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The immune system is closely linked to bone homeostasis and plays a pivotal role

in several pathological and inflammatory conditions. Through various pathways it

modulates various bone cells and subsequently sustains the physiological bone

metabolism. Myeloid-derived suppressor cells (MDSCs) are a group of

heterogeneous immature myeloid-derived cells that can exert an

immunosuppressive function through a direct cell-to-cell contact, secretion of

anti-inflammatory cytokines or specific exosomes. These cells mediate the

innate immune response to chronic stress on the skeletal system. In chronic

inflammation, MDSCs act as an inner offset to rebalance overactivation of the

immune system. Moreover, they have been found to be involved in processes

responsible for bone remodeling in different musculoskeletal disorders,

autoimmune diseases, infection, and cancer. These cells can not only cause

bone erosion by differentiating into osteoclasts, but also alleviate the immune

reaction, subsequently leading to long-lastingly impacted bone remodeling. In

this review, we discuss the impact of MDSCs on the bone metabolism under

several pathological conditions, the involved modulatory pathways as well as

potential therapeutic targets in MDSCs to improve bone health.

KEYWORDS

myeloid derived suppressor cell (MDSC), bone metabolism, osteoclast, osteoblast,
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1 Introduction

Bone is a versatile organ that is an essential component for the ambulatory ability and is

host to essential cell lineages such as hematopoietic stem cells, as well as bone cells and

immune cells. The solid bone matrix is constantly being remodeled in response to changes

in physical stress (1). This self-regulated biological remodeling process is mainly driven by

bone resorption and formation. While osteoclasts (OCs) eliminate damaged or aged bone

tissue, osteoblasts (OBs) are responsible for secretion of new bone matrix and mediation of

matrix calcification (2). Both cell types are vital for responding to biomechanical or
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metabolic changes, remodeling the microstructure of the bone

accordingly, and maintaining bone homeostasis.

This equilibrium is governed by several cells and mediating

cytokines (3). In particular, the immune system interacts tightly

with the bone metabolism (4–6). However, in various pathologies

such as tumor metastasis or local inflammation, this delicate

equilibrium is distorted (7, 8). Besides focusing on the causative

disease, recent research has also focused on identifying key

regulatory players to influence bone homeostasis (9, 10). Myeloid

derived suppressor cells (MDSCs), a group of immature cells of the

myeloid lineage, represent a cell type with immune regulatory

function through interaction with effector or regulatory

lymphocytes. These cells are activated and proliferate in diseases,

including chronic bacterial infection, autoimmune diseases, and

cancer (11–15).

Recent studies have described the role of MDSCs in bone-

related disease. Bone lesions ranging from systemic bone loss

(osteoporosis, autoimmune diseases) to local destruction

(osteomyelitis, implant related infection, bone fracture and bone

metastasis of tumor) can create a long-lasting inflammatory

environment (4, 6, 16, 17). These signals play a key role in

myeloid lineage cell activation and differentiation to MDSCs,

which in turn impact disease progression and the regenerative

capabilities of bone. MDSCs can interact with nearby

lymphocytes in the bone, indirectly influencing the bone

metabolism through stimulation of the immune system.

Additionally, MDSCs were found to impact bone directly, i.e., by

differentiating into osteoclasts, or secreting cytokines. In this review,

we aim to illustrate how MDSCs can affect bone health and their

role in musculoskeletal morbidities.

2 Bone remodeling and its interaction
with the immune system

Bone serves as one of the most important immune organs as the

origin of several immune cells is the bone cavity and its metabolic

activity is closely linked to the immune system. The recently coined

term “osteoimmunology” connects the metabolic activity of the

bone with the immune system (18). The bone forms a relatively

closed space that supplies a suitable cradle for the reciprocal

interactions of immune cells and bone cells.

Mediators secreted by bone cells can either stimulate or obstruct

processes of immune development. Bone cells contribute to the

maturation and expansion of various immune cells derived from

hematopoietic stem cells (HSCs). Mesenchymal stromal cells

expressing the C-X-C motif chemokine-12 (CXCL-12) are

required for HSC maintenance (19). Additionally, OBs are

essential in maintaining common lymphoid progenitors (CLPs)

through expression of IL-7 and CXCL-12 (20). Ablation of OBs

results in severely decreased hematopoiesis in the bone marrow, in

particular the generation of B cells (21). Osteocytes also support the

lymphocyte development and show positive impact on B cell

generation (22, 23). Moreover, OCs are fundamental to create

bone marrow cavities sufficient in size for HSCs to sustain their
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physiological capabilities and indirectly support HSCs by recruiting

osteoblasts (24). They are also engaged in establishing a livable

milieu in the bone to induce HSC homing and niche formation (25).

At the same time the immune system has significant impact on

bone homeostasis (26). Over- or under-regulation of the immune

system results in abnormal bone mineralization through different

mechanisms. Different T cell populations including CD8+, CD4+ T

helper cells (Th), and regulatory T cells (Treg) impact the bone

metabolism through secretion of various cytokines. CD8+ T cells

and Th17 favor osteoclastogenesis by secretion of tumor

necrosis factor-a (TNF-a) and IL-17 (17, 27). B cells, as

supportive regulators of osteoclasts, limit bone remodeling

(28, 29). Macrophages are characterized into two phenotypes,

proinflammatory M1 and anti-inflammatory M2, which support

and hinder bone regeneration, respectively. Besides their phagocytic

function, these cells also differentiate into osteoclasts and secrete

TNF-a and various ILs balancing bone formation and resorption

(30, 31).

In this regard, MDSCs, a type of immature myeloid cells, have

recently started to attract attention due to their impact on the bone

metabolism and their immunosuppressive capacities. First

described as a key modulator in tumor microenvironment, the

role of MDSCs is becoming undeniably important during disease

progression due to their potential to regulate immune balance and

crosstalk with the bone system.
3 MDSCs are induced in a chronic
inflammatory setting

MDSCs were first discovered in a tumor mouse model.

Aggregation of these cells around the tumor site lead to suppression

of T-cell induced immunity and boosted cancer metastasis (32). While

MDSC has become a comprehensive term to describe a specific origin,

phenotype, and immunosuppressive capacities, it covers a

heterogeneous group of distinct subphenotypes (33). Since several

years, interest in MDSC-related immune regulation has been soaring

in different disease settings, including chronic inflammatory diseases,

infection and obesity (13). Deepening the understanding of the

stimulating factors affecting differentiation of MDSCs may offer

novel therapeutic targets.

Together with neutrophils and macrophages, MDSCs derive from

the myeloid lineage but gain distinguished immunosuppressive

functions during differentiation (34–36). Circulating MDSCs have

been found in tumor, autoimmune, and septic patients but not or in

very limited quantities in healthy individuals (37). In these chronic

inflammatory environments, continuous low-grade stimulation of

IMCs skews differentiation to increased generation of MDSCs (13).

MDSCs generated under these conditions are poorly phagocytic and

display potent immune-suppressive potential. Key factors involved in

the differentiation of IMCs are granulocyte-macrophage colony

stimulating factor (GM-CSF), G-CSF, and M-CSF (38–41), as well

as inflammatory cytokines TNF-a, IL-1b, and IL-6 (41–43). These

effectors from the microenvironment stimulate and regulate several
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intracellular pathways involving various key nodes that are crucial for

the survival and immunosuppressive function of MDSCs (44–46).

MDSCs are commonly classified as granulocytic (G-MDSC, also

known as polymorphonuclear MDSC, PMN-MDSC), monocytic (M-

MDSC), and other subgroups such as early-stage MDSC (e-MDSC)

and fibrocytic MDSC (F-MDSC) (47, 48). In humans, MDSCs

expresses CD11b and CD33–markers related to immunosuppressive

functions, while in mice, CD11b, Ly6C and Ly6G were defined as

phenotypic markers (34, 49). Additionally, expression of CD84 has

been recently identified on MDSCs in tumor settings (36). However,

these markers alone cannot sufficiently phenotype all MDSC

subpopulations (34). Besides their shared suppressive capabilities

against adaptive immunity, their immunosuppressive capability

differs in various nuances. In patients with head and neck cancer,

PMN-MDSCs displayed the most prominent immunosuppressive

features and have been associated with poor clinical outcome (50),

while in a tumor mouse model, MDSCs with monocytic features

showed heightened suppressive capability and blocked the T cell

responses (51, 52).
4 Potential interactions of MDSCs
with osteoclasts

Osteolysis occurs in several disease including osteoporosis,

autoimmune arthritis, bone infection, and bone metastasis, where

osteoclasts surpass the speed of regeneration of osteoblasts (7, 53).

Related to the destruction of the cancellous bone microstructure,

the trabeculae become thinner and more fragile with larger

trabecular separation, subsequently manifesting in reduced bone

volume (54, 55). MDSCs are osteoclast progenitors that can break

the dynamic balance of bone remodeling in disease.

In inflammation, overactivated osteoclastogenesis can be

observed, where monocytes and macrophages are functionally

calibrated by various cytokines leading to activation of the

receptor activator of nuclear factor kappa-B ligand (RANKL)

pathway and receptor osteoprotegerin (OPG). T cells bind to

RANK, the receptor of RANKL expressed on osteoclast

progenitor cells, while OPG competitively binds to RANKL to

hinder the stimulating effect of RANK (18). Other inflammatory

components including TNF-a, IL-1, and IL-6 also disrupt the bone

metabolism by triggering RANKL expression of osteoblasts, cell

fusion, multinucleation, and functional activation of osteoclasts

(56–58). The inflammatory cytokines stimulate osteoclasts to

eliminate defective bone tissue. At the same time, bone

regeneration is inhibited by interfering cells supporting the bone

metabolism, particularly osteoblasts, osteocytes, and bone marrow

mesenchymal stromal cells (BMSCs). Elevated levels of TNF-a, IL-
1a, and IL-7 usually found in chronic inflammatory settings lead to

osteoblast apoptosis, negatively affecting the osteogenic capacity of

osteoblasts and differentiation of BMSCs (7, 59). Additionally,

osteoblasts and osteocytes not only sustain the normal bone

mineralization process, but also regulate osteoclast differentiation

through secreting soluble proteins, inflammatory cytokines, and

through direct cell-cell interactions (2, 60).
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MDSCs mainly generate where myelopoiesis takes place

including the bone marrow, spleen, and other lymphatic organs,

but they can be also reprogrammed from mature myeloid cells in

the periphery (37). Besides their immune modulatory ability,

MDSCs can differentiate into mature and functional osteoclasts

(61–65). An in vitro experiment using murine Gr1+CD11b+

MDSCs showed that a combination of RANKL and M-CSF can

initiate differentiation into osteoclasts. Additionally, in a fluorescent

mice model osteoclast generation was increased after MDSC

injection, indicating MDSCs as an origin of these bone-resorbing

cells (61). Likewise, allogenic transfusion can increase osteoclast

differentiation in inflammation (62). Recently, obesity was also

suggested to promote expansion of M-MDSCs and subsequent

differentiation to osteoclasts (64, 65). MDSC-induced osteolysis is

linked to chronic pathological diseases (36, 38). However, MDSCs

are a heterogenous group consisting of several subgroups with

different immune functions and capacity to differentiate

to osteoclasts.

MDSCs and osteoclasts derive from the myeloid lineage, as do

monocytes, macrophages, and dendritic cells. Both, MDSCs and

osteoclasts share some common intracellular signaling pathways

related to differentiation, proliferation, and osteoclastic cell

functions. The osteoclastogenic capability of both cell types are

repressed after treatment with bisphosphonates, suggesting a shared

pathway in MDSCs and osteoclasts (63). Osteoclast differentiation

of MDSCs is initiated by activation of the RANKL and NF-kB
pathway (62). RANKL also activates the immune regulatory

functions of MDSCs and promotes the expansion of M-MDSCs

(66). The role of other pathways that have interactions with

RANKL/RANK in osteoclast differentiation is of ongoing

investigation (67). Additionally, MDSCs and OCs share similar

immunosuppressive functions through secretion of the

immunosuppressive cytokines IL-10 and transforming growth

factor (TGF-b) (3). Both cell types are also capable of inhibiting

the T cell mediated immune response. However, they also share

immune regulatory features with mature myeloid cells that support

the inflammatory environment. They have been shown to be able to

sustain a proinflammatory environment under pathological

condit ions by presentat ion of ant igens , secret ion of

proinflammatory cytokines, and inducing proliferation of T

effector cells (3, 68).
5 MDSCs are a link between the
immune and skeletal system

MDSCs also regulate other immune cell types which directly

affect the musculoskeletal system. They modulate macrophage

polarizat ion from M1 to M2. Anti- inflammatory M2

macrophages stimulate the osteogenic capacity of BMSCs (69,

70). Interaction between MDSCs and regulatory B cells (Bregs)

positively impact the bone metabolism (71, 72). Additionally,

MDSCs stimulate the proliferation of Tregs that act as key

helpers in prolonging osteoblast survival (73). This indicates a

complicated interaction triangle among MDSCs, the bone, and
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components of immune system. Figure 1 summarizes an overview

of the interaction among MDSCs, immune cells and skeletal system.
5.1 Soluble factors from MDSCs

A broad range of secreted factors are related to the function of

MDSCs, some of which were described immunosuppressive that can

prolong the chronicity. However, they also play a versatile role in

osteogenesis. TGF-b and IL-10 are two of the most important factors

supporting proliferation of Tregs (51, 74), and also play a key role in the

generation of osteoblasts (75). Additionally, adenosine which is

generated by CD39 and CD73 on the surface of MDSCs can lead to

activation of the A2A receptor subsequently increasing production of

Tregs (73, 76). Adenosine also has a direct proliferative effect on

BMSCs and osteoblasts by activation of the A2B receptor, and therefore

contributes to bone regeneration (77, 78). Moreover, other molecules

secreted by MDSCSs such as S100A8/A9 and NO have also been

shown to positively impact osteoblast differentiation (79, 80).
5.2 Immunosuppressive surface
markers on MDSCs

Cell-cell contact through immunosuppressive ligands and

receptors plays a key in immune dysregulation. Previous studies have
Frontiers in Immunology 04
suggested a variety of immunoregulatory surface functional molecules

to be found on MDSCs (81). These membrane proteins can directly

interact with T effector cells, promote the expansion of Tregs and

Bregs, and thus regulate systemic immunity in viral infections,

autoimmune diseases, and cancer. There are few studies on the

direct contact of MDSCs to osteoblasts, but several studies discussed

how these surface markers can affect their fate. In particular, the PD-1/

PD-L1 axis might have regulatory effect on bone remodeling by

limiting osteoclastogenesis (82). Additionally, Galectin-9 is widely

expressed in various tissues that were reported to induce osteoblast

differentiation (83). CD155, an important receptor mediating cell

adhesion, was reported to be expressed on osteoclast precursors and

regulate differentiation processes (84). CD276 is membrane-bound but

can be also released from the surface as a soluble molecule. Deficiency

of CD276 results in lower osteoblastic activity and reduced

mineralization (85). Research on ADAM17 demonstrated its role in

stimulating osteoclastogenesis by degrading interferon (IFN)-g (86)

and inhibiting osteoblast differentiation through interaction with

RUNX2 (87).
5.3 MDSC-derived exosome and
immune response

Exosomes are a group of lipid bilayer vesicles with nanoscale

size (usually 30-100nm), shed by various types of cells during the
FIGURE 1

MDSCs are a key link between the bone metabolism and immune system. MDSCs are immature cells of the myeloid lineage that can differentiate to
osteoclasts. Additionally, they secret IL-10 to promote macrophage polarization from M1 to M2, of which the latter one is also capable to
differentiate to osteoclasts. MDSCs are also involved in the regulation of other counterparts of the immune system. Small molecules from MDSCs,
including TGF-b, IL-10, adenosine, and ROS/NO hamper the immune reaction directly or indirectly by supporting proliferation of regulatory T cells,
regulatory B cells, M2 macrophages, and inhibiting the activity of effector T cells, B cells, plasma cells, and M1 macrophages. Among them,
regulatory T/B cells and M2 macrophage support osteogenic processes. Cytokines from M1 macrophage, CD8+ T cells, and Th1 cells limit osteoblast
function, while Th2 and Th17 promote osteogenesis. The effect of plasma cells and B cells on osteoblast activity is controversial and depends on
different biological settings. Moreover, immunosuppressive ligands and surface receptors on MDSCs interact with lymphocytes and osteoblasts to
regulate their function.
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intercellular communication and regulation. Compared to bone

marrow from healthy individuals, exosomes of MDSCs in a tumor

environment are excreted in larger numbers and contain more

cytokines related to tumor invasion, angiogenesis, and myeloid cell

activation or function (88), as well as mRNAs, microRNAs, and

other protein molecules involved in immune modulation (89–91).

Through proteomic analysis, several typical surface markers on

exosomes were found to be representative of their parental MDSCs

and beneficial for MDSC migration (92). MDSCs secret exosomes

to interfere with their neighborhood in response to changing

immune circumstances. CD8+ T cells treated with these small

vesicles display a trend towards anergy, while Tregs increase their

regulatory activity (88). G-MDSCs were reported to attenuate

immune responses of Th1 and Th17 cells and thus reduce the

severity of autoimmune arthritis by releasing exosomes (93).

Additionally, TGF-b and IL-10 have been found in MDSC-

exosomes – two molecules involved in inhibit ion of

autoimmunity and stimulation of osteoblastic growth (94).
6 Role of MDSCs in skeletal diseases

MDSCs are activated by inflammation to limit the immune

response and to protect against tissue damage. However, in a tumor

or chronic bacterial infection environment the immunosuppressive

function of MDSCs contribute to disease progression and

prolongation. In the skeletal system, MDSCs can not only

dampen immune activity, but also cause bone erosion by

differentiating to OCs. Despite their importance for bone health,

knowledge on their involvement in various different skeletal

diseases remains limited.
6.1 Ageing and osteoporosis

Osteoporosis is a chronic disease featuring low bone mineral

density, pronounced bone loss, bone fragility, and subsequently

increased risk for fracture with or without external force. Aging,

female gender, genomics, lack of nutrients and other comorbidities

are important pathogenic factors impairing bone health and causal

to the development of osteoporosis.

Osteoporosis is characterized by gradual degradation of bone

tissue with aging. Besides impaired osteoblast function and

increasing number of osteoclasts, immune dysfunction has been

shown to play a significant role in osteoporosis (6). The aging

process of the immune system that is accompanied by progressive

immune dysfunction affecting both lymphogenesis and

myelogenesis is called “immunosenescence” (95). Specifically,

with increasing age there is a gradual decline of T- and B- cells,

increased generation of cells from the myeloid lineage, and

upregulation of proinflammatory cytokines including IL-6 and

TNF-a from senescent cells. The phenomenon of these

inflammatory changes within an aging body is called

“inflammageing” (96). The resulting chronic proinflammatory

environment forms a suitable milieu for proliferation and

expansion of MDSCs in bone of the elderly (97–99). Additionally,
Frontiers in Immunology 05
MDSCs are stimulated towards osteoclast differentiation in

inflammageing. Aged individuals show increased MDSC-

dependent osteoclast differentiation (99, 100). These changes are

driven by increased production of reactive oxygen species (ROS)

and nitric oxide (NO). ROS are a set of oxygen-containing

molecules aggravating oxidative stress and aging process (101,

102), while NO is synthesized from precursor L-arginine. These

molecules damage biologically active molecules, such as DNA,

RNA, and enzymes relevant for repairing DNA and cell mitosis

(103). In aged individuals, ROS and NO are a potential

pathomechanism for enhanced osteoclastogenesis (99, 100).

Studies in a murine model of osteoporosis suggest that the

resulting bone loss can be alleviated by treatment against these

products of oxidative stress (104, 105). Besides being inducers of

osteoclastogenesis, ROS and NO function as immune modulators

produced by G-MDSCs and M-MDSCs, that suppress T cell

generation and function.

Proinflammatory IL-1b, IL-6, and TNF-a, as well as growth

factor M-CSF are key regulators in age-related osteoporosis (96,

100). Long-term stimulation by these cytokines leads to increased

osteoclastogenesis of MDSCs by upregulation of RANKL – an

important regulator of expansion and survival of MDSCs. With

increasing age, MDSCs gain more sensitivity to RANKL and are

subsequently more stimulated and activated (100). Inhibition of

RANKL significantly lowers the proportion of MDSCs vice versa

(106). Additionally, chronic NF-kB pathway activation in aged

individuals contributes to differentiation of MDSCs (97). The

severity of bone loss in osteoporosis is closely related to the

activity of the NF-kB pathway (107).

Commonly, bisphosphonates are used to treat age-related

osteoporosis. These molecules can dose-dependently abrogate

expansion of MDSCs and limit their osteoclastic ability by

inhibition of protein prenylation (63), suggesting MDSCs play an

essential role in this pathology. Given the impact of MDSCs on the

bone metabolism, targeting this cell population is a potential novel

therapeutic target against osteoporosis (108).
6.2 Autoimmune arthritis and
bone destruction

Autoimmune diseases are a range of morbidities characterized

by abnormal generation of self-reactive antibodies (4). In contrast to

autoinflammatory diseases caused by the innate immune system,

adaptive immune cells are responsible for the development of

autoimmune diseases. However, both morbidities share

inflammation as a common feature. This proinflammatory

environment increases osteoclast differentiation and subsequently

causes bone erosion as a discernable sign of autoimmune diseases

compared to degenerative arthritis.

In autoimmune diseases, MDSCs have been pointed out to be

deleterious to bone formation. Charles et al. first described a group

of M-MDSC-like myeloid cells with CD11b-/lowLy6Chi phenotype

with high differentiation potential and myeloid suppressor function

in a rheumatoid arthritis (RA) mice model (109). Zhang et al. later

identified that co-stimulation of MDSCs with M-CSF and RANKL
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contributes to bone erosion in a collagen induced arthritis (CIA)

model (62). Similar, in another murine autoimmunity model

(MFG-E8 knockout mice), bone mass was compromised by

enhanced inflammation due to increased osteoclast differentiation

of MDSCs (110). In humans, Chen et al. found a strong correlation

of M-MDSCs and Th17 cells with osteolysis. Th17 cells can switch

to a pro-osteoclastogenic phenotype with high expression of

RANKL and reciprocally induce M-MDSCs differentiating into

OCs (111). Of note, M-MDSCs were found to secret Arg-1

instead of NO to regulate RANKL expression on Th17 cells (111),

which contrasts previous findings that M-MDSCs usually secret NO

to modulate the immune responses (13).

Besides their impact on the bone, MDSCs can actively regulate

the activity of autoimmune diseases by interacting with T and B

effector cells. The immunosuppressive ability of MDSCs has been

described in various diseases prone to arthritic lesions, including

RA, systemic lupus erythematosus (SLE), and ankylosing

spondylitis and the adoptive transfer of allogenic MDSCs has

been shown to be a novel treatment approach in affected patients

(93, 112). In an autoimmune arthritis model, adoptive transfer of

MDSCs skewed the T cell population toward Treg generation,

reduced the Th1 and Th17 cell population, and decreased the

expression of inflammatory cytokines (113). Similar, transfusion

of PD-L1 expressing MDSCs resulted in expansion of regulatory T

and B cells and subsequent down-regulation of overactive

autoimmunity in a murine SLE model (114).

In contrast to these findings, MDSCs have been reported to

prolong or even exaggerate inflammation and thus enhance disease

activity. In several reports on the adoptive MDSC transfer in SLE,

MDSCs increased disease severity by secreting Arg-1 stimulating

Th17 cell differentiation (14, 74). Similar, some reports found

higher expression of TNF-a and IL-1b and subsequently

increased diseases progression in autoimmune arthritis after

MDSC transfer (115, 116). This effect may be caused by selecting

MDSCs using Gr-1 and CD11b which can also be found on

potentially proinflammatory mature myeloid cells. Another

potential mechanism responsible for increased inflammation may

be MDSCs potential to differentiate to macrophages or neutrophils

depending on the local complex inflammatory environment (117).

In addition to an adverse immune response, MDSCs are potential

osteoclast precursors when transferred into an autoimmune

condition and may deteriorate affected bony structures further.
6.3 Orthopedic implant-related infection

Despite increased use of antibiotics and improved aseptic

surgical techniques, orthopedic implant-associated infections still

remain one of the most challenging complications in orthopedics

for patients, physicians, and the health care system alike (118, 119).

Chronic inflammation at the bone-implant interface can impact

healing and subsequently lead to septic loosening. Once osteolysis

sets on, the bone quality decreases over time and the risk for

fracture or implant failure significantly increases (118).

In chronic implant-related infection, low virulent bacteria form

a layer of biofilm to protect themselves against the immune system
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and antibiotics (120). Inside the biofilm, bacteria form communities

with a reduced metabolic rate, described as a “dormant state” (121,

122). This biofilm gradually elicits the immunosuppressive function

of local reactive leukocytes, and therefore prolongs bacteria survival,

further complicating successful treatment (16). Additionally, the

proinflammatory environment attracts MDSCs to accumulate in

the bone niche and attenuate the antibacterial function of

polymorphonuclear cells (123).

MDSCs were recently revealed to be involved in the

pathogenesis of periprosthetic joint infections. Besides elevated

local cell prevalence, their presence in the peripheral blood

persists over a long period of time, suggesting a systemic process

potentially affecting other organs. However, despite their assumed

role in disease progression, knowledge on the impact of MDSCs in

implant-associated infections remains severely limited. Their

immunosuppressive function has been shown to prolong

infection by inhibiting the immune responses mediated by T cells,

B cells, and natural killer cells (16, 124, 125). Compared to other

myeloid derived cells or lymphocytes, prevalence of MDSCs was

particularly high and increased over time in chronic infections (124,

126). Additionally, there has been large numbers of MDSCs

observed infiltrating the biofilm, accounting for nearly half of the

detectable MDSC population (16). G-MDSCs have been shown to

be particularly relevant for heightened bacterial resistance (11).

They produce IL-10 leading to increased bacterial persistence (11,

127) and susceptibility to infections (128). After antibody depletion

of the G-MDSC population by targeting Ly6G, Ly6C+ monocytes

and macrophages expand and regain proinflammatory function

essential for clearing bacterial infection (124). Besides G-MDSC, M-

MDSC are found around the biofilm albeit in much smaller

numbers (16). At the biofilm, M-MDSCs differentiate to anti-

inflammatory M2 macrophages that hinder T-cell mediated

immunity and thus also contribute to infection persistence (129).

Employment of anti-bacterial additions to implants can

significantly reduce the number of MDSCs, limit their anti-

inflammatory function, and increase efficiency of antibiotics (130,

131). Additionally, successful treatment can positively impact the

bone metabolism, as MDSCs differentiate to OCs in infection (132).

After surgical addressing of the biofilm, the septic bone destruction

recovers significantly (131).

The relationship of the pathogenesis of orthopedic infection and

MDSCs is reciprocal. Increased prevalence of MDSCs is linked to

heightened risk of infection. Of note, in one in vivo human study, the

number of G-MDSCs was elevated after aseptic orthopedic surgeries

while relative occurrence of total leukocytes and MDSCs remained the

same (128). These results suggest during and immediately after surgery

risk for bacterial infectionmay be highest and targetingMDSCsmay be

a viable prophylactic treatment.

The PD-1/PD-L1 signaling axis has been suggested as a

potential target. MDSCs down-regulate T-cell induced pathogen

elimination through PD-1/PD-L1 signaling (133, 134).

Additionally, in vivo experiments suggest a crucial role of PD-1 in

differentiation of MDSCs to OCs. PD-1 knockout in osteoporotic

mice halved the number of OCs and led to a 2-fold increase in bone

volume (82). Inhibition of PD-1 using immune checkpoint

inhibitors interrupts OC precursor cell differentiation in areas
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with bone lesions involving downregulation of CC-chemokine

ligand 2/CC-chemokine receptor 2 (CCL2/CCR2) pathway,

whereas it exerts no effect on physiological bone structures (135).

Conversely, targeting the PD-1/PD-L1 axis may improve clinical

outcome, yet can also aggravate inflammation and disrupt the bone

metabolism (136). Similar, bisphosphonate can dampen the

osteolytic effects of OCs and inhibit MDSC differentiation,

however, they have been associated with higher bacterial burden

and increased risk for infection (53, 137). Promising novel strategies

such as using bisphosphonate as carrier for antibiotics still have to

prove effective in a clinical setting (138).
6.4 Bone fracture

A traumatic fracture is described as partially or completely

disrupted continuity of the bone potentially leading to persisting

pain, immobility, and even death due to blood loss (139). However,

the bone tissue possesses the potential to fully recover from if

treated appropriately. Despite adequate conservative or surgical

treatment around 5-10% of affected patients develop mal- or non-

union fractures and need additional intervention (140).

Fracture union encompasses consecutive and overlapping

phases, from formation of hematoma, soft callus, fibrous tissue to

hard callus, and finally remodeled bone (9). The metabolic phases

during bone healing interact with the innate and adaptive immune

system. The processes involved promote angiogenesis and

osteoblast differentiation from BMSCs (9). Dysregulation of the

immune response can retard the fracture healing process and is a

significant risk factor for mal- or non-union fracture healing. Thus,

restoring the physiological immune environment in general and

targeting MDSCs in particular is a promising novel therapeutic

approach in affected individuals (17, 31).

Currently, there exist conflicting evidence on the role of MDSCs

in the bone healing process. Traumatic injury leads to increased

cytokine production of IL-1b, IL-6, and G-CSF prompting

accumulation of MDSCs (141). Cheng et al. described a long-

term dysregulated immune pattern in delayed bone healing (142).

By computational analysis, they found a negative correlation of

circulating MDSCs and bone healing. MDSCs indirectly suppress

the regenerative capability of BMSCs by inhibition of B cell

differentiation and elevated IL-10 expression (72). Conversely,

MDSCs show a protective effect on injured bone tissue and can

even support tissue remodeling (143, 144). After arthroplasty, there

is a high concentration of MDSCs that support development of new

blood vessel at the polymethyl methacrylate induced periosteal

membrane. Local transplantation of MDSCs enhances the

formation of these capillaries around the membrane (145). In

traumatic fracture healing, significantly elevated number of

MDSCs were observed in the transitional area, facilitating the

recovery of the bone injury by suppressing local inflammation to

stimulate osteoblast differentiation and function (146). However,

while MDSCs promote bone regeneration by improving

angiogenesis and limiting the inflammatory response, continuous

presence of MDSCs pose a risk for infection due to their

immunosuppressive capabilities (142).
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6.5 Bone malignancy and metastasis

Cancer growth depends on both the vigorousness of the tumor

itself and a compromised anti-tumor ability of the immune system.

MDSCs can facilitate tumor growth through their immunosuppressive

capabilities. Research on MDSCs and their involvement in tumor

progression has been a main focus and inspires hope for novel

therapeutic approaches.

Osteosarcoma (OS) is one of the most prevalent primary bone

malignancies in children and teenagers. Both surgical intervention and

chemotherapy are employed to enhance quality of life and overall

survival. A better understanding of the role MDSCs in supporting

growth of OS may open up new treatment options. In the tumor

microenvironment, MDSCs, most of them PMN-MDSCs, accumulate

and inhibit the T-cell mediated immune responses induced by high

expression of IL-18 and CXCL12 (147, 148). Blocking these inducive

factors has been shown to sharpen the anti-PD-1 treatment efficacy in

mice indicating the importance of the PD-1/PD-L1 axis in MDSCs

during the growth of OS (147–149). Activation of the PI3K/Akt

pathway was also found to be pivotal in OS tumor growth (148,

149). Additionally, the STAT3 pathway has been related to

immunosuppression in this tumor pathology. Inhibition of STAT3

and PI3K/Akt signaling can reverse the suppressive effects on local

immunity and reduce tumor size (148–150).

Besides primary bone tumors, the skeletal system is much more

commonly affected by metastasis of several types of cancer. In cases

of bone metastasis, a variety of growth factors and chemokines

produced by the bone and immune regulating cells facilitate the

proliferation and expansion of MDSCs (151, 152). At tumor site,

malignant cells can precondition the immunosuppressive behavior

of BMSCs. These cells subsequently promote the expansion of

MDSCs and can attract cancer cells to migrate from the blood

into the bone (153). Additionally, MDSCs contribute to epithelial-

mesenchymal transition (EMT), thus enhancing mobility, invasion,

and resistance to apoptotic stimuli of cancer cells. CXCR2+PMN-

MDSCs were found to be a major regulator and initiator of EMT

through releasing IL-6 during breast cancer progression (154). M-

MDSCs can also modulate EMT by secretion of nitric oxide

synthase modulate (155). Moreover, MDSCs are involved in the

formation of the pre-metastatic niche (PMN). They aggregate at the

PMN where they support the construction of the nutritious “soil”

for tumor metastases to “plant in” by promoting neovascularization

(12, 156) and increasing the activity of neutrophil extracellular traps

that can catch circulating tumor cells to colonize (157, 158). Lastly,

MDSCs enhance direct differentiation to M2 macrophages

(159, 160) and facilitate the differentiation of M1 to tumor-

supportive M2 macrophages (161).

The cancer-driven accumulation of MDSCs also has impact on the

bone metabolism by differentiating to OCs. This hinders bone

regeneration both at the site of osteolytic bone metastases and by

dissemination to the bone site via blood stream (61). Of note, osteoclast

differentiation is MDSC-dependent in bone metastasis, signifying the

essential crosstalk between tumor cells and myeloid progenitors in the

bone microenvironment (162). Once tumor cells spread to the bone

and meet the primed MDSCs they start a continuous stimulate each

other reciprocally challenging the bone health. In multiple myeloma,
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1139683
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ren et al. 10.3389/fimmu.2023.1139683
the impact on the bone is even more severe as this malignancy

originates from the bone marrow (63). Additionally, the generated

OCs enhance tumor immune evasion of multiple myeloma cells from

T cell surveillance via PD-L1, galectin-9, and CD200 (163, 164).

Treatment with immune checkpoint blockers targets this mechanism

to revert the MDSC-driven anti-tumor immunosuppression (147).
7 Conclusion

The delicate balance of bone resorption and regeneration

interacts with and is influenced by the regulatory immune system

both physiologically and in disease. In this review, we discuss the

impact of MDSCs on the bone metabolism under several

pathological conditions, the involved modulatory pathways as

well as potential therapeutic targets in MDSCs to improve bone

health. MDSCs have a regulatory function on the immune system

and can significantly and lastingly impact the process of bone

remodeling through differentiation into osteoclasts. In chronic

inflammatory conditions, generation of MDSCs is induced.

MDSCs have previously been identified in several diseases

affecting the bone including tumor, autoimmune diseases,

fractures, and infection. They are part of a complex network in

which they interact with and regulate other immune cells by

releasing soluble proteins, exosomes, and through surface protein-

receptor interactions. However, there remains paucity on several of

the involved pathways linking MDSCs to osteoclast differentiation

and function as well as osteoblast activity and behavior. Emerging

evidence suggests a key role of MDSCs in these diseases making

them a promising target for novel therapeutic approaches in

several diseases.
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157. Teijeira Á, Garasa S, Gato M, Alfaro C, Migueliz I, Cirella A, et al. CXCR1 and
CXCR2 chemokine receptor agonists produced by tumors induce neutrophil
extracellular traps that interfere with immune cytotoxicity. Immunity (2020) 52
(5):856–71.e8. doi: 10.1016/j.immuni.2020.03.001
frontiersin.org

https://doi.org/10.3389/fimmu.2021.606024
https://doi.org/10.1136/annrheumdis-2014-205508
https://doi.org/10.1016/j.clim.2015.02.001
https://doi.org/10.1016/j.coi.2018.03.009
https://doi.org/10.1016/j.coi.2018.03.009
https://doi.org/10.2106/JBJS.OA.20.00026
https://doi.org/10.3390/osteology1020010
https://doi.org/10.3390/osteology1020010
https://doi.org/10.1038/s41579-018-0019-y
https://doi.org/10.1038/s41579-018-0019-y
https://doi.org/10.1038/nmicrobiol.2016.51
https://doi.org/10.1128/aac.47.1.317-323.2003
https://doi.org/10.4049/jimmunol.2001042
https://doi.org/10.4049/jimmunol.1303408
https://doi.org/10.22203/eCM.v041a49
https://doi.org/10.1016/j.biomaterials.2020.120405
https://doi.org/10.1016/j.biomaterials.2020.120405
https://doi.org/10.1189/jlb.4VMA0315-125RR
https://doi.org/10.1189/jlb.4VMA0315-125RR
https://doi.org/10.3390/jcm9072123
https://doi.org/10.1371/journal.pone.0183271
https://doi.org/10.1166/jnn.2016.10728
https://doi.org/10.1166/jnn.2016.10728
https://doi.org/10.2147/ijn.S191504
https://doi.org/10.2147/ijn.S191504
https://doi.org/10.1128/iai.00213-17
https://doi.org/10.1189/jlb.4HI0616-255R
https://doi.org/10.3389/fimmu.2020.01299
https://doi.org/10.1172/jci133334
https://doi.org/10.1186/s40425-018-0417-8
https://doi.org/10.1186/s40425-018-0417-8
https://doi.org/10.1002/jor.24951
https://doi.org/10.1002/jor.24951
https://doi.org/10.1021/acs.jmedchem.6b01615
https://doi.org/10.1097/BOT.0b013e3182a5a045
https://doi.org/10.1038/550S193a
https://doi.org/10.1038/s41598-017-13019-6
https://doi.org/10.1038/s41598-017-13019-6
https://doi.org/10.1073/pnas.2017889118
https://doi.org/10.1111/jnc.12135
https://doi.org/10.1161/circulationaha.117.030811
https://doi.org/10.1016/j.actbio.2020.03.010
https://doi.org/10.1016/j.actbio.2020.03.010
https://doi.org/10.7150/ijms.51946
https://doi.org/10.7150/ijms.51946
https://doi.org/10.1016/j.jbo.2017.10.002
https://doi.org/10.1016/j.jbo.2017.10.002
https://doi.org/10.1016/j.intimp.2019.105818
https://doi.org/10.1016/j.jbo.2018.11.001
https://doi.org/10.1002/mnfr.201200610
https://doi.org/10.1158/0008-5472.Can-19-0284
https://doi.org/10.1158/0008-5472.Can-19-0284
https://doi.org/10.1016/j.immuni.2019.06.006
https://doi.org/10.1038/s41419-019-2149-1
https://doi.org/10.18632/oncotarget.23020
https://doi.org/10.1038/ncomms14979
https://doi.org/10.1016/j.ccr.2004.08.031
https://doi.org/10.1016/j.ccr.2004.08.031
https://doi.org/10.1016/j.immuni.2020.03.001
https://doi.org/10.3389/fimmu.2023.1139683
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ren et al. 10.3389/fimmu.2023.1139683
158. Alfaro C, Teijeira A, Oñate C, Pérez G, Sanmamed MF, Andueza MP, et al.
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