Aus dem Institut für Sozialmedizin, Epidemiologie und Gesundheitsökonomie der Medizinischen Fakultät Charité – Universitätsmedizin Berlin

DISSERTATION

Double Burden of Disease – Eine Bestandsaufnahme im ländlichen Burkina Faso

The Double Burden of Disease – An analysis in rural Burkina Faso

zur Erlangung des akademischen Grades Doctor medicinae (Dr. med.)

vorgelegt der Medizinischen Fakultät Charité – Universitätsmedizin Berlin

von

Tobias Gottlieb-Stroh

Datum der Promotion: 30.11.2023

Inhaltsverzeichnis

Tabelle	enverzeichnis	iii
Abbildu	ungsverzeichnis	iv
Abkürz	zungsverzeichnis	v
Zusam	menfassung	1
Abstra	ct	3
1 Eiı	nleitung	5
2 Me	ethodik	9
2.1	Studiendesign	9
2.2	Datenerhebung	.11
2.3	Ethische Überlegungen	.12
2.4	Statistische Analysen	.12
3. Er	gebnisse	.14
3.1	Eigenschaften der Studienpopulation	.14
3.2	Anteil der Erkrankungen in den verschiedenen Jahreszeiten	.16
3.3	Zeitgleiches Auftreten der Erkrankungen	.18
3.4	Assoziationen mit sozio-ökonomischen und demographischen Risikofaktoren	120
4. Di	skussion	.29
4.1	Zusammenfassung der Hauptergebnisse	.29
4.2	Das Phänomen "Double Burden of Disease" im ländlichen Burkina Faso	.29
4.3	Saisonales Auftreten der Erkrankungen	.31
4.4	Gleichzeitig auftretende Erkrankungen	.32
4.5	Assoziierte Faktoren und Erkrankungen	.33
4.6	Stärken und Schwächen	.34
5. Sc	chlussfolgerungen	.36
l iteratı	ırverzeichnis	37

Eidesstattliche Versicherung	43
Anteilserklärung an den erfolgten Publikationen	44
Auszug aus der Journal Summary List	45
Druckexemplar der Publikation	49
Lebenslauf	60
Komplette Publikationsliste	64
Danksagung	65

Tabellenverzeichnis

Tabellenverzeichnis

Tabelle 1. Demografische Merkmale aller Erwachsenen im Nouna HDSS in	S.14
den Jahren 2010 und 2011	3.14
Tabelle 2. Sozioökonomische Merkmale aller Erwachsenen im Nouna	C 1E
HDSS in den Jahren 2010 und 2011	S.15
Tabelle 3: Prozentuale Anteile der nicht-übertragbaren Erkrankungen im	C 10
Nouna HDSS in den Jahren 2010 und 2011	S.16
Tabelle 4: Prozentuale Anteile der übertragbaren Erkrankungen im Nouna	C 17
HDSS in den Jahren 2010 und 2011	S.17
Tabelle 5: Prozentuale Anteile der Verletzungen im Nouna HDSS in den	S.17
Jahren 2010 und 2011	3.17
Tabelle 6: Assoziationen von durch Eigenangaben erhobenen NÜKs von	S.21
3949 Erwachsenen im Nouna HDSS 2010 (Regenzeit)	3.21
Tabelle 7: Assoziationen von durch Eigenangaben erhobenen <u>ÜKs</u> von	S.22
3949 Erwachsenen im Nouna HDSS 2010 (Regenzeit)	3.22
Tabelle 8: Assoziationen von durch Eigenangaben erhobenen Verletzun-	S.24
gen von 3949 Erwachsenen im Nouna HDSS 2010 (Regenzeit)	3.24
Tabelle 9: Assoziationen von durch Eigenangaben erhobenen <u>NÜKs</u> von	S.25
4039 Erwachsenen im Nouna HDSS 2011 (Trockenzeit)	3.23
Tabelle 10: Assoziationen von durch Eigenangaben erhobenen <u>ÜKs</u> von	S.27
4039 Erwachsenen im Nouna HDSS 2011 (Trockenzeit)	3.21
Tabelle 11: Assoziationen von durch Eigenangaben erhobenen Verletzun-	S.28
gen von 4039 Erwachsenen im Nouna HDSS 2011 (Trockenzeit)	3.20

Abbildungsverzeichnis

Abbildung 1: Lokalisation des Nouna HDSS im Nordwesten Burkina	S.10
Fasos. Aus Lietz et al. 2015	
Abbildung 2: Häufigkeiten und zeitgleiches Auftreten der Erkrankungen	
im Nouna HDSS im Jahr 2010. Modifiziert nach Gottlieb-Stroh et al.,	S.19
2021	
Abbildung 3: Häufigkeiten und zeitgleiches Auftreten der Erkrankungen	
im Nouna HDSS im Jahr 2011. Modifiziert nach Gottlieb-Stroh et al.,	0.40
2021	S.19

Abkürzungsverzeichnis

aCV: adjustiertes Chancenverhältnis

HDSS: Health and Demographic Surveilance System

KI: Konfidenzintervall

NÜK: Nicht-übertragbare Krankheiten

CV: Chancenverhältnis

SSA: Subsahara Afrika

ÜK: Übertragbare Krankheiten

Zusammenfassung

Einleitung

Übertragbare Krankheiten verursachen seit jeher die größte Krankheitslast in Subsahara-Afrika. In den letzten Jahrzehnten haben sich jedoch nicht-übertragbare Erkrankungen durch die Globalisierung und einen modernisierten Lebenswandel stärker verbreitet. Die Gesundheitssysteme in Subsahara-Afrika sehen sich nun mit dieser Doppelbelastung konfrontiert, ein Phänomen, das als "Double Burden of Disease" bezeichnet wird. In urbanen Räumen gibt es hierfür ausreichend Belege, doch in ländlichen Gebieten ist wenig über die genaue Krankheitslast bekannt. Deswegen wurden in dieser Arbeit das Vorkommen der Haupt-Krankheitsgruppen und deren Assoziationen mit sozioökonomischen Risikofaktoren im Nordwesten Burkina Fasos während der Regen- und Trockenzeit untersucht.

Methoden

Für diese Arbeit wurden Daten von 4192 Erwachsenen aus dem Nouna Health and Demographic Surveillance System genutzt. Die Teilnehmer*innen waren mindestens 18 Jahre alt und alle Daten wurden als Selbstangaben in den Jahren 2010 (Regenzeit) und 2011 (Trockenzeit) erhoben. Es wurden die Anteile der Haupt-Krankheitsgruppen laut Weltgesundheitsorganisation (WHO) mit ihren Konfidenzintervallen (KI) bestimmt und Unterschiede zwischen Männern und Frauen anhand des Chi-Quadrat Tests berechnet. Durch uni- und multivariate logistische Regressionsmodelle wurden die Assoziationen mit sozioökonomischen Risikofaktoren ermittelt.

Ergebnisse

Insgesamt gaben 20,7% (95% KI: 19,3-21,9%) der Studienbevölkerung eine übertragbare Erkrankung in der Regenzeit und 11,0% (95% KI: 10,0-11,9%; McNemar`s p<0,0001) in der Trockenzeit an. Nicht-übertragbare Krankheiten wurden jeweils von 5,3% (95% KI: 4,6-6,0%) und 4,5% (95% KI: 3,8-5,1%) der Teilnehmer*innen angegeben. Ein gleichzeitiges Auftreten dieser beiden Krankheitsgruppen wurde von 1,4% der Teilnehmer*innen in der Regenzeit und 0,6% in der Trockenzeit berichtet. In der multivariaten Analyse war die Angabe von übertragbaren Krankheiten am häufigsten unter Teilneh-

mer*innen mit Schul- oder Universitätsabschluss (vergleichend zu keinem Schulabschluss). Dies konnte nur in der Regenzeit beobachtet werden. Nicht-übertragbare Erkrankungen wiesen die stärkste Assoziation mit hohem Alter in beiden Jahren auf.

Fazit

Die berichtete Krankheitslast in der Region um Nouna weist im Vergleich zu urbanen Räumen in Subsahara-Afrika ein niedriges Vorkommen von nicht-übertragbaren Erkrankungen auf. Demzufolge gibt es in der Region keine Anzeichen für das Phänomen der "Double Burden of Disease". Weitere Studien sind notwendig, um nachzuweisen, ob dies an der tatsächlich niedrigen Prävalenz von nicht-übertragbaren Erkrankungen liegt oder ob das Bewusstsein darüber in der Bevölkerung gering ist.

Abstract 3

Abstract

Introduction

For decades, communicable diseases have remained the biggest health issues in sub-Saharan Africa. Yet, the prevalence of non-communicable diseases has rapidly increased. This has mainly been attributed to globalization and drastic changes in lifestyle. Therefore, health systems in this region are facing the challenge of dealing with the so-called "Double Burden of Disease". There is little data on this development in rural areas. Thus, this study examined the current state of disease occurrence and the relationships with socio-economic factors in two climatic seasons in north-western Burkina Faso.

Methods

Self-reported data of 4192 adults from the Nouna Health and Demographic Surveillance System of the years 2010 and 2011 were analysed. We calculated the proportion of each major disease group according to the World Health Organization (WHO) and their 95% confidence intervals (CI) together with differences between males and females. Associations with socio-economic risk factors were determined using uni- and multivariate logistic regression models.

Results

Self-report of communicable diseases amounted to 20.7% (95%CI: 19.3-21.9%) in the rainy season and 11.0% (95% CI: 10.0%-11.9%; McNemar's p<0.0001) in the dry season. Non-communicable diseases we self-reported by 5.3% (95% CI: 4.6-6.0%) and 4.5% (95% CI: 3.8-5.1%) respectively. The simultaneous occurrence of both disease groups was reported among 1.4% of participants in the rainy season and 0.6% in the dry season. The strongest association in the multivariate analysis was found for communicable disease being directly associated with secondary education/ university education (versus no formal education). This was only observed in the rainy season. For non-communicable diseases, older age showed the strongest association in both years.

Abstract 4

Conclusion

In comparison to urban areas in Sub-saharan Africa, the Nouna region shows low report of non-communicable diseases. Therefore, we did not identify signs of the *Double Burden of Disease*. Further studies are necessary to determine if this is due to an actual low prevalence of non-communicable diseases or whether a low awareness in the population led to underreporting.

1 Einleitung

In Subsahara-Afrika (SSA) stellen übertragbare Krankheiten bis heute die größte Ursache von Mortalität und Morbidität dar. Sie werden von Bakterien, Viren, Parasiten oder Pilzen verursacht und können direkt oder indirekt von einem Individuum zum nächsten übertragen werden. Die Weltgesundheitsorganisation (*WHO*) fasst unter dem Terminus übertragbare Krankheiten zusätzlich noch Unterernährung und Erkrankungen der Perinatalperiode zusammen.¹

In den letzten Jahren zeichnet sich jedoch eine Trendwende in den Ursachen für Mortalität und Morbidität ab.

Noch im Jahr 2000 waren übertragbare Krankheiten wie Infektionen der unteren Atemwege, HIV/Aids, Durchfallerkrankungen, Malaria und Tuberkulose die fünf häufigsten Todesursachen in SSA. Bis zum Jahr 2015 hingegen fiel die Mortalitätsrate von HIV/AIDS um 57% und von Infektionen der unteren Atemwege um 35%. Einen noch größere Rückgang weist Malaria auf. Hier sank die Mortalitätsrate um 66%.

Auf Platz vier und fünf der häufigsten Todesursachen befinden sich nun Schlaganfälle und koronare Herzkrankheiten. Diese Krankheiten gehören zu einer weiteren WHO-Krankheitsgruppe und werden den nicht-übertragbaren Krankheiten zugeordnet.²

Nicht-übertragbare Krankheiten sind im Gegensatz zu übertragbaren Krankheiten nicht ansteckend, sondern sind Erkrankungen chronischer Natur, die durch eine Kombination aus genetischen Faktoren und Verhaltens- und Umwelteinflüssen bedingt sind. Weltweit treten kardiovaskuläre Erkrankungen, Krebserkrankungen, chronische Atemwegserkrankungen und Diabetes am häufigsten auf.³

SSA verzeichnet einen enormen Anstieg dieser Krankheitsgruppe. Während 2004 mehr als die Hälfte der Todesfälle durch übertragbare Krankheiten verursacht wurden und nur ein Viertel durch nicht-übertragbare Krankheiten, wird bereits für 2030 prognostiziert, dass die Todesfälle durch nicht-übertragbare Krankheiten die durch übertragbare Krankheiten übertreffen werden. Als Ursache hierfür wird vor allem die Globalisierung zusammen mit den durch sie bedingten Veränderungen im Lebensstil erachtet.⁴

An erster Stelle dieser Veränderungen steht der Anstieg im Tabakgebrauch. Tabakgebrauch ist der größte Risikofaktor vieler neoplastischer und kardiovaskulärer Erkrankungen und während in vielen Industrieländern die Zahl der Raucher*innen fällt, steigt sie in Ländern mit niedrigem und mittlerem Einkommen nach wie vor. Die Prävalenz von Tabakgebrauch für SSA wird mit 12% beziffert.²

Ein weiterer sich auf dem Vormarsch befindlicher Risikofaktor ist Übergewicht. Es ist sowohl Ursache für kardiovaskuläre Erkrankungen als auch für manche Krebsarten. Auch für den drastischen Anstieg an Diabetes-Fällen ist Übergewicht maßgeblich mitverantwortlich.⁵

Der Anstieg von Übergewicht zwischen 1990 und 2015 verlief in SSA äußerst heterogen mit großen Unterschieden sowohl zwischen einzelnen Regionen als auch zwischen ländlichen und urbanen Räumen.

Der größte Anstieg war im südlichen Afrika zu verzeichnen. Hier stieg die Zahl übergewichtiger Menschen um 330% auf eine Prävalenz von 21%. Im westlichen und östlichen Afrika stieg die Prävalenz im gleichen Zeitraum nur um jeweils 70% und 9%.

Bedingt wird der Anstieg durch einen Wandel weg von traditioneller Ernährung hin zu westlichen Ernährungsstilen und dem ubiquitären Vorkommen von günstigen Lebensmitteln mit hoher Energiedichte.⁵ Außerdem sorgt eine steigende Urbanisierung für eine Reduktion der körperlichen Aktivität. Zu erklären ist dies zum einen durch die Aufgabe von Berufen mit hoher körperlicher Belastung wie beispielsweise in der Landwirtschaft und zum anderen durch die vermehrte Verfügbarkeit motorisierter Transportmittel.⁷ Auch der Gebrauch von Alkohol steigt in SSA. Im Jahr 2014 haben ungefähr 30% der Erwachsenen angegeben Alkohol zu konsumieren. Während immer mehr der großen Alkoholhersteller den afrikanischen Markt für sich entdecken und Chancen für großes Wachstum sehen, ist eine Trendwende nicht zu erwarten.⁸

Folglich sieht sich SSA nach wie vor mit einem großen Aufkommen von übertragbaren Krankheiten konfrontiert während gleichzeitig die Prävalenz nicht-übertragbarer Krankheiten kontinuierlich steigt. Dieses Phänomen wird als die "Double Burden of Disease" bezeichnet.⁹

Es ist deswegen von äußerster Wichtigkeit, dass Gesundheitsämter der Region mit statistischer Evidenz ausgestattet werden, um ihre limitierten Ressourcen gezielt einsetzen zu können.

Bisher haben die chronisch unterfinanzierten Gesundheitssysteme ihren Fokus vollständig auf die Bekämpfung von übertragbaren Krankheiten gelegt. Fachkräfte im Gesundheitssektor, die zeit ihrer Berufslaufbahn mit übertragbaren Krankheiten gearbeitet haben, fehlt es an Bewusstsein und an Wissen im Umgang mit nicht-übertragbaren Krankheiten. Gleiches gilt für die Bevölkerung.¹⁰ Nicht nur ist das Bewusstsein für Ursachen

von nicht-übertragbaren Krankheiten und Möglichkeiten der Prävention gering, sondern Übergewicht als wichtiger Risikofaktor gilt in manchen Gegenden noch immer als Zeichen von Wohlstand und einem harmonischem Eheleben.¹¹

Neben der vielen Herausforderungen bietet eine wachsende "Double Burden of Disease" der Wissenschaft jedoch auch neue Möglichkeiten Interaktionen von Krankheiten zu erforschen. In den Industriestaaten ging das Verschwinden der großen Infektionskrankheiten am Anfang des 20. Jahrhunderts dem Anstieg der nicht-übertragbaren Krankheiten um Jahre voraus. Ohne eine nennenswerte räumliche und zeitliche Überschneidung war eine Untersuchung der Interaktionen der beiden Krankheitsentitäten äußerst schwierig. Heute hingegen bietet sich diese Chance.¹²

Schon jetzt konnten viele Interaktionen bewiesen werden. So haben Menschen mit Diabetes mellitus ein dreifach erhöhtes Risiko an Tuberkulose zu erkranken und sowohl der Verlauf des Diabetes als auch der Tuberkulose ist schwerwiegender.¹³ Die antiretrovirale HIV-Therapie ist mit dem metabolischen Syndrom assoziiert und HIV/Aids selbst erhöht das Risiko für Diabetes und kardiovaskuläre Erkrankungen.¹⁴ Auch das Risiko einer Malaria-Erkrankung ist bei Menschen mit Diabetes erhöht, was sich leicht mit dem erhöhten Glukoseangebot für die Plasmodien erklären lässt.¹⁵

In unterfinanzierten Gesundheitssystemen fehlt es außerdem häufig an diagnostischer Infrastruktur, was die Durchführung medizinischer Studien erschwert. Ohne objektivierbare diagnostische Mittel bleibt Eigenauskunft die einzige Quelle für Gesundheitsdaten. Über Eigenauskunft erhobene Daten werden weltweit in Kohortenstudien und zum Überwachen des Gesundheitsstatus auf Bevölkerungsebene erfolgreich benutzt. Auch wenn diese Methode nicht gänzlich unkritisch verwendet werden sollte, ermöglicht sie es den Gesundheitsstatus einer Bevölkerung differenziert zu charakterisieren, und konnte in verschiedenen Studien validiert werden. 18,19

Weiterhin wird die Krankheitsinzidenz und -prävalenz in SSA maßgeblich durch die Saisonalität des Klimas bestimmt. Allen voran sind Krankheiten mit Vektorübertragung wie beispielsweise Malaria zu nennen. Malaria kommt hauptsächlich in der Regenzeit vor, da sich hier der Überträger, die Anopheles-Mücke, am meisten fortpflanzt.²⁰ Aber auch Tuberkulose weist eine Saisonalität in verschiedenen Ländern auf, was durch den vermehrten Aufenthalt in Innenräumen erklärt wird.²¹

Auch nicht-übertragbare Krankheiten unterliegen einem saisonalen Verlauf, was zunächst paradox erscheint. Ihr chronischer Charakter lässt annehmen, dass sie nicht von saisonalen Faktoren beeinflusst wären. Tatsächlich können aber auch hier Symptome drastisch variieren. Beispielsweise sind kardiovaskuläre Erkrankungen dafür bekannt in extremen Hitzewellen besonders symtomatisch zu werden.²² Ein weiteres Beispiel ist die Sichelzellkrise, der Akutzustand der Sichelzellanämie, die häufiger in Kälteperioden auftritt.²³

Schließlich treten auch Unfälle saisonal gehäuft auf. Besonders gilt dies in landwirtschaftlich geprägten Gegenden mit saisonalen Arbeitszyklen wie in weiten Teilen SSAs.²⁴

Für das Phänomen der "Double Burden of Disease" gibt es in urbanen Räumen zwar eine gute Evidenzlage, jedoch ist über den Gesundheitszustand in ländlichen Gebieten in der Region wenig bekannt. Diese Studie soll Anhaltspunkte liefern, mit welchem Fokus die unterfinanzierten Gesundheitssysteme SSAs ihre geringen Ressourcen am effektivsten in diesen ländlichen Gebieten einsetzen können.

Demnach war das übergeordnete Ziel dieser Arbeit, das Auftreten der WHO-Haupt-Krankheitsgruppen zwischen verschiedenen Wetterperioden zu vergleichen und mögliche demographische und sozioökonomische Risikofaktoren für deren Auftreten zu identifizieren. Die drei spezifischen Zielstellungen waren:

- das Auftreten der Haupt-Krankheitsgruppen und dominierende Krankheiten bei Erwachsenen in der Regenzeit 2010 und in der Trockenzeit 2011 für die Region Nouna in Burkina Faso zu ermitteln;
- 2. das gleichzeitige Auftreten von Haupt-Krankheitsgruppen und einzelner Krankheiten für diese Zeiträume zu vergleichen; und
- 3. demographische und sozio-ökonomische Faktoren zu bestimmen, die mit dem Auftreten von Erkrankung zusammenhängen.

2 Methodik

2.1 Studiendesign

Die Daten unserer Studie wurden im Rahmen des *Nouna Health and Demographic Surveillance System* (HDSS) erhoben. HDSSs sammeln Längsschnittdaten über Gesundheit, Bevölkerungsentwicklung und sozioökonomische Faktoren in dynamischen Kohorten in Ländern mit niedrigem und mittlerem Einkommen, in denen keine verlässliche Meldung über Daten der Gesamtbevölkerung stattfindet.²⁵ In SSA gibt es nur fünf Länder, in denen mehr als 25% der Bevölkerung statistisch erfasst werden, was bedeutet, dass die meisten Menschen in der Region geboren werden, leben und sterben, ohne dass objektive Informationen für Entscheidungsträger*innen vorliegen.²⁶ Um dem entgegenzuwirken werden in Afrika allein mehr als zwei Millionen Menschen in HDSSs beobachtet und politischen Entscheidungsträger*innen wird hiermit die statistische Grundlage gegeben die Gesundheit der Bevölkerung zu verbessern.²⁷

Im Nouna HDSS im gleichnamigen Gesundheitsbezirk Nouna werden seit 1992 systematisch Längsschnittdaten über Geburtenraten, Todesraten und Zu- und Wegzug gesammelt. Auf einer Fläche von 1775 km² lebt hier die Bevölkerung in 59 Dörfern aufgeteilt in 11.373 Haushalte. Die durchschnittliche Haushaltsgröße umfasst 7,66 Personen. Haushalte werden von ausgebildeten lokalen Mitarbeiter*innen drei Mal im Jahr besucht, um mittels standardisierter Fragebögen Daten zu erheben. Für unsere Studie wurden neben den jährlich erhobenen Daten zusätzlich Querschnittsdaten aus der Regenzeit im Jahr 2010 und der Trockenzeit im Jahr 2011 erhoben.

Studienort und -population

Burkina Faso ist ein südlich der Sahara gelegener Binnenstaat in Westafrika und zählt zu den ärmsten Ländern der Welt. Die ethnische Zusammensetzung des Landes ist sehr divers. Die 20 Millionen Einwohner*innen des Landes gehören 60 verschiedenen Ethnien an. Zahlenmäßig stärkste und politisch dominierenden Ethnie sind die Mossi, die knapp die Hälfte der Bevölkerung ausmachen. 1960 erhielt das Land seine Unabhängigkeit von Frankreich. Amtssprache ist Französisch, jedoch werden über 60 verschiedene Sprachen im Land gesprochen. Die Alphabetisierungsrate von 41,2% ist eine der niedrigsten weltweit. Neben dem Bildungssystem ist das Gesundheitssystem gleichermaßen unterver-

sorgt. Die Ärztedichte beträgt 8 pro 100.000 Einwohner*innen und von 1000 Lebendgeburten sterben 88 Säuglinge. Vergleichend hierzu beläuft sich die Ärztedichte in Deutschland auf 439 pro 100.000 und die Säuglingssterblichkeit auf 3,2 pro 1000 Lebendgeburten. Außerdem sind in Burkina Faso nur ungefähr 10% der Bevölkerung krankenversichert.²⁹ Auch die religiöse Zusammensetzung der Bevölkerung ist sehr heterogen. Ungefähr 60,5% der Bevölkerung sind Muslime, 23,2% christlichen Glaubens und 15,3% gehören einer afrikanischen animistischen Religion an.²⁸

Das Nouna HDSS befindet sich im ländlichen Nordwesten Burkina Fasos, 300 km entfernt von der Hauptstadt Ouagadougou (Abbildung 1).³⁰ Im Jahr 2007 lebten hier ungefähr 115.000 Menschen verschiedenster Ethnien und Religionen, wobei die meisten Menschen der Ethnie der Dafin angehören. Als Lingua franca dient in der Region die Sprache Dioula. Die Haupteinnahmequelle ist die Subsistenzlandwirtschaft und Viehwirtschaft und ungefähr ein Drittel der Bevölkerung lebt in der halb-urbanen Stadt Nouna, wo eine Versorgung mit Elektrizität und fließendem Wasser mehrheitlich sichergestellt werden kann. Die von einer Trockensavanne geprägte Region zählt zur Subsahelzone und das Klima weist eine Phase der Trockenheit von November bis Mai und eine Regenzeit von Juni bis Oktober auf.

Abbildung 1: Lokalisation des Nouna HDSS im Nordwesten Burkina Fasos. Aus Lietz et al. 2015.

Im Jahr 2010 wurden im Nouna HDSS 13 Basisgesundheitseinrichtungen und ein Kreiskrankenhaus erfasst. Da motorisierte Transportmittel nicht ubiquitär verfügbar sind, müssen Einwohner*innen durchschnittlich 8,5 km laufen, um die nächste Gesundheitseinrichtung zu erreichen. Dies entspricht einer 75-minütigen Gehstecke in der Trocken- und einer 90-minütigen Gehstrecke in der Regenzeit.³¹

2.2 Datenerhebung

Seit 2003 wurde ein Haushaltsfragebogen mit einem Set von fünf Modulen für ungefähr zehn Prozent (n=1400) zufällig ausgewählter Haushalte zur Datenerhebung einmal pro Jahr hinzugefügt. Unter anderem gehören dazu Fragen zu Gesundheits- und sozioökonomischen Daten. Für die hier abgebildete Studie wurden zusätzlich Daten in der Regenzeit des Jahres 2010 und der Trockenzeit des Jahres 2011 erfasst, was einen Vergleich zwischen den Jahreszeiten erlaubt. Zusätzlich zu den oben beschriebenen Fragebögen wurden speziell für diese Studie demographische Daten und Informationen zu akuten und chronischen Erkrankungen innerhalb der letzten vier Wochen erhoben. Alle Angaben über Erkrankungen in dieser Studie basieren auf Eigenauskunft der Befragten. Für jede Erkrankung wurden weitere Angaben über Symptome, Symptomdauer, Therapie, Schwere der Erkrankung und durch die Erkrankung entstandene Kosten erfasst.

990 von 11.373 der am HDSS teilnehmenden Haushalte wurden für diese Studie ausgewählt, was 8,7% der Bevölkerung im HDSS entspricht. Das Verhältnis zwischen dörflichen und semiurbanen Haushalten von ungefähr 68% zu 32% wurde auch in der untersuchten Stichprobe eingehalten. Haushalte, die nach der Regenzeit des Jahres 2010 weggezogen sind oder aufgelöst wurden, wurden mit einem anderen zufällig ausgewählten Haushalt aus demselben Dorf mit gleicher Größe ersetzt.

Es wurden alle Erwachsene, die das 18. Lebensjahr vollendet und die Abschnitte des Fragebogens zu akuten und chronischen Erkrankungen abgeschlossen haben, in die Studien eingeschlossen.

Die Stichprobenerhebung erfolgte in zwei Schritten. Zunächst wurden Dörfer als sogenannte Primäreinheiten identifiziert, um in einem zweiten Schritt Haushalte aus diesen Dörfern auszuwählen. Der Haushalt wird definiert als unabhängige sozioökonomische Einheit, in der Mitglieder zusammenleben, Ressourcen gemeinsam erwirtschaften und verbrauchen und zumeist unter der Autorität eines Haushaltsoberhauptes stehen.

Durch die zweistufige Auswahl der Stichprobe konnten logistische und organisatorische Prozesse vereinfacht werden und die Anzahl der besuchten Dörfer reduziert werden. Um einem daraus resultierenden "Clustereffekt" zu begegnen, wurde die Größe der Stichprobe erhöht. Der Clustereffekt beschreibt, dass Individuen in einem Dorf, was in unserem Fall das Cluster darstellt, sich mehr ähneln können als in einer Zufallsstichprobe.³² Weiterhin konnte jedoch in früheren Studien in der Region nachgewiesen werden, dass soziokulturelle Eigenschaften der Haushalte insgesamt sehr homogen sind.³³

2.3 Ethische Überlegungen

Der Haushaltsfragebogen wurde vom Gesundheitsministerium Burkina Fasos, dem lokalen Ethikrat Nounas und dem Ethikrat der medizinischen Fakultät der Universität Heidelberg genehmigt. Alle Studienteilnehmer*innen gaben ihr schriftliches Einverständnis.

2.4 Statistische Analysen

Zu Beginn wurden die allgemeinen Merkmale der Studienpopulation mithilfe deskriptiver Statistik untersucht. Für kategorielle Variablen sind sie dargestellt als Anteile in Prozent mit ihren 95% Konfidenzintervallen. Konfidenzintervalle geben den Bereich an, in dem der tatsächliche Wert zu einer Wahrscheinlichkeit von in unserem Fall 95% liegt.³⁴ Außerdem wurden die Merkmale separat für die Jahre 2010 und 2011, für die Gesamtbevölkerung sowie getrennt für Männer und Frauen dargestellt.

Für die in der Einleitung beschriebene Zielstellung 1 wurden die von den Studienteilnehmern angegebenen Krankheiten anhand der WHO-Haupt-Krankheitsgruppen in die Kategorien übertragbare Krankheiten, nicht-übertragbare Krankheiten und Verletzungen eingeteilt. In dieser Einteilung werden Unterernährung und Erkrankungen der Perinatalperiode auch den übertragbaren Krankheiten zugeordnet.¹

Die Anteile der WHO-Haupt-Krankheitsgruppen und ihrer jeweils drei häufigsten Vertreter wurden in Prozenten und ihren Konfidenzintervallen für die Regenzeit im Jahr 2010 und die Trockenzeit im Jahr 2011 dargestellt. Mit Hilfe des McNemar's Test konnten Unterschiede zwischen den beiden Jahreszeiten auf statistische Signifikanz überprüft werden. Der McNemar's Test kann angewendet werden, wenn es zwischen zwei zu vergleichenden Stichproben eine Verbindung gibt, beziehungsweise ein Vorher-Nachher-Vergleich stattfindet. Die Signifikanz der Unterschiede zwischen Frauen und Männern wurden durch den $\chi 2$ -test erfasst. Der $\chi 2$ -test vergleicht beobachtete Häufigkeiten kategorieller Variablen mit erwarteten Häufigkeiten dieser Ausprägung zwischen zwei oder mehreren Gruppen – so wie etwa bei den Kategorien weiblich und männlich. 36

Um der Zielstellung 2 nachzugehen, Assoziationen zwischen den WHO-Haupt-Krankheitsgruppen untereinander zu finden, wurden die Überschneidungen zwischen den Gruppen als prozentuale Anteile und 95% KIs für die Regen- und Trockenzeit berechnet und zur besseren Veranschaulichung in Venn Diagrammen dargestellt.

Für Zielstellung 3 wurden die Assoziationen der WHO-Haupt-Krankheitsgruppen zu demographischen und sozioökonomischen Faktoren wie Alter, ethnischer Gruppe oder Beruf berechnet. Hierfür wurden logistische Regressionen benutzt. Es handelt sich hierbei um ein Verfahren, um festzustellen, ob ein Zusammenhang zwischen mehreren unabhängigen und einer binären abhängigen Variable gegeben ist.³⁷ Darauf aufbauend und basierend auf vorherigen Studien, die potenzielle Risikofaktoren identifiziert haben,³⁸ wurde in einem mehrfach adjustierten Modell für mögliche Störfaktoren kontrolliert. Außerdem wurde das Modell in Bezug auf den Wohnort unter Zuhilfenahme der angegeben Dorfcodes angepasst. Hierdurch wurde der beschriebenen "Clustereffekt" kontrolliert.

Um mögliche Störvariablen auf Haushaltsebene zu kontrollieren, wurde eine weitere Sensitivitätsanalyse durchgeführt, bei der die Haushalts-ID in das Regressionsmodell einbezogen wurde.

3. Ergebnisse

3.1 Eigenschaften der Studienpopulation

Tabelle 1 stellt die demografischen Merkmale der Studienbevölkerung dar. In der Regenzeit des Jahres 2010 nahmen 3949 Person an der Studie teil. Für die Trockenzeit des Jahres 2011 betrug die Anzahl 4039 Menschen. Die größte Teilnehmergruppe war mit 38,5% und 38,9% in 2010 und in 2011 die der 18-28-jährigen. Die Größe der darauffolgenden Gruppen nimmt mit steigendem Alter sukzessive ab. Das Durchschnittsalter betrug 37,5 ± 14,9 Jahre im Jahr 2010 und 37,3 ± 16,2 Jahre im Jahr 2011.

Tabelle 1. Demografische Merkmale aller Erwachsenen im Nouna HDSS in den Jahren 2010 und 2011

Markmala		2010 (Regenze		2011 (Trockenzeit)			
Merkmale	Total Männlich		Weiblich	Total	Männlich	Weiblich	
N	3949	1928 (48,8)	2021 (51,2)	4039	1985 (49,1)	2054 (50,9)	
Alter (Jahre)							
18-28	1519 (38,5)	761 (39,5)	758 (37,5)	1570 (38,9)	791 (39,8)	779 (37,9)	
29-38	911 (23,1)	464 (24,1)	447 (22,1)	931 (23,1)	482 (24,3)	449 (21,9)	
39-48	570 (14,4)	279 (14,5)	291 (14,4)	589 (14,6)	284 (14,3)	305 (14,8)	
49-58	414 (10,5)	183 (9,5)	231 (11,4)	425 (10,5)	187 (9,4)	238 (11,6)	
59-68	292 (7,4)	136 (7,1)	156 (7,7)	284 (7,0)	134 (6,8)	150 (7,3)	
>68	243 (6,2)	105 (5,4)	138 (6,8)	240 (7,0)	107 (5,4)	133 (6,5)	
Wohnort							
Dorf	2691 (68,1)	1317 (68,3)	1374 (68,0)	2747 (68,0)	1356 (68,3)	1391 (67,7)	
Stadt (Nouna)	1258 (31,9)	611 (31,7)	647 (32,0)	1292 (32,0)	629 (31,7)	663 (32,3)	
Ethnie							
Dafin	1272 (32,2)	636 (33,0)	637 (31,5)	1338 (33,1)	677 (34,1)	661 (32,2)	
Bwaba	1151 (29,1)	565 (29,3)	586 (29,0)	1167 (28,9)	577 (29,1)	590 (28,7)	
Mossi	786 (19,9)	363 (18,8)	423 (20,9)	783 (19,4)	364 (18,3)	419 (20,4)	
Samo	322 (8,2)	165 (8,6)	157 (7,8)	338 (8,4)	173 (8,7)	165 (8,0)	
Peulh	293 (7,4)	146 (7,6)	147 (7,3)	290 (7,2)	141 (7,1)	149 (7,3)	
Andere	107 (2,7)	46 (2,4)	61 (3,0)	106 (2,6)	45 (2,3)	61 (3,0)	
Familienstand							
Ledig	512 (13,0)	407 (21,1)	105 (5,2)	447 (11,1)	357 (18,0)	90 (4,4)	
Geschieden	39 (1,0)	26 (1,3)	13 (0,6)	39 (1,0)	28 (1,4)	11 (0,5)	
Monogam	1881 (47,6)	973 (50,5)	908 (44,9)	1720 (42,6)	879 (44,3)	841 (40,9)	
Polygam	683 (17,3)	233 (12,1)	450 (22,3)	631 (15,6)	221 (11,1)	410 (20,0)	
Verwitwet	269 (6,8)	30 (1,6)	239 (11,8)	243 (6,0)	26 (1,3)	217 (10,6)	
Unbekannt	565 (14,3)	259 (13,4)	306 (15,1)	959 (23,7)	474 (23,9)	485 (23,6)	
Religion							
Muslimisch	2190 (55,5)	1061 (55,0)	1129 (55,9)	2269 (56,2)	1102 (55,5)	1167 (56,8)	
Katholisch	1184 (30,0)	569 (29,5)	615 (30,4)	1183 (29,3)	577 (29,1)	606 (29,5)	
Protestan-	290 (7,3)	138 (7,2)	152 (7,5)	295 (7,3)	140 (7,1)	155 (7,5)	
tisch	, ,			\ , ,	170 (1,1)	100 (1,0)	
Animistisch	266 (6,7)	150 (7,8)	116 (5,7)	274 (6,8)	156 (7,9)	118 (5,7)	
Andere	19 (0,5)	10 (0,5)	9 (0,4)	18 (0,4)	10 (0,5)	8 (0,4)	

Modifiziert nach Gottlieb-Stroh et al., 2021³⁹. Die Daten sind in absoluten Zahlen und Prozenten dargestellt

Der Anteil der Frauen betrug 51,2% und 50,9% in den jeweiligen Jahren. Außerdem haben in beiden Jahren 68,1% (2010) und 68,3% (2011) der Bevölkerung in Dörfern

und 31,9% und 32,0% in der Stadt Nouna gelebt. Im Nouna HDSS lebten fünf verschiedene Ethnien, wobei die Dafin mit 32,2% und 33,1% in den jeweiligen Jahren den größten Anteil hatten.

Tabelle 2. Sozioökonomische Merkmale aller Erwachsenen im Nouna HDSS in den Jahren 2010 und 2011

Merkmale	2	2010 (Regenze	eit)	2	2011 (Trockenzeit)			
werkmale	Total	Männlich	Weiblich	Total	Männlich	Weiblich		
N	3949	1928 (48,8)	2021 (51,2)	4039	1985 (49,1)	2054 (50,9)		
Fähigkeit zu le-								
sen								
Ja	1061 (26,8)	764 (39,6)	297 (14,7)	1083 (26,8)	778 (39,2)	305 (14,8)		
Nein	2301 (58,3)	901 (46,7)	1400 (69,3)	2356 (58,3)	929 (46,8)	1427 (69,4)		
Unbekannt	587 (14,9)	263 (13,7)	324 (16,0)	600 (14,9)	278 (14)	322 (15,7)		
Bildungsgrad								
Keiner	2980 (75,5)	1407 (73,0)	1573 (77,8)	3058 (75,7)	1451 (73,1)	1607 (78,2)		
Grundschule	374 (9,5)	238 (12,3)	136 (6,7)	379 (9,4)	239 (12,0)	140 (6,8)		
Sekundar-			- ()	()		. (5.5)		
schule oder	24 (0,6)	19 (1,0)	5 (0,2)	22 (0,5)	18 (0,9)	4 (0,2)		
Universität	4 (0.4)	4 (0.0)	0 (0)	0 (0 4)	0 (0 0)	0 (0)		
Unbekannt	4 (0,1)	4 (0,2)	0 (0)	3 (0,1)	3 (0,2)	0 (0)		
Keiner	567 (14,4)	260 (13,5)	307 (15,2)	577 (14,3)	274 (13,8)	303 (14,8)		
Beruf								
Landwirtschaft	2529 (64,0)	1363 (70,7)	1166 (57,7)	2596 (64,3)	1401 (70,6)	1195 (58,2)		
Andere körperl. Arbeit	123 (3,1)	71 (3,7)	52 (2,6)	130 (3,2)	76 (3,8)	54 (2,6)		
Nicht-körper- liche Arbeit	305 (7,7)	86 (4,5)	219 (10,8)	313 (7,7)	88 (4,4)	225 (11,0)		
Unbekannt	992 (25,1)	408 (21,2)	584 (28,9)	1000 (24,8)	420 (21,2)	580 (28,2)		

Modifiziert nach Gottlieb-Stroh et al., 2021³⁹. Die Daten sind in absoluten Zahlen und Prozenten dargestellt

Die Mehrheit (47,6% und 42,6%) der erwachsenen Bevölkerung lebte in einer monogamen Ehe. Eine weitere Familienform stellt die polygame Ehe dar, in der 12,1% und 11,1% der Männer und 22,3% und 20,0% der Frauen lebten. Eine Differenz zwischen den Geschlechtern zeigte sich auch in Bezug auf Menschen, die ohne Partnerschaft lebten. So waren in den jeweiligen Jahren 21,1% und 18% der Männer und 5,2% und 4,4% der Frauen ledig. Etwas mehr als die Hälfte der Bevölkerung (55,5% und 56,2%) waren muslimischen Glaubens. 37,3% und 36,6% der Studienteilnehmer*innen waren christlichen Glaubens, mit den Untergruppen der Katholik*innen und Protestant*innen. Ein kleiner Teil von 6,7% und 6,8% gab Animismus als seine Religion an.

In Tabelle 2 werden die sozioökonomischen Merkmale der Bevölkerung dargestellt. In beiden Jahren gaben 58,3% der Studienteilnehmer*innen an, nicht lesen zu können und 75,5% und 75,7% hatten keine Form einer Schulbildung abgeschlossen. Mit 64,0% und 64,3% stellt die Landwirtschaft den mit Abstand größten Beschäftigungssektor dar.

3.2 Anteil der Erkrankungen in den verschiedenen Jahreszeiten

In Tabelle 3-5 werden die in Eigenauskunft erhobenen WHO-Haupt-Krankheitsgruppen und ihre drei häufigsten Vertreter vergleichend zwischen den beiden Jahreszeiten aufgelistet. 5,3% (95% KI: 4,6–6,0%) der Studienteilnehmer*innen berichteten in der Regenzeit an einer nicht-übertragbaren Erkrankung zu leiden. In der Trockenzeit betrug dieser Wert 4,5% (95% KI: 3,8–5,1%; McNemar's p=0,08). In beiden Jahren waren Bluthochdruck, chronische Herzerkrankungen und Rheumatoide Arthritis die drei häufigsten Erkrankungsbilder.

Tabelle 3: Prozentuale Anteile der häufigsten **nicht-übertragbaren Krankheiten** im Nouna HDSS in den Jahren 2010 und 2011

2010 (Regenzeit) N	Total 3949	Männer 1928	Frauen 2021	χ² p-Wert
Nicht-übertragbare Krankheiten	5,3 (4,6-6,0)	4,0 (3,1-4,9)	6,5 (5,5-7,6)	<,0001
Bluthochdruck	0,9 (0,6-1,2)	0,7 (0,4-1,1)	1,1 (0,7-1,6)	0,179
Chronische Herz- erkrankungen	0,8 (0,6-1,1)	0,4 (0,1-0,7)	1,3 (0,8-1,8)	0,002
Rheumathoide Arthritis	0,5 (0,3-0,7)	0,5 (0,2-0,8)	0,6 (0,3-0,9)	0,583
Andere (<20 Fälle)	2,9 (2,4-3,5)	2,4 (1,7-3,1)	3,5 (2,7-4,3)	0,045
2011 (Trockenzeit) N	Total 4039	Männer 1985	Frauen 2054	χ² p-Wert
Nicht-übertragbare	4,5 (3,8-5,1)	3,9 (3,1-4,8)	5,0 (4,0-5,9)	0,111
Krankheiten	, ,	, ,	, ,	
Bluthochdruck	0,7 (0,4-0,9)	0,5 (0,2-0,8)	0,9 (0,5-1,3)	0,099
Chronische Herz- erkrankungen	0,5 (0,3-0,8)	0,4 (0,1-0,7)	0,7 (0,3-1,0)	0,229
Circialitaligui				
Rheumathoide Arthritis	0,4 (0,2-0,6)	0,3 (0,0-0,5)	0,6 (0,3-0,9)	0,103

Modifiziert nach Gottlieb-Stroh et al., 2021³⁹. Die Daten sind als Prozente und ihre 95 %-igen Konfidenzintervalle dargestellt. Unterschiede zwischen den Geschlechtern wurden über den χ^2 -test berechnet.

Tabelle 4 zeigt die prozentualen Anteile der übertragbaren Erkrankungen. Es wurde von 21% (95% KI: 19–22%) der Befragten in der Regenzeit angegeben innerhalb der letzten vier Wochen eine übertragbare Erkrankung erlitten zu haben. In der Trockenzeit war diese Zahl mit 11% (95% KI: 10–12%; McNemar's p < 0,0001) nur etwa halb so groß. Die drei am häufigsten angegebenen übertragbaren Krankheiten waren Malaria, Erkältungskrankheiten und Dermatophytosen. Der Malaria-Eigenbericht belief sich auf 15,7% in der Regenzeit und 5,8% in der Trockenzeit. Über Erkältungskrankheiten berichteten 1,2% der Teilnehmer*innen in der Regenzeit und 2,5% in der Trockenzeit.

Tabelle 4: Prozentuale Anteile der häufigsten **übertragbaren Krankheiten** im Nouna HDSS in den Jahren 2010 und 2011

2010 (Regenzeit)	Total	Männer	Frauen	w ² n Wort
N	3949	1928	2021	χ² p-Wert
Übertragbare Krank-	20,7 (19,4-21,9)	20,8 (19,0-22,6)	20,5 (18,8-22,3)	0,837
heiten				
Malaria	15,7 (14,6-16,8)	17,1 (15,4-18,8)	16,2 (14,6-17,8)	0,455
Erkätungskrankheiten	1,2 (0,9-1,5)	1,3 (0,8-1,8)	1,1 (0,7-1,6)	0,554
Dermatophytose	0,6 (0,4-0,8)	0,5 (0,2-0,8)	0,7 (0,4-1,1)	0,376
Andere (<20 Fälle)	2,4 (1,9-2,8)	2,0 (1,4-2,6)	2,7 (2,0-3,4)	0,120
2011 (Trockenzeit)	Total	Männer	Frauen	χ² p-Wert
N	4039	1985	2054	,, ,
Übertragbare Krank-	11,0 (10,0-11,9)	10,6 (9,3-12,0)	11,4 (10,0-12,8)	0,437
heiten				
Malaria	5,9 (5,2-6,6)	6,1 (5,1-7,2)	5,6 (4,6-6,6)	0,501
Erkätungskrankheiten	2,5 (2,0-3,0)	2,8 (2,1-3,6)	2,2 (1,6-2,8)	0,200
Dermatophytose	0,6 (0,4-0,9)	0,4 (0,1-0,7)	0,9 (0,5-1,3)	0,060
Andere (<20 Fälle)	2,0 (1,6-2,5)	1,3 (0,8-1,8)	2,8 (2,1-3,5)	0,001

Modifiziert nach Gottlieb-Stroh et al., 2021³⁹. Die Daten sind als Prozente und ihre 95 %-igen Konfidenzintervalle dargestellt. Unterschiede zwischen den Geschlechtern wurden über den χ^2 -test berechnet.

Nur von 0,8% (95% KI: 0,5– 1,0%) der Teilnehmer*innen in der Regenzeit und von 0,6% (95% KI: 0,4–0,9%) in der Trockenzeit wurde über Verletzungen berichtet. Die drei häufigsten Verletzungen waren in beiden Jahren Lähmungen, Schlangenbisse und Unfalltraumata.

Tabelle 5: Prozentuale Anteile der häufigsten **Verletzungen** im Nouna HDSS in den Jahren 2010 und 2011

2010 (Regenzeit)	Total	Männer	Frauen	χ² p-Wert
N	3949	1928	2021	<i>N</i> 1
Verletzungen	0,8 (0,5-1,0)	0,8 (0,4-1,2)	0,7 (0,3-1,1)	0,620
Lähmungen	0,2 (0,0-0,3)	0,2 (0,0-0,4)	0,1 (0,0-0,2)	0,382
Schlangenbisse	0,1 (0,0-0,2)	0,2 (0,0-0,3)	0,0 (0,0-0,0)	0,076
Unfalltrauma	0,1 (0,0-0,3)	0,2 (0,0-0,3)	0,2 (0,0-0,3)	0,954
Andere (<20 Fälle)	0,4 (0,2-0,6)	0,3 (0,1-0,6)	0,5 (0,2-0,7)	0,493
2011 (Trockenzeit)	Total	Männer	Frauen	2 10/
N	4039	1985	2054	χ² p-Wert
Verletzungen	0,6 (0,4-0,9)	0,6 (0,3-1,0)	0,6 (0,3-1,0)	0,908
Lähmungen	0,3 (0,1-0,4)	0,2 (0,0-0,3)	0,3 (0,1-0,6)	0,225
Schlangenbisse	0,1 (0,0-0,2)	0,1 (0,0-0,2)	0,2 (0,0-0,3)	0,682
Unfalltrauma	0,1 (0,0-0,2)	0,2 (0,0-0,3)	0,0 (0,0-0,0)	0,078
Andere (<20 Fälle)	0,2 (0,0-0,3)	0,2 (0,0-0,4)	0,2 (0,0-0,3)	0,672

Modifiziert nach Gottlieb-Stroh et al., 2021³⁹. Die Daten sind als Prozente und ihre 95 %-igen Konfidenzintervalle dargestellt. Unterschiede zwischen den Geschlechtern wurden über den χ^2 -test berechnet.

Ein signifikanter Unterschied zwischen Frauen und Männern konnte nur in der Gruppe der nicht-übertragbaren Krankheiten in der Regenzeit des Jahres 2010 festgestellt werden (p<0,001) und war hauptsächlich auf das vermehrte Auftreten von chronischen Herzerkrankungen unter Frauen (p=0,002) zurückzuführen.

Alle weiteren Erkrankungen wurden weniger als 20-mal angegeben. Sie werden in der Tabelle unter dem Punkt "andere" aufgelistet.

Außerdem konnte ein Teil der angegebenen Erkrankungen nicht einer der drei WHO-Haupt-Krankheitsgruppen zugeordnet werden. Dies traf im Jahr 2010 auf 743 Fälle zu, was 18,9% aller Teilnehmer*innen ausmachte. Hierfür gab es verschiedene Gründe. In 715 von 743 Fällen wussten die Teilnehmer*innen nicht an welcher Erkrankung sie gelitten haben. 12-mal wurde die Erkrankung als "ein den ganzen Körper betreffendes Symptom" beschrieben, zwei Individuen gaben an verflucht worden zu sein und 14-mal wurden "andere" angegeben.

Für das Jahr 2011 wurde von 943 (23%) Teilnehmern eine Erkrankung angegeben, die nicht klassifiziert werden konnten. Hier wussten in 938 von 943 Fällen die Teilnehmer*innen nicht an welcher Erkrankung sie gelitten hatten und in fünf Fällen wurde "andere" angegeben.

3.3 Zeitgleiches Auftreten der Erkrankungen

Die Venn Diagramme zeigen die Überschneidungen der WHO-Krankheitsgruppen für die Regenzeit des Jahres 2010 (Abbildung 1) und die Trockenzeit des Jahres 2011 (Abbildung 2). Im Jahr 2010 haben 1,4% der Befragten angegeben eine nicht-übertragbare und eine übertragbare Krankheit gleichzeitig zu haben. 0,1% haben angegeben eine Verletzung erlitten zu haben und gleichzeitig an einer übertragbaren Krankheit erkrankt zu sein. Es gab keine Überschneidungen zwischen Verletzungen und nicht-übertragbaren Krankheiten.

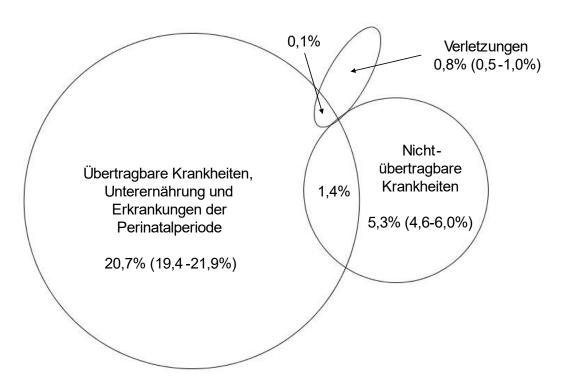


Abbildung 2: Häufigkeiten und zeitgleiches Auftreten der Erkrankungen im Nouna HDSS im Jahr 2010 (Regenzeit). Gezeigt sind prozentuale Anteile und 95% Konfidenzintervalle. Aus Gottlieb-Stroh et al., 2021³⁹.

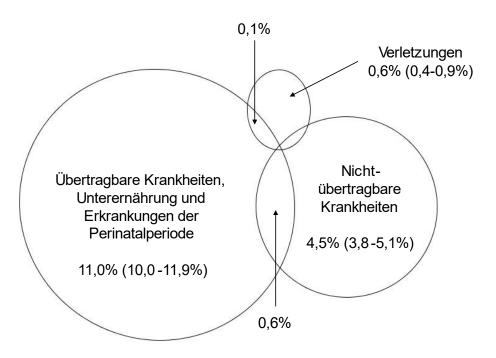


Abbildung 3: Häufigkeiten und zeitgleiches Auftreten der Erkrankungen im Nouna HDSS im Jahr 2011 (Trockenzeit). Gezeigt sind prozentuale Anteile und 95% Konfidenzintervalle. Aus Gottlieb-Stroh et al., 2021³⁹.

Im Jahr 2011 sank die Zahl der Personen, die angaben, gleichzeitig eine übertragbare und eine nicht-übertragbare Krankheit zu haben, auf 0,6%. Die Kombination aus Verletzungen und übertragbaren Krankheiten blieb gleich bei 0,1% und auch in diesem Jahr waren keine Angaben über gleichzeitige Verletzungen und nicht-übertragbare Krankheiten zu verzeichnen. In beiden Jahren wurde die Kombination aus Malaria und Hypertonus am häufigsten angegeben.

3.4 Assoziationen mit sozio-ökonomischen und demographischen Risikofaktoren

Die Tabellen 6-11 zeigen die univariaten und multivariat adjustierten Assoziationen für die jeweilige WHO-Haupt-Krankheitsgruppen in der Regenzeit des Jahres 2010 und in der Trockenzeit des Jahres 2011.

Tabelle 6: Assoziationen von durch Eigenangabe erhobenen <u>nicht-übertragbaren Krankheiten</u> (NÜK) von 3949 Erwachsenen im Nouna HDSS 2010 (Regenzeit)

VON 3949 Erwachsei	on 3949 Erwachsenen im Nouna HDSS 2010 (Regenzeit)								
Faktor	N	% in nicht- NÜK	% in NÜK	cv	95% KI	p-Wert	aCV	95% KI	p- Wert
Alter (Jahre)		111111111111111111111111111111111111111							
18-28	1519	39,7	16,3	1,00			1,00		
29-38	911	23,8	10,5	1,08	0,63-1,86	0,779	0,91	0,51-1,64	0,767
39-48	570	14,4	16,3	2,77	1,70-4,50	<,0001	2,17	1,25-3,77	0,006
49-58	414	10,2	15,3	3,66	2,23-6,00	<,0001	2,61	1,48-4,62	<,0001
59-68	292	6,7	19,6	7,13	4,44-11,46	<,0001	4,31	2,43-7,64	<,0001
>68	243	5,3	22,0	10,2	6,39-16,28	<,0001	5,44	2,90-10,23	<,0001
Geschlecht									
Männlich	1928	49,5	36,8	1,00			1,00		
Weiblich	2021	50,5	63,2	1,68	1,26-2,24	<,0001	1,22	0,86-1,71	0,260
Wohnort									
Dorf	2691	68,5	61,2	1,00			1,00		
Stadt (Nouna)	1258	31,5	38,8	1,38	1,04-1,84	0,028	1,09	0,75-1,57	0,657
Ethnie									
Dafin	1272	32,6	25,4	1,00			1,00		
Bwaba	1151	29,1	30,1	1,33	0,92-1,94	0,132	1,15	0,70-1,90	0,583
Mossi	786	19,9	19,1	1,23	0,81-1,88	0,327	1,22	0,77-1,92	0,391
Samo	322	7,9	12,9	2,11	1,30-3,41	0,002	2,04	1,20-3,44	0,008
Peulh	293	7,4	7,2	1,24	0,69-2,24	0,470	1,24	0,66-2,32	0,498
Andere	107	3,0	5,3	2,24	1,14-4,41	0,020	2,42	1,16-5,04	0,018
Religion									
Muslimisch	2190	55,8	49,8	1,00			1,00		
Katholisch	1184	29,7	34,9	1,32	0,97-1,79	0,079	1,64	1,07-2,51	0,023
Protestantisch	290	7,3	7,7	1,17	0,68-2,01	0,567	1,45	0,76-2,78	0,258
Animistisch	266	6,7	6,7	1,11	0,63-1,98	0,711	1,17	0,58-2,34	0,660
Andere	19	0,5	1,0	2,36	0,54-10,35	0,255	5,63	1,10-28,85	0,038
Bildungsgrad									
Keiner	2980	74,6	90,9	1,00			1,00		
Grundschule	374	9,6	7,7	0,66	0,39-1,11	0,114	0,81	0,44-1,51	0,516
Sekundarschule		0.7	0.5	0.54	0.07.4.00	0.544	0.00	0.02.2.26	0.244
oder Universität	28	0,7	0,5	0,54	0,07-4,02	0,544	0,28	0,03-2,36	0,244
Unbekannt	567	15,1	1,0	0,07	0,01-0,21	0,052	0,10	0,10-15,51	0,376
Beruf	1040404040	1200201220	Parameter Park				1277 (247 247)		
Landwirtschaft	2529	64,5	55,0	1,00			1,00		
Andere körperl. Arbeit	123	3,1	3,3	1,27	0,58-2,78	0,555	1,20	0,52-2,75	0,668
Nicht-körperliche Arbeit	305	7,3	14,8	2,37	1,57-3,60	<,0001	1,88	1,15-3,06	0,011
Unbekannt	992	25,0	26,8	1,26	0,91-1,74	0,174	1,92	1,24-2,98	0,003
Familienstand									
Ledig	512	13,3	6,7	1,00		0.000	1,00		0.000
Geschieden	39	1,0	0,5	0,94	0,12-7,31	0,950	0,47	0,57-3,87	0,483
Monogam	1881	47,9	42,1	1,75	0,98-3,09	0,056	1,13	0,57-2,25	0,733
Polygam	683	17,0	23,0	2,69	1,47-4,93	0,001	1,43	0,66-3,10	0,364
Verwitwet	269	5,7	26,8	9,35	5,09-17,16	<,0001	1,92	0,83-4,42	0,126
Unbekannt	565	15,1	1,0	0,13	0,29-0,56	0,006	0,44	0,03-68,66	0,753

Chancenverhältnisse, 95% Konfidenz Intervalle und P-Werte wurden mit Hilfe binär logistischer Regressionen bestimmt und für alle anderen Faktoren adjustiert.

Tabelle 7: Assoziationen von durch Eigenangabe erhobenen <u>übertragbaren Krankheiten (ÜK)</u> von 3949 Erwachsenen im Nouna HDSS 2010 (Regenzeit)

Faktor	N	% in nicht- ÜK	% in ÜK	cv	95% KI	p-Wert	aCV	95% KI	p- Wert
Alter (Jahre)									
18-28	1519	40,5	30,6	1,00			1,00		
29-38	911	22,7	24,6	1,44	1,17-1,77	0,001	1,15	0,91-1,45	0,250
39-48	570	14,0	16,2	1,53	1,21-1,94	<,0001	1,19	0,91-1,55	0,212
49-58	414	10,0	12,3	1,62	1,24-2,10	<,0001	1,20	0,89-1,61	0,221
59-68	292	7,1	8,6	1,60	1,18-2,16	0,002	1,06	0,75-1,45	0,738
>68	243	5,7	7,7	1,78	1,29-2,44	<,0001	1,35	0,89-2,03	0,156
Geschlecht									
Männlich	1928	48,7	49,1	1,00			1,00		
Weiblich	2021	51,3	50,9	0,98	0,84-1,15	0,840	0,91	0,76-1,09	0,305
Wohnort									
Dorf	2691	68,9	65,1	1,00			1,00		
Stadt (Nouna)	1258	31,1	34,9	1,91	1,01-1,40	0,035	1,03	0,84-1,27	0,748
Ethnie		C-15011/5/6/7	5-24-7.5-8	90400000	Medice W Station	=0.4:=0.55==	1000000000	C104 C200 C20000	
Dafin	1272	30,8	37,7	1,00			1,00		
Bwaba	1151	29,3	28,7	0,80	0,66-0,97	0,023	0,80	0,61-1,05	0,113
Mossi	786	21,5	13,8	0,53	0,41-0,67	<,0001	0,53	0,41-0,69	<,0001
Samo	322	8,3	7,5	0,73	0,54-0,99	0,047	0,70	0,51-0,97	0,034
Peulh	293	7,2	8,1	0,91	0,67-1,23	0,546	0,86	0,63-1,19	0,363
Andere	107	2,9	4,2	1,18	0,78-1,79	0,426	1,15	0,74-1,80	0,534
Religion		- 6			3 3	ă.	335	\$5 ex	Å
Muslimisch	2190	55,2	56,5	1,00			1,00		
Katholisch	1184	29,7	30,9	1,01	0,85-1,20	0,874	1,06	0,83-1,35	0,655
Protestantisch	290	7,6	6,5	0,84	0,61-1,15	0,274	0,88	0,61-1,28	0,504
Animistisch	266	7,0	5,9	0,83	0,59-1,15	0,254	0,75	0,51-1,11	0,148
Andere	19	0,5	0,2	0,44	0,10-1,92	0,275	0,64	0,13-3,00	0,569
Bildungsgrad		A100.00128	.	55 P 54 5 AVE		\$20 5 PER REPORT	000402100		201 .1 ,7105.1374 2 00
Keiner	2980	72,9	85,2	1,00			1,00		
Grundschule	374	8,6	12,9	1,28	1,01-1,63	0,042	1,470	1,11-1,95	0,007
Sekundarschule					81 838	CONTROL OF THE SECOND			
oder Universität	28	0,5	1,6	2,85	1,35-6,02	0,006	2,824	1,26-6,35	0,012
Unbekannt	567	18,0	0,4	0,02	0,01-0,05	<,0001	0,460	0,06-3,36	0,444
Beruf									
Landwirtschaft	2529	62,7	69,4	1,00			1,00		
Andere körperl. Arbeit	123	2,8	4,2	1,32	0,88-1,99	0,174	1,18	0,77-1,82	0,444
Nicht-körperliche Arbeit	305	6,7	11,6	1,57	1,21-2,03	0,010	1,30	0,97-1,75	0,076
Unbekannt	992	27,8	14,8	0,48	0,39-0,60	<,0001	1,10	0,83-1,46	0,519
Familienstand									
Ledig	512	13,2	11,9				1,00		
Geschieden	39	1,0	1,1	1,28	0,59-2,79	0,529	1,21	0,54-2,70	0,646
Monogam	1881	45,2	56,9	1,40	1,10-1,79	0,007	1,49	1,11-1,99	0,008
Polygam	683	16,8	19,4	1,29	0,97-1,71	0,081	1,44	1,01-2,06	0,046
Verwitwet	269	5,8	10,5	2,01	1,43-2,82	<,0001	2,03	1,29-3,20	0,002
Unbekannt	565	18,0	0,2	0,01	0,00-0,06	<,0001	0,04	0,00-0,39	0,006

Chancenverhältnisse, 95% Konfidenz Intervalle und P-Werte wurden mit Hilfe binär logistischer Regressionen bestimmt und für alle anderen Faktoren adjustiert.

Für die Eigenangabe von nicht-übertragbaren Krankheiten (Tabelle 6 und 9) konnten in beiden Jahreszeiten hohes Alter und nicht-körperliche Arbeit als stärkste Risikofaktoren sowohl im univariaten als auch im multivariaten Modell identifiziert werden. In beiden Jahreszeiten waren außerdem der Wohnort im semi-urbanen Nouna, der Familienstand polygame Ehe und der Familienstand verwitwet mit einer signifikant erhöhten Wahrscheinlichkeit über eine nicht-übertragbare Krankheit zu berichten assoziiert. Nach dem Adjustieren der restlichen Variablen fiel diese Assoziation jedoch unter das Signifikanzniveau. Die Ethnie Samo konnte als weiterer signifikanter Risikofaktor identifiziert werden. Im multivariaten Modell der Trockenzeit des Jahres 2011 hat sich diese Assoziation jedoch nicht mehr gezeigt.

Die Tabellen 7 und 10 zeigen die Assoziationen der übertragbaren Krankheiten. In der Regenzeit des Jahres 2010 konnten Alter, hoher Bildungsgrad, nicht-körperliche Arbeit, monogame und polygame Ehen und ein verwitweter Familienstand als Risikofaktoren identifiziert werden. Für Alter und nicht-körperliche Arbeit war diese Assoziation im multivariaten Modell unter das Signifikanzniveau gefallen. Die Ethnien Bwaba, Mossi und Samo wiesen eine protektive Assoziation auf. Nach multivariater Adjustierung blieb diese Assoziation für die Ethnie Mossi und Samo bestehen.

In der Trockenzeit des Jahres 2011 konnten deutlich weniger Assoziationen mit übertragbaren Krankheiten identifiziert werden. Alter, nicht-körperliche Arbeit und monogame Ehe waren im univariaten Modell mit einem erhöhten Eigenbericht von übertragbaren Krankheiten assoziiert, jedoch zeigte sich im multivariaten Modell keine Signifikanz. Eine signifikante Häufung des Eigenberichts von übertragbaren Krankheiten von Menschen protestantischen Glaubens konnte zwar nicht im univariaten Modell gesehen werden, aber wurde nach multivariater Adjustierung sichtbar.

Tabelle 8: Assoziationen von durch Eigenangabe erhobenen <u>Verletzungen</u> von 3949 Erwachsenen im Nouna HDSS 2010 (Regenzeit)

Nouna HDSS 2010 (Regenzeit)									
Faktor	N	% in nicht- Verl.	% in Verl.	cv	95% KI	p- Wert	aCV	95% KI	p- Wert
Alter (Jahre)									
18-28	1519	38,6	20,0	1,00			1,00		
29-38	911	23,1	23,3	1,95	0,65-5,83	0,230	1,42	0,42-4,80	0,572
39-48	570	14,5	10,0	1,33	0,33-5,35	0,684	0,79	0,17-3,70	0,768
49-58	414	10,4	16,7	3,08	0,94-10,15	0,064	1,72	0,43-6,84	0,443
59-68	292	7,3	16,7	4,39	1,33-14,49	0,015	2,04	0,48-8,69	0,334
>68	243	6,1	13,3	4,22	1,18-15,06	0,027	1,64	0,31-8,74	0,561
Geschlecht									
Männlich	1928	48,8	53,3	1,00			1,00		
Weiblich	2021	51,2	46,7	0,83	0,41-1,71	0,620	0,51	0,22-1,17	0,111
Wohnort									
Dorf	2691	68,2	63,3	1,00			1,00		
Stadt (Nouna)	1258	31,8	36,7	1,24	0,59-2,61	0,571	1,13	0,45-2,85	0,789
Ethnie									
Dafin	1272	32,3	23,3	1,00			1,00		
Bwaba	1151	29,1	36,7	1,74	0,67-4,52	0,251	2,10	0,59-7,43	0,250
Mossi	786	19,9	26,7	1,86	0,67-5,15	0,232	2,10	0,73-6,07	0,169
Samo	322	8,2	6,7	1,13	0,23-5,47	0,879	1,20	0,24-6,05	0,826
Peulh	293	7,5	3,3	0,62	0,08-5,05	0,655	0,52	0,06-4,38	0,548
Andere	107	3,1	3,3	1,47	0,18-12,05	0,719	1,30	0,15-11,05	0,808
Religion									
Muslimisch	2190	55,5	50,0	1,00			1,00		
Katholisch	1184	29,9	36,7	1,36	0,62-2,97	0,441	1,316	0,44-3,93	0,623
Protestantisch	290	7,4	0	=	- 100 	*	-	# ***	25 E
Animistisch	266	6,7	13,3	2,21	0,73-6,72	0,161	1,614	0,35-7,36	0,536
Andere	19	0,5	0	=		-	-	=	-
Bildungsgrad									
Keiner	2980	75,4	90,0	1,00			1,00		
Grundschule	374	9,5	10,0	0,88	0,27-2,93	0,841	0,89	0,22-3,56	0,894
Sekundarschule oder Universität	28	0,7	0	=	=	-	-	RT.	85
Unbekannt	567	14,5	0	=	505 55			100 100 100	-
Beruf									
Landwirtschaft	2529	64,1	56,7	1,00			1,00		
Andere körperl. Arbeit	123	3,1	6,7	2,44	0,56-10,69	0,236	2,08	0,42-10,23	0,368
Nicht-körperliche Arbeit	305	7,6	20,0	2,96	1,16-7,58	0,023	3,67	1,23-10,92	0,020
Unbekannt	992	25,2	16,7	0,75	0,27-2,03	0,570	1,90	0,57-6,38	0,298
Familienstand		SALES CONTRACTOR	04548643344						
Ledig	512	13,0	10,0	**	<u>~</u>	-	=	-	80 2 1
Geschieden	39	1,0	0			-		T-	11 5 1
Monogam	1881	47,7	36,7	1,00	0,28-3,59	0,998	0,96	0,21-4,37	0,963
Polygam	683	17,1	36,7	2,78	0,77-10,01	0,118	2,76	0,52-14,57	0,232
Verwitwet	269	6,7	16,7	3,21	0,76-13,55	0,112	2,31	0,32-16,85	0,407
Unbekannt	565	14,4	0	=	Ξ	Ħ	Ħ	=	18

Chancenverhältnisse, 95% Konfidenz Intervalle und P-Werte wurden mit Hilfe binär logistischer Regressionen bestimmt und für alle anderen Faktoren adjustiert.

Tabelle 9: Assoziationen von durch Eigenangabe erhobenen <u>nicht-übertragbaren Krankheiten (NÜK)</u> von 4039 Frwachsenen im Nouna HDSS 2011 (Trockenzeit)

Faktor	N	% in nicht- NÜK	% in NÜK	cv	95% KI	p- Wert	aCV	95% CI	p-Wert
Alter (Jahre)									
18-28	1570	39,9	16,1	1,00			1,00		
29-38	931	23,5	12,8	1,35	0,77-2,34	0,293	1,06	0,58-1,94	0,849
39-48	589	14,6	14,4	2,45	1,43-4,20	0,001	1,82	0,99-3,34	0,054
49-58	425	10,5	11,7	2,76	1,56-4,89	0,001	1,90	0,99-3,63	0,052
59-68	284	6,3	23,3	9,22	5,64-15,09	<,0001	6,74	3,68-12,35	<,0001
>68	240	5,2	21,7	10,31	6,24-17,04	<,0001	8,11	4,14-15,87	<,0001
Geschlecht									
Männlich	1985	49,4	43,3	1,00			1,00		
Weiblich	2054	50,6	56,7	1,28	0,94-1,73	0,111	1,08	0,75-1,55	0,691
Wohnort									
Dorf	2747	68,3	61,1	1,00			1,00		
Stadt (Nouna)	1292	31,7	38,9	1,37	1,01-1,87	0,043	0,98	0,66-1,45	0,936
Ethnie									
Dafin	1338	33,2	31,1	1,00			1,00		
Bwaba	1167	29,1	25,0	0,92	0,61-1,37	0,676	0,90	0,52-1,55	0,708
Mossi	783	19,5	17,2	0,94	0,60-1,48	0,800	0,99	0,61-1,60	0,958
Samo	338	8,2	12,8	1,67	1,01-2,76	0,044	1,60	0,92-2,77	0,092
Peulh	290	7,1	8,3	1,25	0,70-2,24	0,456	1,22	0,65-2,29	0,532
Andere	106	2,9	5,6	2,03	1,01-4,08	0,048	2,39	1,13-5,07	0,023
Religion									
Muslimisch	2269	56,1	57,8	1,00			1,00		
Katholisch	1183	29,3	29,4	0,98	0,70-1,37	0,890	1,17	0,74-1,87	0,501
Protestantisch	295	7,4	4,4	0,58	0,28-1,20	0,144	0,68	0,30-1,57	0,372
Animistisch	274	6,8	7,2	1,04	0,57-1,87	0,904	1,09	0,53-2,24	0,819
Andere	18	0,4	1,1	2,60	0,59-11,47	0,206	6,25	1,24-31,62	0,027
Bildungsgrad									
Keiner	3058	75,3	85,6	1,00			1,00		
Grundschule	379	9,3	10,6	0,99	0,61-1,62	0,985	1,85	1,02-3,34	0,041
Sekundarschule oder Universität	25	0,6	0,6	0,79	0,11-5,85	0,814	1,04	0,12-8,83	0,969
Unbekannt	577	14,8	3,3	0,20	0,09-0,45	<,0001	1,18	0,45-3,04	0,736
Beruf									
Landwirtschaft	2596	64,6	58,3	1,00			1,00		
Andere körperl. Arbeit	130	3,3	1,7	0,56	0,17-1,79	0,328	0,39	0,12-1,30	0,126
Nicht-körperliche Arbeit	313	7,4	16,1	2,42	1,58-3,72	<,0001	1,75	1,06-2,90	0,028
Unbekannt Familienstand	1000	24,8	23,9	1,07	0,74-1,53	0,730	1,19	0,73-1,93	0,486
Ledig	447	11,3	6,7	1,00			1,00		
Geschieden	39	0,9	1,7	3,02	0,81-11,20	0,098	1,88	0,46-7,70	0,381
Monogam	1720	42,5	43,9	1,74	0,94-3,23	0,077	1,27	0,61-2,66	0,526
Polygam	631	15,2	25,0	2,78	1,45-5,33	0,002	1,78	0,78-4,08	0,169
Verwitwet	243	5,2	22,8	7,36	3,78-14,30	<,0001	1,74	0,70-4,34	0,236
Unbekannt	959	24,9	0	<u></u>	(- %	#	89 4 6	-	741

Chancenverhältnisse, 95% Konfidenz Intervalle und P-Werte wurden mit Hilfe binär logistischer Regressionen bestimmt und für alle anderen Faktoren adjustiert.

Die Tabellen 8 und 11 stellen die durch Eigenangabe erhobenen Assoziationen der Verletzungen dar. In der Regenzeit des Jahres 2010 war hohes Alter und nicht-körperliche Arbeit mit einem erhöhten Risiko von einer Verletzung zu berichten assoziiert. Nach multivariater Adjustierung blieb nur die Assoziation mit nicht-körperlicher Arbeit bestehen. In der Trockenzeit des Jahres 2011 konnte ein erhöhtes Risiko für die Altersgruppen von 49-58 Jahren und von >68 Jahren sowohl im univariaten als auch im multivariaten Modell gezeigt werden. Eine Häufung für Menschen katholischen Glaubens zeigte sich im univariaten Modell, erreichte aber im multivariaten Modell nicht das Signifikanzniveau.

Tabelle 10: Assoziationen von durch Eigenangabe erhobenen <u>übertragbaren Krankheiten (ÜK)</u> von 4039 Erwachsenen im Nouna HDSS 2011 (Trockenzeit)

Faktor	N	% in nicht- ÜK	% in ÜK	cv	95% KI	p- Wert	aCV	95% KI	p- Wert
Alter (Jahre)									
18-28	1570	39,9	30,7	1,00			1,00		
29-38	931	22,8	25,1	1,43	1,09-1,86	0,008	1,14	0,85-1,54	0,371
39-48	589	14,3	16,9	1,54	1,14-2,07	0,005	1,18	0,84-1,65	0,335
49-58	425	10,1	14,0	1,80	1,31-2,48	<,0001	1,33	0,92-1,90	0,126
59-68	284	6,9	8,4	1,58	1,07-2,33	0,021	1,12	0,72-1,76	0,606
>68	240	6,1	5,0	1,06	0,66-1,71	0,797	0,84	0,47-1,48	0,540
Geschlecht									
Männlich	1985	49,4	47,4	1,00			1,00		
Weiblich	2054	50,6	52,6	0,92	0,76-1,13	0,437	1,02	0,81-1,28	0,872
Wohnort									
Dorf	2747	68,4	65,0	1,00			1,00		
Stadt (Nouna)	1292	31,6	35,0	1,16	0,95-1,43	0,152	1,15	0,86-1,44	0,409
Ethnie									
Dafin	1338	32,9	35,2	1,00			1,00		
Bwaba	1167	28,8	30,0	0,97	0,76-1,25	0,837	0,81	0,58-1,13	0,212
Mossi	783	19,8	15,8	0,74	0,55-1,00	0,051	0,80	0,58-1,10	0,165
Samo	338	8,5	7,4	0,82	0,55-1,22	0,325	0,73	0,48-1,10	0,134
Peulh	290	7,1	7,7	1,01	0,68-1,49	0,975	1,12	0,73-1,70	0,608
Andere	106	2,9	3,8	1,21	0,71-2,08	0,478	1,19	0,67-2,09	0,552
Religion									
Muslimisch	2269	56,6	53,0	1,00			1,00		
Katholisch	1183	28,9	32,3	1,19	0,95-1,48	0,123	1,28	0,94-1,73	0,112
Protestantisch	295	7,1	8,6	1,28	0,89-1,85	0,187	1,58	1,02-2,45	0,042
Animistisch	274	6,9	5,6	0,87	0,56-1,34	0,525	0,91	0,55-1,51	0,723
Andere	18	0,4	0,5	1,08	0,25-4,73	0,917	1,45	0,30-6,93	0,639
Bildungsgrad									
Keiner	3058	74,9	82,4	1,00			1,00		
Grundschule	379	9,0	12,2	1,23	0,90-1,67	0,195	1,29	0,90-1,84	0,171
Sekundarschule	25	0,6	0,5	0,64	0,15-2,73	0,548	0,63	0,14-2,91	0,553
oder Universität				44		SE 1	58		
unbekannt Beruf	577	15,4	5,0	0,29	0,19-0,45	<,0001	1,90	1,07-3,38	0,029
Landwirtschaft	2596	63,7	69,3	1,00			1,00		
Andere körperl.									
Arbeit	130	3,2	3,4	0,97	0,56-1,69	0,921	1,02	0,57-1,84	0,935
Nicht-körperliche Arbeit	313	7,3	11,5	1,45	1,05-2,00	0,024	1,37	0,95-1,98	0,088
unbekannt	1000	25,9	15,8	0,66	0,43-0,74	<,0001	0,98	0,67-1,42	0,899
Familienstand						**************************************	23 CONT. P. CONT. CONT.		200 4 00 min 10 min 1
Ledig	447	11,0	11,5	1,00			1,00		
Geschieden	39	1,0	0,9	0,89	0,30-2,60	0,828	0,801	0,27-2,41	0,693
Monogam	1720	40,3	61,4	1,46	1,06-2,01	0,020	1,439	0,99-2,09	0,057
Polygam	631	15,4	17,6	1,09	0,75-1,59	0,635	1,104	0,70-1,75	0,674
Verwitwet	243	5,7	8,6	1,44	0,91-2,26	0,115	1,511	0,83-2,73	0,172
Unbekannt	959	26,7	0	=	-	;;	30	2=3	=

Chancenverhältnisse, 95% Konfidenz Intervalle und P-Werte wurden mit Hilfe binär logistischer Regressionen bestimmt und für alle anderen Faktoren adjustiert.

Tabelle 11: Assoziationen von durch Eigenangabe erhobenen <u>Verletzungen</u> von 4039 Erwachsenen im Nouna HDSS 2011 (Trockenzeit)

im Nouna HDSS 201 Faktor	1 (Troc	% in nicht-	% in	cv	95% KI	p-	aCV	95% KI	p-Wert
I antoi	IN.	Verl.	Verl.	CV	95% KI	Wert	a C V	33 /0 IXI	h-Meir
Alter (Jahre)									
18-28	1570	39,0	20,0	1,00			1,00		
29-38	931	23,1	20,0	1,69	0,49-5,85	0,408	2,59	0,62-10,73	0,190
39-48	589	14,6	8,0	1,07	0,21-5,51	0,939	1,70	0,26-11,11	0,580
49-58	425	10,4	28,0	5,24	1,65-16,60	0,005	7,94	1,81-34,80	0,006
59-68	284	7,0	8,0	2,22	0,43-11,50	0,342	3,77	0,52-27,34	0,189
>68	240	5,9	16,0	5,30	1,41-19,90	0,013	8,91	1,37-57,82	0,022
Geschlecht									
Männlich	1985	49,2	48,0	1,00			1,00		
Weiblich	2054	50,8	52,0	1,05	0,48-2,30	0,908	1,00	0,40-2,51	0,998
Wohnort									
Dorf	2747	68,1	52,0	1,00			1,00		
Stadt (Nouna)	1292	31,9	48,0	1,97	0,90-4,33	0,091	1,34	0,50-3,56	0,560
Ethnie									
Dafin	1338	33,2	28,0	1,00			1,00		
Bwaba	1167	28,8	36,0	1,48	0,55-3,98	0,440	1,32	0,37-4,69	0,669
Mossi	783	19,4	20,0	1,22	0,39-3,86	0,733	1,47	0,44-4,94	0,534
Samo	338	8,4	8,0	1,13	0,23-5,47	0,878	0,79	0,16-4,02	0,779
Peulh	290	7,2	8,0	1,32	0,27-6,39	0,730	1,60	0,31-8,26	0,577
Andere	106	3,1	0	-	±	-	-		8₩
Religion									
Muslimisch	2269	56,3	44,0	1,00			1,00		
Katholisch	1183	29,1	52,0	2,28	1,02-5,12	0,045	2,32	0,75-7,14	0,142
Protestantisch	295	7,3	=	=	-	=	=	=	8V 10 = 7
Animistisch	274	6,8	4,0	0,75	0,10-5,85	0,785	0,70	0,07-6,85	0,758
Andere	18	0,4	=	=	-	=	=	- 1	85 10 -1 7
Bildungsgrad									
Keiner	3058	75,7	76,0	1,00			1,00		
Grundschule	379	9,3	16,0	1,71	0,58-5,04	0,334	1,08	0,28-4,21	0,909
Sekundarschule oder Universität	25	0,6	=	-	-	-	-	=	-
unbekannt	577	14,2	8,0	0,56	0,13-2,39	0,431	1,87	0,32-10,89	0,487
Beruf		,_	0,0	0,00	5, 10 2,00	0, 10	.,	0,02 .0,00	0, .0.
Landwirtschaft	2596	64,4	48,0	1,00			1,00		
Andere körperl. Arbeit	130	3,2	4,0	1,67	0,21-12,94	0,624	1,67	0,19-14,56	0,642
Nicht-körperliche Arbeit	313	7,7	16,0	2,79	0,89-8,70	0,077	2,81	0,76-10,35	0,121
unbekannt	1000	24,7	32,0	1,74	0,71-4,26	0,228	2,25	0,67-7,56	0,191
Familienstand		8		98E		88	98		37
Ledig	447	11,0	20,0	1,00			1,00		
Geschieden	39	0,9	8,0	4,78	0,90-25,48	0,067	1,88	0,26-13,43	0,527
Monogam	1720	42,6	40,0	0,52	0,18-1,52	0,231	0,30	0,07-1,27	0,102
Polygam	631	15,6	16,0	0,56	0,151-2,11	0,395	0,28	0,05-1,62	0,154
Verwitwet	243	6,0	16,0	1,48	0,39-5,56	0,562	0,26	0,03-1,97	0,194
Unbekannt	959	23,9	0	-	=	-	-		(**

Chancenverhältnisse, 95% Konfidenz Intervalle und P-Werte wurden mit Hilfe binär logistischer Regressionen bestimmt und für alle anderen Faktoren adjustiert.

Diskussion 29

4. Diskussion

4.1 Zusammenfassung der Hauptergebnisse

In dieser Arbeit wurden unter 4192 Studienteilnehmer*innen das Vorkommen der "Double Burden of Disease" anhand der Häufigkeit der Eigenangaben von WHO-Haupt-Krankheitsgruppen, ihres gleichzeitigen Auftretens und dem Einfluss demographischer und sozioökonomischer Faktoren untersucht.

Nur wenige der Teilnehmer*innen berichteten in der Regenzeit des Jahres 2010 und der Trockenzeit des Jahres 2011 an einer nicht-übertragbaren Krankheit gelitten zu haben (5,3% und 4,5%), während der Großteil der Erkrankungslast von übertragbaren Krankheiten ausgemacht wurde (21% und 11%). Diese Erkenntnis deckt sich nur bedingt mit den Daten der WHO und des Gesundheitsministeriums in Burkina Faso. Die Daten des burkinischen Gesundheitsministeriums bestätigen unsere Ergebnisse insofern, als dass die zehn häufigsten Gründe für das Aufsuchen eines Gesundheitsstützpunktes ausschließlich übertragbaren Krankheiten zugeschrieben werden und Malaria mit 48% die Hauptursache darstellt.⁴⁰ Die Daten der WHO beschreiben die Mortalität in Burkina Faso und liefern ein anderes Bild. Hier wird zwar auch die Mehrheit der Todesursachen (56%) als übertragbare Krankheiten angegeben, jedoch machen nicht-übertragbare Krankheiten auch insgesamt 31% aus und liegen somit deutlich über unseren Ergebnissen.⁴¹

4.2 Das Phänomen "Double Burden of Disease" im ländlichen Burkina Faso

Die Studienpopulation im Nouna HDSS scheint weniger nicht-übertragbare Krankheiten anzugeben als das Konzept der "Double Burden of Disease" und auch die landesweite Mortalitätsrate vermuten ließen.

Zwei Erklärungsmöglichkeiten erscheinen hierfür plausibel. Es könnte sein, dass nichtübertragbare Krankheiten im Gebiet des Nouna HDSS tatsächlich weniger vorkommen und die "Double Burden of Disease" demzufolge noch nicht bis in dieses ländliche Gebiet vorgedrungen ist. Die zweite Möglichkeit wäre eine Untererfassung des tatsächlichen Vorkommens nicht-übertragbarer Krankheiten bedingt durch ein geringes Bewusstsein über die einzelnen Erkrankungen.

Für das tatsächlich niedrige Aufkommen der nicht-übertragbaren Krankheiten sprechen die sozioökonomischen Eigenschaften der Bevölkerung. Wie anfangs beschrieben setzt

Diskussion 30

die "Double Burden of Disease" einen durch die Globalisierung geprägten Lebenswandel weg von traditionellen Lebens-, Ess- und Arbeitsgewohnheiten hin zu körperlicher Inaktivität, Alkohol- und Tabakgebrauch und ungesunder Ernährung voraus. Tabelle 1 liefert einige Anhaltspunkte dafür, dass dieser Wandel in der Region des Nouna HDSS noch nicht eingetreten ist. Die klassische Alterspyramide, die hohe Analphabetenrate, das niedrige Bildungsniveau, die hohe Rate an Subsistenzlandwirtschaft und die Verbreitung von polygamen Ehen deuten auf eine traditionelle Lebensweise hin. Nur die Hälfte der Bevölkerung konnte lesen und schreiben, drei Viertel hat keine Form von Schuldbildung erfahren und ungefähr jeder 8. Mann und jede vierte Frau lebten in einer polygamen Ehe. Außerdem deuten die univariaten Assoziationen von nicht-übertragbaren Krankheiten mit dem Wohnort in der Stadt Nouna auf diese Theorie hin. Der Teil der Menschen, der die traditionellen ländlichen Strukturen verlässt und anstatt Landwirtschaft zu betreiben einer weniger körperlich anstrengenden Arbeit im urbanen Raum nachgeht, hat ein erhöhtes Risiko nicht-übertragbare Krankheiten zu erleiden. 42 Auch die Assoziation von Eigenbericht von nicht-übertragbaren Krankheiten mit der nicht-körperlich arbeitenden Bevölkerung unterstützt diese These. Neben einer Arbeit, die weniger Kalorien verbrennt, hat dieser wahrscheinlich besser situierte Teil der Bevölkerung auch mehr Ressourcen, um sich den Risikofaktoren wie zum Beispiel westlichen Ernährungsstilen auszusetzen. Gleichzeitig sprechen aber auch einige Punkte für die zweite Theorie, in der von einem niedrigen Bewusstsein über nicht-übertragbare Krankheiten ausgegangen wird. Dieselben Punkte, die auch auf traditionelle Lebensstile hindeuten wie hohe Analphabetenraten und niedriger Bildungsstand können genauso Anzeichen für fehlendes Wissen über diese Erkrankungen sein. Nicht-übertragbare Krankheiten haben nie eine große Rolle im Alltag der Menschen gespielt und darum ist es nicht überraschend, dass Symptome, Risikofaktoren oder Komplikationen falsch interpretiert werden. In einer Studie in Ghana konnte gezeigt werden, dass nur 7,4 % der Menschen mit erhöhtem Blutdruck von ihrer Diagnose wussten. Bei Männern waren es sogar nur 3,1%, während 11,9% der Frauen über

Ein systematisches Review, das Bewusstsein, Behandlungsstatus und Therapieerfolg bei Bluthochdruck in mehreren Ländern Afrikas untersucht hat, kommt zu dem Schluss, dass vor allem das Bewusstsein in ländlichen Gebieten äußerst niedrig ist. Auch hier war das Bewusstsein unter Männern geringer als unter Frauen.⁴⁴ Nicht nur das Bewusstsein der Patient*innen, sondern auch das der Behandler*innen könnte eine Rolle spielen. In einem

ihre Diagnose informiert waren.⁴³

Gesundheitssystem, das sich in der Vergangenheit nur auf die Bekämpfung von übertragbaren Krankheiten fokussieren musste, fehlt es höchstwahrscheinlich an Erfahrung und diagnostischen Mitteln im Umgang mit nicht-übertragbaren Krankheiten. Unterdiagnose einer tatsächlich höheren Rate an nicht-übertragbaren Krankheiten wäre die Folge. Gegen beide Theorien spricht die fehlende Assoziation von Eigenbericht von nicht-übertragbaren Krankheiten mit höheren Bildungsniveaus. Es wäre zu erwarten, dass Menschen mit besserer Schulbildung und demzufolge höherem Einkommen auch vermehrt den Risikofaktoren für nicht-übertragbare Krankheiten ausgesetzt sind. Gleichzeitig müsste aber auch das Bewusstsein über diese Krankheiten unter Menschen mit höherem Bildungsniveau größer sein und es dürfte deswegen nicht zu einer Untererfassung kommen.

4.3 Saisonales Auftreten der Erkrankungen

Eine weniger überraschende Erkenntnis unserer Studie ist die saisonale Häufung von übertragbaren Krankheiten wie Malaria. Die vektorbasierte Übertragung von Malaria findet durch die Anopheles-Mücke statt und ist hinreichend in der Literatur beschrieben. Die Vermehrung der Anopheles-Mücke lässt sich in die Stadien Ei, Larve, Puppe und Imago einteilen. Drei dieser vier Stadien findet man in stehenden Gewässern, die saisonal vermehrt in der Regenzeit vorkommen. Das vermehrte Aufkommen von Anopheles sorgt so für eine höhere Inzidenz übertragbarer Krankheiten.²⁰

Auch die saisonale Häufung anderer nicht-vektorbasierter übertragbarer Krankheiten wie Erkältungskrankheiten ist bekannt. Die längere Aufenthaltsdauer in schlecht belüfteten Innenräumen und die niedrigeren Temperaturen erklären das vermehrte Vorkommen in dieser Jahreszeit. In unserer Studie konnte dieses Phänomen jedoch nicht gezeigt werden. Es kam sogar zu einem vermehrten Eigenbericht in der Trockenzeit. Denkbare Ursachen hierfür sind zum einen die von vornherein niedrigen und somit mit Ungenauigkeit behafteten Erkältungsangaben oder eine Fehldiagnose der Erkältung als Malaria. Bedingt durch äußerst hohe Malariainzidenzen in der Region ist es möglich, dass in den Hochinzidenzzeiten unspezifische Symptome als erstes dieser Erkrankung zugeordnet werden. In einer Studie in Angola konnte nachträglich gezeigt werden, dass bis zu 85% der Malariadiagnosen falsch waren. 46

Außerdem wäre ein saisonales Vorkommen von nicht-übertragbaren Krankheiten und Verletzungen zu erwarten gewesen. Hitzewellen verschlechtern die Symptome vor allem von kardiovaskulären Erkrankungen und sorgen so weltweit für eine erhöhte Mortalität und Morbidität. Obwohl Menschen in kühleren Klimaregionen der Nordhalbkugel besonders für diese Hitzebelastung prädestiniert sind, konnte auch im ländlichen Burkina Faso eine erhöhte Belastung durch nicht-übertragbare Krankheiten in Zeiten starker Hitze gezeigt werden. ^{22,47} Unsere Studie hat diese Ergebnisse jedoch nicht bestätigten können. Eine mögliche Ursache ist das niedrige Vorkommen des Eigenberichts nicht-übertragbarer Krankheiten.

Auch das saisonale Vorkommen von Verletzungen unter in der Landwirtschaft arbeitenden Menschen in SSA ist beschrieben. Unterschiedliche Tätigkeiten über das Jahr verteilt sorgen für ein unterschiedlich hohes Vorkommen von Unfällen oder Schlangenbissen.²⁴ Wir fanden in unserer Studie kein saisonal signifikant gehäuftes Vorkommen von Verletzungen. Wieder liegt als Ursache nahe, dass die niedrigen Fallzahlen für Verletzungen nicht ausreichen.

4.4 Gleichzeitig auftretende Erkrankungen

Die am meisten gleichzeitig angegebenen Erkrankungen waren Malaria und Bluthochdruck. In der Literatur finden sich verschiedene Hinweise auf einen ursächlichen Zusammenhang der beiden Krankheiten, auch genannt die Malria-Bluthochdruck-Hypothese. So verursachen Malariainfektionen in der Schwangerschaft ein verringertes Geburtsgewicht. Eine Malariainfektion in der frühen Kindheit wiederum sorgt für Unterernährung und einen Zustand der chronischen Entzündung. Alle diese Faktoren erhöhen das Risiko im fortgeschrittenen Lebensalter an Bluthochdruck zu erkranken. Eine an der Elfenbeinküste durchgeführte Studie konnte außerdem eine Symptomverschlechterung von Patient*innen mit erhöhtem Blutdruck unter Malariainfektion feststellen.

Das gemeinsame Auftreten anderer Krankheitsbilder wurde in verschiedenen Studien in der Region gezeigt, konnte aber in unserer Studie so nicht festgestellt werden. Danquah et al. konnten in einer Studie in Ghana zeigen, dass Patienten mit Diabetes mellitus ein um 46% erhöhtes Risiko haben mit Plasmodium falciparum infiziert zu werden. ¹⁵ Eine ätiologische Verbindung zwischen Diabetes und Tuberkulose konnte in mehreren Studien

nachgewiesen werden. In einem systematischen Review wurde für Diabetespatienten ein relatives Risiko von 3,11 (95% KI: 2,27–4,26) an Tuberkulose zu erkranken identifiziert. ¹³ Weitere bekannte Assoziationen, die nicht in unserer Arbeit gezeigt werden konnten, sind die zwischen HIV und Tuberkulose und zwischen HIV und Diabetes mellitus. ^{50,51} Gründe für das Fehlen dieser Beobachtungen könnten ähnlich wie bei der Frage nach dem Vorkommen von nicht-übertragbaren Krankheiten ein fehlendes Bewusstsein über diese Erkrankungen sein. Gleichzeitig können auch die fehlenden diagnostischen Mittel in der Region dafür sorgen, dass diese Erkrankungen unentdeckt bleiben. Nicht zuletzt weisen einige der genannten Erkrankungen, allen voran HIV, leider ein erhebliches Potential für Stigmatisierung und Ausgrenzung in der Gesellschaft auf. Eine bewusste Nicht-angabe wäre daher denkbar.

4.5 Assoziierte Faktoren und Erkrankungen

Die Assoziation, die zwischen nicht-übertragbaren Krankheiten und hohem Alter herausgefunden wurde, bedarf kaum weiterer Erklärung. Gleiches gilt für die Assoziation mit nicht-körperlicher Arbeit, denn der Beruf ist der wichtigste Marker für sozioökonomischen Status, welcher wiederum ein wichtiger Risikofaktor für das Erkranken an einer nicht-übertragbaren Krankheit ist.⁵² Gleiches gilt für hohen Bildungsgrad, jedoch konnte hier wider Erwarten keine Assoziation mit nicht-übertragbaren Krankheiten festgestellt werden. Über die Ursachen hierüber kann nur spekuliert werden. Die univariaten Assoziationen mit dem Wohnort Nouna könnten möglicherweise, wie schon vorab beschrieben, mit dem urbanen Lebensstil und der Abkehr von traditionellen Strukturen zusammenhängen. Für die univariate Assoziation von polygamen Familienstand mit nicht-übertragbaren Krankheiten erscheint der notwendige Wohlstand, der für diese Lebensform benötigt wird, als logische Erklärung.⁵³ Die Assoziationen mit der Ethnie Samo bedürfen weiterer Studien, um sie zu bestätigen und um etwaige Risikofaktoren in dieser Bevölkerungsgruppe ausfindig zu machen.

Für übertragbare Krankheiten wird deutlich, dass die Assoziationen vor allem in der Regenzeit nachzuweisen sind. Dies lässt sich durch die stark verminderte Fallzahl in der Trockenzeit erklären. Für die univariate Assoziation mit dem Alter ist wahrscheinlich die mit dem Alter verminderte Funktionalität des Immunsystems verantwortlich.⁵⁴ Über die Ursache der Assoziationen mit den Ethnien Mossi und Samo lässt sich nur spekulieren.

Auch hier sind weitere Studien notwendig, um etwaige Risikofaktoren in diesen Gruppen zu identifizieren. Die Assoziationen zwischen übertragbaren Krankheiten und hohem Bildungsgrad und nicht-körperlicher Arbeit sind schwerer erklärbar. Eine mögliche Theorie ist, dass ein erhöhter Bildungsrad für ein gesteigertes Bewusstsein über diese Krankheitsbilder sorgt. Eine Erklärung für die Assoziationen mit einem monogamen, polygamen und verwitweten Familienstand könnte die vergleichsweise hohe Anzahl an Familienmitgliedern und das dadurch gesteigerte Risiko der Übertragung von übertragbaren Krankheiten auf engem Raum sein.⁵⁵

Das Risiko, einer Verletzung zu unterliegen, ist vor allem assoziiert mit hohem Alter. Dies erscheint zunächst paradox, da alte Menschen ein geringeres Risikoverhalten aufweisen. Erklären lässt es sich aber durch die mit dem Alter niedriger werdende Knochendichte und das erhöhte Sturzrisiko unter alten Menschen. Für die Assoziation mit nicht-manueller Arbeit fanden wir keine plausible Erklärung. Ganz im Gegenteil, man erwartet ein erhöhtes Verletzungsrisiko bei manuellen Tätigkeiten. 58

4.6 Stärken und Schwächen

Diese Arbeit basiert auf den Fragebögen von 4192 Individuen. Diese vergleichsweise hohe Anzahl an Teilnehmer*innen wertet die Aussagekraft der Arbeit deutlich auf. Außerdem ist sie repräsentativ für das Nouna HDSS und die Schlüsselvariablen der Studienpopulation sind repräsentativ für ganz Burkina Faso.³¹ Obwohl die Daten aus den Jahren 2010 und 2011 stammen, stellen sie den aktuellsten Überblick über die Krankheitslast in der Region dar. Trotzdem müssen Rückschlüsse auf den heutigen Stand mit Vorsicht gezogen werden, da das Alter der Studie die Validität der Daten einschränkt.

Weiterhin ist es nicht möglich von den Angaben der Studienteilnehmer*innen über ihre Krankheitslast auf die Prävalenz zu schließen, da alle Angaben in Eigenauskunft erfolgten. Eigenauskunft hat gegenüber objektivierbaren durch diagnostische Verfahren erhobenen Daten den Nachteil, ungenauer zu sein. Krankheitssymptome können von Patienten falsch interpretiert werden. So können beispielsweise die Symptome einer normalen Erkältung in Gegenden mit sehr hohen Malariainzidenzen leicht als Malaria fehlklassifiziert werden. Auch kulturelle Unterschiede sorgen für eine unterschiedliche Wahrnehmung und Interpretation von Krankheiten und können in Eigenauskunft erhobene Daten verzerren.¹⁶

Eigenauskunft in der Datenerhebung bietet jedoch auch Vorteile. Häufig ist es die einzige Möglichkeit, Gesundheitsdaten zu erheben. Gerade in strukturschwachen Regionen wie dem Nordwesten Burkina Fasos fehlt es an medizinischer Infrastruktur und objektivierbare Daten sind nicht vorhanden. Im Nouna HDSS haben nur 0,6% der Bevölkerung angegeben, bei akuten Gesundheitsproblemen eine ärztliche Fachkraft aufzusuchen.⁵⁹ Ein Absehen von der Nutzung der in Eigenauskunft erhobenen Daten hätte zur Folge, dass man über diese in der Wissenschaft ohnehin schon unterrepräsentierten Regionen noch weniger Erkenntnisse erlangte. Maßnahmen, die dazu dienen, die Gesundheit in diesen Regionen zu verbessern, wären noch weniger zielgerichtet. Ein weiterer Vorteil gegenüber objektivierbareren Daten ist, dass Eigenauskunft Bedürfnisse von Patient*innen besser widerspiegelt. Anstatt diagnostisch erhobene Parameter aufzuzählen, steht nur das im Vordergrund, was Patient*innen bewegt.⁶⁰

Weiterhin bedeutet das Design unserer Arbeit als Querschnittsanalyse, dass unsere Daten keine Kausalitäten belegen können. Sie stellen eine Momentaufnahme dar und lassen sich nicht auf andere Zeitpunkte übertragen.

Schließlich sorgt die Anzahl der benutzten Variablen für Ungenauigkeiten bei den Ergebnissen. Vor allem in der univariaten Analyse sind Zufallsbefunde deswegen möglich. In der multivariaten Analyse wurden alle gängigen Störfaktoren kontrolliert. Es kann jedoch nicht ausgeschlossen werden, dass unentdeckte oder nicht gemessene Störfaktoren die Ergebnisse verzerren.

Diese Arbeit liefert erste Erkenntnisse über die Krankheitslast in der Region, jedoch sind weitere Anstrengungen notwendig, um unsere Erkenntnisse zu verifizieren. Um Entscheidungsträger*innen in den Gesundheitssystemen mit besserem Wissen auszustatten, bräuchte es außerdem eine bessere medizinische Infrastruktur und weitere prospektive Studien.

5. Schlussfolgerungen

Risikofaktoren wie Tabakkonsum, hohe Cholesterinwerte, hoher Blutdruck und Übergewicht sind weit verbreitet in SSA und die Prävalenzen nicht-übertragbarer Krankheiten steigen kontinuierlich.³ Die vorgelegte Arbeit zeigt jedoch, dass nicht-übertragbare Krankheiten im Nouna HDSS relativ selten von den Studienteilnehmer*innen angegeben werden. Der größte Teil der Krankheitslast wird noch immer von übertragbaren Krankheiten bestimmt, allen voran Malaria. Weitere Studien müssen untersuchen, ob dies an der tatsächlich niedrigen Prävalenz von nicht-übertragbaren Krankheiten in der Region liegt, ob ein niedriges Bewusstsein über die Erkrankungen zu weniger Angaben geführt hat oder ob beides der Fall ist. Um diese Hypothese zu untersuchen, bedarf es weiterer Arbeiten, die mit einfachen diagnostischen Mitteln, z.B. Point-of-Care (POC) Messgeräten oder medizinischen Apps, den Gesundheitszustand der Bevölkerung aufdecken können. Bei einem Fehlen der genannten Risikofaktoren in der Bevölkerung ist eine tatsächlich niedrige Prävalenz von nicht-übertragbaren Krankheiten wahrscheinlich.

Wie auch immer die Fragestellung nach der aktuellen Krankheitslast beantwortet wird, ist klar, dass die Ausbreitung von nicht-übertragbaren Krankheiten auch vor der Region des Nouna HDSS nicht halt machen wird und präventive Maßnahmen notwendig sind. Dazu gehört es, Menschen in der Region über Risikofaktoren aufzuklären und ein Bewusstsein für das frühzeitige Erkennen dieser Erkrankungen zu schaffen und präventive Ansätze zu ermöglichen. Strategien zur Aufklärung über ausgewogene Ernährungsstile, Prävention von Tabak- und Alkoholkonsum und Förderung von körperlicher Aktivität sollten in den Vordergrund rücken.⁶¹ Trotzdem ist es wichtig, gleichzeitig eine Infrastruktur aufzubauen, um die bereits ausgebrochenen nicht-übertragbaren Krankheiten möglichst frühzeitig behandeln zu können.

Literaturverzeichnis

1. World Health Organization. The global burden of disease: 2004 update. (2008).

- 2. WHO. The State of Health in the WHO African Region. (2018).
- 3. World Health Organization. *Global status report on noncommunicable diseases 2014.* (World Health Organization, 2014).
- 4. World Health Organization. *Global status report on noncommunicable diseases* 2010. (2010).
- 5. Swinburn, B. A., Sacks, G., Hall, K. D., McPherson, K., Finegood, D. T., Moodie, M. L. & Gortmaker, S. L. The global obesity pandemic: shaped by global drivers and local environments. *Lancet* **378**, 804–14 (2011).
- 6. Agyemang, C., Boatemaa, S., Frempong, G. A. & de-Graft Aikins, A. in *Metab. Syndr. Compr. Textb.* (ed. Ahima, R. S.) 1–13 (Springer International Publishing, 2014).
- 7. Mbanya, J. C., Assah, F. K., Saji, J. & Atanga, E. N. Obesity and type 2 diabetes in Sub-Sahara Africa. *Curr Diab Rep* **14**, 501 (2014).
- 8. Ferreira-Borges, C., Parry, C. D. H. & Babor, T. F. Harmful Use of Alcohol: A Shadow over Sub-Saharan Africa in Need of Workable Solutions. *Int. J. Environ. Res. Public. Health* **14,** 346 (2017).
- 9. Boutayeb, A. The double burden of communicable and non-communicable diseases in developing countries. *Trans R Soc Trop Med Hyg* **100**, 191–9 (2006).
- 10. de-Graft Aikins, A., Unwin, N., Charles, A., Allotey, P., Campbell, C. & Arhinful, D. Tackling Africa's chronic disease burden: From the local to the global. *Glob. Health* **6**, 5 (2010).
- 11. Owino, V. O. Challenges and opportunities to tackle the rising prevalence of dietrelated non-communicable diseases in Africa. *Proc Nutr Soc* **78**, 506–512 (2019).
- 12. Gale, A. H. The history of infectious diseases in England. *Health Educ J* **7**, 19–21 (1949).
- 13. Jeon, C. Y. & Murray, M. B. Diabetes mellitus increases the risk of active tuberculosis: a systematic review of 13 observational studies. *PLoS Med.* **5**, e152–e152 (2008).
- 14. Sudano, I., Spieker, L. E., Noll, G., Corti, R., Weber, R. & Lüscher, T. F. Cardiovas-cular disease in HIV infection. *Am. Heart J.* **151,** 1147–1155 (2006).
- 15. Danquah, I., Bedu-Addo, G. & Mockenhaupt, F. P. Type 2 diabetes mellitus and increased risk for malaria infection. *Emerg Infect Dis* **16**, 1601–4 (2010).

16. Miilunpalo, S., Vuori, I., Oja, P., Pasanen, M. & Urponen, H. Self-rated health status as a health measure: the predictive value of self-reported health status on the use of physician services and on mortality in the working-age population. *J Clin Epidemiol* **50**, 517–28 (1997).

- 17. Lorem, G., Cook, S., Leon, D. A., Emaus, N. & Schirmer, H. Self-reported health as a predictor of mortality: A cohort study of its relation to other health measurements and observation time. *Sci. Rep.* **10**, 4886 (2020).
- 18. Barreto, M. L. Questionnaire approach to diagnosis in developing countries. *The Lancet* **352**, 1164–1165 (1998).
- 19. KALTER, H. The validation of interviews for estimating morbidity. *Health Policy Plan.* **7**, 30–39 (1992).
- 20. World Health Organization. World Health Organization. World Malaria Report. 2017.
- 21. Gashu, Z., Jerene, D., Datiko, D. G., Hiruy, N., Negash, S., Melkieneh, K., Bekele, D., Nigussie, G., Suarez, P. G. & Hadgu, A. Seasonal patterns of tuberculosis case notification in the tropics of Africa: A six-year trend analysis in Ethiopia. *PLoS One* **13**, e0207552 (2018).
- 22. Bunker, A., Sewe, M. O., Sié, A., Rocklöv, J. & Sauerborn, R. Excess burden of non-communicable disease years of life lost from heat in rural Burkina Faso: a time series analysis of the years 2000-2010. *BMJ Open* **7**, e018068 (2017).
- 23. Smith, W. R., Coyne, P., Smith, V. S. & Mercier, B. Temperature changes, temperature extremes, and their relationship to emergency department visits and hospitalizations for sickle cell crisis. *Pain Manag. Nurs.* **4**, 106–111 (2003).
- 24. Musah, Y., Ameade, E. P. K., Attuquayefio, D. K. & Holbech, L. H. Epidemiology, ecology and human perceptions of snakebites in a savanna community of northern Ghana. *PLoS Negl Trop Dis* **13**, e0007221 (2019).
- 25. Cunningham, S. A., Shaikh, N. I., Nhacolo, A., Raghunathan, P. L., Kotloff, K., Naser, A. M., Mengesha, M. M., Adedini, S. A., Misore, T., Onuwchekwa, U. U., Worrell, M. C., El Arifeen, S., Assefa, N., Chowdhury, A. I., Kaiser, R., Madhi, S. A., Mehta, A., Obor, D., Sacoor, C., Sow, S. O., Tapia, M. D., Wilkinson, A. L. & Breiman, R. F. Health and Demographic Surveillance Systems Within the Child Health and Mortality Prevention Surveillance Network. *Clin Infect Dis* **69**, S274–S279 (2019).

26. Ye, Y., Wamukoya, M., Ezeh, A., Emina, J. B. O. & Sankoh, O. Health and demographic surveillance systems: a step towards full civil registration and vital statistics system in sub-Sahara Africa? *BMC Public Health* **12**, 741 (2012).

- 27. Kirakoya-Samadoulougou, F., Sombié, I., Ogutu, B., Tinto, H., Kouanda, S., Tiono, A. B., Otieno, W., Dodoo, A., Kamanda, M. & Sankoh, O. Using health and demographic surveillance systems for teratovigilance in Africa. *Lancet Glob. Health* **4**, e906 (2016).
- 28. Brockhaus. Burkina Faso. at https://brockhaus.de/ecs/enzy/article/burkina-faso
- 29. Yaya Bocoum, F., Grimm, M. & Hartwig, R. The health care burden in rural Burkina Faso: Consequences and implications for insurance design. *SSM Popul. Health* **6,** 309–316 (2018).
- 30. Lietz, H., Lingani, M., Sié, A., Sauerborn, R., Souares, A. & Tozan, Y. Measuring population health: costs of alternative survey approaches in the Nouna Health and Demographic Surveillance System in rural Burkina Faso. *Glob. Health Action* **8**, 28330 (2015).
- 31. Sié, A., Louis, V., Gbangou, A., Müller, O., Niamba, L., Stieglbauer, G., Yé, M., Kouyaté, B., Sauerborn, R. & Becher, H. The Health and Demographic Surveillance System (HDSS) in Nouna, Burkina Faso, 1993–2007. *Glob. Health Action* **3**, 5284 (2010).
- 32. Galbraith, S., Daniel, J. A. & Vissel, B. A study of clustered data and approaches to its analysis. *J. Neurosci. Off. J. Soc. Neurosci.* **30**, 10601–10608 (2010).
- 33. De Allegri, M., Pokhrel, S., Becher, H., Dong, H., Mansmann, U., Kouyaté, B., Kynast-Wolf, G., Gbangou, A., Sanon, M., Bridges, J. & Sauerborn, R. Step-wedge cluster-randomised community-based trials: An application to the study of the impact of community health insurance. *Health Res. Policy Syst.* **6**, 10 (2008).
- 34. Hazra, A. Using the confidence interval confidently. *J. Thorac. Dis.* **9**, 4125–4130 (2017).
- 35. Sundjaja JH, S. R. McNemar And Mann-Whitney U Tests. [Updated 2021 Jul 21]. StatPearls Internet Treasure Isl. FL StatPearls Publ. 2021 Jan-
- 36. McHugh, M. L. The chi-square test of independence. *Biochem. Medica* **23**, 143–149 (2013).
- 37. Sperandei, S. Understanding logistic regression analysis. *Biochem. Medica* **24,** 12–8 (2014).
- 38. Lim, S. S., Vos, T., Flaxman, A. D., Danaei, G., Shibuya, K., Adair-Rohani, H., Amann, M., Anderson, H. R., Andrews, K. G., Aryee, M., Atkinson, C., Bacchus, L. J., Bahalim, A. N., Balakrishnan, K., Balmes, J., Barker-Collo, S., Baxter, A., Bell, M. L.,

Blore, J. D., Blyth, F., Bonner, C., Borges, G., Bourne, R., Boussinesq, M., Brauer, M., Brooks, P., Bruce, N. G., Brunekreef, B., Bryan-Hancock, C., Bucello, C., Buchbinder, R., Bull, F., Burnett, R. T., Byers, T. E., Calabria, B., Carapetis, J., Carnahan, E., Chafe, Z., Charlson, F., Chen, H., Chen, J. S., Cheng, A. T., Child, J. C., Cohen, A., Colson, K. E., Cowie, B. C., Darby, S., Darling, S., Davis, A., Degenhardt, L., Dentener, F., Des Jarlais, D. C., Devries, K., Dherani, M., Ding, E. L., Dorsey, E. R., Driscoll, T., Edmond, K., Ali, S. E., Engell, R. E., Erwin, P. J., Fahimi, S., Falder, G., Farzadfar, F., Ferrari, A., Finucane, M. M., Flaxman, S., Fowkes, F. G., Freedman, G., Freeman, M. K., Gakidou, E., Ghosh, S., Giovannucci, E., Gmel, G., Graham, K., Grainger, R., Grant, B., Gunnell, D., Gutierrez, H. R., Hall, W., Hoek, H. W., Hogan, A., Hosgood, H. D., Hoy, D., Hu, H., Hubbell, B. J., Hutchings, S. J., Ibeanusi, S. E., Jacklyn, G. L., Jasrasaria, R., Jonas, J. B., Kan, H., Kanis, J. A., Kassebaum, N., Kawakami, N., Khang, Y. H., Khatibzadeh, S., Khoo, J. P., Kok, C., Laden, F., Lalloo, R., Lan, Q., Lathlean, T., Leasher, J. L., Leigh, J., Li, Y., Lin, J. K., Lipshultz, S. E., London, S., Lozano, R., Lu, Y., Mak, J., Malekzadeh, R., Mallinger, L., Marcenes, W., March, L., Marks, R., Martin, R., McGale, P., McGrath, J., Mehta, S., Mensah, G. A., Merriman, T. R., Micha, R., Michaud, C., Mishra, V., Mohd Hanafiah, K., Mokdad, A. A., Morawska, L., Mozaffarian, D., Murphy, T., Naghavi, M., Neal, B., Nelson, P. K., Nolla, J. M., Norman, R., Olives, C., Omer, S. B., Orchard, J., Osborne, R., Ostro, B., Page, A., Pandey, K. D., Parry, C. D., Passmore, E., Patra, J., Pearce, N., Pelizzari, P. M., Petzold, M., Phillips, M. R., Pope, D., Pope, C. A., Powles, J., Rao, M., Razavi, H., Rehfuess, E. A., Rehm, J. T., Ritz, B., Rivara, F. P., Roberts, T., Robinson, C., Rodriguez-Portales, J. A., Romieu, I., Room, R., Rosenfeld, L. C., Roy, A., Rushton, L., Salomon, J. A., Sampson, U., Sanchez-Riera, L., Sanman, E., Sapkota, A., Seedat, S., Shi, P., Shield, K., Shivakoti, R., Singh, G. M., Sleet, D. A., Smith, E., Smith, K. R., Stapelberg, N. J., Steenland, K., Stöckl, H., Stovner, L. J., Straif, K., Straney, L., Thurston, G. D., Tran, J. H., Van Dingenen, R., van Donkelaar, A., Veerman, J. L., Vijayakumar, L., Weintraub, R., Weissman, M. M., White, R. A., Whiteford, H., Wiersma, S. T., Wilkinson, J. D., Williams, H. C., Williams, W., Wilson, N., Woolf, A. D., Yip, P., Zielinski, J. M., Lopez, A. D., Murray, C. J., Ezzati, M., AlMazroa, M. A. & Memish, Z. A. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2224-60 (2012).

39. Gottlieb-Stroh, T., Souares, A., Bärnighausen, T., Sié, A., Zabre, S. P. & Danquah, I. Seasonal and socio-demographic patterns of self-reporting major disease groups in

north-west Burkina Faso: an analysis of the Nouna Health and Demographic Surveillance System (HDSS) data. *BMC Public Health* **21**, 1101 (2021).

- 40. Ministry of Health Burkina Faso. Annuaire Statistique 2015.
- 41. WHO. World Health Organization Burkina Faso. Non-communicable Diseases (NCD) country profiles. (2014).
- 42. Assah, F. K., Ekelund, U., Brage, S., Mbanya, J. C. & Wareham, N. J. Urbanization, physical activity, and metabolic health in sub-Saharan Africa. *Diabetes Care* **34**, 491–6 (2011).
- 43. Awuah, R. B., Anarfi, J. K., Agyemang, C., Ogedegbe, G. & Aikins, A. Prevalence, awareness, treatment and control of hypertension in urban poor communities in Accra, Ghana. *J Hypertens* **32**, 1203–10 (2014).
- 44. Kayima, J., Wanyenze, R. K., Katamba, A., Leontsini, E. & Nuwaha, F. Hypertension awareness, treatment and control in Africa: a systematic review. *BMC Cardiovasc Disord* **13**, 54 (2013).
- 45. Turner, R. B. The Common Cold. *Mand. Douglas Bennetts Princ. Pract. Infect. Dis.* 748-752.e2 (2015). doi:10.1016/B978-1-4557-4801-3.00058-8
- 46. Manguin, S., Foumane, V., Besnard, P., Fortes, F. & Carnevale, P. Malaria over-diagnosis and subsequent overconsumption of antimalarial drugs in Angola: Consequences and effects on human health. *Acta Trop* **171**, 58–63 (2017).
- 47. Guo, Y., Gasparrini, A., Armstrong, B. G., Tawatsupa, B., Tobias, A., Lavigne, E., Coelho, M., Pan, X., Kim, H., Hashizume, M., Honda, Y., Guo, Y. L., Wu, C. F., Zanobetti, A., Schwartz, J. D., Bell, M. L., Scortichini, M., Michelozzi, P., Punnasiri, K., Li, S., Tian, L., Garcia, S. D. O., Seposo, X., Overcenco, A., Zeka, A., Goodman, P., Dang, T. N., Dung, D. V., Mayvaneh, F., Saldiva, P. H. N., Williams, G. & Tong, S. Heat Wave and Mortality: A Multicountry, Multicommunity Study. *Env. Health Perspect* **125**, 087006 (2017).
- 48. Etyang, A. O., Smeeth, L., Cruickshank, J. K. & Scott, J. A. G. The Malaria-High Blood Pressure Hypothesis. *Circ. Res.* **119**, 36–40 (2016).
- 49. Eze, I. C., Bassa, F. K., Essé, C., Koné, S., Acka, F., Laubhouet-Koffi, V., Kouassi, D., Utzinger, J., Bonfoh, B., N'Goran, E. K. & Probst-Hensch, N. Epidemiological links between malaria parasitaemia and hypertension: findings from a population-based survey in rural Côte d'Ivoire. *J Hypertens* **37**, 1384–1392 (2019).
- 50. Getahun, H., Gunneberg, C., Granich, R. & Nunn, P. HIV infection-associated tuberculosis: the epidemiology and the response. *Clin Infect Dis* **50 Suppl 3,** S201-7 (2010).

51. Prioreschi, A., Munthali, R. J., Soepnel, L., Goldstein, J. A., Micklesfield, L. K., Aronoff, D. M. & Norris, S. A. Incidence and prevalence of type 2 diabetes mellitus with HIV infection in Africa: a systematic review and meta-analysis. *BMJ Open* **7**, e013953–e013953 (2017).

- 52. Gouda, H. N., Charlson, F., Sorsdahl, K., Ahmadzada, S., Ferrari, A. J., Erskine, H., Leung, J., Santamauro, D., Lund, C., Aminde, L. N., Mayosi, B. M., Kengne, A. P., Harris, M., Achoki, T., Wiysonge, C. S., Stein, D. J. & Whiteford, H. Burden of non-communicable diseases in sub-Saharan Africa, 1990-2017: results from the Global Burden of Disease Study 2017. *Lancet Glob Health* **7**, e1375–e1387 (2019).
- 53. Shepard, L. D. The impact of polygamy on women's mental health: a systematic review. *Epidemiol Psychiatr Sci* **22**, 47–62 (2013).
- 54. Montecino-Rodriguez, E., Berent-Maoz, B. & Dorshkind, K. Causes, consequences, and reversal of immune system aging. *J. Clin. Invest.* **123**, 958–965 (2013).
- 55. World Health Organization. WHO housing and health guidelines. (2018).
- 56. Demontiero, O., Vidal, C. & Duque, G. Aging and bone loss: new insights for the clinician. *Ther Adv Musculoskelet Dis* **4**, 61–76 (2012).
- 57. Al-Aama, T. Falls in the elderly: spectrum and prevention. *Can Fam Physician* **57**, 771–6 (2011).
- 58. El-Menyar, A., Mekkodathi, A. & Al-Thani, H. Occupational injuries: Global and local perspectives. *Nepal J. Epidemiol.* **6,** 560–562 (2016).
- 59. Robyn, P. J., Fink, G., Sié, A. & Sauerborn, R. Health insurance and health-see-king behavior: Evidence from a randomized community-based insurance rollout in rural Burkina Faso. *Soc. Sci. Med.* **75**, 595–603 (2012).
- 60. Blomstedt, Y., Souares, A., Niamba, L., Sie, A., Weinehall, L. & Sauerborn, R. Measuring self-reported health in low-income countries: piloting three instruments in semi-rural Burkina Faso. *Glob Health Action* **5**, (2012).
- 61. World Health Organization. *Tackling NCDs:'best buys' and other recommended interventions for the prevention and control of noncommunicable diseases.* (World Health Organization, 2017).

Eidesstattliche Versicherung

"Ich, Tobias Gottlieb-Stroh versichere an Eides statt durch meine eigenhändige Unterschrift, dass ich die vorgelegte Dissertation mit dem Thema: "Double Burden of Disease – Eine Bestandsaufnahme im ländlichen Burkina Faso" / "The Double Burden of Disease – An analysis in rural Burkina Faso" selbstständig und ohne nicht offengelegte Hilfe Dritter verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel genutzt habe.

Alle Stellen, die wörtlich oder dem Sinne nach auf Publikationen oder Vorträgen anderer Autoren/innen beruhen, sind als solche in korrekter Zitierung kenntlich gemacht. Die Abschnitte zu Methodik (insbesondere praktische Arbeiten, Laborbestimmungen, statistische Aufarbeitung) und Resultaten (insbesondere Abbildungen, Graphiken und Tabellen) werden von mir verantwortet.

Ich versichere ferner, dass ich die in Zusammenarbeit mit anderen Personen generierten Daten, Datenauswertungen und Schlussfolgerungen korrekt gekennzeichnet und meinen eigenen Beitrag sowie die Beiträge anderer Personen korrekt kenntlich gemacht habe (siehe Anteilserklärung). Texte oder Textteile, die gemeinsam mit anderen erstellt oder verwendet wurden, habe ich korrekt kenntlich gemacht.

Meine Anteile an etwaigen Publikationen zu dieser Dissertation entsprechen denen, die in der untenstehenden gemeinsamen Erklärung mit dem/der Erstbetreuer/in, angegeben sind. Für sämtliche im Rahmen der Dissertation entstandenen Publikationen wurden die Richtlinien des ICMJE (International Committee of Medical Journal Editors; www.icmje.og) zur Autorenschaft eingehalten. Ich erkläre ferner, dass ich mich zur Einhaltung der Satzung der Charité – Universitätsmedizin Berlin zur Sicherung Guter Wissenschaftlicher Praxis verpflichte.

Weiterhin versichere ich, dass ich diese Dissertation weder in gleicher noch in ähnlicher Form bereits an einer anderen Fakultät eingereicht habe.

Die Bedeutung dieser eidesstattlichen Versicherung und die strafrechtlichen Folgen einer unwahren eidesstattlichen Versicherung (§§156, 161 des Strafgesetzbuches) sind mir bekannt und bewusst."

Datum	Unterschrift

Anteilserklärung an den erfolgten Publikationen

Tobias Gottlieb-Stroh hatte folgenden Anteil an der folgenden Publikation:

Publikation 1: Gottlieb-Stroh, T; Souares, A; Bärnighausen,T; Sié, A; Zabre, SP; Danquah, I. Seasonal and socio-demographic patterns of self-reporting major disease groups in north-west Burkina Faso: an analysis of the Nouna Health and Demographic Surveillance System (HDSS) data. BMC Public Health. 2021,21:1101. doi:0.1186/s12889-021-11076-1

Beitrag im Einzelnen:

- 1. Gesamter Umbau des Datensatzes zur Ermöglichung der statistischen Analyse, gesamte Umcodierung von Variablen und Bildung neuer Subgruppen in den Variablen.
- 2. Durchführung der gesamten statistischen Analyse und Ausführung aller statistischer Tests im Statistikprogramm SPSS
- 3. Erstellung aller Tabellen und Grafiken, was die Tabellen 1-11 und Abbildungen 2 und 3 im Manteltext bzw. alle Tabellen und Grafiken in der Publikation beinhaltet
- 4. Verfassen des ersten Entwurfes des Manuskripts, Überarbeitung des Entwurfes nach Rückmeldung der KoautorInnen, Erstellung des Cover Letters, Einreichung der Publikation, Überarbeitung der Publikation im Peer-Review-Prozess.

Unterschrift, Datum und Stempel des/der erstbetreuenden Hochschullehrers/in

Unterschrift des Doktoranden/der Doktorandin

Auszug aus der Journal Summary List

Journal Data Filtered By: Selected JCR Year: 2018 Selected Editions: SCIE,SSCI Selected Categories: "PUBLIC, ENVIRONMENTAL and OCCUPATIONAL HEALTH" Selected Category Scheme: WoS

Gesamtanzahl: 285 Journale

Gesamtanzahl: 285 Journale										
Rank	Full Journal Title	Total Cites	Journal Impact Factor	Eigenfactor Score						
1	Lancet Global Health	6,109	15.873	0.034250						
2	MMWR-MORBIDITY AND MORTALITY WEEKLY REPORT	26,534	14.874	0.098040						
3	Lancet Public Health	799	11.600	0.003770						
4	Annual Review of Public Health	6,769	10.776	0.011700						
5	Analytic Methods in Accident Research	669	9.333	0.002420						
6	ENVIRONMENTAL HEALTH PERSPECTIVES	42,165	8.049	0.039510						
7	INTERNATIONAL JOURNAL OF EPIDEMIOLOGY	23,097	7.339	0.050810						
8	BULLETIN OF THE WORLD HEALTH ORGANIZATION	15,736	6.818	0.018090						
9	EUROPEAN JOURNAL OF EPIDEMIOLOGY	7,785	6.529	0.016950						
10	EPIDEMIOLOGIC REVIEWS	3,477	6.455	0.003470						
11	JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH-PART B-CRITICAL REVIEWS	1,753	6.436	0.001470						
12	TOBACCO CONTROL	8,343	6.221	0.019190						
13	AMERICAN JOURNAL OF PUBLIC HEALTH	39,861	5.381	0.065480						
14	Journal of Occupational Health Psychology	4,093	5.128	0.005410						
15	CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION	19,542	5.057	0.031380						
16	ENVIRONMENTAL RESEARCH	16,339	5.026	0.025480						
17	PALLIATIVE MEDICINE	5,682	4.956	0.009860						
18	Travel Medicine and Infectious Disease	1,576	4.868	0.004660						
19	EPIDEMIOLOGY	13,114	4.719	0.019010						
20	INDOOR AIR	4,851	4.710	0.005620						

Rank	Full Journal Title	Total Cites	Journal Impact Factor	Eigenfactor Score
21	JOURNAL OF CLINICAL EPIDEMIOLOGY	27,514	4.650	0.029080
22	AMERICAN JOURNAL OF EPIDEMIOLOGY	37,816	4.473	0.039390
23	Environmental Health	5,272	4.430	0.010550
24	Evolution Medicine and Public Health	373	4.400	0.001570
25	INTERNATIONAL JOURNAL OF HYGIENE AND ENVIRONMENTAL HEALTH	4,852	4.379	0.007830
26	JOURNAL OF TRAVEL MEDICINE	2,229	4.155	0.003410
27	JOURNAL OF ADOLESCENT HEALTH	15,535	3.957	0.029260
28	JOURNAL OF EPIDEMIOLOGY AND COMMUNITY HEALTH	14,305	3.872	0.017690
29	MEDICAL CARE	20,250	3.795	0.021130
30	NICOTINE & TOBACCO RESEARCH	9,737	3.786	0.023650
31	Current Pollution Reports	281	3.762	0.000670
32	AIDS PATIENT CARE AND STDS	3,526	3.742	0.006900
33	JOURNAL OF HOSPITAL INFECTION	7,963	3.704	0.010250
34	OCCUPATIONAL AND ENVIRONMENTAL MEDICINE	8,820	3.556	0.009890
35	DRUG SAFETY	5,301	3.526	0.006980
36	SCANDINAVIAN JOURNAL OF WORK ENVIRONMENT & HEALTH	5,026	3.491	0.005010
37	PREVENTIVE MEDICINE	16,004	3.449	0.029820
38	LGBT Health	764	3.307	0.003720
39	ENVIRONMENTAL GEOCHEMISTRY AND HEALTH	3,494	3.252	0.003310
40	Antimicrobial Resistance and Infection Control	1,294	3.224	0.004910
41	HEALTH & PLACE	6,327	3.202	0.009880
42	Clinical Epidemiology	2,684	3.178	0.010800

Rank	Full Journal Title	Total Cites	Journal Impact Factor	Eigenfactor Score
43	SOCIAL SCIENCE & MEDICINE	44,305	3.087	0.050860
44	Journal of Global Health	1,027	3.079	0.004580
45	JOURNAL OF EPIDEMIOLOGY	2,988	3.078	0.005650
46	ACCIDENT ANALYSIS AND PREVENTION	17,335	3.058	0.019280
47	Perspectives in Public Health	632	3.033	0.001400
48	Journal of Exposure Science and Environmental Epidemiology	3,713	3.025	0.004690
49	INJURY PREVENTION	3,461	2.987	0.005600
50	Population Health Metrics	1,419	2.953	0.003930
51	AIDS AND BEHAVIOR	9,705	2.908	0.025060
52	PHARMACOEPIDEMIOLOGY AND DRUG SAFETY	6,452	2.870	0.013260
53	International Journal of Health Geographics	2,432	2.862	0.003150
54	INFECTION CONTROL AND HOSPITAL EPIDEMIOLOGY	9,857	2.856	0.018120
55	PREVENTION SCIENCE	3,888	2.851	0.007740
56	HEALTH EXPECTATIONS	3,199	2.847	0.007740
57	PATIENT EDUCATION AND COUNSELING	12,891	2.821	0.016760
58	Health Reports	1,328	2.768	0.001630
59	Critical Public Health	1,234	2.742	0.002420
60	Research in Social & Administrative Pharmacy	1,895	2.719	0.003790
61	Conflict and Health	619	2.696	0.002390
62	NEUROEPIDEMIOLOGY	3,266	2.689	0.004980
63	Administration and Policy in Mental Health and Mental Health Services Research	2,888	2.681	0.005000
64	PAEDIATRIC AND PERINATAL EPIDEMIOLOGY	3,240	2.681	0.004580

Rank	Full Journal Title	Total Cites	Journal Impact Factor	Eigenfactor Score
65	ETHNICITY & HEALTH	1,303	2.671	0.002260
66	JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH-PART A-CURRENT ISSUES	4,186	2.649	0.003340
67	AMERICAN JOURNAL OF HEALTH PROMOTION	3,378	2.636	0.003920
68	Cancer Epidemiology	3,124	2.619	0.008820
69	Journal of Occupational Medicine and Toxicology	920	2.591	0.001290
70	Journal of Transport & Health	962	2.583	0.002270
71	BMC PUBLIC HEALTH	36,306	2.567	0.084820
72	RISK ANALYSIS	9,136	2.564	0.008140
73	Prehospital Emergency Care	2,408	2.557	0.005070
74	Globalization and Health	1,872	2.554	0.005490
75	ANNALS OF EPIDEMIOLOGY	6,620	2.550	0.010200
76	PUBLIC HEALTH NUTRITION	12,956	2.526	0.019040
77	QUALITY OF LIFE RESEARCH	13,192	2.488	0.019050
78	Journal of Infection and Public Health	1,449	2.487	0.003810
79	International Journal for Equity in Health	3,319	2.473	0.009790
80	JOURNAL OF RURAL HEALTH	1,729	2.471	0.002630
81	International Journal of Environmental Research and Public Health	20,692	2.468	0.046780
82	TROPICAL MEDICINE & INTERNATIONAL HEALTH	7,938	2.423	0.012810
83	JOURNAL OF HEALTH AND SOCIAL BEHAVIOR	8,700	2.419	0.003640
84	JOURNAL OF SAFETY RESEARCH	3,508	2.401	0.004110
85	PSYCHOLOGY & HEALTH	5,140	2.401	0.005150
86	International Journal of Public Health	2,917	2.373	0.006840

Druckexemplar der Publikation

Gottlieb-Stroh *et al. BMC Public Health* (2021) 21:1101 https://doi.org/10.1186/s12889-021-11076-1

BMC Public Health

RESEARCH ARTICLE

Open Access

Seasonal and socio-demographic patterns of self-reporting major disease groups in north-west Burkina Faso: an analysis of the Nouna Health and Demographic Surveillance System (HDSS) data

Tobias Gottlieb-Stroh¹, Aurélia Souares², Till Bärnighausen², Ali Sié³, Somkeita Pascal Zabre³ and Ina Danquah^{1,2*}

Abstract

Background: Sub-Saharan Africa (SSA) is facing a rapid growth of non-communicable diseases (NCDs), while communicable diseases still prevail. For rural SSA, evidence for this development is scarce. We aimed at quantifying self-reported major disease groups according to season, and determining the associations with socio-economic factors in rural Burkina Faso.

Methods: This study used data of 4192 adults (age range: 18–101 years; male: 49.0%) from the Nouna Health and Demographic Surveillance System (HDSS) in north-west Burkina Faso, rainy season of 2010 and dry season of 2011. We assessed the proportions and their 95% confidence intervals (Cls) of self-reported major disease groups as defined by the World Health Organization. For their associations with socio-economic factors, odds ratios (OR), 95% Cls and *p*-values were calculated by logistic regression.

Results: The surveys were completed by 3949 adults in 2010 (mean age: 37.5 ± 14.9 years, male: 48.8%) and by 4039 adults in 2011 (mean age: 37.3 ± 16.2 years, male: 49.1%). The proportions of self-reported communicable diseases were 20.7% (95% Cl: 19.4–21.9%) in the rainy season and 11.0% (10.0–11.9%; McNemar's p < 0.0001) in the dry season. Self-reported NCDs amounted to 5.3% (4.6–6.0%) and 4.5% (3.8–5.1%; p = 0.08), respectively. In each year, less than 1% reported injuries (p = 0.57). Few individuals reported an overlap of communicable diseases and NCDs: 1.4% in 2010 and 0.6% in 2011. In the multiple-adjusted models, formal education (vs. lack of education) showed the strongest association with self-reporting of communicable diseases in both seasons. For NCD-reporting, non-manual occupation (vs. manual) was positively associated, only in the rainy season.

Full list of author information is available at the end of the article

© The Author(s). 2021 **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

^{*} Correspondence: ina.danquah@uni-heidelberg.de

¹Institute for Social Medicine, Epidemiology and Health Economics, Charité – Universitätsmedizin Berlin, Berlin, Germany

²Heidelberg Institute of Global Health, Heidelberg University Hospital, Heidelberg, Germany

Conclusions: Self-reporting of communicable diseases is subject to seasonal variation in this population in northwest Burkina Faso. The exact reasons for the low overall self-reporting of NCDs and injuries, apart from a low sociodemographic position, require further investigation.

Keywords: Double burden of disease, Sub-saharan Africa, Rural, Non-communicable diseases, Communicable diseases, Infectious diseases, Socio-demographic factors

Introduction

Historically, the predominant health problems in sub-Saharan Africa (SSA) have been infectious, maternal, perinatal and nutritional conditions, henceforth defined as communicable diseases [1]. For some decades, however, the region has experienced an upsurge of metabolic diseases, cancers, mental illnesses and other noncommunicable diseases (NCDs) [2]. Indeed, in 2004, more than half of the deaths in SSA were caused by communicable diseases and one quarter by NCDs [3]. In 2017, the burden of NCDs according to disabilityadjusted life-years (DALYs) was almost equivalent to that of communicable diseases [4]. In fact, NCDs are estimated to exceed communicable diseases as the most common cause of death in this geographic region by 2030 [3]. However, data from rural sub-Saharan Africa describing this Double Burden of Disease are lacking.

Clearly, SSA health systems have to turn towards this emerging phenomenon [5]. This is challenging, because the local systems have developed in response to acute illnesses, and most of the already under-resourced budget is spent on the fight against communicable diseases. Training and expertise of health personnel is equally focused on communicable diseases, and building-up capacity to cope with NCDs has been neglected for long [6]. In addition, better understanding about the interactions between communicable diseases and NCDs in SSA [7] is warranted to equip policy makers with empirical evidence on where to invest the country's limited resources for health care.

In the absence of objective and extensive prevalence measures, self-reported diagnoses constitute inclusive sources of information for capturing clinical and subclinical conditions [8, 9]. They reflect more than just the pure absence of disease. In fact, the auto-declaration of illnesses by questioned individuals is one of the only methods available for evaluating the morbidity of populations in resource-poor settings [10, 11].

Furthermore, disease occurrence in SSA may depend on seasonal variation and thus, impact public healthcare efforts. For communicable diseases, this phenomenon is well described for common diseases such as malaria and tuberculosis [12, 13]. Due to the chronic nature of NCDs, their occurrence and self-report should not vary by season. Yet, the severity of symptoms may differ according to climatic and harvest seasons, leading to

changes in self-reporting of the respective conditions. This might relate to the worsening of cardio-vascular conditions during heat waves [14], and the development of vaso-occlusive crisis in sickle cell patients during cold weather [15]. Also, self-reported injuries may be prone to seasonal variation, especially in rural SSA [16].

So far, there is little evidence for the perceived and real occurrence of major disease groups in rural areas and non-hospital settings in SSA [17]. Therefore, we aimed at identifying the occurrence and co-occurrence of major disease groups in two different seasons, and the associations with socio-demographic factors among adults living in rural north-west Burkina Faso, mainly for the creation and prioritization of public health policies to be put in place.

Methods

Study design

The Nouna Health and Demographic Surveillance System (HDSS) has been established in 1992 for systematic collection of longitudinal data of the population living in the Nouna Health District. This HDSS comprises 59 contiguous villages over 1775 km² with a representative population of around 11,373 households. In regular intervals, the Nouna HDSS assesses natality, mortality, as well as in- and out-migration.

Study area and population

This study used data of the Nouna HDSS in north-western Burkina Faso. As of 2007, the population comprises around 115,000 inhabitants of different ethnicities and religious beliefs, most of which depend on subsistence farming. Almost one-third of the population lives in the semi-urban town Nouna, the only location where grid electricity and piped water exist. The area is characterized by a sub-Sahelian climate with one dry season (November to May) and one rainy season (June to October). In 2010, there were 13 primary health facilities in HDSS area, and one district hospital. The mean distance to the nearest health center is about 8.5 km, translating into a 75-min-walk in the dry season and a 90-min-walk in the rainy season [18, 19].

Sampling and data collection

The study was conducted between June and October 2010, and between November and May 2011. We used a two-stage sampling in the rural areas. The first stage

selected villages, called primary units, from the list of villages. Following this, the second stage selected the households to survey, based on the list of households in each primary unit. This type of sampling was chosen rather than a simple random due to feasibility for travel between villages. Indeed, two-stage sampling allows for the number of surveyed villages to be reduced and so to limit the geographical disparity of sample households, which, from a logistics point of view, simplifies the organisation and the sensitization of heads of households in preparation for the survey and the movements of the interviewers. It is true that two-stage sampling is less precise due to the 'cluster effect' if the groups are not homogenous (high inter-group variability). Meanwhile, this loss of precision has been anticipated and compensated for by the increase in the size of the sample. Moreover, in the studied area, the socio-cultural characteristics of the households are overall homogenous [20]. Since 2003, a household survey, covering basic socioeconomic and basic health data among others has been conducted among a random sample of 10% of the HDSS households (n = 1400) during the dry season for each year. Only for the present study, and to allow for comparisons between climatic seasons, demographic and socio-economic data as well as information about acute and chronic diseases were recorded during the rainy season of 2010 and the dry season of 2011. More specifically, amongst the total number of households which took part in the HDSS census (11,373), 7743 were distributed over 58 villages, i.e. 68% in rural households and 3630 lived in the city of Nouna, i.e. 32% semi-urban. As a consequence, to insure the representation in the sample of rural and semi-urban households from the census, 674 rural households and 316 semi-urban households were taken as samples with a total of 990 house-(8.7% of HDSS population). To representativeness of the sample, we replaced households that moved, emigrated or split after the rainy season in 2010 by another randomly chosen household of the same village and the same size.

Households were visited by trained field staff. For questionnaire-based interviews, we have used an inventory of chronic and acute illnesses declared by each member of the households. For each illness of the past 4 weeks, several characteristics were collected, such as symptoms, duration, care, degree of severity, direct and indirect costs, to measure the weight of illnesses on the health of the household. We included all adults above the age of 18 years, who completed the acute and chronic disease modules.

Statistical analysis

We analysed the two cross-sectional surveys for all adults who participated in the questionnaire-based interviews either in 2010 or in 2011. The general

characteristics of the study population are presented as categorical information and in percentages (95% confidence intervals, CIs). The data are presented per each season, for the total population and separately for men and women. Self-reported diseases were categorized into NCDs, communicable diseases and injuries according to the WHO major disease groups [1]. For the rainy season in 2010 and for the dry season in 2011, the disease proportions and their 95% CIs were calculated for major disease groups and for the three most frequent diseases per group, respectively. To assess the differences of major disease groups between the seasons we used McNemar's test. Differences between men and women were assessed by χ^2 -test. In addition, we calculated the overlaps between self-reported major disease groups for the rainy season and the dry season. For each season and each of the WHO major disease groups, namely communicable diseases, NCDs and injuries, we fitted logistic regression models to determine crude associations (Model 1) with demographic and socio-economic factors. Based on these findings and scientific evidence [21], we controlled for potential confounders in multiple-adjusted models (Model 2). The analyses were adjusted for study location (i.e. village code) to account for the cluster design. As a sensitivity analysis, we additionally adjusted for household identification code to rule out the effect of shared households.

Results

Study population

Table 1 presents the general characteristics of the study population. In 2010, 3949 adults completed the survey; this figure was 4039 participants in 2011. The mean age was 37.5 ± 14.9 years in 2010 and 37.3 ± 16.2 years in 2011. There were 49% men in both seasons. Also, 58% of all adults were not able to read, and 76% have a lack of formal education.

Proportion and co-occurrence of self-reported diseases according to season

Table 2 shows the proportions of self-reported disease groups and the three most common diseases in each group. Communicable diseases were reported among 21% (95% CI: 19–22%) of the participants in the rainy season. This figure was almost halved in the dry season: 11% (95% CI: 10–12%; McNemar's p < 0.0001). Malaria was the most common self-reported communicable disease, followed by cold and dermatophytosis. For self-reported NCDs, 5.3% (95% CI: 4.6–6.0%) of the participants were affected in the rainy season compared to 4.5% (95% CI: 3.8–5.1%) in the dry season (p = 0.08). Hypertension predominated in both years, followed by chronic heart diseases and rheumathoid arthritis. Injuries were reported by 0.8% (95% CI: 0.5–1.0%) of the survey participants in 2010 and by 0.6% (95%

 Table 1 General characteristics of adults in the Nouna Health and Demographic Surveillance System 2010 and 2011

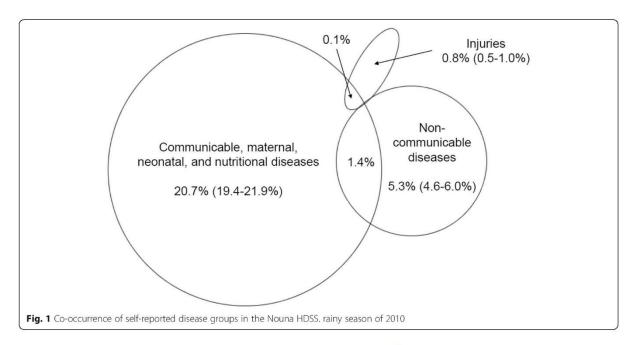
Characteristics	2010 (Rainy Seas	ion)	-30	2011 (Dry Season)				
	Total	Male	Female	Total	Male	Female		
N	3949	48.8 (47.0-50.0)	51.2 (50.0-53.0)	4039	49.1 (48.0-51.0)	50.9 (49.0–52.0)		
Age group (years)								
18-28	38.5 (37.0-39.9)	39.5 (37.3-41.7)	37.5 (35.4–39.6)	38.9 (37.4-40.4)	39.8 (37.7-42.0)	37.9 (35.8-40.0)		
29–38	23.1 (21.8-24.4)	24.1 (22.2-26.0)	22.1 (20.3-23.9)	23.1 (21.8-24.4)	24.3 (22.4-26.2)	21.9 (20.1–23.7)		
39–48	14.4 (13.3-15.5)	14.5 (12.9–16.0)	14.4 (12.9-15.9)	14.6 (13.5-15.7)	14.3 (12.8-15.9)	14.8 (13.3-16.4)		
49–58	10.5 (9.5-11.4)	9.5 (8.2-10.8)	11.4 (10.0-12.8)	10.5 (9.6–11.5)	9.4 (8.1-10.7)	11.6 (10.2–13.0)		
59–68	7.4 (6.6-8.2)	7.1 (5.9–8.2)	7.7 (6.6-8.9)	7.0 (6.2–7.8)	6.8 (5.7-7.9)	7.3 (6.2-8.4)		
> 68	6.2 (5.4-6.9)	5.4 (4.4-6.5)	6.8 (5.7–7.9)	5.9 (5.2-6.7)	5.4 (4.4-6.4)	6.5 (5.4–7.5)		
Residence								
Village	68.1 (66.7-69.6)	68.3 (66.2-70.4)	68.0 (66.0-70.0)	68.0 (66.6-69.5)	68.3 (66.3-70.4)	67.7 (65.7–69.8)		
Nouna town	31.9 (30.4–33.3)	31.7 (29.6-33.8)	32.0 (30.0-34.0)	32.0 (30.6-33.4)	31.7 (29.6-33.7)	32.3 (30.3–34.3)		
Ethnic group								
Dafin	32.2 (30.8-33.7)	33.0 (30.9–35.1)	31.5 (29.5-33.6)	33.1 (31.7-34.6)	34.1 (32.0-36.2)	32.2 (30.2–34.2)		
Bwaba	29.1 (27.7–30.6)	29.3 (27.3-31.3)	29.0 (27.0-31.0)	28.9 (27.5-30.3)	29.1 (27.1-31.1)	28.7 (26.8–30.7)		
Mossi	19.9 (18.7–21.2)	18.8 (17.1–20.6)	20.9 (19.2-22.7)	19.4 (18.2-20.6)	18.3 (16.6-20.0)	20.4 (18.7–22.1)		
Samo	8.2 (7.3-9.0)	8.6 (7.3-9.8)	7.8 (6.6–8.9)	8.4 (7.5-9.2)	8.7 (7.5-10.0)	8.0 (6.9-8.2)		
Peulh	7.4 (6.6-8.2)	7.6 (6.4–8.8)	7.3 (6.1-8.4)	7.2 (6.4–8.0)	7.1 (6.0-8.2)	7.3 (6.1-8.4)		
Other	3.1 (2.6-3.7)	2.7 (2.0-3.5)	3.5 (2.7-4.3)	3.0 (2.5-3.6)	2.7 (2.0-3.4)	3.4 (2.6-4.2)		
Religion								
Muslim	55.5 (53.9-57.0)	55.0 (52.8-57.3)	55.9 (53.7-58.0)	56.2 (54.7-57.7)	55.5 (53.3-57.7)	56.8 (54.7-59.0)		
Catholic	30.0 (28.6-31.3)	29.5 (27.5-31.6)	30.4 (28.4-32.4)	29.3 (27.9-30.7)	29.1 (27.1-31.1)	29.5 (27.5–31.5)		
Protestant	7.3 (6.5-8.1)	7.2 (6.0-8.3)	7.5 (6.4–8.7)	7.3 (6.5-8.1)	7.1 (5.9–8.2)	7.5 (6.4–8.7)		
Animistic	6.7 (6.0-7.5)	7.8 (6.6–9.0)	5.7 (4.7-6.8)	6.8 (6.0-7.6)	7.9 (6.7–9.0)	5.7 (4.7-6.8)		
Other	0.5 (0.2-0.7)	0.5, 0.2-0.8)	0.4 (0.2-0.7)	0.4 (0.2-0.7)	0.5 (0.2-0.8)	0.4 (0.1-0.7)		
Ability to read								
Yes	26.9 (25.5-28.3)	39.6 (37.4-41.8)	14.7 (13.2-16.2)	26.8 (25.5-28.2)	39.2 (37.0-41.3)	14.8 (13.3-16.4)		
No	58.3 (56.7-59.8)	46.7 (44.5-49.0)	69.3 (67.3-71.3)	58.3 (56.8-59.9)	46.8 (44.6-49.0)	69.5 (67.5-71.5)		
Unknown	14.9 (13.7-16.0)	13.6 (12.1–15.2)	16.0 (14.4–17.6)	14.9 (13.8-16.0)	14.0 (12.5-15.5)	15.7 (14.1–17.3)		
Educational level								
None	75.5 (74.1–76.8)	73.0 (71.0–75.0)	77.8 (76.0–79.7)	75.7 (74.4–77.0)	73.1 (71.2–75.1)	78.2 (76.5–80.0)		
Primary School	9.5 (8.6–10.4)	12.3 (10.9–13.8)	6.7 (5.6–7.8)	9.4 (8.5-10.3)	12.0 (10.6-13.5)	6.8 (5.7-7.9)		
Secondary School	0.6 (0.3-0.8)	1.0 (0.5-1.4)	0.2 (0.0-0.5)	0.5 (0.3-0.8)	0.9 (0.5-1.3)	0.2 (0.0-0.4)		
Tertiary School	0.1 (0.0-0.2)	0.2 (0-0.4)	0 (0)	0.1 (0-0.2)	0.2 (0.0-0.3)	0 (0)		
Unknown	14.4 (13.3-15.5)	13.5 (12.0-15.0)	15.2 (13.6-16.8)	14.3 (13.2-15.4)	13.8 (12.3-15.3)	14.8 (13.2–16.3)		
Occupation								
Agriculture	64.0 (62.5-65.5)	70.7 (68.7–72.7)	57.7 (55.5–59.9)	64.3 (62.8-65.8)	70.6 (68.6–72.6)	58.2 (56.0-60.3)		
Other manual labor	3.1 (2.6–3.7)	3.7 (2.8–4.5)	2.6 (1.9–3.3)	3.2 (2.7–3.8)	3.8 (3.0-4.7)	2.6 (1.9-3.3)		
Non-manual labor	7.7 (6.9–8.6)	4.5 (3.5–5.4)	10.8 (9.5–12.2)	7.7 (6.9–8.6)	4.4 (3.5-5.3)	11.0 (9.6–12.3)		
Other/ unknown	25.1 (23.8-26.5)	21.2 (19.3-23.0)	28.9 (26.9-30.9)	24.8 (23.4-26.1)	21.2 (19.4-23.0)	28.2 (26.3–30.2)		

Data are presented as percentage (95% confidence intervals)

Table 2 Proportions of self-reported diseases among adults in the Nouna Health and Demographic Surveillance System 2010 and 2011

2010 (8-1	T. t. 1 (2040)	M-1- (1030)	F(2024)	21
2010 (Rainy Season)	Total (3949)	Male (1928)	Female (2021)	$\chi^2 p$ -value
Non-communicable diseases	5.3 (4.6–6.0)	4.0 (3.1–4.9)	6.5 (5.5–7.6)	<.0001
Hypertension	0.9 (0.6–1.2)	0.7 (0.4–1.1)	1.1 (0.7–1.6)	0.179
Chronic Heart Disease	0.8 (0.6–1.1)	0.4 (0.1–0.7)	1.3 (0.8–1.8)	0.002
Rheumathoid Arthritis	0.5 (0.3-0.7)	0.5 (0.2-0.8)	0.6 (0.3-0.9)	0.583
Others (< 20 cases)	2.9 (2.4–3.5)	2.4 (1.7–3.1)	3.5 (2.7–4.3)	0.045
Communicable diseases	20.7 (19.4–21.9)	20.8 (19.0–22.6)	20.5 (18.8–22.3)	0.837
Malaria	15.7 (14.6–16.8)	17.1 (15.4–18.8)	16.2 (14.6–17.8)	0.455
Cold	1.2 (0.9–1.5)	1.3 (0.8–1.8)	1.1 (0.7–1.6)	0.554
Dermatophytosis	0.6 (0.4-0.8)	0.5 (0.2–0.8)	0.7 (0.4-1.1)	0.376
Others (< 20 cases)	2.4 (1.9–2.8)	2.0 (1.4–2.6)	2.7 (2.0-3.4)	0.120
Injuries	0.8 (0.5-1.0)	0.8 (0.4–1.2)	0.7 (0.3-1.1)	0.620
Paralysis	0.2 (0.0-0.3)	0.2 (0.0-0.4)	0.1 (0.0-0.2)	0.382
Snake bite	0.1 (0.0-0.2)	0.2 (0.0-0.3)	0.0 (0.0-0.0)	0.076
Trauma by accident	0.1 (0.0-0.3)	0.2 (0.0-0.3)	0.2 (0.0-0.3)	0.954
Others (< 20 cases)	0.4 (0.2-0.6)	0.3 (0.1-0.6)	0.5 (0.2-0.7)	0.493
2011 (Dry Season)	Total (4039)	Male (1985)	Female (2054)	χ² <i>p</i> -value
Non-communicable diseases	4.5 (3.8–5.1)	3.9 (3.1-4.8)	5.0 (4.0-5.9)	0.111
Hypertension	0.7 (0.4-0.9)	0.5 (0.2–0.8)	0.9 (0.5-1.3)	0.099
Chronic Heart Disease	0.5 (0.3-0.8)	0.4 (0.1-0.7)	0.7 (0.3-1.0)	0.229
Rheumathoid Arthritis	0.4 (0.2-0.6)	0.3 (0.0-0.5)	0.6 (0.3-0.9)	0.103
Others (< 20 cases)	2.8 (2.3-3.3)	2.8 (2.1-3.6)	2.8 (2.1-3.5)	0.996
Communicable diseases	11.0 (10.0-11.9)	10.6 (10.0-12.7)	11.3 (10.0-12.7)	0.437
Malaria	5.8 (5.1-6.6)	6.1 (5.0-7.2)	5.6 (4.6-6.6)	0.501
Cold	2.5 (2.0-3.0)	2.8 (2.1-3.6)	2.2 (1.6–2.8)	0.200
Dermatophytosis	0.6 (0.4-0.9)	0.4 (0.1-0.7)	0.9 (0.5-1.3)	0.060
Others (< 20 cases)	2.0 (1.6-2.5)	1.3 (0.8–1.8)	2.8 (2.1-3.5)	0.001
Injuries	0.6 (0.4-0.9)	0.6 (0.3-1.0)	0.6 (0.3-1.0)	0.908
Paralysis	0.3 (0.1-0.4)	0.2 (0.0-0.3)	0.3 (0.1-0.6)	0.225
Snake bite	0.1 (0.0-0.2)	0.1 (0.0-0.2)	0.2 (0.0-0.3)	0.682
Trauma by accident	0.1 (0.0-0.2)	0.2 (0.0-0.3)	0.0 (0.0-0.0)	0.078
Others (< 20 cases)	0.2 (0.0-0.3)	0.2 (0.0-0.4)	0.2 (0.0-0.3)	0.672

Data are presented as percentage (95% confidence interval). Comparisons between males and females were made by χ^2 -test

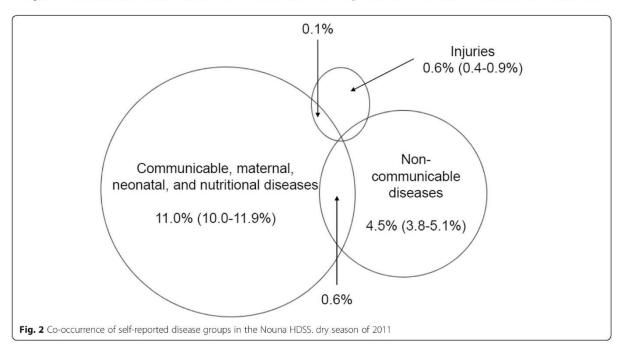

CI: 0.4–0.9%) in 2011 (p = 0.57). As for differences between men and women, only NCD-reporting in 2010 (rainy season) was significantly more frequent among women (p < 0.001). This was mainly attributed to chronic heart diseases (p = 0.002).

Diseases with $<\!20$ cases were summarized as "other" (Table 2). In 2010, 18.9% of participants reported diseases that could not be classified into any of the WHO major disease groups, because the participants did not know the kind of illness (715/743), reported to have had "a symptom affecting the whole body" (12/743), to had been bewitched (2/743), or other reasons (14/743). In 2011, there were 23.0% of participants with self-reported

diseases without classification. The reasons were unknown illness (938/943) and others (5/943).

The Venn diagrams in Figs. 1 and 2 display the co-occurrences of self-reported major disease groups during the rainy season and during the dry season. In the rainy season, 1.4% of adults reported to have had a communicable disease and an NCD at the same time, while this number amounted to 0.6% for the dry season. The overlaps between self-reported communicable diseases and injury-reporting were each 0.1%. There were no overlaps between NCD- and injury-reporting. The most common co-occurrence of self-reported diseases was malaria and hypertension in both years.

Gottlieb-Stroh et al. BMC Public Health (2021) 21:1101

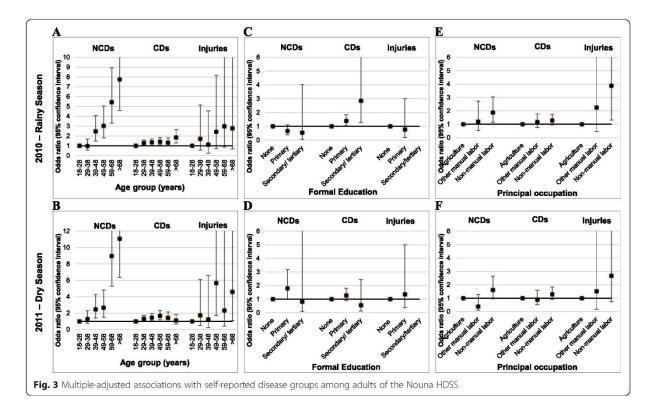


Associations with demographic and socio-economic factors

Table 3 shows the univariate associations of demographic and socio-economic factors with self-reported NCDs for the rainy season and the dry season. In both seasons, we observed the highest odds of self-reported NCDs with older age, followed by non-manual occupation (vs. agriculture), and residence in Nouna town (vs. village). These associations attenuated in the multivariate

models (Fig. 3A-B, E-F). Females showed higher odds of self-reported NCDs than men, but this was only seen in the rainy season (OR: 1.68; 95% CI: 1.26–2.24). The associations of ethnic group with NCD self-report were neither consistent between univariate and multivariate models nor between the rainy and the dry seasons (Table 3).

In Table 4, we present the univariate associations for self-reported communicable diseases. We observed a


Table 3 Univariate associations with self-reported non-communicable diseases in the Nouna HDSS in 2010 (rainy season) and 2011 (dry season)

Factor	2010 (3949)						2011 (4039)					
	% NCDs	% in non-NCD	% in NCD	OR	95% CI	<i>p</i> -value	% NCDs	% in non-NCD	% in NCD	OR	95% CI	<i>p</i> -value
Age group (years)												
18-28	2.2	39.7	16.3	1.00			1.8	39.9	16.1	1.00		
29-38	2.4	23.8	10.5	1.08	0.63-1.86	0.779	2.5	23.5	12.8	1.35	0.77-2.34	0.293
39-48	6.0	14.4	16.3	2.77	1.70-4.50	<.0001	4.4	14.6	14.4	2.45	1.43-4.20	0.001
49-58	7.7	10.2	15.3	3.66	2.23-6.00	<.0001	4.9	10.5	11.7	2.76	1.56-4.89	0.001
59-68	14.0	6.7	19.6	7.13	4.44-11.46	<.0001	14.8	6.3	23.3	9.22	5.64-15.09	<.0001
> 68	18.9	5.3	22.0	10.2	6.39-16.28	<.0001	16.3	5.2	21.7	10.31	6.24-17.04	<.0001
Sex												
Male	4.0	49.5	36.8	1.00			3.9	49.4	43.3	1.00		
Female	6.5	50.5	63.2	1.68	1.26-2.24	<.0001	5.0	50.6	56.7	1.28	0.94-1.73	0.111
Residence												
Village	4.8	68.5	61.2	1.00			4.0	68.3	61.1	1.00		
Nouna town	6.4	31.5	38.8	1.38	1.04-1.84	0.028	5.4	31.7	38.9	1.37	1.01-1.87	0.043
Ethnic group												
Dafin	4.2	32.6	25.4	1.00			4.2	33.2	31.1	1.00		
Bwaba	5.5	29.1	30.1	1.33	0.92-1.94	0.132	3.9	29.1	25.0	0.92	0.61-1.37	0.676
Mossi	5.1	19.9	19.1	1.23	0.81-1.88	0.327	4.0	19.5	17.2	0.94	0.60-1.48	0.800
Samo	8.4	7.9	12.9	2.11	1.30-3.41	0.002	6.8	8.2	12.8	1.67	1.01-2.76	0.044
Peulh	5.1	7.4	7.2	1.24	0.69-2.24	0.470	5.2	7.1	8.3	1.25	0.70-2.24	0.456
other	10.3	3.0	5.3	2.24	1.14-4.41	0.020	9.4	2.9	5.6	2.03	1.01-4.08	0.048
Religion												
Muslim	4.7	55.8	49.8	1.00			4.6	56.1	57.8	1.00		
Catholic	6.2	29.7	34.9	1.32	0.97-1.79	0.079	4.5	29.3	29.4	0.98	0.70-1.37	0.890
Protestant	5.5	7.3	7.7	1.17	0.68-2.01	0.567	2.7	7.4	4.4	0.58	0.28-1.20	0.144
Animistic	5.3	6.7	6.7	1.11	0.63-1.98	0.711	4.7	6.8	7.2	1.04	0.57-1.87	0.904
Formal education												
None	6.4	74.6	90.9	1.00			5.0	75.3	85.6	1.00		
Primary	4.3	9.6	7.7	0.66	0.39-1.11	0.114	5.0	9.3	10.6	0.99	0.61-1.62	0.985
Secondary/ tertiary	3.6	0.7	0.5	0.54	0.07-4.02	0.544	4.0	0.6	0.6	0.79	0.11-5.85	0.814
Principal occupation												
Agriculture	4.5	64.5	55.0	1.00			4.0	64.6	58.3	1.00		
Other manual labor	5.7	3.1	3.3	1.27	0.58-2.78	0.555	2.3	3.3	1.7	0.56	0.17-1.79	0.328
Non-manual labor	10.2	7.3	14.8	2.37	1.57-3.60	<.0001	9.3	7.4	16.1	2.42	1.58-3.72	<.0001
Other/ unknown	5.6	25.0	26.8	1.26	0.91-1.74	0.174	4.3	24.8	23.9	1.07	0.74-1.53	0.730

Odds ratios, 95% confidence intervals and p-values were calculated by logistic regression

positive gradient between older age groups and self-reported communicable diseases. These were stronger in the rainy season than in the dry season. The OR for self-reported communicable diseases was 1.91 (95% CI: 1.01–1.40) among individuals living in Nouna town as compared to participants living in rural areas. But this was only seen for the univariate model in the rainy

season. Also, in the rainy season, primary education (vs. none) was positively associated with self-reported communicable diseases in the univariate (OR: 1.28; 95% CI: 1.01–1.63) as well as the multivariate models (OR: 1.39; 95% CI: 1.01–1.87). This association was not seen in the dry season (Fig. 3C-D). In the univariate models, nonmanual labor (vs. agriculture) was directly associated

with self-reported communicable diseases in the rainy season (OR: 1.57; 95% CI: 1.21–2.03) and in the dry season (OR: 1.45; 95% CI: 1.05–2.00). However, this was not seen in the multivariate models (Fig. 3E-F).

Finally, we show the univariate associations for self-reported injuries in Table 5. In the rainy season, the reporting of injuries was more likely among individuals with advanced age (> 68 years vs. 18–28 years) in both, the univariate (OR: 4.22; 95% CI: 1.18–15.06) and the multivariate models (Fig. 3A). This was also seen in the dry season (OR: 5.30; 95% CI: 1.41–19.90 and Fig. 3D). The associations between religion and injury-reporting were not consistent across seasons and changed upon adjustment in the multivariate models (Fig. 3E-F).

In a sensitivity analysis, we additionally adjusted for the household identification code in our final regression models to account for potential effects of shared households. The strength and the direction of the effect estimates marginally changed.

Discussion

In this study, we assessed the occurrence and cooccurrence of WHO major disease groups, based on self-reported diseases and their associations with sociodemographic factors among 4000 adults in rural Burkina Faso. Between 2010 and 2011, we found that selfreported communicable diseases were frequent (11– 21%) and subject to seasonal variation, while NCD- and injury-reporting were only seen in a small fraction of the study population (5 and 1%, respectively).

For communicable diseases, our findings reflect the Annual Statistical Report of the Ministry of Health of Burkina Faso [22]. The ten most frequent reasons for consultation in basic health facilities are mainly due to communicable diseases, largely due to malaria (48%). For NCDs, however, our results contradict the phenomenon of the Double Burden of Disease and the fact that NCDs accounted for 33% of all deaths in this country in 2012 [3, 22].

There might be two possible explanations for this finding. One being that the low occurrence of self-reported NCDs reflect the actual low prevalence of such conditions in Nouna. This may indicate that the 'Double Burden of Disease' has not arrived to this region yet. Secondly, the actual prevalence of NCDs in the region is higher but has not been reported due to a lack of awareness among participants.

The socio-demographic characteristics displayed in Table 1 argue for an actual low prevalence of NCDs. Low levels of literacy, lack of formal education and high subsistence farming rates point towards more traditional lifestyles. In fact, only half of our population were able to read and write, and three-quarters of our participants had never received formal education. Therefore, NCD-

Table 4 Univariate associations with self-reported communicable diseases in the Nouna HDSS in 2010 (rainy season) and 2011 (dry season)

Factor	2010 (3949)							2011 (4039)						
	% CDs	% in non-CD	% in CD	OR	95% CI	<i>p</i> -value	% CDs	% in non-CD	% in CD	OR	95% CI	<i>p</i> -value		
Age group (years)														
18–28	16.5	40.5	30.6	1.00			8.5	39.9	30.7	1.00				
29–38	22.1	22.7	24.6	1.44	1.17-1.77	0.001	11.7	22.8	25.1	1.43	1.09-1.86	0.008		
39–48	23.2	14.0	16.2	1.53	1.21-1.94	<.0001	12.4	14.3	16.9	1.54	1.14-2.07	0.005		
49–58	24.2	10.0	12.3	1.62	1.24-2.10	<.0001	14.4	10.1	14.0	1.80	1.31-2.48	<.0001		
59–68	24.0	7.1	8.6	1.60	1.18-2.16	0.002	12.7	6.9	8.4	1.58	1.07-2.33	0.021		
> 68	25.9	5.7	7.7	1.78	1.29-2.44	<.0001	9.2	6.1	5.0	1.06	0.66-1.71	0.797		
Sex														
Male	20.8	48.7	49.1	1.00			10.3	49.4	47.4	1.00				
Female	20.5	51.3	50.9	0.98	0.84-1.15	0.84	11.1	50.6	52.6	0.92	0.76-1.13	0.437		
Residence														
Village	19.7	68.9	65.1	1.00			10.2	68.4	65.0	1.00				
Nouna town	22.7	31.1	34.9	1.19	1.01-1.40	0.035	11.8	31.6	35.0	1.16	0.95-1.43	0.152		
Ethnic group														
Dafin	24.2	30.8	37.7	1.00			11.4	32.9	35.2	1.00				
Bwaba	20.3	29.3	28.7	0.80	0.66-0.97	0.023	11.1	28.8	30.0	0.97	0.76-1.25	0.837		
Mossi	14.4	21.5	13.8	0.53	0.41-0.67	<.0001	8.7	19.8	15.8	0.74	0.55-1.00	0.051		
Samo	18.9	8.3	7.5	0.73	0.54-0.99	0.047	9.5	8.5	7.4	0.82	0.55-1.22	0.325		
Peulh	22.5	7.2	8.1	0.91	0.67-1.23	0.546	11.4	7.1	7.7	1.01	0.68-1.49	0.975		
other	31.8	2.9	4.2	1.18	0.78-1.79	0.426	15.1	2.9	3.8	1.21	0.71-2.08	0.478		
Religion														
Muslim	21.1	55.2	56.5	1.00			10.1	56.6	53.0	1.00				
Catholic	21.3	29.7	30.9	1.01	0.85-1.20	0.874	11.8	28.9	32.3	1.19	0.95-1.48	0.123		
Protestant	18.3	7.6	6.5	0.84	0.61-1.15	0.274	12.5	7.1	8.6	1.28	0.89-1.85	0.187		
Animistic	18.0	7.0	5.9	0.83	0.59-1.15	0.254	8.8	6.9	5.6	0.87	0.56-1.34	0.525		
Formal education														
None	23.3	72.9	85.2	1.00			11.7	74.9	82.4	1.00				
Primary	28.1	8.6	12.9	1.28	1.01-1.63	0.042	14.0	9.0	12.2	1.23	0.90-1.67	0.195		
Secondary/ tertiary	46.4	0.5	1.6	2.85	1.35-6.02	0.006	8.0	0.6	0.5	0.64	0.15-2.73	0.548		
Principal occupation														
Agriculture	22.4	62.7	69.4	1.00			11.6	63.7	69.3	1.00				
Other manual labor	27.6	2.8	4.2	1.32	0.88-1.99	0.174	11.5	3.2	3.4	0.97	0.56-1.69	0.921		
Non-manual labor	31.1	6.7	11.6	1.57	1.21-2.03	0.010	16.0	7.3	11.5	1.45	1.05-2.00	0.024		
Other/ unknown	12.2	27.8	14.8	0.48	0.39-0.60	<.0001	6.8	25.9	15.8	0.66	0.43-0.74	<.0001		

Odds ratios. 95% confidence intervals and $\emph{p}\text{-}\text{values}$ were calculated by logistic regression

risk factors like western diet and sedentary lifestyles might have not affected the Nouna region yet, and thus, have not caused the 'Double Burden of Disease'. This is supported by the univariate associations for NCDs and people living in Nouna town as compared to those living in villages. Urbanization can lead to a more sedentary lifestyle and self-subsistence farming is replaced by occupations that are physically less demanding [23].

Alternatively, low literacy rates and a lack of formal education can also point towards a lack of awareness towards NCDs. Historically those conditions have not existed and therefore people might not be able to interpret symptoms accordingly. This has been seen in other rural communities in West-Africa: Only 7.4% of patients with hypertension in Ghana were aware of their condition [24]. Especially rural communities have been shown

Table 5 Univariate associations with self-reported injuries in the Nouna HDSS in 2010 (rainy season) and 2011 (dry season)

Factor	2010 (3.949 adults)							2011 (4.039 adults)				
	% injuries	% in non-injuries	% in injuries	OR	95% CI	<i>p</i> -value		% in non-injuries	% in injuries	OR	95% CI	p-value
Age group (years)												,
18-28	0.4	38.6	20.0	1.00			0.3	39.0	20.0	1.00		
29-38	0.8	23.1	23.3	1.95	0.65-5.83	0.230	0.5	23.1	20.0	1.69	0.49-5.85	0.408
39-48	0.5	14.5	10.0	1.33	0.33-5.35	0.684	0.3	14.6	8.0	1.07	0.21-5.51	0.939
49–58	1.2	10.4	16.7	3.08	0.94-10.15	0.064	1.6	10.4	28.0	5.24	1.65-16.60	0.005
59-68	1.7	7.3	16.7	4.39	1.33-14.49	0.015	0.7	7.0	8.0	2.22	0.43-11.50	0.342
> 68	1.6	6.1	13.3	4.22	1.18-15.06	0.027	1.7	5.9	16.0	5.30	1.41-19.90	0.013
Sex												
Male	0.8	48.8	53.3	1.00			0.6	49.2	48.0	1.00		
Female	0.7	51.2	46.7	0.83	0.41-1.71	0.620	0.6	50.8	52.0	1.05	0.48-2.30	0.908
Residence												
Village	0.7	68.2	63.3	1.00			0.5	68.1	52.0	1.00		
Nouna town	0.9	31.8	36.7	1.24	0.59-2.61	0.571	0.9	31.9	48.0	1.97	0.90-4.33	0.091
Ethnic group												
Dafin	0.6	32.3	23.3	1.00			0.5	33.2	28.0	1.00		
Bwaba	1.0	29.1	36.7	1.74	0.67-4.52	0.251	0.8	28.8	36.0	1.48	0.55-3.98	0.440
Mossi	1.0	19.9	26.7	1.86	0.67-5.15	0.232	0.6	19.4	20.0	1.22	0.39-3.86	0.733
Samo	0.6	8.2	6.7	1.13	0.23-5.47	0.879	0.6	8.4	8.0	1.13	0.23-5.47	0.878
Peulh	0.3	7.5	3.3	0.62	0.08-5.05	0.655	0.7	7.2	8.0	1.32	0.27-6.39	0.730
other	0.9	3.1	3.3	1.47	0.18-12.05	0.719	0.0	3.1	0	-	-	-
Religion												
Muslim	0.7	55.5	50.0	1.00			0.5	56.3	44.0	1.00		
Catholic	0.9	29.9	36.7	1.36	0.62-2.97	0.441	1.1	29.1	52.0	2.28	1.02-5.12	0.045
Protestant	0.0	7.4	0	-	-	-	0.0	7.3	-	-	-	-
Animistic	1.5	6.7	13.3	2.21	0.73-6.72	0.161	0.4	6.8	4.0	0.75	0.10-5.85	0.785
Formal education												
None	0.9	75.4	90.0	1.00			0.6	75.7	76.0	1.00		
Primary	0.8	9.5	10.0	0.88	0.27-2.93	0.841	1.1	9.3	16.0	1.71	0.58-5.04	0.334
Secondary/ tertiary	0.0	0.7	0	0	-	-	0.0	0.6	-	-	-	_
Principal occupation												
Agriculture	0.7	64.1	56.7	1.00			0.5	64.4	48.0	1.00		
Other manual labor	1.6	3.1	6.7	2.44	0.56-10.69	0.236	0.8	3.2	4.0	1.67	0.21-12.94	0.624
Non-manual labor	2.0	7.6	20.0	2.96	1.16-7.58	0.023	1.3	7.7	16.0	2.79	0.89-8.70	0.077
Other/ unknown	0.5	25.2	16.7	0.75	0.27-2.03	0.570	0.8	24.7	32.0	1.74	0.71-4.26	0.228

 $\overline{\text{Odds ratios. 95\% confidence intervals and }p\text{-values were calculated by logistic regression}$

to have an even lower awareness compared to urban dwellers [25]. The same is true for health facilities. A lack of diagnostic means and experience with NCDs might lead to underdiagnosis.

Additionally, we found a strong direct association of educational attainment and occupational level with NCD-reporting in our study. This supports both arguments described above. The better off might be more

prone to the behavioral risk factors of NCDs such as western diet reduced physical activity because they use car and motorbike, and thus, have a higher NCD-prevalence. On the other hand, higher educational levels might just as well give them an increased awareness towards new disease forms. Their NCD-reporting might therefore be more frequent compared to that of less educated counterparts.

The seasonal variation of self-reported communicable diseases, mainly malaria, might reflect the environmental conditions affecting the reproduction of *Anopheles spc*. This is well described in the literature [26]. It is also conceivable that some NCDs and injuries vary with season. For instance, cardio-vascular conditions have been shown to be associated with increasing temperatures [14]. Similarly, subsistence farming populations in rural West Africa are more frequently exposed to injuries related to agricultural activities, such as snakebites and work accidents [16]. However, such variations were not discernible in our study population.

Furthermore, we found that the most common combination of self-reported diseases was malaria and hypertension. Indeed, Burkina Faso remains a high-transmission country (≥1 case per 1000 population), as reported for 2011 [12]. However, the co-occurrence with hypertension leaves room for speculation about an etiological link. In fact, a study in Côte d'Ivoire has found an association of malaria symptom severity and blood pressure [27]. Etyang et al. give further possible explanations for this link: Malaria contributes to low birth-weight, malnutrition and chronic inflammation in early-life − all these factors are associated with hypertension [28].

In contrast to previous studies in West-Africa, we did not observe co-occurrence of other diseases. For instance, among Ghanaian patients with diabetes mellitus, 46% showed an increased risk of infection with *Plasmodium falciparum* as compared to participants who had no diabetes mellitus [29]. Also, we have not seen typical associations between diabetes and tuberculosis, between HIV and tuberculosis, and between diabetes mellitus and HIV [30–32]. Low awareness or lack of diagnostic means for such conditions could again explain these null findings. Additionally, stigmatization associated with specific disease diagnosis, such as HIV, could lead to underreporting.

For self-reported communicable diseases, we can only speculate about the association with the ethnicity of Mossi. Further investigations are needed in this regard. The association of communicable diseases with older age might stem from less efficiently working immune systems among older adults [33]. The higher odds for individuals living in Nouna Town can also only be speculated about and further investigation about a lack of preventive action is needed. However, overreporting due to better awareness is possible as well. The same is true for the association with higher education and nonmanual labor. Both reflect higher socio-economic status, leading to increased disease awareness and possibly more frequent reporting.

Injury reporting was associated with older age which even though atypical can be explained by lower bone density and a higher risk of falling in the elderly [34, 35]. The association with non-manual labor has not been

expected as manually working individuals should be expected to have more accidents [36].

Strengths and limitations

This work is based on a large, representative morbidity survey among adults (N = 4192) living in the Nouna Health District [18]. While the study has already been conducted in 2010/2011, the available morbidity data constitute the most comprehensive information about the health status in this population. Still, our findings may forfeit their validity over time. All measures of disease occurrence were based on the self-reports of our participants. This means our estimates do not reflect prevalence. Self-reporting can lead to misclassification of health conditions such as the classification of any condition with fever as a malaria episode. It is also prone to different interpretations among different cultures and can cause recall bias as it depends on the memory of each individual. However, there is a value in selfreported disease occurrence. In low-income countries where resources are scarce, it can be the only option to obtain information. In the Nouna area, only 0.6% of the population consult a doctor for acute health issues, and health insurance data is lacking [37]. If health policies should address this region, self-reported data constitute the best available information source. Self-reporting also has the advantage of depicting the actual needs of participants and their healthcare uptake [38].

Furthermore, in cross-sectional analyses, temporal relationships cannot be assessed, and thus, this study cannot comment on causality. Similarly, we cannot exclude the possibility of chance findings in our univariate models, which assessed several risk factors. Yet, in the multiple-adjusted models, we included only the most important socio-economic risk factors. We have adjusted for well-established confounders but cannot rule-out unmeasured or residual confounding.

Therefore, further efforts are needed to investigate the disease burden of rural populations in SSA and self-reporting should be complemented with other diagnostic means.

Conclusions

In this population in rural Burkina Faso, NCD-reporting was comparatively low, and further investigations are needed to confirm these findings. It is clear that efforts in the fight against communicable diseases need to be intensified, especially in rural areas surrounding Nouna town. Low NCD-reporting does not mean that the danger of a *Double burden of Disease* in these regions is unreal. Measures to prevent these conditions are needed either way, because prevention is always better than cure. This should also include raising awareness for NCDs and increasing health literacy, so that individuals and health facilities are able to respond to the health challenges ahead.

Abbreviations

Cl: Confidence interval; CRSN: Centre de Recherche en Santé de Nouna; HDSS: Health and Demographic Surveillance System; HIGH: Heidelberg Institute of Global Health; NCD: Non-communicable disease; OR: Odds ratio; SSA: Sub-Saharan Africa

Acknowledgements

Not applicable

Authors' contributions

TGS analysed the data and wrote the manuscript; ASo contributed to study planning, interpretation of results and manuscript writing; TB contributed to funding and manuscript writing; ASi contributed to study planning, data collection and manuscript writing; SPZ contributed to data collection and manuscript writing; ID conceived the analysis, contributed to the interpretation of results and manuscript writing, and is the guarantor of this manuscript. The authors read and approved the final manuscript.

Funding

The Nouna HDSS is funded by Ministry of Science and Arts of the Land of Baden Württemberg/ Germany; University of Heidelberg; Ministry of Health, Burkina Faso; Tropical Diseases Research/WHO; European Union; ICDR/ Canada; Pfizer; Sanofi aventis; Projet de Renforcement des Services de Santé/African Development Bank. Open Access funding enabled and organized by Projekt DEAL.

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate

The study was approved by the Burkina Faso Ministry of Health, the local Ethical Committee of Nouna and the ethical committee of Heidelberg Medical Faculty. All participants gave informed written consent.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

¹Institute for Social Medicine, Epidemiology and Health Economics, Charité – Universitätsmedizin Berlin, Berlin, Germany. ²Heidelberg Institute of Global Health, Heidelberg University Hospital, Heidelberg, Germany. ³Centre de Recherche en Santé de Nouna (CRSN), Nouna, Burkina Faso.

Received: 19 May 2020 Accepted: 17 May 2021 Published online: 09 June 2021

References

- World Health Organization. The Global Burden of Disease: 2004 Update. Geneva: World Health Organization; 2008. Retrieved March 15, 2019 from https://www.who.int/healthinfo/global_burden_disease/2004_report_update/en/.
- World Health Organization. Global status report on noncommunicable diseases 2014. Retrieved March 15, 2019 from https://www.who.int/nmh/ publications/ncd-status-report-2014/en/.
- World Health Organization. Global status report on noncommunicable diseases. 2010. Retrieved March 15, 2019 from https://www.who.int/nmh/ publications/ncd report2010/en/.
- Gouda HN, Charlson F, Sorsdahl K, Ahmadzada S, Ferrari AJ, Erskine H. Burden of non-communicable diseases in sub-Saharan Africa, 1990-2017: results from the Glbal burden of disease study 2017. Lancet Global Health. 2019;7(10):E1375–87. https://doi.org/10.1016/S2214-109X(19)30374-2.
- Boutayeb A. The double burden of communicable and non-communicable diseases in developing countries. Trans R Soc Trop Med Hyg. 2006;100(3): 191–9. https://doi.org/10.1016/j.trstmh.2005.07.021.

- de-Graft Aikins A, Unwin N, Agyemang C, Allotey P, Campbell C, Arhinful D. Tackling Africa's chronic disease burden: from the local to the global. Globalization Health. 2010:6:5.
- Young F, Critchley JA, Johnstone LK, Unwin NC. A review of co-morbidity between infectious and chronic disease in sub Saharan Africa: TB and diabetes mellitus, HIV and metabolic syndrome, and the impact of globalization. Glob Health. 2009;5(1):9. https://doi.org/10.1186/1744-8603-5-9.
- Miilunpalo S, Vuori I, Oja P, Pasanen M, Urponen H. Self-rated health status as a health measure: the predictive value of self-reported health status on the use of physician services and on mortality in the working-age population. J Clin Epidemiol. 1997;50(5):517–28. https://doi.org/10.1016/ S0895-4356(97)00045-0.
- Lorem G, Cook S, Leon DA, Emaus N, Schirmer H. Self-reported health as a predictor of mortality: a cohort study of its relation to other health measurements and observation time. Sci Rep. 2020;10(1):4886. https://doi. org/10.1038/s41598-020-61603-0.
- Barreto ML. Questionnaire approach to diagnosis in developing countries. Lancet. 1998;352(9135):1164–5. https://doi.org/10.1016/50140-6736(05)60526-0.
- Kalter H. The validation of interviews for estimating morbidity. Health Policy Plan. 1992;7(1):30–9. https://doi.org/10.1093/heapol/7.1.30.
- World Health Organization. World Malaria Report. 2011. Retrieved March 22, 2019 https://www.who.int/malaria/world_malaria_report_2011/en/.
- Gashu Z, Jerene D, Datiko DG, Hiruy N, Negash S, Melkieneh K, et al. Seasonal patterns of tuberculosis case notification in the tropics of Africa: a six-year trend analysis in Ethiopia. PLoS One. 2018;13(11):e0207552. https://doi.org/10.1371/journal.pone.0207552.
- Bunker A, Sewe MO, Sie A, Rocklov J, Sauerborn R. Excess burden of noncommunicable disease years of life lost from heat in rural Burkina Faso: a time series analysis of the years 2000-2010. BMJ Open. 2017;7(11):e018068. https://doi.org/10.1136/bmjopen-2017-018068.
- Smith WR, Coyne P, Smith VS, Mercier B. Temperature changes, temperature extremes, and their relationship to emergency department visits and hospitalizations for sickle cell crisis. Pain Manag Nurs. 2003;4(3):106–11. https://doi.org/10.1016/S1524-9042(02)54211-9.
- Musah Y, Ameade EPK, Attuquayefio DK, Holbech LH. Epidemiology, ecology and human perceptions of snakebites in a savanna community of northern Ghana. PLoS Negl Trop Dis. 2019;13(8):e0007221. https://doi.org/1 0.1371/journal.pntd.0007221.
- Dalal S, Beunza JJ, Volmink J, Adebamowo C, Bajunirwe F, Njelekela M, et al. Non-communicable diseases in sub-Saharan Africa: what we know now. Int J Epidemiol. 2011;40(4):885–901. https://doi.org/10.1093/jje/dyr050.
- Sié A, Louis VR, Gbangou A, Muller O, Niamba L, Stieglbauer G, et al. The health and demographic surveillance system (HDSS) in Nouna, Burkina Faso, 1993-2007. Glob Health Action. 2010;3(1):5284. https://doi.org/10.3402/gha. usin 5384
- Geiger C, Agustar HK, Compaore G, Coulibaly B, Sie A, Becher H, et al. Declining malaria parasite prevalence and trends of asymptomatic parasitaemia in a seasonal transmission setting in North-Western Burkina Faso between 2000 and 2009-2012. Malar J. 2013;12(1):27. https://doi.org/1 0.1186/1475-2875-12-27.
- De Allegri M, Pokhrel S, Becher H, Dong H, Mansmann U, Kouyaté B, et al. Step-wedge cluster-randomised community-based trials: an application to the study of the impact of community health insurance. Health Res Policy Syst. 2008;6(1):10. https://doi.org/10.1186/1478-4505-6-10.
- Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet (London, England). 2012;380(9859):2224–60.
- Ministere de la Santé de Burkina Faso. Annuaire Statistique 2015. Retrieved July 23, 2019 from http://cns.bf/IMG/pdf/annuaire_ms_2015_signe.pdf.
- Assah FK, Ekelund U, Brage S, Mbanya JC, Wareham NJ. Urbanization, physical activity, and metabolic health in sub-Saharan Africa. Diabetes Care. 2011;34(2):491–6. https://doi.org/10.2337/dc10-0990.
- Awuah RB, Anarfi JK, Agyemang C, Ogedegbe G, Aikins A. Prevalence, awareness, treatment and control of hypertension in urban poor communities in Accra, Ghana. J Hypertens. 2014;32(6):1203–10. https://doi. org/10.1097/HJH.0000000000000165.
- Kayima J, Wanyenze RK, Katamba A, Leontsini E, Nuwaha F. Hypertension awareness, treatment and control in Africa: a systematic review. BMC Cardiovasc Disord. 2013;13(1):54. https://doi.org/10.1186/1471-2261-13-54.

- World Health Organization. World Malaria Report. 2017. Retrieved August 2, 2019 from https://www.who.int/malaria/publications/world-malaria-report-2 017/en/.
- Eze IC, Bassa FK, Essé C, Koné S, Acka F, Laubhouet-Koffi V, et al. Epidemiological links between malaria parasitaemia and hypertension: findings from a population-based survey in rural Côte d'Ivoire 2019;37(7):1384–1392.
- Etyang AO, Smeeth L, Cruickshank JK, Scott JAG. The Malaria-High Blood Pressure Hypothesis 2016;119(1):36–40.
- Danquah I, Bedu-Addo G, Mockenhaupt FP. Type 2 diabetes mellitus and increased risk for malaria infection. Emerg Infect Dis. 2010;16(10):1601–4. https://doi.org/10.3201/eid1610.100399.
- Prioreschi A, Munthali RJ, Soepnel L, Goldstein JA, Micklesfield LK, Aronoff DM, et al. Incidence and prevalence of type 2 diabetes mellitus with HIV infection in Africa: a systematic review and meta-analysis. BMJ Open. 2017; 7(3):e013953.
- Getahun H, Gunneberg C, Granich R, Nunn P. HIV infection-associated tuberculosis: the epidemiology and the response. Clin Infect Dis. 2010; 50(Suppl 3):S201–7. https://doi.org/10.1086/651492.
- Jeon CY, Murray MB. Diabetes mellitus increases the risk of active tuberculosis: a systematic review of 13 observational studies. PLoS Med. 2008;5(7):e152. https://doi.org/10.1371/journal.pmed.0050152.
- Montecino-Rodriguez E, Berent-Maoz B, Dorshkind K. Causes, consequences, and reversal of immune system aging. J Clin Invest. 2013;123(3):958–65. https://doi.org/10.1172/JCI64096.
- Demontiero O, Vidal C, Duque G. Aging and bone loss: new insights for the clinician. Ther Adv Musculoskelet Dis. 2012;4(2):61–76. https://doi.org/10.11 77/1759720X11430858.
- Al-Aama T. Falls in the elderly: spectrum and prevention. Can Fam Physician. 2011;57(7):771–6.
- El-Menyar A, Mekkodathi A, Al-Thani H. Occupational injuries: global and local perspectives. Nepal J Epidemiol. 2016;6(2):560–2. https://doi.org/10.312 6/nje.v6i2.15161.
- Robyn PJ, Fink G, Sié A, Sauerborn R. Health insurance and health-seeking behavior: evidence from a randomized community-based insurance rollout in rural Burkina Faso. Soc Sci Med (1982). 2012;75(4):595–603.
- Blomstedt Y, Souares A, Niamba L, Sie A, Weinehall L, Sauerborn R. Measuring self-reported health in low-income countries: piloting three instruments in semi-rural Burkina Faso. Global Health Action. 2012;5:https://doi.org/10.3402/gha.v5i0.848

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Mein Lebenslauf wird aus datenschutzrechtlichen Gründen in der elektronischen Version meiner Arbeit nicht veröffentlicht.

Komplette Publikationsliste

Gottlieb-Stroh T, Souares A, Bärnighausen T, Sié A, Zabre SP, Danquah I. Seasonal and socio-demographic patterns of self-reporting major disease groups in north-west Burkina Faso: an analysis of the Nouna Health and Demographic Surveillance System (HDSS) data. BMC Public Health. 2021 Jun 9;21(1):1101. doi: 10.1186/s12889-021-11076-1. PMID: 34107895; PMCID: PMC8191198.

Impact Factor im Jahr der Erscheinung: 4,135

Danksagung

Mein besonderer Dank gilt als erstes Frau Jun.-Prof., PD, Dr. Ina Danquah, die mir mit ihrer unermüdlichen Unterstützung und ausgezeichnete Betreuung diese Arbeit ermöglicht hat und mich viel Wichtiges gelehrt hat.

Weiterhin danke ich den Mitarbeiterinnen und Mitarbeitern vor Ort in Burkina Faso für ihre Arbeit in der Datenerhebung und Frau Dr. Aurélia Souares für ihre hilfreichen Rückmeldungen.

Schließlich gilt mein Dank Anna Lütkemeier, Moritz Blum und Sören Hornof.