a speci�c

quantum state after a sequence of operations or to apply a speci�c quan-

tum operation on demand. Theoretically attractive measures of qualities

for the states and processes are the trace distance and the diamond norm

that have the operational interpretation of worst-case measures. A selec-

tion of prominent examples of certi�cation protocols for the physical layer

of NISQ devices is presented in Ref. [4].

Another way to formulate a speci�cation in this context is to require the

device to arrive at a state within a certain subset of all quantum states,

i.e. that the state have a certain property. Protocols for testing for such

properties are reviewed in Ref. [Md16].

Borrowing from the slang of software development, certi�cation on the

application level is also referred to as veri�cation. Ref. [GKK19] provides

a review of existing approaches for verifying quantum computations by a

client on remote devices that are close to being able to accurately perform

a universal set of operations.

Benchmarking is the task of comparing the performance of two devices. Bench-

marking especially provides pragmatic impetus towards measures of qual-

ity that are not directly interpretable on the physical layer. Instead, for the

benchmarking of quantum devices it su�ces to implicitly de�ne a repro-

ducible performance measure directly in terms of a protocol that estimates

it. The only requirement is that the measure is expected to be correlated

with the performance in practically relevant tasks.

Validation is the task of ensuring that the speci�cation that was certi�ed is

suitable for the intended application of the device.

The protocols for certain tasks often can also be used for other tasks that re-

quire less information. For example, a tomographic estimate of a quantum state
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1.1 Semi-device-dependent quantum characterization—an overview

Figure 1.2: The theoretical description of protocols makes use of the distinction into device, mea-

surement apparatus and classical processor.

(identi�cation) can be used to estimate a distance measure to a target state (es-

timation) that in turn provides a certi�cate for the related speci�cation (certi�-

cation). We have ordered the tasks in the list above roughly according to their

information gain.

Anatomy of quantum characterization protocols

Theoretically
4
, it is convenient to describe a protocol as involving three distinct

objects, Fig. 1.2: the device that is under scrutiny, the measurement apparatus
that the protocol employs, and the classical processor. The classical processor is

a classical computing device that might take care of potentially required pre- and

post-processing tasks for the device control and the processing of the output data

to arrive at a certi�cate or even communicates with the device and measurement

apparatus in multiple rounds of an interactive protocol. The distinction between

the device and the measurement apparatus requires a more detailed discussion

and is the concern of the remainder of this section.

There exists a class of protocols where all quantum parts of the device are re-

garded as a single device that is not subject to any assumptions. In particular,

4

Theoretically, . . . the classical post-processing time complexity] The following two sections are

based on Section I.A of Ref. [4]. Beyond the already published material, they contain a consid-

erably extended discussion of the di�erent regimes of device-dependence and of the �gures

of merits beyond the context of certi�cation.
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they do not involve a somehow characterized separate quantum measurement

apparatus. Such protocols are referred to as device-independent . The violation of

the Bell inequality can certify the presence of non-local correlations ensuring the

cryptographic security of quantum key distribution [Aci+07; Pir+09; MPA11].

More general, the presence of su�ciently high entanglement and other prop-

erties can be exploited to arrive at device-independent certi�cation protocols

for speci�c quantum states and processes, so-called self-testing protocols [SB20].

In the context of quantum communication protocols the e�ort of fully device-

independent protocols can be signi�cantly reduced by introducing mild assump-

tions on the device such as bounds on the system dimension [Gal+10; PB11;

LVB11; Li+11; Li+12]. Such protocols are called semi-device-independent.

Device-independent and semi-device-independent protocols are limited in the

tasks they can solve and information they provide. In particular, such certi�-

cation protocols can only accept very precisely functioning devices out of the

reach of today’s quantum computing devices [SB20].

Less paranoid in their assumptions, approaches for the majority of characteri-

zation tasks introduce a measurement apparatus to the model. The device and

measurement apparatus are not necessarily physically distinct devices. For ex-

ample, complex measurements on a digital quantum computer are implemented

by running a circuit of gates and subsequently performing a set of native mea-

surements. Similarly, the preparation of a desired input state might require run-

ning a short circuit on an initial state that can be prepared more directly, e.g. the

systems ground state. For example, if we want to characterize the noise process

associated to a speci�c gate, all the operations implementing the measurement

and the state preparation might be regarded as being performed by the measure-

ment apparatus. The implementation of the speci�c gate we want to characterize

is the device in this example.

The choice of the splitting into the measurement apparatus and the device can

be ambiguous and can yield di�erent formulations of equivalent sets of assump-

tions. In practice, one is often more con�dent about the correct functioning of

a part of the setup that ‘performs the measurements’ in comparison to the parts

that have to be characterized. This motivates to regard the more trusted part of

the setup as the measurement apparatus, distinct from the device under scrutiny.

At the same time, the split allows one to be fairly conservative in the modelling

and assumptions describing the device and aim at a high information gain.

The theoretical formulation of many protocols assume a perfectly working mea-

surement apparatus. In analogy, we refer to such protocols as fully (measure-

ment) device-dependent. In practice, it can become an obstacle to balance the
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1.1 Semi-device-dependent quantum characterization—an overview

required precision of the measurement apparatus with the resource require-

ments of protocols. For example, a linear shadow estimation protocol [HKP20]

for pure-state �delities of a quantum state employs measurements in di�erent

bases [4, Section II.J]. In order to function with a minimal number of state copies,

these bases must be related by global unitary rotations of the quantum system.

Such measurements can be implemented with a quantum circuits of polynomi-

ally many local gates in the number of qubits. For this reason, on actual quan-

tum computing hardware the noise associated with the implementation of such

measurements is in many cases considerably higher than the imprecision of the

state preparation that one wants to characterize. Resorting to measurements

that are simpler and, thus, more precisely implementable unavoidably increases

the number of state copies required to arrive at the same precision of the esti-

mate. In consequence, the actually reachable precision of such experiments is

limited. Even more severely, in quantum system identi�cation imprecisions in

the measurements of device-dependent protocols can signi�cantly deteriorate

the precision of the estimates. For example, an error in the measurement, such

as an unknown rotation, can be explained by assuming the quantum system was

in a rotated state already before the measurement. In this way the error in the

measurement can directly enter into the error of a device-dependent quantum

state identi�cation protocol. This can reduce the precision of certain protocols

dramatically, even to the point where they become infeasible in practice.

This brings us to the class of protocols that are in the focus of this work. One can

overcome the limitations in precision and resource demands by relaxing the as-

sumption of a perfect measurement apparatus in the protocol. We call protocols

that exhibit some degree of robustness against imprecisions in the measurement

apparatus without decreasing the accuracy of the estimates semi-device depen-
dent. For NISQ devices and in the further improvement of the quantum tech-

nologies scalable semi-device dependent protocols are arguably the most impor-

tant approaches to characterization as they take the imprecisions of the avail-

able hardware into account. An example of semi-device dependent estimation

protocols are so-called randomized benchmarking
5

protocols [EAŻ05a; Lév+07;

Dan+09; 9] that have become a de-facto standard in assessing the quality of gate

implementation of digital quantum computers [Erh+19; McK+19; Aru+19].

5

Under certain assumptions, randomized benchmarking protocols estimate the so-called average

�delity of a gate set, see discussion in Chapter 5. Thus, randomized benchmarking protocols

can and are often regarded as estimation protocols even though the name randomized bench-
marking [Kni+08] stems from the motivation to use the estimated quantity to compare the

quality of di�erent devices, without further need for a physical interpretation beyond being

the reproducible output of the protocol.
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DI DDsemiDI semiDD

Self-

testing

[PB11; LVB11;

Li+11; Li+12]

This work Standard

tomography

Figure 1.3: Illustration of the spectrum between fully device-independent (DI) and fully device-

dependent (DD) quantum system characterization methods such as self-testing and

standard tomography, respectively. Semi-device-independent (semiDI) methods relax

the stringent requirements of full device-independence. Coming from the opposite

end, semi-device-dependent (semiDD) schemes relax assumptions on the measurement

apparatus, such as calibration requirements. (The graphic is adopted from Ref. [2])

All together, we arrive at a classi�cation of characterization protocols in a spec-

trum, illustrated in Fig. 1.3. Device-independent protocols, not involving a mea-

surement apparatus and making assumptions about the device, constitute one

end of the spectrum and can be relaxed by introducing assumptions on the de-

vice yielding semi-device independent protocols. The characterization tasks for

NISQ devices that can be addressed in this regime are limited. Jumping ahead

of making more and more assumptions, one introduces a fully trusted, ideally

working part of the device, the measurement apparatus. This opposite end of the

spectrum, the device-dependent regime, is the natural theoretical idealization of

an experimentalist who has already built considerable trust in the working of

parts of his setup before proceeding. This idealization, however, severely limits

the realm of applicability of these methods in practice, constituting the need for

semi-device dependent protocols.

In our discussion above we have already seen that the ‘spectrum of assumptions’

from device-independence to device-dependence is not the only axis along which

we can order and compare di�erent protocols. We now describe the other �g-

ures of merit that can be used to assess the realm of applicability of di�erent

protocols.

Figures of merit

The landscape of protocols can be roughly organized according to three ‘axes’:

The �rst axis comprises the set of assumptions that are imposed on the device and

measurement apparatus, that we introduced above, to guarantee the functioning

of the protocol.
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1.1 Semi-device-dependent quantum characterization—an overview

A second axis summarizes the complexity or amount of the resources that the

protocol consumes. A protocol will require a certain number of di�erent mea-

surement settings that the measurement apparatus has to implement, its mea-
surement complexity. Each implementation of each of the measurement settings

involves operations of certain complexities, the quantum measurement complex-
ity. The quantum measurement complexity collects several notions of quanti-

fying the resources that are required to perform a measurement. A concrete

example might be the depth of a circuit of local gates required to reduce the

measurement to a native measurement of the device. What a meaningful mea-

sure is crucially depends on the experimental platform. On fault-tolerant quan-

tum computation hardware one might eventually only regard non-transversal

gates as non-free resources for the measurement. In order to arrive at statisti-

cal estimates in a protocol, one requires a total number of repetitions of device

invocations referred to as the sample complexity.

The practical indication of the di�erent complexity measures again depend on

the device under consideration. While in a photonics experiment that can achieve

high repetition rates the sampling complexity of a protocol is often not a limiting

factor. Instead, reducing the number of di�erent measurement settings, e.g., the

number of di�erent con�gurations of optical elements on the table, can be highly

desirable [11]. In contrast, a computing device using trapped ions typically fea-

tures much lower repetition rate. Here, changing the measurement setting for

every invocation might not be problematic and the protocol’s sampling complex-

ity becomes crucial. For NISQ devices, however, the practical limitations on the

quantum measurement complexity are an even more important consideration.

Furthermore, in the face of the desired complexity of the quantum devices, a par-

ticularly critical �gure of merit for a protocol is its classical processing complexity,

i.e. the demands in space and time of the classical processing tasks. The expo-

nential scaling of the con�guration space of the quantum systems in terms of its

constituents gives rise to classical post-processing tasks that quickly exhaust the

available classical computing power. In many tasks of quantum system identi�-

cation a scaling in the overall Hilbert space dimension is unavoidable. In these

instances the exact scaling, i.e. the degree of the polynomial, plays a crucial role.

To put things into perspective, a simple protocol to reconstruct a quantum state

on a d-dimensional quantum system that makes use of a semi-de�nite program

to take the positivity constraint into account, implemented with an o�-the-shelf

solver, usesO(d6) storage for its objective variable. For a 5-qubit system such an

algorithm already allocates more than 4GB (in single �oating precision 4bytes).

Larger systems are already out of the reach of current desktop hardware and 8
or 10-qubit reconstruction would allocate over 1PB and over 4.5EB of storage,
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respectively. In contrast, a more e�cient non-convex optimization to recover

a pure quantum state requires only O(d) storage bringing the storage cost of a

30-qubit system down to about 4GB. For quantum channels that already scale

with d4
in their degrees of freedom the classical processing power becomes even

faster a scarce resource. Already a square-root improvement is therefore of prac-

tical importance, signi�cantly extending a protocol’s applicability.

For our present scope, the mentioned notions of complexity are the most im-

portant ones and will be in the focus of our discussion. Note however that the

list is by far not complete. For example, interactive protocols might be com-

pared in terms of challenging demands in the timing of the device’s control or

the complexity of communication.

The third and �nal axis is the information gain of the protocol. Intuitively, a

quantum system identi�cation protocol that outputs a quantum state as an esti-

mate for a prepared arbitrary quantum state extracts more information about the

device than an estimation protocol for the distance of the prepared state to a cer-

tain �xed target state. The precise information gain depends on the measures

of quality. Di�erent measures of quality have di�erent discriminatory power

among the hypothesis class that models the device compatible with the proto-

col’s set of assumptions. Concomitant with less information gain of a task, it

is conceivable that one can design a protocol with signi�cantly less complex-

ity compared to one gaining more information. Theoretically quantifying and

analysing the information gain in performing a characterization task allows one

to derive lower bounds on the complexity of any protocol for this task. As we saw

above with the example of the storage complexity of classical post-processing,

designing protocols with optimal complexity can be crucial for its application in

a practical setting. Unfortunately, often protocols achieving the optimal scaling

in one complexity measure, say, the sampling complexity, might impose theo-

retical limits on the achievable complexity in another measure, e.g. the classical

post-processing time complexity.

1.2 Overview of the results

After broadening our scope to quantum characterization tasks in general and en

passant de�ning the title of this work within its context, we now come to our

focus: semi-device dependent quantum system identi�cation. Here, we revisit the

three tasks of identifying low-rank states, unitary quantum processes and non-

interacting Hamiltonians with resource-e�cient (complexity) and semi-device-
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dependent (assumptions) protocols. In the remainder of the introduction, we

give the speci�c motivation for each of these tasks, brie�y review the approaches

that exist in the literature and condensely summarize our own results. This shall

serve as a �rst overview of this thesis that omits the technical details going into

the derivations of the results. Correspondingly, the only formulas that appear

here are statement of the scaling behaviour of the resource requirements of the

protocol, that constitute main results of this work.

1.2.1 Blind quantum state tomography

One of the most basic diagnostic tasks in the development of quantum technolo-

gies is the identi�cation of a quantum states from experimentally measured data,

commonly referred to as quantum state tomography.
6

Indeed, at the heart of ev-

ery quantum computation is the preparation of a quantum state. Quantum state

tomography can therefore provide valuable information for improving quantum

devices beyond a mere certi�cation or benchmarking of their correct function-

ing. It has been a de-facto standard in research on many precisely controllable

quantum systems [Ste+06; Lob+08; Pry+03; Bar+12; Sch+13; McC+16].

However, in any such endeavour one encounters the following fundamental

challenge: In order to arrive at an accurate state estimate, most tomography

schemes rely on measurement devices that are calibrated to a very high preci-

sion. At the same time, a precise and detailed characterization of a measurement

device requires an accurate state preparation. But improving the accuracy of the

state preparation using tomographic information was our goal to begin with.

We are trapped in a vicious cycle. This vicious cycle, depicted in Figure 1.4,

constitutes a fundamental obstacle to the improvement of quantum devices.
7

A make-or-break question is therefore: Is there any hope to break this cycle at

all? In other words, can one perform quantum state tomography blindly, that is,

without full knowledge of the measurement apparatus to begin with? Or even

better, can one simultaneously infer a quantum state and learn certain unknown

calibration parameters of the measurement apparatus in a self-calibrating tomog-
raphy scheme [Bra+12]? A simple parameter count indicates that this is typically

impossible by just measuring a set of mutually orthogonal observables: While

an arbitrary quantum state in a d-dimensional Hilbert space is characterized by

6

One of the most . . . estimates in practice.] is based on the introduction of Ref. [2]. Individual

passages are adopted verbatim.

7

We are grateful to Susane Calegari for kindly providing drawings used the �gure.
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Figure 1.4: In the quest to engineer high �delity quantum technologies one encounters a vicious

cycle: Extracting actionable advice to correct for error in the state preparation requires

accurate quantum state estimation. The accuracy of a state estimate crucially relies on

the precise calibration of the measurement device. But the calibration can ultimately

only be tested and improved if high �delity quantum states are provided.

d2 − 1 many real parameters, at the same time, the number of linearly indepen-

dent measurements in this space implies that we can learn at most d2
indepen-

dent parameters. This leaves room for a single additional (calibration) parameter

only. This prohibits even slightly relaxing the requirement of a complete and

accurate characterization of the measurement device towards a partially uncal-

ibrated device. Tomography of an arbitrary quantum state is therefore typically

intrinsically measurement device-dependent in this sense.

A couple of semi-device-dependent approaches to the problem in speci�c settings

exist in the literature. In Ref. [Mog10] it has been argued that single photon

detectors can be simultaneously calibrated during state tomography under the

assumptions that the state is squeezed extending the mindset of Ref. [MŘH09].

Ref. [MŘH12] provides a more extensive discussion of potential classes of states

and the recent Ref. [Sim+19] derives error bars. All these schemes combine spe-

ci�c measurement models with a restricted hypothesis class of states in the iden-

ti�cation.

Another approach to more �exibly assume partial information about the state

preparation device and the measurement apparatus is the Gram matrix comple-
tion proposed in Refs. [Sta12; Sta14]. Here, one assumes that certain entries of

the measurement and the state in a basis as well as some expectation values are
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already precisely known a priori. A correlation matrix that simultaneously en-

code the measurement, the state and the expectation values is then completed

from a subset of known indices. We are however not aware of a concrete experi-

mental situation where this type of partial knowledge naturally arises. So-called

data-pattern tomography [ŘMH10] avoids the calibration of the measurement

device by assuming that the device can accurately prepare some well-controlled

reference states such as coherent states [Mot+14]. For the reconstruction the

data is compared to previously determined signatures of the reference states.

In spite of these promising approaches, the question whether self-calibrating to-

mography is possible in more generic settings and without severe restrictions of

the hypothesis set remains elusive. Ref. [Bra+12] has reported the experimental

demonstration of simultaneously reconstructing a quantum state together with

certain unknown unitary rotations associated to the measurement device via

maximum likelihood estimation in a linear optics setting.

Here we develop a framework in which we can prove that blind tomography of

quantum states for generic measurements models is possible by making a natu-

ral assumption about the quantum state, namely that it is of low rank. To this

end, we formulate the blind tomography problem as the recovery task of a highly

structured signal. We use a general model of the measurement apparatus which

applies to a variety of relevant experiments: we model the measurements as

depending linearly on the unknown parameters of the possible calibration er-

rors. In many situations the daunting uncertainty about the device calibration is

small and can be approximated as a linear deviation from an empirically known

calibration baseline. We illustrate our measurement model and the underlying

assumption with a concrete model inspired by implementation of quantum com-

puting in trapped ions, in Section 3.1.

Our formulation of the blind tomography problem takes the form of a linear

inverse problem where the solution is assumed to have a certain low-rank struc-

ture. Linear inverse problems under structure assumptions are studied in the

mathematical discipline of compressed sensing [FR13]. In compressed sensing

one studies the reconstruction of sparse vectors and low-rank matrices or ten-

sors from linear data in the regime where without the structure assumptions the

problem is under-determined. In general, optimally exploiting the structure in

the inverse problems can be shown to beNP-hard. Nonetheless, for generic mea-

surements drawn from suitable random ensembles one can prove that di�erent

algorithmic approaches such as convex solvers or projective gradient descent al-

gorithms converge to the correct solution of the problem with high probability,

such theorems are referred to as recovery guarantees.
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For the tomography of low-rank quantum states there exist device-dependent

compressed sensing schemes. Compressed sensing algorithms, e.g. nuclear-norm

minimization, where introduces in order to reduce the measurement complexity

while still ensuring an e�cient classical post-processing in the Hilbert space di-

mension [Gro+10; Gro11; Liu11; KKD15; Kue15; Kab+16]. These schemes come

with theoretical guarantees and have also been successfully employed in exper-

iments [11; Rio+17; Sha+11]. The practical applicability of compressed sensing

tomography schemes rests on their robustness and stability against various im-

perfections of the experimental setup. Small deviations from the compressive

model assumption and additive errors to the measurement outcomes, e.g. in-

duced by �nite statistics, are re�ected in a proportional and only slightly en-

hanced estimation error. Still, the state tomography schemes rely on measure-

ment apparata that are calibrated to very high precision. Blind tomography aims

at relaxing the device dependence. In distinction, in the previous schemes low-

rank assumptions on the quantum state were considered to reduce the com-

plexity of a tomography scheme, giving rise to an important quantitative im-
provement. Here, we aim at exploiting the low-rank structure to make blind to-

mography possible in the �rst place—a qualitative improvement over the known

schemes. We �nd that the signal structure of the blind tomography problem

is not directly admissible to compressed sensing algorithms. More formally we

show as a �rst result that already the projection onto the class of solutions of

the blind-tomography problem is NP-hard and, thus, a projective gradient algo-

rithm is not e�cient. To circumvent this bottleneck we consider a relaxation of

the blind tomography problem to the problem of de-mixing a sum of low-rank

matrices from linear measurements. An e�cient algorithmic solution to the de-

mixing problem also solves the blind tomography problem. We state an e�cient

projective gradient algorithm for the de-mixing problem and analyse by building

on and extending the framework of hierarchical compressed sensing.

The price to pay in the relaxation of the problem is a worse measurement com-

plexity: While one might hope to recover a rank-r state in Hilbert space dimen-

sion d and n calibration parameters with order of dr+n measurement settings,

solving the corresponding de-mixing problem requires ndr measurement set-

tings. This price is acceptable if the calibration involves only a comparatively

small number of calibration parameter compared to the Hilbert space dimen-

sion. To remedy this situation, our scheme allows one to exploit yet another

structure, signi�cantly extending the realm of applicability and e�ciency of the

scheme, namely the sparsity of the calibration. Physically, this structural prop-

erty amounts to the assumption that only a small number s out of the many

possible calibration errors has occurred in the speci�c experiment.
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We derive theoretical guarantees using insights from hierarchical compressed

sensing, a special instance of model-based compressed sensing [Bar+10]. A com-

pressed sensing framework for the reconstruction of hierarchically structured

signals was developed in a series of works [14; 13; 12; 15; 16; 17; 18; 19; 20]. A

summary of this line of work can be found in the book chapter [21]. This work

is independently motivated by di�erent applications in classical machine-type

communications. But the problems arising in machine-type communications

feature similar underlying mathematical structures as the quantum tomography

and results readily carry over.

For the sparse de-mixing problem, we show that the proposed algorithm suc-

cessfully converges to the correct solution under the assumption that the mea-

surement acts close to isometrically on the set of structured solutions. Further-

more, for a generic measurement ensemble we show that the required isometry

property is satis�ed with high-probability for a number of measurements that

scales as s log(n/s)+drs. The logarithmic dependency on the number of poten-

tial calibration parameters n makes this scheme scalable in n and allows one to

work with �exible models of the systematic measurement errors and calibration

corrections. We complement our analytical results with numerical studies that

demonstrate the feasibility of the scheme in relevant parameter regimes. Fur-

thermore, we numerically investigate a more pragmatic algorithmic approach

using constrained alternating minimization to exploit the full structure of the

blind tomography problem. We �nd that the alternating minimization is capa-

ble of solving the blind tomography problem for a realistic measurement and

calibration model. Analytical recovery guarantees for this algorithm are, how-

ever, not easily attainable with the presented proof strategies.

Our analytical work initiated from the conceptual question of whether we can

provably break the vicious tomography cycle in generic situations. We give an

a�rmative answer to this question by developing a semi-device-dependent to-

mography scheme with a provable recovery guarantee for low-rank quantum

states. To this end, we consider unstructured and formally generic measurement

models that allow us to apply the compressed sensing techniques for optimal

measurement complexities. Our numerical results collect signi�cant evidence

that the newly developed approach provides a readily usable and �exible tool

that is expected to be capable of increasing the precision of tomographic esti-

mates in practice.
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1.2.2 Compressive quantum process tomography

After studying the tomography of the static property of a quantum device, its

state, we now turn our attention to identifying the description of devices that

manipulate the quantum states. This task is referred to as quantum process to-

mography (QPT) [CN97]. The characterization of quantum processes is a ver-

satile tool to diagnose errors and noise of a quantum device that manipulates

quantum states.

In standard quantum process tomography protocols, the experiment inputs a set

of input states and performs a set of measurements on the results of the pro-

cess acting on each of the input states. If the input states do not entangle the

system with ancillary systems that are also subjected to measurement, one calls

such protocols prepare-and-measure schemes. Such schemes are generally con-

sidered simpler to realize. The output data are, thus, again statistical estimation

of the output of a linear map acting on the quantum process. Using vector-

space isomorphisms, the Choi-Jamiołkowski isomorphism, one can generalize

results on quantum state tomography to process tomography. The restriction to

prepare-and-measure schemes readily translates to a unit-rank condition of the

linear measurement operators that has to be taken into account in the analysis

[Fla+12].

In terms of our abstract model introduced above in Section 1.1 p. 19, the state-

preparation and the measurement comprise the measurement apparatus and the

part of the experiment performing the quantum process is the device. In the

context of quantum process tomography imperfections in the measurement ap-

paratus are commonly referred to as SPAM (state preparation and measurement)

errors. For the characterization of gates of a simple digital quantum proces-

sor it has been observed that SPAM errors make quantum process tomography

insu�ciently inaccurate in practice [EAŻ05b; MGE11]. Roughly speaking, the

operations involving multiple gates that are required for the state preparation

and measurement are more complicated and, thus, more prone to error than

the individual gate under scrutiny. Thus, the most important �avour of semi-

device-dependence for the characterization of quantum processes is SPAM (error)
robustness.

This fundamental obstruction for making a well-motivated cut between the mea-

surement apparatus and the device in characterizing quantum gates, has mo-

tivated the introduction of self-consistent tomography methods for gate sets

[Mer+13; Blu+13; Gre15; Blu+17; COB20]. In gate set tomography (GST) one

extracts a full description of the entire gate set, the state preparation and the
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measurement from the observed output statistics of gate sequences. Concomi-

tant with the information gain—full tomographic information of an entire gate

set, the input state and measurement—gate set tomography is resource-intense

in the number of sequences, overall samples and the classical post-processing.

This remains true for schemes that incorporate structure assumptions such as

compressive GST [23] or extensive prior knowledge such as linear [Gu+21] and

Bayesian approaches [Eva+22]. To date, it remains an open problem to equip

gate set tomography with rigorous complexity and error bounds.

We here take another route to the SPAM-robust characterization of the noise

processes associated to gate sets: It has been realized that considering random

sequences of gates one can, under certain assumptions, e�ciently extract the

average gate �delity of a gate-independent noise-process of a gate set [EAŻ05a;

Lév+07; Kni+08; Dan+09; MGE11]. By combining the output of multiple such

randomized benchmarking (RB) protocols, one can extract tomographic informa-

tion about the noise process [Kim+14]. Such RB tomography schemes naturally

inherit the SPAM-robustness of the RB protocol used in the data acquisition.

The classical pre-/post-processing of RB protocols is e�cient in the number of

qubits if the gate-set features an underlying tractable group structure. The ar-

guably most prominent example in quantum computing of such a group struc-

ture is exhibited by the Cli�ord group. The Cli�ord group is a �nite group with

elements characterized by a number of bits that scale quadratically in the num-

ber of qubits. This structure allows one to e�ciently simulate circuits of Cli�ord

unitaries
8

on a classical computer by means of the Gottesman-Knill theorem

[NC10]. Their practical relevance for quantum computing is further rooted in

their comparatively simple realization in fault-tolerant architectures, that can

perform error-correction of qubits on a logic layer [Got09; CTV17]. In resource

theories of quantum computing Cli�ord operations are therefore often consid-

ered a free resource and circuit complexities quantify only the number of non-

Cli�ord gates [Vei+14; HC17].

It has been an open problem
9

to combine the robustness of RB tomography pro-

tocols with the e�ciency of compressed sensing protocols that exploit the low-

rank structure of coherent noise processes. Obtaining actionable advice regard-

ing coherent errors is of particular practical interest as such errors can often be

8

E�cient simulation further requires the input state to be of low stabilizer rank and the mea-

surement to be Pauli-basis measurements.

9

It has been an open problem . . . formulation of our results. ] is based on the introduction of

Ref. [1]. Individual passages are adopted verbatim.
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corrected by experimental control. Correcting coherent error is additionally mo-

tivated by fault-tolerant quantum computation: Refs. [Kue+16; Wal15] indicate

that it is coherent errors that lead to an enormous mismatch between average

errors, which are estimated by randomized benchmarking and worst-case errors

re�ected by fault-tolerance thresholds.

In devising compressive versions of RB protocols, it turns out that the proper

design of the measurements is crucial [KL17]. In contrast to the computation-

ally tractable group structure of RB protocols, compressed sensing methods typ-

ically require measurements with less structure in this context, in that their

fourth-order moments are close to those of the uniform Haar measure. Thus,

the key technical question is whether the seemingly con�icting requirements of

su�cient randomness and desired structure in the measurements can be com-

bined.

We here show that the answer is indeed yes. We demonstrate that Cli�ord-

group-based measurements are also su�ciently unstructured that they can be

used for compressed sensing. Thus, we develop methods for such quantum pro-

cess tomography that are resource e�cient, robust with respect to SPAM, and

use measurements that are already routinely acquired in many experiments. In

more detail, we provide procedures for the reconstruction from so-called average

gate �delities (AGFs), which are the quantities that are measured in randomized

benchmarking under suitable assumptions. It was established that the unital

part of general quantum channels can be reconstructed from AGFs relative to

a maximal linearly independent subset of Cli�ord-group operations [Kim+14].

We generalize this result by noting that the Cli�ord group can be replaced by

an arbitrary unitary 2-design and also explicitly provide an analytic form of the

reconstruction—basically reproving a result by Ref. [Sco08].

Our main result of this part is a practical reconstruction procedure for quantum

channels that are close to being unitary. Let d be the Hilbert space dimension, so

that a unitary quantum channel can be described by roughly d2
scalar parame-

ters. The protocol is rigorously guaranteed to succeed using essentially order of

d2
AGFs with respect to randomly drawn Cli�ord gates, and we also prove it to

be stable against errors in the AGF estimates. In this way, we generalize a previ-

ous recovery guarantee [KL17] from AGFs with 4-designs to ones with the more

relevant Cli�ord gates. Conversely, we also prove that the sample complexity of

our reconstruction procedure is optimal in a simpli�ed measurement setting.

Following further along the question of what information can be obtained from

multiple AGFs, we also �nd a new interpretation of the unitarity [Wal+15]—a

�gure of merit that captures the coherence of noise. We show that this quantity
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can be estimated directly from AGFs rather than simulating purity measure-

ments as proposed in Ref. [Wal+15]. This potentially provides an alternative

route to unitary estimation compared to the RB protocols [DHW19].

Our main technical contributions are results for the second and fourth moments

of AGF measurements with random Cli�ord gates. For the second moment, we

provide an explicit formula improving over the previous lower bound [KL17]. In

the case of trace-preserving and unital maps, our analysis gives rise to a tight

frame condition. In order to prove a bound on the fourth moment, we derive—

as a more universal new technical tool—a general integration formula for the

fourth-order diagonal tensor representation of the Cli�ord group. The proof,

presented in Chapter 4 builds on recent results on the representation theory of

the multiqubit Cli�ord group [Zhu+16; HWW18; GNW21]. Our result is the

Cli�ord analogue to Collins’s integration formula for the unitary group [Col03;

CS06] for fourth orders.

Chapter 4 also discusses further results and applications of random ensembles

arising from di�erent measures on the unitary group. We brie�y summarize

results on the general construction of Cli�ord and unitary designs with higher

moments from random circuits, that were derived with collaborators in Ref. [6]:

We �nd that a random circuit with order of n2k9
one and two-local Cli�ord gates

acting only on adjacent qubits approximate a unitary k-design in relative error.

This establishes that one can directly work with random Cli�ord circuits instead

of compiling random multi-qubits Cli�ord unitaries in many applications. We

furthermore give a bound for the number of non-Cli�ord gates required in a ran-

dom circuit in order to construct unitary k-designs with k ≥ 3. The overall scal-

ing of our construction improves on the previous construction of Ref. [BHH16b].

Deviating a bit from the focus on quantum device characterization, we brie�y

present further applications of locally random ensembles of quantum states in

the study of the equilibration of quantum systems and summarize the results

of Refs. [7; 8] in Section 4.4. We formulate a supposedly weak condition for

the energy eigenstates of a Hamiltonian that we have shown to guarantee the

equilibration of the system even when initialized in product states. We further

present ensembles of states that generically ful�l the condition.

The derivation of our main results on compressive RB tomography are presented

in Chapter 6. In the preceding Chapter 5 we provide a detailed introduction

and review of RB techniques. In this context we brie�y explain our result on

establishing the general data form of RB experiments under broad circumstance

[9]. We further derive sample complexity statements for extracting average gate

�delities in idealized settings.
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1.2.3 Hamiltonian identification

The third part of the thesis studies the precise identi�cation of non-interacting

Hamiltonians in an analogue quantum simulation experiment. Generally put,

�nding the most parsimonious dynamical equations that govern the time evolu-

tion of a physical system is arguably one of the central tasks in physics. Another

more fundamental problem is maybe solely presented in the task of identifying

the relevant physical degrees of freedoms to begin with.
10

The multitude of suc-

cessful approaches over centuries to this key problem can be described as well-

motivated heuristics guided by trained expert intuition and domain knowledge,

and ultimately challenging luck—the common scienti�c method that is brilliantly

summarized in Feyerabend’s famous sentiment “Anything goes.” [Fey75]. By

making informed guesses about idealized models that feature simple rules of

interactions we hope to capture the essence of the physics and describe labora-

tory as good as we can. Fanned by the advances in computational power, the

automation of essential parts of physics discovery in data-driven top-down ap-

proaches has been envisioned [CM87; SL09; Man+17; 22; Ite+20]. Data-driven

Hamiltonian inference is a central task in this endeavour and is therefore not

only interesting from a technological but also from a foundational perspective.

It touches on the fundamental question: Is it possible to directly infer laws of na-

ture from data? Answers to this question are elusive for complex natural phys-

ical systems which can neither be accessed nor probed with su�cient accuracy

and control.

Analogue quantum simulators present a very di�erent, novel playground for

these questions. An analogue quantum simulator is a physical system which is

designed to accurately realize an idealized Hamiltonian model under precisely

controlled conditions [CZ12]. Examples include the Bose-Hubbard Hamilto-

nian which describes a cold-atom setup [Jak+98; Gre+02], and quantum Ising or

Heisenberg models which can be implemented in ion-trap setups [BR12; Zha+17],

arrays of Rydberg atoms in optical tweezers [Bar+16; Ber+17], and in supercon-

ducting qubit architectures [Rou+17]. Compared to a universal, fault-tolerant

quantum computer that can perform a digital simulation, analogue quantum

simulation is possible in considerably simpler experiments. With such exper-

iments, so the hope, we could shed light on fundamental questions of physics

that have remained elusive to the standard methods of inference, such as the

10

Generally put, �nding the most . . . today’s devices.] As of writing the text is not yet published

elsewhere. A variation of this text was authored together with Dominik Hangleiter and is

going to be published as the introduction of an extended manuscript on the presented work.
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1.2 Overview of the results

mechanism behind high-temperature superconductivity [Köh+05] and the per-

sistence of many-body localization in higher dimensions [Cho+16].

Already when building an analogue simulator we must understand the simula-

tor system extremely well to be able to reduce any unwanted interactions and

sources of error. Such understanding is typically built by characterizing indi-

vidual components of the system and reducing the noise sources one after an-

other and has yielded unprecedented understanding and control of the physics of

quantum simulation platforms in recent years [CZ12; BDN12; BR12; Ací+18]. In

the previous parts, we have already encountered a rich toolkit for the diagnostic

and characterization of individual qubits and gates of universal digital quantum

computers such as the robust randomized benchmarking of entire gate sets or

e�cient compressive tomographic methods. Then, trust in the performance of

large circuits can be inferred from composing well-characterized constituents.

Such techniques from the digital regime can to some extent be used for char-

acterizing components of analogue simulators [SLP11; Hol+15; Der+20]. But

when using a physical system for an analogue computation much more strin-

gent requirements on the accuracy apply. Now, it is necessary to capture and

understand the machine’s dynamics that is relevant for the computation as a

whole—in other words, on its application layer.

The experimenters’ thorough understanding of the interactions and sources of

errors and control over the complex systems that motivates analogue simula-

tions in the �rst place also allows for a controlled reductionistic approach to

data-driven Hamiltonian inference. For example, one can attempt to isolate indi-

vidual physical excitations and solely observe their free dynamics. This is a very

di�erent starting point compared to natural physical systems that do not allow

for reducing complexity to this extent. From a phenomenological view point

of a condensed matter physicist, the study of such simple systems might even

be regarded as ‘boring’. From a technological view point, thoroughly exploring

Hamiltonian inference problems in this newly accessible regime is, however, of

utmost importance and a necessary �rst step for their precise certi�cation and

characterization.

Several methods have been proposed for estimating Hamiltonian parameter from

data
11

: The key approaches that we will be also our starting point, is the tracking

of the dynamics of single excitations [BMN09; BMN11; BM09; DPK09; WM10;

BY12] and using tools from Fourier analysis for processing of time trace data

11

Several methods . . . superconducting qubit platforms.] is based on a section of Ref. [3] with

verbatim adoptions.
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[SKO04; Col+05; Col+06; CDH06; SOD08; SO09; OS12]. For general Hamilto-

nian models, one can then exploit algebraic structure of the Hamiltonian terms

to simplify the data processing problem [ZS14; SC17]. We will work out a partic-

ular simple example of this type. Other approaches to the problem include learn-

ing a Hamiltonian from a single eigenstate or its steady state [GG18; QR19; CC18;

BAL19; Bai+20] using quantum-quenches [LZH20; Cze21], or with general-purpose

machine-learning methods [Gra+12; WDD15; Val+19; BSH21; Kra+19; Che+21a].

Hamiltonian parameter estimation has been demonstrated for �xed instances of

two- and three-qubit Hamiltonians in nuclear magnetic resonance (NMR) ex-

periments [Lap+12; HLL17; Che+21b; Zha+21]. However, these work do not

yet live up to the demands of a robust and scalable recovery of Hamiltonians

arising in superconducting qubits, trapped ions or cold atoms in optical lattices.

In contrast to NMR, such platforms involves beyond incoherent noise sizeable

systematic errors in the state preparation and the measurement. Very recently,

learning of two-qubit dissipative Lindblad dynamics, i.e. a characterization of

certain errors, has been demonstrated [Flu+20; Sam+21; OKC21] on supercon-

ducting qubit platforms.

In this work, we follow the outlined bottom-up imperative for studying Hamil-

tonian inference problems from analogue simulators starting with a ‘simple’ in-

stance. We explore the Hamiltonian identi�cation problem of non-interacting

dynamical systems in a setting motivated by the diagnostic requirements of ana-

logue simulations using gmon transmon qubit processors. We �nd that taking

the structure of the problem seriously, gives rise to a rich signal processing prob-

lem already for this simple dynamics. We develop a measurement protocol and

signal processing pipeline that allows to fully exploit the problem’s inherent

structure. To this end, we make use of super-resolution and de-noising algo-

rithms for tone �nding [RPK86; Fan16; CF13; CF14] and manifold optimization

over the orthogonal group [EAS98; AEK09; AMS09]. In turn, the structural con-

straint allow us to devise a method that has the necessary robustness against

unavoidable imperfections in the state preparation and measurements of today’s

devices.

The approach of this part of the thesis is distinct from the previous two parts.

In the �rst two parts, we developed methods and equipped them with strong

theoretical guarantees. We only demonstrated their practicality in numerical

simulations. Here, we devise a method that is custom-tailored to a concrete

experimental setup and demonstrate its working in an actual experiment. In

turn, we here leave an in-depth theoretical analysis of the method’s performance

to future research.
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The Hamiltonian dynamics is implemented on a Google Sycamore chip by our

collaborators at Google AI. The chip consists of coupled superconducting qubits

arranged in a two-dimensional array. Since our Hamiltonian dynamics is limited

to a single excitation, the qubits can truthfully represent bosons and fermions

equally. From measured data, we recover all Hamiltonian parameters for �ve

and six coupled qubits using our method and achieve sub-MHz precision. Av-

eraging the deviation of the recovered Hamiltonian parameter and the target

Hamiltonian corresponding to a speci�c qubit on the chip over multiple Hamil-

tonian instances, we can associate a performance benchmark to the chip com-

ponent. Using such benchmarks, we construct a spatial map for the implemen-

tation error for a grid of 27 qubits. Beyond thereby providing a �rst framework

for quantifying the implementation accuracy of analogue dynamic simulators,

the method also establishes diagnostic toolkit for understanding, calibrating and

improving the device. For example, for the speci�c experiment we �nd that the

e�ects of ramping phases where the devices parameters rapidly but not instanta-

neously are driven to their values implementing the Hamiltonian, are the dom-

inant sources of errors.

In our bottom-up approach to Hamiltonian identi�cation we consider a set-

ting that is easily accessible to classical simulations. We conclude the chapter

with a complementary discussion on the obstacles arising in the classical sim-

ulations of quantum systems using Monte-Carlo techniques [Hir+82; Tro+03;

Pol12; Tro+10]. Here we again deviate from the narrower focus on quantum

device characterization and brie�y present the framework of Ref. [10] for the

systematic easing of the so-called Monte-Carlo sign problem. Very concisely

stated, the Monte-Carlo sign problem refers to the observation that positive en-

tries in the basis expansion of a Hamiltonian ultimately lead to an unfavourable

increase in the sampling complexity of Monte-Carlo estimators for, e.g. the ex-

pectation value of observables in the corresponding Gibbs state. We introduce

a computationally tractable measure of non-stoquasticity for a Hamiltonian in

a basis and discuss how it captures the complexity of Monte-Carlo simulations.

This measure can be optimized over tractable basis transformations using the

same manifold optimization techniques that we employed in our Hamiltonian

identi�cation algorithm. At the same time we establish the complexity-theoretic

limitations of a systematic approach to easing the sign problem.
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1.3 Structure of the thesis

We conclude the introduction with an overview over the structure of the thesis.

In the following chapter we introduce the mathematical objects and notations

that are featured in the results of the thesis. We give some perspective on the

metric structures and their interpretation on the spaces of quantum states and

processes. A particular emphasis is on reviewing the theory of Haar random

unitary matrices as they and their de-randomizations in terms of unitary designs

will be important in the second part of the thesis. In Chapter 3 we study the �rst

semi-device-dependent task: blind quantum state tomography. Chapters 4, 5 and

6 together constitute the second part of the thesis. To set the stage for the second

task of compressive randomized benchmarking tomography, the subject of Chap-

ter 6, we prepend two separate chapters: Chapter 4 takes a look at the properties

of relevant random ensembles within the unitary group. We here derive the in-

tegration formula for the Cli�ord group that we need in Chapter 6, discuss the

scaling of local random circuits that reproduce the properties of random Cli�ord

and general unitaries, and present further applications of locally random ensem-

bles of quantum states and unitaries in the context of equilibration. Chapter 5

subsequently gives an introduction and review of randomized benchmarking

techniques. Here, we also brie�y explain our framework guaranteeing the gen-

eral data form of RB protocols and derive sampling complexities that we use to

establish the optimality of compressive randomized benchmarking tomography.

The third task of Hamiltonian identi�cation for analogue simulators is presented

in Chapter 7. At the end of the chapter we provide a brief perspective on easing

the Monte-Carlo sign problem. We close each of the chapters that present our

results on the three semi-device-dependent identi�cation tasks with concluding

remarks on the respective topic.
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Many results of the thesis are mathematical theorems that build on rigorous

mathematical de�nitions of the underlying concepts. To set the stage, we brie�y

collect some basic mathematical concepts that appear in the �eld of quantum

characterization and the quantum information sciences more generally. These

preliminaries will function as a reference for the notation used later on and fun-

damental results that we invoke throughout the thesis. The presentation is based

on material that we authored for the pedagogical tutorial Ref. [4]. For this rea-

son, we are occasionally slightly more generous in the selection of material and

depth of explanations than necessarily required for the presentation of the later

results.

2.1 Mathematical objects of quantum mechanics

In order to discuss quantum states we set up some mathematical notation.
12

We

focus on �nite-dimensional quantum mechanics in accordance with our empha-

sis on digital quantum computing. Hence, we assume all vector spaces to be

�nite-dimensional. The space of linear operators from a vector space V to a vec-

tor space W is denoted by L(V,W ), and we set L(V ) := L(V, V ). A Hilbert
space is a vector space with an inner product 〈·, ·〉. Let H and K be complex

Hilbert spaces throughout the tutorial. We denote the adjoint of an operator

X ∈ L(H,K) by X†, i.e. 〈k,Xh〉 = 〈X†k, h〉 for all h ∈ H and k ∈ K.

As customary in physics, we will use the bra-ket-notation (Dirac notation): We

denote vectors by ket-vectors |ψ 〉 ∈ H and linear functionals on H by bra-

vectors 〈ψ |, which are elements of the dual space H∗. Furthermore, we un-

derstand ket-vectors and bra-vectors with the same label as being related by the

1

The de�nitions, notation and results we present in the preliminaries are standard in the �eld

of quantum information and can—if not mentioned otherwise—be found, e.g., in Refs. [NC10;

Wat11; Hal13; Bha97].

2

Most parts of the preliminaries are taken from the tutorial Ref. [4] that was authored together

with Martin Kliesch. Some parts of the tutorial were based on lecture notes by Martin Kliesch

available as Ref. [Kli19].
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canonical isomorphism induced by the inner product. In bra-ket notation we fre-

quently drop tensor-product operators to shorten the notation, e.g. |ψ 〉 |φ〉 :=
|ψ 〉⊗ |φ〉 ∈ K⊗H or |ψ 〉〈ψ | := |ψ 〉⊗ 〈ψ | ∈ K⊗H′ ∼= L(K,H) for |ψ 〉 ∈ K
and |φ〉 ∈ H.

To describe the state of a quantum system we require the notion of density op-
erators. The real subspace of self-adjoint operators, X = X†, is denoted by

Herm(H) ⊂ L(H) and the convex cone of positive semide�nite operators by

Pos(H) := {X ∈ Herm(H) | 〈ψ|X |ψ〉 ≥ 0}. The trace of an operator

X ∈ L(H) is Tr[X] :=
∑

i 〈i|X |i〉, where {|i〉} ⊂ H is an arbitrary orthonor-

mal basis of H. The vector space L(H) is itself a Hilbert space endowed with

the Hilbert-Schmidt (trace) inner-product

〈X,Y 〉 := Tr[X†Y ] . (2.1)

The set of density operators is de�ned as D(H) := {ρ ∈ Pos(H) : Tr[ρ] = 1}.
We sometimes simply decorate the set of density operators with the dimension

d = dimH of the underlying Hilbert space and write D(d)
.

Outcomes of a quantum measurement are modelled by random variables. Ab-

stractly, a random variable is de�ned as a measurable function from a probabil-

ity space to a measurable space X . Here, we will exclusively be concerned with

two types of random variable: (i) Those that take values in a �nite, discrete set

X ∼= [n] := {1, . . . , n} (understood as the measurable space with its power set

as the σ-algebra) and (ii)) those that take values in the reals X = R (with the

standard Borel σ-algebra generated by the open sets). In practice, the underly-

ing probability space is often left implicit and one describes a random variableX
taking values in X directly by its probability distribution P that assigns a prob-

ability to an element of the σ-algebra of X . For example, for a random variable

X taken values in R and I ⊂ R an interval, we write P[X ∈ I] for the prob-

ability of X assuming a value in I . Abstractly speaking, P is the push-forward

of the measure of the probability space to X induced by the random variable X .

Thus, P is su�cient to describeX . The underlying probability space is, however,

important to de�ne correlations between multiple random variables which are

understood to be de�ned on the same probability space.

The probability distribution of a discrete random variable X taking values in a

�nite set X ∼= [n] is characterized by its probability mass function pX : [n] →
[0, 1], k 7→ pX(k) := P[X = k] := P(X ∈ {k}). A real random variable X is

characterized by its (cumulative) probability distribution PX : R → [0, 1], x 7→
PX(x) := P[X < x] := P[X ∈ (∞, x)] or in case it is absolutely continuous

by its probability density pX : R → [0, 1], x 7→ pX(x) := d
dt

∣∣
x
P (t). Note that
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if a discrete random variable takes values in a discrete subset of R we can also

assign a non-continuous (cumulative) probability distribution.

The most general way to de�ne a linear map from density operators D(H) to

random variables is by means of a positive operator valued measure (POVM). A

POVM is a map from (the σ-algebra) of X to Pos(H). For a discrete random

variable X taking values in [n] a POVM is uniquely de�ned by a set of e�ects
{Ei ∈ Pos(H)}ni=1 with

n∑
i=1

Ei = 1H , (2.2)

where 1H ∈ L(H) denotes the identity operator. Strictly speaking the POVM is

the map on the power set of [n] that extends k 7→ Ek additively. It is convenient

and common to refer to the set of e�ects as the POVM. A POVM M (with e�ects)

{Ei ∈ Pos(H)}ni=1 induces a map from D(H) to random variables. To this

end, we associate to ρ the random variable Mρ with probability mass function

pMρ(k) := 〈ρ,Ek〉.

These are the ingredients to formalize the static postulates of quantum theory.

Postulates (quantum states and measurements):

• A quantum system is associated with a (separable) complex Hilbert space

H.

• The state of a quantum system, its quantum state, is described by a density

operator ρ ∈ D(H)

• A measurement with potential outcomes in a �nite, discrete set O ∼= [n] is

described by a POVM M with e�ects {Ei}i∈[n].

• If a quantum system is in the state ρ ∈ D(H) and the measurement M is

performed the observed outcome is a realization of the random variable

Mρ associated to ρ by M.

The setD(H) is convex. Its extremal points are rank-one operators. A quantum

state ρ ∈ D(H) of unit rank is called a pure state. In particular, there exist a

state vector |ψ 〉 ∈ H such that ρ = |ψ 〉〈ψ |. The state vector associated to

a pure quantum state is only unique up to a phase factor. A general quantum

state is therefore a convex combination of the form

∑
i pi |ψi 〉〈ψi |, where p is a

probability vector, i.e., an entry-wise non-negative vector p ∈ Rd, p ≥ 0 that is

normalized, i.e.,

∑
i pi = 1. A quantum state that is not pure is called mixed.
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The Hilbert space associated a composite quantum system consisting of two

quantum systems with Hilbert spaces H1 and H2, respectively, is the tensor

product H1 ⊗H2. The operators L(H1) can be embedded into L(H1 ⊗H2) by

A 7→ A⊗ 1. Dually to that, for any state ρ ∈ D(H1 ⊗H2) we can introduce its

reduction to system 1 by demanding that

Tr[ρ (A⊗ 1)] = Tr[ρ1A] . (2.3)

The reduced state captures all information of ρ that can be obtained from mea-

suring system 1 alone. The partial trace Tr2 : L(H1⊗H2)→ L(H1) that linearly

extends the action X ⊗ Y 7→ X Tr[Y ] maps the state ρ to its reduced state ρ1.

By F ∈ L(H⊗H) we denote the �ip operator (or swap operator) that is de�ned

by linearly extending

F |ψ 〉 |φ〉 := |φ〉 |ψ 〉 . (2.4)

In a basis {|i〉}dim(H)
i=1 ofH, we can express |ψ 〉 ∈ H⊗H by a coe�cient matrix

A ∈ CdimH×dimH
as |ψ 〉 =

∑
i,j Aij |i〉 |j 〉. The coe�cient matrix of F |ψ 〉 is

given by the matrix transpose Aᵀ
of A with entries (Aᵀ)i,j = Aj,i.

2.2 Distance measures for quantum states

In this section we introduce some ‘natural’ measures on quantum states. One

main application of these measures within this work is to specify the deviation

of the estimate of a quantum state identi�cation protocol from the actual state

that generated the data.

To this end, recall that any normal operator X ∈ L(H), i.e., any operator that

commutes with its adjoint, [X,X†] := XX† − X†X = 0, can be written in

spectral composition X =
∑

i xiPi, where xi ∈ C are its eigenvalues and Pj =
P 2
j ∈ Pos(H) the corresponding spectral projectors. There are several useful

norms of an operator X ∈ L(H,K). For any operator X ∈ L(H,K) between

two Hilbert spaces H and K, the operator X†X is positive semide�nite, i.e.,

in Pos(H). In consequence, it has a positive semide�nite square root |X| :=√
X†X ∈ Pos(H).

The spectral norm (a.k.a. operator norm) ‖X‖∞ ∈ R+ of X is de�ned to be the

largest eigenvalue of |X|. The trace norm is ‖X‖1 := Tr[|X|] and the Frobenius
norm ‖X‖F :=

√
Tr[|X|2] =

√
Tr[X†X]. These norms can be de�ned in a

variety of equivalent ways: The spectral norm coincides with the norm induced

by the `2-norm on H via ‖X‖∞ = sup‖v‖`2≤1 ‖Xv‖`2 , a manifestation of the
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Rayleigh principle. The Frobenius norm is induced by the Hilbert-Schmidt inner
product (2.1). It can also be expressed in terms of the matrix representation of

X as ‖X‖F =
∑

i,j |Xij |2. Finally, all three norms are instance of the Schatten
p-norms that are directly de�ned as `p-norms on the singular value spectrum.

The singular value spectrum σ(X) of X is de�ned as the eigenvalue spectrum

of |X| and the `p-norms are given by ‖x‖`p := (
∑

i |xi|p)
1/p

. This gives rise to

the unitarily invariant Schatten p-norm ‖X‖p := ‖σ(X)‖`p and ‖ · ‖∞, ‖ · ‖1,

and ‖ · ‖F are the Schatten p-norms with p =∞, 1, 2, respectively.

The Euclidean inner product is bounded by `p-norms by the Hölder inequality

that states that for all x, y ∈ Cd and pairs p, q ∈ {1, 2, . . . ,∞}with p−1+q−1 =
1 (understanding 1/∞ = 0) it holds that

|〈x, y〉| ≤ ‖x‖`p‖x‖`q . (2.5)

The Hölder inequality generalizes the Cauchy-Schwarz inequality where p =
q = 2. The Schatten p-norms inherit a matrix Hölder inequality from the Hölder

inequality: Let X,Y ∈ L(H,K) and p, q as before, then

|〈X,Y 〉| ≤
∥∥∥X†Y ∥∥∥

1
≤ ‖X‖p‖Y ‖q . (2.6)

The Hölder inequality directly follows from the von Neumann inequality Tr |AB| ≤
〈σ(A), σ(B)〉 where the singular value spectra σ(A) and σ(B) are each in de-

scending order [Bha97]. Furthermore, the Schatten p-norms inherit the ordering

of the `p-norms, ‖X‖∞ ≤ . . . ≤ ‖X‖2 ≤ . . . ≤ ‖X‖1 for all X . Norm bounds

in reversed order will in general introduce dimensional factors. For low-rank

matrices these bounds can be tightened.

Lemma 1 (Reversed norm bounds). For all X ∈ L(H,K) it holds that

‖X‖1 ≤
√

rank(X) ‖X‖F ≤ rank(X) ‖X‖∞ . (2.7)

Proof. Let X ∈ L(H,K) and r = rank(X). We can always write X = XPr
with Pr a rank-r projector onto the orthogonal complement of the kernel of X .

Now by the matrix Hölder inequality (2.6) ‖X‖1 = ‖XPr‖1 ≤ ‖Pr‖F ‖X‖F =√
r ‖X‖F. For the second inequality, bound again using the matrix Hölder in-

equality |Tr(X†X)| ≤
∥∥X†X∥∥

1
≤ ‖Pr‖1

∥∥X†X∥∥∞ = r ‖X‖2∞. Taking the

square root we conclude that ‖X‖F ≤
√
r ‖X‖∞ from which the second in-

equality follows.
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A natural metric on quantum states is the trace distance distTr : D(H)×D(H)→
R+,

distTr(ρ̃, ρ) =
1

2
‖ρ− ρ̃‖1 . (2.8)

We have already seen that compared to the other Schatten p-norms the trace

norm is the largest, i.e., the most ‘pessimistic’ distance measure. Furthermore,

the trace norm has an operational interpretation in terms of the distinguishabil-

ity of quantum states by dichotomic measurements.

Proposition 2 (Operational interpretation of the trace distance). Let ρ, σ ∈
D(H). It holds that

distTr(ρ, σ) = sup
0≤P≤1

Tr[P (ρ− σ)] . (2.9)

Furthermore, the supremum is attained for the orthogonal projector P+ onto the
positive part of ρ− σ.

We refer to Ref. [4] for a proof of the proposition.

Given two quantum states the optimal dichotomic POVM measurement {P,1−
P} to distinguish the two states is the POVM that maximizes the probability

of measuring the outcome associated to P in one state and minimizes the same

probability for the other state. Of course exchanging the role of P and 1 − P
works equivalently. We can think of the achievable di�erences in probabilities

as a measure for the distinguishability of ρ and σ. Proposition 2 shows that

the trace distance of two states coincides with the maximal distinguishability by

any dichotomic POVM measurements. By measuring multiple iid. copies one

can amplify the distinguishability of a single shot measurement.

Let us introduce another important distance measure on quantum states. The

(squared3) �delity of two quantum state ρ, σ ∈ D(H) is de�ned as

F(ρ, σ) :=
∥∥√ρ√σ∥∥2

1
. (2.10)

One can rewrite ∥∥√ρ√σ∥∥
1

= Tr
[√√

ρ σ
√
ρ
]
. (2.11)

3

Some authors de�ne the �delity as

∥∥√ρ√σ∥∥
1

without the square. For this reason, one might

want to refer to the expression of (2.10) explicitly as the squared �delity to avoid confusion.

For brevity, we however call F simply the �delity hereinafter.
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While not any more directly evident from (2.11), the �delity is symmetric as is

apparent from (2.10).

The �delity is more precisely not a measure of ‘distance’ for two quantum states

but of ‘closeness’. In particular, F(ρ, ρ) = 1, which can be seen to be the maximal

values of F(ρ, σ) for all ρ, σ ∈ D(H). Hence, 0 ≤ F(ρ, σ) ≤ 1 on D(H). Often

it is convenient to work with the in�delity 1 − F(ρ, σ) as the complementary

measure of ‘distance’.

If at least one of the states ρ or σ is pure, say ρ = |ψ 〉〈ψ |, then

F(ρ, σ) = 〈ψ|σ |ψ〉 = Tr[ρσ] = 〈ρ, σ〉 , (2.12)

which follows from (2.11). Furthermore, for both states being pure we have

F( |ψ 〉〈ψ | , |φ〉〈φ |) = |〈ψ|φ〉|2 for all |ψ 〉〈ψ | , |φ〉〈φ | ∈ D(H). Thus, for pure

states the �delity is the overlap of the states and can be related to the angle be-

tween the state vectors. We will in fact mostly encounter the case where at least

one of the states is pure and mostly work with (2.12) instead of (2.10).

The �delity is related to the trace distance as follows.

Proposition 3 (Fuchs-van-de-Graaf inequalities [Fv99, Theorem 1]). For any
states ρ, σ ∈ D(H)

1−
√

F(ρ, σ) ≤ 1

2
‖ρ− σ‖1 ≤

√
1− F(ρ, σ) . (2.13)

Since the Fuchs-van-de-Graaf inequalities are not explicitly dependent on the

Hilbert-space dimension one can regard the trace-distance and �delity as equiv-

alent measures of quality in many applications. Note however that the square-

root on the right-hand side can still make a painstaking di�erence in practice.

Aiming at a trace-norm distance of 10−3
can in the worst case require an in�-

delity of 10−6
. This can be a crucial di�erence when it comes to the feasibil-

ity of certi�cation. Importantly, the square-root scaling is unavoidable for pure

states.

Lemma 4 (Fuchs-van-de-Graaf inequality for pure states). The upper bound of
the Fuchs-van-de-Graaf inequality for pure states |ψ 〉〈ψ | , |φ〉〈φ | ∈ D(H) is
tight, i.e.

‖|ψ 〉〈ψ | − |φ〉〈φ |‖p = 21/p
√

1− |〈ψ|φ〉|2 . (2.14)
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Proof. Denote X := |ψ 〉〈ψ | − |φ〉〈φ |. We have Tr[X] = 0 and rank(X) ∈
{0, 2}. Hence, X has two eigenvalues λ > 0 and −λ < 0. This implies that

λ2 = ‖X‖2F /2 = 1−1 |〈ψ|φ〉|2, as directly follows by writing ‖X‖2F as a Hilbert-

Schmidt inner product. From the eigenvalues one can calculate ‖X‖p as Schatten

p-norm, which yields the result.

In Lemma 4 we showed that the upper bound of (2.13) is tight for pure states.

Conversely, one might hope for more mixed states to arrive at an improved scal-

ing closer to the lower-bound of (2.13). We will review such a bound in the

analogous discussion of distance measures of quantum channels, Theorem 22 in

Section 2.4.

2.3 Random states and unitaries

Random ensembles of quantum states and unitary matrices �nd ubiquitous ap-

plications in quantum information processing [CN16] and, in particular, in quan-

tum characterization protocols. Roughly speaking, random unitary operations

together with a �xed quantum measurement allow one to quickly gain informa-

tion about the entire state space. One main technical ingredients to the compres-

sive randomized protocol devised in Chapter 6 is a novel integration formula for

the Cli�ord group. To set the stage, we review in this section the mathematical

preliminaries that are required to understand and prove our result.

Arguably the simplest probability distribution on the unitary group U(d) is given

by the Haar measure µU(d). In general, for a compact Lie-group the Haar mea-

sure is the unique left and right invariant probability measure. It generalizes the

notion of a uniform measure. In applications one is often interested in random

variables that are polynomials in matrix elements of a Haar-random unitary U
and its complex-conjugate U †. In this case, also all moments of the random vari-

able are the expected value of such polynomials. In this section we will introduce

the mathematical theory required to explicitly calculate such moments. To this

end, we observe that any polynomial pt(U,U
†) of degree k can be written as the

contraction with two matrices A,B ∈ Cdk×dk,

pk(U,U
†) = Tr[BU⊗kA(U †)⊗k] . (2.15)

This motivates to de�ne the kth moment operator of a probability measure µ on
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U(d) asM(k)
µ : Cdk×dk → Cdk×dk,

M(k)
µ (A) = EU∼µ

[
U⊗kA(U †)⊗k

]
=

∫
U(d)

U⊗kA(U †)⊗kdµ(U).
(2.16)

If we have an expression for the kth moment operator for the Haar measure

µU(d), we can calculate the expectation value of arbitrary polynomials pk(U,U
†)

over U ∼ µU(d) by a linear contraction (2.15).

The crucial property that characterizes the kth moment operator of µU(d) is the

following: Consider a �xed unitary U ∈ U(d). Then a short calculation exploit-

ing the unitary invariance of the Haar measure reveals that

U⊗kM(k)
µU(d)

(A) =M(k)
µU(d)

(A)U⊗k. (2.17)

We �nd thatM(k)
µU(d)

(A) commutes with every unitaryU raised to the kth tensor

power.

For a set of endomorphisms A ⊂ L(W ) on a vector space W one calls the set

comm(A) = {B ∈ L(W ) | BA = AB ∀A ∈ A} (2.18)

of all endomorphisms that commute with all elements ofA the commutant ofA.

The following lemma establishes that not only doesM(k)
µU(d)

(A) commute with

every unitary of the form U⊗k, but it is in fact the orthogonal projector onto the

commutant of A = {U⊗k|U ∈ U(d)}, where orthogonality is understood with

respect to the Hilbert-Schmidt inner product (2.1). As will become motivated

shortly, we refer to

∆k
d : U(d)→ U(dk) , U 7→ U⊗k (2.19)

as the diagonal representation of U(d).

Lemma 5 (kth moment operator). The kth moment operatorM(k)
µU(d)

is the or-
thogonal projector onto comm(∆k

d(U(d))), the commutant of the k-order diagonal
representation of U(d).

Proof. With (2.17) we have established that the range ofM(k)
µU(d)

is in comm(∆k
d(U(d))).

The converse also holds since for A ∈ comm(∆k
d(U(d))) we calculate that

M(k)
µU(d)

(A) = AM(k)
µU(d)

(1) = A. Thus, it remains to check the orthogonal-

ity (M(k)
µU(d)

)† = M(k)
µU(d)

. The orthogonality requirement follows in very few

lines of calculation using linearity and cyclicity of the trace.
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The commutant of the diagonal representation of the unitary group can be char-

acterized using a powerful result from representation theory: Schur-Weyl dual-

ity. We start by reviewing some basic de�nitions and results from representation

theory.

2.3.1 Representation theory and twirling

An introduction into representation theory can be found, e.g. in the books [Sim96]

and [GW00]. LetG be a group and U(H) the unitary group of a Hilbert spaceH.

A (unitary) linear representation R : G→ U(H) is a group homomorphism, i.e.

a linear map ful�lling f(gg′) = f(g)f(g′) for all g, g′ ∈ G. One can generalize

the notion of eigenspace and diagonalization of vector space homomorphisms

to representations. A subspace V ⊂ H is invariant under R if R(g)V ⊆ V
for all g ∈ G. A representation R is irreducible if its only invariant subspaces

are the trivial subspaces, H and {0}. One can decompose a representation into

its irreducible components giving rise to a block-diagonal form (see e.g. [Sim96,

Theorem II.2.3]).

Proposition 6 (Decomposition into irreps). Let R : G → U(H) be a unitary
representation of a group G on a �nite-dimensional Hilbert space H. Then there
exist irreducible representations (Ri,Hi) of G such that

H =
⊕
i

Hi and R(g) =
⊕
i

Ri(g) . (2.20)

For two irreducible representations R,R′ appearing in the decomposition (2.20)

there might exist a unitary transformation such that R(g) = SR′(g)S† for g.

The number m of such unitarily equivalent representations is called the mul-
tiplicity of an irreducible representation in the decomposition. If all irreducible

representations are mutually inequivalent, we say that the decomposition ismul-
tiplicity free.

The most fundamental theorem of representation theory is Schur’s lemma.

Theorem 7 (Schur’s lemma). Let R : G → U(H) and R̃ : G → U(H̃) be two
irreps ofG on �nite dimensional Hilbert spacesH and H̃. IfA ∈ L(H, H̃) satis�es

AR(g) = R̃(g)A ∀g ∈ G (2.21)

then either A = 0 or R1 and R2 are unitarily equivalent up to a constant factor.
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A proof can be found, e.g. in Ref. [4].

A more general perspective on the moment operator is the twirling over a group

with the diagonal representation
4
. More generally, for a unitary representation

R : G→ U(V ) of a subgroup G ⊂ U(d) carried by a vector space V , we de�ne

TR : L(V )→ L(V ) (“twirling”) as

TR(A) =

∫
G
R(g)AR(g)†dµG(g), (2.22)

where µG is the invariant measure induced by the Haar measure on U(d). We

haveM(k)
µU(d)

= T∆k
d
.

The argument of the proof of Lemma 5 now applies more generally and yields

the analogous statement for arbitrary representation of groups equipped with

a Haar measure, e.g. the uniform measure on a �nite subgroup. We will more

speci�cally rely on the following well-known properties of TR that are straight-

forward to verify:

Lemma 8 (Properties of TR). Let R be a unitary representation of a subgroup
G ⊆ U(d). Then, for all A ∈ L(V ) and B ∈ Comm(R(G)), the map TR (de�ned
in Eq. (2.22)) ful�ls

Tr(TR(A)) = Tr(A), (2.23)

TR(AB) = TR(A)B, (2.24)

TR(A) ∈Comm(R(G)). (2.25)

2.3.2 Schur-Weyl duality and the commutant of the diagonal
action

To calculate the moments of random variables depending on Haar-random uni-

taries, we are interested in understanding the commutant of the diagonal repre-

sentation of the unitary group. Formally, we de�ne the diagonal representation

of U(d) on (Cd)⊗k as

∆k
d : U(d)→ U

(
(Cd)⊗k

)
(2.26)

by linearly extending the action

∆k
d(U)( |ψ1 〉 ⊗ · · · |ψk 〉) := (U |ψ 〉1)⊗ · · · (U |ψk 〉) . (2.27)

4

This paragraph is taken from Section A of the supplemental material of Ref. [1].
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The representation ∆k
d has a duality relation with another well-known repre-

sentation on Ck
: the representation πk of the symmetric group Sk permuting

the k tensor components:

πk : Sk → U
(

(Cd)⊗k
)
,

πk(σ)( |ψ1 〉 ⊗ · · · ⊗ |ψk 〉) :=
∣∣ψσ−1(1)

〉
⊗ · · · ⊗

∣∣ψσ−1(k)

〉
.

(2.28)

We note that πk(σ) and ∆d(U) commute for any σ ∈ Sk and U ∈ U(d).

Let us consider the following two irreducible representations of the symmetric

group which appear in the decomposition, Proposition 6, of πk for any k. We call

|Ψ〉 ∈ (Cd)⊗k symmetric if πk(σ) |Ψ〉 = |Ψ〉 for all σ ∈ Sk and antisymmetric
if πk(σ) |Ψ〉 = sign(σ) |Ψ〉 for all σ ∈ Sk. The symmetric subspace Hsymk

and antisymmetric subspace H∧k of (Cd)⊗k are the subspaces consisting of all

symmetric and all antisymmetric vectors, respectively.

Lemma 9 (Symmetric subspace). The orthogonal projectors onto the symmetric
and antisymmetric subspace are

Psymk =
1

k!

∑
σ∈Sk

πk(σ) and P∧k =
1

k!

∑
σ∈Sk

sign(σ)πk(σ) , (2.29)

respectively. The dimension of the symmetric subspace Psymk(Cd)⊗k is

Tr[Psymk ] =

(
k + d− 1

d− 1

)
. (2.30)

Proof. The �rst statement follows, e.g., forPsymk by realizing that any symmetric

vector in the range of Psymk and that this operator in indeed a projector, i.e., that

Psymk is self-adjoint and PsymkPsymk = Psymk .

The second statement is a combinatorial one. The trace of the symmetric pro-

jector is the number of ways to distribute k indistinguishable particles (bosons)

into d boxes (modes), i.e., the dimension of the corresponding subspace of the

bosonic subspace, which is known to be given by the binomial coe�cient.

In physics, we ubiquitously use the fact that any matrix can be decomposed into

the direct sum of a symmetric and antisymmetric matrix. In other word, under

the action of π2 we have the irreducible decomposition

(Cd)⊗2 = Hsym2 ⊕H∧2 . (2.31)
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This decomposition has a generalization to πk with k > 2, the Schur-Weyl de-

composition. The Schur-Weyl decomposition relies on a duality relation between

the commuting representations ∆k
d and πk. The representations ∆k

d and πk span

each other’s commutant as algebras.

Theorem 10 (Schur-Weyl duality [GW00, Theorem 4.2.10]). For the two com-
muting representations (2.28) and (2.27) it holds that

comm(∆k
d(U(d))) = span{πk(Sk)} (2.32)

and
comm(πk(Sk)) = span{∆k

d(U(d))} . (2.33)

By Schur’s lemma such a duality relation implies that the multiplicity spaces of

the irreducible representation of one representation are irreducible representa-

tions of the dual representation and vice versa. In other words, Cd decomposes

into multiplicity-free representations of the combined action U(d)×Sk. In or-

der to state this composition, we write λ = (λ1, λ2 . . . , λl(λ)) ` k for a partition

of k into l(λ) non-increasing integers with λ1 ≥ 1 and ful�lling

k =

l(λ)∑
i=1

λi . (2.34)

Such partitions of integers label the irreducible representations of the symmetric

group and the diagonal representation. As a consequence of Schur-Weyl duality

one can prove.

Theorem 11 (Schur-Weyl decomposition [GW00, Theorem 9.1.2]). The action
of U(d)×Sk on (Cd)⊗k given by the commuting representations (2.28) and (2.27)

is multiplicity-free and (Cd)⊗k decomposes into irreducible components as

(Cd)⊗k ∼=
⊕

λ`k,l(λ)≤d
Wλ ⊗ Sλ, (2.35)

where U(d) acts non-trivially only on Wλ, the Weyl modules, and Sk acts non-
trivially only on Sλ, the Specht modules. For any k ≥ 2, both Hsymk and H∧k
occur as components in the direct sum (2.35).

Schur-Weyl duality, Theorem 10, and the resulting decomposition, Theorem 11,

give a simple characterization of the commutant of the diagonal action. The rela-

tion (2.32) allows one to derive an expression for the k-moment operatorM(k)
µU(d)
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as the orthogonal projector onto the span of the symmetric group. But one has

to be careful since {πdk(σ)}σ∈Sk is not an orthonormal basis. Note that it only

becomes an orthogonal set asymptotically for large k which can be exploited in

some applications, e.g. [BHH16b].

Before deriving a general expression forM(k)
µU(d)

, we take a look at prominent

special cases that often arise in quantum information, namely, k = 2 and the

projection restricted to symmetric endomorphisms as its input. We begin with

the second moment, k = 2.

Proposition 12 (Second moment operator). For an operator A ∈ L(Cd ⊗ Cd),
d ≥ 2, it holds that

M(2)
µU(d)

(A) = csym2Psym2 + c∧2P∧2 (2.36)

with csym2 = 2
d(d+1) Tr[APsym2 ] and c∧2 = 2

d(d−1) Tr[AP∧2 ].

Proof. From Lemma 5 and Theorem 10 we know that M(2)
µU(d)

(A) is a linear

combination of the identity 1 and the swap operator F from (2.4). For S2 the

expansion of the projectors onto the symmetric and antisymmetric subspace,

(2.29), can be inverted yielding Id = Psym2 + P∧2 and F = Psym2 − P∧2 . This

establishes the form of (2.36). Since Psym2 and P∧2 are mutually orthogonal

projectors andM(2)
µU(d)

is an orthogonal projector the coe�cients are given by

csym2 = Tr[APsym2 ]/Tr[Psym2 ] = 2
d(d+1) Tr[APsym2 ] and c∧2 analogously.

Second, we allow for arbitrary k but restrict the input ofM(k)
µU(d)

to endomor-

phisms that are itself symmetric, i.e., of product form. In this case we also �nd

an orthogonal decomposition as given by the following lemma.

Lemma 13 (Moment operator on symmetric operators). For any operator A ∈
L(Cd) it holds that

M(k)
µU(d)

(A⊗k) =
∑

λ`k,l(λ)≤d
cλPλ , (2.37)

with Pλ the orthogonal projector onto Wλ ⊗ Sλ and cλ = Tr(PλA
⊗k)/Tr(Pλ).

Furthermore, if the operator A is of unit rank, then

M(k)
µU(d)

(A⊗k) = cPsymk , (2.38)

with c = Tr(PsymkA⊗k)/Tr(Psymk).
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Proof. We �x some A ∈ L(Cd) and denote E := M(k)
µU(d)

(A⊗k). By the def-

inition of the moment operator (2.16), E =
∫

U(d)(UAU
†)⊗kdµU(d)(U) and it

becomes apparent that E commutes with πdk(σ) for any σ ∈ Sk. In other

words, E ∈ comm ∆k
d(U(d)) ∩ commπdk(Sk) by Lemma 5. By Schur’s lemma

(Theorem 7) and the Schur-Weyl decomposition (2.35), we thus conclude that

E acts proportionally to the identity on every Weyl module Wλ and Specht

module Sλ. Denoting the orthogonal projector onto Wλ ⊗ Sλ as Pλ, the op-

erator E permits the decomposition E =
∑

λ`k,l(λ)≤d cλPλ with cλ ∈ C. Since

the projectors are onto mutually orthogonal the coe�cients are given by cλ =
Tr(A⊗kPλ)/Tr(Pλ). This establishes the lemma’s �rst assertion for E. Fi-

nally, for unit rank A, i.e. A = |ψ 〉〈φ | with |ψ 〉 , |φ〉 ∈ Cd, we observe that

PsymkA⊗kPsymk = Psymk |ψ 〉⊗n 〈φ |⊗nPsymk = A⊗k. Hence, cλ = 0 for all

λ that do not correspond to the symmetric subspace. This leaves us with the

lemma’s second expression for E and unit rank A.

In many applications in quantum information the statements of Proposition 12

and Lemma 13 su�ce. In particular, Lemma 13 is su�cient to derive statements

for prominent ensembles random states in the next section. Going beyond this, a

general expression in terms of so-called Weingarten functions [Wei78] is derived

by Collins and Sniady [CS06]. We here summarize the derivation that serves as

the blue-print for deriving the analogous result for the fourth-moment operator

for the Cli�ord group in Chapter 4.
5

We denote the dimension of the Weyl modules Wλ by Dλ and the dimensions

of the Specht modules Sλ by dλ. Let Pλ be the orthogonal projections onto

Wλ⊗Sλ and the character of the irreducible representation πλk carried by Sλ be

χλ(π) := Tr(πλk (π)). The orthogonal projectors can be written as

Pλ =
dλ
k!

∑
σ∈Sk

χλ(σ)πk(σ), (2.39)

see, e.g. Ref. [Wig59, Eq. (12.10)]. In terms of these projectors M(k)
µU(d)

can be

calculated using the following theorem.

5

Going beyond this, . . . of the theorem.] The material of the remainder of the section has been

published as Section A.1 of the supplemental material of Ref. [1]. It is altered to use a consistent

notation.
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Theorem 14 (Integration over the unitary group U(d)). Let A ∈ L((Cd)⊗k.
Then,

M(k)
µU(d)

(A) =
1

k!

∑
τ∈Sk

Tr(Aπk(τ))πk(τ
−1)

∑
λ`k, l(λ)≤d

dλ
Dλ

Pλ. (2.40)

This formula di�ers slightly from the original statement presented in Ref. [CS06].

The more common formulation presented there follows from evaluating the ex-

pression of Theorem 14 using a standard tensor basis of L((Cd)⊗k). However,

here we have opted for a presentation of Theorem 14 that is easier to generalize

beyond the full unitary group.
6

In the remainder of this section, we present a proof of Theorem 14 following the

strategy of Ref. [CS06]. Let V = (Cd)⊗k. In general, the direct sum of endomor-

phisms acting on the irreducible representations of a group is isomorphic to the

group ring which consists of formal (complex) linear combinations of the group

elements [FH91, Propositon 3.29]. We denote the group ring of Sk by C[Sk]. To

derive an explicit expression of the coe�cient of the expansion ofM(k)
µU(d)

(A) in

C[Sk], we introduce the map Φ : L(V )→ L(V )

Φ(A) =
∑
σ∈Sk

Tr(Aπk(σ
−1))πk(σ). (2.41)

We will make use of the following properties of the map Φ.

Lemma 15 (Properties of Φ). For all A ∈ L(V ) and B ∈ Comm(∆k
d)

Φ(A) =Φ(M(k)
µU(d)

(A)), (2.42)

Φ(B) =BΦ(Id), (2.43)

Φ(Id)−1 =
1

k!

∑
λ`k,l(λ)≤d

dλ
Dλ

Pλ. (2.44)

Proof. 1. Since πk(σ
−1) is in Comm(∆k

d) for all σ ∈ Sk, we can apply

Lemma 8 to get

Tr(M(k)
µU(d)

(A)πk(σ
−1)) = Tr(M(k)

µU(d)
(Aπk(σ

−1)))

= Tr(Aπk(σ
−1)) ,

(2.45)

which establishes the �rst statement.

6

This way of stating the result of Ref. [CS06] was brought to our attention by study notes of

K. Audenaert.
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2. Since the commutant is isomorphic to the group ring, it su�ces to proof

the statement for all B = πk(τ) with τ ∈ Sk. In this case, using the

cyclicity of the trace for the �rst equality, we �nd

Φ(πk(τ)) =
∑
σ∈Sk

Tr(πk(σ
−1)πk(τ))πk(σ)

=
∑
σ∈Sk

Tr(πk(τσ
−1))πk(σ)

=
∑
σ∈Sk

Tr(πk(σ
−1))πk(στ)

= πk(τ)
∑
σ∈Sk

Tr(πk(σ
−1))πk(σ).

(2.46)

Here we have used that πk(τσ) = πk(σ)πk(τ) for all τ, σ ∈ Sk.

3. Using Theorem 11, we can rewrite Φ(Id) as

Φ(Id) =
∑
σ∈Sk

Tr(πk(σ
−1))πk(σ)

=
∑
σ∈Sk

∑
λ`k,l(λ)≤d

Dλ Tr(πλ(σ−1))πk(σ)

=
∑

λ`k,l(λ)≤d
Dλ

∑
σ∈Sk

χλ(σ)πk(σ).

(2.47)

The explicit expression (2.39) for the projectors identi�es Φ(Id) as

Φ(Id) = k!
∑

λ`k,l(λ)≤d

Dλ

dλ
Pλ. (2.48)

Since the {Pλ} are a complete set of orthogonal projectors, the inverse of

Φ(Id) is given by

Φ(Id)−1 =
1

k!

∑
λ`k,l(λ)≤d

dλ
Dλ

Pλ. (2.49)

We are now in position to give a concise proof of Theorem 14:
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2 Preliminaries

Proof of Theorem 14. From Eqs. (2.42) and (2.43) we conclude Φ(A) = Φ(T∆k
d
(A)) =

T∆k
d
(A)Φ(Id) and, thus, T∆k

d
(A) = Φ(A)Φ(Id)−1

. Inserting the expression

(2.44) for Φ(Id)−1
and the de�nition (2.41) of Φ yields the expression of the

theorem.

2.3.3 Uniformly random state vectors

One can also de�ne a uniform distribution on pure quantum states in multiple

equivalent ways. First, one can draw randomly from the complex sphere S(Cd),

i.e. the set of normalized vectors in Cd. Indeed, there is a unique uniform prob-

ability measure µS(Cd) on S(Cd) that is invariant under the canonical action

of U(d) on Cd. By de�nition we see that a column |ψ 〉 = U |0〉 of a Haar-

randomly drawn unitary U ∼ µU(d) is distributed according to µS(Cd). Finally,

we can switch to density matrices by factoring out a global phase. In more detail,

the complex projective space CPd−1 := S(Cd)/U(1) is the set of state vectors

modulo a phase in U(1), which can be identi�ed with the set of pure density

matrices CPd−1 ⊂ D(Cd). It also has a uniform unitarily invariant probability

distribution: a uniformly random pure state |ψ 〉〈ψ | can be obtained by drawing

|ψ 〉 ∼ µS(Cd).

We can calculate the moments of polynomials that depend on states drawn uni-

formly from µS(Cd) using the moment operatorM(k)
µU(d)

. To this end, note that

any polynomial pk( |ψ 〉 , 〈ψ |) of degree k in the component of each |ψ 〉 and 〈ψ |
can be written as a contraction of |ψ 〉〈ψ |⊗k with some operator in L(Cdk). For

this reason the following lemma summarizes everything we need.

Lemma 16 (Moment operator of random states). Let K(k)
µS(Cd)

be the moment-
operator for |ψ 〉 ∼ µS(Cd) explicitly de�ned by

K(k)
µS(Cd)

:=

∫
S(Cd)

( |ψ 〉〈ψ |)⊗kdµS(Cd)(ψ) . (2.50)

It holds that

K(k)
µS(Cd)

=
k!(d− 1)!

(k + d− 1)!
Psymk , (2.51)

where Psymk is the projector (2.29) onto the symmetric subspace.
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2.3 Random states and unitaries

Proof. As µS(Cd) is U(d)-invariant, we �nd K
(k)
µS(Cd)

= M(k)
µU(d)

(( |ψ 〉〈ψ |)⊗k).

Lemma 13 thus implies that K
(k)
µS(Cd)

= cPsymk with

c =
Tr(Psymk( |ψ 〉〈ψ |)⊗k)

Tr(Psymk)
.

Since Psymk acts trivially on |ψ 〉, and it is normalized, the enumerator evaluates

to one. The denominator is the dimension of Psymk given by (2.30).

2.3.4 Unitary, spherical and complex-projective k-designs

With our excursion to representation theory we have derived expressions to cal-

culate the moments of random variables on uniformly random states and uni-

taries. The very same results can be also used for certain other interesting prob-

ability distributions. To this end, note that if we only want to control the �rst

t moments of a random variable that is a polynomial of degree ` in a random

state or unitary, then our calculation will only involve the moment operators

M(k)
µU(d)

for k ≤ t`. In many applications it is su�cient to control the expec-

tation value and the variance of low-degree polynomials. In these cases, any

probability distribution that reproduces the �rst couple of moments of the uni-

form distributions can be used without changing the mathematical expressions.

This idea is formalized by the de�nition of k-designs [Dan+09; GAE07].

De�nition 1 (Unitary k-design). A distribution µ on the unitary group U(d)
is a unitary k-design if its kth moment operator (2.16) equals the corresponding

moment operator of the Haar measure,

M(k)
µ =M(k)

µU(d)
. (2.52)

A subset {U1, . . . , UnG
} ⊂ U(d) is called a unitary k-design if its uniform distri-

bution is one.

Note that by de�nition, any unitary k-design is also a unitary (k − 1)-design

for k ≥ 2. A famous example of a unitary design in the context of quantum

computing is the Cli�ord group.
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The Clifford group The (qubit) Pauli matrices are

X :=

(
0 1
1 0

)
, Y :=

(
0 −i
i 0

)
, Z :=

(
1 0
0 −1

)
, (2.53)

and we refer to tensor products W1 ⊗ · · · ⊗Wn with Wi ∈ {X,Y, Z, Id} for

all i ∈ [n] as n-qubit Pauli strings. The group generated by all n-qubit Pauli

strings and i Id is the Pauli group Pn ⊂ U(2n). The n-qubit Cli�ord group Cln =
Cl(2n) =⊂ U(2n) is the stabilizer of the Pauli group Pn,

Cln := {U ∈ U(2n;Q) : UPnU † ⊂ Pn} , (2.54)

where it is common to restrict to unitary matrices with complex rational entries,

here denoted by U(d;Q) := U(d)∩(Qd×d+iQd×d), so that Cln becomes a �nite

group. The n-qubit Cli�ord group is generated by the single qubit Hadamard

gate H and the phase gate S given by (see, e.g. [NC10, Theorem 10.6])

H =
1√
2

(
1 1
1 −1

)
and S =

(
1

i

)
(2.55)

together with the two-qubit controlled NOT (CNOT) gate

CNOT = |0〉〈0 | ⊗ 1 + |1〉〈1 | ⊗ σx. (2.56)

acting locally on any qubit. Together with the T =
√

S gate the Cli�ord group

is a universal gate set (see, e.g. [NC10, Section 4.5.3]).

The Cli�ord group constitutes a unitary 3-design but ‘fails gracefully’ to be a

unitary 4-design [Web16; Zhu17; Zhu+16]. Being a subgroup of the unitary

group the commutant of the diagonal action of the Cli�ord group for k > 3 is,

thus, a strictly larger space than the span of the permutation group. Deriving an

expression for the 4-order moment operator is a result of Chapter 4.

Note that analogously to unitary designs, we can de�ne spherical k-designs and

state k-designs [AE07; RS07]. For a distribution µ on the complex sphere S(Cd)
we de�ne the kth moment-operator as

K(k)
µ :=

∫
S(Cd)

( |ψ 〉〈ψ |)⊗kdµ(ψ) . (2.57)

De�nition 2 (Complex spherical/projective/state k-design). A distribution µ on

S(Cd) is a spherical k-design if

K(k)
µ = K(k)

µU(d)
. (2.58)
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2.4 Quantum processes and measures of quality

Furthermore, a subset S(Cd) is called a spherical k-design if its uniform distribu-

tion is one. The corresponding distribution of pure density matrices |ψ 〉〈ψ | is

called a complex projective k-design.

Analogously to the relation of the uniform measure on U(d) and S(Cd), a rather

obvious but important example of a spherical k-design is an orbit of a unitary

k-design. If µ is a unitary k-design for U(d) and |ψ 〉 ∈ Cd then the induced dis-

tribution µ̃ given byU |ψ 〉withU ∼ µ, is a complex spherical k-design. One can

use this relation to see that the Cli�ord group being a unitary 3-design implies

the analogous statement for stabilizer states, see also Ref. [KG15] for a direct

proof. Other examples for spherical designs that play essential roles in quan-

tum system characterization are mutually unbiased bases (MUBs) [Ivo81; WF89;

KR05] and symmetric, informationally complete (SIC) POVMs [Zau99; Ren+04].

2.4 Quantum processes and measures of quality

In Section 2.2 we modelled the static properties of a quantum device by its quan-

tum state. The main function of quantum devices roots of course in their ability

to accurately manipulate their quantum state and, thus, the quantum informa-

tion encoded therein. The manipulation of quantum states can be generally de-

scribed by means of quantum processes. A quantum process is a linear map from

density operators to density operators preserving de�ning properties. Formally,

we require the following de�nitions: Let H,K be �nite-dimensional Hilbert

spaces. We denote by L(H,K) := L(L(H),L(K)) the vector space of linear

maps from linear operators on H to the ones on K. We will frequently refer to

elements inL(H,K) simply asmaps. We abbreviateL(H) := L(H,H) and anal-

ogous de�nitions. An important subsets of L(H,K) are the one that preserve

properties of quantum states: We say X ∈ L(H,K) is Hermicity-preserving if

X (Herm(H)) ⊂ Herm(K) , positive if X (Pos(H)) ⊂ Pos(K), completely pos-
itive (CP) if X ⊗ 1L(H′) is positive for all Hilbert spaces H′ and 1L(H′) their

identity map, trace-preserving if Tr[X (X)] = Tr[X] for all X ∈ L(H).

If we want to restrict a map such that the image of every quantum state is a

quantum state even when composing it with a larger system the map must be

completely positive and trace-preserving (CPT). Such CPT maps are called quan-
tum channels, and we write CPT(H,K) ⊂ CP(H,K) for their set. Note that

the set of completely positive maps CP(H,K) is a convex cone and CPT(H,K)
a convex set in L(H,K).
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For our approach to process tomography in Chapter 6 of particular importance

is the notion of unital maps. Unital maps have the identity as their �x-point,

X (1H) = 1K. Note that X is unital if and only if X †, its adjoint w.r.t. the

Hilbert-Schmidt inner product, is trace-preserving. When working with unital

maps we always implicitely assume that the map is hermicity-preserving and has

domain restricted to the hermitian matrices. To emphasize this we introduce the

short-hand notation Hd := Herm(H) for the set of Hermitian operators on a

d-dimensional Hilbert spaceH and denote the set of unital and trace-preserving

maps by Lu,tp(Hd), its linear-hull by L
u,tp

(Hd).

A proper-functioning quantum device is typically expected to coherently ma-

nipulate its quantum state. In particular, we are interested in implementing

rotations in the pure state space. Such operations are described by a unitary

U ∈ U(H) acting adjointly on L(H) as

U(X) := UXU † . (2.59)

We will generally use the corresponding calligraphic letters to denote the adjoint

representation of a unitary. It is easy to see that U is a quantum channel. Unitary

channels are invertible, and the inverses are again unitary channels.

A matrix H ∈ Herm(H) generates a one-parameter of family of unitaries via

U : t 7→ exp(−iHt). We recall the postulate of unitary dynamics: The time-

evolution of a quantum system’s state is described by acting with the unitary

channel U(t) de�ned through its governing Hamiltonian H .

Going beyond the unitary operations and time-evolution, quantum channels

model the imperfect, noisy functioning of a quantum device. An important

quantum channel and frequent model for noise processes appearing in quantum

technologies is the depolarizing channel. The (quantum) depolarizing channel
Dp : L(Cd)→ L(Cd) with parameter p ∈ [0, 1] is the linear map de�ned by

Dp(X) := pX + (1− p) Tr[X]
1

d
. (2.60)

2.4.1 The Choi-Jamiołkowski isomorphism

Since quantum process are linear maps of vectors spaces of linear maps on a

Hilbert space, there exist multiple canonical isomorphisms to other vector spaces.

A particular essential one is the Choi-Jamiołkowski isomorphism [Jam72; Cho75]

as it identi�es CP maps with positive semide�nite operators. It is constructed

by a concatenation of the standard canonical vector space isomorphisms: Let
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V ∗ := L(V,C) denote the dual space of V . We have the standard identi�cation

L(V ) = V ⊗ V ∗. If V is equipped with an inner product 〈 · | · 〉, we can further-

more identify V
hc∼= V ∗, i.e. in Dirac notation the identi�cation of |v 〉 with 〈v |.

This allows us to identify L(H,K) = L(K) ⊗ L(H)∗ = K ⊗ K∗ ⊗ H∗ ⊗ H ∼=

K ⊗H∗ ⊗ K∗ ⊗H = L(K ⊗H∗)
hc∼= L(K ⊗H). This identi�cation de�nes the

Choi-Jamiołkowski isomorphism C : L(H,K)→ L(K ⊗H). An explicit expres-

sion for the Choi-Jamiołkowski isomorphism with respect to a basis is in terms

of the Choi matrix of X ∈ L(H,K)

C(X ) = X ⊗ id( |1〉〈1 |) , (2.61)

where |1〉 =
∑

i |i〉 |i〉 is the unnormalized maximally entangled state with

{|i〉} an orthonormal basis ofH. Direct calculation reveals that

Tr[BX (A)] = Tr[(B ⊗Aᵀ)C(X )] (2.62)

for all X ∈ L(H,K), A ∈ L(H) and B ∈ L(K).

The importance of the Choi-Jamiołkowski isomorphism in quantum informa-

tion stems from the fact that the properties of CPT maps are well-captured by

properties of their Choi matrix as summarized by the following theorem.

Theorem 17 (CPT conditions [Wat18, Chapter 2.2]). For any mapX ∈ L(H,K)
the following equivalences hold:

(i) X is trace-preserving if and only if TrK[C(X )] = 1.

(ii) X is Hermicity-preserving if and only if C(X ) is Hermitian.

(iii) X is completely positive if and only if C(X ) is positive semide�nite.

Another important consequence of the complete positivity of a map is the exis-

tence of so-called Kraus operators [Wat18, Chapter 2.2]. This gives another item

that could be added to Theorem 17: A map X is a CP map if and only if there are

(Kraus) operators K1, . . . ,Kr ∈ L(H,K), where r = rank(C(X )) so that

X (A) =

r∑
i=1

KiAK
†
i (2.63)

for all A ∈ L(H). The map X is additionally trace-preserving if and only if∑r
i=1K

†
iKi = 1.
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Using a di�erent normalization

J(X ) :=
1

dim(H)
C(X ) (2.64)

we can associate to a channel X it’s so called Choi state J(X ) ∈ D(K ⊗ H).

This motivates the term channel-state duality for the Choi-Jamiołkowski isomor-

phism. However, strictly speaking the Choi-Jamiołkowski is an isomorphism

of the convex cones CP(H,K) and Pos(H ⊗ H). In order, to have a (trace-

preserving) channel as their preimage a bipartite state has to be maximally en-

tangled over the partition. The identity (2.61) implies that one can in principle

prepare the Choi state of a quantum channel by acting with it on a quantum

system that is maximally entangled with an ancillary system.

2.4.2 Inner products of maps and fidelity measures

There are a couple of more or less equivalent inner products on L(H,K). We

start with the canonical inner product, the Hilbert-Schmidt,

〈X ,Y〉 = Tr[X †Y] (2.65)

for any X ,Y ∈ L(H,K). The trace can be de�ned with an orthonormal basis

{E0, E1, . . . , Ed2−1} of L(H), lifting the inner product of L(H):

Tr[X ] =
d2−1∑
i=0

〈Ei,X (Ei)〉 =
d2−1∑
i=0

Tr[E†iX (Ei)] . (2.66)

The Hilbert-Schmidt inner product on L(H,K) coincides with the inner product

of the corresponding Choi matrices, i.e., for any X ,Y ∈ L(H,K)

〈X ,Y〉 = 〈C(X ),C(Y)〉. (2.67)

We now consider the case where Y is a quantum channel and X a unitary quan-

tum channel. Then, as we have seen above, J(Y) and J(X ) are quantum states

(density matrices). Moreover, J(X ) is a pure state. In this case, the above Hilbert-

Schmidt inner product with the proper normalization is the �delity measure in-

duced by the state �delity (2.12) via the Choi-Jamiołkowski isomorphism (2.61),

Fe(X ,Y) := F(J(X ), J(Y)) =
1

dim(H)2
〈X ,Y〉 ; (2.68)
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it is referred to as the entanglement (gate) �delity.

In the context of digital quantum computing, another very prominent �delity

measure for quantum processes is the so-called average gate �delity. The average
gate �delity (AGF) between maps X ,Y ∈ L(H,K) is de�ned as

Favg(X ,Y) :=

∫
S(Cd)
〈X ( |ψ 〉〈ψ |),Y( |ψ 〉〈ψ |)〉dµS(Cd)(ψ) . (2.69)

The measure here is the uniform Haar-invariant probability measure on state

vectors of Section 2.3.3. The inner product is the Hilbert-Schmidt inner product

of L(K) not L(H,K). From the de�nition we see that the average gate �delity

Favg(X ,Y) is a measure of closeness of X and Y that compares the action of X
and Y on pure input states on average. Intuitively, if X and Y only deviate in

their action on a low-dimensional subspace of H they can still have an average

gate �delity close to one.

For any X ,Y ∈ L(H,K)

Favg(X ,Y) = Favg(id,X † ◦ Y) . (2.70)

We therefore also writeFavg(X ) := Favg(id,X ) forX ∈ L(H). The average gate

�delity is intricately related to the Hilbert-Schmidt inner product on L(H,K)
[HHH99; Nie02] (see also [Kue+16]).

Proposition 18 (Inner product and Favg). For X ,Y ∈ L(H,K) with d = dimH
it holds that

〈X ,Y〉 = d(d+ 1)Favg(X ,Y)− 〈X (1),Y(1)〉 . (2.71)

This proposition implies that the average gate �delity is an inner product, i.e., a

conjugate symmetric non-degenerate form that is linear in its second argument.

It also connects the average gate �delity to the Frobenius norm induce by the

Hilbert-Schmidt inner product. Importantly, this indicates the Frobenius norm

on quantum processes is in fact an average case error measure over the input

states. For Hermicity-preserving X and Y the average gate �delity is real. Thus,

on Hermicity-preserving maps it is symmetric, Favg(X ,Y) = Favg(Y,X ).

Associate to the average gate �delity is the average error rate or average in�delity,

r(X ,Y) := 1− Favg(X ,Y) (2.72)

that is also real-valued for Hermicity-preserving maps and r(X ) := 1−Favg(X ).

For unital, completely positive X , the average in�delity can be regarded as a

distance to other quantum channels in the following sense:
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Lemma 19 (In�delity as distance measure). Let X ∈ CP(H,K) be unital. For
all Y ∈ CPT(H,K) it holds that r(X ,Y) ≥ 0 and, r(X ,Y) = 0 if and only if
X = Y .

Proof. Using Proposition 18, we have Favg(Y) = 1
d(d+1)〈id,Y〉 + 1

d+1 . The

overlap of two CP maps can be bounded via the Cauchy-Schwarz inequality as

〈id,Y〉 ≤ ‖id‖F ‖Y‖F with equality if and only if Y = id. For Y ∈ CPT(H)
it holds that ‖Y‖F ≤ d2

and ‖id‖2F = d2
. This can be seen, e.g., from (2.66)

choosing a unit-rank basis and applying the Hölder inequality (2.6). Therefore,

〈id,Y〉 ≤ d2
. We conclude that Favg(Y) ≤ 1 again with equality if and only if

Y = id which implies the assertion.

We still have to prove of Proposition 18.

Proof of Proposition 18. By the virtue of (2.70) which also holds for the inner

products appearing in (2.71) it su�ces to prove the statement for X = id. Using

(2.62) and denoting the transposition map as T : L(H) → L(H), A 7→ Aᵀ
, we

can rewrite the average gate �delity as

Favg(id,Y) =

∫
S(Cd)
〈 |ψ 〉〈ψ | ,Y( |ψ 〉〈ψ |)〉 dµS(Cd)(ψ)

=

∫
Sd−1

Tr [ |ψ 〉〈ψ | Y( |ψ 〉〈ψ |)] dµS(Cd)(ψ)

=

∫
S(Cd)

Tr
[
Id⊗T

(
|ψ 〉〈ψ |⊗2

)
C(Y)

]
dµS(Cd)(ψ).

(2.73)

Due to linearity, we can recast this expression with the moment-operatorK
(k)
µS(Cd)

of random states and use the expression we derived in Lemma 16. Then,

Favg(id,Y) = Tr
[
Id⊗T

(
K(2)
µS(Cd)

)
C(Y)

]
=

2

d(d+ 1)
Tr
[
Id⊗T (Psym2)C(Y)

]
=

1

d(d+ 1)
(Tr [1C(Y)] + Tr [ |1〉〈1 |C(Y)]) ,

(2.74)

where the last step follows from Psym2 = 1
2(1 + F) with the swap operator F

from (2.4) and Id⊗T (F) = |1〉〈1 |. Using (2.62) this time the other way around,

we see that the �rst summand of (2.74) is Tr[1C(Y)] = Tr[1 ⊗ 1C(Y)] =
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Tr[Y(1)] = 〈Id(1),Y(1)〉. From (2.61) it directly follows that C(Id) = |1〉〈1 |.
Hence, the second term of (2.74) is equal to Tr [ |1〉〈1 |C(Y)] = Tr [C(Id)C(Y)] =
〈C(Id),C(Y)〉 = 〈Id,Y〉. Plugging these two expressions into (2.74) and solving

for 〈Id,Y〉 yields the assertion of the proposition.

If X †Y trace-preserving, (2.71) simpli�es to

〈X ,Y〉 = d(d+ 1)Favg(X ,Y)− d , (2.75)

or, equivalently,

Favg(X ,Y) =
〈X ,Y〉+ d

d(d+ 1)
. (2.76)

We conclude that for trace-preserving and unital quantum channels the average

gate �delity and the Hilbert-Schmidt inner product are a�nely related with a

proportionality constant in O(d−2). This is the same scaling as appearing for

the entanglement �delity in (2.68). More precisely, we �nd the a�ne relation

between the two �delities

Favg(X ,Y) =
d Fe(X ,Y) + 1

d+ 1
, (2.77)

still assuming X †Y being trace-preserving and one of X and Y being a unitary

channel. For two unitary channels U ,V ∈ CPT(H) with U, V ∈ U(d) we can

further simplify (2.76) to

Favg(V,U) =
|Tr[V †U ] |2 − d

d(d+ 1)
. (2.78)

Lastly, beside the entanglement �delity, the Hilbert-Schmidt inner-product, the

average gate �delity, there is another a�nely related measure of quality that

is particularly convenient to work with in the analysis of randomized bench-

marking: the e�ective depolarizing parameter. Here, we will de�ne the e�ective

depolarizing parameter only for trace-preserving maps via its linear relation to

the �delity. If X is not trace-preserving one can more generally de�ne it by ex-

plicitly �rst projecting on unital maps. Let X ∈ L(H,K) be trace-preserving,

its e�ective depolarizing parameter is

p(X ) :=
dFavg(X )− 1

d− 1
. (2.79)

To justify its name let us have a look at the depolarizing channelDp, which was

de�ned in (2.60) as the convex combination ofD1 = Id andD0. The average-gate
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�delity of these extremal channel can be quickly calculated to be Favg(Id) = 1
and Favg(D0) = 1

d . Thus, Favg(Dp) = p+ 1−p
d . Plugging this into the de�nition

of the e�ective depolarizing parameter (2.79) yields

p(Dp) = p. (2.80)

Another a�nely related measure that is often used in this context is the χ0,0-

entry of the so-called χ-process matrix, see e.g. Ref. [CWE19] for further de-

tails.

2.4.3 The diamond norm

The distance measures on quantum channels we encountered so far can be re-

garded as average error measures. A more pessimistic, worst-case error measure

is induced by the trace-norm on operators, the so-called diamond norm. It mea-

sures the operational distinguishability of quantum channels. Hence, it plays an

important role in the characterization of quantum processes. Indeed, also error-

correction thresholds require worst-case guarantees without additional assump-

tion on the error model, see e.g. the discussion Refs. [SWS16; Kue+16]. At the

same time, characterization protocols that directly come with guarantees in di-

amond norm are very resource intense and typically practically infeasible. For

this reason, the connection of the diamond norm to the already introduced av-

erage error measures will be in the focus of this section.

The diamond norm is de�ned as the completely boundedness (CB)-completion of

the (1 → 1)-norm that is induced on L(H,K) by the trace-norm on L(H) and

L(K): Let X ∈ L(H,K),

‖X‖1→1 := sup
‖A‖1≤1

‖X (A)‖1 . (2.81)

When comparing quantum channels, one can also input a state to a quantum

channel that shares entanglement with another quantum system. Such entan-

glement might be bene�cial for distinguishing the channels. This motivates the

de�nition of the diamond norm as the CB-completion of the (1 → 1)-norm for

X ∈ L(H):

‖X‖� := ‖X ⊗ idH‖1→1 . (2.82)

It is easy to convince oneself that ‖X‖� = supH′ ‖X ⊗ idH′‖1→1 , see e.g. [Wat18,

Chapter 3.3]. For X Hermicity-preserving the supremum (2.81) is attained for

pure quantum states [Wat18, Theorem 3.51]. By means of Proposition 2, the
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diamond norm, thus, inherits an operational interpretation from the interpre-

tation of the trace-norm. While the trace-distance quanti�es the distinguisha-

bility of quantum states, the diamond norm di�erence between two quantum

channels is the worst-case distinguishability over all possible input states taking

into account all possibilities of entanglement with an arbitrary ancillary system.

Further note that channels are normalized to 1 in (1 → 1)-norm and diamond

norm.

Guarantees for many characterization protocols are more directly formulated in

norm distances of their Choi states. The following proposition illustrates that

this typically yields looser bounds compared to the diamond norm.

Proposition 20 (Diamond norm and trace norm). For any map X ∈ L(H,K)

‖J(X )‖1 ≤ ‖X‖� ≤ dim(H) ‖J(X )‖1 . (2.83)

For a Hermicity-preserving mapX ∈ L(H,K) the upper bound can be tightened

to [Nec+18, Corollary 2]

‖X‖� ≤ dim(H) ‖Tr2[| J(X )|]‖∞ . (2.84)

Proof of Proposition 20. Tracking vector space isomorphism, we have for X ∈
L(H,K), A,B ∈ L(H) and |A〉 = A⊗ 1 |1〉, 〈B | = 〈1 |B ⊗ 1

X ⊗ idH( |A〉〈B |) = 1⊗AC(X )1⊗B . (2.85)

The supremum of the convex trace-norm ball is attained at its extremal point

that can be written as |A〉〈B | with ‖A‖F = ‖B‖F = 1. Thus,

‖X‖� = sup
‖A‖F=‖B‖F=1

{1⊗AC(X )1⊗B}

≤ sup
‖A‖F=‖B‖F=1

‖A‖∞ ‖CX‖1 ‖B‖∞ ≤ ‖CX‖1 ,
(2.86)

where we have used Hölder’s inequality (2.6), sub-multiplicativity and norm or-

dering of the Schatten-p-norm. With C(X ) = dim(H) J(X ), the upper bound

follows. The lower bound is seen by choosing A = B = 1/
√

dim(H).

It is not di�cult to see that the bounds in Proposition 20 are tight, i.e., that there

areX ,Y ∈ L(H,K) so that ‖J(X )‖1 = ‖X‖� and ‖X‖� = dim(H) ‖J(X )‖1.
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Other distance measures that are frequently featured in characterization proto-

cols for quantum processes are the Hilbert-Schmidt overlap, average gate �delity

or an equivalent quantity. In terms of the in�delity r(X ) = 1−Favg(X ), the di-

amond norm and the average gate �delity are in general related by the following

inequalities.

Proposition 21 (In�delity and diamond norm [WF14, Proposition 9]). For any
X ∈ CPT(Cd) it holds that

d+ 1

d
r(X ) ≤ 1

2
‖id−X‖� ≤

√
d(d+ 1)r(X ) . (2.87)

Proof. The proof combines Proposition 20 with the Fuchs-van-de-Graaf inequal-

ity (2.13). Latter yields

1− F(J(Id), J(X )) ≤ 1

2
‖ J(Id)− J(X )‖1 ≤

√
1− F(J(Id), J(X )) , (2.88)

where we already dropped a square-root on the lower bound.

Since J(Id) = 1
d |1〉〈1 | is of unit rank and Hermitian, it holds that F(J(Id), J(X )) =

〈J(Id), J(X )〉 = Fe(Id,X ). We can cast this in terms of the average gate �delity

via (2.77),

F(J(Id), J(X )) =
d+ 1

d
Favg(X )− 1

d
. (2.89)

Plugging (2.89) into (2.88) gives

d+ 1

d
(1− Favg(X )) ≤ 1

2
‖ J(Id)− J(X )‖1 ≤

√
d+ 1

d

√
1− Favg(X ). (2.90)

Finally, from Proposition 20 the proposition’s assertion follows.

Proposition 21 leaves us with an unsatisfactory state of a�airs in two regards:

First, the upper bound of the diamond norm introduces a dimensional factor

O(d). In the context of quantum computing, this leaves us with a potentially

large factor scaling exponentially O(2n) with the number of qubits n. Second,

the upper bound scales with the square-root of the in�delity. For unitary quan-

tum channels one can in fact tighten the lower-bound to

√
r(X ) [Kue+16]. The

lower-bound for unitary quantum channels indicates that the square-root scal-

ing is unavoidable in general. Practically, this means that to certify in diamond

norm requires a certi�cate in in�delity that is order of magnitudes smaller. Es-

pecially, for small system sizes this can be a key obstacle for the certi�cation of

the worst-case performance of quantum processes.
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Fortunately, if a quantum process is highly incoherent, i.e. far away from being

unitary, one can derive a linear scaling of the diamond-norm distance in the in-

�delity. The incoherence can be controlled by the so-called unitarity introduced

by Wallman et al. [Wal+15]. For X ∈ L(H) the unitarity is de�ned as

u(X ) =
d

d− 1
Favg(X ′,X ′), (2.91)

where d = dimH andX ′ ∈ L(H) is de�ned asX ′(A) = X (A)−Tr[X (A)]1/
√
d.

One can straightforwardly check that u(U) = 1 for every unitary channel U .

On the other hand, in Refs. [Wal+15; Kue+16] a lower-bound on u in terms

of the in�delity r was derived for trace-decreasing maps. For X ∈ L(H) and

Tr(X (1)) ≤ Tr(1) it holds that

u(X ) ≥ umin =

(
1− d

d− 1
r(X )

)2

. (2.92)

Kueng et al. [Kue+16] established that quantum channels saturating this lower

bound exhibit a linear scaling of the diamond norm distance in terms of the

in�delity.

Theorem 22 (Worst-case bound for incoherent channels [Kue+16, Theorem 3]).
Let X ∈ CPT(H) be unital, d = dim(H). ‖Id−X‖� ∈ O(r(X )) if u = umin +
O(r2(X )).

We leave it with this qualitative statement and refer to Ref. [Kue+16, Proposition

3] for a quantitative statement. See also Ref. [Wal15].
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3 Blind quantum state tomography

Blind quantum state tomography is the task of uniquely identifying a quantum

state from the data acquired with a measurement apparatus that is itself not

fully characterized.
1

In the introduction we motivated blind quantum state to-

mography as a way to break the vicious cycle, illustrated in Figure 1.4, that fun-

damentally limits the precision of quantum state tomography by the achievable

accuracy of the measurement device’s calibration. Here we show that by exploit-

ing the natural low-rank structure of quantum states we can provably break this

vicious cycle for generic measurement models with a close-to-optimal number

of measurement settings and e�cient classical post-processing.

Provable blind tomography via sparse de-mixing. Let us be slightly more

formal in order to �rst give an overview over the technical methods and contri-

butions of this chapter. In mathematical terms, the blind tomography task that

we solve is to infer a vector ξ of n calibration parameters and a rank-r quantum

state ρ from data of the form

y = Bξ(ρ) = A(ξ ⊗ ρ) (3.1)

where B : ξ, ρ 7→ Bξ(ρ) is a bi-linear map describing the measurement model.

The measured data y might for example be estimates for the expectation val-

ues of observables or probabilities of POVM elements. For the time being, we

ignore the error of the estimates induced by �nite statistics. It is convenient to

regard the data as associated to a structured linear estimation problem: we can

equivalently model the measurement map as a linear map A acting on ξ ⊗ ρ.

1

The material of this chapter is published as the preprint [2]. We adjusted the presentation for

notational consistency and added references to other parts of the monograph. The research

was conducted in close collaboration with Jadwiga Wilkens, Dominik Hangleiter and Jens

Eisert. The majority of the numerical implementation was coded by Jadwiga Wilkens un-

der the supervision of the author of the thesis. Furthermore, we thank David Gross, Steven

T. Flammia, Christian Krumnow, Robin Harper, Yi-Kai Liu, and Carlos A. Riofrio for inspiring

discussions and helpful comments. We are grateful to Alireza Seif and Nobert Linke for valu-

able comments on realistic error models and Peter Jung for making us aware of Ref. [SW19].

71



3 Blind quantum state tomography

Such structured linear inverse problems are studied in the mathematical disci-

pline of model-based compressed sensing [Bar+10; FR13], where e�cient algo-

rithms with analytical performance guarantees have been developed. A work

horse of compressed sensing that most rapidly solve the relevant inverse prob-

lems are so-called iterative hard thresholding (IHT) algorithms [BD08].

As a �rst result of this work, we establish that the key step of an IHT algorithm

that solves the blind tomography problem is NP-hard. To overcome this obsta-

cle, we propose an IHT algorithm that solves a slightly relaxed version of the

blind tomography problem: the task of de-mixing a sum of n di�erent low-rank

quantum states ρi, i.e., data of the form

y = A

(
n∑
i=1

ξiei ⊗ ρi

)
, (3.2)

where {ei}ni=1 denotes the standard orthonormal basis. An e�cient IHT algo-

rithm for the de-mixing problem of low-rank matrices was developed and anal-

ysed in Ref. [SW19]. This algorithm can be readily adapted to our problem.

But relaxing the blind tomography problem to the de-mixing problem arti�cially

introduces an overhead in the number of unknown degrees of freedom of the

problem scaling as 2drn, and in particular linearly with the number of cali-

bration parameters in the model. This leads to an unfavourable situation in a

two-fold manner: First, determining many calibration parameters also requires

many measurement settings as the cost per calibration parameter scales with the

dimension d of the quantum system. Second, a necessary condition for a well-

posed blind de-mixing problem of rank-r with a maximal number of d2
linearly

independent measurements of the form (3.2) is that there are more linearly inde-

pendent measurements than real parameters, i.e., 2rnd ≤ d2
. This means that

the simultaneous determination of a certain number of calibration parameters

n can in principle only work for su�ciently large system dimension d in many

situations. This causes severe constraints in the achievable self-calibration for

small system sizes.

We argue that an additional well-motivated structural assumption can render the

blind tomography much more broadly applicable. Our argument is based on the

observation that the problem of determining an accurate estimate of the quan-

tum state in the blind setting involves solving two distinct sub-problems: �rst,

one needs to determine which ones of many potential error models of the mea-

surement contribute. Second, one needs to estimate the calibration parameters

of these models. Generically, there are many potential models that parametrize,
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for instance, the deviation of every imperfect implementation of a �xed mea-

surement setting from its ideal implementation.

In this case, the �rst problem becomes combinatorially costly since many distinct

measurement settings need to be simultaneously calibrated. In contrast, in our

approach, it is straightforward to solve both tasks simultaneously and even avoid

a combinatorial overhead using the built-in relaxations of compressed sensing.

We want to allow for many potential errors with associated calibration param-

eters but of which only small number s actually contribute. This can be cast as

the assumption that the calibration vector ξ is s-sparse, i.e., it has only s non-

vanishing entries. Of course, we do not assume that we know the support of the

vector ξ. This falls naturally into the framework of structured signal recovery.

To summarize: We observe data generated by linear measurements acting on

ξ ⊗ ρ where ξ is an s-sparse vector and ρ is a rank r quantum state.

We are now faced with the recovery problem of de-mixing a sparse sum of di�er-

ent low-rank quantum states. We show that the projection onto this structure can

be e�ciently calculated using hierarchical thresholding [14] and therefore cir-

cumvents our NP-hardness result. We derive the corresponding iterative hard-

thresholding algorithm and prove that it successfully recovers the states ρi and

the sparse vector ξ provided that the measurement map A acts isometrically

on sparse sums of low-rank states. We further show that generic measurement

ensembles with m di�erent measurement settings exhibit this restricted isom-

etry property provided that m scales at least as srd + s log n. Thus, we �nd

that our algorithm solves the blind tomography problem with an overhead in

the required number of measurements that scales linearly in s as compared to

the number of degrees of freedom in the problem given by rd+ s. In particular,

the number of potential calibration models n enters only logarithmically in the

measurement complexity of the scheme. This renders the scheme highly scalable

in n providing �exibility in the modelling of systematic measurement errors or

calibration corrections. Furthermore, it leaves su�ciently many linearly inde-

pendent parameters in order to infer a couple of calibration parameters already

for comparably small system sizes. We demonstrate the performance of the al-

gorithm for the physically relevant case of measuring Pauli operators that are

locally mixed with the unknown calibration parameters.

Practical blind tomography. Going beyond working out the theoretical guar-

antees, we numerically demonstrate the functioning of the scheme and the mind-

set behind it. Speci�cally, we show that the iterative hard-thresholding algo-

rithm solves the blind tomography problem from much fewer samples than com-
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peting methods from generic (Gaussian) measurements as well as sub-sampled

random Pauli measurements. We then take the theoretical model to the practical

test bed and turn to a realistic model of measurement errors given by a coher-

ent over-rotation along some axis. Those measurements have signi�cantly more

structure. We observe that the measurement structure together with the sparsity

constraints causes the SDT algorithm to frequently get stuck at objective vari-

ables with an incorrect support. For this reason, we also study the performance

of a more pragmatically minded optimization strategy, namely, constrained al-

ternating minimization that does not require the relaxation to the de-mixing

problem. We numerically demonstrate that the blind tomography problem in a

realistic setting can be solved using this adapted algorithmic approach. Thereby,

we show that exploiting the low-rank structures of quantum states allows one

to perform tomography blindly in realistic calibration and measurement models.

Therefore, we expect our approach to be directly applicable in a variety of ex-

perimental settings that are practically relevant in the quantum technologies.

The remainder of this chapter is organized as follows. In the subsequent Sec-

tion 3.1, we give a detailed description of a concrete experimental setup that

motivates our mathematical formulation of the blind tomography problem. In

Section 3.2, we provide the formal de�nitions of the blind tomography problem

and introduce the notation used in the subsequent parts. The details of the sparse

demixing algorithm and its variant based on alternating optimization are derived

in Section 3.3. On the way, we establish the NP-hardness of the projection as-

sociated to the original blind tomography problem. The theorems guaranteeing

the performance of the sparse demixing algorithm are explained in Section 3.4.

Finally, numerical simulations of the algorithms’ performance and its applica-

tion to practical use cases are shown in Section 3.5 before we conclude with an

outlook in Section 3.6.

3.1 Tomography with imperfect Pauli correlation
measurements

So far, our description of the measurement scheme has been fairly abstract. In

the following, we describe a concrete scenario in which our formalism applies.

Consider an ion trap experiment preparing a multi-qubit quantum state ρ. We

perform Pauli correlation measurements, i.e., we estimate m expectation values

of l-qubit Pauli strings of the form

y
(k)
0 = A0(ρ)(k) = Tr

[
ρ
(
W

(k)
1 ⊗W (k)

2 ⊗ · · · ⊗W (k)
l

)]
, (3.3)
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3.1 Tomography with imperfect Pauli correlation measurements

whereW
(k)
j ∈ {X,Y, Z, Id} is a Pauli matrix, (2.53), acting on the jth qubit and

k ∈ [m] := {1, 2, . . . ,m}. We refer to A0 : Cd×d → Rm as the measurement

map or sampling operator.
2
.

In many experimental setups, it is natural to implement measurements of a cer-

tain Pauli observable—in the case of ion traps Pauli Z—while the other Pauli ob-

servables require more e�ort. A measurement of any other Pauli observable—in

the case of ion traps Pauli X and Pauli Y—can then be implemented by apply-

ing a suitable sequence of unitary gates prior to the measurement. For example,

using addressed laser pulses of di�erent duration one can implement rotations

around di�erent axes and thus implement the Hadamard gate H as well as the

phase gate S as de�ned in (2.55). In this way, one can realize measurements in

the X = HZH and Y = SHZHS† basis.

But each application of an additional gate may come with a coherent error in ad-
dition to the native error associated with the measurement itself. In this way, we

end up with di�erent systematic errors for di�erent Pauli observables parametrized

by the angles θ, ϕ of a coherent error given by eiθXeiϕZ
. This gives rise to some

probability of actually measuring the expectation value of another local Pauli

matrix than the targeted one. For example, consider a coherent error given by

a (small) rotation around the Z-axis as given by eiϕZ
. The faulty implementa-

tion of the Hadamard gate is then given by H̃ = eiϕZH . Of course, the native

Z-measurement is untouched by this coherent error, since no unitary rotation

precedes this measurement. However, instead of Y one now actually measures

Ỹ = SH̃ZH̃†S† = cos(2ϕ)Y + sin(2ϕ)X . At the same time X remains undis-

turbed.

More generally, we can introduce calibration parameters ξW→W̃ measuring the

strength of the error that replaces a certain target Pauli matrix W by W̃ . For

instance, in the above example those parameters are given by ξY→Y = cos(2ϕ),

ξY→X = sin(2ϕ) and ξZ→Z = ξX→X = 1. For simplicity, we assume that these

calibration parameters are identical for di�erent qubit registers. Assuming that

errors are not too large, the calibration parameters for the target measurement

ful�l ξW→W ≈ 1 or all W ∈ {X,Y, Z}. This leaves us with six independent

calibration parameters corresponding to the cross-contributions. To construct

2

Note that one might actually implement projective measurements in the multi-qubit Pauli basis

as done, e.g., in Refs. [Rio+17; 11] While such projective measurements contain more informa-

tion than the Pauli correlation measurement, we restrict ourselves to Pauli expectation values

both for the sake of simplicity and to remain in a setting for which theoretical guarantees can

be proven [Gro+10; Liu11].
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the measurement map A, we start from the de�nition of the target measure-

ment A0 in (3.3). From A0 we can derive calibration measurement components

AW→W̃ appearing with the coe�cient ξW→W̃ by replacing all appearances of

the Pauli matrix W in the de�nition of A0 with W̃ . If W appears in a multi-

qubit Pauli observable several times the resulting observable is the sum of all

Pauli observables generated by replacing only one of theW by W̃ , assuming that

the coherent errors are small so that the higher-order terms can be neglected.

For example, a faulty realization of the observable ZY ZZY is now given by

ξY→Y ZY ZZY + ξY→X(ZXZZY + ZY ZZX).

Altogether, to linear order in the calibration parameters ξW→W̃ with W 6= W̃
we end up constructing a description of the e�ective faulty measurement by

y = ξ0A0(ρ) +
∑

W 6=W̃∈{X,Y,Z}
ξW→W̃AW→W̃ (ρ), (3.4)

which can be written as linear mapA action on ξ⊗ ρ with the vector of calibra-

tion parameters ξ = [ξ0, ξX→Y , ξX→Z , . . . , ξZ→Y ]T . By assumption, we set the

parameter ξ0 = 1.

In this measurement model the sparsity assumption is justi�ed if unitary errors

in a certain coordinate plane are dominant compared to others thus singling

out certain types of calibration measurement components. Importantly, we do

not assume that we know which corrections are dominant (i.e., the support of

ξ) a priori. The measurement model also exempli�es a setting in which one

is ultimately limited to measuring a maximal set of d2
observables. Thus, blind

tomography becomes only possible exploiting structure assumptions if one does

not allow for di�erent ways of implementing the same measurement that yield

di�erent calibration corrections without introducing too many new calibration

parameters.

3.2 Formal problem definition

Motivated by this example, we set out to provide a formal de�nition of the

blind tomography problem and the related sparse-de-mixing problem. The nota-

tion and terminology introduced in this section allow us to formulate a general

signal-processing approach using which the blind tomography can be provably

solved. Both, the blind tomography and the sparse de-mixing, problems are lin-

ear inverse problems that feature a combination of di�erent compressive struc-

tures. These are smaller sets of linear vector spaces, and it will be convenient to
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introduce some notation to refer to these sets. The prototypical example is the

set of s-sparse real vectors

Σn
s := {ξ ∈ Rn | | supp ξ| ≤ s} ⊂ Rn, (3.5)

which is de�ned by the support supp ξ of a vector ξ, i.e., the index set of the

non-vanishing entries of ξ, having cardinality smaller or equal than s. The set

of s-sparse vectors is not a vector space itself but the union of

(
n
s

)
s-dimensional

subspaces.

In the realm of quantum mechanics, the non-commutative analogue of sparse

vectors, namely low-rank matrices, is important. We denote the set of complex
rank r matrices by

Cd×dr := {x ∈ Cd×d | rankx ≤ r}. (3.6)

Since we are dealing with quantum states we will restrict our attention to the

set D(d) ⊂ Cd×d of trace-normalized, positive semide�nite matrices, i.e., ρ ≥ 0
and Tr ρ = 1 for all ρ ∈ D(d)

. Our results can be straightforwardly general-

ized to general matrices without these constraints. We denote the set of rank-r

quantum states as D(d)
r = D(d) ∩ Cd×dr . In particular, D(d)

1 is the set of pure

quantum states. In order to solve the blind tomography problem we need to si-

multaneously recover an s-sparse real vector ξ and a rank-r quantum state ρ. It

is convenient to regard both ξ and ρ as a combined signal X = ξ⊗ ρ and model

the measurement including its dependence on the calibration parameter as a

linear map A acting on X . Considering such linear maps instead of bi-linear

maps is sometimes referred to as ‘lifting’ in the compressed sensing literature

[ARR14]. For a physicist, ‘lifting’ is also the natural isomorphism at the heart of

the density matrix formulation of quantum mechanics. The signal X is highly

structured as it is a tensor product of a sparse vector and a low-rank quantum

state. We denote the set of all potential signals as

Ωn,d
s,r := {ξ ⊗ x | ξ ∈ Σn

s , x ∈ D(d)
r } ⊂ Cnd×d. (3.7)

One can regard a signal X ∈ Ωn,d
s,r as an nd × d matrix consisting of n blocks

of size d× d stacked on top of each other as depicted in Figure 3.1, where each

d×d block is proportional to the same quantum state ρ and only s of the blocks

are non-vanishing.

We are now equipped to concisely state the problem we would like to study.
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3 Blind quantum state tomography

Cnd×d

=

Ωn,d
s,r

+ ...+ =

Ω̂n,d
s,r

Figure 3.1: The signal sets of the blind tomography and sparse de-mixing problem can be regarded

as subsets of Cnd×d, i.e., matrices consisting of n blocks of d× d. For a blind tomog-

raphy signal in Ωn,ds,r , only s out of the n blocks are non-zero and are proportional to

the same rank r matrix. In contrast, a signal of the sparse de-mixing problem in Ω̂n,ds,r
comprises s non-vanishing blocks with potentially di�erent rank r matrices.

Problem 23 (Blind tomography). Let A : Cnd×d → Rm be a linear map. Given
data y = A(X) ∈ Rm and the linear map A, recover X under the assumption
that

X ∈ Ωn,d
s,r

Our approach to algorithmically solving the blind tomography problem makes

use of a proxy problem: we relax it to signals that are a bit less restrictively

structured

Ω̂n,d
s,r :=

{
n∑
i=1

ξiei ⊗ xi

∣∣∣∣∣ ξ ∈ Σn
s , xi ∈ D(d)

r ∀i ∈ [n]

}
. (3.8)

Both sets Ω̂n,d
s,r and Ωn,d

s,r are subsets of Cnd×d. The di�erence between them as

illustrated in Figure 3.1 is the following: While forX ∈ Ωn,d
s,r all d×d blocks are

proportional to the same quantum state x, we allow the d×d blocks of X̂ ∈ Ωn,d
s,r

to be proportional to di�erent quantum states xi. Again only s out of the n blocks

of X̂ are non-vanishing. Analogously to Problem 23, we de�ne the linear inverse

problem associated with Ω̂.

Problem 24 (Sparse de-mixing). Let A : Cnd×d → Rm be a linear map. Given
data y = A(X) ∈ Rm and the linear map A, recover X under the assumption
that

X ∈ Ω̂n,d
s,r .
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The observed data of the sparse de-mixing problem can be equivalently de-

scribed as

y =
n∑
k=1

ξkAk(xk), (3.9)

where we have split up X into trace-normalized d× d blocks xk and their norm

ξk according to the de�nition of Ω̂n,d
s,r . Correspondingly, we can decompose the

linear mapA into the set of linear maps {Ak}nk=1 where eachAk acts only on the

kth d×d block ofX . From this reformulation it becomes clear that the problem

amounts to reconstructing a set of low-rank signals {xk}k from observing its

sparse mixture under linear maps, hence the name sparse de-mixing.

For both the blind-tomography and the sparse-de-mixing problem, we alterna-

tively write each of the n linear maps Ak in terms of m observables

{A(i)
k ∈ Cd×d | (A(i)

k )† = A
(i)
k }

m
i=1 (3.10)

via

Ak(xk)(i) = 〈A(i)
k , xk〉 (3.11)

with the Hilbert-Schmidt inner product 〈·, ·〉.

Note that as long as we consider Hermitian matrices for the measurement A
(i)
k

and signals xi, we end up with a real data vector y ∈ Rm. For applications other

than quantum tomography it is straightforward to adopt our proofs and results

to real signals or complex-valued measurement maps. Furthermore, for the sake

of simplicity we have formulated both recovery problems without noise. More

generally, the data can be assumed to be of the form y = A(X) + ε where ε
denotes additive, e.g. statistical, noise.

3.3 Algorithm

We now turn to the technical derivation of our algorithm for the blind quantum

tomography and the sparse de-mixing problem. Our algorithm builds on prim-

itives developed in the �eld of compressed sensing. In particular, we generalize

the hard thresholding algorithm to accommodate the structural assumptions of

both problems. As a �rst step, we establish the hardness of direct thresholding

approaches to the blind tomography problem before stating a tractable algorithm

for the sparse de-mixing problem.
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3 Blind quantum state tomography

Let us be more precise: the blind quantum tomography problem requires di�er-

ent assumptions on two levels. First, we want the signal to be a tensor product

ξ⊗ρ, i.e., of rank one. Second, both tensor factors are assumed to be structured.

Concretely, we assume ξ to be s-sparse and ρ to be of rank r. We are therefore

faced with low-rank structures on two separate levels: �rst, the block-structured

signal as given by the tensor product of calibration vector and quantum state has

unit rank. Second, by assumption the target quantum states, i.e., the individual

blocks of the signal, have low rank.

It has been observed in the compressed sensing literature that multi-level struc-

tures with structured tensor components can be notoriously hard to reconstruct.

One prototypical example of this is combined sparsity and low-rankness in the

sense that the signal is the tensor product of two sparse vectors, i.e., X = ξ ⊗ τ
with ξ, τ ∈ Σn

s . This problem is already very similar to the blind tomography

problem where one of the sparse vectors is replaced by a low-rank matrix, the

quantum state.

The obstacle arising from such structures can be understood from a di�erent per-

spective present in the compressed sensing literature that is related to di�erent

algorithmic approaches. The perhaps most prominent approach in compressed

sensing is the convex relaxation of structure-promoting regularizers yielding ef-

�cient convex optimization programs. Minimizing the `1 norm or the Schatten-1
norm is known to solve linear inversion problems involving sparse or low-rank

vectors e�ciently and sampling optimal, respectively. However, simply com-

bining both regularizers in a convex fashion does not yield a sampling-optimal

reconstruction of problems that feature both structures any more [Oym+15].

3.3.1 Hard-thresholding: Ease and hardness of the projection

Another algorithmic approach used in compressed sensing are so-called hard
thresholding algorithms such as CoSAMP, IHT or HTP [NT08; BD08; Fou11];

see also the textbook [FR13] for an introduction. These are typically iterative

procedures that minimize the deviation from the linear constraints in some way

or other, e.g. by gradient descent, and in each iteration project onto the structure

of the signal. For many compressed sensing problems this is possible because

even though recovery problems, such as

minimize
ξ

‖A(ξ)− y‖2`2 subject to ξ ∈ Σn
s , (3.12)
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are NP-hard [Mag17], the related projection

PΣns (τ) := arg min
ξ∈Σns

‖ξ − τ‖`2 (3.13)

can be computed e�ciently. For the given example of projecting onto s-sparse

vectors, this solution is given by the hard-thresholding operation de�ned as fol-

lows: Let Σmax be the set of indices of the s absolutely largest entries of τ . Then,

[PΣns (τ)]i =

{
τi for i ∈ Σmax

0 otherwise.
(3.14)

In words, one keeps the largest entries of τ and replaces the other entries by

zero. Analogously, the projection of Hermitian matrices onto low-rank matrices

can be e�ciently calculated by calculating the eigenvalue decomposition and

applying PΣdr
to the eigenvalue vector. Let X ∈ Cd×d be a Hermitian matrix

with eigenvalue decomposition X = U diag(λ)U †. We de�ne the projection

onto positive semi-de�nite low-rank matrices as

PD(d)
r

(X) = U diag[PΣdr
(λ|≥0)]U †, (3.15)

where λ|≥0 denotes the restriction of λ to its non-negative entries.

In hard-thresholding algorithms, the problems associated with simultaneously

exploiting sparse and low-rank structures are manifest in the computational

hardness of computing the respective projections. For the case of unit rank ma-

trix with sparse singular vectors, calculating the projection is the so-called sparse
PCA problem, i.e., given a matrix A ∈ Rn×n

minimize
ξ,τ∈Σns

‖A− ξ ⊗ τ‖F . (3.16)

Indeed, exactly solving this problem in the worst case is NP-hard by a trivial

reduction to the CLIQUE problem [Mag17]. But it turns out that the hardness

is much worse: one can even make average-case hardness statements based on

conjectures regarding the hardness of the planted clique problem [BR13a; BR13b;

BB19]. Moreover, the sparsePCA problem remains just as hard even when one

merely asks for an approximation up to a constant relative error [CPR16; Mag17].

As the �rst technical result of this work, we show that also the projection onto

Ωn,d
s,r is an NP-hard problem by reducing it to the sparse PCA problem.
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3 Blind quantum state tomography

Theorem 25 (Hardness of constrained minimization). There exists no polyno-
mial time algorithm that calculates

minimize ‖A−X‖F subject to X ∈ Ωn,d
s,r , (3.17)

for all A ∈ Cnd×d unless P = NP. This still holds for s = n.

We note that our result for exactly computing straightforwardly generalizes to

the case of approximating the target function up to constant relative error using

results on the approximatability of sparsePCA [CPR16].

Theorem 25 provides a strong indication that a straightforward adaptation of

compressed sensing techniques is not feasible. In this work, our way out of this

is to sacri�ce sampling optimality of the algorithm for a lower runtime and be-

ing able to prove analytical performance guarantees. Alternating minimization

approaches that make the factorization explicit is also a viable way forward. We

provide a detailed description of such an algorithm in Section 3.3.4. But proving

global recovery guarantees for non-convex algorithms typically becomes much

more involved and often rely on an initialization step with the same computa-

tional complexity as the original problem.

In the remainder of the section we prove Theorem 25. As a starting point we

state the sparsePCA problem.

Problem 26 (SparsePCA). Input: Symmetric matrix A ∈ Rn×n, sparsity s, posi-
tive real number a > 0. Question: Does there exist an s-sparse unit vector v ∈ Rn
with vTAv ≥ a?

It has been folklore for quite some time that the sparse PCA problem is NP-

hard. A formal proof can be found in Ref. [Mag17], where the CLIQUE problem is

encoded into instances of sparsePCA. From the hardness of sparsePCA it follows

that there does not exist a polynomial time algorithm for the projection onto the

set of symmetric, unit rank matrices with sparse eigenvectors. Formally, we

have:

Proposition 27 (Hardness of projection onto the set of symmetric, unit rank

matrices with sparse eigenvectors). Given a matrix A ∈ Rd×n and s, σ ∈ N,
there exist no polynomial time algorithm that calculates

minimize
∥∥A− vwT∥∥

F
,

subject to v ∈ Σd
σ , w ∈ Σn

s .
(3.18)

This still holds for σ = d.
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Proof. It turns out to be su�cient to only consider the case whereσ = d, i.e., only

one of the factors is required to be sparse. It is straightforward to see that solving

the problem with both vectors being sparse allows one to solve the projection

with only one sparse vector: De�ne

A =

(
0d−σ,n
A′

)
(3.19)

with 0a,b being an a× b matrix �lled with zeros. It then holds that

min
v∈Σdσ ,w∈Σns

∥∥A− vwT∥∥
F

= min
v′∈Cσ ,w∈Σns

∥∥A′ − v′wT∥∥
F
. (3.20)

We now embed the sparsePCA problem. To do so we �rst make the normaliza-

tion of the vectors v, w in the optimization problem explicit to it to a maximiza-

tion problem over normalized vectors:

min
v∈Rσ ,w∈Σns

∥∥A− vwT∥∥2

F

= min
λ∈R,v∈Rσ∩Bσ`2 ,w∈Σns∩Bn`2

∥∥A− λvwT∥∥2

F

(3.21)

with Bn
`2

= {v ∈ Rn | ‖v‖`2 ≤ 1} the `2-norm ball. Solving the optimization

problem over λ yields

min
λ∈R

∥∥A− λvwT∥∥2

F
(3.22)

= min
λ∈R

{
‖A‖2F + λ2‖v‖2`2‖w‖

2
`2 − 2λ〈w,Av〉

}
(3.23)

= ‖A‖2F − min
v∈Rσ∩Bσ`2 ,w∈Σns∩Bn`2

〈w,Av〉2. (3.24)

Since A is �xed we conclude that the optimization problem (3.21) is equivalent

to

maximize |〈w,Av〉|
subject to v ∈ Rσ ∩Bσ

`2 , w ∈ Σn
s ∩Bn

`2 .
(3.25)

Furthermore, using the Cauchy-Schwarz inequality we �nd that

max
v∈Rσ∩Bσ`2 ,w∈Σns∩Bn`2

|〈v,Aw〉| = max
w∈Σns∩Bn`2

‖Aw‖`2 . (3.26)

Now consider an instance of the sparsePCA problem with a symmetric input ma-

trixB ∈ Rn×n, sparsity s and a > 0. W.l.o.g. we can assume thatB is a positive
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3 Blind quantum state tomography

matrix since solving the sparsePCA problem for the B − min {0, λmin (B)} Id
shifted by the smallest eigenvalue λmin (B) of B and a shifted correspondingly,

allows one to solve the sparsePCA problem for B. For a positive matrix B we

�nd a factorization B = ATA. Hence, deciding whether the maximum over

all w ∈ Σn
s of wTBw is larger than a is solved by calculating the maximum of

‖Aw‖2`2 = wTBw. This completes the reduction.

We are now prepared to prove the related result for the projection onto Ωn,d
s,r .

Proof of Theorem 25. Suppose the existed an e�cient algorithm that determines

the objective value of the projection (3.17). To encode the sparsePCA problem,

we choose an instance of A as follows: Let A′ ∈ Rn×d be a matrix and let

A′i denote the ith row of A. Let ei be the basis vectors (ei)j = δi,j , with δi,j
the Kronecker symbol. We choose A =

∑n
i=1 ei ⊗ diag(A′i), where diag(A′i)

denotes the diagonal matrix with the ith row ofA′ on its diagonal. Furthermore,

we de�ne a′ = (A′1, . . . , A
′
n) ∈ Rnd to be the vector arising by concatenating

all rows of A. By de�nition an X ∈ Ωn,d
s,r can be decomposed as X = ξ⊗ ρ with

ξ ∈ Σn
s and ρ ∈ D(d)

r . Let ρ = U diag(λ)U † the eigenvalue decomposition of ρ
with a suitable unitary U ∈ U(n) and λ the vector of its eigenvalues. Then, we

can rewrite

‖A− ξ ⊗ ρ‖2F =
n∑
i=1

∥∥diag(A′i)− ξiρ)
∥∥2

F

=
∥∥∥diag(a′)− (Idn⊗U) diag(ξ ⊗ λ)(Idn⊗U †)

∥∥∥2

F

=
∥∥diag(a′)(Idn⊗U)− (Idn⊗U) diag(ξ ⊗ λ)

∥∥2

F

=

nd∑
i,j=1

|A′i − (ξ ⊗ λ)j |2|(Idn⊗U)i,j |2,

where we have used the unitary invariance of the Frobenius norm in the third

step. We can introduce the doubly stochastic matrix W with entries Wk,l =
|Uk,l|2 and relax the optimization to

min
ξ∈Σns ,ρ∈D

(d)
r

‖A− ξ ⊗ ρ‖2F (3.27)

≤ min
W∈DSn, ξ∈Σsn, λ∈Σdr

nd∑
i,j=1

|A′i − (ξ ⊗ λ)j |2(Idn⊗W )i,j ,
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where W is optimized over all doubly stochastic matrices DSd ⊂ Cd×d. For

σ ∈ Sd, a permutation of the symbols in [d], we denote the corresponding

permutation matrix by Πσ : Cd → Cd, ξ 7→ Πσξ with (Πσξ)i = ξσ(i). By

Birkho�’s theorem, see e.g., Ref. [Bha97, Theorem II.2.3], the set of extremal

points of the convex set of doubly stochastic matrices DSd are the permutation

matrices ΠSd = {Πσ | σ ∈ Sd}.

Since the optimum is, hence, attained for a permutation matrix W = Πσ and

Ui,j = (Πσ)
1/2
i,j = (Πσ)i,j is a unitary matrix, the inequality (3.27) is saturated.

Therefore, we conclude that

min
ξ∈Σns ,ρ∈Hy

r

∥∥A′ − ξ ⊗ ρ∥∥2

F

= min
ξ∈Σns ,λ∈Σdr ,σ∈Sd

‖a′ − ξ ⊗Πσλ‖2`2

= min
ξ∈Σns ,λ∈Σdr

‖a′ − ξ ⊗ λ‖2`2

= min
ξ∈Σns ,λ∈Σdr

∥∥A′ − ξλT∥∥2

F
.

Thus, an algorithm calculating the projection onto Ωn,d
s,r for the matrixA chosen

here solves the sparsePCA problem for A′. We conclude that there exists no

polynomial time algorithm for the problem.

3.3.2 Relaxing the blind tomography problem: sparse de-mixing

Bi-sparse and low-rank structure can be relaxed to a simple hierarchical sparsity

constraint [16; Fou+19]. A vector ξ ∈ CNn consisting of N blocks of size n is

called (s, σ)-hierarchically sparse if it has at most s blocks with non-vanishing

entries, that themselves are σ-sparse [Spr+10; FHT10; Spr+11; Sim+13]. In the

Refs. [12; 13; 14; 21] we develop a hard-thresholding algorithm for this structure

together with a framework for proving theoretical recovery guarantees. It has

been applied in di�erent contexts [15; 19; 17; 18] including sparse blind deconvo-
lution [16] which features the combined low-rank, sparse structure.

Here, we make use of this relaxation approach to solve the blind quantum to-

mography problem as formalized in Problem 23. At the heart of our approach is

the insight that the projection onto Ω̂n,d
s,r can be e�ciently computed hierarchi-

cally since the n d× d blocks may be di�erent. This allows one to combine the

projection onto Σn
s and the projection onto D(d)

r : First, the low-rank projection

PD(d)
r

is applied to each of the d×d blocks of the input matrixX . Subsequently,
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Algorithm 1 Projection onto Ω̂n,d
s,r

Input: X ∈ Cnd×d.
1: Y = 0
2: for k ∈ [n] do
3: nk =

∥∥∥PD(d)
r

(xk)
∥∥∥

F
4: end for
5: W = suppPΣns (n)
6: YW = XW .

Output: Y is projection of X onto Ω̂n,d
s,r .

the sparse projection operator is applied by setting the n− s smallest blocks in

Frobenius norm to zero. The resulting algorithm is summarized as Algorithm 1.

The computational cost of the projection onto Ω̂n,d
s,r is dominated by the eigen-

value decomposition required to compute the low-rank approximation D(d)
r of

each block. Computing the full eigenvalue decomposition of the d × d blocks

requires computation time of O(d3) using, e.g., Householder re�ections [GL89].

Since we are only interested in the dominant r � d eigenvalues, the e�ort can be

reduced toO(rdw) using the Lanczos algorithm, wherew is the average number

of non-zero elements in a row of a block [GL89]. Using randomized techniques

one might be able to further reduce the computational costs [HMT11]. The cal-

culation of the Frobenius norms contributes O(nd2) �ops. The largest blocks

can be selected using the quick-select algorithm [Hoa61] in O(n). Note that the

low-rank projections and Frobenius norms of all blocks can also be performed

in parallel without any modi�cation to the algorithm.

Equipped with an e�cient projection for Ω̂n,d
s,r , we can construct a structured it-

erative gradient descent algorithm. This is a variant of the IHT algorithm, that

was originally developed for sparse vectors [BD08]. The IHT algorithm is a pro-

jective gradient descent algorithm that iteratively alternates gradient steps to

optimize the `2-norm deviation between the data and a projection onto the con-

straint set. The resulting recovery algorithm for the sparse de-mixing problem

is stated as Algorithm 2, the sparse de-mixing thresholding (SDT) algorithm.

The SDT algorithm is closely related to the IHT algorithm for de-mixing low-

rank matrices that was developed in Ref. [SW19]. We will refer to this algo-

rithm as the DT algorithm. The main di�erence between our SDT and the DT

algorithm of Ref. [SW19] is that the latter does not make the additional spar-
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Algorithm 2 SDT algorithm

Input: Data y, measurement A, sparsity s and rank r of signal

1: Initialize X0 = 0.

2: repeat
3: Calculate step-widths µl

4: X l+1 = P
Ω̂n,ds,r

(
X l + diag(µl)PT

Xl

(
A†
(
y −A(X l)

)))
5: until stopping criterion is met at l = l∗

Output: Recovered signal X l∗

sity assumptions on the signal. For this reason, the SDT algorithm di�ers in

the projection P
Ω̂n,ds,r

that additionally applies the projection PΣns selecting the s

dominant blocks. In fact, in the special case of considering non-sparse signals in

Ω̂n,d
n,r the SDT algorithm coincides with the DT algorithm.

3.3.3 Details of the SDT algorithm

To be fully self-contained, let us now go through the individual steps of the SDT

algorithm and specify the relevant details. Every iteration of the algorithm starts

with the computation of Gl = A†(y−A(X l)), the gradient for the `2-norm de-

viation f(X) = 1
2‖y − A(X)‖2`2 evaluated at X l

. The algorithm subsequently

employs a modi�cation from Ref. [Wei+16] in calculating the steepest gradient

inspired by geometrical optimization techniques which leads to a faster conver-

gence [AMS09; Van13]: The set of rank r matrices is an embedded di�erential

manifold in the linear vector space of all matrices. Thus, a direction on this em-

bedded manifold is characterized by a tangent vector on the manifold. While

this geometry straight-forwardly generalizes to the set of nd× d matrices with

rank r blocks, due to sparsity constraint Ω̂n,d
s,r fails to be a di�erential manifold.

Nonetheless, we can make use of tangent vectors as ‘natural’ search directions

in our optimization problem for the non-vanishing blocks of X l
that are con-

forming with a �xed-rank constraint.

The tangent space of rank rmatrices at point x is given by the set of matrices that

share the same column or row space x [AMS09]. Correspondingly, the tangent

space projection of a non-vanishing block of X can be de�ned as follows: Let

xk = UkΛkU
†
k be the eigenvalue decomposition of the kth block of X with

Λk the diagonal matrix with eigenvalues in decreasing order. Further, let U
(r)
k
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denote the restriction of Uk to its �rst r columns corresponding to the range of

xk. Then, the tangent space projection acting on gk the kth block of G is given

by

PTX (G)k = gk − (Id−PU )gk(Id−PU ), (3.28)

with (PU )k = U
(r)
k (U

(r)
k )†. The entire tangent-space projection PTX (G) is de-

�ned by acting trivially on the blocks ofG corresponding to vanishing blocks of

X and as the projection (3.28) otherwise.

As we prove below in generic situations the SDT algorithm converges for a con-

stant step-width set to µl = 1 and even without using the tangent space pro-

jection. Empirically, a faster convergence is achieved with the tangent space

projection and using the following prescription for the step-width calculation:

From the projected gradient GlP = PTX (Gl) in the lth iteration we then calcu-

late the step width for each block individually as

µlk =

∥∥(GlP )k
∥∥2

F

‖A((GlP )k)‖2`2
(3.29)

and multiply each block by the corresponding µlk.

In order to have a compact notation, we introduce the diagonal matrix diag(µl) =
diag(µ1

l , . . . µ
l
1, µ

l
2, . . . , µ

l
2, . . . , µ

l
n) where each step width is repeated d times.

The new state of the algorithm, X l+1
, is given by the projection of the result of

a gradient step with step width µl onto the set Ω̂n,d
s,r .

Finally, we have to specify a stopping criterion at which the loop of the algo-

rithm is exited. We terminate the algorithms if the objective function is below a

speci�ed threshold, i.e.,

‖y −A(X l)‖`2
‖y‖`2

≤ γbreak (3.30)

or a maximal number of iteration is reached. If the data vector y has additive

noise, γbreak has to be chosen to be larger than the expected norm of the noise.

To be less relying on expectations on the noise levels, one can alternatively make

use of criteria on the gradient and step width or test for oscillating patterns in

the identi�ed support.

88



3.3 Algorithm

Algorithm 3 ALS-BT algorithm

Input: Data y, measurement A, sparsity s and rank r of signal

1: Initialize ρ0
.

2: repeat
3: ξl = arg min

ξ∈Σns

fALS(ξ, ρl−1)

4: ρl = arg min
ρ∈Cd×dr

fALS(ξl, ρ)

5: until stopping criterion is met at l = l∗

Output: Recovered signal ρl
∗
, ξl
∗

3.3.4 Blind tomography via alternating optimization

A more direct algorithmic approach to the blind tomography problem is to use

a constrained alternating least square (ALS) optimization. In ALS optimization,

one performs a constrained optimization of the objective function

fALS(ξ, ρ) =
1

2
‖y −A(ξ, ρ)‖2`2 , (3.31)

with respect to one of the two variables while regarding the respective other

variable as constant in an alternating fashion, see Algorithm 3.

We perform the optimization over Σn
s , Algorithm 3 Step 3, using the standard

IHT algorithm for sparse vector recovery. Note that calculating the linear mea-

surement map for ξ given a �xed ρ simply involves evaluating all calibration

measurement blocks individually, i.e. calculating Ai(ρ) for all i ∈ [N ]. Analo-

gously, the low-rank optimization over Cd×dr , Algorithm 3 Step 4, can be per-

formed with iterative hard-thresholding on the manifold of low-rank matrices.

A detailed description of a suitable algorithmic implementation is given by Al-

gorithm 2 in the special case of a single matrix block, i.e. N, s = 1. Computing

the corresponding linear map acting on ρ for �xed ξ amounts to summing up

the individual measurement blocks weighted by their corresponding calibration

coe�cient.

The ALS optimization requires an initialization with a suitable ρ0
in order to

evaluate the �rst objective function for optimizing ξ. One method that we found

viable is to randomly draw a rank-r state using Haar-random eigenvectors. Note

that, in general, constrained ALS optimization can be highly sensitive to the
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3 Blind quantum state tomography

chosen initialization. For this reason, depending on the measurement map and

calibration model, alternative initialization strategies might become necessary.

As break-o� criteria we can again use a bound on the objective function as in

(3.30) and an allowed maximal number of iterations.

3.4 Recovery guarantees

We now prove that for certain simple measurement ensembles, the SDT algo-

rithm converges to the optimal solution before we numerically demonstrate its

performance in the following section. More precisely, following the outline of

model-based compressed sensing [Bar+10; BD09], the SDT algorithm can be

equipped with recovery guarantees based on a restricted isometry property (RIP)
of the measurement ensemble that is custom-tailored to the structure at hand.

Intuitively, it seems clear that a measurement map should at least in principle

allow for solving the associated linear inverse problem uniquely if it acts as an

isometry on signals from the constraint set. So-called RIP constants formalize

this intuition:

De�nition 3 (Ω̂s,r-RIP). Given a linear mapA : Cnd2 → Cm, we denote by δs,r
the smallest δ ≥ 0 such that

(1− δ) ‖x‖2F ≤ ‖A(x)‖2`2 ≤ (1 + δ) ‖x‖2F (3.32)

for all x ∈ Ω̂s,r .

The constant δs,r measures how much the action of A when restricted to el-

ements of Ω̂s,r deviates from that of an isometry. Correspondingly, if δs,r is

su�ciently small we expect this to be su�cient to ensure that the restricted ac-

tion of A becomes invertible. In fact, if a measurement map has a su�ciently

small RIP constant one can prove the convergence of projective gradient descent

algorithms to the correct solution of the structured linear inverse problem.

Theorem 28 (Recovery guarantee). Let A : Cnd×d → Cm be a linear map and
suppose that the following RIP condition for A holds

δ3s,3r <
1

2
. (3.33)
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3.4 Recovery guarantees

Then, forX ∈ Ω̂s,r , the sequence (X l) de�ned by the SDT algorithm (Algorithm 2)
with µl = 1 and PT

Xl
= Id with y = A(X) satis�es, for any l ≥ 0,∥∥∥X l −X

∥∥∥
F
≤ γl

∥∥X0 −X
∥∥

F
, (3.34)

where γ = 2δ3s,3r < 1

We establish that the SDT algorithm converges to the correct solution in Frobe-

nius of the sparse de-mixing problem at a rate that is upper bounded by the RIP

constant δ3s,3r of the measurement map. For the sake of simplicity, we analyse

the SDT algorithm omitting the tangent space projection and also assuming a

constant step widths µl = 1. In numerically simulations we observe that mak-

ing use of the tangent space projection and a more sophisticated heuristic for the

step width yields faster convergence and better recovery performance. Making

the stronger assumption that the RIP constant is smaller than
1
3 , one can also

show that with high-probability the non-trivial choice of the step-width is close

to 1 [SW19]. The right-hand side of the RIP condition (3.33) is not expected to

be optimal. Typically, one can at least improve the bound to
1√
3

with a slightly

more re�ned argument. Since we are interested in the parametric scaling here,

we choose to present a simpler argument at the cost of slightly worse constants.

Furthermore, the statement of Theorem 28 does not account for statistical noise

or potential mild violation of the signal constraints. Following standard tech-

niques, we expect that a more complicated noise- and model-robust version of

Theorem 28 can be derived, see e.g. [14]. For the current analysis, we are content

with the signi�cantly simpler version.

The derivation of recovery guarantees for the IHT algorithm follows largely the

same blueprint developed in the original IHT proposal for sparse vectors [BD08],

see also Ref. [FR13] for a detailed description of the proof. Here, we are in addi-

tion in the comfortable position that Ref. [SW19] already �eshed out the details

of the recovery proof for an IHT algorithm for de-mixing low-rank matrices.

Choosing µl = 1, we give a slightly simpler proof that carefully adapts the one

given in Ref. [SW19] to account for the additional sparsity constraint and uses a

slightly more concise notation.

To state the proof of Theorem 28, we introduce a bit more notation. Consider

X ∈ Ωn,d
s,r . By de�nition, it can be written as X =

∑n
i=1 ξiei ⊗ xi with ξ ∈ Σn

s

and xi ∈ D(d)
r for all i. LetQi be the projector onto the range of xi. Furthermore,

we setQi = 0 for all i not in the support of ξ. Slightly overloading our notation,
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3 Blind quantum state tomography

we de�ne the projection of every ‘block’ onto the range of the corresponding

‘block’ of X as PΩ̂(X)(Y ) := PΩ̂(X)Y PΩ̂(X) with

PΩ̂(X)
:= diag(Q1, . . . , Qn). (3.35)

Note that the projection simultaneously projects onto the “block-wise support”

of X .

It is common and useful to rewrite the RIP inequalities such as in De�nition 3 as

an equivalent spectral condition of restrictions of A†A.

Proposition 29. Let X ∈ Ω̂n,d
s,r and A : Cnd×d → Rm a linear map. Then the

following two statements are equivalent:

(i)
∥∥∥PΩ̂(X) ◦ (Id−A† ◦ A) ◦ PΩ̂(X)

∥∥∥
∞
≤ δ.

(ii) For all Y ∈ rangePΩ̂(X) it holds that

(1− δ) ‖Y ‖2F ≤ ‖A(Y )‖2F ≤ (1 + δ) ‖Y ‖2F . (3.36)

Proof. The inequality

δ ≥
∥∥∥PΩ̂(X) ◦ (Id−A† ◦ A) ◦ PΩ̂(X)

∥∥∥
∞

(3.37)

= max
Y ∈rangePΩ̂(X)

|〈Y, (Id−A† ◦ A)Y 〉|
‖Y ‖2F

(3.38)

holds if and only if for all Y ∈ rangePΩ̂(X)

δ ‖Y ‖2F ≥ | ‖Y ‖
2
F − ‖A(Y )‖2F |. (3.39)

The last bound is equivalent to (3.36).

Proof of Theorem 28. LetX ∈ Ω̂n,d
s,r be the matrix to be recovered. LetX l

denote

the lth iterate of the vector of matrices in the SDT algorithm (Algorithm 2). Since

the algorithm always involves a projection step onto Ω̂n,d
s,r the lth iterateX l

is in

Ω̂n,d
s,r . Furthermore, we observe that X +X l +X l+1 ∈ Ω̂n,d

3s,3r . For convenience,

we denote the projection onto the (“block-wise”) joint range and support of X ,

X l
and X l+1

simply by P l := PΩ̂(X+Xl+Xl+1) and its orthogonal complement

byP l⊥. It is crucial for the proof to bound norm deviations restricted to the range

of P l as this eventually allows us to apply a RIP bound.
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3.4 Recovery guarantees

We want to show the convergence of the iterates of the algorithm X l
to the

correct solution X . In other words, we want to derive a bound of the form∥∥∥X l+1 −X
∥∥∥

F
≤ γ

∥∥∥X l −X
∥∥∥

F
(3.40)

with constant γ < 1. Note that by the theorem’s assumption we set the step

width to µl = 1 in the following and omit the tangent space projection PT
Xl

.

We �rst derive the following consequence of the thresholding operation: Let

Gl := A†(y−A(X l)) = A† ◦A(X −X l). By the de�nition of X l+1
as the best

approximation to X l +Gl in Ω̂n,d
s,r it holds that∥∥∥X l+1 −

[
X l +Gl

]∥∥∥
F
≤
∥∥∥X − [X l +Gl

]∥∥∥
F
. (3.41)

Since the parts of both sides of the inequality that are not in the kernel of P l⊥
coincides, we get the same inequality also for the with P l inserted∥∥∥X l+1 −

[
X l + P l(Gl)

]∥∥∥
F
≤
∥∥∥X − [X l + P l(Gl)

]∥∥∥
F
. (3.42)

With the help of this inequality, we can bound∥∥∥X l+1 −X
∥∥∥

F
≤
∥∥∥X l+1 −

[
X l + P l(Gl)

]∥∥∥
F

+
∥∥∥X − [X l + P l(Gl)

]∥∥∥
F

≤ 2
∥∥∥X − [X l + P l(Gl)

]∥∥∥
F

= 2
∥∥∥M1(X l −X)

∥∥∥
F

≤ 2 ‖M1‖∞
∥∥∥X l −X

∥∥∥
F
,

(3.43)

where in the last step we used the de�nition of Gl, the fact that P l acts trivially

onX l−X and de�nedM1 := P l ◦(Id−A†◦A)◦P l. To arrive at the theorem’s

assertion, we now bound the spectral norm ofM1 using the RIP property of A
and Proposition 29:

‖M1‖∞ =
∥∥∥P l ◦ (Id−A† ◦ A) ◦ P l

∥∥∥
∞
≤ δ3s,3r (3.44)

since the range of P l is in Ωn,d
3s,3r . Using (3.44) in (3.43) completes the proof.
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3 Blind quantum state tomography

The pressing next question is, of course, which measurement ensembles actually

exhibit the required RIP. Interestingly, it is notoriously hard to give deterministic

constructions of measurement maps that are sample optimal and feature the RIP.

In fact, already for the RIP for s-sparse vectors there are no sample optimal de-

terministic measurement maps known to date [FR13]. To further complicate the

state of a�airs, it is also known to be NP-hard to check whether a given mea-

surement map exhibits the s-sparse RIP with RIP constant small than a given

δ [Ban+13].

For this reason, the �eld of compressed sensing uses probabilistic constructions

to arrive at provably sampling optimal measurement maps. Using a random en-

semble of measurement maps of sampling optimal dimension one establishes

that with high probability a randomly drawn instance will exhibit the RIP prop-

erty. In other words, one proves that the originally hard linear inverse prob-

lem typically becomes easy for a certain measurement ensemble. Arguably the

simplest measurement ensemble consists of observables given by i.i.d. chosen

random Gaussian matrices. In our setting a fully Gaussian measurement map

can be constructed from a set of {Ai ∈ Rnd×d}mi=1 of m Gaussian matrices with

entries draws i.i.d. from the normal distribution N (0, 1) and de�ning y(l) =
Tr(AiX).

As a toy model for quantum tomography it is more natural to consider observ-

ables drawn from a random ensemble of Hermitian matrices such as the Gaus-

sian unitary ensemble (GUE). Operationally, we de�ne the GUE by drawing a

matrix X with complex Gaussian entries, Xk,l ∼ N (0, 1) + iN (0, 1), and sub-

sequently projecting X onto Hermitian matrices using P : X 7→ 1
2(X +X†).

For measurement maps from GUE we prove the following statement:

Theorem 30 (Ω̂n,d
s,r -RIP for random Hermitian matrices.). Let {A(k)

i }
n,m
i=1,k=1 be

a set of Hermitian matrices drawn i.i.d. from the GUE. LetA be the measurement
operator de�ned by {A(k)

i }
n,m
i=1,k=1 via Eqs. (3.9) and (3.11). Then 1√

m
A satis�es

the Ω̂n,d
s,r -RIP with parameter δs,r with probability at least 1− τ provided that

m ≥ C

δ2
s,r

[
s ln

en

s
+ (2d+ 1)rs ln

c

δ
+ ln

2

τ

]
(3.45)

for su�ciently large numerical constants C, c > 0.

Before proving the theorem, we �rst discuss the implications on the asymptotic

scaling of the measurement complexity of our approach to the blind tomogra-

phy problem and the sparse de-mixing problem based on the results for random

94



3.4 Recovery guarantees

Hermitian measurement maps. First, the derived measurement complexity (3.45)

is in accordance with the degrees of freedom of signal X ∈ Ω̂n,d
s,r . The second

term ofO(drs) corresponds to the number of degrees of freedom specifying the

s rank-r matrices of dimension d. The �rst term of O(s lnn) is the minimal

sampling complexity in s for learning the s non-trivial entries and their support

[FR13]. Second, in analogy, we expect the optimal number of measurements

for the blind tomography problem, i.e., reconstructing signals in Ωn,d
s,r instead of

Ω̂n,d
s,r , to scale as O(s lnn + dr). Hence, having a provably e�cient algorithms

capable of solving the blind tomography as well as the sparse de-mixing prob-

lem comes at the cost of an increase in the sampling complexity by an additional

factor of s in the second term of the sampling complexity. Most importantly, in-

voking the sparsity assumption on the calibration vector ξ allows us to get away

without a linear increase n of the number of calibration parameters. Thus, the

overhead in measurement complexity of our approach to the blind tomography

problem is relatively mild.

In fact, the measurement complexity derived for Gaussian measurements can

often be used as a guideline for the sampling complexity of other measure-

ment ensembles that are also su�ciently unstructured. However, the proof tech-

niques for model-based compressed sensing that exploit the combination of dif-

ferent structures are not easily translatable to other measurement ensembles.

An exception are measurement ensembles that feature a structure that is su�-

ciently aligned with the signal structure for hierarchically sparse signals, see e.g.

Refs. [13; 21]. We leave the study of more involved measurement ensembles to

future work.

It remains to prove Theorem 30. Establishing RIP conditions for Gaussian ma-

trices for a set of structured signals typically proceeds in two steps: One �rst

derives a strong concentration result for a single signal in the set using standard

concentration of measure. Second, one takes the union bound over the signal set

with the help of an ε-covering net construction to arrive at the uniform state-

ment of RIP. We can readily adapt this strategy also to GUE.

For the �rst step, we derive a Gaussian-type concentration result, modifying a

standard line of arguments for our example, see, e.g., Ref. [SW19]. The result is

summarized as the following lemma:

Lemma 31 (Gaussian-type concentration). Let X ∈ Ω̂n,d
s,r . Let {A(k)

i }
n,m
i=1,k=1 be

a set of Hermitian matrices drawn i.i.d. from the GUE andA be the measurement
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3 Blind quantum state tomography

operator de�ned by {A(k)
i }

n,m
i=1,k=1 via Eqs. (3.9) and (3.11). Then, for 0 < δ < 1

(1− δ) ‖X‖2F ≤
1

m
‖A(X)‖2`2 ≤ (1 + δ) ‖X‖2F (3.46)

with probability of at least 1− 2e−mδ
2/Cδ and constant Cδ ≥ 40.

Our proof essentially follows the argument of Ref. [SW19] for Gaussian mea-

surements and then exploits that the Hermitian blocks of the signal X ∈ Ω̂n,d
s,r

only overlap with the Hermitian part of the Gaussian measurement matrix.

Proof. Let X ∈ Ω̂n,d
s,r and denote its n d × d blocks by xi. Consider a set

{B(k)
i ∈ Cd×d}m,nk,i=1 of m · n d × d matrices with entries independently drawn

from the complex-valued normal distribution. Let A
(k)
i := P B

(k)
i be corre-

sponding matrices drawn from the GUE andA the corresponding measurement

map. Since all blocks xi are Hermitian, we have

A(X)(k) =
n∑
i=1

〈A(k)
i , xi〉 =

n∑
i=1

〈P B
(k)
i , xi〉

=
n∑
i=1

Re{〈B(k)
i , xi〉},

(3.47)

with Re{z} denoting the real part of z ∈ C. Since all entries of B
(k)
i are

i.i.d. complex normal random variables and xi is Hermitian, Re{〈B(k)
i , xi〉} are

i.i.d. real random variables from the distribution N (0, ‖xi‖F) for all i and k.

We conclude that all entries yk = A(X)(k)
of A(X) are Gaussian distributed

with variance σ2 =
∑

i ‖xi‖
2
F = ‖X‖2F and have even moments E[yk

2t] =
2−tt!

(
2t
t

)
σ2t

[FR13, Corollary 7.7]. Correspondingly, the squared entries are sub-

exponential random variables with mean E[y2
k] = σ2

. We denote the associated

centred sub-exponential variable as

zk := y2
k − σ2. (3.48)

The moments of zk are bounded by

E[|zk|t] ≤ 2tE[|yk|2t] = t!

(
2t

t

)
σ2t, (3.49)

where the �rst inequality follows from the triangle and Jensen’s inequality. The

binomial can be upper bounded using Stirling’s formula [FR13, (C.13)] by

(
2t
t

)
=
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4trt/
√
πt with rt ≤ e1/(24t)

. Thus, for t ≥ 2 we have E[|zk|t] ≤ t!Rt−2Σ2/2
with R = 4σ2

and Σ2 =
√

2/πe1/4816σ4 ≤ 0.815 · 16σ4
. Controlling the

moments of zk for t ≥ 2, we can apply the Bernstein inequality [FR13, Theorem

7.30] and bound the probability that ‖A(X)‖2`2 varies by more than ∆ > 0 from

its expectation value

P
[∣∣∣∣ 1

m
‖A(X)‖2`2 − ‖X‖

2
F

∣∣∣∣ ≥ ∆

]
= P

[∣∣∣∣∣
m∑
k=1

zk

∣∣∣∣∣ ≥ m∆

]

≤ 2 exp

[
− m∆2/2

Σ2 +R∆

]
≤ 2 exp

[
−m∆2

32 ‖X‖4F + 8 ‖X‖2F ∆

]
.

(3.50)

Let ∆ = δ ‖X‖2F for some 0 < δ < 1. Then we can rewrite the tail bound (3.50)

as

P
[∣∣∣∣ 1

m
‖A(X)‖2`2 − ‖X‖

2
F

∣∣∣∣ ≥ δ ‖X‖2F] ≤ 2 exp

[
−mδ

2

Cδ

]
(3.51)

with a constant Cδ ≥ 40. Hence, the condition

(1− δ) ‖X‖2F ≤
1

m
‖A(X)‖2`2 ≤ (1 + δ) ‖X‖2F (3.52)

holds with probability at least 1− 2e−mδ
2/Cδ

.

Note that by the homogeneity of the RIP condition it su�ces to restrict ourselves

to normalized elements of Ω̂n,d
s,r in the proof of Theorem 30. In the following, we

will therefore focus on the set

Ω̄n,d
s,r := {X ∈ Ω̂n,d

s,r | ‖X‖
2
F = 1}. (3.53)

To take a union bound over the set Ω̄n,d
s,r we need to bound the size of an ε-net

that covers the set Ω̄n,d
s,r . An ε-net C covering a set of matricesM ⊂ Cnd×d is

a �nite subset of M such that for all X ∈ M there exists X̄ ∈ C such that∥∥X − X̄∥∥
F
≤ ε. Our construction generalizes the construction of Ref. [SW19].

Therein, a covering net for the set of normalized block-wise low-rank matrices

Ω̄n,d
n,r was derived. We summarize the statement given in Ref. [SW19] in the

following lemma without giving a proof.
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Lemma 32 ([SW19]). For Ω̄n,d
n,r there exists an ε-covering net Cn,dr with cardinality

bounded by (9/ε)(2d+1)nr .

The proof of Lemma 32 basically lifts the result of an ε-net for low-rank matrices

of Ref. [CP11] to the set Ω̄n,d
n,r using the triangle inequality.

We can combine multiple ε-nets for Ω̄s,d
s,r to construct an ε-covering net for the

set Ω̄n,d
s,r of block-sparse matrix vectors with low-rank blocks. The bound on the

cardinality of the resulting ε-covering net is given in the following lemma:

Lemma 33 (Bound on the cardinality of a covering net). For Ω̄n,d
s,r there exists an

ε-covering net Cn,ds,r of cardinality bounded by
(
n
s

)
(9/ε)(2d+1)sr . Furthermore, for

each X = [X1, . . . , Xn] ∈ Ω̄n,d
s,r there exists X̄ = [X̄1, . . . , X̄n] ∈ Cn,ds,r such that∥∥X − X̄∥∥

F
≤ ε and

∥∥X̄k

∥∥
F

= 0 for all k for which ‖Xk‖F = 0.

Proof. Let Γ ⊂ [n] with |Γ| ≤ s, i.e., the indices of the support of an s-sparse

vector. The set

Ω̄Γ
r :=

{∑
i∈Γ

ξiei ⊗ xi

∣∣∣∣∣ ξi ∈ R, xi ∈ D(d)
r ∀i

}
⊂ Ω̄n,d

s,r (3.54)

shall consist of all elements of Ω̄n,d
s,r which have non-vanishing blocks only sup-

ported on Γ. To each element of Ω̄Γ
r , we can associate an element of Ω̄s,d

s,r by

omitting the vanishing blocks in the matrix vector and vice versa. By virtue of

Lemma 32 we thus know that Ω̄Γ
r has a covering net CΓ

r of cardinality bounded

by (9/ε)(2d+1)sr
.

We can decompose the entire set Ω̄n,d
s,r as

Ω̄n,d
s,r =

⋃
Γ⊂[n],|Γ|≤s

Ω̄Γ
r , (3.55)

and thus, the set

Cn,ds,r =
⋃

Γ⊂[n],|Γ|≤s
CΓ
r (3.56)

is an ε-covering net for Ω̄n,d
s,r . The union is taken over

(
n
s

)
di�erent sets. Thus, the

cardinality of Cn,ds,r is upper bounded by

(
n
s

)
(9/ε)(2d+1)sr

. The second statement

follows by construction.

We are now in the position to prove Theorem 30.
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Proof of Theorem 30. The proof proceeds in two steps. First, we prove the RIP

for elements of the ε-covering net Cn,ds,r of Ω̄n,d
s,r . To do so, we combine the con-

centration result of Lemma 31 and the union bound of Lemma 33 to establish

uniform concentration. In a second step, following Ref. [SW19], we then use the

de�nition of an ε-covering net to show that for elementsX ∈ Ω̄n,d
s,r that are close

enough to an element of the net, the RIP condition still holds.

Step 1: Taking the union bound over the ε-net Sn,ds,r constructed in Lemma 33 and

using the result of Lemma 31 in the form of (3.51) with constant Cδ ≥ 40 we get

P

(
max
X∈Sn,ds,r

∣∣∣∣ 1

m
‖A(X)‖2`2 − ‖X‖

2
F

∣∣∣∣ ≥ δ/2

)
≤ 2|Sn,ds,r |e−mδ

2/(4Cδ)

≤ 2

(
n

s

)(
9

ε

)(2d+1)sr

e−mδ
2/(4Cδ).

(3.57)

The aim is to �nd a lower bound for the number of measurements m for which

the probability (3.57) small. To this end, we rewrite

2

(
n

s

)(
9

ε

)(2d+1)sr

e−mδ
2/(4Cδ)

≤ 2 exp

[
s ln

en

s
+ (2d+ 1)sr ln

9

ε
− mδ2

4Cδ

]
≤ τ,

(3.58)

using

(
n
s

)
≤
(
en
s

)s
[FR13, Lemma C.5]. The latter inequality becomes true under

the condition that

m ≥ 4Cδ
δ2

[
s ln

en

s
+ (2d+ 1)sr ln

9

ε
+ ln

2

τ

]
. (3.59)

Assuming that (3.59) holds, we have established the RIP condition for the ε-net

Cn,ds,r , i.e., for all vectors X ∈ Cn,ds,r it holds that

(1− δ/2)
∥∥X∥∥2

F
≤ ‖A(X)‖2`2 ≤ (1 + δ/2)

∥∥X∥∥2

F
(3.60)

with probability at least 1− τ .

Step 2: Let us now transfer the RIP of Cn,ds,r to the entire set Ω̄n,d
s,r while keeping

the error under control. To this end, we choose the net parameter ε as
δ

4
√

2
. By

99



3 Blind quantum state tomography

de�nition of an ε-net, for elements X ∈ Ω̄n,d
s,r , there exists an element X ∈ Cn,ds,r

such that ∥∥X −X∥∥
F
≤ δ

4
√

2
. (3.61)

To prove the RIP for the set Ω̄n,d
s,r we need to bound ‖A(X)‖F from above and

below.

We start with the upper bound, making use of Eq. (3.60):

‖A(X)‖`2 ≤ ‖A(X)‖`2 + ‖A(X −X)‖`2

≤ 1 +
δ

2
+ ‖A(X −X)‖`2 .

(3.62)

Now ‖A(X −X)‖`2 has to be bounded from above. We use that by the second

statement of Lemma 33 the block supports of X and X coincide. Therefore,

X − X has also s non-vanishing blocks that have rank of at most 2r. We can,

thus, decompose X −X = B+C in terms of orthogonal matrices B,C ∈ Ω̂n,d
s,r

that obey 〈B,C〉 = 0. In particular, B and C have the same block support asX .

Let us de�ne

κs,r := sup
X∈Ω̄n,ds,r

‖A(X)‖`2 . (3.63)

Then we get using homogeneity

‖A(X −X)‖`2 ≤ ‖A(B)‖`2 + ‖A(C)‖`2

≤ κs,r(‖B‖F + ‖C‖F) ≤
√

2κs,r

√
‖B‖2F + ‖C‖2F

=
√

2κs,r
∥∥X − X̄∥∥

F
,

(3.64)

where the last step makes use of the orthogonality of B and C . Together with

(3.61) it follows that

‖A(X −X)‖`2 ≤
δ · κs,r

4
. (3.65)

It remains to derive an upper bound for κs,r . To this end, we use that, by de�ni-

tion, κs,r is the best upper bound of the left-hand side of (3.62). Inserting (3.65)

into the right-hand side of (3.62), we �nd the condition

κs,r ≤ 1 +
δ

2
+
δ · κs,r

4
. (3.66)

Solving for κs,r , Eq. (3.66) implies for 0 < δ < 1

κs,r ≤
1 + δ/2

1− δ/4
≤ 1 + δ. (3.67)
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3.5 Numerical results

Altogether, this yields the desired upper bound

‖A(X)‖`2 ≤ 1 +
3

4
δ +

δ2

4
≤ 1 + δ, (3.68)

for δ < 1. The lower bound is analogously obtained by combining the inequality

‖A(X)‖`2 ≥ ‖A(X)‖`2 − ‖A(X −X)‖`2 (3.69)

≥ 1− δ/2− ‖A(X −X)‖`2 (3.70)

with (3.65) (3.67) to arrive at

‖A(X)‖`2 ≥ 1− δ/2− δ(1 + δ)/4 ≥ 1− δ. (3.71)

With the choice of ε, we can rewrite the condition (3.59) on m as

m ≥ C

δ2

[
s ln

en

s
+ (2d+ 1)sr ln

c

δ
+ ln

2

τ

]
(3.72)

with constants C ≥ 4Cδ ≥ 160 and c ≥ 36
√

2 ≥ 51. This completes the proof.

3.5 Numerical results

The analytical results of the previous section provide worst-case bounds on the

asymptotic scaling for a class of idealized, unstructured measurements. In or-

der to benchmark and assess the non-asymptotic performance of compressed

sensing algorithms in practice, however, numerical simulations are indispens-

able. In a �rst step we therefore perform numerical simulations for the idealized

measurement model as given by random GUE matrices, comparing the perfor-

mance of our algorithm to related established algorithms that do not entirely

exploit the structure of the problem. In a second step, we compare the SDT algo-

rithm 2 with standard CS tomography in a blind tomography setting involving

measurements of Pauli correlators, cf. (3.3). To do so we randomly draw subsets

of the possible Pauli measurements as possible calibrations Ai of the measure-

ment apparatus. Finally, we demonstrate the feasibility of blind tomography

under structure assumptions in the realistic measurement and calibration set-

ting involving single-qubit coherent errors described in Section 3.1. To this end,

we employ the Algorithm 3 that performs alternating constrained optimization.

The algorithms and the scripts producing the plots have been implemented in

Python and are available under Ref. [24].
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3 Blind quantum state tomography

Figure 3.2: The �gure displays the recovery rate for the SDT, DT and informed DT algorithm for

di�erent number of observables m for GUE measurements. Each point is averaged

over 50 random measurement and signal instances with r = 1, d = 16, n = 10 and

s = 3. A signal is considered successfully recovered if its Frobenius norm deviation

from the original signal is smaller than 10−3
. One observes nearly coinciding recovery

performances for the informed DT and the SDT algorithm. In comparison, the DT

algorithm requires signi�cantly more observables for recovery.

3.5.1 GUE measurements

The SDT algorithm goes beyond existing IHT algorithms for the de-mixing prob-

lem of low-rank matrices in that it additionally allows one to exploit a sparse

mixture. We demonstrate that this yields a drastic and practically important

improvement in the number of measurement required for the reconstruction.

To this end, we draw signal instances X = ξ ⊗ ρ at random from Ωn,d
s,r . We use

four qubit pure states ρ = |ψ 〉〈ψ | with r = 1 and d = 16, where |ψ 〉 is drawn

uniformly (Haar) random from the complex `2-norm sphere. The calibration

vector ξ ∈ Rn with n = 10 has a support of size s = 3 drawn uniformly from

the set of all

(
n
s

)
possible supports. The non-vanishing entries of ξ are normal

distributed with unit variance. The measurements are drawn at random from the

GUE ensemble as de�ned above with a varying number of observables m.

The closest competitor to the SDT algorithm is the algorithm of Ref. [SW19]. The

algorithm of Ref. [SW19] coincides with the special case of the SDT algorithm

where we use the projection on to Ω̂n,d
n,r with s = n ignoring the sparsity in the

block structure. We will refer to this algorithm as the DT algorithm. We can
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3.5 Numerical results

also give the DT algorithm the ‘unfair’ advantage of restricting the problem to

the correct block support of the signal from the beginning. We will refer to this

variant as the informed DT algorithm.

Figure 3.2 shows the recovery rate for the SDT algorithm, the DT algorithm and

its informed variant for di�erentm. Each point is average over 50 random signal

and measurement instances. We consider a signal as successfully recovered if the

distance of the algorithm’s output to the original signal is smaller than 10−3
in

Frobenius norm. The algorithm terminated if either the stopping criterion (3.30)

with γbreak = 10−5
is met or after a maximal number of 600 iteration. We observe

that if one of the algorithm successfully recovers a signal it typically meets the

stopping criterion after less than 100 iterations.

The curves for all three algorithm in Figure 3.2 display a sharp phase transi-

tion from a regime where the number of measurement is too small to recover

any signal to a regime of reliable recovery. While the phase transition for the

SDT algorithm appears in a similar regime to the informed DT algorithm, the

DT algorithm requires considerably more samples in order to recover the signal

instances.

We conclude that the sparsity of the calibration parameters can be exploited

by the SDT algorithm to considerably reduce the required number of measure-

ments. Even more so, this does not require many more sampling points as com-

pared to an algorithm which is given a priori knowledge which errors were

present, that is, the block support of the signal. This shows that the SDT al-

gorithm solves the de-mixing and blind tomography task in a highly e�cient

way and scalable. Finally, the number of possible erroneous measurements Ai
can be scaled up at a very low cost in terms of required measurement settings.

3.5.2 Sub-sampled random Pauli measurements

For the application in characterizing quantum devices, it is key to compare the

recovery performance of the SDT algorithm with standard low-rank quantum

tomography algorithms. To this end note that the SDT algorithm restricted to

n, s = 1 is also a state-of-the-art algorithm for standard low-rank state tomog-

raphy without the on-the-�y calibration. Thus, we will make use of this imple-

mentation of conventional low-rank state tomography in the following.

We draw signal instances as before but using three-qubit states, s ∈ {3, 4} and

altering the model for the calibration parameter: We set the �rst entry of ξ to

ξ0 = 1. The support of the remaining entries is drawn uniformly at random. The
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Figure 3.3: The �gure displays the reconstruction error in trace distance (2.8) for the SDT com-

pared to the standard tomography algorithm for di�erent number of observables m
for sub-sampled random Pauli measurements. Each point is averaged over 30 random

measurement and signal instances with r = 1, d = 8, n = 10 and s = 3. The inline

�gure shows the mean `2-norm reconstruction error of the calibration coe�cients for

the SDT algorithm.

non-vanishing entries are then i.i.d. taken from the normal distribution rescaled

by a factor of 1/10. This mimics a setting where we have a dominant target

measurement and a couple of small systematic deviation from a known set of

candidates. The target measurements as well as the systematic deviations are

uniformly sub-sampled Pauli observables. Thus, A0 till An have the form of

(3.3) with di�erently i.i.d. selected Pauli observables uniformly selected from

{Id, X, Y, Z}. We simulate statistical noise using 108
samples per expectation

value in order to realistically limit the resolution of the SDT algorithm.

We simultaneously perform recoveries with the SDT algorithm using the entire

measurement matrix including the calibration measurement components and

the SDT algorithm using only the target measurement A0 as in a conventional

tomography setting.

The resulting trace distance of the state estimate, i.e., the trace-normalized �rst

block of X , from the original ρ is shown for di�erent number of measurements

in Figure 3.3 and Figure 3.4 for di�erent sparsity s = 3 and s = 4, respectively.

The curves indicate the median over the depicted 30 sample points per value of

m. The inline plot of boths Figures further show the `2-norm deviation of the

reconstructed calibration parameters and the original ξ.

One observes that the conventional low-rank tomography becomes more ac-

curate with an increasing number of measurement but is asymptotically still
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Figure 3.4: The �gure displays the reconstruction error in trace distance (2.8) for the SDT com-

pared to the standard tomography algorithm for di�erent number of observables m
for sub-sampled random Pauli measurements. Each point is averaged over 30 random

measurement and signal instances with r = 1, d = 8, n = 10 and s = 4. The inline

�gure shows the mean `2-norm reconstruction error of the calibration coe�cients for

the SDT algorithm.

bounded from below by the systematic error induced by the calibration on the

order of 10−1
. This agrees with the order of magnitude of variance of the cal-

ibration coe�cients. In contrast, the SDT algorithm while performing slightly

worse in a regime of insu�cient measurements outperforms the conventional al-

gorithm for a moderate number of samples and is ultimately only limited by the

statistical noise. However, in the parameter regime under investigation there

are even for large number of samples m > 150 a small number (well below

10%) of instance where SDT only reaches an accuracy comparable to standard

tomography. In these instances we �nd that the support for the calibration mea-

surement components was incorrectly identi�ed. For s = 4 we furthermore

observe one pathological instance of SDT form = 240 that is worse in recovery

than standard tomography is in this regime. For s = 4 the phase transition of

SDT appears for a slightly larger values of m compared to s = 3. The curves

for the reconstruction error of the quantum state approximately coincide with

the curves for the error in the calibration parameter. We conclude that for a

su�cient number of measurement settings, the SDT algorithm almost always

performs a signi�cantly more accurate state reconstruction and simultaneously

extracts the calibration parameters. The precision is ultimately only limited by

the statistical error in the estimation of the expectation values.
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Figure 3.5: The �gure displays the reconstruction error in trace distance (2.8) for the ALS com-

pared to the standard tomography algorithm for di�erent number of observables m
for Pauli measurements with coherent single-qubit errors. Each point is averaged over

50 random measurement and signal instances with r = 1, d = 16, n = 7 and s = 2.

The inline �gure shows the mean `2-norm reconstruction error of the calibration co-

e�cients for the SDT algorithm.

3.5.3 Pauli measurements with coherent single-qubit errors

We now come back to the concrete realistic scenario described in Section 3.1.

There we derived the calibration measurement model originating from coherent

errors in the gates that implement the single-qubit measurements.

For the numerical simulations, we draw a set of m Pauli observables uniformly

at random as the target measurement. Subsequently, we introduce six calibra-

tion blocks such that every observable in the set {X,Y, Z} is swapped with

another Pauli observable in {X,Y, Z} in a speci�c block. We generate data y
for given states and calibration parameters using the linear calibration measure-

ment model without noise as induced by �nite statistics.

We �nd that in the parameter regimes that are easily amenable to numerical

studies on desktop hardware the SDT algorithm is not capable of successfully

reconstructing the states when the calibration parameters for the corrections

are considerably smaller than the leading order measurement. To thoroughly

understand this limitation, in the following, we brie�y report the performance

of the SDT algorithm on di�erent sub-tasks related to the recovery problem.

First, we choose d = 16 and n = s = 1 such that only a single block, either the

ideal measurement or one of the correction blocks, is used to generate the signal

from a random pure state (r = 1). We observe that the SDT algorithm is able
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Figure 3.6: The �gure displays the reconstruction error in trace distance (2.8) for the ALS com-

pared to the standard tomography algorithm for di�erent number of observables m
for Pauli measurements with coherent single-qubit errors. Each point is averaged over

30 random measurement and signal instances with r = 1, d = 16, n = 7 and s = 3.

The inline �gure shows the mean `2-norm reconstruction error of the calibration co-

e�cients for the SDT algorithm.

to recover the signals in this standard tomography problem. This indicates that

also the calibration blocks individually allow for tomographic reconstruction of

low-rank states. Second, the SDT algorithm can discriminate between di�erent

mixtures of the six correction blocks. To demonstrate this, we ignore the ideal

measurement and employ only the correction blocks to generate the signal. We

set the active calibration coe�cients to one. Thus, n = 6, s ≤ n and ξi = 1 for

i active. We observe that given a su�cient number of measurement settings the

SDT algorithm correctly reconstructs pure states in this measurement setting.

The same �ndings hold true if the target measurement is again considered as

long as the active calibration coe�cients are set to 1. We observe successful

reconstructions of unit rank states for n = 7 and s ∈ 1, 2, 3.

A more natural setting however would typically have calibration coe�cients

that are considerably smaller than the ideal measurement. This justi�es the lin-

ear expansion for the measurement model in the �rst place. If we choose, e.g.,

ξi = 1/10 for the indices i of active blocks, we were unable to identify a pa-

rameter regime on desktop hardware where the SDT algorithm can successfully

recover the majority of instances of pure states. We observe that if the SDT algo-

rithm settles on an objective variable with an incorrect block support in the �rst

few iterations, it is not able to subsequently run into objective variables with a

di�erent block support in most instances.
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3 Blind quantum state tomography

Despite the negative result for the SDT algorithm in the most realistic setting,

the general mindset to exploit structure (low-rankness) to allow quantum state

tomography in a blind fashion is fruitful using a slightly di�erent algorithmic

strategy.

To this end, we use the constrained alternating least square (ALS) algorithm de-

scribed in Section 3.3.4. We set the �rst calibration coe�cient corresponding to

the ideal measurement to one. The support of the remaining active calibration

coe�cients is drawn uniformly at random and their value are i.i.d. drawn from

a shifted normal distribution with standard deviation 0.05 and mean value 0.2.

We use Haar random pure states, r = 1 of a four-qubit system, d = 16, as the

target states.

The algorithm is initialized with a Haar-randomly drawn pure state. We allow

for a maximal number of 1000 iterations of the algorithm or terminate if the

criterion (3.30) with γbreak = 10−5
is met. Furthermore, if the stopping criterion

is not met after 50 iterations, we re-initialize the algorithm with a new random

pure state. We allowed for a maximal number of 10 or 20 re-initializations for

s = 2 and s = 3, respectively. We observe that in case of successful recovery

typically at most 3 re-initializations are required with most instances already

correctly converging from the initial state.

As in the previous section, we compare the recovery performance of the ALS

with the standard low-rank tomography algorithm. The trace-norm error and

calibration error for di�erent numbers of measurement settings for s = 2 and

s = 3 are displayed in Figure 3.5 and 3.6, respectively. We observe that, as

expected, the reconstruction error of standard low-rank tomography is again

lower-bounded by a scale set by the magnitude of the calibration parameters.

In contrast, with an only slightly larger number of measurement settings, the

constrained ALS algorithm is capable of recovering the states and the calibration

parameter with an accuracy that is improved by orders of magnitude and in the

noiseless scenario only limited by the algorithms stopping criterion. Compared

to recovery performance of the SDT algorithm we observe an even sharper phase

transition to the regime of recovery.

3.6 Conclusions and outlook

In this chapter, we have shown that the natural assumption of low-rankness al-

lows one to perform self-calibrating quantum state tomography. By relaxing the

blind tomography problem to a sparse de-mixing problem, we have developed
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an e�cient classical post-processing algorithm, the SDT algorithm, that is the-

oretically guaranteed to recover both the quantum state and the device calibra-

tion under a restricted isometry condition of the measurement model. We have

demonstrated the necessity of relaxing the blind tomography problem within the

framework of hard-thresholding algorithms by establishing the NP-hardness of

the projection onto the set consisting of the outer products of vectors and �xed-

rank matrices. Introducing a sparsity assumption on the calibration coe�cients

ensures that the reconstruction scheme can already be applied for fairly small

system dimension. We have explicitly proven that a Gaussian random measure-

ment model meets the required restricted isometry condition with a close-to-

optimal measurement complexity in O(s lnn+ drs). Furthermore, we have nu-

merically demonstrated an improved performance of the SDT algorithm for ran-

dom instances of measurement models compared to previously proposed non-

sparse de-mixing algorithms and standard low-rank state tomography. While

these generic measurement and calibration models enabled us to derive analyt-

ical guarantees, it is fair to argue that these models might at best capture some

aspects of actual experimental implementations. A potential starting point for

extending recovery guarantees to more realistic settings is the generalization of

our results to random Pauli measurements as considered in Section 3.5 [Liu11]

together with the coherence measures and structured measurement guarantees

developed in the context of hierarchically spares signals [Spr+11; 12; 14; 13].

To complement our conceptually and rigorously minded work with a more prag-

matic approach, we have additionally developed and implemented a structure-

exploiting blind tomography algorithm based on alternating optimization. We

have numerically demonstrated that the alternating algorithm is able to perform

self-calibrating low-rank tomography in a measurement and calibration model

that is well-motivated by gate implementations in ion traps. These numerical

simulations indicate that the approach to the blind tomography problem devel-

oped here might be well-suited to improve tomographic diagnostics in current

experiments. Ultimately, the recovery performance of the proposed algorithms

has to be evaluated on experimental data.

Related work in signal processing. Recovery problems of the form (3.1) or

the related de-mixing problem (3.2) also arise in other disciplines. For exam-

ple, these problems appear in future mobile communication scenarios with the

promise to yield much more scalable protocols with respect to the number of

served devices [Wun+15]. Very concretely, our work can be directly applied in

order to extend the internet-of-things setup described in Ref. [SW19] if one ad-
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3 Blind quantum state tomography

ditionally wants to exploit the sporadic (sparse) user activity of machine-type

messaging. Furthermore, our work identi�es yet another set of hierarchical sig-

nal structures that allow for an e�cient projection: It in this way also extends

our work on compressed sensing with hierarchically sparse signals to low-rank

matrices [12; 13; 14; 15; 16; 17; 18; 19; 20; 21].
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4 Random Clifford designs and
structured random ensembles

In this chapter, we take a look at random ensembles of unitaries and states that

originate from uniform measures of subsets of the unitary groups. We derive

results on the moments of random Cli�ord unitaries that will be essential for

the proofs of the main theorem of Chapter 6 and collect multiple results that

provide some further perspective on the topic.

In the preliminaries we have introduced a machinery to calculate the moments

of random variables that are polynomials of Haar random unitaries. In particu-

lar, these results also apply to measures on the unitary group that can be shown

to constitute a unitary k-design of an order k larger than the degree of the poly-

nomial of interest. This is nothing but the de�nition of a unitary k-design. Es-

pecially, low-order k-designs with k = 1 till 4 feature prominently in quantum

characterization: A state’s orbit under a 1-design forms a POVM. In Chapter 5,

we review that 2-designs give rise to particularly simple randomized benchmark-

ing protocols. Shadow �delity estimation [HKP20; 4] and �ltered randomized

benchmarking [9] is particularly e�cient using a unitary 3-designs. And our

approach to compressive randomized benchmarking tomography developed in

Chapter 6 requires a unitary 4-design, at least at �rst sight.

These applications motivate �nding examples of low-order unitary designs and

studying exact and approximate constructions. The fruitful approach to identify

exact unitary designs is to investigate the uniform measure with support only

on a subgroup of the unitary group. For subgroups, the design properties can

be established by comparing their irreducible decompositions of tensor power

representations with the Schur-Weyl decomposition of the unitary group. A full

classi�cation of k-groups, i.e. �nite groups that constitute a k-design, was re-

cently derived and summarized by Bannai et al. in Ref. [Ban+20]. Combining

this classi�cation with a theorem about the universality of �nitely generated

subgroups by Sawicki and Karnas [SK17], yields a surprisingly simple picture:

For the scalable application in quantum computing independent of the system’s
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4 Random Cli�ord designs and structured random ensembles

dimensions, we are interested in what we call a �nitely generated, scalable fam-
ily of k-groups. To be precise, consider a �nite gate set G ⊂ SU((C⊗q)⊗r . For

each n ≥ r it induces a subgroup Gn ⊂ SU((Cq)⊗n that is generated by acting

with the elements of G on any r tensor components of (Cq)⊗n. We call such a

family (Gn)n∈N a �nitely generated, scalable family of k-groups if there exists n0

such that Gn is a k-group for all n ≥ n0. In fact, (i) the only �nitely generated,

scalable families of 2-groups are isomorphic to a subgroup of the Cli�ord group

Cl(qn) with prime q or are dense in SU(qn).
1

The picture is even simpler for

3-designs. (ii) The only �nitely generated, scalable family of 3-groups is isomor-

phic to the multi-qubit Cli�ord group Cl(2n) (or dense in SU(qn)). Finally, (iii)

there exist no �nite unitary k-groups for k ≥ 4 and dimension d > 2. We refer

to Ref. [6, Section V] for a more careful formulation of the three statements and

their arguments. Here we summarize that the Cli�ord group and its subgroups

are ‘basically’ the only 2-groups and 3-group ‘within’ the special unitaries.
2

In this sense, the Cli�ord group is as close as we get to a 4-design with a group

structure. This limits the possibilities of implementing practical quantum com-

puting applications that require 4-designs. Conversely, we might ask how far

we can already get with Cli�ord t-designs, i.e. ensembles that reproduce the

moments of the Cli�ord group instead of the moments of the full unitary group

for t ≥ 4. In Chapter 6, we show that compressive randomized benchmarking

tomography already works with a Cli�ord 4-design. The main ingredient to the

proof is an explicit formula for the integration of the fourth tensor power of the

Cli�ord group. In the following section we derive this expression.

Additionally, we provide a broader perspective on the topic of Cli�ord designs in

explaining two further results in this chapter: First, we ask how random quan-

tum circuits consisting of an increasing number of local Cli�ord unitaries con-

verge towards being random multi-qubit Cli�ord unitaries that constitute Clif-

ford designs. Such a random circuit construction is of interest, inter alia, for

more direct approaches to randomized benchmarking as explained in Chapter 5.

Second, we answer a more conceptional question: Instead of asking if a Clif-

ford 4-design su�ces for a certain application of unitary 4-designs, we can ask

the complementary question. How many non-Cli�ord resources do we need

1

Note that we here refer (without de�nition) to the generalization of the qubit Cli�ord group

de�ned for arbitrary prime-power dimension. And strictly speaking, we also assume that all

Gn are either �nite or in�nite for the statement as presented here.

2

For completeness, we mention that in speci�c dimensions other 2- and 3-groups exist. We refer

to Ref. [Ban+20] for a complete list of such exceptional 2- and 3-groups existing only in �xed

dimensions. Furthermore, there exist two types of 2-groups in dimensions not scaling as a

prime power.

112



4.1 The moment operator of Cli�ord four-designs

to break the barrier and construct higher approximate unitary k-designs? We

show that perhaps surprisingly a number of non-Cli�ord unitaries that scales

independently of the system size su�ces to arrive at additive approximate de-

signs with constant error. A phenomenon which we dub quantum homeopathy.

This completes our conceptional study of Cli�ord designs.

In the �nal section of this chapter, we deviate from the core topic of this thesis,

quantum device characterization, and take a look at a more fundamental ques-

tion in quantum physics: How do equilibrium ensembles arise within the unitary

time evolution of quantum mechanics? This discussion brie�y illustrates further

results arising from the study of the properties of local unitary or Cli�ord ran-

dom quantum circuits.

4.1 The moment operator of Clifford four-designs

Compressed sensing applications where the measurements are generated by ran-

dom unitaries typically require bounds of the fourth moments in the unitaries.

To determine if a speci�c application already works with Cli�ord unitaries, we

need a way to calculate the fourth-order moment operator of the Cli�ord group,

i.e. an analogous result to Theorem 14 for k = 4. As Theorem 14 for the unitary

group
3
, the result for the Cli�ord group heavily relies on a characterization of

the commutant of ∆4
Cl(d), i.e. ∆4

d with domain restricted to the Cl(d). One char-

acterization for the Cli�ord group was derived in Ref. [Zhu+16] and applies to

multi-qubit dimensions d = 2n. The work introduces the orthogonal projection

Q =
1

d2

d2∑
k=1

W⊗4
k (4.1)

where W1, . . . ,Wd2 ∈ L
(
Cd
)

are the multi-qubit Pauli matrices. In fact, the

d2
-dimensional range of Q forms a particular stabilizer code. We denote by

Q⊥ = Id−Q the orthogonal projection onto the complement of this stabi-

lizer code. The orthogonal projection Q commutes with every π4(σ), σ ∈ S4.

Thus, Q acts trivially on the Specht modules Sλ in the Schur-Weyl decomposi-

tion (2.35). Following the notation conventions from Ref. [Zhu+16], we denote

the subspace of the Weyl moduleWλ that intersects with the range ofQ byW+
λ

and its dimension asD+
λ . Analogously, the orthogonal complement ofW+

λ shall

3

The material of the remainder of the section has been published as Section A.2 of the supple-

mental material of Ref. [1]. It is altered to use a consistent notation.
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4 Random Cli�ord designs and structured random ensembles

be W−λ with dimension D−λ . We are now ready to state the main result of this

section.

Theorem 34 (Integration over the Cli�ord group Cl(d)). Let A ∈ L(V ). Then,

M(4)
µCl(d)

(A) =
1

4!

∑
λ`4,l(λ)≤d

dλ
∑
σ∈S4

×
[

1

D+
λ

Tr(AQπ4(σ−1))Q+
1

D−λ
Tr(AQ⊥π4(σ−1))Q⊥

]
× π4(σ)Pλ.

(4.2)

To set up the proof we summarize the necessary results of Ref. [Zhu+16] in the

following theorem:

Theorem 35 (Representation theory of the Cli�ord group [Zhu+16]). Whenever
W±λ are non-trivial, the action of Cl(d) × S4 on (Cd)⊗4 is multiplicity free and
(Cd)⊗4 decomposes into irreducible components

(Cd)⊗4 ∼=
⊕

λ`4,l(λ)≤d
(W+

λ ⊗ Sλ)⊕ (W−λ ⊗ Sλ), (4.3)

on whichCl(d)×S4 acts as∆λ
Cl(d)⊗π

λ
4 . The dimensions ofW+

λ are of polynomials
in d of degree 4 and the dimensions ofW−λ are either vanishing or polynomials in
d of degree 2.

From Theorem 35 we learn that an element of the commutant of the diagonal

action of the Cli�ord group ∆4
Cl(d) can be written in the form

B = Q
⊕

λ`4,l(λ)≤d
(IdDλ ⊗B

+
λ ) +Q⊥

⊕
λ`4,l(λ)≤d

(IdDλ ⊗B
−
λ ), (4.4)

where B±λ ∈ L(Sλ) are linear operators acting on the Specht modules Sλ.

To expand elements of Comm(∆4
Cl(d)), we de�ne the map Φ̃ : L(V ) → L(V ),

Φ̃(A) = Φ(AQ)Q+ Φ(AQ⊥)Q⊥ with Φ from (2.41). The map Φ̃ has properties

comparable to the map Φ, but is adapted to the diagonal representation of the

Cli�ord group.
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4.1 The moment operator of Cli�ord four-designs

Lemma 36. For all A ∈ L(V ) and B ∈ Comm(∆4
Cl(d))

Φ̃(A) =Φ̃(M(4)
µCl(d)

(A)), (4.5)

Φ̃(B) =BΦ̃(Id), (4.6)

Φ̃(Id)−1 =
1

4!

∑
λ`4,l(λ)≤d

dλPλ

[
1

D+
λ

Q+
1

D−λ
Q⊥
]
. (4.7)

Proof.

1. Since Qπ4(σ−1) and Q⊥π4(σ−1) are in Comm(∆4
Cl(d)) for all σ ∈ S4,

we can again apply Lemma 8 to get

Tr(M(4)
µCl(d)

(A)Qπ4(σ−1)) = Tr(M(4)
µCl(d)

(AQπ4(σ−1)))

= Tr(AQπ4(σ−1))

and likewise for Q⊥ instead of Q. Inserting this in the de�nition of Φ̃
yields the �rst statement.

2. From the expansion of elementsB ∈ Comm(∆4
Cl(d)) in (4.4), we conclude

that B can be expressed as B = QB1 + Q⊥B2, where B1 and B2 are in

the group ring C[S4]. Hence, it su�ces to show the statement, Φ̃(B) =
BΦ̃(Id), for B = Qπ4(σ) and B = Q⊥π4(σ). In the �rst case, we �nd

Φ̃(Qπ4(σ)) = Φ(Qπ4(σ))Q = Φ(Q Id)Qπ4(σ)

= Φ̃(Id)Qπ4(σ) ,
(4.8)

where property (2.24) from Lemma 8 has been used in the second step.

The proof of Q⊥ is analogous.

3. Using the decomposition (4.3) of Theorem 35, we can calculate

Φ̃(Id) =
∑

λ`4,l(λ)≤d

∑
σ∈S4

χπ4(σ−1)π4(σ)
[
D+
λQ+D−λQ

⊥
λ

]
= 4!

∑
λ

1

dλ
Pλ

[
D+
λQ+D−λQ

⊥
]
,

(4.9)

where the last line follows again from the expression (2.39) for the projec-

tors. Inverting this expression yields the lemma’s assertion.
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4 Random Cli�ord designs and structured random ensembles

Figure 4.1: The �gure depicts a local random Cli�ord Cli�ord circuit. At every step a gate from

a set of generators of Cl(4) consisting of one- and two-local gates is applied on a

random pair of adjacent qubits. The number of such layers consisting of a single gate

is the depth of the circuit.

With these statements for the Cli�ord group at hand, we can proceed to prove

Theorem 34.

Proof of Theorem 34. Equation (4.5) in Lemma 36 and 4.6 in Lemma 36 can be

combined to conclude Φ̃(A) = Φ̃(M(4)
µCl(d)

(A)) = M(4)
µCl(d)

(A)Φ̃(Id) and, thus,

M(4)
µCl(d)

(A) = Φ̃(A)Φ̃(Id)−1
. The expression for Φ̃(Id)−1

was derived in Lemma

36, Equation (4.7). Together with the de�nition of Φ̃ the expression of the theo-

rem follows after some simpli�cation.

4.2 Random Clifford designs via circuits

In this section, we will continue our study of Cli�ord designs.
4

A particular prac-

tically interesting question is how to implement a Cli�ord design of a certain or-

der k in terms of a circuit of gates. One way is ‘compiling’ Cli�ord unitaries that

are drawn uniformly at random from the Cli�ord group. An arbitrary Cli�ord

unitary on n-qubit can be implemented using O(n2/ log(n)) phase, Hadamard

and CNOT gates [AG04]—the generators de�ned in (2.55). In this construction

4

The section provides a short summary of one of the results of Ref. [6]. The work was done

together with Jonas Haferkamp, who took the lead in the project, Felipe Montealegre-Mora,

Markus Heinrich, Jens Eisert and David Gross. The thesis author developed the project idea

together with Jonas Haferkamp and contributed to the conception, the analytical proofs and

the write-up of the �nal manuscript.
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4.2 Random Cli�ord designs via circuits

the two-qubit CNOT gates act on arbitrary pairs of not necessarily adjacent

qubits. Instead of compiling the gate, we can reverse the question and ask more

directly: Assume we draw a random circuit by subsequently acting with a two-

local Cli�ord gate randomly chosen from a set of generators of Cl(4) on a ran-

dom pair of adjacent qubits in a one-dimensional chain again and again. See

Figure 4.1 for an illustration. For which depth does the ensemble of such circuits

approximate Cli�ord designs of a certain order?

We can formally formulate this question using the notion of a relative approxi-

mate Cli�ord design. A probability measure ν on Cl(d) is a relative ε-approximate
Cli�ord k-design if

(1− ε)M(k)
µCl(d)

≤M(k)
ν ≤ (1 + ε)M(k)

µCl(d)
, (4.10)

where we here writeA ≤ B ifB−A is positive semi-de�nite. LetG ⊂ Cl(4) be

a �nite gate set that generates Cl(4) and is closed under inversion. For example,

G = {H ⊗ 1, S ⊗ 1, S3 ⊗ 1,CNOT} is such a gate set, cmp. (2.55). Let Gi,j
be a set of embeddings of the elements of G into Cl(2n) by acting non-trivially

only on the ith and jth qubit, e.g. G1,2 = G ⊗ 12n−2 . We denote by σG the

probability measure on Cl(2n) that has uniform support on the set

⋃
i∈[n]Gi,i+1

with indices periodically identi�ed. A local random Cli�ord circuit of depthm is

a unitary drawn from the measure σ∗mG , the m-fold convolution of the measure

σG. In Ref. [6] we prove the following result.

Theorem 37. Let n ≥ 12t, then the ensemble of local, random Cli�ord circuit
σ∗mG of depth m ∈ O(n log−2N(t)t8(2nt + log(1/ε))) constitutes a relative ε-
approximate Cli�ord t-design.

Thus, we observe that we also �nd a number of Cli�ord gates scaling quadrati-

cally with the number of qubits. Note that the results of Ref. [DLT02] implicitly

give a scaling of O(n8). In contrast to the compiling scheme of Ref. [AG04;

PMH08], however, in the circuit construction, we only have two-qubits gates

acting on pairs of adjacent qubits.

In Chapter 6 we develop a process tomography scheme that employs random

multiqubit Cli�ord unitaries. For such applications, Theorem 37 shows that one

can directly use random circuits of local generators on adjacent qubits instead

of implementing multi-qubit Cli�ord gates via compiling. Random circuits are,

thus, a simpler and more direct experimental approach and avoid gates acting on

distant qubits that can not natively be implemented on a certain architecture.
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4 Random Cli�ord designs and structured random ensembles

Refs. [BHH16b; BHH16a; BV10] developed a proof strategy for establishing that

local unitary random circuits approximate unitary t-designs in depth O(n2t10).

The proof of Theorem 37 relies on a careful adaptation of the argument. In the

following we sketch the argument, focusing on the deviations from the unitary

case. For the complete proof, we refer to our Ref. [6].

Proof sketch for Theorem 37. As a �rst step, one relates the notion of an approx-

imate Cli�ord t-design to the deviation of the moment-operators in spectral

norm. Analogously to the result for the unitary group [BHH16b, Lemma 4 &

30], it holds that

∥∥∥M(k)
ν −M(k)

µCl(d)

∥∥∥
∞
≤ ε2−2tn

implies that ν is a relative ε-

approximate Cli�ord design [6, Lemma 5]. At the core of the argument connect-

ing the operator norm with the deviation of the eigenvalues, is a lower bound on

the minimal eigenvalue ofM(k)
µCl(d)

. SinceM(k)
µCl(d)

is a projector, the eigenvalues

are determined by dimensions of its range, i.e. the irreducible representations of

∆k
Cl(d). As a subgroup, the irreducible representations of ∆k

Cl(d) for the Cli�ord

group arise as further decompositions of the irreducible representations of the

tensor powers of the unitary group. An explicit example for k = 4 was given

in Theorem 35. Thus, the irreducible representations are contained in the Weyl

modules and have multiplicity spaces that contain the Specht modules. This

allows us to reduce the bound on the eigenvalue ∆k
Cl(d) to a bound on the corre-

sponding bound on the eigenvalues of ∆k
U(d). We refer to Ref. [6, Section VI.d]

for the details of the argument.

In a second step, one realizes that the operator norm deviation of a single layer∥∥∥M(k)
σG −M

(k)
µCl(d)

∥∥∥
∞

can be recast as the spectral gap λ2(Hn,t) of a family of

frustration-free local Hamiltonians Hn,t. For such Hamiltonians the martingale

method of Nachtergaele [Nac96] provides a bound of the spectral gap in terms

of a spectral gap independent of n, λ2(Hn,t) ≥ λ2(H12t,t)/48 for n ≥ 12t.
Instead of looking at the adjoint representation appearing in our construction,

we can more abstractly consider the operator TσG acting on the group algebra

L2(Cl(n)) by convolution with σG. The spectrum of Hn,t is then contained

and in the spectrum of TσG such that the gap to its second-largest eigenvalue

1− λ2(TσG) lower bounds λ2(Hn,t). Using comparison techniques for random

walks on groups [DS93, Corollary 1], λ2(TσG) is dominated by 1−η/r2
∗ . Here, η

is the lowest non-trivial probability mass of σG and r2
∗ is the minimal number of

generators fromG required to represent any elements of Cl(4). By construction

we have η = 1/|G|n and Ref. [AG04] establishes that r∗ = O(n3/ log(n)).

Combining these bounds gives

∥∥∥M(k)
σG −M

(k)
µCl(d)

∥∥∥
∞
≤ 1− cn−1t−8 log2(t) for
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4.3 Quantum homeopathy

some constant c > 0 depending only on the choice of G. See [6, Proposition

2] and its proof for more details. Interestingly, we �nd that the speci�cs of the

Cli�ord group mainly enters the argument through the value of r∗.

Finally, observing

∥∥∥M(k)
σ∗mG
−M(k)

µCl(d)

∥∥∥
∞
≤
∥∥∥M(k)

σG −M
(k)
µCl(d)

∥∥∥m
∞

and tracing

the scaling, yields Theorem 37.

4.3 Quantum homeopathy

In the previous section, we have studied the complexity of random quantum

circuits for approximating higher-order Cli�ord k-designs.
5

For k ≤ 3 this con-

struction also gives rise to unitary k-designs. In order to get unitary k-designs

with k > 3, we need to resort to also use non-Cli�ord gates. Ref. [BHH16b]

established that a local random circuit on n qubits with O(n2k10) many two-

local gates from µU(4) is drawn from an approximate unitary k-designs. This

motivates the question whether we can provide a more ‘economical’ construc-

tion of higher unitary k-designs using mostly Cli�ord gates. For example, in

fault-tolerant quantum computing architectures Cli�ord unitaries can be more

directly implemented while non-Cli�ord gates come with an overhead, e.g. of

preparing so-called magic states [Got09; CTV17]. So how many non-Cli�ord

gates do we actually need for an approximate unitary design with k > 3?

Some related observations in the literature indicate that the answer might be

‘not so many’. Refs. [Zhu+16; GNW21] give a construction for exact spherical
k-designs using only a system size-independent number of Cli�ord orbits. In

Ref. [Zho+19] it was numerically observed that a single T gate in a random

Cli�ord circuit drastically changes the entanglement spectrum.

Formally, we here use the notion of an (additive) ε-approximate design in di-

amond norm [HL09]. We say that a probability measure ν on U(d) is an ε-
approximate unitary k-design if

∥∥∥M(k)
ν −M(k)

µU(d)

∥∥∥
�
≤ ε. Note that this is a

weaker notion than a relative ε-approximate design. Our circuit construction

will make use of one non-Cli�ord gate K ∈ U(2) acting (multiple times) on the

same qubit. We describe a K-layer by the probability measure µK on U(2n)

5

The section provides a short summary of the main result of Ref. [6]. The work was done together

with Jonas Haferkamp, who took the lead in the project, Felipe Montealegre-Mora, Markus

Heinrich, Jens Eisert and David Gross. The thesis author developed the project idea together

with Jonas Haferkamp and contributed to the conception, the analytical proofs and the write-

up of the �nal manuscript.
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4 Random Cli�ord designs and structured random ensembles

Figure 4.2: The �gure depicts a K-interleaved Cli�ord circuit. A K-layer consisting of a single

non-Cli�ord gate K ∈ U(2) acting on a �xed qubit is alternated with random multi-

qubit Cli�ord gates.

with uniform support only on the set {K ⊗ 12n−1 ,K† ⊗ 12n−1 ,12n}. K† and

the identity are included for technical reasons but do not a�ect the physical im-

plementation or the interpretation of the result. We de�ne a K-interleaved Clif-
ford circuit of depthm as a random circuit in U(2n) drawn from the probability

measure σm = (µCl(2n) ∗ µK)∗m. This means a K-interleaved Cli�ord circuit

alternates between a uniformly random multi-qubit Cli�ord gates and K-layers

acting only non-trivially on the �rst qubit. See Figure 4.2 for an illustration.

This is arguably the most economic usage of a non-Cli�ord gate in a random

circuit.

We prove the following result for K-interleaved Cli�ord circuits in Ref. [6].

Theorem 38 (Quantum homeopathy). Let K ∈ U(2) \ Cl(2). Suppose k ≥
C1 log2(t)(t4 + t log(1/ε)), a K-interleaved Cli�ord circuit on n qubits of depth
k is an additive ε-approximate t-design for all n ≥ C2t

2 (and suitable constants
C1, C2 > 0 only depending onK).

The striking feature of this result is that we arrive at an additive ε-approximate

unitary t-design with O(t4 log2(t)) non-Cli�ord gates independent of the system
sizen. Considering the compilation of ann-qubit Cli�ord unitary ofO(n2/ log(n))
many local gates [AG04], our construction has an overall gate count in

O(n2/ log nt4 log2(t)) .

This is an improvement over the scaling n2t10
of Ref. [BHH16b] in both n and

t. The di�erence is even more striking when considering the Cli�ord gates as a

‘free resource’ as motivated from the perspective of fault-tolerant implementa-

tions.
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4.3 Quantum homeopathy

We are tempted to refer to this phenomenon metaphorically as ‘quantum home-

opathy’. The concept of changing the ensemble properties of an in�nitely large

system using only a constant amount of non-trivial ingredients, summarizes the

statement of Theorem 38 convincingly well. This is purely meant as an illustra-

tive analogy and does of course not encompass any scienti�c statement about

alternative health treatments.

We here only give the idea of the proof and refer to Ref. [6] for the complete

and, in fact, lengthy proof. To derive Theorem 38 we have to carefully study

the di�erence between the moment operators of tensor powers of Haar random

unitaries and random Cli�ord unitaries as well as the overlap of this di�erence

with a K-layer. With every application of a Cli�ord- and K-layer this di�er-

ence is further suppressed. The di�erence between the moment operators of

the Cli�ord group and the full unitary group is captured by the di�erence of

the corresponding commutants. In Section 4.1 we have used the characteriza-

tion of Ref. [Zhu+16] for the commutant of the fourth-order tensor represen-

tation of the Cli�ord group. Extending this result, Ref. [GNW21] derives an

explicit construction of the commutant of higher-order tensor representations

in terms of so-called stochastic Lagrangian subspaces. We here omit the precise

de�nition [6, De�nition 7] and only introduce the symbol Σk,k for the set of

Lagrangian subspaces. Further, each subspace T ∈ Σk,k has a representation

r(T ) ∈ L((C2n)⊗k) and r(Σk,k) ⊃ πk(Sk) the representation of the symmetric

group acting by commuting the tensor powers, (2.28). We can, thus, identify Sk

with a subset of Σk,k. Ref. [GNW21] proves the following result:

Theorem 39 (Cli�ord commutant [GNW21]). For n ≥ t− 1 it holds that

comm(∆k
d(Cl(2n))) = span{r(T ) | T ∈ Σk,k} . (4.11)

The theorem implies that the di�erenceM(k)
µCl(d)

−M(k)
µU(d)

is the projector onto

the space spanned by r(Σk,k \ Sk). Interestingly, the dimension of the space

turns out to be independent of the system size. The proof of Theorem 38 ex-

plicitly constructs this projector using a Gram-Schmidt orthogonalization of the

elements r(Σk,k \ Sk). In terms of the orthogonal basis one can then bound

all contributions to the deviation of the moment operator of the K-interleaved

Cli�ord circuit σm. One �nds that

∥∥∥M(k)
σm −M

(k)
µU(d)

∥∥∥
�
≤ 2O(k4)+k logm(1 +

2O(k2)−n)5mηm−1
, where η is the supremum of the moment operator of the

K-layer restricted to r(Σk,k \ Sk). This supremum can be bounded as η ≤
1− c log2(t) with a constant c depending only on the gate K using the seminal
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4 Random Cli�ord designs and structured random ensembles

result on bounds for restricted spectral gaps by Vajú [Var13] and a novel bound

on the overlap of the Haar moment operator with the elements in r(Σk,k \Sk).

The latter bound is derived as Lemma 13 in Ref. [6] and might become useful in

other related applications. We here content ourselves with this level of details.

4.4 Viewpoint: Locally random matrix-product states
and entanglement ergodic systems

We conclude this chapter with an illustration of further applications of random

ensembles of unitaries and quantum states beyond the �elds of quantum comput-

ing and quantum characterization.
6

Random matrix theory has found abundant

application in the study of interacting many-body systems [ABD15]. Similar to

what motivates the study of random quantum circuits, it is often infeasible to

derive rigorous results on the properties of a speci�c instance of a many-body

system but the study of the properties of a random ensemble of such systems

is more fruitful. Such arguments allow one to ‘at least’ make statements about

typical or generic situations encountered in such systems.

A fundamental question is the explanation of ‘equilibration’. We observe a world

that is mostly described by statistical ensembles in equilibrium. How does this

world arise via unitary time evolution? How do closed complex many-body sys-

tems relax to statistical equilibrium ensembles within the framework of unitary

quantum mechanics? While the question itself stands from the beginnings of the

theory of quantum mechanics, its mathematical rigorous study is still an ongo-

ing endeavour. Excitingly, the theoretical endeavour is nowadays accompanied

by the novel possibilities of quantum technologies to actually realize models

of many-body quantum systems in well-controlled experiments, e.g. [BDZ08;

BDN12; Sch+12; Tro+12; Bra+15; Sch+15].

Formally, one can describe the equilibration of a closed system in terms of the

expectation values of bounded observables. Let ρ(t) denote the time-evolved

state of the system that started initially in the state ρ(0). LetA be an observable

with expectation value 〈A(t)〉ρ = Tr[ρ(t)A]. We say a system is equilibrated if

6

This section presents results derived in Refs. [7; 8]. Ref. [7] was authored together with Henrik

Wilming, who �rst-authored the work, Marcel Goihl and Jens Eisert. Ref. [8] originated in a

joint project with Jonas Haferkamp, the lead-author of the manuscript, Christian Bertoni and

Jens Eisert. In both works the thesis author did central contributions to all parts of the work

including the conception, proofs, presentation and write-up.
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〈A(t)〉ρ exhibits only small �uctuations around a static value for most times. We

denote the in�nite time-average of the �uctuations as

∆A∞ρ := lim
T→∞

1

T

∫ t

0

∣∣〈A(t)〉ρ −A∞ρ
∣∣2 dt, (4.12)

where the in�nite time-average of the expectation value of A is

A∞ρ := lim
T→∞

1

T

∫ T

0
Tr[ρ(t)A]dt = Tr[ωA] (4.13)

and the state ω is the in�nite time-average of ρ(t). It is now well understood that

the dynamical build-up of entanglement leads to equilibration [Tas98; Rei08;

Lin+09; Gol+10; Sho11; Rei12; RK12; SF12; MRA13; GE16; EFG15; BR17]. In

particular, for Hamiltonians with non-degenerate energy di�erences the �uctu-

ations can be bounded in terms of the Rényi-2 entropy as

∆A∞ρ ≤ ‖A‖
2
∞ e−S2(ω) , (4.14)

with the Rényi-α entropies de�ned as Sα(ρ) = 1
1−α log Tr[ρα] [Sho11]. Note

that via Proposition 2 the characterization of equilibration in terms of bounded

observables implies that the reduced density matrices of the system similarly

equilibrate in trace-distance.

A large Rényi-2 entropy of the time-averaged state is a su�cient condition for

equilibration. Rigorous arguments that a physical system meets this condition

when starting out in a natural initial state however have been lacking [FBC17;

Gal+18]. Ref. [FBC17] establishes that the Rényi-2 entropy of states with �nite

correlation length scales poly-logarithmically with the system size, insu�cient

to explain equilibration to exponential precision in the system size.

To remedy the situation, we proposed the notion of entanglement ergodicity in

Ref. [7]—a supposedly weak condition on the entanglement present in the eigen-

states of a system but strong enough to ensure equilibration to exponential pre-

cision in the system size even for initial product state.

Let us formally state the de�nition for entanglement ergodicity. We consider

families of systems of local Hamiltonians

HΛ =
∑
x

hx (4.15)

on a regular ν-dimensional lattice Λ indexed by the lattice cardinality N = |Λ|.
We de�ne a sequence of increasing (in N ) systems as entanglement-ergodic if
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there exist N0 ∈ N and a Lipschitz continuous function g : R → [0,∞) that

is positive in the interior of the energy spectrum such that for all N ≥ N0 the

system ful�ls the following weak entropic volume law: For every eigenstate |e〉,
where e is its energy density, there exist a subsystem A such that the reduced

state ρA = TrAc( |e〉〈e |) has Rényi-2 entropy:

S2(ρA) ≥ g(e)N . (4.16)

The main result of Ref. [7] is now to prove that entanglement-ergodic systems

in fact equilibrate when they start out in a product state. A Hamiltonian Hλ

of the form (4.15) is called strictly local and uniformly bounded if each hx has

non-trivial support on at most l subsystems and ‖hx‖∞ ≤ h with constants l, h
independent of the system size.

Theorem 40 ([7, Theorem 2]). Consider an entanglement-ergodic system with
strictly local, uniformly bounded Hamiltonian. Then for any energy density e > 0
there exists k(e), N0(e) > 0 such that for all system-sizes N > N0(e) and for all
product-states |Ψ〉 with energy density e, we have

Sα(ω) ≥ k(e)N, (4.17)

where ω is the time-averaged state of the system when initialized in |Ψ〉.

By (4.14), Theorem 40 has the immediate consequence that the systems ful�lling

the theorem’s assumptions and having non-degenerate energy gaps equilibrate

to exponentially precision in the sense that ∆A∞ρ ≤ ‖A‖
2
∞ e−k(e)N

for all ob-

servables A.

The proof of the theorem starts from the observation that states that have rank

one between a subsystemA and its complement have an overlap with pure states

that is exponentially small in the Rényi-α entropies with α > 1 of the state re-

duced to the subsystem A [7, Lemma 4]. This observation is combined with a

result on energy densities of product states for strictly local, uniformly bounded

Hamiltonians derived by Anshu [Ans16]. We refer to Ref. [7] for further de-

tails.

Our work has reduced the question of equilibration from natural initial states,

product states, to a weak entropic volume law of the eigenstates. While it is plau-

sible that many quantum systems might be entanglement-ergodic, making a rig-

orous statement about the entropy scaling of every eigenstate is still challenging,

to say the least. To collect some examples of states exhibiting a weak-volume law,
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4.4 Viewpoint: Locally randommatrix-product states and entanglement ergodic systems

Figure 4.3: (a) A random isometry V : CD → CD×d can be constructed by acting with a Haar

random unitary U ∈ U(Dd) partially on a normalized vector |0 〉 ∈ Cd. (b) A random

disordered MPS (rMPS) drawn from the measure µd,n,D is de�ned by the contraction

of n i.i.d. random isometries Vk : CD → CD×d along the spaces of dimensionD. The

resulting tensor is a vector in Cnd ∼= (Cd)⊗n.

one way forward is to study ‘natural’ random ensembles of states. Ref. [RW20]

showed that generic translationally invariant matrix product state (MPS) ful�l a

weak volume law for a subregion A that is every kth side. In Ref. [8] we studied

the case of random disordered MPSs. An MPS of bond-dimension D on (Cd)⊗n
(with periodic boundary conditions) is described by a collection of n ·dmatrices

((A
(k)
ik
∈ CD×D)ik∈[d])k∈[n] to be the pure state

|ψ 〉 =
∑

i1,...,in∈[d]

Tr[A
(1)
i1
A

(2)
i2
· · ·A(n)

in
] |i1, . . . , in 〉 , (4.18)

where {|i1, . . . , in 〉} is a local basis of (Cd)⊗n [FNW92; Per+07]. For each k,

we can regard the collection of matrices (A
(k)
ik
∈ CD×D)ik∈[d] as a 3-tensor

A(k) ∈ CD×D×d, the so-called tensor core of the kth site. The tensor cores

can furthermore be identi�ed with homeomorphisms from CD ⊗ Cd → CD

as A(k) =
∑

l,m∈[D],i∈[d]A
(k)
l,m,i |l 〉〈m | 〈i | after choosing bases.

A random disordered MPS (rMPS) is de�ned by choosing all tensor cores i.i.d.

as random isometries from CD×d → CD from the unitarily invariant measure

[Gar+10]. The unitarily invariant measure on the isometries is simply induced

by the Haar measure on the unitary group. Concretely, let |0〉 be a �xed state in

Cd and U ∈ U(Dd) a Haar random unitary. We can set V = U1⊗ |0〉 to arrive
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4 Random Cli�ord designs and structured random ensembles

at a random isometry from CD×d → CD . See also Figure 4.3 for an illustration.

We denote the measure on (Cd)⊗n de�ning rMPSs with bond dimension D as

µd,n,D .

Note that µd,n,D takes values on vectors that are not exactly normalized in `2
norm. Their squared norm, however, is ε-close to one with probability of at least

1−ε−2d−n [8, Lemma 1]. MPSs are well-known to approximate the ground states

of gapped one-dimensional local Hamiltonians capturing �nite-ranged interac-

tions [SPC11]. Therefore, disordered rMPSs can be seen as arising from disor-

dered parent Hamiltonians and are typical representative of one-dimensional

quantum phases of matter. This does not directly su�ce to relate rMPSs to

also higher-excited eigenstate of an ensemble of Hamiltonians. Interestingly,

the eigenstates of systems exhibiting the phenomenon of many-body localiza-

tion, that equilibrate but fail to thermalize, are expected to be well-approximated

by matrix-product states capturing the �nite-correlation length even at higher

energies [BN13; Fri+15].

This motivates the study of the entanglement ergodicity of rMPSs. In Ref. [8]

we prove that rMPSs in fact ful�l a weak entropic volume law:

Theorem 41 ([8, Theorem 2]). Suppose that n is divisible by k ∈ N. Let A be
subsystem that excludes every kth site. For |ψ 〉 an rMPS drawn from µd,n,D , it
holds that

P
[
S2(TrAc [ |ψ 〉〈ψ |]) ≥ Ω

(n
k

)]
≥ 1− eΩ(n/k) . (4.19)

The proof makes use of techniques for calculating the moments of circuits of

independent Haar random unitaries by mappings to partition functions of clas-

sical statistical models [Hun19; NVH18]. We here only sketch the principle idea

of this toolbox. A lower bound on the Rényi-2 entropy, directly follows from

an upper bound of the state’s purity. The purity of the reduced state arising

from an rMPS is a speci�c contraction of the second moment operators of the

Haar random unitaries de�ning the tensor cores. By Proposition 12 the moment

operators can be expressed in terms of the projections onto the symmetric and

anti-symmetric subspace of S2 or, equivalently, by as a sum over the permuta-

tion in S2 as

M(2)
µU(d)

(A) =
∑

σ,τ∈S2

Wg(σ−1τ, d)π2(σ) Tr[π†2(τ)A] , (4.20)

with the Weingarten function Wg(τ, d) = (d2− 1)−1(−d)−δτ,F . In the contrac-

tion we can therefore replace every moment operator by an input operator and
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4.4 Viewpoint: Locally randommatrix-product states and entanglement ergodic systems

an output operator and sum over all combinations of choosing 1 and F for each

operator. For every moment operator we multiply a weight of (d2 − 1)−1
. For

the terms where the input and output operators di�er, we additionally multiply

with−1/d. In this way, we can see the entire contraction as a partition function

of a one dimensional spin-1/2 system with a −1/d interaction penalizing spin-

alignment. The partition function can be bounded with combinatoric arguments

and making use of an entanglement area law [ECP10]. Markov’s inequality then

implies the concentration result. We refer to Ref. [8] for the detailed proof.

The same proof techniques allow us to calculate other second-order polynomials

in the entries of an rMPS. We can make use of this to derive another result in the

context of equilibration. With entanglement ergodicity we introduced a weak

property on the eigenstates to show equilibration already from all product states.

Changing the perspective, one can also aim at deriving typicality arguments for

ensembles of initial states. Then, one has to argue that a typical initial state ρ(0)
evolves to a state ω that has a large Rényi-2 entropy more or less independent

of the actually Hamiltonian of the system that governs the time-evolution. Such

a result was derived, e.g. in Ref. [HH19] for random product states. Similarly, in

Ref. [8] we prove the following statement for rMPSs.

Theorem 42 ([6, Theorem 1]). LetH be a Hamiltonian with non-degenerate spec-
trum and spectral gap. Let |ψ 〉 ∼ µd,n,D (and normalized). For all observables A,
it holds with probability 1− e−c1α(d,D)n that

S2 ≥ c2α(d,D)n, (4.21)

with constants c1, c2 ≥ 0 and α(d,D) ≥ 0 not depending on n.

Again by (4.14), this theorem has the immediate consequence that a system with

non-degenerate energy gaps initialized in a disordered rMPS equilibrates to ex-

ponentially precision with exponentially high probability in the system size.

In two di�erent readings, we have shown that already locally random ensembles

of states have generically suitable properties to ensure equilibration. Ultimately

however, it is still an important open question to establish entanglement ergod-

icity or a similarly weak condition that ensures equilibration directly for the

ensemble of eigenstates of ‘natural’ Hamiltonians.
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5 Randomized benchmarking –
Estimating average gate fidelities

In Chapter 3 we studied the problem of reconstructing quantum states while be-

ing partially agnostic about the calibration of the measurement apparatus. We

now turn to the task of identifying quantum channels commonly referred to as

quantum process tomography. The most important desiderata of semi-device-

dependence in quantum process tomography is captured by the notion of ro-

bustness against errors in the state preparation and measurement (SPAM). In

Chapter 6 we study how tomographic information about quantum process and

in particular unitary gates can be extracted from the relative average gate �-

delities, (2.68), with respect to Cli�ord unitaries. The main motivation for these

tomographic schemes is that in principle this type of data can be e�ciently ex-

tracted by so-called RB protocols that exhibit robustness against SPAM errors.

To provide the necessary context for the compressive randomized-benchmarking
tomography scheme devised in the following chapter, we now take a closer look

at RB protocols. We begin with an introduction of the foundational primitives of

RB and its variants of interleaved RB that aim at extracting relative average-gate

�delities. This pedagogical introduction was originally written for the tutorial

on quantum certi�cation [4]. To highlight the general scope of RB, we afterwards

brie�y sketch the results of our work, Ref. [9]. Therein we develop the mathe-

matical tools for deriving theoretical guarantees for virtually all RB protocols in

a uni�ed framework. We conclude the chapter with new general results on the

sampling complexity of extracting multiple average gate �delities by-passing the

complications arising from RB.

5.1 Randomized benchmarking

Prepare-and-measure schemes for estimating measures of quality of quantum

processes fail in the presence of sizeable SPAM errors.
1

In the context of digital

1

Prepare-and-measure schemes . . . inversion of the sequence.] This review section is also pub-

lished in Ref. [4] with minor modi�cations.
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5 Randomized benchmarking – Estimating average gate �delities

quantum computing, the sensitivity to SPAM errors is dramatically reduced by

so-called RB protocols [EAŻ05a; Lév+07; Kni+08; Dan+09; MGE11]. These proto-

cols can extract certain quantitative measures of a quantum process associated

to a quantum gate set. The process can be, for example, a certain gate, an er-

ror channel or an error map associated to the deviation of a quantum gate set

from its ideal implementation. While still concerned with the physical layer of a

quantum device, randomized benchmarking protocols already make explicit use

of a gate layer, the abstraction at the heart of digital quantum computing.

Randomized benchmarking comprises a large zoo of di�erent protocols. There-

fore, we begin with a fairly general description. The principle idea to achieve

the SPAM(-error) robustness is the following: After preparing an input state,

one applies the quantum process under scrutiny multiple times in sequences of

di�erent length before performing a measurement. Thereby, the e�ect of the

process on the measurement is attenuated with increasing sequences length. At

the same time errors in the state preparation and measurements enter the mea-

sured quantities only linearly and are independent of the sequence length. In this

way, �tting the attained signals for di�erent sequence lengths with functions de-

pending on the length reveals properties of the quantum process disentangled

from the SPAM errors.

A prototypical RB protocol implements this rough idea for a digital quantum

computer as follows. Let G ⊂ U(d) be a subgroup of unitary operations and

φ : G → L(Cd) be their implementation on a quantum computer. In simple RB

protocols φ(g) just models the faulty implementation of G on the actual device.

More generally, the targeted implementation of the protocol can also include,

e.g., a non-uniform sampling over the group or the implementation of another

�xed gate after G. Also in these cases φ is the faulty version of the targeted im-

plementation. Note that the assumption of the existence of such a map φ already

encodes assumptions on the quantum device and its noise process: The map φ
might model the compilation into elementary gates, e�ects and imperfections

of the physical control and noise. All these steps are not allowed to depend on

the gate sequence the gate is part of, the overall time that evolves during the

protocol, or other external variables. With these ingredients we can state a pro-

totypical RB protocol, see Figure 5.1 for an illustration.

Protocol 1 (Prototypical RB). Let G ⊂ U(d) be a subgroup, ρ ∈ D(Cd) an

initial state, and M = {M,1 −M} ⊂ Pos(Cd) a measurement. Furthermore,

let M ⊂ N be a set of sequence lengths.
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5.1 Randomized benchmarking

Figure 5.1: Illustration of a prototypical RB protocol. After the preparation of an initial state, one

applies a random sequence of unitaries g = (g1, . . . , gm) succeeded by an inversion

gate and �nal measurement ofM . This experiment is repeated for di�erent sequences

and di�erent sequence lengthsm. In the classical postprocessing, the decay parameter

of resulting empirical estimates for di�erent sequence lengths m are extracted and

reported as the RB parameters.

For every sequence length m ∈ M, we do the following estimation procedure

multiple times:

Draw a sequence g = (g1, . . . , gm) of m group elements chosen i.i.d. uniformly

at random. For the sequence calculate the inverse elements ginv = g−1
1 g−1

2 · · · g−1
m .

For each sequence preform the following experiment:

• Prepare ρ

• Apply Sg = φ(ginv)φ(gm) . . . φ(g2)φ(g1), i.e. the sequence of implemen-

tations of g followed by the implementation of ginv, to ρ.

• Perform the measurement M.

Multiple repetitions of the experiment yield an estimator p̂g for the probabilities

pg(m) = Tr [MSgρ] (5.1)
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5 Randomized benchmarking – Estimating average gate �delities

Repeating these steps for di�erent random sequences, we can calculate an esti-

mator p̂(m) for

p(m) = Eg1Eg2 · · ·Egmp(g1,g2,...gm)(m). (5.2)

Post-processing: extract the decay parameters of the data M→ [0, 1],m 7→ p̂(m)
and report as the RB parameters.

∗ ∗ ∗

More generally, RB protocols might go beyond Protocol 1 in various ways: for

example, by calculating the inverse of a sequence only up to speci�c gates, using

a di�erent measure than the uniform measure for drawing the group elements

of the sequence, or performing a measurement POVM with multiple outputs or

measurements adapted to the sequence. In addition, the post-processing might

combine di�erent RB data series in order to get simpler decay signatures.

The �rst step in the theoretical analysis of RB protocols is to establish the �t-

ting model of the RB data p(m). Ideally, p(m) is well-approximated by a single

exponential decay. Subsequently, the RB decay parameters can in certain set-

tings be connected to the average gate �delity of a noise process e�ecting the

implementation map, as we now discuss. The data model of most RB protocols

can be understood as estimating the m-fold self-convolution of the implemen-

tation map [MPF21]. More precisely, for φ, ψ : G → L(Cd) we can de�ne a

convolution operation as

φ ∗ ψ(g) = Eg̃φ(gg̃−1)ψ(g̃). (5.3)

Note that this de�nition naturally generalizes, e.g., the discrete circular convo-

lution on vectors in Cn, which can be seen as an operation on functions on the

�nite group (Zn,+)→ C. With the convolution (5.3), we can rewrite the aver-

ages of the RB sequences as

EgSg = Eg1,g2,...,gmφ(g−1
1 g−1

2 · · · g
−1
m )φ(gm) · · ·φ(g2)φ(g1)

= Eh1,h2,...,hmφ(h−1
m )φ(hmh

−1
m−1) · · ·φ(h2h

−1
1 )φ(h1)

= φ∗(m+1)(id),

(5.4)

where the replacements h1 = g1 and hj = gjhj−1 for j ∈ {2, . . . ,m} have

been made the second equality, id denotes the identity element of G and φ∗k

denotes the k-fold convolution of φ with itself. In expectation the RB data p(m)
is thus a contraction de�ned byM and ρ of the (m+ 1)-fold self-convolution of

φ evaluated at the identity element.
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5.1 Randomized benchmarking

In the simplest instance of an RB protocol one can directly calculate this ex-

pression: namely, when G is a unitary 2-design, the targeted implementation is

simply the action of G as quantum gates, and the noise in φ can be modelled by

a single gate-independent quantum channel Λ ∈ CPT(Cd). Denoting by G the

(adjoint) action of g as the unitary channel X 7→ G(X) = gXg†, we have the

noise model

φ(g) = Λ ◦ G . (5.5)

With this ansatz for φ we can calculate that

Eg∈GmSg = φ∗(m+1)(id) = Λ
[
Eg∈GG†ΛG

]m
. (5.6)

The operator twµ : L(Cd) → L(Cd), X 7→ EU∼µ[UXU†] appearing in (5.6) is

the so-called (channel) twirlingmap and appears in di�erent contexts in quantum

information. If we write out the twirling map with the individual unitaries it

reads

twµ(X ) = (ρ 7→ EU∼µ[UX (U †ρU)U †] ). (5.7)

It becomes apparent that twµ is related to second moment operatorM(2)
µ , (2.16),

by simple vector space isomorphisms. Recall that for a unitary 2-design µ Propo-

sition 12 gives us an explicit description ofM(2)
µ . We can simply track the iso-

morphism to derive the following convenient expression.

Theorem 43 (Twirling of channels [Nie02; EAŻ05a]). Let X ∈ L(Cd) be trace-
preserving and µ be a unitary 2-design. Then

twµ(X ) = Dp(X ) , (5.8)

where Dp is the depolarizing channel (2.60) and p(X ) is the e�ective depolarizing
parameter de�ned in (2.79).

Proof. First we note that any map X ∈ L(Cd) is uniquely determined by (X ⊗
id)(F), which is a similar construction as the Choi-Jamiołkowski isomorphism.

This isomorphism is given by Tr2,3[(X ⊗ id)(F) ⊗ A] = X (A), but its explicit

form is not needed. Hence, we can make the isomorphisms between the twirling
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5 Randomized benchmarking – Estimating average gate �delities

map twµ and the second moment operatorM(2)
µ from (2.16) explicit by writing

(twµ(X )⊗ id)(F)

= EU∼µ
[
(U ⊗ 1)X ⊗ id

(
(U † ⊗ 1)F(U ⊗ 1)

)
(U † ⊗ 1)

]
= EU∼µ

[
(U ⊗ 1)X ⊗ id

(
(1⊗ U)F(1⊗ U †)

)
(U † ⊗ 1)

]
= EU∼µ

[
(U ⊗ U)X ⊗ id (F) (U † ⊗ U †)

]
=M(2)

µ (X ⊗ id(F)) .

(5.9)

For µ a unitary 2-design, M(2)
µ takes the value of the moment operator of the

Haar measure. Schur-Weyl duality, Theorem 10, tells us that

M(2)
µ (X ⊗ id(F)) ∈ span{1,F} . (5.10)

Observing that D0 ⊗ id(F) = 1/d and trivially D1 ⊗ id(F) = F, we conclude

that

twµ(X ) ∈ span{D0,D1} . (5.11)

Furthermore, one quickly checks that if X is trace-preserving so is twµ(X ).

Hence, twµ(X ) is an a�ne combination of D0 and D1. Thus, twµ(X ) = Dp
holds for some p ∈ C, and it remains to determine p. One way forward is

a straight-forward calculation using the expressions for the coe�cients pro-

vided by Proposition 13. A shortcut is to calculate the e�ective depolarization

of both sides. Due to the unitary invariance of µS(Cd), it follows from (2.69) that

Favg(X ) = Favg(tw(X )) and correspondingly for the a�nely related e�ective

depolarization parameter p(X ) = p(tw(X )). Combined with p(Dp) = p, (2.80),

yields the theorem’s assertion.

Theorem 43 allows us to explicitly calculate the RB data model from (5.6). To

this end, a short calculation reveals that Dmp = Dpm . With this we �nd the RB

data model to be

p(m) = Tr[M̃ΛDp(Λ)m(ρ̃)]

= p(Λ)m Tr[M̃Λ(ρ̃)] + (1− p(Λ)m) Tr[M̃Λ(1/d)]

= p(Λ)m Tr[M̃Λ(ρ̃− 1/d)] + Tr[M̃Λ(1/d)] ,

(5.12)

with M̃ and ρ̃ denoting the potentially faulty implementation of the measure-

ment M and initial state ρ.
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5.1 Randomized benchmarking

If we de�ne the so-called SPAM constants

A := Tr[ẼΛ(ρ̃− 1/d)] and B := Tr[ẼΛ(1/d)], (5.13)

Equation (5.12) yields the simple RB �tting model

p(m) = Apm +B . (5.14)

Thus, �tting a single exponential decay to the estimator p̂(m) yields estimates

p̂, Â and B̂ for the model parameters p, A and B. In particular, the estimated

RB decay parameter p̂ is an estimator for the e�ective depolarizing parameter

p(Λ) of the error channel Λ. Recall that the e�ective depolarizing parameter is

a�nely related to the average gate �delity (2.69) via (2.79). From the RB decay

parameter, we thus equivalently obtain an estimate for the average gate �delity

of the noise channel Λ as

F̂avg =

(
1− 1

d

)
p̂+

1

d
. (5.15)

The resulting estimate of the average gate �delity (2.69) is robust against SPAM

errors, which only enter the SPAM constants A and B.

Deriving rigorous performance guarantees for the RB estimator p̂ is involved: it

requires the analysis of con�dence region of the estimator p̂g(m) of the proba-

bility (5.1) that is a random variable of the quantum measurement statistics and

p̂(m) obtained by the subsampling of the sequences g. Furthermore, the error

of these estimators for each m enters the errors of the �delity estimator via the

exponential �tting procedure. This step depends on the choice of algorithm and

the estimated sequence lengths. Using the fact that p̂(m) is the mean estima-

tor of a bounded random variable, one can use Hoe�ding’s inequality to derive

con�dence intervals for an overall sampling complexity that is independent of

the number of qubits in the regime of high �delity. Such bounds however are

prohibitively large for practical implementations. A re�ned analysis by Wall-

man and Flammia [WF14] derived tighter bounds for short sequences and small

number of qubits. However, bounds that are practical and scalable in the number

of qubits require a careful analysis of the variance of the estimator p̂g(m) over

the choice of the random sequences. For G being the Cli�ord group, Helsen et al.
[Hel+19a] work out explicit variance bounds for the estimator p̂g(m) and derive

sampling complexities for p̂(m) that are practical, independent of the number of

qubits and scale favourable with the sequence length. To this end, they employed

a re�ned representation theoretical analysis of the commutant of the 4-th order

diagonal action of the Cli�ord group [HWW18; Zhu+16] in order to calculate the
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corresponding moment operator; an endeavour that is complicated by the fact

that the Cli�ord group itself is not a unitary 4-design—the same complications

arising in proving the recovery guarantee in Chapter 6. A rigorous analysis of

a simpli�ed �tting procedure was derived in Ref. [Har+19]. Therein (again us-

ing trivial bounds on the variance) the authors show that a ratio estimator for

the in�delity r = 1 − p that employs the estimates of p(m) for two di�erent

sequence length has multiplicative error using an e�cient number of samples

again in the regime of high �delity.

All of these performance guarantees indicate that in principle RB protocols can

be e�ciently scalable in the number of qubits. To ensure also an e�cient classi-

cal pre-processing of the prototypical RB protocol it is important to have an e�-

ciently tractable group structure so that the inverse of the gate sequence can be

computed. For the essential example of the Cli�ord group, the Gottesman-Knill

theorem, see e.g. Ref. [NC10], allows the e�cient computation of the inverse of

a sequence gm · · · g2g1 in polynomial time (w.r.t. the number of qubits). Further-

more, since the Cli�ord group is a unitary 3-design [Web16; Zhu17], it meets

the requirement of Theorem 43. For this reason the presented analysis applies

to the Cli�ord group under the assumption of gate-independent noise.

It is natural to ask of additional examples of groups that constitute a unitary

2-design and are covered by the presented analysis without modi�cations. But

as discussed in the introduction of Chapter 4, it has been established that these

two requirements are already suprisingly restrictive. If one requires a family

of 2-groups that can be constructed for an arbitrary number of qubits, one is

left with subgroups of the Cli�ord group or SU(d) itself as the only examples

[Ban+20; SK17; 6].

We provide more details how the analysis of the prototypical RB protocol can

be generalized in the subsequent section. Now, we want to discuss another vari-

ant of RB that is of particularly interest for estimating the input data for our

approach towards quntum process tomography.

Interleaved randomized benchmarking

The prototypical RB protocol estimates the e�ective depolarizing parameter or

the average gate �delity of the average error channel of a gate set. In contrast,

interleaved RB protocols [Mag+12] allow one to extract the e�ective depolarizing

parameter of individual gates from a group with respect to their ideal implemen-

tation provided the noise is su�ciently incoherent.
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In an interleaved RB protocol one performs in addition to the standard RB pro-

tocol a modi�ed version, where the random sequences are interleaved with the

speci�c target gate. The second experiment yields estimates for the e�ective de-

polarization parameter of the error channel associated to the group concatenated

with the error channel of the individual target gate. Under certain assumptions

the e�ective depolarization parameter of the implementation of the target gate

can be estimated from the decay parameters of both RB protocols.

Protocol 2 (Interleaved RB). For G ⊂ U(d) and a target gate gT ∈ G,

1. follow Protocol 1,

2. follow Protocol 1 but modify the sequences to be

g = (g1, gT , g2, gT , g3, . . . , gT , gm), (5.16)

where gT is the target gate and gi ∈ G for i ∈ [m] are drawn uniformly at

random. The inverse ginv is also calculated w.r.t. the modi�ed sequence g.

The output of the protocol are the decay parameters of both experiments.

For the analysis we again consider a ‘mostly’ gate-independent noise model and

assume that G is a unitary 2-design. In the noise model we assume that the same

noise channel Λ ∈ CPT(H) follows the ideal implementation of all gates but

the target gate, i.e.,

φ(g) = Λ ◦ G (5.17)

for all g ∈ G \ {gT }. The �rst step of the protocol is the unmodi�ed RB proto-

col. If we neglect that φ deviates from the form (5.17) on gT , we can apply the

analysis of the previous section for gate-independent noise and conclude that

the protocol outputs and estimator for the e�ective depolarizing constant p(Λ).

For example, for a large group it is plausible to neglect the contribution of the

noise associated to the gT gate to the group average. It remains to analyse the

second protocol. In analogy to (5.3) we can in general rewrite

Eg1,...,gmSg

= Eg1,...,gmφ(g−1
1 g−1

T g−1
2 g−1

T . . . g−1
m )φ(gm)φ(gT ) · · ·φ(g2)φ(gT )φ(g1)

= Eg1,...,gmφ(g−1
m ) · · ·φ(g3g

−1
2 g−1

T )φ(gT )φ(g2g
−1
1 g−1

T )φ(gT )φ(g1),

by substituting gi with gig
−1
i−1g

−1
T for all i > 1. Inserting the noise model (5.17)

yields

Eg1,...,gmSg = Λ
[
Eg∈G G†G†Tφ(gT )ΛG

]m
. (5.18)

137



5 Randomized benchmarking – Estimating average gate �delities

This is the same expression as (5.6) with Λ replaced by G†Tφ(gT )Λ. Hence, ap-

plying the same arguments as in the analysis of the standard RB protocol for

unitary 2-designs yields a single-exponential �tting model with decay parame-

ter estimating the e�ective depolarizing parameter p(G†Tφ(gT )Λ). The second

part of the interleaved RB protocol, thus, returns an estimate of the e�ective de-

polarizing parameter or equivalently, via (5.15), of the �delity of the error map

G†Tφ(gT ) of the target gate GT concatenated with the error channel Λ.

From p(Λ) and p(G†Tφ(gT )) it is indeed possible to infer p(G†Tφ(gT )). In mean-

ingful practical regimes this however requires additional control with the uni-

tarity of Λ [CWE19]: For sequences of unitary channels the in�delity of their

composition can scale quadratically in the sequence length in leading order. In

contrast, highly non-unitary channels will feature a close to linear scaling in the

sequence length. Thus, using the unitarity one can derive bounds for �delity

measures of composite channels that exploit the linear scaling. We simply state

the required bound without proof for interleaved RB:

Theorem 44 (Composite channel bound [CWE19]). For any two quantum chan-
nels X ,Y it holds that∣∣∣∣p(X )− p(XY)p(Y)

u(Y)

∣∣∣∣ ≤
√

1− p(Y)2

u(Y)

√
1− p(XY)2

u(Y)
(5.19)

With an estimate for the unitarity û(Λ), Theorem 44 allows for the estimation

of the e�ective depolarizing constant and thus the average gate �delity of the

target gate by

F̂avg(φ(gT ),GT ) =
d− 1

d

p̂(G†Tφ(gT ))p̂(Λ)

û(Λ)
+

1

d
(5.20)

up to a systematic error that is given by evaluating the right-hand side of (5.19).

The systematic error is small in the regime where u(Λ) ≈ p(Λ)2
which is the

case if Λ is decoherent. The unitarity of Λ can be estimated using variants of the

RB protocol itself developed in Refs. [Wal+15; DHW19] or potentially following

the proposal put forward in Section 6.5.

Alternatively, one can just assume that the error is su�ciently incoherent, i.e.

that |1− p(Λ)2/u(Λ)| ≤ ε. Conditioned on this external belief, one obtains the

simpler estimator

F̂avg(φ(gT ),GT ) =
d− 1

d

p̂(G†Tφ(gT ))

p̂(Λ)
+

1

d
(5.21)
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that comes with a systematic error that is controlled in ε. Thereby, interleaved RB

can be used to arrive at average-performance certi�cates of individual quantum

gates.

We have already seen that for interleaved RB controlling the unitarity is help-

ful in deriving tighter error bounds. In addition, estimating the unitarity can

also yield relevant worst-case performance bounds in terms of the average gate

�delities using Theorem 22.

Interleaved RB was proposed in Refs. [Mag+12; Gae+12] and demonstrated in

practice. Already standard RB provides a trivial bound for individual gates of

the group by simply attributing the average error to a single gate. In the original

proposal of interleaved RB, the analysis does not allow for rigorous certi�cates

that go signi�cantly beyond this trivial bound for few qubits [CWE19]. A general

bound by Kimmel et al. [Kim+14], was considerably re�ned using the unitarity

by Carignan-Dugas et al. [CWE19]. Thereby it was established that if the er-

ror channel is su�ciently incoherent interleaved RB yields rigorous certi�cates

for individual gates with reasonable error bars. There exist multiple variants

of the interleaved RB scheme [Erh+19; She+16; HF17; Cha+17]. Another class

of interleaved RB was introduced in Ref. [OWE19]. Here, the average gate �-

delity of individual gates is inferred from measurements of random sequences

of gates that are drawn from the symmetry group of the gate. The individual

gates are not part of the group itself and are also not included in the inversion

of the sequence.

A variant of interleaved RB arises when one does not implement the interleaved

target gate gT in the experimental sequence but still calculate the inverse with

respect to the interleaved sequence (5.16) that includes gT . Again for G a unitary

2-design and gate-independent noise φ(g) = Λ ◦ G, we read-o� from (5.18) that

for the modi�ed RB protocol it holds that

Eg1,...,gmSg = Λ[Eg∈GG†G†TΛG]m . (5.22)

Hence, by the same argument that yielded (5.15), the output RB data is described

by a single exponential decay with decay parameter p(G†TΛ). Using the a�ne

relation (5.15), we can thus infer relative average gate �delities Favg(Λ,GT ) of

the gate set’s error channel with speci�c target gates GT via a ‘standard’ RB

experiment with a modi�ed classical post-processing—interleaving ‘in post’.

In Chapter 6 we study identi�cation protocols for an unknown quantum chan-

nel X that use relative average gate �delities Favg(Ci,X ) as their input data,

where Ci are Cli�ord gates. The motivation for studying such schemes is that
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5 Randomized benchmarking – Estimating average gate �delities

these relative average gate �delities can be estimated via RB experiments. In this

way our identi�cation protocols inherit the SPAM-robustness of the RB proto-

col rendering them semi-device dependent. Note that the magnitude of the rel-

ative average gate �delities for tomographic protocols typically scales as d−1
,

i.e. inversely proportionally to the Hilbert space dimension. Therefore one also

expects a sampling complexity that scales exponentially in the number of qubits

in order to be able to resolve the decay constants of the fast-decaying exponen-

tials. Thereby the RB experiments are expected to become signi�cantly more

challenging than standard RB. At the same time quantum process tomography

unavoidably involves a sampling complexity scaling polynomially in d—without

making a more restrictive structure assumption than unit Kraus rank. Thus, also

RB tomography is in any case more ressource-intense than standard RB.

The idea of combining di�erent relative average gate �delities obtained by inter-

leaved RB schemes to acquire tomographic information about the error channel

was proposed by Kimmel et al. in Ref. [Kim+14]. Kimmel et al. formulate a simi-

lar modi�ed interleaved RB protocol as above that instead of interleaving in the

inversion performs the inverse target gate after every error channel invocation.

For completeness, we mention that for Pauli channels tomographic information

can be e�ciently obtained performing a character RB protocol on multiple qubits

simultaneously [HFW20; FW20; HYF20; SSS21].

5.2 A general framework for randomized
benchmarking

The exposition to RB in the previous section took a narrow perspective in order

to be brief in the derivation of the results. In this section, we provide a more

comprehensive review on the larger body of work on RB protocols and present

the general guarantees that we derived together with collaborators in Ref. [9].

Randomized benchmarking was originally developed in a series of work focus-

ing on the unitary group and Cli�ord gates [EAŻ05a; Lév+07; Kni+08; Dan+09;

MGE11].
2

The early analyses used the gate-independent noise model (5.5), which

we also assumed in the previous section. In many applications this is however

a questionable assumption. After �rst perturbative approaches to derive the RB

signal model under gate-dependent noise by Magesan et al. [MGE11; MGE12]

2

Randomized benchmarking . . . tensor copies of the Cli�ord group] is taken from Ref. [4].
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5.2 A general framework for randomized benchmarking

and Proctor et al. [Pro+19], Wallman rigorously derived the �tting model for

unitary 2-designs in Ref. [Wal18].

Using the elegant description of the RB data as the m-fold convolution of the

implementation map, recently proposed by Merkel et al. [MPF21], one can ab-

stractly understand the result as follows: as the standard discrete circular con-

volution, the convolution operator of maps on a group can be turned into a (ma-

trix) multiplication using a Fourier transform. This abstract Fourier transform

for functions on the group is de�ned to be a function on the irreducible repre-

sentations of the group. In the case of RB, this function is matrix-valued, and we

observe matrix powers of the Fourier transforms for every irreducible represen-

tation superimposed by a linear map. For every irreducible representation, for

su�ciently largem, the matrix powers are proportional to themth power of the

largest eigenvalue of the matrix-valued Fourier transform. Contributions from

other eigenvalues are suppressed. In this sense RB is akin to the power method

of numerical linear algebra but in Fourier space. A rigorous analysis requires to

perturbatively bound the contribution of the sub-dominant eigenvalues. For uni-

tary 2-groups the adjoint representation decomposes into two irreducible repre-

sentations the trace representation and the unital part of the quantum channel.

For close to trace-preserving maps the trace representation will only contribute

a very slow decay, i.e. a constant contribution to the �t model, and the RB de-

cay parameter is the dominant eigenvalue of the unital representation. Wallman

[Wal18] derived norm bounds for the contribution of sub-dominant eigenvalues

and showed that the contribution is exponentially suppressed with the sequence

length. Furthermore, Wallman showed that there is a gauge choice of the gate set

such that the decay parameter can be connected to the average gate �delity of the

average error channel over the gate set. For qubits this gauge was demonstrated

to yield a physical gate set by Carignan-Dugas et al. [Car+18]. The physicality

of this gauge is, however, in general not guaranteed, and we give a counter ex-

ample in Ref. [9]. As discussed by Proctor et al. [Pro+17], this complicates the

interpretation of the RB decay rates as related to average �delities that have a

clear physical interpretation.

While the Cli�ord gates are de�nitely a prominent use case in the benchmark-

ing of digital quantum computers and will be also in the focus of our tomo-

graphic methods, more �exible RB protocols require analysing groups that are

not a unitary 2-design. Randomized benchmarking protocols for other groups

were developed in Refs. [Gam+12; CWE15; Cro+16; Has+18; BE18; FH18; CW15;

Hel+19b]. These protocols, for example, allow inclusion of the T -gate in the gate

set [CWE15] or characterization of leakage between qubit registers by using ten-

sor copies of the Cli�ord group [Gam+12].
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5 Randomized benchmarking – Estimating average gate �delities

For the di�erent RB protocols analytical guarantees were derived under vary-

ing sets of assumptions and with di�erent standard of rigor. Together with col-

laborators we remedied this situation in Ref. [9]. We formulized required pre-

conditions that ensure the proper functioning of RB protocols in general. At

the core of this framework for analysing RB protocols is the following theorem

establishing the functional form of the output of RB experiments.

Theorem 45 (RB data form). Consider an RB experiment with sequence length
m, and gates drawn uniformly from a group G. We assume that the action of
the group is implemented through a reference representation ω(g) that irreducibly
decomposes as ω(g) =

⊗
λ∈Λ σ

⊗nλ
λ (g). Denote the corresponding (noisy) actual

implementation φ(g). We assume that

Eg∈G ‖ω(g)− φ(g)‖� ≤ δ ≤
1

9
. (5.23)

Then, the output data p(m) of the RB experiment obeys the relation∣∣∣∣∣p(m)−
∑
λ∈Λ

Tr(AλMλ)m

∣∣∣∣∣ ≤ O(δm) . (5.24)

Here Aλ andMλ are nλ × nλ matrices, withMλ depending only on φ.

The theorem establishes that under the assumption that the actual experimental

implementation is close to an ideal implementation on average over the group,

the output data is described by a sum of (matrix) exponential decays, one for

each irreducible representation of the reference representation. The proof of

this theorem combines the matrix Fourier picture introduced in Ref. [MPF21]

together with a careful analysis of the perturbation of the invariant subspaces

of non-normal matrices. We refer to Ref. [9] for further details.

In Ref. [9] we also demonstrate that the formulation of Theorem 45 is general

enough to reduce speci�c interleaved and non-uniform RB protocols to the same

formulation and derive corollaries that establish the functional form for these

protocols. Non-uniform RB is another practically important variation of RB

where one does not draw the gates from the uniform but another distribution

over the group [Kni+08; FH18; Boo+19; Pro+19]. For example, drawing the se-

quences randomly from the generating gates of the group, reduces the required

sequence lengths [Pro+19].
3

It is an interesting open problem to extend and com-

bine the framework of Ref. [9] with convergence guarantees of random circuits,

such as the results discussed in Chapter 4.

3

For example, drawing . . .was proposed in Ref. [Com+17]] is taken from Ref. [4] with minor

modi�cations.
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As the adjoint representation of other groups typically decomposes into multi-

ple irreducible representation, RB data is expected to feature multiple decays in

general. In order to isolate the di�erent decays, variants of RB have been devel-

oped. These either rely on directly preparing a state that has high overlap with

only one irreducible representation or cleverly combining data from di�erent RB

experiments to achieve the same e�ect. Many of these techniques can be under-

stood as variants of the character benchmarking protocol developed by Helsen et
al. [Hel+19b]. Character benchmarking uses inversions of the RB sequence not

to the identity but randomly drawn gates from the group. In the classical post-

processing, data from sequences of di�erent end gates are linearly combined

weighted according to the character formulas. Thereby, the data is projected

onto the irreducible representation of the respective character and can be sub-

sequently �tted by a single decay. This however comes with the disadvantage

of a sampling complexity that is inversely proportional to the dimension of the

irreducible representation. As worked out in Ref. [9] the inversion step and the

decrease in sampling complexity can be avoided by using a larger measurement

frame at the end of the RB sequence. The ‘interleaving in post’ protocol we

sketched above makes use of the same strategy for the data selection. A �exible

post-processing scheme for general RB type data and performance guarantees

for �tting multiple decays are derived in Ref. [9].

It has been realized early in the development of RB that also other quantities

can be measured by variants of the RB protocols. These include the unitarity

[Wal+15; DHW19], measures for the losses, leakage, addressability and cross-

talk [Gam+12; WBE15; WBE16]. Furthermore, RB of operations on the logical

level of an error correcting quantum architecture was proposed in Ref. [Com+17].

5.3 Achievable sample complexity for relative
average gate fidelities

Our approaches to channel tomography in Chapter 6 focuses on using relative

average �delities. One of the main motivations is that these data can be in princi-

ple extracted in RB experiments. Theoretical guarantees for the complete chan-

nel tomography protocol including an RB data aquisition is beyond the scope of

the current thesis and ongoing work. To still work out the required resources of

estimating multiple relative average �delities with a given precision, we here

analyse the sampling complexity of more direct measurement approaches of

these quantities. Besides being of independent interest, these results enable us to
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5 Randomized benchmarking – Estimating average gate �delities

at least to some degree discuss overall sampling complexities in the next chap-

ter.

Importantly, we �nd that average �delities with respect to unitary designs have

a more favourable scaling in their error than a worst-case bound using the in-

dividual scaling indicates. In the following, we assume that X ∈ CPT(Cd) is

a quantum channel. Via Proposition 18 and (2.67), the relative average �delity

Favg(C,X ) is a�nely related to 〈C,X〉 = d2〈J(C), J(X )〉. To suppress dimen-

sional factors in the expression, we write in the following (C,X ) := 〈J(C), J(X )〉.
Note that the proportionality constant betweenFavg(C,X ) and (C,X ) is inO(1).

Therefore, we aim at estimating the vector y ∈ Rm with entries yi := (Ci,X ) for

a set of unitary gates {Ci}mi=1 with unitaries that constitute a unitary 1-design.

Independent projective measurements. We �rst consider the setting where

every �delity is directly estimated using a projective measurement. We assume

that we have access toms copies of a quantum system in the state J(X ) and mea-

sure the dichotomic projector-valued measure (PVM) {Πi = J(Ci), Id−ΠC}.
We count the frequency fi of recording the outcome associated to Πi in ms

repetitions. The frequency fi, a binomial random variable with pi = (Ci,X ),

directly yields an estimator ŷi = fi/ms for yi as E[fi] = mspi and Var[fi] =
mspi(1 − pi). Let us �rst look at the sampling complexity of the �delity esti-

mators for each Ci individually. Hoe�ding’s inequality implies that ŷi is an ε-
accurate estimator with con�dence δ for yi provided that ms ≥ 1

2ε
−2 log(2/δ).

Let y ∈ Rm be a vector with entries yi and ŷ the corresponding estimator. Then,

the Hoe�ding bound and the union bound imply that ‖ŷ − y‖`∞ ≤ ε for ms ≥
1
2ε
−2 log[2m/δ]. We conclude that the total number of samples M = mms for

an ε-accurate estimate of y ∈ Rm in `2 norm is M ≥ 1
2m

3/2ε−2 log(2m/δ).

So far we have regarded the di�erent entries of y as being unrelated. We can

improve on the result of the Hoe�ding bound by controlling the concentration

of the estimator with the variance. To this end, we exploit the fact that the

cumulative variance of the vector ywith Cis distributed uniformly on the unitary

group is of O(md−2). More precisely, we make use of the following lemma.

Lemma 46. Let {Ci}mi=1 ⊂ L(Cd) be a unitary 1-design. Then, for all Hermicity-
preserving X ∈ L(Cd)

1

m

m∑
i=1

(Ci,X ) =
Tr[X (1/d)]

d2
. (5.25)
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In particular, Tr[X (Id /d)] = 1 for X ∈ CPT(Cd).

Proof. Let {|m〉}dm=1 denote a basis. Using the explicit form of the Choi ma-

trix (2.64), (2.61), the 1-design assumption, and the expression for the moment-

operator acting on unit-rank states of Lemma 13, we calculate

1

m

m∑
i=1

J(Ci) =
1

d

d∑
m,n=1

M(1)
µ ( |m〉〈n |)⊗ |m〉〈n |

=
1

d2

∑
m,n

δm,n1⊗ |m〉〈n | =
1

d2
1d2 .

(5.26)

Thus,

1

m

∑
m

(Ci,X ) =
1

d2
〈1d2 , J(X )〉 =

1

d2
Tr[J(X )] =

1

d2
Tr[X (1/d)] . (5.27)

Note the expression can also be directly read-o� from Lemma 55 that we derive

in the next chapter.

For the mean estimator ŷ, de�ned above via the frequency, the variance is insu�-

cient to control tail bounds with high con�dence. Replacing the mean estimator

by a median of mean estimator, however, allows us to achieve exponentially high

con�dence.

Theorem 47 (Median of means for random vectors [LM19]). Let µ1, . . . , µm ∈
Rd be i.i.d. random vectors with mean µ and co-variance matrix Σ and denote by
Sk := 1

k

∑k
i=1 µi the empirical mean from k i.i.d. samples. Take l such empirical

means Sk,j , j ∈ [l], that are (i.i.d.) copies of Sk and set

µ̂ = median{Sk,1, . . . , Sk,l} . (5.28)

Then, for δ ∈ (0, 1) and k = d8 log(1/δ)e andm = kl with probability of at least
1− δ,

‖µ̂− µ‖`2 ≤
√

32 Tr[Σ] log(d/δ)

n
. (5.29)
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The theorem follows as a corollary from [LM19, Theorem 2], see discussion on

page 21 of Ref. [LM19]. The theorem uses an element-wise median of mean esti-

mator. Even sharper concentration results can be proven for more sophisticated

estimators [LM19].

Let µ ∈ {0, 1}m be a random vector recording the output in entry µi of measur-

ing once the PVM with projector Πi. Set again pi = 〈Ci,X〉 = yi. The random

vector µ has mean y and co-variance matrix Σij = δijpi(1− pi). By Lemma 46

Tr[Σ] ≤
∑

i pi = m/d2
. Repeat each PVM measurement ms times and calcu-

late the entry-wise median of mean estimator µ̂with blocking as in Theorem 47.

Then, Theorem 47 establishes that µ̂ is an ε-accurate estimator of y in `2-norm

with con�dence δ provided that the total number of samples M = mms ful�ls

M ≥ 32
m2

d2

1

ε2
log

m

δ
. (5.30)

Simultaneous projective measurements. For completeness we notice that

this sampling complexity can be further improved by simultaneously measuring

all �delities. For {Ci}mi=1 a unitary 1-design, Lemma 46 indicates that we can

de�ne a POVM with elements Πi = d2

m J(Ci) for i ∈ [m] and

∑m
i=1 Πi = Idd2 .

We encode the outcome i of a single measurement with this POVM as the vector

(δij)
m
j=1. Thus, the measurement realizes a random vector µ ∈ {0, 1}m with

entries following a single trial multinomial distribution, E[µi] = pi = d2

m (Ci,X )
and co-variance matrix Σi,i = pi(1−pi) for i ∈ [m] and Σi,j = −pipj for i 6= j.
For each measurement outcome, we calculate the random variable µ̃ = m

d2µ that

has mean y and its covariance matrix has trace Tr[Σ̃] ≤ m2

d4

∑
i pi = m2

d4 . Let

ŷ be the entry-wise median of mean estimator of M (i.i.d.) copies of y. Again

by Theorem 47, ŷ is an ε-accurate estimator for y in `2-norm with con�dence δ
provided that the total number of samples M ful�ls

M ≥ 32
m2

d4

1

ε2
log

m

δ
. (5.31)

Designing RB protocols that SPAM-error robustly achieve the scaling derived

in this section by direct ancillar-based measurements is subject of ongoing re-

search.
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benchmarking tomography

Building on the merits of RB, outlined in the previous chapter, provides a promis-

ing route to devise semi-device-dependent tomographic schemes for quantum

processes. The idea of Kimmel et al. [Kim+14] is to use multiple average gate �-

delities of a unital quantum process with respect to di�erent Cli�ord gates as the

input to a reconstruction algorithm. This motivates the question of how many of

such average �delities are required to extract such tomographic information?
1

In Section 6.1, we here �rst provide a more general characterization for the set of

unitaries whose average gate �delities allow for a stable reconstruction of uni-

tal quantum channels, Proposition 48. As already argued in the introduction,

the most important use-case of process tomography is the characterization of

coherent errors, i.e. the reconstruction of unitary processes. Simply counting

the degrees of freedoms of an arbitrary unital process acting on a d-dimensional

Hilbert space in comparison to a unitary channel indicates a square-root reduc-

tion from d4
to d2

in the information gain of the compressive reconstruction

task. The main result of this chapter, Theorem 52 of Section 6.2, establishes that

this square-root improvement in the number of required average gate �delities

with respect to Cli�ord gates is indeed achievable for a constraint least-square

optimization. We furthermore derive the corresponding sampling complexity

and prove optimality of our result using the results of Section 5.3. To this end,

we derive an information theoretical lower-bound, Theorem 71. Finally, we es-

tablish a new characterization of the unitarity (2.91) in terms of the variance over

average gate �delities, Theorem 78.

1

The results of this chapter were reported in the letter [1]. Most of the technical material that

we present was previously made available as supplemental material to Ref. [1]. We here sig-

ni�cantly reorganized the material of the letter and the supplemental material for a linear

presentation. The work was conducted in close collaboration and with extensive support

by Richard Kueng, Shelby Kimmel, Yi-Kai Liu, David Gross, Jens Eisert, and Martin Kliesch.

Collectively, we acknowledge helpful discussions with Mateus Araújo, Steven T. Flammia,

Christian Krumnow, Robin Harper, and Michaeł Horodecki.
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6.1 Unital quantum channels

In this chapter, we take average gate �delities (AGFs), Favg(X ,U) as de�ned in

(2.69), with respect to di�erent unitary quantum channels U as the input data

to reconstruct a quantum process X . The �rst question to ask is what quan-

tum channels can in principle be reconstructed from this type of data. A �rst

answer to this question can be found in Ref. [MW09] that provides a detailed

analysis of the geometry of unital channels. There, it was shown that a quan-

tum channel is unital if and only if it can be written as an a�ne combination of

unitary gates.
2 A�ne here means that the expansion coe�cients sum to 1. Un-

like convex combinations, they are, however, not restrict to being non-negative.

Ref. [Kim+14] then showed that for many-qubit systems (i.e., d = 2n), any unital

and trace-preserving map is fully characterized by its AGFs (2.69) with respect

to the Cli�ord group. The Cli�ord group constitutes a particularly important

family of unitary gates that are featured prominently in state-of-the-art quan-

tum architectures. Motivated by the result for Cli�ord gates, one can ask more

generally: What are the subsets of unitary gates that span the set of unital and

trace-preserving maps?

A general answer to this question can be given using the notion of unitary

t-designs that we introduced in De�nition 1. Recall that a unitary t-designs

[Dan+09; GAE07] (and their state cousins, spherical t-designs [DGS77; Ren+04],

respectively) are discrete subsets of the unitary group U(d) (resp., complex unit

sphere) that are evenly distributed in the sense that their average reproduces the

Haar (resp., uniform) measure over the full unitary group (resp., complex unit

sphere) up to the tth moment. The multiqubit Cli�ord group forms a unitary
3-design [Zhu17; Web16; KG15]. For spherical designs, a close connection be-

tween informational completeness for quantum state estimation and the notion

of a 2-design has been established in Ref. [Ren+04]; see also Refs. [Sco06; App05;

GKK15]. A similar result holds for quantum process estimation, and provides an

answer to the question of properly conditioned spanning sets. Indeed, the fol-

lowing result is essentially due to Ref. [Sco08]. Below we here give a concise

proof in the form of the slightly more general Theorem 51.

Proposition 48 (Informational completeness and unitary designs). Let {Uk}Nk=1

be the gate set of a unitary 2-design, represented as channels. Every unital and
trace-preservingmapX can bewritten as an a�ne combinationX = 1

N

∑N
k=1 ck(X )Uk

2

There, it was shown . . . for unital channels.] is based on the result summary in the main text of

Ref. [1] with verbatim adoptions.
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6.1 Unital quantum channels

of the Uk’s. The coe�cients are given by ck(X ) = C Favg(Uk,X )− C
d + 1, where

C = d(d+ 1)(d2 − 1).

Hence, every unital and trace-preserving map is uniquely determined by the

AGFs with respect to an arbitrary unitary 2-design. Cli�ord gates are a partic-

ularly prominent gate set with this 2-design feature. However, its cardinality

scales superpolynomially in the dimension d. For explicit characterizations, this

is far from optimal. In certain dimensions there exist subgroups of the Clif-

ford group with cardinality proportional to d4
that also form a 2-design [Cha04;

GAE07]—see also the discussion at the beginning of Chapter 4. More generally,

order of d4 log(d) Cli�ord gates drawn independent and identically distributed

(i.i.d.) from the uniform distribution are an approximate 2-design [ABW09].

From Proposition 48, we expect that such randomly generated approximate 2-

designs and the local circuit construction of Theorem 37 can be used for approx-

imate reconstruction schemes for unital channels.

We here give an instructive proof of Proposition 48 and show that the linear span

of the unital channels coincides with the linear span of the unitary ones, even if

one restricts to the unitaries from a unitary 2-design.
3

We also link this �nding to

AGFs. On the way, we establish the simple formula of Proposition 48 that allows

for the reconstruction of unital and trace-preserving maps from measured AGFs

with respect to an arbitrary unitary 2-design, e.g. Cli�ord gates.

Recall that L
u,tp

(Hd) denotes the linear hull of unital and trace-preserving maps

acting on the space Hd of hermitian operators on a d-dimensional complex

Hilbert space. At the heart of the reconstruction formula is the observation

that every unitary 2-design constitutes a Parseval frame for L
u,tp

(Hd). More

abstractly, this observation stems from the general fact that irreducible uni-

tary representations form Parseval frames on the space of endomorphisms of

their representation space. For this reason it is instructive, to derive the con-

nection explicitly in the ‘natural’ representation-theoretic language. We begin

with formalizing the connection between irreducible representations and Parse-

val frames.

Lemma 49 (Irreps form a Parseval frame). Let R : G→ L(V ) be an irreducible
unitary representation of a group G. Then the set {

√
dimV R(g)}g∈G forms a

Parseval frame for the spaceL(V ) equipped with the Hilbert-Schmidt inner product

3

We here give an instructive . . . ] This section is Section F of the Supplemental material of Ref. [1]
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6 Compressive randomized benchmarking tomography

A,B 7→ Tr[A†B], in the sense that

TG(A) := dim(V )

∫
G
R(g) Tr[R(g)†A] dµ(g) = A (6.1)

for all A ∈ L(V ).

Proof. Since L(V ) is generated as an algebra by {R(g)}g∈G (see e.g. [FH91,

Proposition 3.29]), it su�ces to show the statement for A = R(g) with g ∈ G.

Due to the invariance of the Haar measure, the map TG is covariant in the sense

that TG(R(g)B) = R(g)TG(B) for all B ∈ L(V ). In particular, for B = Id, we

thus get TG(R(g) Id) = R(g)TG(Id). With χ(g) = TrR(g) the character of the

representation, we have

TG(Id) = dim(V )

∫
G
R(g)χ̄(g) dµ(g) = Id (6.2)

from the well-known expression for projection onto a representation space in

terms of the character, see e.g. Ref. [FH91, Chapter 2.4]. Thus, we have estab-

lished that SR(R(g)) = R(g) for all g ∈ G.

Applying this lemma to unitary channels, we can derive the following expression

for the orthogonal projection onto the linear hull of unital and trace-preserving

maps.

Theorem 50. Let {Uk}Nk=1 be a unitary 2-design. The orthogonal projection onto
the linear hull of unital and trace-preserving maps L

u,tp
(Hd) is give by

P
u,tp

(X ) =
1

N

N∑
k=1

cUk(X ) Uk (6.3)

with coe�cients

cU (X ) = C Favg(U ,X )− 1

d

(
C

d
− 1

)
Tr(X (Id)) , (6.4)

where C := d(d+ 1)(d2 − 1).

Proof. Throughout the proof, we denote the unitary channel representing the

unitary U ∈ U(d) on space of Hermitian operators Hd by U : ρ 7→ UρU †. The

vector space Hd is a direct sum of the spaceK0 of trace-less hermitian matrices,
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6.1 Unital quantum channels

and of K1 = {z Id}z∈C. The group of unitary channels acts trivially on K1, and

irreducibly on K0. In particular, U is “block-diagonal” U = U0 ⊕ 1 with respect

to this decomposition, where U0 ∈ L(K0) is the irreducible (d2−1)-dimensional

block. More generally, the projection of a map X onto the linear hull of unital

and trace-preserving maps L
u,tp

(Hd) is of the form X0⊕x1. The map X0⊕x1 is

trace-preserving and unital if and only if x1 = Tr(X (Id /d)) = 1. For the map

X ∈ L(Hd) we have

Tr[U†X ] = Tr[U†0X0] + x1. (6.5)

Using this formula, Lemma 49 for the choice V = K0, and the fact that a group

integral over a non-trivial irrep vanishes
4
, we �nd

(d2 − 1)

∫
U(d)
U Tr

[
U†X

]
dµ(U)

= (d2 − 1)

∫
U(d)

(U0 ⊕ 1)(Tr[U†0X0] + x1) dµ(U)

= (d2 − 1)

∫
U(d)
U0(Tr[U†0X0] + x1) dµ(U)

⊕ (d2 − 1)

∫
U(d)

(Tr[U†0X0] + x1) dµ(U)

= X0 ⊕ (d2 − 1)x1 . (6.6)

Hence, for X ∈ L
u,tp

(Hd) we obtain the completeness relation∫
U(d)
U
(

(d2 − 1) Tr[U†X ] +
2− d2

d
Tr[X (Id)]

)
dµ(U) = X . (6.7)

For X in the ortho-complement of L
u,tp

(Hd) the left-hand side of (6.7) vanishes.

The expression, thus, de�nes the orthogonal projectionP
u,tp

onto L
u,tp

(Hd). The

projection can be re-expressed in terms of the AGF. With the help of Proposi-

tion 18,

Tr[U†X ] = d(d+ 1)Favg(U ,X )− Tr(X (Id)) . (6.8)

Hence,

P
u,tp

(X ) =

∫
U(d)

cU (X )U dµ(U), (6.9)

4

More explicitly, for X ∈ Hd we can calculate

∫
U(d)
U(X) dµ(U) = M(1)

µU(d)
(X) = O ⊕ 1

using Theorem 14.
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6 Compressive randomized benchmarking tomography

with expansion coe�cients

cU (X ) = d(d+ 1)(d2 − 1)Favg(U ,X )

− 1

d

(
(d+ 1)(d2 − 1)− 1

)
Tr(X (Id))

= C Favg(U ,X )− 1

d

(
C

d
− 1

)
Tr(X (Id)).

Since the integrand in (6.9) is linear in U⊗2 ⊗ Ū⊗2
, the completeness relation

continues to hold if the Haar integral is replaced by the average

1

N

N∑
k=1

cUk(X )Uk = P
u,tp

(X ) (6.10)

over any unitary 2-design {Uk}Nk=1.

In the proof, we have used that linear hull of the unital and trace-preserving

maps L
u,tp

(Hd) is given by the space of block diagonal matrices L(K0)⊕L(K1).

If X is not unital and trace-preserving, the image X
u,tp

will thus be equal to X ,

with the o�-diagonal blocks set to zero. In particular, the two-norm deviation of

a map X from its projection onto L
u,tp

(Hd) is given by

‖X − P
u,tp

(X )‖2 =
1

d3

(
‖X (Id)‖22 + ‖X †(Id)‖22 −

2

d
Tr (X (Id))2

)
. (6.11)

Based on the arguments used to establish Theorem 50, we can derive the follow-

ing variant, which includes a converse statement.

Theorem 51 (Informational completeness and unitary designs). Let {Uk}Nk=1 be
a set of unitary channels. Then the following are equivalent:

(i) Every unital and trace-preserving map X can be written as an a�ne combi-
nationX = 1

N

∑N
k=1 ck(X )Uk of theUk, with coe�cients given by ck(X ) =

C Favg(Uk,X )− C
d + 1, where C = d(d+ 1)(d2 − 1).

(ii) The set {Uk}Nk=1 forms a unitary 2-design.
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6.1 Unital quantum channels

Proof. To show that (ii) implies (i) we apply Theorem 50. From (6.7) we can read

of that

1

N

N∑
k=1

ck(X ) = Tr[X (Id /d)] = 1. (6.12)

Thus, the linear expansion of X in terms of the unitary 2-design is a�ne.

It remains to establish the converse statement. Let {Uk}Nk=1 be a set of unitary

channels ful�lling

1

N

N∑
k=1

Uk
(

(d2 − 1) Tr[U†kX ] + 2− d2
)

= X (6.13)

for all X ∈ Lu,tp(Hd). A handy criterion for verifying that {Uk}Nk=1 is a unitary

2-design can be formulated in terms of its frame potential

P =
1

N2

N∑
k,k′=1

|Tr(U †kUk′)|
4, (6.14)

where again Uk is the unitary matrix de�ning the unitary channel Uk. A set of

unitary gates is a unitary 2-design if and only if P = 2 [GAE07, Theorem 2].

In fact, Equation (6.13) allows one to calculate the frame potential as follows.

Inserting X = 0⊕ 1 (the depolarizing channel), we �nd that

1

N

N∑
k=1

Uk = 0⊕ 1. (6.15)

Note that this implies that the set {Uk}Nk=1 constitutes a unitary 1-design. There-

fore, (6.13) takes the form

1

N

N∑
k=1

Uk(d2 − 1) Tr[U†kX ] + 0⊕ (2− d2) = X (6.16)

for all X ∈ Lu,tp(Hd). Let the left-hand side of (6.16) de�ne a linear operator

F : X 7→ F (X ). Then (6.16) implies

1

N

N∑
k′=1

Tr[U†k′F (Uk′)] =
d2 − 1

N2

N∑
k,k′=1

|Tr(U †k′Uk)|
4 + 2− d2

= d2
(6.17)
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6 Compressive randomized benchmarking tomography

and hence

1

N2

N∑
k,k′=1

|Tr(U †k′Uk)|
4 = 2. (6.18)

This completes the proof.

Note that for quantum channels, the a�ne expansion is almost convex in the

sense that ck(X ) ≥ 2− d2/N ≥ −1/d2
.

6.2 Unitary channels

Our main result for compressive Cli�ord RB tomography, focuses on the par-

ticular task of reconstructing multiqubit unital channels that are close to being

unitary, i.e., well approximated by a channel of Kraus rank equal to 1.
5

We have

already encountered techniques for low-rank matrix reconstruction in the task

of blind tomography in Chapter 3. We will here again leverage compressed sens-

ing results [FHB01; Gro+10; Gro11; Fla+12; Kab+16; BKD14] in order to exploit

the low Kraus-rank and reduce the number of AGFs required to uniquely recon-

struct an unknown unitary gate. We �rst give a more concise summary of our

technical results. A considerably more re�ned version is provided together with

the proof below.

The setting is as follows: Suppose we are given a list of m AGFs

fi = Favg(Ci,X ) + εi (6.19)

between the unknown unitary gate X and Cli�ord gates Ci. The gates Ci are

chosen uniformly at random. The estimates fi are possibly corrupted by addi-

tive noise εi. In order to reconstruct X from these observations, we propose to

perform a least-squares �t over the set of unital quantum channels, i.e.

minimize

m∑
i=1

[Favg(Ci,Z)− fi]2

subject to Z is a unital quantum channel.

(6.20)

5

Our main result . . . rank-1 measurements.] is based on the corresponding result summary in

the main text of Ref. [1] with verbatim adoption.
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6.2 Unitary channels

We emphasize that this is an e�ciently (in d) solvable convex optimization prob-

lem. The feasible set is convex since it is the intersection of an a�ne sub-

space (unital and trace-preserving maps) and a convex cone (completely positive

maps).

Valid for multiqubit gates (d = 2n), our main result states that this reconstruc-

tion procedure is guaranteed to succeed with exponentially high probability,

provided that the numberm of AGFs is proportional (up to a log(d)-factor) to the

number of degrees of freedom in a general unitary gate. The error of the recon-

structed channel is measured with the Frobenius norm in Choi representation

‖ · ‖.

Theorem 52 (Recovery guarantee for unitary gates).
Fix the dimension d = 2n. Then,

m ≥ cd2 log(d) (6.21)

noisy AGFs with randomly chosen Cli�ord gates su�ce with high probability (of
at least 1− e−γm) to reconstruct any unitary quantum channel X via (6.20). This
reconstruction is stable in the sense that the minimizer Z] of (6.20) is guaranteed
to obey ∥∥∥Z] −X∥∥∥ ≤ C̃ d2

√
m
‖ε‖`2 . (6.22)

The constants C̃, c, γ > 0 are independent of d.

The theorem considers the case of exactly unitary gates. A more general version—

Theorem 61—shows that the result can be extended to cover approximately uni-

tary channels. Furthermore, the general version treats also an optimization of

the `1 norm instead of the `2 norm in (6.20), resulting in a slightly stronger error

bound. Before jumping into the proof, we brie�y highlight the implications of

the theorem.

Equation (6.22) shows the protocol’s inherent stability to additive noise. This sta-

bility combined with the robustness of randomized benchmarking against SPAM

errors results in an estimation procedure that is potentially more resource inten-

sive but considerably less susceptible to experimental imperfections and system-

atic errors than many other reconstruction protocols [FL11; Fla+12; Kli+19].

The main feature of the theorem is that it achieves the desired quadratic improve-

ment (up to a log-factor) over the minimal number of AGFs required for a direct

reconstruction via linear inversion for the case of noiseless measurements.
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6 Compressive randomized benchmarking tomography

It does not directly give rise to an overall sampling complexity, say in terms of

the number of required channel invocations. To this end, one needs to consider

the number of samples required to obtain the AGFs and to suppress the e�ect

of the measurement noise ε in the reconstruction error (6.22). For randomized

benchmarking setups, a fair accounting of all involved errors is still beyond the

scope of the current work. But in order to build evidence that the scaling of the

noise term in our reconstruction error (6.22) is essentially optimal, we consider

the conceptually simpler measurement setting where the channel’s Choi state

is measured directly. The average �delities can then be measured, e.g., with

the POVMs described in Section 5.3. In Section 6.3, we prove upper and lower

bounds to the minimum number of channel uses su�cient for a reconstruction

via algorithm (6.20) with reconstruction error (6.22) bounded by εrec > 0. This

number of channel uses scales as d4/ε2
rec

up to log-factors when the �delities

are measured in separate experiments akin to interleaved RB experiments. In

order to establish a lower bound, we extend information theoretic arguments

from Ref. [Fla+12] to rank-1 measurements.

Establishing the recovery guarantee

The AGFs can be interpreted
6

as expectation values of certain observables, which

are unit rank projectors onto directions that correspond to elements of the Clif-

ford group. In contrast, most previous work on tomography via compressed

sensing features observables that have full rank, e.g., tensor products of Pauli

operators. Since we now want to utilize observables that have unit rank, a di�er-

ent approach is needed. One approach [KL17] is to use strong results from low-

rank matrix reconstruction and phase retrieval [CSV13; CL14; GKK15; KRT15;

Kab+16]. These methods [KRT15; Kab+16] require measurements that look suf-

�ciently random and unstructured, in that their fourth-order moments are close

to those of the uniform Haar measure. The multiqubit Cli�ord group, however,

does constitute a 3-design, but not a 4-design. In Ref. [KL17], this discrepancy

is partially remedied by imposing additional constraints (a “nonspikiness condi-

tion”; see also Ref. [KL18]) on the unitary channels to be reconstructed. In turn,

their result also required these constraints to be included in the algorithmic re-

construction which renders the algorithm impractical.
7

Moreover, important

6

The AGFs can be interpreted . . . for the task at hand.] is taken from the main text of Ref. [1].

7

The cardinality of the Cli�ord group grows superpolynomially in the Hilbert space dimension

d. Therefore, the non-spikiness with respect to the Cli�ord group quickly corresponds to a

demanding number of constraints. In fact, about 108
and 1013

constraints are already required

for 3-qubits and 4-qubits, respectively.
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6.2 Unitary channels

classes of channels, e.g. Pauli channels, do not satisfy this condition in general.

Here, we overcome these issues by appealing to recent works that fully charac-

terize the fourth moments of the Cli�ord group [Zhu+16; HWW18]. In order

to apply these results, we developed an integration formula for fourth moments

over the Cli�ord group in Chapter 4. This formula is analogous to the integra-

tion over the unitary group know as Collins’s calculus with Weingarten func-

tions [Col03]. Equipped with this new representation-theoretic technique, we

now show that the deviation of the Cli�ord group from a unitary 4-design is—in

a precise sense—mild enough for the task at hand.

To this end, recall the following notation:
8

It will again be convenient to work

with the di�erently normalized version of the Hilbert-Schmidt inner product on

L(Hd) that coincides with the Hilbert-Schmidt inner-product on the normalized

Choi states :

(X ,Y) :=
1

d2
〈X ,Y〉 = 〈J(X ), J(Y)〉 . (6.23)

Most of our results feature the corresponding Hilbert-Schmidt norm ‖ · ‖ on

L(Hd) (the Frobenius in Choi representation). This norm is naturally induced

on by the average gate �delity (AGF) via Theorem 18.

In the centre of the proof of the recovery guarantee are the moments of the

following random variable that encodes the measurement data: For a map T :
Hd → Hd we de�ne the random variable

ST = d2(T ,U) , (6.24)

where U is a unitary channel U(X) = UXU † withU either chosen uniformly at

random from the full unitary group U(d), or the Cli�ord group Cl(d), depending

on the context. The main technical ingredients for the proofs of the recovery

guarantees are an expression for the second and fourth moment of ST . To this

end, we make use of the integration formula for the �rst four moments over

the Cli�ord group of Chapters 2 and 4. We then derive an explicit expression

for the second moment of ST and an upper bound on the fourth moment of ST
in the following sections. These bounds are essential prerequisites for applying

strong techniques from low-rank matrix reconstruction to subsequently prove

our recovery guarantee, Theorem 52, for unitary gates.

8

To this end, . . . directly follows.] The remainder of this section has been published as supple-

mental material to Ref. [1]. We made modi�cations to unify the notation with the rest of the

monograph.
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The second moment. The main result of this section is the following expres-

sion for the second moment of ST de�ned in (6.24). We shall use this statement

multiple times in the proofs of our main results.

Lemma 53 (The 2-nd moment for U(d)). Let T : Hd → Hd be a map. Then

EU∼µU(d)
[S2
T ]

=
1

d2 − 1

{
d2 ‖T ‖2 + Tr(T (Id))2 − 1

d

(
‖T (Id)‖2F +

∥∥∥T †(Id)
∥∥∥2

F

)}
,

(6.25)

for ST de�ned in (6.24).

For a trace-annihilating and Id-annihilating map, one arrives at a much simpler

expression. A (hermicity-preserving) map T ∈ L(Hd) is trace-annihilating and

Id-annihilating if T (Id) = 0 and Tr[T (X)] = 0 for all X ∈ Hd, respectively.

We denote the set of trace- and Id-annihilating maps by Vu,tp,0 ⊂ L(Hd).

Corollary 54 (Expression for trace- and Id-annihilating maps). Let T ∈ Vu,tp,0.
Then the second moment of ST is

EU∼µU(d)
[S2
T ] =

d2

d2 − 1
‖T ‖2 . (6.26)

Proof. This follows directly from Lemma 53 and the observation that T being

trace-annihilating translates to Tr(T (Id))) = 0 and

∥∥T †(Id)
∥∥

F
= 0 and T

being Id-annihilating further requires ‖T (Id)‖F = 0.

Before proving Lemma 53, we derive a general expression for the kth moment

of ST . To this end, recall that by Choi’s theorem an endomorphism T ofHd (i.e.

a hermiticity preserving map) can be decomposed as

T (X) =

r∑
i=1

λiTiXT
†
i , (6.27)

where λi ∈ R and T1, . . . , Tr are linear operators with unit Frobenius norm. In

this decomposition, the random variable ST from (6.24), with U(X) = UXU †

takes the form

ST = d2(T ,U) =
r∑
i=1

λi|Tr(U †Ti)|2 (6.28)

and its kth moment can be expressed as follows:
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Lemma 55 (kth moment of ST ). For k ∈ N and Ti de�ned by (6.27) we have

EU∼µU(d)
[SkT ]

=
r∑

i1,...,ik=1

λi1 · · ·λik
1

k!

∑
τ∈Sk

∑
λ`k, l(λ)≤d

dλ
Dλ

Tr

 k⊗
j=1

T †iτ(j)
Pλ

k⊗
j=1

Tij

 .
(6.29)

Proof. We can rewrite the kth unitary moment of ST as

EU∼µU(d)
[SkT ]

= EU
r∑

i1,...,ik=1

λi1 · · ·λik |Tr(U †Ti1)|2 · · · |Tr(U †Tik)|2

= EU
r∑

i1,...,ik=1

λi1 · · ·λik Tr

 k⊗
j=1

T †ij U
⊗k

Tr

U †⊗k k⊗
j=1

Tij


=

r∑
i1,...,ik=1

λi1 · · ·λik
dk∑

m,n=1

〈m |
k⊗
j=1

T †ijT∆k
d
( |m〉〈n |)

k⊗
j=1

Tij |n〉

(6.30)

where in the last line we evaluated the trace in an orthonormal basis {|m〉 | m ∈
{1, . . . , dk}} for (Cd)⊗k. Using the expression for T∆k

d
=M(k)

µU(d)
of Theorem 14

we get

EU∼µU(d)
[SkT ]

=
r∑

i1,...,ik=1

λi1 · · ·λik
1

k!

∑
τ∈Sk

∑
λ`k, l(λ)≤d

dλ
Dλ

× Tr

πk(τ)

k⊗
j=1

T †ijπk(τ
−1)Pλ

k⊗
j=1

Tij


=

r∑
i1,...,ik=1

λi1 · · ·λik
1

k!

∑
τ∈Sk

∑
λ`k, l(λ)≤d

dλ
Dλ

Tr

 k⊗
j=1

T †iτ(j)
Pλ

k⊗
j=1

Tij

 .
(6.31)

Proof of Lemma 53. We evaluate the expression of Lemma 55 for the case k = 2.

To this end recall that the irreducible representations of S2 are the symmetric
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( ) and antisymmetric representation ( ). The central projections are given by

P = 1
2(1 + F) and P = 1

2(1− F), see Lemma 9, where F is the bipartite �ip

operator F : (Cd)⊗2 → (Cd)⊗2
, |x〉 ⊗ |y 〉 7→ |y 〉 ⊗ |x〉. The dimensions are

d = d = 1, D = d(d−1)
2 and D = d(d+1)

2 . For A,B ∈ H⊗2
d we introduce

the following shorthand notation

ΓAB :=

r∑
i,j

λiλj Tr
[
A(T †i ⊗ T

†
j )B(Ti ⊗ Tj)

]
. (6.32)

Rearranging the terms in the �rst statement of the Lemma 55 then yields

EU∼µU(d)
[S2
T ]

=
1

4

{[
1

D
+

1

D

]
[ΓId Id + ΓFF] +

[
1

D
− 1

D

]
[ΓF Id + ΓIdF]

}

=
1

d2 − 1

{
ΓId Id + ΓFF −

1

d
(ΓIdF + ΓF Id)

}
. (6.33)

The four Γ-terms can be evaluated explicitly. For the �rst term, we obtain

ΓId Id =

r∑
i,j=1

λiλj ‖Ti‖2F ‖Tj‖
2
F

=

(∑
i

λi Tr(Ti IdT †i )

)2

= Tr(T (Id))2.

(6.34)

The second terms reads

ΓFF =

r∑
i,j=1

λiλj |Tr(T †i Tj)|
2 = d2 ‖T ‖2 (6.35)

and the third term can be written as

ΓF Id =
r∑

i,j=1

λiλj Tr
(
T †i TiT

†
j Tj

)
=
∥∥∥T †(Id)

∥∥∥2

F
. (6.36)

Moreover, a computation that closely resembles this reformulation yields ΓIdF =
‖T (Id)‖2F and the claim follows.
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A fourth moment bound. The main result of this section is an upper bound

for the fourth moment of ST when U is a Cli�ord operation drawn uniformly at

random. To gain some intuition, let us �rst derive an upper bound on the fourth

moment taken with respect to the full unitary group. Note that a similar bound

for the full unitary group has already been derived in Ref. [KL17].

Lemma 56 (4th moment bound for U(d)). Let T : Hd → Hd be a map. Then
for ST de�ned in (6.24)

EU∼µU(d)
[S4
T ] ≤ C ‖J(T )‖41 (6.37)

with some constant C > 1
3 independent of the dimension d.

Proof. Applying Cauchy-Schwarz to an individual summand on the right-hand

side of Lemma 55 yields for all k∣∣∣∣∣∣Tr

 k⊗
j=1

T †iτ(j)
Pλ

k⊗
j=1

Tij

∣∣∣∣∣∣ ≤
∥∥∥∥∥∥Pλ

k⊗
j=1

Tiτ(j)

∥∥∥∥∥∥
F

∥∥∥∥∥∥Pλ
k⊗
j=1

Tij

∥∥∥∥∥∥
F

≤

∥∥∥∥∥∥
k⊗
j=1

Tiτ(j)

∥∥∥∥∥∥
F

∥∥∥∥∥∥
k⊗
j=1

Tij

∥∥∥∥∥∥
F

=
k∏
j=1

∥∥Tij∥∥2

F
,

(6.38)

which is independent of the permutation τ ∈ Sk. We may therefore conclude

EU∼µU(d)
[SkT ] ≤

r∑
i1,...,ik=1

k∏
j=1

∣∣λij ∣∣ ∥∥Tij∥∥2

F

∑
λ`k, l(λ)≤d

dλ
Dλ

. (6.39)

From Theorem 35 we observe that for k = 4∑
λ`4, l(λ)≤d

dλ
Dλ
≤ C

d4
(6.40)

for some constant C > 1
3 independent of d. Thus, (6.39) implies the desired

bound.
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In an analogous way we can derive a su�cient bound on the fourth moment of

ST when the average is performed over the Cli�ord group. The result will be

stated in Lemma 60. To get the correct dimensional pre-factors in the bound, we

have to rely on particular properties of the projectionQ of (4.1) appearing in the

representation theory of the fourth order diagonal action of the Cli�ord group

in Theorem 34. The following technical result takes care of this issue.

Lemma 57 (Properties of the projectionQ). For {Tl}rl=1 ⊂ L(Cd) andQ de�ned
in (4.1) ∥∥∥∥∥∥Q

4⊗
j=1

TijQ

∥∥∥∥∥∥
F

≤ 1

d

4∏
j=1

∥∥Tij∥∥F
. (6.41)

This bound is tight. In fact, one can show that it is saturated if all Ti’s are cho-

sen to be the same stabilizer state. The proof of Lemma 57 requires two other

properties of the multi-qubit Pauli matrices W1, . . . ,Wd2 . The �rst property is

summarized by the following lemma.

Lemma 58 (Magnitude of multi-qubit Pauli matrices). For A,B ∈ L(Cd),

Tr(WjAWkB) ≤ ‖A‖F ‖B‖F (6.42)

for all j, k ∈ {1, . . . , d2}.

Proof. This statement follows directly from the Cauchy-Schwarz inequality and

the unitary invariance of the Frobenius norm:

Tr (WjAWkB) =
(
B†,WjAWk

)
≤ ‖B†‖2‖WjAWk‖2 = ‖B‖2‖A‖2.

(6.43)

The second property is that the two multi-qubit �ip operator F can be expanded

in terms of tensor products of Pauli matrices.

Lemma 59 (Multi-qubit �ip operator in terms of Pauli matrices).

F =
1

d

d2∑
i=1

W⊗2
i . (6.44)
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Proof. The re-normalised Pauli matrices form an orthonormal basis of Hd:

X =
1

d

d∑
k=1

Wk Tr (WkX) ∀X ∈ H(Cn). (6.45)

We can extend this to a basis ofH⊗2
d by considering all possible tensor products

of Pauli matrices. Expanding the �ip operator in this basis yields

F =
1

d2

d2∑
k,l=1

Wk ⊗Wl Tr (FWk ⊗Wl)

=
1

d2

d2∑
k,l=1

Wk ⊗Wldδk,l =
1

d

d2∑
k=1

W⊗2
k

as claimed.

We are now equipped to prove Lemma 57.

Proof of Lemma 57. We start by inserting the de�nition ofQ, Equation (4.1). Fix-

ing w.l.o.g. an order of the indices, we obtain

Tr

Q 4⊗
j=1

TjQ

4⊗
j=1

T †j

 =
1

d4

d2∑
k,l=1

4∏
j=1

Tr
[
WkTjWlT

†
j

]
(6.46)

=
1

d4

d2∑
k,l=1

ck,l(T1)ck,l(T2)ck,l(T3)ck,l(T4), (6.47)

where we de�ned ck,l(Tj) := Tr(WkTjWlT
†
j ) ∈ C. These numbers obey

ck,l(Tj) =Tr
(
WkTjWlT

†
j

)
= Tr

((
WkTjWlT

†
j

)†)
= Tr

(
TjW

†
l T
†
jWk

)
= ck,l(T

†
j ).

(6.48)

In addition, Lemma 58 implies

|ck,l(Tj)|2 =
∣∣∣Tr
(
WkTjWlT

†
j

)∣∣∣2 ≤ ‖Tj‖42. (6.49)
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Equation (6.47) can be viewed as a complex-valued inner product between two

d2
-dimensional vectors indexed by k and l. This expression can be upper bounded

by the Cauchy-Schwarz inequality:

1

d4

d2∑
k,l=1

ck,l(T1)ck,l(T2)ck,l(T3)ck,l(T4)

=
1

d4

d2∑
k,l=1

ck,l(T
†
1 )ck,l(T

†
2 )ck,l(T3)ck,l(T4)

≤ 1

d2

√
1

d2

∑
k,l

∣∣∣ck,l(T †1 )ck,l(T
†
2 )
∣∣∣2√ 1

d2

∑
k,l

|ck,l(T3)ck,l(T4)|2. (6.50)

The �rst square-root can be bounded in the following way√
1

d2

∑
k,l

|ck,l(T3)ck,l(T4)|2

≤
√
‖T †1‖42

1

d2

∑
k,l

ck,l(T
†
2 )

= ‖T1‖22

√
1

d2

∑
k,l

Tr
(
WkT

†
2WlT2

)2

= ‖T1‖22

√√√√Tr

(
1

d

∑
k

W⊗2
k (T †2 )⊗2

1

d

∑
l

W⊗2
l T⊗2

2

)

= ‖T1‖22

√
Tr
(
F (T †2 )⊗2 FT⊗2

2

)
= ‖T1‖22

√
Tr
(
T †2T2

)2
= ‖T1‖22‖T2‖22.

(6.51)

Here, we have applied the magnitude bound (6.49) for ck,l(T
†
1 ) in the second line

and applied Lemma 59. The second square root can be bounded in a complete

analogous fashion, i.e.√
1

d2

∑
k,l

|ck,l(T3)ck,l(T4)|2 ≤ ‖T3‖22‖T4‖22. (6.52)

Inserting both bounds into (6.50) yields the desired claim.
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Having established Lemma 57, we will now state the bound on the fourth mo-

ment of ST when the average is performed over the Cli�ord group.

Lemma 60 (4th moment bound for Cl(d)). Let T : Hd → Hd be a map. For ST
de�ned in (6.24), it holds

EU∼µCl(d)
[S4
T ] ≤ C ‖J(T )‖41 , (6.53)

where ‖ · ‖1 denotes the trace (or nuclear) norm and the constant C > 0 is inde-
pendent of d.

Proof. As for the unitary group, we can rewrite the kth moment of ST for the

Cli�ord group as

EU∼µCl(d)
[SkT ]

=
r∑

i1,...,ik=1

λi1 · · ·λik
dk∑

m,n=1

〈m |
k⊗
j=1

T †ijT∆k
Cl(d)

( |m〉〈n |)
k⊗
j=1

Tij |n〉
(6.54)

using a basis {|m〉 | m ∈ {1, . . . , dk}} for (Cd)⊗k. The expression for T∆4
Cl(d)

with k = 4 was derived in Theorem 34. It implies that

EU∼µCl(d)
[S4
T ] =

r∑
i1,...,ik=1

λi1 · · ·λik
1

4!

∑
τ∈Sk

∑
λ`k, l(λ)≤d

dλ

×

{
1

D+
λ

Tr

Q 4⊗
j=1

T †iτ(j)
QPλ

4⊗
j=1

Tij


+

1

D−λ
Tr

Q⊥ 4⊗
j=1

T †iτ(j)
Q⊥Pλ

4⊗
j=1

Tij

}.
(6.55)

We may bound the �rst trace term by∣∣∣∣∣∣Tr

Q 4⊗
j=1

T †iτ(j)
QPλ

4⊗
j=1

Tij

∣∣∣∣∣∣ ≤
∥∥∥∥∥∥PλQ

4⊗
j=1

Tiτ(j)
Q

∥∥∥∥∥∥
F

∥∥∥∥∥∥PλQ
4⊗
j=1

TijQ

∥∥∥∥∥∥
F

≤

∥∥∥∥∥∥Q
4⊗
j=1

Tiτ(j)
Q

∥∥∥∥∥∥
F

∥∥∥∥∥∥Q
4⊗
j=1

TijQ

∥∥∥∥∥∥
F

≤ 1

d2

4∏
j=1

∥∥Tij∥∥2

F
,

(6.56)
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where we have used Cauchy-Schwarz and applied Lemma 57 in the last line. For

the second trace term a looser bound su�ces:∥∥∥∥∥∥Q⊥
k⊗
j=1

Tiτ(j)
Q⊥

∥∥∥∥∥∥
F

≤
k∏
j=1

∥∥Tij∥∥F
(6.57)

for all τ ∈ S4. This follows directly from Cauchy-Schwarz. Altogether we

conclude that

EU∼µCl(d)
[S4
T ]

≤
r∑

i1,...,i4=1

4∏
j=1

|λij |
∥∥Tij∥∥2

F

∑
λ`k, l(λ)≤d

dλ

[
1

d2D+
λ

+
1

D−λ

]
≤ C ‖J(T )‖41

(6.58)

with some constant C > 0 independent of d. The last step follows from the

dimensions given in Theorem 35.

Proof of Theorem 52 (recovery guarantee). We have now established the

main auxiliary results for deriving the recovery guarantee, Theorem 52 or more

precisely a considerably re�ned statement. We consider the following measure-

ments: For a map X ∈ L(Hd) the measurement outcomes f ∈ Rm are given by

fi = Favg(Ci,X ) + εi

=
1

d+ 1

[
d (Ci,X ) +

1

d
Tr(X †(Id))

]
+ εi,

(6.59)

where Ci are random Cli�ord channels and ε ∈ Rm accounts for additional ad-

ditive noise.

To make use of the proof techniques developed for low rank matrix reconstruc-

tion [KRT15; Kab+16], we will in the following work in the Choi representa-

tion of channels. This has the advantage, that the Kraus rank directly trans-

lates to the familiar matrix rank. Recall the following results and de�nitions

from the preliminaries: The Choi matrix of a map is positive semi-de�nite if and

only if the map is completely positive. We denote the cone of positive semi-

de�nite matrices by Posd2 . A channel X is trace-preserving and unital if and

only if both partial traces of the Choi matrix yield the maximally mixed state,

i.e. Tr1(J(X )) = Tr2(J(X )) = Id /d. We will denote the set of Choi matri-

ces that correspond to channels in Lu,tp(Hd) by J(Lu,tp) dropping the Hd for
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6.2 Unitary channels

convenience. Furthermore, we de�ne J(Vu,tp,0) as the set of Choi matrices cor-

responding to trace- and identity-annihilating channels, i.e., both partial traces

of operators in J(Vu,tp,0) vanish. Moreover, by Equation (6.23), the inner prod-

uct (·, ·) on Lu,tp(Hd) coincides with the Hilbert-Schmidt inner product of the

corresponding Choi states. Adhering to this correspondence, we slightly abuse

notation and use (X ,Y) and (J(X ), J(Y)) interchangeably.

To formalize the robustness of our reconstruction we need to introduce the fol-

lowing notation. For a Hermitian matrix Z ∈ Hd let λ be the largest eigenvalue

with an eigenvector v. We write Z|1 = λ |v 〉〈v | for the best unit rank approxi-

mation to Z and Z|c := Z − Z|1 denotes the corresponding “tail”.

In terms of the Choi matrix of X the measurement outcomes f ∈ Rm read

fi =
1

d+ 1
[d (J(Ci), J(X )) + Tr(J(X ))] + εi, (6.60)

The underlying linear measurement map A : Hd2 → Rm is given by

Ai(X) =
1

d+ 1
[d(J(Ci), X) + Tr(X)] . (6.61)

Since unital and trace preserving maps X have trace normalized Choi matrices

the second trace-term of the measurement map is just a constant shift. We also

de�ne the set of measurement matrices {Ai}bi=1 that encode the measurement

map as Ai(X) = (Ai, X): Ai = d
d+1 [J(Ci) + Id /d], where each Ci is a gate

that is chosen uniformly at random from the multi-qubit Cli�ord group. In the

Choi representation, we want to consider the optimization problem

minimize
Z

‖A(Z)− f‖`q
subject to Z ∈ J(Lu,tp) ∩ Posd2 ,

(6.62)

where we allow the minimization of an arbitrary `q norm. The optimization

problem (6.20) is equivalent to (6.62) for q = 2. We are interested in using the

optimization procedure (6.62) for the recovery of unitary quantum channels. In

this section, we will derive the following recovery guarantee:

Theorem 61 (Recovery guarantee). Let A : Hd2 → Rm be the measurement
map (6.61) with

m ≥ cd2 log(d). (6.63)

Then, for allX ∈ J(Lu,tp)∩Posd2 given noisy observations f = A(X)+ ε ∈ Rm,
the minimizer Z] of the optimization problem (6.62) ful�ls for p ∈ {1, 2}∥∥∥Z] −X∥∥∥

p
≤ C̃1 ‖X|c‖1 + 2C̃2d

2m−1/q ‖ε‖`q (6.64)
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with probability at least 1− e−cfm over the random measurements. The constants
C̃1, C̃2, c, cf > 0 only depend on each other.

The recovery guarantee of Theorem 52 is the special case of Theorem 61 for

q = 2 and p = 2 restricted to measurements of a unitary quantum channel. In

contrast, the more general formulation of Theorem 61 allows for a violation of

the unit rank assumption. The �rst term in (6.64) is meant to absorb violations

of this assumption into the error bound. We note in passing that the choice of

p = 1 actually yields a tighter bound compared to p = 2.

More generally, one can ask for a recovery guarantee if the measured map X
can not be guaranteed to be unital or trace preserving. From (6.11) one observes

that as long as the mapX is trace normalized the measured AGFs are identical to

the average �delities of the projection Xu,tp of X onto the a�ne space of unital

and trace-preserving maps. But since Xu,tp is not necessarily positive, it is not

straight-forward to apply Theorem 61 to Xu,tp. We expect the reconstruction

algorithm to recover the trace-preserving and unital part of an arbitrary map.

The reconstruction error (6.64) is expected to additionally feature a term pro-

portional to the distance ofX to the intersection of J(Lu,tp) with the cone Posd2

of positive semi-de�nite matrices.

Another way to proceed is to use a trace-norm minimization subject to unitality,

trace-preservation and the data constraints ‖A(Z)− f‖`q < η. The derivation

of Theorem 61 readily yields a recovery guarantee for the trace-norm minimiza-

tion that is essentially identical to Theorem 61. See Ref. [Kab+16] for details

on the argument. The main di�erence is that such a recovery guarantee does

not need to assume complete positivity of the map that is to be reconstructed.

Correspondingly, the result of the trace-norm minimization is not guaranteed

to be positive semi-de�nite. This implies that the robustness of this algorithm

against violations of the unitality and trace-preservation is di�erent compared

to (6.62). For example, the AGFs of a not necessarily unital or trace-preserving

mapX to unitary gates coincide with the AGFs of its unital and trace-preserving

part Xu,tp as long as X is still normalized in trace norm. This is a consequence

of (6.11). Thus, a trace-norm minimization will reconstruct Xu,tp up to an er-

ror given by

∥∥J(Xu,tp)|c
∥∥

1
and noise. We leave a more extensive study of the

robustness of the discussed reconstruction algorithms against violations of this

particular model assumption to future work.

The proof of the recovery guarantee relies on establishing the so-called nullspace
property (NSP) for the measurement mapA. We refer to Ref. [FR13] for a history

of the term. The NSP ensures injectivity, i.e. informational completeness, of
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the measurement map A restricted to the matrices that should be recovered.

Informally, for our purposes, a measurement map A : Hd2 → Rm obeys the

NSP if no unit rank matrix in J(Vu,tp,0) is in the kernel (nullspace) of A.

De�nition 4 (Robust NSP, De�nition 3.1 in Ref. [Kab+16]). A : Hd2 → Rm
satis�es the nullspace property (NSP) with respect to `q with constant τ > 0 if

for all X ∈ J(Vu,tp,0)

‖X|1‖F ≤
1

2
‖X|c‖1 + τ‖A(X)‖`q . (6.65)

The factor 1/2 in front of the �rst term of (6.65) is only one possible choice. In

fact, one can instead introduce a constant with value in (0, 1). The constants

appearing in Theorem 61 then depend on the speci�c value of the pre-factor.

In particular, the di�erent choices of the pre-factor in the de�nition of the NSP

result in di�erent trade-o�s between the constant c that appears in the sampling

complexity and the constant C̃1 that decorates the model-mismatch term in the

reconstruction error. For the simplicity, we leave these dependencies implicit.

The main consequence of the NSP that we require is captured by the following

reformulation of Theorem 12 of [Kab+16].

Theorem 62. Fix p ∈ {1, 2} and letA : Hd2 → Rm satisfy the NSP with constant
τ > 0. Then, for all Y,Z ∈ J(Lu,tp)

‖Z − Y ‖p ≤
9

2
[‖Z‖1 − ‖Y ‖1 + 2 ‖Y |c‖1] + 7τ ‖A(Z − Y )‖`q . (6.66)

In fact, the measurement A of (6.60) obeys the NSP. More precisely:

Lemma 63. Let A : Hd2 → Rm be the measurement map de�ned in (6.61) with
m ≥ cd2 log(d). Then A obeys the NSP with constant τ = C−1d(d + 1)m−1/q

with probability of at least 1− e−cfm. The constants C, c, cf > 0 only depend on
each other.

The proof of Lemma 63 is developed in the subsequent section.
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Proof of Theorem 61. With the requirements of Lemma 63 we can apply Theo-

rem 62 and set Z = Z], the reconstructed result of the algorithm, as well as

Y = X . The theorem’s statement then reads∥∥∥Z] −X∥∥∥
p
≤ 9 ‖X|c‖1 + 7τ

∥∥∥A(Z] −X)
∥∥∥
`q
, (6.67)

because ‖X‖1 = ‖Z‖1 = 1 is true for arbitrary Choi matrices of (trace-preserving)

quantum channels. The second term is dominated by∥∥∥A(Z] −X)
∥∥∥
`q
≤
[∥∥∥A(X − Z]) + ε

∥∥∥
`q

+ ‖ε‖`q

]
≤ 2 ‖ε‖`q , (6.68)

where the last step follows from Z] being the minimizer of (6.62). Thus, we can

replace it by any point in the feasible set including X on the right-hand side of

the �rst line. Inserting (6.68) and the NSP constants of Lemma 63 into (6.67) the

assertion of the theorem follows.

In the remainder of this section, we will establish the NSP for our measurement

matrix A as summarized in Lemma 63.

Establishing the null space property. To prove Lemma 63 at the end of this

section we start with deriving a criterion for the NSP following the approach

taken in Refs. [Kab+16; Kli+19].

Lemma 64. A map A : Hd2 → Rm obeys the null space property with respect to
`q norm with constant τ > 0 if

inf
X∈Ω

‖A(X)‖`1 ≥
m1−1/q

τ
(6.69)

with Ω := {Z ∈ J(Vu,tp,0) | ‖Z|1‖F ≥
1
2 ‖Z|c‖1 , ‖Z‖F = 1}.

Proof. For matrices X with the property ‖X|1‖F ≤
1
2 ‖X|c‖1 the NSP condi-

tion (6.65) is satis�ed independently of the map A. Hence, to establish the NSP

for a speci�c map A it su�ces to show that the condition (6.65) holds for all

X ∈ Ω = {Z ∈ J(Vu,tp,0) | ‖Z|1‖F ≥
1
2 ‖Z|c‖1 , ‖Z‖F = 1}. The additional

assumption of ‖Z‖F = 1 is no restriction since both sides of (6.65) are abso-

lutely homogeneous functions of the same degree. By de�nition, for all X ∈ Ω
we have ‖X|1‖F ≤ ‖X‖F ≤ 1. Therefore, for X ∈ Ω

‖A(X)‖`q ≥
1

τ
(6.70)
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implies the NSP condition (6.65). Using the norm inequality ‖x‖`q ≥ m
1/q−1 ‖x‖`1

yields the criterion of the lemma.

Recall that every rank-r matrix X obeys ‖X‖21 / ‖X‖
2
F ≤ r. This motivates

thinking of the matrices of Ω as having e�ective unit rank since the norm ratio

bounded in O(1). More precisely, the following statement holds:

Lemma 65 (Ratio of 1 and 2 norms). Every matrix X ∈ Ω has e�ective unit

rank in the following sense:
‖X‖21
‖X‖22

≤ 9. (6.71)

Proof. From ‖X|1‖2 ≤ 1 and the de�nition of Ω it follows that ‖X|1‖2 +
1
2‖X|1‖1 ≤

3
2 . Hence

1
2‖X|1‖2 + ‖X|1‖1 ≤ 3. Therefore, we have that ‖X‖1 ≤

‖X|1‖1 + ‖X|c‖1 ≤ 3 from which the assertion follows, because every X ∈ Ω
has unit Frobenius norm.

In summary, we want to prove a lower bound on the `q norm of the measurement

outcomes for trace- and identity-annihilating channels with e�ective unit Kraus

rank. The proof uses Mendelson’s small ball method. See Ref. [Kli+19, Lemma 9]

for details of the method as it is stated here, which is a slight generalization of

Tropp’s formulation [Tro15] of the original method developed in Refs. [Men15;

KM15]. Mendelson’s proof strategy requires multiple ingredients. These neces-

sary ingredients will become obvious from the following theorem, which can be

found in Ref. [Tro15] and lies at the heart of the small ball method.

Theorem 66 (Mendelson’s small ball method). Suppose thatA containsmmea-
surements of the form fk = Tr[AkX] where each Ak is an independent copy of a
random matrix A. Fix E ⊆ J(Vu,tp,0) and ξ > 0 and de�ne

Wm(E;A) := E
[

sup
Z∈E

Tr (ZH)

]
, H =

1√
m

m∑
k=1

εkAk, (6.72)

Qξ(E;A) := inf
Z∈E

P [|Tr [AZ]| ≥ ξ] , (6.73)

where the εk’s are i.i.d. Rademacher random variables, i.e. are uniformly distributed
in {−1, 1}. Then, with probability of at least 1− e−2t2 , where t ≥ 0,

inf
Z∈E
‖A(Z)‖`1 ≥

√
m
(
ξ
√
mQ2ξ(E;A)− 2Wm(E;A)− ξt

)
.
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A lower bound of ‖A(X)‖`1 thus requires two main ingredients: 1.) a lower

bound on the so-called mean empirical widthWm(E;A) and 2.) an upper bound

on the so-called marginal tail function Q2ξ(E;A). We will derive those bounds

for E = Ω and our measurement map A at hand.

Bound on the mean empirical width. With a di�erent normalization the

following statement is derived in Ref. [KL17].

Lemma 67. Fix d = 2n and suppose that the measurement matrices are given by
Ai = d

d+1 [J(Ci) + Id /d] with a gate Ci chosen uniformly from the Cli�ord group
for all i. Also, assume thatm ≥ d2 log(d). Then

Wm(Ω, A) ≤ 24

d+ 1

√
log(d). (6.74)

The proof is analogous to the one in Refs. [KRT15; KL17; Kli+19]. In order to

adjust the normalization we provide a short summary.

Proof. For Z ∈ Ω it holds that

(Ai, Z) =
d

d+ 1
(J(Ci), Z). (6.75)

The constant shift by the identity matrix does not appear hear since everyZ ∈ Ω
is trace-less. Thus, we can set H = d√

m(d+1)

∑m
i=1 εi J(Ci). Applying Hölder’s

inequality for Schatten norms to the de�nition of the mean empirical width

yields

Wm(Ω, A) ≤ sup
Z∈Ω
‖Z‖1E‖H‖∞ ≤ 3E‖H‖∞, (6.76)

where we have used the e�ective unit rank of Z , Lemma 65. Also, the εi’s in the

de�nition ofH form a Rademacher sequence. The non-commutative Khintchine

inequality, see e.g [Ver12, Eq. (5.18)], can be used to bound this sequence

Eεi,Ci‖H‖∞ ≤
d

d+ 1

√√√√2 log(2d2)

m
ECi

∥∥∥∥∥
m∑
i=1

J(Ci)2

∥∥∥∥∥
∞

(6.77)

and J(Ci)
2 = J(Ci) further simpli�es the remaining expression. Moreover,

E [J(Ci)] = 1
d2 I, ‖ J(Ci)‖∞ = 1 and a Matrix Cherno� inequality for expecta-

tions (with parameter θ = 1), see e.g. [Tro12, Theorem 5.1.1] implies

ECi

∥∥∥∥∥
m∑
i=1

J(Ci)

∥∥∥∥∥
∞
≤ (e− 1)

m

d2
+ log(d2) ≤ 4

m

d2
, (6.78)
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6.2 Unitary channels

where the second inequality follows from the assumption m ≥ d2 log(d). In-

serting this bound into (6.77) yields

Eεi,Ci‖H‖∞ ≤
d

d+ 1

√
8 log(2d2)

d2
(6.79)

and the claim follows from combining this estimate with the bound (6.76) and

log(2d2) ≤ 4 log(d).

Bound on the marginal tail function. Here, we establish an anti-concentration

bound to the marginal tail function. The precise result is summarized in the fol-

lowing statement.

Lemma68. Suppose the random variableA ∈ Hd is given byA = d
d+1 [J(C) + Id /d],

where C is a Cli�ord channel drawn uniformly from the Cli�ord-group Cl(d). For
0 ≤ ξ ≤ 1

d(d+1) it holds that

Qξ(Ω, A) ≥ 1

Ĉ

(
1− d2(d+ 1)2ξ2

)2
, (6.80)

where Ĉ is the constant from Lemma 69.

This statement follows from applying the Paley-Zygmund inequality to the non-

negative random variable S2
T de�ned in (6.24). For this purpose, we will make

use of the bounds on the second and fourth moment of ST . In particular, we

establish the following relation between the second and fourth moment of ST .

This is one of the technical core result of this work.

Lemma69. Let T ∈ Vu,tp,0 be amapwith J(T ) of e�ective unit rank, i.e. ‖J(T )‖2F ≤
c ‖J(T )‖21 with some constant c > 0, then

EU∼µCl(d)
[S4
T ] ≤ Ĉ EU∼µCl(d)

[S2
T ]2 (6.81)

for some constant Ĉ independent of the dimension d.

Proof. Since the Cli�ord group is a unitary 3-design [Zhu17; Web16], Corol-

lary 54 implies

EU∼µCl(d)
[S2
T ] ≥ ‖J(T )‖2F . (6.82)
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6 Compressive randomized benchmarking tomography

Furthermore, the e�ective unit rank assumption, ‖J(T )‖21 ≤ c ‖J(T )‖2F, to-

gether with Lemma 60 yields for the fourth moment

EU∼µCl(d) [S
4
T ] ≤ Ĉ ‖J(T )‖4F (6.83)

for some constant Ĉ = cC > 0 independent of d. Combining these two equa-

tions, the statement of the proposition follows.

Note that with the help of Lemma 56 one arrives at the same conclusion for

the moments of ST when the average is taken over the unitary group. This

reproduces the previous technical core result of Ref. [KL17].

Proof of Lemma 68. In the following we always understand by T the map in

L(Hd) with Choi matrix T = J(T ). In terms of the random variable ST =
d2 Tr[T J(C)], (6.24), the marginal tail function can be expressed as

Qξ(Ω, A) = inf
T∈Ω

P
[
|ST |

d(d+ 1)
≥ ξ
]
. (6.84)

Here we again used that everyZ ∈ Ω is trace-less. Consequently, the shift by the

identity matrix in the measurementsAi vanishes. Using Lemma 69, the theorem

follows by a straight-forward application of the Paley-Zygmund inequality,

inf
T∈Ω

P
[

1

d(d+ 1)
|ST | ≥ ξ

]
= inf

T∈Ω
P
[

1

d2(d+ 1)2
S2
T ≥

E[S2
T ]

d2(d+ 1)2
ξ̃2]

]
≥ (1− ξ̃2)2E[S2

T ]2

E[S4
T ]
≥ 1

Ĉ
(1− ξ̃2)2,

(6.85)

where Ĉ > 0 and ξ̃ = d(d+1)√
E[S2
T ]
ξ is required to ful�l ξ̃ ∈ [0, 1]. According to

Corollary 54 and the normalization of T ∈ Ω we have ξ̃ = d(d+1) ξ
‖T‖F

= d(d +

1) ξ.

Completing the proof of Lemma 63. We are �nally in position to deliver

the proof for the NSP of A. With the bounds on the mean empirical width,

Lemma 67, and the marginal tail function, Lemma 68, Mendelson’s small ball

method, Theorem 66, yields the following lemma:
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6.3 Sample optimality in the number of channel uses

Lemma 70. Suppose that A contains

m ≥ m0 = c d2 log(d) (6.86)

measurements of the form fk = Tr[AkX] where each Ak = d
d+1 [J(Ci) + Id /d]

is given by an independent and uniformly random Cli�ord unitary channel Ci. Fix
Ω ⊂ J(Vu,tp,0) as de�ned in Lemma 64. Then

inf
Z∈Ω
‖A(Z)‖`1 ≥ C

m

d(d+ 1)
(6.87)

with probability at least 1− e−cfm over the random measurements. The constants
C, c, cf > 0 only depend on each other.

Proof. Combining the Lemmas 66, 67, and 68 yields with probability at least 1−
e−2t2

that

inf
Z∈Ω
‖A(Z)‖`1

≥
√
m

(
ξ
√
m

Ĉ

(
1− (d(d+ 1)ξ)2

)2 − 48

d+ 1

√
log(d)− ξt

)
≥
√
m

d+ 1

(
c1

√
m

d
− 48

√
log(d)− t

2d

) (6.88)

where we have chosen ξ = 1
2d(d+1) . The statement follows from the scaling

(6.86) of m.

From Lemma 70 and Lemma 64 the assertion of Lemma 63 directly follows.

6.3 Sample optimality in the number of channel uses

The compressed sensing recovery guarantees, Theorem 52 and Theorem 61, fo-

cus on the minimal number of AGFs m that are required for the reconstruction

of a unital and trace-preserving quantum channel using the reconstruction pro-

cedure (6.20) and (6.62), respectively.
9

This can be regarded as the number of

9

The compressed sensing recovery guarantees . . . ] Most parts of the section are published in the

supplemental material of Ref. [1]. Compared to the published material the section contains a

more direct argument for the sample achievable sampling complexity based on the results of

Section 5.3.
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6 Compressive randomized benchmarking tomography

measurement settings. But already the measurement of single �delities up to

some desired additive error will require a certain number of repetitions of some

experiment. Therefore, to quantify the total measurement e�ort a more relevant

�gure of merit is the minimum number of channel uses M required for taking

all the data used in a reconstruction.
10

We will now show that the equivalent algorithms (6.20) and (6.62) reach an op-

timal parametric scaling of the required number of channel uses in a simpli�ed

measurement setting. To this end, we �rst combine the sample complexity re-

sults of Section 5.3 with our recovery strategy to provide an upper bound on

the number of channel uses required for the reconstruction of a unitary gate

up to a constant error. We �nd that in speci�c cases, the sampling complexity

scales as O(d4) in d up-to logarithmic factors when one measures the �delities

individually in separate experiments. When we measure the �delities simultane-

ously with a single POVM, we can achieve a scaling of O(d2) up-to logarithmic

overhead.

To argue that the scaling of O(d4) is indeed optimal, we then derive a lower

bound on the number of channel uses required by any POVM measurement

scheme that individually determines the AGFs with Cli�ord gates and any sub-

sequent reconstruction protocol that only relies on these AGFs. The latter proof

will follow the strategy of Ref. [Fla+12, Section III]. We �nd that the lower bound

matches the upper bound up to log-factors. Hence, we have build evidence for

the optimality of the our recovery guarantee.

In order to obtain an optimality result we consider a measurement setting that is

arguably simpler than the one in randomized benchmarking and more basic from

a theoretical perspective. We consider a unitary channel U given by a unitary

U ∈ U(d) and measurements given by Cli�ord channels Ci with Ci ∈ Cl(d).

Via Proposition 18, the AGFs Favg(Ci,X ) are determined by

fi = 〈J(Ci), J(X )〉 =
1

d2
|Tr[CiU ]|2 . (6.89)

In this section, we consider U/
√
d as a pure state vector in Cd ⊗ Cd, i.e., as the

state vector corresponding to the Choi state of the channel U . This state can

be prepared by applying the operation U to one half of a maximally entangled

state.

10

Note that if we’d use an RB experiment for the measurement every sequence might additionally

involve multiple channel invocations introducing an additional polynomial factor in the max-

imal sequence length but independent of the system dimension. Since we are not explicitly

concerned with RB sequences, we will not make a distinction between the sample complexity

and the number of channel invocations.
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6.3 Sample optimality in the number of channel uses

6.3.1 An upper bound from direct POVM measurements

To derive an overall achievable sampling complexity of the tomography scheme,

we combine the recovery guarantee, Theorem 52, with the sample complexity

results for estimating the vector f in `2 norm derived in Section 5.3. The latter

was derived under the assumption that the set {Ci}mi=1 de�ning fi constitutes

a unitary 1-design. The Pauli group of cardinality O(d2) constitute a unitary

1-design. We can always trivially construct unitary 1-designs of a multiple size

by combining, e.g. di�erently rotated copies of a unitary 1-design. A randomly

drawn subset of the Cli�ord group of cardinality O(d2 log d) is unlikely to con-

stitute an exact unitary 1-design, or even an approximate unitary 1-design with

a suitably small additive error O(d−2) in the expression of Lemma 46. But since

such designs exist, we might accidentally arrive at an exact unitary 1-design

with a non-vanishing probability. In this case, if we want a reconstruction error

in Theorem 52 of size εrec, we need to estimate f with accuracy

√
mεrec/d

2
in `2

norm. Using separate POVM measurements, this requires according to (5.30) a

number of samples in O(md2ε−2
rec

logm). For m ≥ m̃ ∈ O(d2 log d), we �nd an

overall sampling complexity in O(d4 log(d)ε−2
rec

). For the simultaneous POVM

measurement, we analogously get a sampling complexity scaling as d2
in d up-to

log factors.

6.3.2 Information theoretic lower bound

We now derive a lower bound on the number of channel uses that holds in a

general POVM framework focusing on the case where the fi are measured sepa-

rately. Up to log-factors, it has the same dimensional scaling as the upper bound

derived in the last paragraph. We extend the arguments of Ref. [Fla+12, Sec-

tion III] to prove a lower bound on the number of channel uses required for QPT

of unitary channels from measurement values of the form (6.89). We consider

each of these values to be an expectation value in a binary POVM measurement

setting given by the unit rank projector J(Ci) are applied to the Choi state J(U).

Then we are in the situation of [Fla+12, Section 3], which proves a lower bound

for the minimax risk—a prominent �gure of merit for statistical estimators.

Let us summarize this setting. We denote by D ⊂ Hd the set of density ma-

trices and byM the set of all two-outcome positive-operator-valued measure-

ments (POVMs), each of them given by a projector π ∈ Hd. Next, we as-

sume that we measure M copies of an unknown state ρ ∈ D sequentially.

By Yi we denote the binary random variable that is given by choosing the ith
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6 Compressive randomized benchmarking tomography

measurement πi ∈ M and measuring ρ. These are mapped to an estimate

ρ̂(Y1, . . . , YM ) ∈ Hd. Any such estimation protocol is speci�ed by the estimator

function ρ̂ and a set of functions {Πi}i∈[M ] that correspond to the measurement

choices, where Πi(Y1, . . . Yi−1) ∈ M, i.e., the ith measurement choice Πi only

depends on previous measurement outcomes. Let ε > 0 be the maximum trace

distance error we like to tolerate between the estimation ρ̂ and ρ. Then the min-
imax risk is de�ned as

R∗(M, ε) := inf
ρ̂

Π1,...,ΠM

sup
ρ∈D

P [‖ρ̂(Y )− ρ‖1 > ε] , (6.90)

where we denote by Y the vector consisting of all random variables Yi. An

estimation protocol (ρ̂, {Πi}i∈[M ]) minimizing the minimax risk has the smallest

possible worst-case probability over the set of quantum states.

The following theorem provides a lower bound on the minimax risk for the es-

timation of the Choi matrix of a unitary gate from unit rank measurements.

Theorem 71 (Lower bound, unit rank measurements). Fix a setM of rank-1
measurements. For ε > 0 the minimax risk (6.90) of measurements ofM copies is
bounded as

R∗(M, ε) ≥ 1− c1
log(d) log(|M|)
d4(1− ε/2)2

M − c2

d2(1− ε2)
, (6.91)

where c1 and c2 are absolute constants.

Before providing a proof for this theorem let us work out its consequences. If the

measurements project onto Cli�ord unitaries, we get the following lower bound

on the minimax risk.

Corollary 72 (Lower bound, Cli�ord group). Let ε > 0 and consider measure-
ments of the form (6.89) given by Cli�ord group unitaries on M copies. Then the
minimax risk (6.90) is bounded as

R∗(M, ε) ≥ 1− c3
log(d)3

d4(1− ε/2)2
M − c2

d2(1− ε2)
, (6.92)

where c3 and c2 are absolute constants.
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6.3 Sample optimality in the number of channel uses

Proof. The cardinality of the n-qubit Cli�ord group (d = 2n) is bounded as

|Cl(d)| = 2n
2+2n

n∏
j=1

(4j − 1) < 22n2+4n
(6.93)

[Cal+98]. This implies that in case of our Cli�ord group measurements we have

log(|M|) < 2 log(d)2 + 4 log(d).

In every meaningful measurement and reconstruction scheme the minimax risk

needs to be small. The corollary implies that, in the case of Cli�ord unitaries,

the number of copies M need to scale with the dimension as

M ∈ Ω

(
d4

log(d)3

)
, (6.94)

where we have assumed ε > 0 to be small. This establishes a lower bound on

the number of channel uses that every POVM measurement and reconstruction

scheme requires for a guaranteed successful recovery of unitary channels from

AGFs with respect to Cli�ord unitaries.

From the argument as it is presented here it is not possible to extract the op-

timal parametric dependence of the number of channel uses M on the desired

reconstruction error ε. For quantum state tomography such bounds were de-

rived in Ref. [Haa+17] by extending the argument of Ref. [Fla+12] and con-

structing di�erent ε-packing nets. By adapting the ε-packing net constructions

of Ref. [Haa+17] to unitary gates one might be able to derive an optimal para-

metric dependence ofM on ε. But it is not obvious how one can incorporate the

restriction of the measurements to unit rank in the argument of Ref. [Haa+17].

We leave this task to future work.

In the remainder of this section we prove Theorem 71. The proof proceeds

in two steps. At �rst we derive a more general bound on the minimax risk,

Lemma 73, that follows mainly from combining Fano’s inequality with the data

processing inequality, see e.g. [CT12]. This is a slight generalization of Lemma 1

of Ref. [Fla+12] adjusted to the situation where the outcome probabilities of

the POVM measurements do not necessarily concentrate around the value 1/2.

Lemma 73 assumes the existence of an ε-packing net for the set of unitary gates

whose measurement outcomes are in a small interval to establish a lower bound

on the minimax risk. Hence, in order to complete the proof, we have to estab-

lish the existence of a suitable packing net, Lemma 77, in a second step. Com-

bining the general bound of Lemma 73 and the existence of the packing net of

Lemma 77, the proof of Theorem 71 follows.
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6 Compressive randomized benchmarking tomography

We begin with the general information theoretic bound on the minimax risk.

Lemma 73 (Lower bound to the minimax risk). Let ε > 0 and 0 < α < β ≤
1/2. Assume that there are states ρ1, . . . , ρs ∈ PosD and orthogonal projectors
π1, . . . , πn ∈ PosD such that

‖ρi − ρj‖1 ≥ ε (6.95)

Tr[πkρi] ∈ [α, β] (6.96)

for all i 6= j ∈ [s] and k ∈ [n]. Then the minimax risk (6.90) of M single mea-
surements is bounded as

R∗(M, ε) ≥ 1− M(h(β)− h(α)) + 1

log(s)
, (6.97)

where h denotes the binary entropy.

Proof. We start by following the proof of [Fla+12, Lemma 1]: Let X be the ran-

dom variable uniformly distributed over [s] and let Y1, . . . , YM be the random

variables describing theM single POVM measurements performed on ρX . Con-

sider any estimator ρ̂ of the state ρX from the measurements Y and de�ne

X̂(Y ) := arg min
i∈[s]

‖ρ̂(Y )− ρi‖1 . (6.98)

Then, for all i ∈ [s],

P[‖ρ̂(Y )− ρi‖1 ≥ ε] ≥ P[X̂(Y ) 6= X]. (6.99)

Following Ref. [Fla+12], we combine Fano’s inequality and the data processing

inequality for the mutual information I(X;Z) = H(X) −H(X|Z), where H
denotes the entropy and conditional entropy, to obtain

P[X̂(Y ) 6= X] ≥ H(X|X̂(Y ))− 1

log(s)
≥ 1− I(X;Y ) + 1

log(s)
. (6.100)

Now we start deviating from Ref. [Fla+12]. We use that I(X;Y ) = I(Y ;X), the

chain rule, and the de�nition of the conditional entropy to obtain

P[X̂(Y ) 6= X] ≥ 1− H(Y )−H(Y |X) + 1

log(s)

= 1− 1

log(s)

( M∑
j=1

{
H(Yj |Yj−1, . . . , Y1)

− 1

s

s∑
i=1

H(Yj |Yj−1, . . . , Y1, X = i)
}

+ 1

)
.
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Now we use thatH(Yj |Yj−1, . . . , Y1, X = i) ≥ h(α) andH(Yj |Yj−1, . . . , Y1) ≤
h(β), where h is the binary entropy, to arrive at

P[X̂(Y ) 6= X] ≥ 1− M(h(β)− h(α)) + 1

log(s)

≥ 1− M(h(β)− h(α)) + 1

log(s)
.

To apply Lemma 73 we need to proof the existence of an ε-packing net {ρi}si=1

consisting of unitary quantum gates with the properties (6.95) and (6.96). The

construction of such a suitable ε-packing net will use the fact that the modulus

of the trace of a Haar random unitary matrix is a sub-gaussian random variable.

This can be viewed as a non-asymptotic version of a classic result by Diaconis

and Shahshahani [DS94]: the trace of a Haar random unitary matrix in U(d) is

a complex Gaussian random variable in the limit of in�nitely large dimensions

d.

The trace of Haar random unitaries is sub-gaussian. The statement fol-

lows from the fact that the moments of the modulus of the trace of a Haar random

unitary are dominated by the moments of a Gaussian variable.

Proposition 74. For all d, k ∈ Z+

EU∼µU(d)

[
|Tr[U ]|2k

]
≤ k!, (6.101)

with equality if k ≤ d.

Proof. Denote by S := |Tr(U)|2 the random variable with U ∈ U(d) drawn

from the Haar measure. Let {|n〉}dkn=1 be an orthonormal basis of (Cd)⊗k. The

kth moment of S is given by

E[Sk] =
dk∑

n,m=1

〈n|U⊗k |n〉 〈m| (U †)⊗k |m〉 . (6.102)
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Applying Theorem 14, we get

E[Sk] =
1

k!

dk∑
n,m=1

∑
τ∈Sk

∑
λ`k,l(λ)≤d

dλ
Dλ
〈m|πk(τ) |n〉 〈n|πk(τ−1)Pλ |m〉

(6.103)

=
1

k!

∑
τ∈Sk

∑
λ`k,l(λ)≤d

dλ
Dλ

Tr(πk(τ)πk(τ
−1)Pλ) (6.104)

=
∑

λ`k,l(λ)≤d

dλ
Dλ

Tr(Pλ). (6.105)

Since Tr(Pλ) = dλDλ, we conclude

E[Sk] =
∑

λ`k,l(λ)≤d
d2
λ ≤

∑
λ`k

d2
λ = k! . (6.106)

The last equality can be seen from the orthogonality relation of the characters

of the symmetric group, see e.g. Ref. [FH91, Chapter 2] for more details. Note

that the second inequality is saturated in the case where k ≤ d since in this case

the restriction l(λ) ≤ d is automatically ful�lled.

As a simple implication of the previous lemma is that the random variable S =
|Tr(U)|2 has sub-exponential tail decay.

Lemma 75. Let S be a real-valued random variable that obeys E
[
|S|k

]
≤ k! for

all k ∈ N. Then, the right tail of X decays at least sub-exponentially. For any
t ≥ 0,

P [S ≥ t] ≤ e−κt+2,

with κ = 1− 1
2e .

This is a consequence of a standard result in probability theory that can be found

in many textbooks, e.g. [Ver12] and [FR13, Section 7.2]. We present a short proof

here in order to be self-contained.

Proof. We use Markov’s inequality, Proposition 74, and Stirling’s bound k! ≤
e
√
k kk e−k to obtain for any k ∈ N

P[S ≥ k] ≤ E[|S|k]
kk

≤ k!

kk
≤ e
√
ke−k. (6.107)
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In order to prove the tail bound, we choose t ≥ 0 arbitrary and let k be the

largest integer that is smaller or equal to t (k = btc). Then

Pr [S ≥ t] ≤ Pr [S ≥ k] ≤ e
√
ke−k ≤ e−κk+1 ≤ e−κt+1+κ.

Here, we have used

√
ke−k ≤ e−κk and t ≤ k + 1.

Random variables with sub-gaussian tail decay—sub-gaussian random variables
—are closely related to random variables with sub-exponential tail decay: X is

sub-gaussian if and only if X2
is sub-exponential.

Thus, Proposition 74 highlights that the trace of a Haar-random unitary is a

sub-gaussian random variable. This is the aforementioned generalization of the

classical result by Diaconis and Shashahani.

A packing net with concentrated measurements. The proof of existence

of an ε-packing net to apply Lemma 73 uses a probabilistic argument as in

Ref. [Fla+12]. Here, the strategy is the following: We assume we are already

given an ε-packing net of a size s − 1 that satis�es the desired concentration

condition (6.96). We then show that a Haar random unitary gate also ful�ls the

concentration condition and is ε-separated from the rest of the net with strictly

positive probability. Consequently, if one can be lucky to randomly arrive at a

suitable ε-packing net of size s in this way then it must also exist.

We start by deriving an anti-concentration result for the Choi matrix J(U) of a

unitary channel given by a Haar random unitary U in U(d).

Lemma 76. Let V be a unitary gate. For all ε > 0

PU∼µU(d)
[‖J(U)− J(V)‖1 ≤ ε] ≤ e−κd

2(1−ε/2)2+2
(6.108)

with κ > 0 being the constant from Lemma 75.

Proof. Due to the unitary invariance of the trace norm and the Haar measure,

it su�ces to show the statement for V = Id. For a unitary channel with Choi-

matrix J(U) = d−1 vec(U) vec(U †)t and Kraus-operator U ∈ U(d) we have

‖J(U)− J(Id)‖1 = 2

√
1− 1

d2
|Tr(U)|2 ≥ 2

(
1− 1

d
|Tr(U)|

)
. (6.109)
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For the �rst equation we calculate the set eigenvalues of J(U)− J(Id), which is

{±
√

1− d−2|Tr(U)|2}. Introducing the random variable SU := |Tr(U)|2, we

can rewrite the probability as

P[‖J(U)− J(Id)‖1 ≤ ε] ≤ P
[
2

(
1− 1

d

√
SU

)
≤ ε
]

= P
[
SU ≥ d2

(
1− ε

2

)2
]
. (6.110)

From Lemma 75 we know that

P
[
SU ≥ d2

(
1− ε

2

)2
]
≤ e−κd

2(1−ε/2)2+2
(6.111)

from which the assertion follows.

The anti-concentration result of Lemma 76 implies the existence of a large ε-
packing net Nε of unitary quantum channels. The desired concentration of the

measurement outcomes can be established using Lemma 75. In summary we

arrive at the following assertion:

Lemma 77 (Packing net with concentrated measurements). Let 0 < ε < 1/2,
κ = 1− 1

2e , andC1, . . . , CK ∈ U(d). Then, for any number s < 1
2eκ(1−ε/2)2d2−2,

there exist U1, . . . , Us ∈ U(d) such that for all i, j ∈ [s] with i 6= j and for all
k ∈ [K]

‖J(Ui)− J(Uj)‖1 ≥ ε , (6.112)

1

d2
|Tr[C†kUi]|

2 ≤ log(2K) + 2

κd2
. (6.113)

Proof. As outlined above the existence of the described ε-packing net follows

inductively from the fact that if one adds a Haar random unitary gate U to an

ε-packing Ñε of size s− 1 that already ful�ls all requirements of the lemma the

resulting set Ñε ∪ {U} has still a strictly positive probability to be an ε-packing

net with the desired concentration property (6.113).

We start with bounding the probability that the resulting set Ñε ∪ {U} fails to

be an ε-packing net. Let us denote the probability that a Haar random U is not

ε-separated from Ñε by p̄ε. In other words, p̄ε is the probability that there exists

V ∈ Ñε with ‖J(U)− J(V)‖1 ≤ ε. Taking the union bound for all V ∈ Ñε,
Lemma 76 implies that

p̄ε ≤ se−κd
2(1−ε/2)2+2

(6.114)
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with κ = 1 − 1
2e . Thus, for s < 1

2e−κd
2(1−ε/2)2+2

we ensure that p̄ε <
1
2 . We

now also have to upper-bound the probability p̄c ofU not having a concentration

property

1

d2
|Tr[C†kUi]|

2 ≤ β (6.115)

with respect to K di�erent unitaries C1, . . . , CK . Using the unitary invariance

of the Haar measure and taking the union bound, the tail-bound for the squared

modulus of the trace of a Haar random unitary, Lemma 75, yields

p̄c ≤ Ke−κβd
2+2

(6.116)

for β ≥ 2. In order for p̄c to be at most 1/2, we need that

β ≥ log(2K) + 2

κd2
. (6.117)

In summary, we have established that p̄ε+p̄c < 1 as long as s < 1
2e−κd

2(1−ε/2)2+2

and the achievable concentration is β ≥ (log(2K) + 2)/(κd2). Hence, in this

parameter regime there always exist at least one additional unitary gate extend-

ing the ε-packing net. Inductively this proves the existence assertion of the

lemma.

Having established a suitable ε-packing net, we can now apply Lemma 73 to

derive the lower bound on the minimax-risk for the recovery of unitary gates

from unit rank measurements of Theorem 71, the main result of this section.

Proof of Theorem 71. We will apply Lemma 73 with α = 0 and

β =
log(2|M|) + 2

κd2
, (6.118)

and we use that h(β) ≤ 2β log(1/β) for β ≤ 1/2. Combining the Lemmas 73

and 77 we obtain

R∗(M, ε) ≥ 1− Mh(c/d2) + 1

(κ(1− ε/2)2d2 + 2)/ log(2)− 2
(6.119)

≥ 1−
2 log(2|M|)+2

κd2 log
(

log(2|M|)+2
κd2

)
M + 1

d2(κ(1− ε/2)2d2 + 2)/ log(2)− 2
, (6.120)

where, in Lemma 77 we have chosen s to be the strict upper bound minus one.

Finally, we simplify the bound by choosing large enough constants c1 and c2.
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Figure 6.1: Reconstruction of a Haar-random 3-qubit channel using the optimization (6.20): The

plots show the dependence of the observed average reconstruction error εrec :=∥∥Z] −X∥∥ on the number of AGFs m for di�erent noise strengths η := ‖ε‖`2 . The

error bars denote the observed standard deviation. The averages are taken over 100
samples of random i.i.d. measurements and channels (nonuniform). The matlab code

and data used to create these plots can be found on GitHub [25].

6.4 Numerical demonstrations

Finally, with numerical simulations, we brie�y explore the practical feasibility

of the reconstruction procedure (6.20) and discuss some of its subtleties. The re-

construction algorithm (6.20) can be implemented with standard optimization

packages. The Matlab code for our numerical experiments can be found on

GitHub [25].
11

Let X denote a unitary quantum channel. Given measurements

fi from (6.60) with Cli�ord unitaries Ci we approximately recover X using the

semi-de�nite program (SDP) (6.62) with q = 2. In the numerical experiments

we draw a three-qubit unitary channel X uniformly at random, the m Cli�ord

unitaries for the measurements uniformly at random, and the noise ε ∈ Rm uni-

formly from a sphere with radius η, i.e., ‖ε‖`2 = η. Then we solve the SDP using

Matlab, CVX and SDPT3. The resulting average reconstruction error is plotted

against the number of measurement settings m and the noise strength η in Fig-

ure 6.1 and Figure 6.2 (left), respectively. As a comparison we run simulations

for Haar random unitary measurements, see Figure 6.2 (right). We �nd that the

measurements based on random Cli�ord unitaries perform equally well as mea-

11

Finally, with numerical simulations, . . . ] This section has been published in the supplemental

material of Ref. [1] with minor modi�cations.
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Figure 6.2: Comparison of the reconstruction (6.20) from AGFs (6.19) with random Cli�ord uni-

taries (left) and Haar random unitaries (right). The plots show the dependence of

the observed average reconstruction error εrec :=
∥∥Z] −X∥∥, on the noise strength

η := ‖ε‖`2 for 3 qubits and di�erent numbers of AGFs m. The error bars denote the

observed standard deviation. The averages are taken over 100 samples of random i.i.d.

measurements and channels (non-uniform). The Matlab code and data used to create

these plots can be found on GitHub [25].

surements based on Haar random unitaries. This is in agreement with a similar

observation made for the noiseless case by two of the authors in Ref. [KL17].

We observed that sometimes the SDP solver cannot �nd a solution. We also

tested the use of Mosek instead of SDPT3. We �nd that the Mosek solver is

faster but has more problems �nding the correct solution. For the cases where

the SDP solver does not exit with status “solved” we relax the machine precision

on the equality constraints in the SDP (6.62) and change the measurement noise

by a machine precision amount. More explicitly, for an integer j ≥ 0 we try to

solve

minimize
Z

‖A(Z)− f‖`2
subject to Z ≥ 0,∥∥∥Tr1(Z)− Id

d

∥∥∥
F
≤ 10j eps,∥∥∥Tr2(Z)− Id

d

∥∥∥
F
≤ 10j eps

(6.121)

where eps denotes the machine precision and Tr1 and Tr2 the partial traces on

L(Cd⊗Cd). We successively try to solve these SDPs for j = 0, 1, 2, . . . , 6. More-

over, we change the measurement noise ε to ε′+ ζ in each of these trials, where

each ζi = eps · gi with gi ∼ N (0, 1) is an independent normally distributed

random number. For the Cli�ord type measurement (Figures 6.1 and 6.2 left)
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6 Compressive randomized benchmarking tomography

a total of 24 400 channels were reconstructed and j was increased 1 865 many

times in total. For the Haar random measurement unitaries (Figure 6.2 left) a

total of 12 900 channels were reconstructed and j was increased 950 times. So,

we observed that with a probability of ∼ 7.5% the SDP solver cannot solve the

given SDP with machine precision constraints.

Some error bars in the plots in Figures 6.1 and 6.2 might seem quite large, which

we would like to comment on. Note that in compressed sensing it is typical to

have a phase-transition from having no recovery for too small numbers of mea-

surements m to having a recovery with very high probability once m exceeds

a certain threshold. This phase transition region becomes smeared out if the

noise strength ‖ε‖`2 is increased. For those m in the phase transition region the

reconstruction errors are expected to �uctuate a lot, which we observe in the

plots.

The slope of the linear part of plots εrec(m) in Figure 6.1 is roughly δεrec(m)/δm ≈
−1.3. This means that the reconstruction error scales like εrec(m) ∼ m−1.3

,

which is better than Theorem 52 suggests. The reason for this discrepancy is that

the theorem also bounds systematic errors and even adversarial noise εwhereas

in the numerics we have drawn εi uniformly from a sphere, i.e., εi are i.i.d. up to

a rescaling.

6.5 Unitarity

The �nal result of this chapter addresses the unitarity of a quantum channel.
12

Introduced by Wallman et al. [Wal+15], the unitarity is a measure for the co-

herence of a (noise) channel E . Recall from the preliminares, Equation (2.91),

that it is de�ned to be the average purity of the output states of a slightly al-

tered
13

channel E ′

u(E) =

∫
dψTr

(
E ′ (|ψ〉〈ψ|)† E ′ (|ψ〉〈ψ|)

)
(6.122)

that �ags the absence of trace preservation and unitality. The unitarity can be

estimated e�ciently by using techniques similar to randomized benchmarking

[Fen+16]. It is also an important �gure of merit when one aims to compare the

12

The �nal result of . . . e.g. in Ref. [MBE11].] Is based on the discussion of the unitarity charac-

terization in the main text of Ref. [1].

13E ′ is de�ned so that E ′(Id) = 0 and E ′(X) = E(X)− Tr(E(X)/
√
d Id for all traceless X .
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AGF of a noisy gate implementation to its diamond distance [Kue+16; Wal15]—

a task that is important for certifying fault-tolerance capabilities of quantum

devices.

Although useful, the existing de�nition of the unitarity (6.122) is arguably not

very intuitive. Here, we try to (partially) amend this situation by providing a

simple statistical interpretation:

Theorem 78 (Operational interpretation of unitarity). Let {Uk}Nk=1 be the gate
set of a unitary 2-design. Then, for all Hermicity-preserving maps X

Var [Favg (Uk,X )] =
u(X )

d2(d+ 1)2
, (6.123)

where the variance is computed with respect to Uk drawn randomly from the uni-
tary 2-design.

Note that the variance is taken with respect to unitaries drawn from the unitary

2-design and not the variance of the average �delity with respect to the input

state as calculated, e.g. in Ref. [MBE11].

Before providing the proof of the theorem, we allow ourselves to speculate about

possible applications for Theorem 78.
14

A direct estimation procedure for the

unitarity has been proposed in Ref. [Wal+15] and re�ned in Ref. [DHW19]. In-

spired by randomized benchmarking, this procedure is robust towards SPAM er-

rors, but has other drawbacks: Estimating the purity of outcome states directly is

challenging, because the operator square function is not linear. Although Wall-

man et al. have found ways around this issue, their approaches are not yet com-

pletely satisfactory.

We suggest an alternative approach based on Theorem 78. It might be conceiv-

able that techniques like importance sampling could be employed to e�ciently

estimate this variance—and thus the unitarity—from “few” samples. The fourth

moment bounds computed here could potentially serve as bounds on the “vari-

ance of this variance” and help control the convergence. One major appeal to

this strategy is that the same type of data relative average �delities could then

be used for multiple diagnostic tasks, without the necessity to perform di�erent

experimental setups.

14

Before providing the proof . . . ] The remainder of the section is based on Section G of the

supplemental material of Ref. [1].
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It remains to prove the theorem. The proof is most naturally phrased by de-

composing the linear hull of unital and trace preserving maps L
u,tp

(Hd) into en-

domorphism acting on the spaces that carry irreducible representations of the

unitary channels. In the proof of Theorem 50 we have explicitly seen that the

projection of any map X onto L
u,tp

(Hd) has the block-diagonal structure:

P
u,tp

(X ) = X0 ⊕ x1,

where x1 = Tr (X (Id /d)). For channels that are already unital and trace pre-

serving, this projection acts as the identity and x1 = 1. Particular examples

of this class are unitary channels U = U0 ⊕ 1 and the depolarizing channel

D = O ⊕ 1 acting as D(X) = Tr(X)
d Id on X ∈ Hd. Unitary channels are also

special in the sense that they are normalized with respect to the inner products

de�ned in (6.23):

d2 = Tr
[
U†U

]
= (L(U),L(U)) = d2 (U ,U) .

In fact, unitary channels are the only maps with this property (provided that

we also adhere to our convention of normalizing maps with respect to the trace

norm of the Choi matrix). Combining this feature with the “block diagonal”

structure of unitary channels yields

d2 = Tr
[
U†U

]
= Tr

[
U†0 ⊕ 1 U0 ⊕ 1

]
= 1 + Tr

[
U†0U0

]
.

This computation implies that a map X is unitary if and only if

u(X ) :=
Tr
[
X †0X0

]
d2 − 1

equals one. Otherwise, the unitarity u(X ) ∈ [0, 1] is strictly smaller. For in-

stance, u(D) = 0 for the depolarizing channel. This de�nition of the unitarity

is equivalent to the one presented in (6.122), see [Wal+15, Proposition 1]. The

argument outlined above succinctly summarizes the main motivation for this

�gure of merit: it captures the coherence of a noise channel X .

Equipped with this characterization of the unitarity, we can now give the proof

for the interpretation of the unitarity as the variance of the AGF with respect to

a unitary 2-design.

Proof of Theorem 78. The unitarity u(X ) may be expressed as

Tr
[
X †0X0

]
d2 − 1

=
Tr
[(
X0 ⊕ (d2 − 1)x1

)†X ]
d2 − 1

− x2
1. (6.124)
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Equation (6.15) allows us to rewrite x1 as an average over a unitary 1-design

{Uk}Nk=1:

x1 = Tr
[
(O⊕ 1)†X

]
=

1

N

N∑
k=1

Tr
[
U†kX

]
= ETr

[
U†X

]
Let us now assume that the set {Uk}Nk=1 is also a 2-design. Then, (6.6) implies(

X0 ⊕ (d2 − 1)x1

)†
d2 − 1

=

n∑
k=1

U†kTr
[
U†kX

]
= E U†Tr

[
X †U

]
Inserting both expressions into (6.124) yields

u(X ) = Tr
[
X †E U Tr

[
U†X

]]
−
(
ETr

[
X †U

])2

=E
∣∣∣Tr
[
X †U

]∣∣∣2 − (ETr
[
X †U

])2

=Var
[
Tr
[
X †U

]]
,

where we have used linearity of the expectation value and the fact that the ran-

dom variable Tr
[
X †U

]
is real-valued. Finally, we employ the relation between

Tr
[
U†X

]
and Favg(U ,X ) presented in (6.8) to conclude

u(X ) =Var
[
Tr
[
U†X

]]
=Var [d(d+ 1)Favg(U ,X )− Tr(X (Id))]

= (d(d+ 1))2 Var [Favg(U ,X )] ,

because variances are invariant under constant shifts and depend quadratically

on scaling factors. This establishes Theorem 78.

6.6 Conclusion and outlook

In this chapter, we addressed the crucial task of characterizing quantum chan-

nels. We do so by relying on AGFs of the quantum channel of interest with

simple-to-implement Cli�ord gates.
15

More speci�cally, we start by noting that

(i) the unital part of any quantum channel can be written in terms of a unitary

15

In this chapter, we addressed the . . . ] The conclusions are taken from the conclusions section

of Ref. [1] with slight modi�cations.
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2-design with expansion coe�cients given by AGFs. As a consequence, for cer-

tain Hilbert space dimensions d, the unital part can be reconstructed from d4

AGFs with Cli�ord-group operations by a straightforward and stable expansion

formula. (ii) As the main result, we prove for the case of unitary gates that the

reconstruction can be practically done using only essentially order of d2
random

AGFs with Cli�ord gates. In a simpli�ed measurement setting, we prove that this

also leads to a resource optimal scaling in terms of the total number of channel

invocations required to estimate the AGFs up to a precision of ε. For the proof,

we derived—in Chapter 4—a formula for the integration of fourth moments over

the Cli�ord group, which is similar to Collins’s calculus with Weingarten func-

tions. This integration formula might also be useful for other purposes. (iii) We

prove that the unitarity of a quantum channel, which is a measure for the coher-

ence of noise [Wal+15], has a simple statistical interpretation: It corresponds to

the variance of the AGF with unitaries sampled from a unitary 2-design.

The focus of this work is on the reconstruction of quantum gates. Here, the as-

sumption of unitarity considerably simpli�es the representation-theoretic e�ort

for establishing the fourth moment bounds required for applying strong exist-

ing proof techniques from low-rank matrix recovery. These extend naturally to

higher Kraus ranks, and we leave this generalization to future work. Existing

results [KZG16b; KZG16a] indicate that the deviation of the Cli�ord group from

a unitary 4-design may become more pronounced when the rank of the states or

channels in question increases. This may lead to a sub-optimal rank scaling of

the required number of observations m. In fact, a straightforward extension of

Theorem 52 to the Kraus rank-r case already yields a recovery guarantee with a

scaling of m ∼ r5d2 log(d).

Practically, it is important to explore how the identi�cation protocol behaves

when applied to data obtained from interleaved randomized benchmarking ex-

periments. Such numerical studies would further allow for a comparison to other

established schemes such as GST, for which no theoretical guarantees exist. In

Ref. [Kim+14], the authors show how to use interleaved randomized bench-

marking experiments to measure the AGF between a known Cli�ord gate and

the combined process of an unknown gate concatenated with the average Clif-

ford error process. In order to obtain tomographic information about the isolated

unknown gate, the authors had to do a linear inversion of the average Cli�ord

error. However, in most cases, we expect the average Cli�ord error to be close

to a depolarizing channel which has very high rank. Thus, building on our intu-

ition obtained for quantum states [Rio+17] and using our techniques, we could

obtain a low-rank approximation to the combined unknown gate and average
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Cli�ord error, which under the assumption of a high-rank Cli�ord error, would

naturally pick out the coherent part of the unknown gate.

193





7 Hamiltonian identification for
analogue simulation

In this chapter, we turn to the identi�cation problem of a Hamiltonian that is im-

plemented in a analogue simulation of time trace data. For a quantum dynamics

analogue simulator such identi�cations task are arguably the most important

diagnostic primitives as they assess the quality and identify the deviations from

the device’s speci�cation—Hamiltonian identi�cation assess the quality of the

application layer of a analogue simulator.

Interestingly, the level of control of modern quantum analogue simulators per-

mits one to assess the quality of the Hamiltonian implementation in a bottom-up

approach: starting with very simple Hamiltonians and, subsequently, increas-

ing the complexity of the tasks. As we will see in this chapter, already the

identi�cation of very simple Hamiltonians—non-interacting, quadratic bosonic

Hamiltonians—gives rise to a rich signal processing task, and presents severe

challenges in terms of uncontrolled e�ects in the state-preparation and mea-

surement phase in practice. We here report on the precise identi�cation of non-

interacting, quadratic bosonic Hamiltonians that were experimentally realized

on a superconducting-qubit analogue quantum simulator. In the setup the state-

preparation and the measurement phase include ramping phases between the

idle frequencies of the qubits, that realize the excitations and couplings, to the

Hamiltonian parameter. This introduces a particular form of SPAM errors that,

if not accounted for, severely limit the precision of the identi�cation task. We de-

vise an identi�cation method that is custom-tailored to the problem at hand and

fully exploits its structure in order to achieve the required level of semi-device

dependence for a precise identi�cation. Furthermore, by comparing the identi-

�ed Hamiltonians with their control targets for families of Hamiltonians we pro-

vide an analogue simulator benchmark for the components of super-conducting

processors.

We begin with reporting the experimental results and subsequently give a more

detailed account of the method.
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Figure 7.1: Outline of the experiment and identi�cation algorithm. (a) The time evolution

under a target Hamiltonian h0 is implemented on an part of the Google Sycamore

chip (gray) using the pulse sequence depicted in the middle. (b) The expected value of

canonical coordinates xm and pm for each qubit m over time is estimated from mea-

surements using di�erent ψn as input states. (c) The data shown in (b) for each time t0
can be interpreted as a (complex-valued) matrix with entries indexed by measured and

initial excited qubit, m and n. The identi�cation algorithm proceeds in two steps: 1.

From the time-dependent matrix trace of the data, the Hamiltonian eigenfrequencies

are extracted using a super-resolving, denoising algorithm. The blue line indicates the

denoised, high-resolution signal as ‘seen’ by the algorithm. 2. After removing the ramp

using the tomographic estimate provided by a the matrix at a �xed time, the Hamil-

tonian eigenspaces are reconstructed using a non-convex optimization algorithm over

the orthogonal group. From the extracted frequencies and reconstructed eigenspaces,

we can calculate the identi�ed Hamiltonian ĥ that describes the measured time evolu-

tion.

7.1 Experimental results

Setup. We characterize the Hamiltonian
1

governing analogue dynamics of a

Google Sycamore chip, which consists of a two-dimensional array of nearest-

neighbour coupled superconducting qubits. Each physical qubit is a non-linear

1

We characterize . . . improving analogue quantum devices.] The remainder of this chapter fo-

cusing on Hamiltonian identi�cation has been published as the preprint Ref. [3]. The work

has been conducted together with Dominik Hangleiter and under supervision of Jens Eisert.

It contains equal contributions of Dominik Hangleiter and the thesis’ author to all parts of

the project. The experimental data was taken by Pedram Roushan at Google Quantum AI.

The hardware used for this experiment was developed by the Google Quantum AI hardware

team, under the direction of Anthony Megrant, Julian Kelly and Yu Chen. We further ac-

knowledge contributions from Charles Neill, Kostyantyn Kechedzhi, and Alexander Korotkov

to the calibration procedure used in this analogue approach. We would like to thank Chris-

tian Krumnow, Benjamin Chiaro, Alireza Seif, Markus Heinrich, and Juani Bermejo-Vega for

fruitful discussions in early stages of the project.
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oscillator with bosonic excitations (microwave photons) [Car+20]. Using the

rotating-wave approximation the dynamics governing the excitations of the qubits

in the rotating frame can be described by the Bose-Hubbard Hamiltonian

HBH =
∑
i

(
µia
†
iai + ηia

†
ia
†
iaiai

)
−
∑
i 6=j

Ji,ja
†
iaj , (7.1)

where a†i and ai denote bosonic creation and annihilation operators at site i,
respectively, µi is the on-site potential, Ji,j is the hopping rate between nearest

neighbour qubits, and ηi is the on-site interaction strength. The qubit frequency,

the nearest-neighbour coupling between them, and the non-linearity set µ, J ,

and η, respectively. We are able to tune µ and J on nanoseconds timescales,

while η is �xed.

Here, we focus on the speci�c task of identifying the values µi and Ji,j . The

corresponding non-interacting Hamiltonian acting on N modes can be conve-

niently parametrized as

H(h) = −
N∑

i,j=1

hi,ja
†
iaj (7.2)

with an N ×N Hermitian parameter matrix h with entries hi,j , which is com-

posed of the on-site chemical potentials µi on its diagonal and the hopping en-

ergies Ji,j for i 6= j. The identi�cation of the non-interacting part H(h) of

HBH can be viewed as a �rst step in a hierarchical procedure for characteriz-

ing dynamical quantum simulations with tunable interactions and numbers of

particles.

The non-interacting part H(h) of the Hamiltonian HBH can be inferred when

initially preparing a state where only a single qubit is excited with a single pho-

ton. For initial states with a single excitation, the interaction term vanishes,

hence e�ectively η = 0. Consequently, only the two lowest energy level of

the non-linear oscillators enter the dynamic. Therefore, referring to them as

qubits (two-level systems) is precise. Speci�cally, we identify the parameters hi,j
from dynamical data of the following form. We initialize the system in |ψn 〉 =

(id+a†n) |0〉⊗N /
√

2 and measure the canonical coordinates xm = (am+a†m)/2

and pm = (am − a†m)/(2i) for all combinations of m,n = 1, . . . , N . In terms of

the qubit architecture, this amounts to local Pauli-X and Pauli-Y basis measure-

ments, respectively. We combine the statistical averages over multiple measure-

ments to obtain an empirical estimator for 〈am(t)〉ψn = 〈xm(t)〉ψn+i 〈pm(t)〉ψn .
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For particle-number preserving dynamics, this data is of the form

〈am(t)〉ψn =
1

2
exp(−ith)m,n . (7.3)

It therefore directly provides estimates of the entries of the time-evolution uni-

tary at time t in the single-particle sector of the bosonic Fock space.

In Figure 7.1, we show an overview of the experimental procedure, and the

di�erent steps of the Hamiltonian identi�cation algorithm. Every experiment

uses a few coupled qubits, from the larger array of qubits on the device (Fig-

ure 7.1(a)). On those qubits, the goal is to implement the time-evolution with tar-

geted Hamiltonian parameters h0, which are subject to connectivity constraints

imposed by the couplings of the qubits. To achieve this, we perform the fol-

lowing pulse sequence to collect dynamical data of the form (7.3). Before the

start of the sequence, the qubits are at frequencies (of the |0〉 to |1〉 transition)

that could be a few hundred MHz apart from each other. In the beginning, all

qubits are in their ground state |0〉. To prepare the initial state, a π/2-pulse is

applied to one of the qubits, resulting in its Bloch vector moving to the equa-

tor. Then ramping pulses are applied to all qubits to bring them to the desired

detuning around a common rendezvous frequency (6500 MHz in this work). At

the same time, pulses are applied to the couplers to set them to the desired value

(20 MHz in this work). The pulses are held at the target values for time t, cor-

responding to the evolution time of the experiment. Subsequently, the couplers

are ramped back to zero coupling and the qubits back to their initial frequency,

where 〈xm(t)〉 and 〈pm(t)〉 on the desired qubit m is measured. The initial and

�nal pulse ramping take place over a �nite time of 2–3 ns, and therefore give

rise to a non-trivial e�ect on the dynamics, which we take into account in the

identi�cation procedure. The experimental data (Figure 7.1(b)) on N qubits are

N × N time-series estimates of 〈am(t)〉ψn for t = 0, 1, . . . , T ns and all pairs

n,m = 1, . . . , N . Given those data, the identi�cation task amounts to identify-

ing the ‘best’ coe�cient matrix h, describing the time-sequence of snapshots of

the single-particle unitary matrix
1
2 exp(−ith).

Identification method. We can identify the generator h of the unitary in two

steps (Figure 7.1(c)), making use of the eigendecomposition of the Hamiltonian

(see the Methods section below). In the �rst step, the time-dependent part of the

identi�cation problem is solved, namely, identifying the Hamiltonian eigenval-

ues (eigenfrequencies). In the second step, given the eigenvalues, the eigenba-

sis for the Hamiltonian of h is determined. In order to make the identi�cation

method noise-robust, we furthermore exploit structural constraints of the model.
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First, the Hamiltonian has a non-degenerate spectrum such that the time-series

data has a time-independent, sparse frequency spectrum with exactlyN distinct

contributions. Second, the Fourier coe�cients of the data have an explicit form

as the outer product of the orthogonal eigenvectors of the Hamiltonian. Third,

the Hamiltonian parameter matrix has an a priori known sparse support due to

the experimental connectivity constraints. These structural constraints are not

respected by various sources of incoherent noise, including particle loss and �-

nite shot noise, and also coherent noise such as the accumulation of diagonal

phases before the measurement. Thereby, an identi�cation protocol that takes

these constraints into account is intrinsically robust against various imperfec-

tions.

To identify the sparse frequencies from the experimental data, in the �rst step

of the algorithm, we use a super-resolution and denoising algorithm (ESPRIT)

[RPK86; Fan16]. Achieving the high precision in this step is crucial for identi-

fying the eigenvectors in the presence of noise. To identify the eigenbasis, in

the second step, we perform least-square optimization of the time-series data

under the orthonormality constraint with a gradient descent algorithm on the

manifold structure of the orthogonal group [AEK09]. Here, we incorporate the

connectivity constraint on the coe�cient matrix h by making use of regulariza-

tion techniques [BG11].

Robustness against ramp errors. The initial and �nal ramping pulses result

in a time-independent, approximately unitary transformation at the beginning

and end of the time series. It is important to stress that such ramping pulses

are expected to be generic in a wide range of experimental implementations

of dynamical analogue quantum simulations. We can model the e�ect of such

state preparation and measurement (SPAM) errors via linear maps S and M ,

respectively. This alters our model of the ideal data (7.3) to

〈am(t)〉ψn =
1

2
(M · exp(−ith) · S)m,n. (7.4)

While for the frequency identi�cation such time-independent errors ‘only’ de-

teriorate the signal-to-noise ratio, for the identi�cation of the eigenvectors of h
it is crucial to take the e�ects of non-trivial S and M into account. Given the

details of the ramping procedure, we expect that the deviation of the initial map

S from the identity will be signi�cantly larger than that of the �nal map M and

we provide evidence for this in the subsequent method section. In particular, the

�nal map will be dominated by phase accumulation on the diagonal.
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7 Hamiltonian identi�cation for analogue simulation

We make the identi�cation robust to arbitrary initial maps S and diagonal �nal

maps M : By pre-processing the data, we can robustly remove the initial map S.

In the post-processing, we can remove diagonal �nal maps M in the eigenspace

identi�cation. Given the identi�ed Hamiltonian ĥ, we can obtain estimates Ŝ of

S and D̂M of the orthogonal and diagonal part of M (see Methods).

Error sources. There are two main remaining sources of error that a�ect the

Hamiltonian identi�cation. First, the estimate ĥ has a statistical error due to the

�nite number of measurements in estimating the expectation values. We esti-

mate the statistical error of the identi�ed Hamiltonian ĥ via parametric boot-

strapping. Second, any �nal map M with a non-diagonal orthogonal part will

alter the eigenbasis of the Hamiltonian that describes the dynamical data after

removal of the initial map S giving rise to a systematic error. We estimate the

magnitude of the resulting error on the identi�ed Hamiltonian ĥ using a simple

model for the ramping phase.

Notice that while the statistical error determines the predictive power of the

identi�ed Hamiltonian ĥ, the systematic error does not necessarily: A future

experiment with the same ramping pulses will be best described by the iden-

ti�cation results ĥ, Ŝ and D̂M up to the statistical error. The systematic error

then captures the deviation of the identi�ed Hamiltonian ĥ from the Hamilto-

nian implemented during the time-evolution phase of the experiment within our

model.

Results. We implement di�erent Hamiltonians with a �xed overall hopping

strength Ji,j = 20 MHz and site-dependent local potentials µi on subsets of

qubits and take time-series data as described above. Speci�cally, we choose

the local potentials quasi-randomly µq = 20 cos(2πqb) MHz, for q = 1, . . . , N ,

where b is a number between zero and one. In one dimension, this choice corre-

sponds to implementing the Harper Hamiltonian, which exhibits characteristic

‘Hofstadter butter�y’ frequency spectra as a function of the dimensionless mag-

netic �ux b [Hof76].

In Figure 7.2, we illustrate the properties of a single Hamiltonian identi�cation

instance in terms of both how well the simulated time evolution �ts the exper-

imental data (a, d, e) and how it compares to the targeted Hamiltonian (b) and

SPAM (c). We measure all deviations in terms of the `2 norm, de�ned for a ma-

trixA as ‖A‖`2 = (
∑

i,j |Ai,j |2)1/2
(Frobenius norm). We also de�ne a metric of
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Figure 7.2: A single Hamiltonian recovery of a 5-mode Hamiltonian and the corre-
sponding time domain data. (a) The full experimental time-series data 〈xm(t)〉ψn

for m,n = 1, . . . , 5 and the best �t of those data in terms of our model

1
2
(M exp(−ith)S)m,n for a diagonal and orthogonalM and linear map S (solid lines).

(b) The target Hamiltonian matrix h0, the identi�ed Hamiltonian ĥ, and the deviation

between them. The error of each diagonal entry is±(0.16+1.22) MHz and of each o�-

diagonal entry ±(0.12 + 0.60) MHz and comprises the statistical and the systematic

error, respectively. The analogue implementation accuracy Eanalogue(ĥ, h0) is 0.73 ±
(0.07+0.37) MHz, and 0.32±0.00 MHz for the eigenfrequencies. The analogue imple-

mentation accuracy Eanalogue(Ŝ, id) of the identi�ed initial map is 0.61±(0.00+0.61).

(c) The real part of the initial map Ŝ and the diagonal orthogonal part D̂M of the �nal

map M , inferred from the data using the identi�ed Hamiltonian ĥ. (d) Absolute value

of the time-domain deviation of the �t from the full experimental data for each time se-

ries, given by deviation[ĥ, Ŝ, D̂M ]m,n := 〈am(t)〉ψn− 1
2
D̂M exp(−itĥ)Ŝ. The insets

represent the root-mean-square deviation of the Hamiltonian �t from the experimen-

tal data per time series, averaged over the evolution time for each matrix entry (m,n),

resulting in an entry-wise summarized quality of �t. We �nd a total root-mean-square

deviation of the �t of 0.14. (e) Instantaneous root-mean-square deviation of the iden-

ti�ed Hamiltonian ĥ, initial map Ŝ and �nal map D̂M and of the target Hamiltonian

h0 with initial map �t S0 from the experimental data averaged over the distinct time

series.
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analogue implementation accuracy of the identi�ed Hamiltonian ĥ with respect

to the targeted Hamiltonian h0 as

Eanalogue(ĥ, h0) :=
1

N

∥∥∥ĥ− h0

∥∥∥
`2
. (7.5)

Likewise, we can quantify the implementation accuracy of the identi�ed ini-

tial map Ŝ as Eanalogue(Ŝ, id), and of the identi�ed eigenfrequencies eig(ĥ) as

Eanalogue(eig(ĥ), eig(h0)).

Notice that the implementation accuracy of the frequencies in the data from the

targeted Hamiltonian eigenfrequencies give a lower bound to the overall imple-

mentation accuracy of the identi�ed Hamiltonian. This is because the `2 norm

used in the de�nition (7.5) of Eanalogue is unitarily invariant and any deviation in

the eigenbasis, which we identify in the second step of our algorithm, will tend

to add up with the frequency deviation.

We �nd that most entries of the identi�ed Hamiltonian deviate from the target

Hamiltonian by less than 0.5 MHz with a few entries deviating by around 1–2
MHz. The overall implementation accuracy is less than 1 MHz. The error of

the identi�cation method is dominated by the systematic error due to the �nal

ramping phase that is around 1 MHz for the individual entries. Small long-range

couplings exceeding the statistical error are necessary to �t the data well even

when penalizing those entries via regularization. These entries are rooted in the

e�ective rotation by the �nal ramping before the measurement and within the

estimated systematic error.

The �t deviation from the data (Figure 7.2(e)) exhibits a prominent decrease

within the �rst few nanoseconds of the time evolution. This indicates that the

time evolution signi�cantly di�ers during the initial phase of the experiment as

compared to the main phase of the experiment, which we can attribute to the

initial pulse ramping of the experiment. The identi�ed initial map describing

this ramping (Figure 7.2(c)) is approximately band-diagonal and deviates from

being unitary, indicating �uctuations of the e�ective ramps between di�erent

experiments.

We �nd a signi�cantly larger time-averaged real-time error (Figure 7.2(d)) in all

data series 〈am〉ψn in which Q4 was measured, indicating a measurement error

on Q4. We also observe signi�cant deviation between the parameters of the

target and identi�ed Hamiltonian in qubits Q3 and Q4 and the coupler between

them. Since the deviation of the eigenfrequencies is much smaller than of the

full Hamiltonian, we attribute those errors also to a non-diagonal part of the

�nal ramping phase at those qubits that leads to a rotated eigenbasis.
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Figure 7.3: Comparing frequency and full identi�cation errors. (a) In an N = 6 subset of

connected qubits, by varying b from 0 to 1, we implement 51 di�erent Hamiltonians.

The plot shows the Fourier transform of the time domain data. (b) The extracted eigen-

frequencies (denoised peaks in panel (a)) are shown as colored dots, where the assigned

color is indicative of the deviation between targeted eigenfrequencies (gray lines) and

the identi�ed ones from position of the peaks. (c) Analog implementation accuracy

Eanalogue(ĥ, h0) of the identi�ed Hamiltonian (dark red) compared to the implementa-

tion accuracy Eanalogue(eig(ĥ), eig(h0)) of the identi�ed frequencies (golden). Colored

(gray) error bars quantify the statistical (systematic) error. (d) Layout of the six qubits

on the Sycamore processor and median of the entry-wise absolute-value deviation of

the Hamiltonian matrix entries from their targeted values across the ensemble of 51
di�erent values of b ∈ [0, 1].
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Figure 7.4: Error map of Hamiltonian implementation across the Sycamore processor.
Over the grid of 27 qubits, we randomly choose subsets of connected qubits and cou-

plers of size N = 5. On each subset we implement two Hamiltonians with b = 0, 0.5
and run the identi�cation algorithm. Two instances are shown in panel (a). For each

subset, we compute the deviation of the identi�ed Hamiltonian and initial map from

their respective target and assign it to each qubit or coupler involved. Due to overlap

of subsets, each qubit or coupler has been involved in at least 5 di�erent choices of

subsets. Panels (b) and (c) show the median deviation for the Hamiltonian and initial

map implementations, respectively. Panel (d) shows the mean of the sign �ips in the

identi�ed (diagonal ±1) �nal map for each qubit.
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In Figure 7.3, we summarize multiple identi�cation data of this type to bench-

mark the overall performance of a �xed set of qubits. In panel (a) we show

the measured Fourier domain data for 51 di�erent values of the magnetic �ux

b ∈ [0, 1]. In panel (b) we plot the deviation of the frequencies identi�ed from

the data. Most implemented frequencies deviate by less than 1 MHz from their

targets. While the Hamiltonian implementation accuracies (Figure 7.3(c)) are

up to a factor of four larger than the corresponding frequency accuracies, this

decrease is mostly within our estimated systematic error induced by the �nal

ramping. Importantly, the frequency identi�cation is robust against systematic

measurement errors. This indicates that the �nal ramping is the limiting factor

for an even more accurate implementation and identi�cation of the Hamiltoni-

ans.

In Figure 7.3(d) we show the median of the entry-wise deviation of the identi�ed

Hamiltonian from its target over all magnetic �ux values. Thereby, the ensem-

ble of Hamiltonians de�nes an overall error benchmark. This benchmark can

be associated to the individual constituents of the quantum processor, namely,

the qubits, corresponding to diagonal entries of the Hamiltonian deviation, and

the couplers, corresponding to the �rst o�-diagonal matrix entries of the devia-

tion.

We use this benchmark over an ensemble of two �ux values to assess a 27-qubit

array of superconducting qubits. To do so, we repeat the analysis reported in

Figure 7.3 for 5-qubit dynamics on di�erent subsets of qubits and extract aver-

age errors of the individual qubits and couplers involved in the dynamics, both

in terms of the identi�ed Hamiltonian and the initial and �nal maps. Summa-

rized in Figure 7.4, we �nd signi�cant variation in the implementation accuracy

of di�erent couplers and qubits. While for some qubits the e�ects of the initial

and �nal maps are negligible, for others they indicate the potential of a signi�-

cant implementation error. From a practical point of view, such diagnostic data

allows to maximally exploit the chip’s accuracy for small-scale analogue simula-

tion experiments. Let us note that within the accuracy of our method the overall

benchmark for the qubits and couplers for 5-qubit dynamics agrees with that of

3- and 4-qubit dynamics.
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7.2 Methods

After summarizing the experimental �nding, we here give a more detailed ac-

count of the method used, in particular, its robustness and the estimation of

systematic errors.

7.2.1 Experimental details

We use the Sycamore quantum processor composed of quantum systems ar-

ranged in a two-dimensional array. This processor consists of gmon qubits

(transmons with tunable coupling) with frequencies ranging from 5 to 7 GHz.

These frequencies are chosen to mitigate a variety of error mechanisms such as

two-level defects. Our coupler design allows us to quickly tune the qubit–qubit

coupling from 0 to 40+ MHz. The chip is connected to a superconducting circuit

board and cooled down to below 20 mK in a dilution refrigerator. Each qubit has a

microwave control line used to drive an excitation and a �ux control line to tune

the frequency. The processor is connected through �lters to room-temperature

electronics that synthesize the control signals. We execute single-qubit gates by

driving 25 ns microwave pulses resonant with the qubit transition frequency.

The qubits are connected to a resonator that is used to read out the state of the

qubit. The state of all qubits can be read simultaneously by using a frequency-

multiplexing. Initial device calibration is performed using ‘Optimus’ [Kel+18]

where calibration experiments are represented as nodes in a graph.

7.2.2 Details of the identification algorithm

Succinctly written, our data model is given by

ym,n[l] = 〈am(tl)〉ψn =
1

2
(M · exp(−itlh) · S)m,n, (7.6)

where m,n = 1, . . . , N label the distinct time series, l = 1, . . . , L labels the

time stamps of the L data points per time series. The matrices S and M are

arbitrary linear maps that capture the state preparation and measurement stage

as e�ected by the ramping of the eigenfrequencies of the qubits and couplers to

their interacting value and back (see Figure 7.1). In the experiment, we empiri-

cally estimate each such expectation value with 1000 single shots.
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Our mindset for solving the identi�cation problem is based on the eigendecom-

position h =
∑N

k=1 λk |vk 〉〈vk | of the coe�cient matrix h in terms of eigenvec-

tors |vk 〉 and eigenvalues λk. We can write the data (7.6) in matrix form as

y[l] =
1

2
exp(−itlh)· = 1

2

N∑
k=1

e−itlλk |vk 〉〈vk | , (7.7)

where we have dropped S and M for the time being. This decomposition sug-

gests a simple procedure to identify the Hamiltonian using Fourier data analysis.

From the matrix-valued time series data y[l] (7.7), we identify the Hamiltonian

coe�cient matrix h in two steps. First, we determine the eigenfrequencies of

h. Second, we recover the eigenbasis of h. To achieve those identi�cation tasks

with the largest possible robustness and accuracy, it is key to exploit all available

structure at hand.

Step 1: Frequency extraction. In order to estimate the spectrum to the best

available accuracy levels, we exploit that the signal is sparse in Fourier space.

Exploiting this structure allows to substantially denoise the signal and achieve

a super-resolution beyond the Nyquist limit [CF13; CF14]. We achieve this with

an adaptation of the ESPRIT algorithm proposed in Ref. [RPK86] and analysed

in its functioning in Refs. [Fan16; LLF20].

To achieve optimal robustness of the recovery, we superimpose di�erent time

series ym,n. Speci�cally, we compute the trace of the data matrix (for S = M =
id) as

F [l] := Tr[y[l]] =
N∑
m=1

ym,m[l] =
1

2

N∑
k=1

e−itlλk . (7.8)

We �nd F [l] to be an equally weighted linear combination of sinusoids. Thus,

using F [l] instead of the separate time series ensures an optimal signal-to-noise

ratio for the simultaneous extraction of all frequencies. In a future companion

work [Rot+22] we describe in detail how ESPRIT [Fan16] recovers the desired

spectral values robustly with super-resolution from such data. Su�ce it here

to say that the key idea is to set up a Hankel matrix and identify the dominant

n-dimensional subspace of its range.

Step 2: Eigenspace identification. To identify the eigenspaces of the Hamil-

tonian, we use the eigenfrequencies found in Step 1 to �x the oscillating part of
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the dynamics in Eq. (7.7). What remains is the problem of �nding the eigenspaces

|vk 〉〈vk | from the data. The problem is a non-convex inverse quadratic prob-

lem, subject to the constraint that the resulting Hamiltonian matrix respects the

connectivity constraint of the superconducting architecture. Formally, we de-

note the a priori known support set of the Hamiltonian matrix as Ω, so that this

constraint amounts to hΩ = 0. We can cast this problem into the form of a

least-square optimization problem

minimise
{ |vk 〉}

L∑
l=1

∥∥∥∥∥y[l]−
∑
k

e−iλktl |vk 〉〈vk |

∥∥∥∥∥
2

`2

,

subject to 〈vm|vn〉 = δm,n,

(∑
k

λk |vk 〉〈vk |

)
Ω̄

= 0,

(7.9)

equipped with non-convex constraints enforcing the orthogonality and the quadratic

constraint restricting the support. In order to approximately enforce the support

constraint, we make use of regularization [BG11]. It turns out that this can be

best achieved by adding a term [10, App. A]

µ

∥∥∥∥∥
(∑

k

λk |vk 〉〈vk |

)
Ω̄

∥∥∥∥∥
`2

(7.10)

to the objective function (7.9), where µ > 0 is a parameter weighting the viola-

tion of the support constraint. We then solve the resulting minimization problem

by using a conjugate gradient descent on the manifold of the orthogonal group

[EAS98; AEK09], see also the recent work [Luc+21; LKF21; 2] for the use of ge-

ometric optimization for quantum characterization.

Without the support constraint this gives rise to an optimization algorithm that

converges well. A detailed study will be published in Ref. [Rot+22]. However,

the regularization term makes the optimization landscape rugged as it introduces

an entry-wise constraint that is skew to the orthogonal manifold. This is why

we consecutively ramp up µ until the algorithm does not converge any more

in order to �nd the Hamiltonian that best approximates the support constraint

while at the same time being a proper solution of the optimization problem. For

example, for the data in Figure 7.2 the value of µ is 121. In order to avoid that we

identify a Hamiltonian from a local minimum of the rugged landscape, we only

accept Hamiltonians which achieve a total �t of the experimental data within a

5% margin of the �t quality of the unregularized recovery problem, and use the

Hamiltonian recovered without the regularization otherwise.
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7.2.3 Robustness to state preparation and measurement errors

The experimental design requires a ramping phase of the qubit and coupler fre-

quencies from their idle location to the desired target Hamiltonian and back for

the measurement. In e�ect, the data model (7.6) includes time-independent lin-

ear mapsM and S that are applied at the beginning and end of the Hamiltonian

time-evolution. The maps a�ect both frequency extraction and the eigenspace

identi�cation. For the frequency extraction, the Fourier coe�cients of the trace

signal F [l] become 〈vk|SM |vk〉. While the frequencies remain unchanged the

Fourier coe�cients now deviate signi�cantly from unity, signi�cantly impair-

ing the noise-robustness of the frequency identi�cation. More severely, the

eigenspace reconstruction yields a rotated eigenbasis if M and S cause an or-

thogonal rotation. We can however remove either S or M by appropriately

pre-processing the data.

Ramp removal via pre-processing. To remove the initial map S from the

data we apply the pseudoinverse (·)+
of the data y[l0] at a �xed time tl0 to the

entire (time-dependent) data series in matrix form. For arbitrary S and M = id
this gives rise to

y(l0)[l] = y[l](y[l0])+ =

N∑
k=1

e−iλk(tl−tl0 ) |vk 〉〈vk | . (7.11)

The caveat of this approach is that the noise that altered y[l0] is now present

in every entry of the new data series y(l0)
. We can remedy this e�ect by using

several time points y[l0] for the inversion. We compute the concatenation of data

series for di�erent choices of l0, e.g., for every s data points 0, s, 2s, . . . , bL/scs
giving rise to new data ytotal, s = (y(0), y(s), y(2s), . . . , y(bL/scs)) ∈ CbL/scL. If

the data su�ers from drift errors, it is also bene�cial to restrict each data series

y(l0)
to entries y(l0)[κ] with κ ∈ [l0 − w, l0 + w], i.e., the entries in a window

of size w around l0. In practice, we use s = 1 and w = 50. We note that due

to the symmetry of the problem, replacing the right multiplication with (y[l0])+

in the pre-processing by a left multiplication yields the analogue algorithm that

removes errors in the measurement M instead of the state preparation error

S.

Given an estimate for the Hamiltonian ĥ, we can estimate the initial map S via

Ŝ =
2

L

L∑
l=1

exp[itlĥ]y[l] . (7.12)
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Systematic measurement error. The pre-processing step allows us to either

remove the initial map or the �nal map from the data. Removing the initial

map still leaves us with the �nal map M as a source of systematic error. The

�nal pulse ramping is in fact one of the major sources of systematic error in

the experimental application of the identi�cation method. When allowing for

an arbitrary initial map, it is intrinsically impossible to identify the �nal map

at the same time. This is because any perturbation of the measurement basis

induced by a �nal pulse ramping e�ectively changes the Hamiltonian eigenbasis.

However, due to the constraints of the problem, the eigenspace identi�cation

algorithm is only susceptible to a real orthogonal rotation at the end of the time

series.

We now make this explicit. Including the �nal ramp M from our data model

(7.6), the description Eq. (7.11) of the data, obtained after removing the initial

ramp S in the pre-processing, becomes

y(t0)[l] = M exp[−i(tl − t0)h]M−1 . (7.13)

Taking the trace of y(t0)[l] yields F [l] = 1
2

∑N
k=1 e−tlλk so that the data for the

frequency extraction step is unaltered by M in expectation. Consequently, we

only observe an e�ect of M in the eigenspace identi�cation.

To understand the e�ect of M on the identi�cation, we observe that the eigen-

basis of h is constrained to be real and orthogonal. Correspondingly, only the

real, orthogonal part ofM will rotate the identi�ed eigenspaces. We writeM =
OM (Id +X), where OM ∈ arg minO∈O(N) ‖M − O‖`2 . Let us assume that X
is small in operator norm so that we can drop higher order terms in the fol-

lowing. Then the identi�cation algorithm—assuming convergence to the global

minimum—returns the Hamiltonian estimate

ĥ = OMhO
T
M . (7.14)

The result of the identi�cation algorithm will therefore be rotated by the orthog-

onal part of M compared to the ‘actual Hamiltonian’ h.

To see the e�ect on the estimate Ŝ of the initial map S, let us �rst observe that

using ĥ to predict time series data results in

yĥ(t) =
1

2
OM exp{−ith}OTM Ŝ . (7.15)

This in turn yields an estimate Ŝ for S via linear inversion for every t of Ŝt =
OMeithOTMMe−ithS = OMS + OMeithXe−ithS. Taking the average over t ∈
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{tl}Ll=1 gives

Ŝ = OM (Id +X)S (7.16)

with X = 1
L

∑L
l=1 eitlhXe−itlh

. Due to unitary invariance, the `2 norm of X is

controlled by

∥∥X∥∥
`2
≤ ‖X‖`2 = ‖M −OM‖`2 ≤ ‖M − Id‖`2 . We �nd that

the estimate Ŝ is a�ected both by the orthogonal part OM and the average of

the non-orthogonal part over the time evolution.

Finally, let us consider the e�ect on the quality of �t of the data with ĥ. The

deviation of the data predicted with ĥ from the expectation value of the actual

data is thus

y(t)− yĥ(t) =
1

2
Om

[
e−ithX −Xe−ith

]
S . (7.17)

We have

∥∥y(t)− yĥ(t)
∥∥
`2
≤ ‖X‖`2 ‖S‖`2 . In particular, the deviation of the

data from the Hamiltonian �t is only produced by the non-orthogonal part of

M , i.e. OMX , and vanishes for orthogonal M where X = 0. The identi�cation

method itself, however, is robust against these non-orthogonal deviations.

We conclude that neither the identi�cation algorithm nor the deviation in the

data can distinguish between a real, orthogonal rotation before the measurement

and the time evolution under the correspondingly rotated Hamiltonian. Indeed,

any future data with the same �nal ramping will be correctly predicted by the

identi�ed Hamiltonian ĥ and initial map Ŝ.

Removing diagonal unitaryM in post-processing. However, using a (mild)

assumption on the accuracy of the actual implemented Hamiltonian h with re-

spect to its target h0, we can identify and correct for the orthogonal part of

diagonal ramps in ĥ and Ŝ. Indeed, we expect M to be approximately diagonal

such that its main contribution is to add a complex phase to the signal for each

measured qubit. This is because e�ectively ramping the couplers out of the rele-

vant frequency spectrum can be achieved much more rapidly than ramping the

qubits back to their idling frequencies.

Importantly, forM = diag(eiδ1 , . . . , eiδN ) a diagonal unitary, its projection onto

real, orthogonal matrices is given by OM = diag(s1, . . . , sn) with si = +1 for

|δi| ≤ π/2 and si = −1 for |δi| > π/2. If we exclude the possibility to miss a tar-

get Hamiltonian in the implementation by a phase of more than π/2 on a qubit,

we can attribute an observed sign-�ip in the identi�ed Hamiltonian compared

to the target Hamiltonian to the �nal map. Thus, by optimizing our recovery

error over all possible diagonal real, orthogonal matrices DM (i.e., diagonal±1-

matrices) we can correct for a systematic error caused by an arbitrary diagonal
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7 Hamiltonian identi�cation for analogue simulation

unitaryM . We can identify the optimal such matrix D̂M and thereby also deter-

mine the diagonal phases ofM that are larger than π/2 in absolute value. Given

the identi�cation results ĥ′ and Ŝ′ before post-processing, we then obtain the

�nal identi�ed Hamiltonian ĥ = D̂M ĥ
′D̂M and initial map Ŝ = D̂M Ŝ

′
.

To summarize: Via pre- and post-processing we arrive at an identi�cation method

that is robust against arbitrary errors in the state-preparation (initial ramping)

and diagonal errors in the measurement (�nal ramping).

Imbalance between initial and final ramping phase. As explained above,

the pre-processing step allow us to remove either the initial map S or �nal map

M from the data. Subsequently, we can treat the diagonal phase accumulation of

the remaining map in the post-processing but its non-diagonal, real orthogonal

part remains a systematic error. A priori it is unclear which one of the two maps

is more bene�cial to remove in order to reduce the systematic error.

We have already treated the initial and �nal ramping phases on a di�erent foot-

ing, however. The reason for this is rooted in the speci�cs of the ramping of

the couplers compared to the qubits. The couplers need to be ramped from their

idle frequencies to provide the desired target frequencies of 20 MHz. This is

why we expect the timescale of the initial ramping to be mainly determined by

the couplers, namely the delay until they arrive around the target frequency

and the time it takes to stabilize at the target frequency. In contrast, the �nal

ramping map becomes e�ectively diagonal as soon as the couplers are again

out of the MHz regime. We therefore expect that the initial map has a sizeable

non-diagonal orthogonal component, whereas the �nal map is approximately

diagonal.

Therefore, it is advantageous to remove the initial map in the pre-processing,

and correct for the diagonal phases of the �nal map in the post-processing. To

con�rm this and to build trust in the theoretical considerations above, in Fig-

ure 7.5 we compare the properties of the identi�cation result when we remove

the initial map in the pre-processing with the corresponding result when we re-

move the �nal map instead. We observe that the deviation of the orthogonal part

ÔS from its projection D̂S to diagonal orthogonal matrices is much larger for

the identi�ed initial map Ŝ than the corresponding deviation for the �nal map

(Figure 7.5(a)). Moreover, both the root-mean-square �t of the data (Figure 7.5(c))

and the analogue implementation accuracy of the identi�ed Hamiltonian with

its target (Figure 7.5(b)) are signi�cantly improved when removing the initial

ramp as compared to removing the �nal ramp. This indicates that S induces
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Figure 7.5: Initial ramp removal versus �nal ramp removal. We identify Hamiltonians of a

set of 5-qubit Hamiltonians with Hofstadter butter�y potentials µq = 20 cos(2πqb)
MHz for qubits q = 1, . . . , 5 and �ux value b in without regularization. (a) Deviation

of the orthogonal part ÔS (ÔM ) of the identi�ed initial map Ŝ (�nal map M̂ ) from the

closest diagonal orthogonal matrix D̂S (D̂M ). (b) Analog implementation accuracy

of the corresponding identi�ed Hamiltonians ĥS (ĥM ). (c) Total root-mean-square

deviation of the time series data from the Hamiltonian �t.

a larger systematic error than M . Correspondingly, it is indeed more advanta-

geous to remove the initial map in the pre-processing and �t the �nal map with

a diagonal orthogonal matrix validating the approach taken here.

7.2.4 Error estimation

Finally, we estimate the error on the Hamiltonian ĥ and initial map Ŝ identi�ed

via the robust identi�cation method including pre- and post-processing. This

error comprises two contributions. First, it has a systematic contribution which

is due to the non-diagonal and orthogonal partOM of the �nal map M . Second,

it has a statistical contribution due to the estimation of the expectation values

(7.6) from �nite statistics. The two contributions to the error play di�erent roles
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7 Hamiltonian identi�cation for analogue simulation

for the predictive power of the identi�ed Hamiltonian. The identi�ed Hamilto-

nian can be regarded as the ‘actual’ Hamiltonian during the time evolution as

described in the frame rotated by the orthogonal part of the systematic measure-

ment error. For experiments that include the same ramping phases, the identi�ed

Hamiltonian ĥ together with the initial map Ŝ and the diagonal orthogonal �nal

map D̂M is thus expected to predict the time-evolution up the statistical error.

Thus, in such settings, the systematic error of the identi�ed Hamiltonian does

not a�ect its predictive power.

Final ramp effect estimation. To estimate the magnitude of the systematic

error that is induced by an orthogonal, non-diagonal part OM of the �nal pulse

ramping M , we use an idealized model of the �nal ramping phase with a �xed

speed v and a maximal ramping time τ . Let M = T exp{−i
∫ τ

0 H(t)dt}, where

T denotes the time-ordering operator. We set H(t) = Thm(h0 + sign(hm −
h0)vt) with parameter matrix hm at the end o� the ramp pulse and the thresh-

olding operator acting entry-wise as Thm(x) = max{min{x,−|hm|}, |hm|}.
The thresholding ensures that the entries ofH(t) stay equal to those of hm once

they reach their �nal value. For τ we use the minimal time at which all entries of

H(t) are equal to hm plus a small additional wait time. We assume that the ma-

trix after the ramp pules hm is a diagonal matrix with frequencies corresponding

to the idling frequencies of the qubits.

This leaves us with the ramping speed as an unknown parameter in our model.

We estimate the ramping speed to be lower bounded by 150 MHz/ns and a non-

zero wait time of 0.1ns and experimentally build trust in this assumption below.

We numerically evaluate the time-dependent integral to arrive at an estimate

M̄ for M . The projection of M̄ onto the real, orthogonal matrices yields an

estimate ŌM for the induced rotation in the Hamiltonian reconstruction (7.14).

Given ŌM we rotate the identi�ed Hamiltonian ĥ′ before the post-processing

stage, obtaining h̄ = ŌTM ĥ
′ŌM . We then calculate the entry-wise deviation of h̄

after post-processing from the identi�ed Hamiltonian ĥ. The maximal deviation

over all diagonal entries and over all o�-diagonal entries is used as an estimate

for the systematic error for the respective entries of ĥ caused by the �nal pulse

ramp. Analogously, we obtain a systematic error for the overall analogue im-

plementation accuracy. The resulting systematic error strongly depends on the

parameters of hm and h0, and is compatible with the deviation of the analogue

implementation accuracy of the identi�ed Hamiltonian from that of the identi-

�ed frequencies.

We �nd that the phases of the qubits in the simulated ŌM are rarely larger than
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Figure 7.6: Validating the ramp model. (a) Distance of the identi�ed initial map before post-

processing Ŝ′ from the identity for the 5-qubit butter�y data of Figure 7.5 (golden

dots) and maximum ramp distance maxi |(h0 − hm)i,i| (solid line) for each �ux value

b ∈ [0, 1]. (b) Phases of the diagonal entries of Ŝ for various instances of diagonal

Hamiltonians as a function of the corresponding ramping distances from their idle fre-

quency to the common rendezvous frequency, which is given by |(hm)i,i|. Di�erent

measurements of the same qubits are depicted in the same colour. The solid green line

is a linear upper bound to the ramp phases, yielding an upper bound to the total ramp

time of 0.6 ns. The dotted, golden line is a quadratic �t of the phase data, excluding

outliers above 140◦. Inset illustration of the ramp model. The qubits initially at fre-

quencies Q1 and Q2 are ramped to the common rendezvous frequency of 6500 MHz

giving rise to an initial map S, where they evolve under the Hamiltonian h for time t
until they are ramped back to their idle frequencies, giving rise to a �nal map M . The

shaded areas show the total acquired phase δ during the ramp phases.

π/2. In comparison, we observe frequent phase �ips in the data. With the as-

sumed minimal ramping speed we are therefore unable to explain all sign �ips

that are observed for certain qubits. As a consequence, the ramping speed of

these qubits must either be particularly slower, or further e�ects that result in

diagonal phase accumulation at the end of the time evolution play a role in the

experiment. But as explained above a diagonal unitary rotation as caused by a

ramping of the qubits after the couplers are already e�ectively 0, can only cause
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7 Hamiltonian identi�cation for analogue simulation

sign �ips of entire rows and columns and can, thus, be corrected for in the post-

processing.

Empirical validation of ramp model and parameter estimation. Our

model for estimating the systematic error induced by the �nal ramping phase

implies that the deviation of the initial and �nal ramp from the identity trans-

formation depends on the ramp distance, that is, the absolute value of the entries

of h − hm. Indeed, the maximal ramp distance is expected to set the timescale

of the ramp phase and, thus, determines magnitude of the ramping e�ect in the

data. In Figure 7.6(a) we validate that, indeed, the deviation of the identi�ed

initial map Ŝ is proportional to the ramp distance maxi,j |(h− hm)i,j |.

Our model of the �nal ramp phase depends on a lower bound on the ramping

speed of the qubits. We estimate the parameter by implementing the Hamilto-

nian with zero entries and reconstructing it with our identi�cation method. In

the rotating frame of the idle frequencies of the qubits, we e�ectively observe a

diagonal Hamiltonian with eigenfrequencies that are the di�erence between the

common rendezvous frequency (6500 MHz) and the idle frequencies. Since no

couplers are involved, both the corresponding �nal and initial ramping maps are

diagonal and contribute a complex phase to the data which is proportional to the

combined surface area underneath the ramps, see the inset of Figure 7.6(b).

Since the Hamiltonian is itself diagonal, it commutes with the �nal diagonal uni-

tary so that e�ectively the data can be described as ydiagonal(t) = exp(−ith)MS.

We can thus determine the phase directly as the phases of the diagonal entries

of our estimate Ŝ of the initial map. For the ramp model with a �xed ramp speed

we expect the total (diagonal) phase δ = ∆f2
to scale quadratically in the ramp

distance ∆f . For ramping up to the �nal value within a �xed time τ , we expect

the total phase to scale linearly as δ = ∆f · τ . Since for every Hamiltonian in-

stance, only one of the entries will reach its �nal value in the optimal time, and

all others e�ectively see a �xed ramp time, we expect the dependence for our

model to be a linear combination between a quadratic and a linear behaviour.

This expectation is con�rmed in Figure 7.6, where we show the identi�ed ramp

phases as a function of the ramp distance from the idle frequencies of individual

qubits to their common rendezvous frequency. From the linear upper bound to

the acquired phases as a function of the travelled qubit distances, we can further

estimate an upper bound of 0.6 ns to the total ramp time from the slope and

a non-zero additional wait time due to the non-zero o�set. Since the maximum

ramp distance of all data sets is at least 90 MHz (excluding the outliers at 75 MHz)

216



7.3 Summary and outlook

this builds trust in our estimate for a minimal ramping speed of 150 MHz/ns. At

this ramping speed, the o�set of 15◦ corresponds to an additional wait time of

0.1 ns. We also observe individual qubits that exhibit considerably larger phases

for relatively short ramping distance indicating that their ramping is slower.

Statistical error: Bootstrapping. Let us now turn to estimating the statisti-

cal error of the identi�cation result. This error is due to the �nite measurement

statistics which introduces an error to the empirical estimates of the expectation

value governing the data (7.3). We estimate the size of the induced error to the

Hamiltonian estimate that is returned by the identi�cation method via paramet-

ric bootstrapping. To this end, we simulate time series data with �nite statistical

noise according to the model (7.6) with M = id using the identi�ed Hamilto-

nian ĥ and a Haar-random unitary for the initial state-preparation error S. We

then run the Hamiltonian identi�cation method without the regularization on

105
instances of such synthetic data. As the statistical error of the entry we use

the 0.99-quantile (99% con�dence level) of the absolute deviation of each entry

in the Hamiltonians, obtained from the synthetic data, from the corresponding

entry of the identi�ed Hamiltonian, used to generate the data. We observe that

the statistical errors of the entries are of comparable size and only report the

maximal statistical error over all entries.

We also calculate 0.99-quantile of the deviation of the synthetically identi�ed

Hamiltonian ĥbt from the originally identi�ed Hamiltionian ĥ in terms of the

analogue implementation accuracy Eanalogue(ĥbt, ĥ), Eq. (7.5), and likewise for

the eigenfrequencies. This is used as the statistical error estimate for the overall

analogue implementation accuracy.

Omitting the regularization in the identi�cation method reduces the computa-

tional complexity of the bootstrapping and produces more well-behaved empir-

ical distributions of the deviation error. At the same time the regularization is

expected to improve the estimate and, thus, the statistical error obtained in this

way is expected to dominate the statistical error of the regularized identi�cation

method.

7.3 Summary and outlook

We have implemented the analogue simulation of the time-evolution of non-

interacting bosonic Hamiltonians with tunable parameters for up to 6 qubit lat-

tice sites. A custom-tailored identi�cation method allows us for the �rst time to
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robustly recover the implemented Hamiltonian that governs the time-evolution.

Thereby, we diagnose the deviation from the target Hamiltonian and assess the

precision of the implementation. We achieve sub-MHz accuracy of the Hamil-

tonian parameters compared to their targeted values in most implementations.

Combining the average performance measures over ensembles of Hamiltonians

we associate benchmarks to the components of the superconducting qubit chip

that quantify the performance of the hardware for the analogue task at hand and

provide speci�c diagnostic information. Within our Hamiltonian identi�cation

framework, we are able to identify SPAM errors due to parameter ramp phases as

a severe limitation of the architecture. Importantly, such ramp phases are present

in any analogue quantum simulation of quenched dynamics. Our results show

that minimizing those is crucial for precisely implementing a Hamiltonian.

The experimental and computational e�ort of the identi�cation method scales

e�ciently in the number of modes of the Hamiltonian. Generalizing our two-

step approach developed here, we expect a polynomial scaling with the dimen-

sion of the diagnosed particle sector and therefore remain e�cient for diagnos-

ing two-, three- and four-body interactions, thus allowing to build trust in the

correct implementation of interacting Hamiltonian dynamics as a whole—in fu-

ture work.

From a broader perspective, with this work, we hope to substantially contribute

to the development of a machinery for precisely characterizing and thereby im-

proving analogue quantum devices. As we have seen here, considerations of

semi device dependence come with di�erent twists for analogue simulators than

for digital quantum computing devices providing new speci�c challenges.

∗ ∗ ∗
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7.4 Viewpoint: Easing the Monte-Carlo sign-problem

So far in this chapter, we devised and experimentally tested a practical, semi-

device-dependent identi�cation method for the Hamiltonian of an analogue sim-

ulation. At the heart of the method is the exploitation of structural constraint

such as the orthogonality of the Hamiltonian eigenbasis. We focused on the dy-

namics of single particle excitations under a non-interacting Hamiltonians. This

puts us in the comfortable position that the exact calculation of the ideal time

evolution in the respective symmetry sector is e�cient on a classical computer.

The dynamics is arguably boring from a many-body physics point of view. For

an analogue simulator, however, we regard it as an inevitable �rst step for build-

ing trust in its correct function.

Nonetheless, the main motivation of analogue simulators of course stems from

their potential to e�ciently perform simulations of quantum systems that are

intractable on a classical computing device. But how exactly does the simu-

lation of a quantum system become intractable in the numerical practice? We

conclude the chapter with a discussion on the possibilities and limitation of clas-

sical simulations of quantum systems from the perspective of a key approach in

classical quantum simulations, quantum Monte-Carlo (QMC) [Hir+82; Tro+03;

Pol12; Tro+10]. Within the context of this chapter, this �nal discussion provides

a complementary perspective on the merits of analogue simulations. At the same

time it allows us to brie�y present our contribution to the question. Besides the

topical relation, our work on QMC is also methodically related to our approach

to Hamiltonian identi�cation. The work on QMC centres around the practical

optimization over bases choices, and we use the same optimization algorithms

for the orthogonal group as for the Hamiltonian identi�cation.

Quantum Monte-Carlo (QMC) techniques are the central tool to perform numer-

ical simulations of many-body quantum physics in order to study their equi-

librium physics.
2

Our identi�cation method focused on the real time simula-

tion of Hamiltonian dynamics. In contrast, QMC techniques are typically used

for e�ciently calculating expectation values of observables in the Hamiltonian’s

ground and thermal state [Hir+82; Tro+03; Pol12; Tro+10], in other words, imag-

inary time evolution. To this end, Monte Carlo techniques probabilistically esti-

mate thermal averages after expressing them in a suitable basis expansion. For

2

Quantum Monte-Carlo (QMC) . . . ] The remainder of this section summarizes our work pub-

lished in Ref. [10]. The work has been conducted in collaboration with Dominik Hangleiter,

Daniel Nagai, and Jens Eisert. The author of this thesis made central contributions to all ana-

lytical and numerical results of the work from the conception and calculation to the write-up.
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example, consider the expectation value of an observableO in the Gibbs state of

a system at inverse temperature β with Hamiltonian H

〈O〉β,H = Z−1
β,H Tr[O exp{−βH}] =

∑
λ

p(λ)f(λ) (7.18)

with the partition function Zβ,H as the normalizing factor. In QMC we want to

rewrite 〈O〉β,H as the expected value of a function f : Λ → R on a random

variable taking values in Λ with probability mass function p

〈O〉β,H =
∑
λ∈Λ

p(λ)f(λ) . (7.19)

Having a method to generate samples from Λ according to p, we can estimate

〈O〉β,H by evaluating f on the samples and, e.g., using an empirical mean esti-

mator. The complexity of estimating 〈O〉β,H now manifests itself in two ways:

(1) The complexity of generating a single sample from p, (2) the sampling com-

plexity of the empirical estimators as, e.g., controlled by its variance.

The �rst obstacle can already arise in the classical variants of Monte Carlo meth-

ods, where the Hamiltonian is always diagonal. For example, one observes ex-

ponentially long mixing times of Markov Chains that were set up to generate

the samples for certain Hamiltonian models. But even when samples can be ef-

�ciently generated, in the quantum variant, one can encounter a so-called sign
problem. Here, expanding the relevant quantities in terms of a basis, gives only

rise to a quasi-probability distribution (normalized but non-positive) not a non-

negative probability distribution. One can still proceed by de�ning a proxy prob-

ability distribution and an accordingly modi�ed estimator that reproduces the

original expected value. But the modi�ed estimator typically exhibit an expo-

nentially increased sampling complexity and hence run-time of the estimation

procedure.

The sign problem manifests itself after expanding the Hamiltonian in a basis

[HS92; Has15]. In fact, with a change of basis, one can cure the sign problem in

certain settings by exploiting speci�c properties of the physical system [WHZ03;

OH14; LJY15; LJY16; Nak98; ADP16; Hon+16; Wes+17]. A meaningful notion for

the severity of the sign problems, thus, needs to consider the equivalence class

of a Hamiltonian under basis transformations. Crucially, performing the basis

transformations needs to be computationally tractable for the Hamiltonian. For

example, in its eigenbasis a Hamiltonian does not cause a sign problem. Diag-

onalizing the Hamiltonian, however, is typically at least as hard as the original

estimation problem. Tractable orbits of a local Hamiltonian can for example be
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generated by local Hadamard, Cli�ord or unitary transformations or, more gen-

erally, with quasi-local circuits which are e�ciently computable [Has15], such

as short circuits and matrix product unitaries [Cir+17; Sah+18]. The intrinsic

sign-problem of the Hamiltonian is then a property of its orbit under a suitable

subgroup of the unitary group.

A su�cient condition for avoiding quasi-probability distributions in the estima-

tion problem is stoquasticity [Bra+08]: A Hamiltonian matrix is called stoquas-
tic if it only has non-positive o�-diagonal entries. Recently, it has been shown

that deciding if a stoquastic Hamiltonian exists in the orbit of an arbitrary 2-
local Hamiltonian under on-site basis transformation is NP-complete [MLH19;

Kla+20]. For strictly 2-local Hamiltonians on the contrary, an e�cient algorithm

is given in Refs. [KT19; Kla+20].

From a practical perspective, however, aiming at stoquasticity might be unnec-

essarily ambitious. After all, the sign problem manifests itself as an increase in

the variance of estimators in practice. Thus, instead of exactly curing, it already

su�ces to improve the variance by a computationally tractable basis change—in

the best case yielding a polynomial sample complexity in the system size. Fol-

lowing this strategy, we developed a generally applicable, systematic framework

for easing the sign problem in Ref. [10]. We therein both demonstrate the prac-

tical feasibility of the approach, and formally establish its limitations. In the

following we summarize our �ndings.

The variance of the QMC estimators can be written as the inverse of the expected

value of the signs of the quasi-probability distribution with respect to the proxy

distribution—the so-called average sign. Ironically, computing the average sign

su�ers itself from the very same sign problem as the original estimation task.

Hence, directly attempting to optimize the average sign is in general not e�cient.

Stoquasticity instead is de�ned directly as a property of the Hamiltonian matrix

in a basis. In analogy, Ref. [10] introduces an e�ciently computable measure of

approximate stoquasticity for a Hamiltonian matrix. For a Hamiltonian matrix

H we measure its distance from the set of stoquastic Hamiltonians in terms of

the sum of all its positive matrix entries, ν1(H) = ‖H¬‖`1 . Here, H¬ denote

the non-stoquastic part of the Hamiltonian de�ned by (H¬)i,j = hi,j for hi,j >
0 and i 6= j, and zero otherwise. The measure can be e�ciently calculated

for arbitrary local Hamiltonians on bounded-degree graphs. We further show

that the measure can be e�ciently estimated up-to inverse polynomial error for

two-local Hamiltonian on any graph. Note that the `1 norm of the measure

furthermore provides a natural regularizer promoting a sparse representation in

the mindset of compressed sensing [MA15; Tho+15; DLA19].
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For easing the sign problem it is now important to relate the measure of ap-

proximate stoquasticity to the sample complexity of the QMC estimation. In-

terestingly, we �nd that general analytic bounds on the variance in terms of

approximate stoquasticity measures are not possible. In the context of the word-

line QMC method [LB00], we can explicitly give examples of Hamiltonians with

large positive o�-diagonal but unit average sign and conversely also Hamiltoni-

ans arbitrarily close to being stoquastic but with nearly vanishing average sign

[10]. The examples exploit the combinatoric structure of how the entries of very

sparse Hamiltonians can appear in the polynomial expansion of the partition

function when �ne-tuning the parameters of the Monte-Carlo algorithm. As

such the examples are rather pathological. Ref. [10] collects analytic and numer-

ical evidence that for generic two-local Hamiltonians the average sign actually

scales exponentially in the measure ν1.

This serves as a motivation to actually try to ease the sign problem by optimizing

the measure ν1 over a suitable set of basis transformation. One of the simplest

settings to practically test the approach are translationally invariant Hamiltoni-

ans on a quasi-one-dimensional geometry, such as anti-ferromagnetic Heisen-

berg Hamiltonians on a ladder geometry [MK04; DR96; Tak96]. We consider

translationally invariant on-site orthogonal basis transformations O ∈ O(d),

H 7→ O⊗nH(OT )⊗n. The optimization of ν1 over O(d) can be performed using

the manifold optimization algorithm that we also used for Hamiltonian learn-

ing [AEK09]. Ref. [10] shows numerically that the algorithm is able to �nd the

basis in which ‘curable’ random two-locals Hamiltonians are stoquastic and can

improve the stoquasticity measure for frustrated anti-ferromagnetic Heisenberg

Hamiltonians on di�erent ladder geometries. Figure 7.7 shows the correspond-

ing improvement in the average sign after optimization for one of the ladder

models and di�erent parameters of the Heisenberg Hamiltonian. The source

code of the numerical simulations is available as Ref. [26].

Our �ndings demonstrate already with simple basis transformation, one can sig-

ni�cantly ease the sign problem. We therefore expect that in particular the op-

timization over more general ansatz classes can yield practically relevant im-

provements of the sampling complexity for QMC estimation problems that go

beyond the toy models that we studied.

From a more fundamental perspective, one can ask what the fundamental limi-

tations of this optimization approach for easing the sign problem are. Formally,

we can formalize the optimization problem for the non-stoquasticity measure as

a decision problem and study its computational complexity:

222



7.4 Viewpoint: Easing the Monte-Carlo sign-problem

0.5 1 1.5

0.5

1

1.5

J⊥/J‖

J
×
/
J
‖

log(〈sign〉−1
OHOT )/ log(〈sign〉−1

H )

0.00

2.00

4.00J⊥ J⊥

J‖

J‖

J×

Figure 7.7: Improvement of the inverse average sign after optimizing the non-stoquasticity mea-

sure ν1 for a frustrated ladder model depicted in the inset. The plot’s coloring shows

the ratio of the logarithm of the inverse sign after and before optimization. The axis

vary the coupling parameters of the model on the ladder model. The ratio illustrates

the achievable improvement in the required number of samples in a Monte-Carlo es-

timation of the partition function. The average sign was computed via exact diago-

nalization. The �gure is taken from [10, Figure 2], see also the reference for further

information on the model and numerical simulation.

De�nition 5 (SignEasing). Given an n-qubit Hamiltonian H , constants B >
A ≥ 0 with B − A ≥ 1/poly(n), and a set of allowed unitary transformations

U , decide which of the following is the case:

YES : ∃U ∈ U : ν1(UHU †) ≤ A, or NO : ∀U ∈ U : ν1(UHU †) ≥ B .

In Ref. [10] we establish the following theorem for the complexity of SignEasing
for strictly 2-local (XYZ) Hamiltonians under particularly simple transforma-

tions U .

Theorem 79 (Complexity of SignEasing [10, Theorem 2]). SignEasing is NP-
complete for 2-local (XYZ) Hamiltonians under both on-site orthogonal Cli�ord
transformations, and on-site general orthogonal transformations.

The proof encodes a promise version of the MAXCUT-problem into SignEasing.

We refer to the supplemental material of our Ref. [10] for details.

Interestingly, we �nd thatSignEasing isNP-complete exactly in the setting where

Klassen et al. [KT19] established that one can e�ciently decide if a stoquastic
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Satis�ability Stoquasticity Complexity Ref.

MAX2SAT Easing strictly 2-local Hamiltonians NP-complete [10]
3SAT Curing 2+1-local Hamiltonians NP-complete [MLH19; Kla+20]

2SAT Curing strictly 2-local Hamiltonians in P [KT19; Kla+20]

Table 7.1: The complexity of curing and easing of local Hamiltonians in analogy to satis�ability

problems.

Hamiltonian exist in the orbit. In other word, for strictly 2-local Hamiltonians

curing is e�cient if possible. Furthermore, for Hamiltonians further including

one-local terms already curing isNP-complete [MLH19; Kla+20]. But—as our re-

sult shows—if curing is not possible, it is NP-complete to optimally ease the sign

problem. The complexity of mitigating the sign problem turns out to be analo-

gous to the hardness of satis�ability problem, where 2SAT is in P but 3SAT and

MAX2SAT is NP-complete. We summarize this state of a�airs in Table 7.1.

In summary one way how the simulation of quantum systems can become in-

tractable is via the appearance of signs in their classical description. Exploring

e�cient and systematic ways to modify this prescription, here in terms of direct

bases transformations, in order to ease these sign problems is a promising route

to extend the range of classical simulation. At the same time, we established

that such approaches ultimately are in the worst case only shifting the hardness

of the problem. In general, it can already be NP-complete to even optimize an

approximate stoquasticity measure of the Hamiltonian.

From the perspective of the quantum technologies the potential to push classi-

cal simulations further and further in speci�c settings constitute a big challenge.

Quantum devices improve in scale and accuracy—a technological endeavour that

requires a �exible, practical and theoretically well-understood toolbox of char-

acterization techniques. Beyond their technological motivation such characteri-

zation techniques often touch upon the fundamental questions of what and how

we can practically (e�ciently) learn about nature in the quantum realm. At the

same time we understand better and better how to exploit structure in order to

improve the scaling of classical algorithms. We have here encountered a cou-

ple of such structure-exploiting classical algorithmic paradigms in the context

of quantum characterization. These are of course much more generally applica-

ble and in fact regularly applied in many engineering and scienti�c disciplines.

Even though many of these techniques do not yield a polynomial scaling in the

worst-case, they perform exceptionally well in many practical settings. As of

today, the boundary between problems amenable to future quantum technolo-
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gies but not to purely classical computation and simulation devices is still to be

determined for practical applications.
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Acronyms

AGF average gate �delity . . . . . . . . . . . . . . . . . . . . . . . . . 32

ALS alternating least square . . . . . . . . . . . . . . . . . . . . . . . 89

NISQ noisy and intermediate scale quantum . . . . . . . . . . . . . . . 15

POVM positive operator valued measure . . . . . . . . . . . . . . . . . . 41

PVM projector-valued measure . . . . . . . . . . . . . . . . . . . . . . 144

CB completely boundedness . . . . . . . . . . . . . . . . . . . . . . . 66

CP completely positive . . . . . . . . . . . . . . . . . . . . . . . . . 59

CPT completely positive and trace-preserving . . . . . . . . . . . . . 59

CNOT controlled NOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

IHT iterative hard thresholding . . . . . . . . . . . . . . . . . . . . . 72

MPS matrix product state . . . . . . . . . . . . . . . . . . . . . . . . . 125

MUBs mutually unbiased bases . . . . . . . . . . . . . . . . . . . . . . . 59

NSP nullspace property . . . . . . . . . . . . . . . . . . . . . . . . . . 168

SDT sparse de-mixing thresholding . . . . . . . . . . . . . . . . . . . 86

SIC symmetric, informationally complete . . . . . . . . . . . . . . . 59

SPAM state preparation and measurement . . . . . . . . . . . . . . . . 129

RB randomized benchmarking . . . . . . . . . . . . . . . . . . . . . 31

RIP restricted isometry property . . . . . . . . . . . . . . . . . . . . 90

rMPS random disordered MPS . . . . . . . . . . . . . . . . . . . . . . . 125

QMC quantum Monte-Carlo . . . . . . . . . . . . . . . . . . . . . . . . 219

QCVV quantum characterization, veri�cation and validation . . . . . . 16

GST gate set tomography . . . . . . . . . . . . . . . . . . . . . . . . . 30
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