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We investigate signal propagation in a quantum field simulator of the Klein–Gordon
model realized by two strongly coupled parallel one-dimensional quasi-condensates.
By measuring local phononic fields after a quench, we observe the propagation of
correlations along sharp light-cone fronts. If the local atomic density is inhomogeneous,
these propagation fronts are curved. For sharp edges, the propagation fronts are reflected
at the system’s boundaries. By extracting the space-dependent variation of the front
velocity from the data, we find agreement with theoretical predictions based on curved
geodesics of an inhomogeneous metric. This work extends the range of quantum
simulations of nonequilibrium field dynamics in general space–time metrics.

quantum simulation | curved metrics | light-cones | ultracold atomic gases | quantum fields

Light-cones embody one of the most fundamental principles in physics: Causality. When
constructing models describing fundamental interactions in nature, one of the basic
requirements is the existence of light-cones. Indeed, it has been understood that they
appear as a result of the relativistic invariance of quantum fields (1). Interestingly, there
are several systems whose effective dynamics are relativistically invariant, and effective
light-cones also play a role. Recent experiments have revealed that effective light-cones
do emerge in cold atomic gases (2, 3). In order to directly observe these light-cones,
several experimental challenges had to be overcome, including resolving the system
at fine length-scales and measuring relevant observables that would be able to reveal
them. Tackling such issues is part of a larger research endeavor on devising quantum
simulators (4–7). For example, manipulation of one-dimensional tunnel-coupled gases
allows the simulation of prototypical field theories (8–11) that are of foundational
importance but also, e.g., capture charge transport in nanowires (12). Here, our goal is to
use this quantum simulator to explore experimentally its potential to simulate dynamics
in inhomogeneous or curved metrics. Similar objectives have been the focus of analogue
gravity systems (13, 14) which recently have been very successful in simulating black hole
(15, 16) or cosmological (17–19) processes using cold-atom systems.

In this work, we investigate the correlation propagation in an inhomogeneous one-
dimensional quantum gas. We show that correlation fronts follow geodesics of the
analogue acoustic metric and find the spatial dependence of the propagation velocity in
agreement with the theoretical modeling. We observe ballistic propagation of correlation
fronts and discuss the detailed shape, reflections at the system’s boundaries, and periodic
recurrences of these correlation fronts.

Quantum Field Simulation

We use two tunneling-coupled one-dimensional superfluids to simulate the inhomoge-
neous Gaussian field theory in 1 + 1 space–time dimensions whose action for a bosonic
field φ can be written as:

S[φ]∼
∫

dzdt
√
−gK (z)

[
gµν(∂µφ)(∂νφ) + 1

2M
2φ2] , [1]

where M is the mass and g = det(gµν). The space–time interval ds of the metric tensor
gµν is given by,

ds2 = gµνdxµdxν = −v(z)2dt2 + dz2. [2]

Here, in accordance with the presented experiment, we neglected an explicit time-
dependence of the parameters v and K . Light-like trajectories in this metric deviate from
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straight lines according to the function v(z), i.e., the local
propagation speed of (massless) fluctuations (20).

Note that, due to the conformal invariance of the Laplacian
in 1 + 1 dimensions, the scale factor K (z) cannot be absorbed
into the metric by a conformal transformation and hence has to
be included in the action for generality. Nevertheless, we find
the propagation of correlation fronts to be dominated by the
induced metric, i.e., the massless Klein–Gordon equation, and
hence neglect the spatial dependence of K (z) for simplicity (SI
Appendix for details).

In our experiment, the bosonic field φ corresponds to the
relative phase between the two superfluids, and the space-
dependent speed of sound is related to the local averaged density
ρ0(z) of each superfluid, through

v(z) =
√
g1Dρ0(z)/m, [3]

where m is the mass of an atom, and g1D the effective interatomic
interaction strength. Thus, local tuning of the density by
changing the trapping potential (21), allows for modification
of the key physical parameter in the simulated metric Eq. 2.

To initiate the light-cone propagation of correlations, we
perform a quench by rapidly changing the mass parameter M
from an initially large value to zero in 2 ms. Such a mass quench
is a paradigmatic protocol for inducing nonequilibrium dynamics
of a quantum field (22). In the experiment, the mass M is related
to the single atom tunneling rate between the two atomic clouds
and is quenched to zero by separating the superfluids and letting
them evolve independently (8, 23).

To directly observe the light-cone dynamics, we need to
measure the correlations of a local observable, like the particle
density or current, which are the fundamental fields in the

effective hydrodynamic description. The particle current at
position z is related to the spatial derivative of the phase field,
ĵ(z) = ρ0(z)û(z) with the fluid velocity field

û(z) = (h̄/m)∂zφ̂(z). [4]

We measure the velocity field by extracting the spatially
resolved relative phase through matterwave interferometry and
show that after the quench, correlations of the velocity field
exhibit light-cone fronts allowing us to explore aspects of the
quantum-simulated space–time geometry.

Experimental Results

In Figs. 1A and 2 we show the dynamics of the two-point cor-
relation functions of the velocity field, Cu(z, z′) = 〈û(z)û(z′)〉,
at different times, prequench (t = −2) and postquench (t ≥ 0),
for three different experimental settings: A homogeneous density
with sharp edges, an inhomogeneous density also with sharp
edges, and an inhomogeneous density with smoothed edges,
presented in Fig. 1 from top to bottom, respectively. All density
profiles ρ0(z) are shown in Fig. 1A.

In accordance with Eq. 2, assuming a vanishing macroscopic
background particle flow, we find the average current 〈û(z)〉 = 0
throughout the evolution. Nevertheless, nonzero correlations
Cu(z, z′) 6= 0 mean that current fluctuations are not independent
between z and z′: If the correlation is positive, then in individual
measurements, the current fluctuations at z and z′ tend to
be aligned. Conversely, for negative correlation the current
fluctuations point in opposite directions. Initially, for the thermal
state with large M , the velocity field has only short-range
correlations, with Cu(z, z′) consisting of autocorrelations on the

A B

Fig. 1. Propagation of the flat and curved fronts of the two-point correlation function of the velocity field û. (A) Measurement results of Cu(z, z′) at select
times t, prequench (t = −2) and postquench (t ≥ 0), for three experimental settings with different background density profiles as explained on the left. For
each case, the measured �0(z′) is presented by red dots, and the blue line is a fit. (B) Intuitive explanation of the correlation propagation fronts in different
cases. At t = 0, the points marked with the yellow dots are correlated. After the quench, evolution of correlations between these two points is traced by the
light-cone trajectories of the left- and right-moving chiral fields, as depicted in the space–time sketches. The presence of narrow width fronts, as well as their
shape and sign of correlations are fully explained by taking into account the effects of reflection at the boundaries and effectively curved metric. For further
details, SI Appendix.
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Fig. 2. Observation of light-cone propagation in the two-point correlation
function of the hydrodynamic velocity field, Cu(z, z′ = −z), in experimental
settings with (Right) and without (Left) sharp edges. In the two main plots, the
antidiagonal correlations are plotted over time. For the density with sharp
edges, reflection from boundaries and the recurrence is clearly observed,
which is missing in the other case. For selected time steps, the full two-
dimensional correlation function is plotted similar to Fig. 1.

diagonal (red) accompanied by anticorrelations (blue) parallel to
the diagonal (SI Appendix).

After the quench, we find that the propagation of correlation
fronts is determined by the geodesics of the induced space–
time metric, and hence can be understood in a noninteracting
quasi-particle picture (24–26). In this picture, the dynamics is
carried by pairs of initially short-range correlated quasi-particles
moving in opposite directions as illustrated in Fig. 1B. In all three
experimental settings, the autocorrelations remain intact on the
diagonal throughout the evolution, due to initially correlated
comoving quasi-particle pairs (Fig. 1B).

The evolution of the anticorrelation fronts, on the other hand,
is determined by the propagation of initially correlated counter-
moving quasi-particle pairs and hence propagate away from the
diagonal. As illustrated in the space–time sketches of Fig. 1B, this
demonstrates the spreading of correlations to longer length scales
due to the separation of initially correlated quasi-particle pairs.
When the density profile is homogeneous, the anticorrelation
fronts are consistent with straight lines throughout the dynamics.
For the inhomogeneous density profiles the anticorrelation fronts
curve up over time which is a key qualitative effect of the
quantum-simulated curved metric. Additional effects can arise
in finite size systems, due to possible reflections of fluctuations at
the boundaries (27).

In cases with sharp boundaries (first two rows of Fig. 1),
we observe the formation of perpendicular (antidiagonal) fronts
propagating inward from the system boundaries. Unlike the
fronts parallel to the diagonal, the perpendicular ones correspond
to positive correlations. The sign change is consistent with a
reflection of the direction of the current fluctuation at the
boundary of the system, i.e., the change in sign of the velocity
for quasi-particles scattered at the boundary (see the reflected
trajectories in Fig. 1B). Note that for reflecting boundaries the
perpendicular front spans the entire system (see, e.g., in the
homogeneous case at t = 12 ms).

The Top Right corner plot of Fig. 1A also reveals further
insight into the dynamics of the system: The quench dynamics has
transformed the initial thermal correlations into a configuration

similar to the so-called “rainbow” (28). This term is an intuitive
way of designating configurations where correlations are present
only between pairs of points symmetric with respect to the
middle. A correlation matrix with this X-shaped pattern means
that, apart from autocorrelations (diagonal), there are also
correlations between pairs of points (z, L−z) on the antidiagonal.
Representing correlations between such pairs as noncrossing links
connecting them in real space would yield a pattern resembling
a rainbow’s shape.

In the case with soft boundaries (third row in Fig. 1), no
antidiagonal fronts appear, signaling the absence of reflections.
This is in accordance with the presence (absence) of reflections
for the off-diagonal anticorrelation fronts for sharp (smoothed)
edges, presented in Fig. 2. In the presence of sharp edges, the
anticorrelation fronts change direction and return to their initial
position, resulting in an approximate but clearly visible recurrence
of the correlations (c.f. ref. 10). In contrast, for the soft boundary,
we observe the slow-down of the anticorrelation fronts and the
absence of reflections and recurrences at longer times.

Theoretical Interpretation

The Gaussian field theory in an inhomogeneous metric, i.e. Eq. 1
for K (z) ≡ K , allows for an exact geometric explanation
of correlation front dynamics. The massless unitary evolution
of the velocity field in homogeneous infinite space is a su-
perposition of two local ‘chiral’ components χ̂± evaluated at
counterpropagating locations

û(z, t) = χ̂+(z + vt) + χ̂−(z − vt). [5]

Thus, the time-dependent correlations can be derived by
tracing the chiral components χ̂± from their origin at t = 0.
The initial correlation length is short, so at t = 0 two-point
correlations 〈χ̂σ (z)χ̂σ ′(z′)〉 with σ , σ ′ = ± can be significant
only for nearby points z ≈ z′ (c.f. Fig. 1). During the dynamics,
this translates to the condition

∣∣z − z′
∣∣ ≈ 2vt which corresponds

to the positions of the anticorrelation fronts in the experiment.
Thus, we expect the anticorrelation front to propagate at twice
the sound velocity.

We discuss the conditions for the other fronts and the
modification of the above calculation accounting for a finite
size system with sharp edges in SI Appendix. The sign switching
after reflections is consistent with an effective boundary condition
of the Neumann type for the phase field, i.e., vanishing of the
velocity field at the edges (29). This is the right choice of boundary
conditions for an atomic gas trapped in a box-like potential, as
the particle current ĵ vanishes at the edges.

When tracing the positions in the inhomogeneous case we
need to account for the space-dependent sound velocity. To this
end, we replace time in the equations describing the positions of
the fronts by the actual traveling time for a particle to propagate
through a given space interval

τ (z, z′) =
∫ z′

z

dl
v(l)

. [6]

The anticorrelation front consists of points z, z′ satisfying
|τ (z, z′)| ≈ 2t which generalizes the condition for the flat
metric (See SI Appendix for analogous, though more complicated,
relations for the reflected fronts). Correlation fronts are therefore
curved instead of straight lines.

From the experimental data, we quantify the position de-
pendence of the effective front velocity. We estimate the front
location in cuts perpendicular to the diagonal (z′ = −z)
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A B C

Fig. 3. Estimation of the average front velocity for three settings introduced
in Fig. 1. The extracted velocities are shown with blue circles. The error bars
show 68% confidence intervals obtained via bootstrapping (30). The red lines
represent twice the speed of sound calculated from the experimental local
density, �0(z). The orange line is a vertical line marking the average value
of the blue circles. The �2 is the reduced chi-squared values comparing
red/orange curves with the blue circles (for details SI Appendix).

at different propagation times t and compute the average
front velocity vF(t) via the difference quotient. In Fig. 3, we
compare the measured vF(t) (blue circles) with the theoretical
prediction (red line) and a constant velocity (orange line). In the
homogeneous case, the measured front propagation is consistent
with a constant velocity (a horizontal line in Fig. 3A). For the
inhomogeneous density profiles, shown in Fig. 3 B and C , the
effective velocities depend on position in accordance with the
theoretically predicted inhomogeneous metric.

The reflection of the correlation front is also clearly visible in
Fig. 3B, and we find reasonable agreement to the free Gaussian
model Eq. 1. Therein, if the velocity decreases slower than
linearly toward the boundary, the traveling time diverges, so there
is neither reflection nor turn. Therefore, light-like trajectories
converge asymptotically to the boundary, in agreement with the
geodesics of Eq. 2. This is in agreement with experimental ob-
servations (Figs. 2 and 3C ). Note however, that the Tomonaga–
Luttinger liquid description is expected to break down near the
edges due to vanishingly low atomic density (31) and hence
the absence of reflections might be dominated by dispersive or
higher-order corrections to the Gaussian model Eq. 1.

Conclusion

Going beyond previous studies of tunneling-coupled one-
dimensional gases (3, 10, 32–35), our results for the velocity field
correlations provide a direct measurement of the underlying light-
cone propagation. Controlling the local propagation speed of
fluctuations v(z), by shaping a stationary inhomogeneous average
density, we investigated the propagation of correlation fronts in
three distinct settings. In all cases, the experimentally observed
light-cone propagation in our quantum field simulator was in
good agreement with theoretical predictions for a bosonic Gaus-
sian field theory in the analogue metric gµν (Eq. 2). Designing
the boundary conditions, we have discussed the presence/absence
of recurrences based on the reflection of correlation fronts.
Additionally, our measurements reveal that the quench dynamics
together with reflections from boundaries transform the initial
thermal correlations into the so-called rainbow correlations at
half of the recurrence time.

Our work opens the possibility for detailed studies of dynamics
and correlations in an inhomogeneous metric. The ability to
study the spatially resolved field φ together with the high level of

control offered by the digital micromirror device, that shapes the
spatiotemporal evolution of the averaged background density,
offers a versatile platform. In particular, designing v(z) ∼ z−κ
would enable investigation of possible divergence of the signaling
time for κ < 1. This would shed light on the physics close
to smoothed boundaries where corrections to Eq. 1 have to
be taken into account. Beyond simulating dynamics in curved
space–times, the presented quantum field simulator can be used
to study dynamics in inhomogeneous 1 + 1-dimensional quan-
tum fluids, which have attracted significant theoretical interest
(36–50) in general, and the inhomogeneous Tomonaga–
Luttinger liquid model with a spatially dependent K (z), in
particular, which is theoretically expected to exhibit a breaking
of the Huygens–Fresnel principle (51). It is the hope that the
present work stimulates such further quantum simulations of
curved geometries.

In this work, we study a free noninteracting field theory.
However, tuning the strength of the tunneling-coupling between
the two superfluids enables us to realize an interacting and even
strongly correlated quantum field (8, 9, 35). Whereas the
equilibrium properties of this system are well understood and
described by the sine–Gordon model, studying the dynamics
of its excitations and the resulting information transfer is a
theoretical challenge and a future goal of our experiments.

Data, Materials, and Software Availability. The extracted phase profiles
for the measurements reported in this work along with an example script
calculating the velocity field and its two-point correlation function can be
found in ref. 52. Data have been deposited in https://doi.org/10.5281/zenodo.
7686404.
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