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Collective variables between large-scale states in turbulent convection
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The dynamics in a confined turbulent convection flow is dominated by multiple long-lived macroscopic
circulation states that are visited subsequently by the system in a Markov-type hopping process. In the present
work, we analyze the short transition paths between these subsequent macroscopic system states by a data-driven
learning algorithm that extracts the low-dimensional transition manifold and the related new coordinates,
which we term collective variables, in the state space of the complex turbulent flow. We therefore transfer
and extend concepts for conformation transitions in stochastic microscopic systems, such as in the dynamics
of macromolecules, to a deterministic macroscopic flow. Our analysis is based on long-term direct numerical
simulation trajectories of turbulent convection in a closed cubic cell at a Prandtl number Pr = 0.7 and Rayleigh
numbers Ra = 106 and 107 for a time lag of 105 convective free-fall time units. The simulations resolve vortices
and plumes of all physically relevant scales, resulting in a state space spanned by more than 3.5 million degrees
of freedom. The transition dynamics between the large-scale circulation states can be captured by the transition
manifold analysis with only two collective variables, which implies a reduction of the data dimension by a factor
of more than a million. Our method demonstrates that cessations and subsequent reversals of the large-scale flow
are unlikely in the present setup, and thus it paves the way for the development of efficient reduced-order models
of the macroscopic complex nonlinear dynamical system.
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I. INTRODUCTION

Complex nonlinear systems typically incorporate orders of
magnitude of relevant dynamical scales. Examples start at the
microscopic stochastic level where protein macromolecules,
which remain in a certain conformation for milliseconds,
switch within nanoseconds into a different configuration that
leads to a significant change in their chemical functionality
[1,2]. All the way up to the macroscopic deterministic level,
turbulent flows in confined geometries or extended layers can
exhibit differently ordered large-scale spatial patterns that are
visited for longer transients in a long-term evolution [3–6].
The (rapid) crossover from one configuration to another is
triggered by fluctuations of secondary flow structures, smaller
eddies, shear layers, or plumes that can affect the turbulent
transport of heat or momentum [7–13]. The state or phase
space of macroscopic flows is infinite-dimensional or at least
extremely high-dimensional and requires drastic dimension-
ality reductions to model the observed large-scale dynamics
effectively [14].

The present study transfers an unsupervised data reduction
strategy, the transition manifold framework, from stochas-
tic molecular dynamics [15–17] to deterministic turbulent
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flows. More precisely, we will analyze a turbulent thermal
convection flow, also denoted as Rayleigh-Bénard convection
flow, which is driven by buoyancy forces and is confined
in a closed cubic cell [18–20]. Despite the simple dynamics
and physical-space geometry, this configuration serves as a
paradigm for many applications in nature and technology.
The present turbulent flow has several similarities with the
mentioned microscopic example. It appears in different con-
formations, here different large-scale circulation (LSC) states
[21–26] that occupy different regions of the phase space for
many convective time units before rapidly switching from one
to another in phase space. On the one hand, one could think
of these LSC states to correspond in phase space to states
marked by strong similarity in their velocity and temperature
fields, hence they can be thought to build concentrated clus-
ters. On the other hand, the transitory dynamics between the
LSC states may be arbitrarily complicated, providing a—if not
the—major obstacle to reduced modeling of this system. It is
exactly the transitory dynamics, more precisely the progress
between the different LSC states, that we will target here.
In particular, we will provide data-based evidence that it is
low-dimensional.

The LSC in a closed cubic cell appears in the form of four
diagonal discrete circulation roll states that fill the whole cell
aligned along the diagonals [27–31]. It was shown recently
that this hopping from one long-lived LSC state to another,
which proceeds via short-lived LSC states, can be approxi-
mately described as a Markov process based on an analysis of
long-lived LSC lifetimes and transition probabilities [32].
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The analysis of the fast transition events of the long-term
trajectory will give a minimal set of new coordinates spanning
a low-dimensional surrogate state space that is sufficient to
represent the statistical dynamical behavior of the system.
The description by these new coordinates is then connected
to the dynamical processes in the turbulent convection flow in
the physical space, namely the intermittent interplay of local
corner vortices next to the LSC which grow transiently and
kick the diagonal circulation roll into the next macrostate. The
Koopman eigenfunction framework in [30] was able to isolate
the four LSC states. Secondary and tertiary eigenfunctions
could be connected with these transition processes, but still
gave a complex three-dimensional structure. Our approach
reduces exactly this complexity. It combines and extends two
established frameworks from fluid mechanics and data-driven
analysis and thus opens the door to an efficient reduced
dynamical model of the LSC dynamics in this particular
high-dimensional application, namely as a Markov process on
the surrogate state space described by the new coordinates.
Apart from this combination and the resulting insights, our
main contribution is the extension of a coordinate-learning
framework [16] from stochastic systems to deterministic
dynamics.

These new coordinates are often termed in the original
chemical context as reaction coordinates [16], we will use the
notion of collective variables for the present application. The
turbulence data stem from a long-term simulation trajectory
of 105 convective free-fall time units, t f , at two different
Rayleigh numbers Ra = 106, 107 and a Prandtl number Pr =
0.7; see the next section for the Rayleigh-Bénard flow model
of thermal convection and exact definitions of Ra and Pr.
Given the spectral resolution in the simulations for the four
turbulence fields involved, we count more than 3.5 million de-
grees of freedom that describe the turbulent convection flows.

Recent years have witnessed a large bloom in designing
methods that use (deep) neuronal networks to find surrogate
dynamical models and in particular low-dimensional variables
in terms of which these models are expressed [33–38]. Their
success relies strongly on the ability of such networks to
represent coordinates from a large general class. In these
approaches, however, the dynamical conditions necessary for
them to perform well remain implicit. The methodology
presented here relies on very explicit dynamical assump-
tions, which are validated over the course of the data-driven
computation.

Section II discusses the convection flow model, the nu-
merical simulations, and basic flow statistics. Section III is
dedicated to the large-scale circulation, in particular to the
transition from one macrostate to another. In Sec. IV, the
transition manifold framework is laid out including the pre-
processing steps. Our results follow in Sec. V. A summary
and discussion can be found in Sec. VI, including a brief sum-
mary of the data processing pipeline. The Appendixes provide
further technical details and mathematical background.

II. TURBULENT RAYLEIGH-BÉNARD FLOW

A. Model equations and simulation method

We simulate the dimensionless three-dimensional incom-
pressible Boussinesq equations of motion representing the

Rayleigh-Bénard convection dynamics. They are given by

∂t u + (u · ∇)u = −∇p +
√

Pr

Ra
∇2u + T ẑ, (1)

∂t T + (u · ∇)T = 1√
RaPr

∇2T, (2)

∇ · u = 0. (3)

Here, u(r, t ) is the velocity field of the fluid, T (r, t ) is the
temperature field, p(r, t ) is the pressure field, and ẑ is the
unit vector in vertical direction z. The spatial position in
the flow volume is given by r = (x, y, z) ∈ V ⊂ R3. The di-
mensionless control parameters of the flow are the Rayleigh
number Ra, which gives a measure of the strength of driving
by buoyancy forces, and the Prandtl number Pr, which is the
ratio of momentum to thermal diffusivity. Both numbers are
given by

Ra = αgδT d3

νκ
and Pr = ν

κ
, (4)

where α represents the isobaric thermal expansion coefficient,
g is the acceleration due to gravity, δT = Tbottom − Ttop is
the temperature difference maintained along the fluid layer
of thickness d , and ν and κ are the kinematic viscosity
and thermal diffusivity of the fluid, respectively. The equa-
tions have been made dimensionless by rescaling lengths by
the height of the cell d (which is equal here to the two
horizontal side lengths), velocities by the free-fall velocity
Uf = √

αgδT d , and temperatures by the outer difference δT .
The time units for nondimensionalization results then in the
free-fall timescale t f = √

d/(αgδT ), which is the large-scale
convective time unit in the present work.

We assume no-slip velocity boundary conditions at all six
faces of the cubic cell V = d3 with u = 0. The system is
uniformly heated from below at z = 0 with T = Tbottom and
cooled from above at z = 1 with T = Ttop. We also assume
thermally insulated side faces, n · ∇T = 0, such that all sup-
plied heat at the bottom has to pass through the fluid to the
top.

The simulations were performed using the open source
code NEK5000 (version 17), which is based on a spectral
element method [39,40]. The simulations were performed as-
suming 16 spectral elements along each space direction and
a Lagrangian interpolation polynomial of order 5 (for Ra =
106) and 7 (for Ra = 107) along each space direction and on
each spectral element, which results in 884 736 and 2 097 152
collocation points, respectively. The vertical profiles of the
mean kinetic energy dissipation rate were analyzed to verify
that this spectral resolution is sufficiently well resolved for
analyzing the large-scale circulations. The simulations were
carried out for two values of Rayleigh numbers Ra = 106 and
107 in a fluid with Prandtl number Pr = 0.7, corresponding
to an effective Reynolds number of Re = √

Ra/Pr urms of 467
and 1350, respectively, with urms denoting the root-mean-
square velocity; see Table I. Starting from a random initial
condition, we waited for a lag of 5000 free-fall times for the
system to settle to a steady state. The trajectory was further
allowed to evolve for another 105 free-fall times, and the
turbulence fields were output at every free-fall time t f , such
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TABLE I. Summary of basic parameters and turbulence quan-
tities. Comparison of root-mean-square values of velocity (urms),
vorticity (ωrms), and temperature (Trms) obtained for the two com-
binations of Rayleigh number Ra and Prandtl number Pr. Here, 〈·〉V,t

is a combined average over the cubic volume and time. The mean
persistence times (tpers) of the long-lived LSCs and short-lived LSCs
are enlisted in the last two rows in terms of convective free-fall time
units t f . They are obtained from the fit of exponential laws to the
persistence time distributions.

(Pr,Ra) (0.7, 106) (0.7, 107)

Re 467 1350
urms = 〈u2

i 〉1/2
V,t 0.39 0.36

ωrms = 〈ω2
i 〉1/2

V,t 2.86 3.83

Trms = 〈T ′2〉1/2
V,t 0.29 0.29

tpers (SL-LSC) 4.2t f 8.6t f

tpers (LL-LSC) 12.1t f 26t f

that we gather Ns = 105 full flow snapshots for each case
considered here.

B. Velocity and vorticity statistics

Table I lists the velocity, vorticity, and temperature fluctu-
ations in the system for both runs. The vorticity vector field
is given by ω = ∇ × u. The fluctuations are determined as
a root mean square with respect to the flow volume V and
time t . Our data analysis revealed that a lower switching
frequency between the long-lived LSC states is observed, even
though a higher level of vorticity fluctuations in the convec-
tion flow exists when comparing the two long-term runs at
Ra = 106 and 107 and Pr = 0.7. As also seen, the root-mean-
squared values of the velocity, urms, and temperature fields,
Trms, remain nearly unchanged. The root-mean-square value
of the temperature, Trms, is computed using the temperature
fluctuations. They are given by T ′(r, t ) = T (r, t ) − 〈T (z)〉A,t ,
representing the variation of temperature field T from the
mean temperature profile 〈T (z)〉A,t . The latter profile depends
on the vertical coordinate z and is obtained by a combined
average over horizontal cross sections A = d2 and time t .

The higher magnitude of vorticity fluctuations ωrms at the
higher Rayleigh number implies that the vortical structures
are fragmented and thinner for the higher Ra, whereas we
observed more coherent vortical structures for the lower one.
This is confirmed by the plots of vorticity magnitude iso-
surfaces in Fig. 1. The absence of spatially coarse coherent
vortical structures in the case of Ra = 107 might explain
the longer lifetime of the LSC structures in one specific
macrostate. Our observation is in accordance with previous
studies in cylindrical cells at the same aspect ratio [41,42].
Following Ref. [42], the dependence of the mean kinetic en-
ergy dissipation rate in turbulent convection at Pr = 0.7 on the
Rayleigh number follows the scaling law:

〈ε〉V,t ∼ Ra−0.2 (5)

with the kinetic energy dissipation rate field

ε(r, t ) =
√

Pr

4Ra
[∇u + (∇u)T ]2. (6)

FIG. 1. Isosurfaces of vorticity magnitude |ω| plotted for the
case of fluid Pr = 0.7 at Rayleigh numbers of (a) Ra = 106 and
(b) Ra = 107. Displayed are two time instants of the convection
flows. The isosurfaces are plotted at a value of |ω| = 1.5, which
corresponds approximately to the most probable vorticity magnitude
in both flows.

The mean kinetic energy dissipation rate is in turn to a very
good approximation directly proportional to the mean square
of the vorticity, as already found in [41,43]. This implies

〈ε〉V,t ≈
√

Pr

Ra
ω2

rms ∼ Ra−0.2, (7)

and thus a growth with Ra following ωrms ∼ Ra0.15. Note that
this is an exact equality in homogeneous isotropic turbulence;
the proportionality constant is the kinematic viscosity.

III. LARGE-SCALE CIRCULATION

A. Detection of large-scale circulation states

In the following, we discuss how the large-scale flow states
are obtained from the numerical simulation data. For this anal-
ysis, the scalar and vector fields were interpolated spectrally to
a uniform Cartesian mesh. The visualization and computation
of the time evolution of the angle of orientation of the LSC
followed that of [32]. The extraction of LSC orientation is an
evolved version of that used in [9].

Our primary aim, after identification of the LSC structure,
is to compute the alignment of the LSC within the box. For
this purpose, we first extract the vertical velocity component
on a uniformly spaced Cartesian grid at half-height. There-
after, we perform a transformation to polar coordinates to
project the vertical velocity component to a circle with a
fixed radius of 0.45 and an angle θ which varies in steps of
5◦. The angle θ is measured with respect to the y-axis in
a clockwise manner. We then perform an azimuthal Fourier
transform of the vertical velocity component data interpolated
on the circle. The identification of orientation angle θ of the
LSCs is conditioned on two quantities: (i) The ratio of energy
carried by the largest Fourier mode (kθ is a wave number),
which is given by

δ(t ) = maxkθ
|ûz(kθ , t )|2∑

kθ
|ûz(kθ , t )|2 , (8)

and (ii) the phase of the largest Fourier mode. During the
time intervals with a pronounced LSC structure, the maximum
energy will be possessed by this particular Fourier mode, and
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we will have a large value of δ(t ). The orientation of the LSC
structure corresponds to the phase of the largest Fourier mode.

In the absence of any LSC structure, the kinetic energy
will be distributed among all the modes, and we will have a
low value of δ(t ). The decoherent states are extremely rare
and unstable. For a methodical approach of identifying LSCs,
we first calculated the standard deviation σ of the probability
density function (PDF) of δ. All flow states that fall below
μ − 2σ , with μ being the mean of the PDF, i.e., states that
have extremely low values of δ, are identified as decoherent
states. All remaining states having values greater than μ + 2σ

are categorized as one of the four distinct LSC structures with
an angle of orientation θ corresponding to the phase of the
largest Fourier mode; see also [32].

We identify the six different discrete LSC states of the con-
vection flow heuristically on the basis of the energy content
contained in Fourier modes. Note that this classification relies
heavily on our prior knowledge of the geometry of the phys-
ical space and the already observed LSC configurations. We
observe that the system mainly prefers the long-lived large-
scale circulation states aligned along the diagonals, termed
as Sπ/4, S3π/4, S5π/4, and S7π/4. The transitions between the
long-lived LSC states occur via the short-lived LSC states
termed Snπ/2, which are aligned along the side faces, and
the decoherent state S0. We monitored the large-scale state
every convective free-fall time based on collecting a total of
105 full three-dimensional convection flow snapshots for each
of the two simulation runs. The evolution of the long-term
trajectories of the LSC orientation θ for both runs is shown
in Figs. 2(a) and 2(b). It is noted that the transition frequency
in the case of Ra = 107 is lower than for Ra = 106. This has
also been observed in quasi-two-dimensional flows [44]. The
lower level of angular fluctuations results in the impression
that there are significantly fewer data points in the bottom
panel; the number of data points is Ns = 105 in both cases.

One such transition between two long-lived LSC states is
detailed in Figs. 2(c)–2(j) as a typical example. The switch
from the long-lived Sπ/4 to the long-lived S7π/4 via the short-
lived Snπ/2 and the decoherent null state S0 proceeds within
a relatively short time period of 18 convective free-fall times.
This is about the time it takes for a fluid parcel to circulate
within an LSC roll; thus it is considered as a fast process
in comparison with the total time lag. Three-dimensional
streamline views from the side superimposed with isosur-
faces of high-vorticity magnitudes (in gray) are shown in
the middle row of the figure. We clearly observe that these
intense vorticity structures are always present on both sides
of the LSC mean flow; see panels (c)–(f). Their imbalance
in terms of the magnitude should thus be responsible for
the destabilization of the LSC roll. The significance of high-
vorticity regions for large-scale flow cessations is known from
quasi-two-dimensional cases [44]; the composition of corner
vortices is, however, different in 3D. A visualization of vor-
ticity magnitude contours in the bottom row of the figure in
panels (g)–(j) reveals that the high-vorticity regions are a part
of the curling arms of the rising plumes. The direction of the
alignment of the LSC roll is determined by interactions be-
tween three-dimensional up- and down-welling plumes in the
system; see, e.g., the rising plume in the center of the left front
face and the falling one in the right front face of Figs. 2(d)

and 2(h). In Sec. II B, we also show that the magnitude of
vorticity fluctuations increases with increasing Rayleigh num-
ber and that the vortical structures become more filamented;
see Fig. 1 and Table I. This example also demonstrates that a
complex fully three-dimensional pattern is incorporated into
the switching process, e.g., S0. A description of this dynamics
by a minimal set of coordinates will be essential to build a
reduced order model of the large-scale flow behavior.

B. Transition between large-scale circulation states

Our observation suggests that the long-lived LSC states al-
ways destabilize to Snπ/2 (short-lived states) or S0 (decoherent
state) before converting into another long-lived LSC state. To
substantiate our proposition of the destabilization mechanism
of the LSC by the coherent vortices in the corners along the
plane perpendicular to the direction of circulation, we com-
pare the heat flux along the flow alignment and the vorticity
magnitude triggering the destabilization. For this purpose, we
choose subvolumes Vs = (d/4)3, which are centered in the
eight corners of the cubic simulation box. Thereafter, we cal-
culate the vorticity centers within each of the eight Vs which
are given by

rs(t ) =
∫

Vs
|ω(r, t )|r dr∫

Vs
|ω(r, t )| dr

. (9)

At these eight vorticity centers rs(t ) (which are the “center
of mass” of high-vorticity regions in Vs), we center a further
smaller cubic subvolume Vc consisting of 83 grid points to
calculate the following time series:

〈|ω|(t )〉s = 1

Vc

∫
Vc

|ω(r + rs(t ), t )| dr. (10)

Similarly, we proceed for the convective heat flux,

〈uzT (t )〉s = 1

Vc

∫
Vc

uz(r + rs(t ), t )T (r + rs(t ), t ) dr. (11)

Finally, we take an arithmetic average ¯(·) of those four
〈|ω|(t )〉s and 〈uzT (t )〉s, which pass through the two vertical
diagonal planes in the cube. Thus, we now have two time
series for each of both quantities. When the long-lived LSC is
aligned along the diagonals (representing either S7π/4 or S3π/4

along one diagonal plane or the S5π/4 or Sπ/4 aligned along the
other one), the heat flux along that diagonal plane maximizes.

In a destabilization phase of the LSC, the vortices residing
in the plane perpendicular to the LSC plane become intense,
and the corresponding vorticity magnitude time-series peaks.
Simultaneously, the heat flux along the direction of the LSC
drops. This is shown in Fig. 3 for a shorter time window
of 1000t f . The system undergoes a transition from the S5π/4

to the S7π/4 state. It is crucial to note that the transition is
not smooth. The system toggles between the S5π/4 state and
the short-lived Snπ/2 or decoherent state before transitioning
to the S7π/4 state. Figure 3 captures the temporal variation
of heat flux along the LSC plane and vorticity magnitude in
a plane that crosses perpendicularly in the vicinity of one
such randomly picked destabilizing event. The onset of the
destabilizing mechanism is marked by the drop of heat flux
along the LSC alignment when the vorticity magnitude peaks.
One such destabilizing event is marked in the rectangular
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FIG. 2. Large-scale flow behavior of the convection flow in the cubical cell. Temporal evolution of orientation angle θ of the large-scale
circulations (LSCs) for Prandtl number Pr = 0.7 and two different Rayleigh numbers. (a) Ra = 106. (b) Ra = 107. The legend for both panels
indicates the six different LSC states. (c)–(j) Volumetric visualization of an example of a fast transition between different LSC states at
Ra = 106. Panels (c)–(f) represent velocity streamline plots of the LSC states in the course of a transition from the long-lived LSC state Sπ/4 in
panels (c),(g) to the intermediate short-lived LSC state Snπ/2 state in (d),(h) and via the decoherent null state S0 in (e),(i) to the new long-lived
LSC state S7π/4 state in (f),(j). The velocity streamlines are colored according to the temperature at that instant with yellow denoting the
highest and black representing the lowest temperature, respectively (0 � T � 1). The direction of the large-scale circulation flow is indicated
by white arrows, except for the case of null states. The isosurfaces of the vorticity magnitude with |ω| � 7 are added. Corresponding velocity
vectors are plotted in panels (g)–(j), where blue and red contours represent the minimal, |ω| = 0, and maximal vorticity magnitudes, |ω| = 8,
respectively. The direction of alignment of LSCs is represented again by black arrows.

box with a duration of 100t f , in Fig. 3, where the system
transitions from the long-lived Sπ/4 state to the short-lived
Snπ/2 state. Within this time window, the Pearson correlation
coefficient was obtained to be −0.71, indicating the anticor-
relation between heat flux and vorticity magnitude signals.
The two signals remain anticorrelated only during the onset
of the destabilizing mechanism (as shown in the rectangu-
lar box). Just after the transition, the anticorrelation drops
down (right-hand side of the rectangular box in Fig. 3). We
computed the Pearson coefficient between the two signals
for many such destabilizing events and always obtained a
negative correlation coefficient (not shown). Away from the
transition events, where the long-lived LSCs are stable, the
Pearson coefficients are found to be either positive or slightly
negative. It is also noted that the transitions are not smooth,

and not all destabilization mechanisms lead to an immediate
persistent transition to the next long-lived LSC state. The sys-
tem undergoes multiple oscillations between different states
before settling to the next long-lived LSC state (as depicted
by several such destabilizing events in Fig. 3).

This establishes our proposition that the intense vortical
structures sitting perpendicular to the direction of LSC cir-
culations trigger the destabilizing mechanism, whereby the
long-lived LSC destabilizes and transitions to another long-
lived LSC state via the short-lived or decoherent states. The
present discussion of a single transition event also underlines
a dynamics with complex three-dimensional flow structures
involved. A separation of these features in a reduced dynami-
cal model is desirable. We thus continue with the data-driven
framework in the next section.

033061-5



MAITY, BITTRACHER, KOLTAI, AND SCHUMACHER PHYSICAL REVIEW RESEARCH 5, 033061 (2023)

FIG. 3. Transition from LSC state S5π/4 to S7π/4 via a short-lived
state for Ra = 107 monitored by a comparison between subvolume-
averaged convective heat flux 〈uzT (t )〉s computed along the direction
of alignment of the LSC, and the subvolume-averaged vorticity
magnitude 〈|ω|(t )〉s computed in the opposite corner subvolumes
where the intense vortical structures reside. The convective heat
flux is also scaled up by a multiplicative factor of 50 for better
visual comparison with the vorticity magnitude. The destabilization
of long-lived LSC occurs when the vorticity peaks and the heat flux
minimizes. One such destabilization event occurs in a time window
of 100 free-fall times. It is one example that is highlighted by the
box. The Pearson correlation coefficient between both time signals
in this window is −0.71, which highlights the strong anticorrelation
near the transitions.

IV. DATA REDUCTION BY TRANSITION MANIFOLD
FRAMEWORK

The transition manifold framework identifies low- but pos-
sibly multidimensional collective variables, i.e., observables
of the full state space that characterize essential dynami-
cal phenomena. The present algorithm is unsupervised and
data-driven, i.e., it does not require any physical knowledge
about the turbulent flow. While the framework was designed
originally for stochastic processes, we will demonstrate how
it is applied to chaotic (here in a common, rather than a
strict mathematical sense), but deterministic systems, such as
the macroscopic Rayleigh-Bénard convection flow. We have
already seen in [32] that the flow acts as a “memoryless”
stochastic process on the largest scales, which is demonstrated
by the exponential distribution of persistence times. This sug-
gests that there is a coarse-graining level in between on which
the system can be well described as a stochastic process,
making it amenable to the present framework.

In the following, we will ease the notation for the data-
driven framework. The variable x(t ) stands for a velocity
field state of the turbulent Rayleigh-Bénard convection flow,
u(·, t ). Thus, x(t ) is one trajectory point in the state space
X, the dimension of which depends on the number of spatial
grid points—and is usually very high. From now on, also the

variables y and z will not denote coordinates in physical space,
rather points in the full state space X or in some latent space.

A. Original framework for stochastic systems

We now outline briefly some basic mathematical rela-
tions to keep the manuscript self-contained. Consider a time-
and space-continuous, homogeneous (that is, time-invariant)
Markov process {Xt }t�0 (or {Xt } for short) on a bounded set
of states X ⊂ RN , with variable initial condition X0 and an
underlying probability space (�,F , Prob). The dimension N
will be specified further below. Assume that {Xt } is ergodic
and possesses a unique invariant density π : X → R+. We
will denote by π also the probability measure induced by π ,
and the Lebesgue measure by Leb. Under mild assumptions
on the regularity of {Xt }, the statistics of the process are
characterized by the family of transition density functions
{pt }t�0 ⊂ L1

π×Leb(X × X), in the sense that

Prob[ Xt ∈ A | X0 = x ] =
∫

A
pt (x, y)dy. (12)

In other words, pt (x, ·) is the distribution of Xt with starting
distribution X0 ∼ δx, with δx being a Dirac distribution. Writ-
ten as a conditional distribution, (Xt | X0 = x) ∼ pt (x, ·). In
general, L1

μ(S) denotes the linear space of functions f : S →
C integrable with respect to the measure μ, that is, for which
‖ f ‖L1 := ∫ | f (x) dμ(x) < ∞.

Consider now some candidate collective variable ξ : X →
Rr , r � N , and let Y := ξ (X). As our interest in the
Rayleigh–Bénard flow focuses on the most slowly evolving
LSC phenomena and subprocesses of the system, we may
informally call ξ a “good” collective variable if on mapping
the process by ξ the long-term statistics of the system are
preserved. That is, for t larger than some threshold timescale
τ , the statistics of {ξ (Xt )} will mimic that of {Xt } in a certain
sense. In the formal setting introduced above, this translates to

‖pt (x, ·) − p̄t (ξ (x), ·)‖L1 � ε, ∀x ∈ X, t � τ (13)

for some threshold lag time τ > 0, some family of functions
{ p̄t (·, ·)}t�0 ⊂ L1

π̄×Leb(Y × X) that are smooth in their first
coordinate, and some small ε > 0. Here, π̄ denotes the
pushforward of the measure π by ξ , i.e., π̄ = π ◦ ξ−1. We
call a collective variable that satisfies (13) ε-consistent.

Observe that Eq. (13) implies that the set of transition
densities

M̃ := {pτ (x, ·) | x ∈ X} ⊂ L1(X) (14)

accumulates ε-closely around the r-dimensional manifold,

M := { p̄τ (z, ·) | z ∈ Y } ⊂ L1(X), (15)

the transition manifold. We emphasize that the transition man-
ifold does not live in state space, and hence one should not
think of it as a low-dimensional manifold connecting cer-
tain parts of state space, as heteroclinic orbits or manifolds
would do.

Inversely, one can construct ε-consistent collective vari-
ables from parametrization of the transition manifold. For this
let E : M → Rr be any parametrization of M, i.e., a one-to-
one map between M and its image, and let Q : M̃ → M be
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simulation

x pτ (x, ·)

manifold learning

pτ (x, ·) E pτ (x, ·)

pull-back

ξ(x) := E pτ (x, ·)

X

L1(X) L1(X)
R

r

X

x

pτ (x, ·)

M

M

E pτ (x, ·)
ξ(x)

(a) (b) (c) (d)

FIG. 4. Illustration of the transition manifold framework for a noisy system. (a) State space with initial states x. The multiple arrows out
of the dots in the picture underline the probabilistic nature of the system. (b) Initial states are mapped by their transition densities to M̃ ⊂ L1,
where they might accumulate around a low-dimensional manifold M. (c) A low-dimensional parametrization of M̃ is found, indicated by the
colors. (d) This parametrization is trivially pulled back to the set of initial states to define the collective variable ξ .

any map with the property

‖pτ (x, ·) − Q(pτ (x, ·))‖L1 � ε. (16)

We think of Q as a map “naturally collapsing” M̃ to its
low-dimensional approximation M. Under the assumption of
(13), such a map exists and it can be shown that the collective
variable

ξ (x) := E (Q(pτ (x, ·))) (17)

satisfies indeed (13). We call ξ the transition manifold col-
lective variable. As in the case of the transition manifold, ξ

does not necessarily parametrize the time-evolution of every
trajectory in state space, rather it parametrizes the progress of
trajectories during transitory dynamics in a collective manner.

As shown in [16], the process {ξ (Xt )}t�0 admits dominant
timescales (decay rates of correlations) which are O(ε)-close
to those of the original process {Xt }t�0, if this is (stochas-
tically) reversible. This quantifies how “good” a collective
variable ξ is, and it paves the way for a constructive method
that finds such collective variables of the transition manifold;
cf. Fig. 4. Indeed, the dynamical property (13), or equivalently
the existence of a low-dimensional transition manifold M, can
be validated during the computation. Hence, ε-consistency of
a collective variable is a well-accessible property both from
theoretical and practical viewpoints. A detailed discussion on
the algorithmic realization of collective-variable computation
can be found in Appendix B, and in particular, the dimension
estimation is discussed in Appendix B 5.

B. Set-based approximation of collective variables
for deterministic systems

For a deterministic flow with a map �τ , the transition “den-
sities” pτ (x, ·) are Dirac distributions δ�τ (x)(·) and hence not
in L1(X). This is a problem for our framework as introduced
above. Yet, complex chaotic systems behave in many aspects
as genuinely stochastic systems, and their analysis is of a
probabilistic or statistical nature. This motivates our appli-
cation of the transition manifold framework on deterministic
chaotic systems such as the present one.

A solution to the above problem is offered by the con-
cept of small random perturbations [45]. Intuitively, a family
(pε )ε>0 of transition densities (or measures, in general) is
a small random perturbation of the map � if in the space
of measures, pε(x, ·) w→ δ�(x) in the weak sense as ε → 0.

Such small random perturbations retain certain dynamical
properties of the original system in the limit of vanishing
perturbation [45,46]. This is a kind of structural stability that
we now assume extends to collective variables as well. The
idea is to use small random perturbations with transition den-
sities in L1(X) to transfer the transition manifold framework
to deterministic systems.

The following discretization, that we propose to use in the
collective variable computation pipeline for a deterministic
flow �τ , can be shown to provide for the original system a
small random perturbation that has a transition density [47].
More precisely, instead of computing the transition manifold
collective variable ξ at a single point, we will evaluate the
average of ξ over partition elements {A1, . . . , AL} of the state
space X:

ξ (x) � �(Ai ) := E[ ξ (X ) | X ∼ π |Ai ]. (18)

This will give us (an approximation of) ξ on the whole state
space instead of just in isolated points, and at the same time
allow its computation from long serial trajectory data, as op-
posed to simulation “bursts”; cf. Algorithm 1.

Algorithm 1. Setwise computation of the transition manifold
collective variables.

Input: Data set pairs X = {x1, . . . , xNs }, Y = {yi, . . . , yNs }
with yi = �τ xi.

1: Choose a partition {A1, . . . , AL} of X so that the metastable and
transition regions are covered evenly.

2: Sort the data set X into the partition elements, i.e., for each j,
compute the index set

I j := {i|xi ∈ Aj}.
The set

Y j = {yi|i ∈ I j}
is then an empirical approximation of pτ (Aj, ·).

3: Approximate the distance matrix D ∈ RL×L ,

D ∈ RL×L , Di j = d (pτ (Ai, ·), pτ (Aj, ·))
from the sampled pτ (A, ·).

4: Apply an unsupervised, distance-based manifold learning
algorithm to D.

Output: Approximation to transition manifold collective
variable ξ , averaged over the sets {A1, . . . , AL}, i.e.

{�(A1), . . . , �(AL )}.
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In our setting, the data set pairs X ,Y will be constructed
from a single long trajectory, which is given by

T := {x0,�
τ x0,�

2τ x0, . . . , �
Nsτ x0}, (19)

where �τ represents the flow map of the dynamical system,
and Ns is the number of snapshots, here Ns = 105. We use

X = {x0, . . . , �
Ns−1x0}, (20)

Y = {�τ x0, . . . , �
Nsτ x0}, (21)

where we use the lag time τ = 1t f . A trajectory output at this
sampling rate is high enough to resolve the turnover process
of fluid parcels in a LSC circulation roll.

To obtain a partition of X, we use a distance-based method.
As the results of this method can strongly depend on the
distance used, especially in very high-dimensional normed
spaces, we will perform the partition on the trajectory T
mapped to zi = ψ (xi ) ∈ Rr̃ in a lower-dimensional space by
an auxiliary observation function ψ . Here, r̃ � N . The via-
bility of this and the choice of ψ is discussed in the next
section. The partition of T is then induced by the parti-
tion found for ψ (T ). To partition the set z1, . . . , zNs ⊂ Rr̃ ,
we use a Voronoi tessellation of Rr̃ with center points
{z(1), . . . , z(L)} selected according to some sensible rule. A
Voronoi tessellation of Rr̃ , with center points {z(1), . . . , z(L)},
is a collection of sets A1, . . . , AL with Rr̃ = ∪L

i=1Ai, such that
z ∈ Ai ⇔ ‖z − z(i)‖ � ‖z − z( j)‖ for j �= i. In other words,
the sets Ai are formed by the points that are closer to z(i) than
to any other center points z( j). We applied here the k-means
clustering algorithm with k = L to ψ (T ), and we use the
resulting cluster centroids as Voronoi centers, as proposed
in [48]. This has been demonstrated [17] to provide an even
covering of the data points with center points. Further details
are deferred to Appendix B 1.

V. COLLECTIVE VARIABLES FOR
RAYLEIGH-BÉNARD FLOW

A. Preprocessing by time-lagged independent
component analysis

A flow state x ∈ X of the turbulent convection flow is
originally infinite-dimensional, and even after the spatial dis-
cretization that is used for the direct numerical simulation
it has millions of dimensions, as discussed in Sec. II. The
subsequent down-sampling from the original computational
mesh still leaves us with a 12 288-dimensional data space in
the present cases; see also the next subsection. Representing
general distributions in so many dimensions is a challenging
task, and it has proven itself useful to further preprocess the
data by some coarse dimension reduction technique. Note that
the assumption underlying the transition manifold framework
is that the set M̃ in (14) is almost a low-dimensional smooth
manifold. This means that almost every linear projection onto
a sufficient but low-dimensional space is preserving the man-
ifold structure of its core M. [We note that this “projection
theorem” is a useful quantitative statement, which is also used
to prove Whitney’s (weak) embedding theorem.]

We will consider the pushforward of the distributions
pτ (x, ·), x ∈ X, through a linear function ψ : X → Rr̃ with
moderate range dimension r̃. More precisely, as (Xτ | X0 =

x) ∼ pτ (x, ·), we will consider the distribution of (ψ (Xτ ) |
X0 = x) on Rr̃ . In addition to the above, this has the advantage
that sampling this latter distribution is more accurate with the
same amount of samples than pτ (x, ·) as r̃ � N .

The function ψ we choose to be composed by time-lagged
independent component analysis (TICA). In brief, TICA
determines linear coordinates of the state that are ordered ac-
cording to their so-called “kinetic variances”; see Appendix A
for further details on this data analysis algorithm. In this way,
dominant TICA coordinates are expected to capture a lot of
the dynamic variability and thus suggest themselves to be
good observables to resolve the transition densities. Note that
they are not expected to be able to parametrize the transitory
dynamics—this would indeed be a lot to ask from linear
observables for a highly nonlinear (turbulent) system.

B. TICA coordinates for Rayleigh-Bénard case

Since we are interested in macroscopic and mesoscopic
dynamical effects at the larger scales of the convective flow,
we reduce the data amount and downsample from the original
grid resolution of the DNS. The three components of the
velocity vector field are therefore spectrally interpolated on
a coarser uniform mesh with 16 × 16 × 16 points. Hence, the
Rayleigh-Bénard convection flow trajectory is embedded in a
phase space with dimension N = 163 × 3 = 12 288.

TICA is then run on this N-dimensional trajectory
(xi )

Ns
i=1 of length Ns = 105, producing the TICA coordinates

ψ1(xi ), ψ2(xi ), . . . , ψN (xi ) of the flow states xi = u(·, ti ). The
TICA spectra in Figs. 5(a) and 5(d) exhibit a clear gap after
the third eigenvalue, which is shown in panels (b) and (e) of
the same figure. This gap indicates twice as much kinetic vari-
ance in each of the first three TICA coordinates as in any of
the others, and thus suggests to use ψ = (ψ1, ψ2, ψ3)ᵀ as the
observation function introduced in the previous section (this
means r̃ = 3); see panels (c) and (f) of Fig. 5. As detailed
in Appendix B 5, for the transition manifold analysis there
is no information gain in increasing the number of TICA
coordinates, so the three leading ones are sufficient for both
cases at hand.

Before proceeding to an analysis that considers the transi-
tory dynamics of the system, let us analyze the data {ψ (xi )}Ns

i=1
from a static point of view, i.e., without taking information
on succession of data points into account. Figure 6 shows
histograms of the leading six TICA coordinates, showing a
multimodal structure of ψ1, ψ2, ψ3 at Ra = 106. This suggests
that large-scale structures of the convection flow could be
identified as clusters in the data mapped into ψ-space. Indeed,
plotting a subset (sampled equidistantly in time with step
50, hence 2000 points) of the trajectory in ψ-space reveals
four densely populated regions as seen in Fig. 7. Applying
the standard Density-Based Spatial Clustering of Applica-
tions with Noise (DBSCAN) [49] with parameters ε = 0.12
and minPts = 15, we identify four clusters, i.e., four sets of
trajectory index sets, that are robust to moderate parameter
changes in the DBSCAN algorithm. Pulling these four index
sets back into physical space, and averaging the corresponding
flow fields, we see that they correspond to the four LSC states;
see the streamline plots in Fig. 7 on the sides. Results for
Ra = 107 are similar (not shown).
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(a)

(b) (c)

(e) (f )

(d)

FIG. 5. (a) Real and imaginary parts of the TICA eigenvalues
for the run at Ra = 106 (a)–(c) and Ra = 107 (d)–(f). (a),(d) The
coloring corresponds to the eigenvalue index. (b),(e) Absolute value
of the leading 10 TICA eigenvalues. A spectral gap is clearly vis-
ible. (c),(f) Cumulative kinetic variance ci, indicating the portion
of kinetic variance preserved by projecting onto the first i TICA
coordinates.

The TICA-based analysis of the Rayleigh-Bénard flow so
far was intrinsically linear. With the following transition man-
ifold framework, we will advance to a nonlinear reduction. As
mentioned above, although the transition manifold framework
can be applied to arbitrary systems, it has a quantitative perfor-
mance guarantee only for (stochastically) reversible systems.
Rayleigh-Bénard convection is a deterministic system and
hence cannot be reversible. The remedy is that both the results
in [32] and the realness of the dominant TICA spectrum in
Fig. 5(a) indicate reversibility of the large-scale processes.

C. Transition manifold analysis

While a projection onto the dominant three TICA coordi-
nates clearly allows for the identification of the LSC states, it
does not provide insight into the transition pathways between
them. For this reason, we now apply the set-based transition
manifold algorithm (Algorithm 1). It is applied to the trajec-
tory projected onto the leading three TICA coordinates.

The first step consists of the construction of a Voronoi
tessellation of X that, in particular, resolves the transition
regions, or equivalently, the selection of points z(1), . . . , z(L)

that will become the centers of the Voronoi cells. For the
reasons detailed in Appendix B 1, we choose the k-means
clustering algorithm with a cluster count of k = L = 2000 for
the center point selection. This results in an average number of
50 trajectory snapshots being designated to each Voronoi cell.
In previous studies involving the transition manifold frame-
work, comparable sample numbers have been demonstrated
to capture the dynamical properties of interest [17,48]. The
selected center points z(1), . . . , z(L) slightly undersample the
cluster areas, and cover the transition areas more densely,
when compared to the equidistant subsampling. Note that, by
the nature of k-means, the center points are in general not
actual states from the data set (i.e., the trajectory) but instead
the centroids of certain subsets of the data set.

Next we apply Algorithm 1 with the Voronoi cells
A1, . . . , AL associated with the center points z(1), . . . , z(L). For
the distance measure between the transition densities we use
maximum mean discrepancy (see Appendix B 2), and we use
diffusion maps to learn the collective variable ξ from the
resulting distances; see Appendix B 3. The resulting analysis
(see Appendixes B 4 and B 5) shows that the associated tran-
sition manifold has at most dimension r = 2, hence we obtain
a two-dimensional collective variable: ξ (xi) ∈ R2. The collec-
tive variable ξ of the Voronoi centers is shown in Fig. 8(a) as
black dots. The data now accumulate in the four corners of
this collective-variable space, corresponding to the LSCs.

In contrast to the TICA embedding in Fig. 7, however,
the clusters are much more concentrated. This indicates that,
while two points xi, x j from the same cluster may be consid-
erably distinct in physical or TICA-ψ-space, their dynamical
distance, i.e., the maximum mean discrepancy between the
densities pτ (xi, ·) and pτ (x j, ·), is much smaller. This allows
us to better group states by their future statistics, i.e., identify
states that have the same long-term evolution.

D. Transitory dynamics in collective variables

As close-by points on the transition manifold have sim-
ilar evolution, the shortest path in collective-variable space
is likely to have distinctive dynamical relevance. To validate
this, we consider the shortest paths between the corners in
Fig. 8(a); these are the colored curves. More precisely, for two
cluster centers ζ1, ζ2 ∈ R2, we consider the interconnecting
line

γ (r) := rζ1 + (1 − r)ζ2, r ∈ [0, 1],

and we define the discrete pathway from ζ1 to ζ2 between
sample points of the transition manifold as

�(r) := argmini=1,...,L

∥∥γ (r) − ξ (z(i) )
∥∥.
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FIG. 6. Histograms of the values of the leading six TICA coordinates over the trajectory. The leading four coordinates are purely real, so
only the real parts are plotted in panels (a)–(d); for the fifth and sixth leading coordinate in panels (e),(f), the real and imaginary parts are
plotted. We observe a multimodal distribution in ψ1 to ψ3, and approximately normal distributions (real or complex) in the higher coordinates.
There exist higher purely real TICA coordinates, which again are approximately normal distributed (not shown). Data are for Ra = 106.

Note that these paths are not trajectories of the system.
Progress along the individual pathways shows strong corre-
lation to the midplane angle θ (recall Fig. 2), as indicated
in Fig. 8(c). The imperfect correlation between θ and �(r)
is expected as the classification of circulation states through
the midplane angle. It is based (i) on a geometric-physical
intuition, and (ii) on solely time-instantaneous flow-field in-
formation, in contrast with dynamical information as in the
transition manifold framework. Yet, there is a clear correlation
between the results of these two classification methods. These
transition pathways align well with the heuristic classification
from Sec. III A. This is further underlined by the portion of

the pathways spent in the respective LSCs, shown in Fig. 8(b).
We observe that a pathway connecting two corners associated
with two long-lived LSCs spends most of the time in these
states, while transitioning through the short-lived LSC and
decoherent states and notably spending barely any time in
other long-lived LSCs.

Figure 9 illustrates the prevalence, i.e., the frequency of
appearance in associated Voronoi cells, of the different LSC
states in collective-variable space. LSCs of trajectory snap-
shots are again computed by the classification method used
in Fig. 2. We observe that snapshots of the long-lived LSCs
each concentrate in one corner of the transition manifold.

−1

0

1

2 −1
0

1
2

−2
0
2

ψ1

ψ2

ψ
3

Cluster 1
Cluster 2
Cluster 3
Cluster 4

FIG. 7. Large-scale circulation states in the hyperplane which is spanned by the first three coordinates ψk determined by time-lagged
independent component analysis (TICA). The center of the figure shows a subsample of the trajectory (2000 points) projected onto
(ψ1, ψ2, ψ3)-space. The points marked in color indicate the affiliation to four clusters as identified by the Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) algorithm in this projection. At the sides, time-averaged velocity fields in the form of streamline plots are
displayed which correspond to the four clusters. Data are for Ra = 106.
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FIG. 8. Transition manifold analysis for the Rayleigh-Bénard flow. (a) Shortest pathways between the cluster centers which were
determined in the transition manifold space spanned by the two-dimensional collective variable ξ . (b) Portion of time the transition path
spends in or between each of the six large-scale circulation states. (c) Comparison of the progress along the individual transition pathways,
listed in the form of the indices of the points along the paths, to the midplane angle θ . One visually observes a strong linear correlation, which
is also confirmed by a high Pearson correlation coefficient. Note that, due to the periodic nature of θ , plotting its raw value would not convey
its trend along the paths correctly. Hence, in order to obtain these results, a preprocessing step has been conducted to possibly shift each θi by
±2π , according to which value gives the closest distance to θi−1. Data are for Ra = 106.

Moreover, the short-lived LSCs tend to be evenly distributed
along the edges and corners of the structure, whereas de-
coherent snapshots have a stronger tendency to fall in the
center of the transition manifold. These results demonstrate
that the geometry of the transition manifold encodes and high-
lights the long-term stability and transition dynamics of the
system.

Finally, we note that the transition manifold analysis shows
also that there are no flow reversals. For this, an alternative
parametrization of the transition manifold—and thus slightly
distorted collective variables—was considered in Fig. 12(a)
in Appendix B 5, which emphasizes small-scale geometric
features. This parametrization shows no pathways connect-
ing diagonally opposite corners of the transition manifold,
which correspond to long-lived LSCs of reverse circulation
direction.

We have repeated the transition manifold framework anal-
ysis for the data at Ra = 107 (not shown). The pipeline of
data processing is the same, resulting first in three TICA
coordinates as already shown in Figs. 5(d)–5(f). The transition
manifold framework gives us again four distinct clusters. The
maximum mean discrepancy histogram, which is shown in
Fig. 10 in Appendix B 2, suggests that the data are more
strongly clustered, which can also be seen from Fig. 2(b).
However, there is a difference from the case at Ra = 106.
Namely, the structure is not quite two-dimensional anymore.

It is instead three-dimensional, or maybe even more. The third
dimension, however, does not give the transition manifold any
additional interpretable structure, it only seems to “thicken”
the manifold, i.e., as if it were merely noise. It can be expected
that with increasing Rayleigh number, the dimension of the
transition manifold will increase, an aspect that we have to
leave for future work.

VI. SUMMARY AND DISCUSSION

This work presented a data-driven description of the
crossover dynamics from one large-scale state into another
in a turbulent Rayleigh-Bénard convection flow—a paradigm
for a deterministic macroscopic and complex nonlinear dy-
namical system. The Rayleigh-Bénard convection flow in a
closed cubic cell is known to rest in macrostates in the form of
large-scale circulation rolls along the diagonals for hundreds
of convective time units before switching rapidly into another
diagonal flow state. The specifics of these transitions were in
the focus of our study. They are characterized by a complex
interplay of the thermal plumes which build up the large-scale
circulation and fluctuating high-amplitude vortices at the sides
of the LSC, as we discussed in Secs. II and III in detail.
See also Figs. 1 and 2, which displayed the transition. This
dynamics is fully three-dimensional and includes the majority
of the degrees of freedom of our dynamical system at hand.
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FIG. 9. Prevalence of the four long-lived (a),(b),(d),(e), the short-lived (c), and the decoherent (f) states among all trajectory snapshots
for the case of Ra = 106. Both the color and the size of a point indicate the number of trajectory snapshots that fall within the Voronoi cell
corresponding to the point, and it belongs to one of the six states, as identified by the method used in Fig. 2 and described in detail in Sec. III A.
Data are for Ra = 106.

We applied the transition manifold framework to the
present system, which was originally developed for stochastic
microscopic systems, such as for conformational transitions
of macromolecules. In our macroscopic case, a significant
reduction to two coordinates, denoted as collective variables,
was achieved. The initial computational grid for the four tur-
bulent fields (u, T ) = (ux, uy, uz, T ) with a total of at least
Nfull � 3.5 × 106 degrees of freedom was first downsampled
in both runs to 3 × 163 = 12 288 degrees of freedom for
u = (ux, uy, uz ). This forms the starting point of our reduced
description of the transition dynamics.

The subsequent data-driven calculation of the two co-
ordinates that span the nonlinear transition manifold was
preconditioned by a time-lagged independent component
analysis (TICA) that reduces the 12 288-dimensional data
space. TICA determines linear coordinates which allowed us
to identify LSC states as shown in Fig. 7. On the TICA-
preprocessed time series, we then ran the transition manifold
analysis to find that actually two coordinates describe its
transition dynamics. The projection of the dynamics on these
collective variables improved the distinction of the clusters
significantly, which can be seen when comparing Figs. 7 and
9. The LSC states are clearly assigned with the cusps of the
transition manifold. Furthermore, Fig. 9 demonstrates clearly
that the short-lived LSCs are lined up along the boundary of
the manifold, connecting the cusps, and that the decoherent
state is found in the interior; i.e., all six macrostates can be
properly separated in the plane which is spanned by the two
collective variables. The new collective variables also demon-

strate that flow reversals are not observed for the chosen
parameter sets, thus we can conclude that they are very rare
in the present three-dimensional convection case.

In future work, one could use these reduced coordinates to
identify a surrogate dynamics of the large-scale processes in
the system. A further interesting extension of this framework
can be obtained by the study of convection flow configurations
in closed cells with a somewhat larger aspect ratio. Then
multiple LSC rolls will fill the simulation domain. The first
step would comprise a verification of the Markov property
of the large-scale flow dynamics as done for the present case
in Ref. [32]. It is expected that more long-lived macrostate
configurations are possible then and that in turn more than
two collective variables are required to describe the transitions
within the transition manifold framework.

A. Data processing pipeline summary

Several specifics of the applied methods are outlined in
detail in the Appendixes, including additional figures and
algorithmic elaborations. They contain technical details on the
transition manifold framework and the intermediate reduction
by time-lagged independent component analysis. Here, we
briefly summarize the data processing pipeline of learning the
collective variables once more in five subsequent steps. These
are as follows:

(i) Downsampling of the grid from Nfull ≈ 3.54 × 106 and
8.39 × 106 degrees of freedom for Ra = 106 and 107, respec-
tively, to N = 12 288 degrees of freedom. This is justified by
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our focus on processes that show up on mesoscopic scales and
larger.

(ii) Computation of the time-lagged independent compo-
nent analysis coordinates ψ1, . . . , ψN and setting of ψ :=
(ψ1, ψ2, . . . , ψr̃ )ᵀ with r̃ = 3 as observables of the high-
dimensional original system. This reduction follows the
assumption that variations in the transition densities are low-
dimensional and that density estimation is more accurate for
r̃ � N .

(iii) Subsequent Voronoi tessellation of {ψ (xi ) | i =
1, . . . , Ns} to find Voronoi cells Ai ⊂ Rr̃ , i = 1, . . . , L =
2000. This is justified by the fact that complex turbulent flows
behave like stochastic systems. Branching off from the main
pipeline, we applied DBSCAN to the cell center points and
associated the clusters with LSCs of the convection flow.

(iv) Approximate the ψ-pushforward of transition densi-
ties pτ (xi, ·) by the samples {ψ (x j+τ ) | ψ (x j ) ∈ Ai} and use
maximum mean discrepancy to compute the distance matrix
D ∈ RL×L between them. The feasibility of this step was
demonstrated in [17], where the maximum mean discrepancy
turns out to allow for a “quasi-embedding.”

(v) Compute transition manifold by applying diffusion
maps to D to obtain the estimated dimension r = 2 and the
associated collective variable ξ = (ξ1, ξ2)ᵀ.
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APPENDIX A: TIME-LAGGED INDEPENDENT
COMPONENT ANALYSIS

The time-lagged independent component analysis (TICA)
is applied to preprocess the simulation data. TICA provides
a reduction of the data to a low-dimensional hyperplane in
the state space that will be the starting point for the subse-
quent transition manifold analysis to determine the collective
variables.

1. TICA algorithm

The evolution of the LSCs proceeds in a high-dimensional
configuration space (or phase space) and consists of both
slowly evolving or metastable long-lived LSC states and
fast-evolving transition states, which includes short-lived

LSC and decoherent states. Due to the high dimensionality
of the data, it is demanding to extract the basic configuration
and transition states of the system. This suggests employing
dimension reduction techniques for efficacious handling of
the generated data.

Perhaps the most widely used linear dimension-reduction
technique is principal component analysis. While a principal
component analysis finds high-variance linear combinations
of the input degrees of freedom, TICA [50] is a linear trans-
formation method based on a variational approach, which
transforms a set of high-dimensional input coordinates to a
set of low-dimensional output coordinates having maximal
autocorrelation. It can thus be seen as a dynamic version of
a principal component analysis. TICA has been developed in
signal processing [50] and more recently applied in molecular
dynamics [15,51,52]. Its use has two objectives, namely (i)
to reduce the dimensionality of the configuration space for
a faster processing of the data, and (ii) to extract the slow
order parameters which can give us an idea about the slowly
evolving states.

Another method frequently applied in fluid dynamics is
dynamic mode decomposition (DMD) [53,54], where a linear
model is fitted to the observed time series in a least squares
sense. It should be noted that TICA and DMD are essentially
equivalent on an algorithmic level, as shown in [55] (Sec. 3.2).
However, while DMD is designed and used to visualize and
forecast evolving fluid flows by a linear model, TICA is
utilized to produce a set of (reduced linear) coordinates that
explain most of the dynamical variability in the system. We
shall thus employ the TICA-terminology in the following.

We begin with an N-dimensional dynamical system
trajectory x(t ) = (x1(t ), . . . , xN (t ))ᵀ ∈ RN . Here, Cartesian
coordinates are taken as the three components of the velocity
vector field are spectrally interpolated on a uniform 16 ×
16 × 16 mesh (coarser than the computational one). Hence,
the convection flow trajectory is embedded in a phase space
with dimension N = 163 × 3 = 12 288. Note that we do not
include the temperature field in the analysis. The input data
should obey a zero mean, thus we will use

x′(t ) = x(t ) − 〈x(t )〉t , (A1)

where 〈·〉t denotes time averaging. Thereafter, we compute the
autocovariance matrix C(τ ) at various lag times τ , which is
given by

Ci j (τ ) = 〈x′
i (t )x′

j (t + τ )〉t ∈ RN×N . (A2)

The matrix elements of C are evaluated by

Ci j (τ ) = 1

Ns − τ − 1

Ns−τ∑
t=1

x′
i (t )x′

j (t + τ ), (A3)

where t and τ are integer-valued multiples of the output time
interval, 1t f . Times are thus associated with integers that run
from 1 to Ns = 105 in the present case. The TICA eigenvectors
�k ∈ RN can be obtained as the solution of the generalized
eigenvalue problem

C(τ )�k = λkC(0)�k, (A4)

with the kth TICA eigenvalue λk . The TICA coordinates (or
TICA modes) ψ1(x′(i)), ψ2(x′(i)), . . . are then the coefficients
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of the x′(i) represented in the basis composed of the TICA
eigenvectors �k . We note that with the data matrices

X :=
⎡
⎣ | |

x′(1) · · · x′(Ns − τ )
| |

⎤
⎦ and

Y :=
⎡
⎣ | |

x′(1 + τ ) · · · x′(Ns)
| |

⎤
⎦, (A5)

one often writes

C(0) = 1

Ns − τ − 1
XX ᵀ and

C(τ ) = 1

Ns − τ − 1
XY ᵀ. (A6)

2. Coordinate reduction

We compute the TICA coordinates for a lag time of τ =
50 using the PyEMMA package [56]. Figures 5(a) and 5(d)
shows the eigenvalues λi, i � 1 of the autocovariance matrix,
which will be called TICA eigenvalues in the following.

It is of separate interest, but we note that TICA (and DMD)
provide approximations to the composition operator associ-
ated with the dynamics, named after Koopman; see [55] and
references therein. As such, the TICA spectrum provides an
admittedly coarse approximation of the system’s spectrum,
and hence of the decay of correlations in the dynamics.

We observe that the majority of the spectrum is confined
to a complex disk of radius smaller than 1. This is a typical
situation for quasicompact transfer (and Koopman) operators
that arise for complicated dynamics exhibiting a certain
degree of chaoticity or mixing [57] (sections 1.3 and 2.3 in
particular). Furthermore, the dominant (by absolute value)
TICA eigenvalues are purely real, which suggests that on
long timescales associated with these eigenvalues, the system
behaves in a statistically reversible manner. Indeed, transitions
from one LSC to other ones do not seem to have a cyclic ten-
dency. The absolute value of a TICA eigenvalue is also known
as the kinetic variance of its corresponding eigenvector, and it
can be an indicator for how much “dynamical information” is
preserved by projecting onto this coordinate [58]. The kinetic
variances of the leading 10 coordinates are shown for both
data sets in Figs. 5(b) and 5(e). The spectral gap after λ3

is immediately apparent, and it hints at the disproportional
dynamical significance of the first three eigenvectors.

The cumulative kinetic variance is now defined as the sum
of the kinetic variances up to a certain TICA eigenpair, relative
to the sum of all kinetic variances:

ci :=
∑i

k=1 |λk|∑N
k=1 |λk|

. (A7)

The course of ci in i is shown in Figs. 5(c) and 5(f). We
observe a flattening of the curve, indicating a greater impact
of lower TICA coordinates (which is clear as the eigenvalues
are ordered by decreasing absolute value), but not a visible
jump or kink after c3. Moreover, the curve exhibits a consid-
erably shallower slope than what one is accustomed to in the
analysis of, for example, many molecular dynamical data sets

[51]. This tells us that a large portion of the kinetic variance
is generated by medium- and small-scale processes and not
overly concentrated in the global large-scale processes, which
are well represented by the leading three TICA coordinates
(see Fig. 7 in the main text). Hence, while λi, i = 1, 2, 3,
may contain a disproportional amount of information, a much
greater number of TICA coordinates would be required to
resolve the dynamics of the system by a linear model more
or less completely. Also, note that in the single precision
floating point arithmetic used by PyEMMA, c8935 is equal to
1, hence the data set can be reduced by N − 8935 = 3353 di-
mensions without measurable loss of kinetic variance, where
N = 12 288 is the original system dimension.

Figure 6 visualizes the leading six TICA coordinates by the
histograms of their values along our trajectory. Corresponding
to the three leading purely real eigenvalues, the leading three
coordinates are also purely real. Moreover, the coordinates be-
longing to the well-separated, dominant part of the spectrum
possess a multimodal distribution, whereas the coordinates
belonging to eigenvalues in the aforementioned complex disk
are approximately normal-distributed.

The multimodal structure of ψ1,2,3 raises hope that it allows
the identification of large-scale structures of the Rayleigh-
Bénard convection flow. Indeed, plotting a subset (sampled
equidistantly in time with step 50, hence 2000 points) of the
trajectory in (ψ1, ψ2, ψ3)-space reveals four densely popu-
lated regions; see again Fig. 7. Applying the Density-Based
Spatial Clustering of Applications with Noise (DBSCAN)
[49] with parameters ε = 0.12 and minPts = 15, we identify
four clusters, i.e., four sets of trajectory index sets, that are
robust to moderate parameter changes in the DBSCAN algo-
rithm. Pulling these four index sets back into physical space,
and averaging the corresponding flow fields, we see that they
correspond to the four LSC states (see again Fig. 7, on the
sides).

APPENDIX B: ALGORITHMIC REALIZATION
OF THE TRANSITION MANIFOLD FRAMEWORK

FOR STOCHASTIC SYSTEMS

In practice, neither the transition manifold M nor the maps
E,Q are known, and pτ (x, ·) is only known empirically, e.g.,
by starting a large number of simulations runs with different
random seeds in x up to time τ . The algorithmic strategy,
therefore, consists of learning the parametrization E and the
projection Q simultaneously from a finite subsample of the set
M̃. A detailed description of the steps required to perform the
algorithm is given in the following subsections.

1. State space sampling

The evaluation points {x1, . . . , xL}—alternatively, the sets
Ai in Algorithm 1, or equivalently, their center points
{z(1), . . . , z(L)} if they arise as Voronoi tessellation—should
cover the dynamically relevant regions of X, typically the
metastable sets and the transition regions between them,
evenly, in order for ξ to capture the relevant dynamics glob-
ally. Various strategies exist, each with different advantages
and disadvantages. While uniform sampling of X may be
the easiest to realize, it heavily oversamples the dynamically
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irrelevant regions, i.e., those with small π -measure. This holds
true especially in high dimensions, where π tends to be con-
centrated in a (Lebesgue) small portion of X. Hence, a large
number of samples is required in order to cover the relevant
regions with sufficient granularity.

On the other hand, sampling from the invariant density π

solves this problem, but it introduces a bias of oversampling
the metastable regions (in which π is heavily concentrated),
while the transition regions are neglected. To alleviate this
bias, the sampling of π can undergo a second, subsampling
step, through which the distribution is adjusted to yield more
evenly distributed samples. Two subsampling strategies were
proposed in Ref. [48], namely the Poisson disk and k-means
subsampling. Each of both strategies minimizes a specific ap-
proximation error of ξ . Details on these algorithms can also be
found in [48]. In the later data analysis, we will use k-means,
mainly due to more readily available and robust numerical
implementations.

2. Density distance matrix

The assembly of the distance matrix D serves only to
prepare the data for the application of the manifold learning
algorithm (see the next subsection), but it contains the cru-
cial choice of the density metric d : L1(X) × L1(X) → R�0,
which determines both the numerical feasibility of the algo-
rithm and the quality of its output. While

d (u, v) = ‖u − v‖L1

may seem like the obvious choice, and the transition manifold
framework is formulated with respect to this metric, it is
notoriously hard to realize numerically (involving integrals
over the N-dimensional space X), and it cannot be estimated
directly from samples of u, v (an approximate analytical ex-
pression of either u or v must be derived). Due to these
difficulties, in [16,59], several alternative statistical distances
were proposed, including the maximum mean discrepancy
[60], which will be used in the later data analysis.

The maximum mean discrepancy depends on the choice of
a positive-semidefinite kernel function k : X × X → R+, and
it is analytically defined as

dk (u, v) := ‖μ(u) − μ(v)‖H (k),

where ‖ · ‖H (k) is the norm induced by the inner product.
Here, μ denotes the kernel mean embedding [61] into H (k).
Its concrete form, as that of H (k), is irrelevant, since one
has the following representation of inner products in H (k),
readily giving a formula to compute the induced norm:

〈μ(u), μ(v)〉H (k) =
∫
X

∫
X

u(x)v(y)k(x, y)dπ (x)dπ (y).

The Hilbert space H (k) induced by the inner product
〈·, ·〉H (k) is known as the reproducing kernel Hilbert space
associated with k. There exists extensive literature on repro-
ducing kernel Hilbert spaces and their functional analytical
properties [62,63]. Moreover, some of the authors have shown
in [59] that the map M �→ μ(M) is one-to-one, with favor-
able distortion properties, i.e., it preserves central topological
properties of M. Importantly, the estimation of 〈·, ·〉H (k) and

FIG. 10. Distribution of the maximum mean discrepancies be-
tween the embedded transition densities. For Ra = 106, we observe
two accumulations of distances, one close to zero and one around
0.1, corresponding to intra- and intercluster distances, respectively.
Data are for Ra = 106, (top) and 107 (bottom).

hence dk (·, ·) from samples is straightforward: for

〈u, v〉M
H (k) := 1

M2

M∑
k,�=1

k
(
yk

i , y�
j

)
,

where yk
i ∼ u, y�

j ∼ v holds,

〈·, ·〉M
H (k) → 〈·, ·〉Hk (M → ∞).

As described in the main text, we will compare the tran-
sition densities pτ (x, ·) through their pushforwards by the
observation function ψ = (ψ1, ψ2, ψ3)ᵀ, where ψi denotes
the ith TICA coordinate. In other words, we need to compute
the maximum mean discrepancies for the densities of ψ (X )
and ψ (Y ), where X ∼ pτ (x, ·) and Y ∼ pτ (y, ·), for differ-
ent pairs x, y ∈ X. For this we chose the kernel k(ξ, η) =
exp(−‖ξ − η‖2/σ ) with σ = 7 and ξ, η ∈ R3 (since ψ maps
into R3). The distribution of maximum mean discrepancies
for both data sets is shown in Fig. 10. The data for Ra = 106

display a bimodal structure of the maximum mean discrep-
ancy histogram, which is going to show up in the discussion
about bandwidth selection for the manifold learning method
as well. The data for Ra = 107 display a trimodal structure.
Here we find that the first smallest scale is due to the strong
clustering and disconnects the data set (cf. the discussion in
Appendix B 5); even the second peak in the histogram indi-
cates length scales that do not capture global properties of
the data. It is the third local maximum of the maximum mean
discrepancy histogram that provides the right embedding.

3. Manifold learning

We now apply a manifold learning method to the distance
matrix D. Conceptually, this corresponds to learning an ap-
proximation to the combined parametrization and projection
map E ◦ Q in Eq. (17) in the main text. By pulling this map
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FIG. 11. The quantity S(ε) and its double-logarithmic derivative for maximum mean discrepancy distance matrices obtained from the first
three (left), five (middle), and ten (right) TICA coordinates. The dashed line shows 1/L, a lower bound for S(ε). The ticks in the plots show
some values, for reference.

back to the starting points xi, this yields the final collective
variable ξ .

Our manifold learning method of choice is the diffusion
maps algorithm [64], as it has demonstrated good perfor-
mance in practical scenarios in the past [17,48], although other
methods such as multidimensional scaling [65], local linear
embeddings [66], or many others could be used as well.

We will not go into detail on the analytical derivation of
diffusion maps here, but instead state only the algorithm.
From the distance matrix D ∈ RL×L, one first constructs a
Markov transition matrix M ∈ RL×L via

Mi j = Ki j

si
, (B1)

where Ki j = exp ( − D2
i j/ε) is a similarity matrix with some

bandwidth parameter ε > 0 [which should not be mixed with
the kinetic energy dissipation rate field which is given in
(6)] and si = ∑

j Ki j . Being a Markov matrix, the leading
eigenvalue of M is 1 with corresponding constant eigenvector
φ1 = (1, . . . , 1)ᵀ. The diffusion map, hence our collective
variable ξ evaluated at the sample points {x1, . . . , xL}, is now
given by the following subdominant eigenvectors φ2, . . . φr+1.
Here, the number r can typically be determined by a gap in
the spectrum of M or by plotting the dominant φi against
one another and discarding the ones that do not carry addi-
tional geometric information, sometimes called higher-order
harmonics.

We note that diffusion maps such as those developed in
[64] have a parameter α that is responsible for factoring out
biases due to nonuniformity in the data sample density. The
present simplified description corresponds to the case of α =
0. However, all our implementations use α = 1, which is the
value giving no dependence on sampling density in the limit
L → ∞. The coordinates φi depend then on the geometric
features of the underlying data manifold only.

4. Bandwidth selection in diffusion maps

Let us briefly recapitulate a method for automatically de-
termining a “good” kernel bandwidth parameter value ε in the
diffusion maps method. The procedure stems from [67], and
it was later refined in [68]. A summary can also be found in
[69] (Appendix A 2).

Recall that the diffusion maps approach first turns pairwise
distances in the data set {xi}L

i=1 into a similarity matrix K ∈
RL×L with entries Ki j (ε) = exp(−ε−1D2

i j ). Note that we use
the Gaussian kernel throughout this work. By averaging the
entries of the similarity matrix, we define

S(ε) := 1

L2

∑
i, j

Ki j (ε). (B2)

We note the two limiting behaviors:
(i) As ε → 0, we have Ki j (ε) → δi j , the Kronecker delta.

Thus, S(ε) → 1
L .

(ii) As ε → ∞, we have Ki j (ε) → 1, thus S(ε) → 1.
According to theoretical considerations, in between these

two extremes there should be a region of affine-linear growth
of log (S(ε)) in log(ε). This is suggested to be determined by
maximizing the derivative

d log (S(ε))
d log(ε)

, (B3)

with respect to ε. The idea is that such an ε is neither too
small (compared with the data point density) nor too large in
comparison with the diameter of the data point cloud. Such
bandwidth parameters can then resolve the manifold struc-
ture of the data, if there is any, and represent it sufficiently
well in the diffusion maps approach. In contrast, too small
bandwidths tend to essentially disconnect the data set, while
too large bandwidths disregard local geometric features by
“blurring” them.

We note that the procedure also gives an estimate of the
dimension of the data manifold. It follows as twice the value
in (B3) for bandwidths ε in the proper range. For strongly
varying data density, this procedure can give multiple “opti-
mal” bandwidths ε for different length scales, and one needs
to compromise between resolution and connectivity (or other-
wise break up the data in connected components and consider
them one at a time). For even more irregular data, one might
need to use a variable bandwidth kernel, as done in [68].

5. Bandwidth selection for the Rayleigh-Bénard
convection data

To assess whether more TICA coordinates can cap-
ture more information about the geometric features of the
transition dynamics of the convection flow, we ran the
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FIG. 12. Diffusion map parametrizations of the transition manifold for different bandwidths: ε = 10−4 in (a), 3 × 10−3 in (b), and 2 × 10−2

in (c). The underlying maximum mean discrepancy distance matrix was computed from the three dominant TICA coordinates. Note that since
the diffusion map coordinates are computed as eigenvectors, their sign is not unique and may vary between different computations. Hence, to
interpolate between the different panels, one might need to reflect one of the axes or both around zero.

bandwidth-tuning analysis from Appendix B 4 for distance
matrices obtained from maximum mean discrepancy com-
puted from the first three, five, and ten TICA coordinates,
respectively. The associated values of S(ε) and the quantity
(B3) are shown in Fig. 11 for Ra = 106.

If the distance matrices would indicate an at most slowly
varying data density, the logarithmic derivatives (red curves)
would yield a single plateau, and every bandwidth ε associ-
ated with the plateau would be an equally good choice for
the representation of the data. The slight bimodal structure of
these curves, however, indicates that the data set is somewhat
irregular, and there are multiple proximity scales highlighting
different features of the data set:

(i) A smaller scale around the left-hand-side maximum
resolving local variability, but potentially disconnecting the
data.

(ii) A larger scale around the right-hand-side maximum
that views the data set as a connected manifold.

We conducted a detailed analysis for the data set obtained
for the three dominant TICA coordinates. The reasons are
that (i) essentially all three cases estimate the dimension of
the data set to be at most two (cf. Appendix B 4), and that
(ii) on suitable scales ε, the parametrizations of the three
data sets are essentially equivalent (not shown). This indicates
that the first three TICA coordinates already capture sufficient

information on the transition statistics of the system, so that
the inclusion of further TICA coordinates cannot add to this
(at least not for the presently available turbulent convection
data). Moreover, auxiliary algorithms like k-means for the
Voronoi center selection are well-known to show deteriorating
performance in high dimensions.

Figure 11 left, corresponding to the distances from
three TICA coordinates (ψ1, ψ2, ψ3), suggests to consider
bandwidths 10−6 < ε < 0.5. We observed that for
10−6 < ε < 10−4 the data set is essentially disconnected,
i.e., the parametrization is dominated by single outliers, and
no structure involving multiple data points can be extracted.
For ε = 10−4, the number of outliers reduces to a handful,
and the diffusion map eigenvectors φ8, φ9 already show some
structure; see also Fig. 12(a).

Increasing the bandwidth, connectivity of the “data mani-
fold” is achieved for ε = 3 × 10−3 [see Fig. 12(b)], hence this
is the bandwidth parameter that we use for further analysis
in the main text. Figure 12(c) shows the diffusion map for
ε = 0.02 to show how a further increase in the bandwidth
starts to blur local features and highlight global geometric
aspects of the data set. This does not change if we would
increase up to ε = 0.5 (not shown). Beyond this threshold,
i.e., for very large bandwidths, the data set starts to look more
and more pointlike.
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