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Abstract
We consider the ensemble Kalman inversion (EKI) which has been recently
introduced as an efficient, gradient-free optimisation method to estimate
unknown parameters in an inverse setting. In the case of large data sets,
the EKI becomes computationally infeasible as the data misfit needs to be
evaluated for each particle in each iteration. Here, randomised algorithms
like stochastic gradient descent have been demonstrated to successfully over-
come this issue by using only a random subset of the data in each iteration,
so-called subsampling techniques. Based on a recent analysis of a continuous-
time representation of stochastic gradient methods, we propose, analyse, and
apply subsampling-techniques within EKI. Indeed, we propose two different
subsampling techniques: either every particle observes the same data subset
(single subsampling) or every particle observes a different data subset (batch
subsampling).
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1. Introduction

A large variety of physical, biological and social systems and processes have been described
by mathematical models. Those models can be used to analyse and predict the behaviour
of the associated processes and systems. In case, a model shall be employed to describe a
particular system, the model needs to be calibrated with respect to observation of that par-
ticular system. This calibration process that fits the model to data is often called inversion.
Inversion forms the basis for, e.g. numerical weather prediction, medical image processing, and
many machine learning methods. Several inversion techniques have been proposed and stud-
ied: we often distinguish variational/optimisation-based approaches and Bayesian/statistical
approaches. Throughout this work, we consider a class of methods that can be seen as being in
between those two approaches: the ensemble Kalman inversion (EKI) framework going back
to [20, 31]. EKI is based on an Ensemble Kalman–Bucy Filter that is iteratively applied to
solve an inverse problem. In the linear setting the resulting algorithm is usually given in the
form of a preconditioned gradient flow, that is an ordinary differential equation describing the
dynamics of an ensemble of particles.

EKI becomes computationally infeasible, if the considered amount of data is too large:
the data cannot be stored in the memory at once and, thus, EKI is not applicable. The same
problem arises also in other traditional optimisation algorithms, like gradient descent or the
Gauss–Newton method. In the past decades, randomised algorithms that optimise in each time
step only with respect to a subsample of the data set have become popular. A subsample is
a (often randomly chosen) subset of the considered data set. The foundation for all of these
stochastic optimisation algorithms is the stochastic gradient descent (SGD) algorithm going
back to [28]. Stochastic gradient descent and its variants have become especially popular in
the machine learning community.

The idea of randomised subsampling in the EKI framework has been proposed in [22],
where it is, indeed, applied to train a neural network. There, the subsampling has been intro-
duced after discretising the preconditioned gradient flow, but no analysis has been presented.
A recent work by [23] explains how subsampling can be represented in continuous-time set-
tings and how these can be analysed. In the present work, we aim at using this theory in the
context of EKI to analyse subsampling methodology at the ODE level.

1.1. Literature overview

Since its introduction in [15] the ensemble Kalman filter (EnKF) has been widely used in both
inverse problems as well as data assimilation problems. The EnKF is very appealing for many
applications due to its straightforward implementation and robustness w.r. to small ensemble
sizes [3, 4, 18–20, 24]. Stability results can be found in [32, 33]. Convergence analysis based on
the continuous time limit of the EKI has been developed in [5, 6, 9, 30, 31]. However, to obtain
convergence results in the parameter space some form of regularisation is usually needed. We
mainly consider Tikhonov regularisation which was analysed for the EKI in [12] for example.
Recently there has been further analysis on Tikhonov regularisation for the stochastic EKI as
well as adaptive Tikhonov strategies to improve the original variant [35]. Considering large
ensemble sizes, an analysis of the mean-field limit is presented in [10, 14].

A historical overview of the Kalman filter and some of its extensions can be found [10].
After their introduction by Robbins andMonro [28], the stochastic gradient descent method

has in the recent past been further analysed by, e.g. [8]. Stochastic gradient descent is often
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computationally advantageous compared to normal gradient descent [26] due to computa-
tional efficiency as well as being able to escape local minimisers in non-convex optimisation
problems [13, 34]. As mentioned earlier, the theory employed in this work is based on the
continuous-time analysis of stochastic gradient descent by Latz [23] that was further gener-
alised in [21], but is somewhat orthogonal to the diffusion-based continuous-time analysis of
SGD of, e.g. [25].

1.2. Contributions and outline

In the following, we focus on the case, where the data misfit is computationally infeasible
due to large data. Inspired by the success story of randomised gradient descent methods, we
introduce subsampling strategies to EKI to ensure feasibility of the method also in the large
data regime. We summarise our contribution below:

1. We introduce two subsampling techniques for EKI: single subsampling and batch sub-
sampling.

2. We present an analysis of the subsampling techniques for linear forward operators, in par-
ticular we analyse stability of the subsampling schemes and give conditions under which
we obtain asymptotic stability. Indeed, the resulting dynamical system approximates the
EKI solution.

3. We illustrate our results with two examples: estimation of the source term for an elliptic
partial differential equation and estimation of the diffusion coefficient for a parabolic partial
differential equation.

Whilst analysing the subsampling EKI, we generalise some results from [23] to more gen-
eral flows. These generalisations may be of independent interest.

This work is structured as follows. We introduce problem setting and EKI methods in
section 2. We discuss stochastic approximations of certain flows in general and the sub-
sampling in EKI in particular in section 3; before analysing them in section 4.We show numer-
ical examples in section 5 and conclude the work in section 6.

2. Problem setting and mathematical background

Let (Ω,A,P) be a probability space, X be a separable Hilbert space and Y := RNobs , withNobs ∈
N= {1,2, . . .}.Wewill refer toX as parameter space and to Y as data space. Let now n,m ∈ N.
We sometimes associate finite-dimensional spaces Rn with the basic inner product 〈·, ·〉 and
the associated Euclidean norm ‖ · ‖ or the weighted inner product 〈·, ·〉Γ := 〈·,Γ−1·〉 and its
associated weighted norm ‖ · ‖Γ, where Γ ∈ Rn×n is symmetric positive definite. Further we
denote by BX := B(X,‖ · ‖) (or respectively BX := B(X,‖ · ‖Γ)), the Borel-σ-algebra on X.
Given an additional space Rm we define the tensor product of vectors in x ∈ Rn and y ∈ Rm by
x⊗ y := xy⊤.

In the following, we focus on linear inverse problems of the form

Aθ† + η† = y†, (2.1)

where θ† ∈ X is the true parameter, y† ∈ Y is the observed data set, η† ∈ Y is observational
noise, and A : X→ Y is a compact operator. In a Bayesian setting, we model θ†,η† as random
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variables θ : Ω→ X and η : Ω→ Y, where θ ⊥ η. Assuming that the noise is normally distrib-
uted, i.e. η ∼ N(0,Γ) and non-degenerate, the posterior µy is characterised through Bayes’
formula:

dµy(θ) =
1
Z
exp

(
−1
2
‖y−Aθ‖2Γ

)
dµ0(θ),

where µ0 denotes the prior distribution on the unknown parameters and Z= Eµ0 exp(− 1
2‖y−

Aθ‖Γ) is the normalisation constant. We will focus in the following on the computation of a
point estimate of the unknown parameters, the maximum a posteriori (MAP) estimate, which
is a minimiser of a regularised version of the potential

Φ(θ) = Φ(θ;y) =
1
2
‖y−Aθ‖2Γ. (2.2)

In order to handle large data settings, i.e. Nobs large, we introduce a subsampling strategy,
i.e. we partition the data y† into multiple subsets y†1, . . . ,y

†
Nsub

, such that (y†1, . . . ,y
†
Nsub

) = y†,
Nsub ∈ N,Nsub ⩾ 2, and I := {1, . . . ,Nsub}. To this end, we define data subspaces Y1, . . . ,YNsub ,
such that Y :=

∏
i∈IYi. Moreover, we assume that the noise η has independent entries

with respect to this splitting of the data space Y. In particular, we assume that there
are covariance matrices Γi : Yi → Yi, i ∈ I, such that Γ has the following block diagonal
structure:

Γ =


Γ1

Γ2

. . .
ΓNsub

 .

Finally, we split the operator A into a family of (Ai)i∈I, where

A=

 A1
...

ANsub

 .

Then, we can equivalently represent the inverse problem (2.1) by the family of inverse prob-
lems

A1θ
† + η†1 = y†1

...

ANsubθ
† + η†Nsub

= y†Nsub
,

where η†i is a realisation of ηi ∼ N(0,Γi) for i ∈ I.

Remark 2.1. Note that the diagonal structure of the noise can always be guaranteed by mul-
tiplying (2.1) with the inverse square root of Γ. To simplify notation we will, w.l.o.g. assume
for the remaining discussion that Γ = Idk and correspondingly Γi = Idki .

We will then consider the potentials of the respective data subset

Φi(θ) :=
1
2
‖Ai θ− y†i ‖

2 (i ∈ I).
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To overcome the ill-posedness of the inverse problem, we often consider a regularised ver-
sion of the potential in the form of

Φreg(θ) := Φreg(θ;y) :=
1
2
‖y−Aθ‖2 + α

2
‖θ‖2C0

,

where C0 is a self-adjoint, trace-class operator and α> 0. This corresponds to the MAP estim-
ate in case of a Gaussian prior with covariance αC0, cp. [12, 29]. Assuming a Gaussian prior
distribution with mean equal to zero, we can incorporate the regularisation via

Ã=

(
A

(αC0)
1
2

)
, ỹ=

(
y†

0

)
allowing us to write

Φreg(θ) =
1
2
‖ỹ− Ãθ‖2. (2.3)

Note that the forward operator A is usually not injective, whereas the regularisation results in
an injective operator Ã.

Similarly, when we split the forward operator we consider

Ãi =

 Ai(
α
Nsub

C0

) 1
2

 , ỹi =

(
y†i
0

)
leading to the family of potentials

Φreg
i (θ) =

1
2
‖ỹi− Ãiθ‖2, (i ∈ I).

that satisfies

Φreg(θ) =

Nsub∑
i=1

Φreg
i (θ).

2.1. EKI and its variants

We aim to solve the inverse problem (2.1) using the EKI framework. We will focus in the
following on the continuous-time limit of the Kalman inversion, cp. [30].

We define the initial ensemble to be θ0 = (θ
( j)
0 )j∈J ∈ XNens assuming w.l.o.g. that (θ( j)0 −

θ̄0)j∈J is a linearly independent family, with Nens ∈ N,Nens ⩾ 2, and J := {1, . . . ,Nens}. The
basic EKI proceeds by moving the particles in the parameter space according to the following
dynamical system

dθ( j)(t)
dt

=−Ĉθy
t(Aθ

( j)(t)− y†) ( j ∈ J) (2.4)

θ(0) = θ0,

where

Ĉθy
t :=

1
Nens − 1

Nens∑
j=1

(θ(j)(t)− θ(t))⊗ (Aθ(j)(t)−Aθ(t)), θ(t) =
1
Nens

Nens∑
j=1

θ(j) (t⩾ 0).
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The linearity of the forward model leads to the following equivalent reformulation of the
dynamical system

dθ( j)(t)
dt

=−ĈtDθΦ(θ
( j)(t)) ( j ∈ J) (2.5)

θ(0) = θ0,

where

Ĉt :=
1

Nens − 1

Nens∑
j=1

(θ(j)(t)− θ(t))⊗ (θ(j)(t)− θ(t)).

Intuitively, the dynamic represents parallel gradient flows minimizing (2.2) which are coupled
through the empirical covariance Ĉt. This empirical covariance can be viewed as a precondi-
tioner. The following reformulation of the right hand side

dθ(j)(t)
dt

=−
Nens∑
k=1

〈Aθ(k)(t)−Aθ(t),Aθ(j)(t)− y†〉(θ(k)(t)− θ(t)) (j ∈ J)

θ(0) = θ0

reveals the so-called subspace property, i.e. the particles (θ( j)t )j∈J lie in the span of the initial

ensemble (θ( j)0 )j∈J for any time t⩾ 0, cp. [20]. Hence, we can assume that the parameter space
is finite dimensional with X := RNens and will, w.l.o.g. do so in the following.

We define the Tikhonov-regularised ensemble Kalman inversion (TEKI) by the solution of
the following ODE

dθ( j)(t)
dt

=−ĈtDθΦ
reg(θ( j)(t)) ( j ∈ J) (2.6)

θ(0) = θ0.

The ensemble of particles converges to the empirical mean following the dynamics given
by (2.6). This results in the so-called ensemble collapse, and thus the degeneracy of the
ensemble covariance operator, which results in an algebraic convergence rate rather than an
exponential rate (compared to gradient flows). Variance inflation is a technique mitigating this
effect by adding an operator to the degenerate Ĉt. Let Cvi : X→ X be a covariance operator on
X. We define the variance-inflated EKI as the solution of the ODE

dθ( j)(t)
dt

=−(Ĉt+αviCvi)DθΦ(θ
( j)(t)) ( j ∈ J) (2.7)

θ(0) = θ0,

for αvi > 0.
By replacing Φ by Φreg in (2.7), one obtains the variance-inflated TEKI

dθ(j)(t)
dt

=−(Ĉt+αviCvi)DθΦ
reg(θ(j)(t)) (j ∈ J)

θ(0) = θ0,

for αvi > 0.

2.1.1. Well-posedness and convergence analysis. We summarise in this section the main
results on the well-posedness and convergence properties of EKI with regularisation and vari-
ance inflation.
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Theorem 2.2 ([30, theorem 3.1],[12, theorem 3.2]). Let u1(0), . . . ,uJ(0) be a given initial
ensemble, we denote by S= span{u( j), j ∈ {1, . . . ,J}} the span of the initial ensemble. Then
the ODE systems (2.5)–(2.7) have unique global solutions u( j)(t) ∈ C1([0,∞);S) for all j ∈
{1, . . . ,J}.

The convergence of the EKI estimate to the true parameter is restricted to the span of the
initial ensemble S. More precisely, the particles stay in the affine space θ⊥0 + E for all t⩾ 0,
cp. [12, corollary 3.8], where

E = span{e(1)(0), . . . ,e(Nens)(0)}

with

e(j) = θ(j) − θ̄, (j ∈ {1, . . . ,Nens})

θ⊥0 = θ̄(0)−PE θ̄(0), and PE being the projection onto the subspace E .
This implies that the accuracy of EKI is bounded below by the accuracy of the best approx-

imation in θ⊥0 + E . We summarise in the following the main convergence results for the various
variants of EKI.

Theorem 2.3 ([30, theorem 3.3],[12, theorem 3.13]). Assume that

span{Ae(1)(0), . . . ,Ae(Nens)(0)}= RNobs .

Then, the residuals of EKI mapped under the forward operator converge to 0. It holds that

• the rate of convergence for EKI without variance inflation is

‖Aθ(j) − y‖2Γ ∈ O(t−1) ∀j ∈ {1, . . . ,J},

• the rate of convergence for EKI with variance inflation is

‖Aθ(j) − y‖2Γ ∈ O(e−ct) ∀j ∈ {1, . . . ,J},

for a constant c> 0.

Assume that E = X. Then, the particles of TEKI converge to the minimiser of the regu-

larised least-squares problem θ†reg, which is given by θ†reg :=
(
ATA

)−1
ATy and respectively

θ†reg :=
(
ÃTÃ

)−1
ÃTỹ when considering regularisation. It holds that

• the rate of convergence for TEKI without variance inflation is

‖θ(j) − θ†reg‖2X ∈ O(t−1) ∀j ∈ {1, . . . ,J},

• the rate of convergence for TEKI with variance inflation is

‖θ(j) − θ†reg‖2X ∈ O(e−ct) ∀j ∈ {1, . . . ,J}

for a constant c> 0.

The assumption on the affine space E = X is rather restrictive and usually not satisfied in
practice. We discuss in the following the generalisation of the convergence result to the more
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general setting θ⊥0 + E ⊂ X. The best approximation in this space is given by the solution θ†E
of the following constrained optimisation problem

min
θ∈E

1
2
‖Ã(θ+ θ⊥0 )− ỹ‖2,

which can be equivalently formulated as the unconstrained optimisation problem

min
c∈RNens−1

1
2
‖ÃEc− (ỹ− Ãθ⊥0 )‖2, (2.8)

with E denoting a basis of E (w.l.o.g. dim(E) = Nens − 1). Then, TEKI can be formulated in
the coordinate system of E and convergence results can be straightforwardly generalised. Note
that convergence then follows to the minimiser of 2.8, i.e. the best approximation of 2.3 in the
affine space θ⊥0 + E . We refer to [12] for more details on the derivation of the convergence
result. We will denote in the following the optimiser of the constrained optimisation problem
by θ∗, i.e.

θ∗ ∈ argminθ∈E
1
2
‖Ã(θ+ θ⊥0 )− ỹ‖2,

3. Subsampling in continuous time

In this work, we are interested in certain stochastic approximations of ODEs, indeed, we are
studying EKIs in which we randomly replace the potential Φreg by one of the (Φreg

i )i∈I. We
now introduce and study a framework in which we are able to consider the subsampling of
(actually, more general) flows, before then discussing the subsampling in EKI.

3.1. A general framework and result

Let Fi : X× [0,∞)→ X be Lipschitz continuous for i ∈ I. Moreover, we define F=∑
i∈IFi/Nsub. We study the full dynamical system (θ(t))t⩾0, given by

θ̇(t) =−F(θ(t), t) (t> 0) (3.1)

θ(0) = θ0 ∈ X

and also the subsampled dynamical system

θ̇(t) =−Fi(θ(t), t) (t> 0) (3.2)

θ(0) = θ0 ∈ X.

We denote the flows with respect to (Fi)i∈I by (φ
(i)
t )i∈I,t⩾0: Let t> 0, i ∈ I, and θ0 ∈ X, then

φ̇
(i)
t (θ0) =−Fi(φ

(i)
t (θ0)), φ

(i)
0 (θ0) = θ0.

In the same way, we denote the flow with respect to F by φ̄t.
Solving or approximating the full dynamical system (3.1) can be computationally expens-

ive, especially if Nobs is large. We will now discuss an approximation strategy for this full
dynamical system that replaces the full system at any point in time by a randomly selected
subsampled system. Hence, in any small time interval, we only need to evaluate (3.2) for some
i ∈ I.

We define the subsampled system through a continuous-time Markov process (CTMP) on
I, which we call (i(t))t⩾0. Let η : [0,∞)→ (0,∞) be continuously differentiable and bounded
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from above. We refer to η(t) as learning rate at time t⩾ 0. Let i : [0,∞)×Ω→ I be the CTMP
with transition rate matrix

A(t) :=
1

(Nsub − 1)η(t)

1 · · · 1
...

. . .
...

1 · · · 1

− Nsub

(Nsub − 1)η(t)
· idI (t⩾ 0) (3.3)

and initial distribution i(0)∼ Unif(I). (i(t))t⩾0 is the stochastic process characterised by
Algorithm 1.

Algorithm 1. Sampling (i(t))t⩾0.

1: initialise i(0)∼ Unif(I) and t0← 0
2: sample ∆ with survival function

P(∆⩾ t|t0) := 1[t< 0] + exp
(
−
´ t
0 η(u+ t0)

−1du
)

(t ∈ [−∞,∞])

3: set i|(t0,t0+∆)← i(t0)
4: sample i(t0 +∆)∼ Unif(I\{i(t0)})
5: increment t0← t0 +∆ and go to 2

Hence, the process (i(t))t⩾0 is a piecewise constant process that jumps from one state to
another after random waiting times. There are several other characterisations of the process
(i(t))t⩾0, we refer the reader to [1] for general CTMPs on discrete spaces. The algorithmic pro-
cedure above goes back to Gillespie [17]. Properties of this particular CTMP have been studied
in [23]. We can now define the stochastic approximation process for (Fi)i∈I and (i(t))t⩾0.

Definition 3.1. We define the stochastic approximation process given by the family of flows
(Fi)i∈I and the index process (i(t))t⩾0) by the tuple (i(t),θ(t))t⩾0, with

θ̇(t) =−Fi(t)(θ(t), t) (t> 0)

θ(0) = θ0 ∈ X.

In the following, we are interested in the long time behaviour of the stochastic approxima-
tion process.

Assumption 3.2 Let K ∈ N and X := RK. Let (i) and (ii) hold for any i ∈ I:

(i) Fi ∈ C1(X× [0,∞),X),
(ii) the flowφ

(i)
t contracts quickly—in particular, we have a measurable function h : [0,∞)→

R, with
´∞
0 h(t)dt=∞ such that

〈Fi(φ(i)
t (θ0), t)−Fi(φ

(i)
t (θ1), t),φ

(i)
t (θ0)−φ

(i)
t (θ1)〉X ⩽−h(t)‖φ(i)

t (θ0)−φ
(i)
t (θ1)‖2

for any two initial values θ0,θ1 ∈ X.

Note that assumption 3.2(ii) already implies that the flow of −F is exponentially contract-
ing. The Banach fixed-point theorem implies that the flow has a unique stationary point, which
we denote by θ∗ ∈ X. We now generalise one of the main results of [23] by showing that the
stochastic process converges to the unique stationary point θ∗ of the flow (φt)t⩾0 if the learning
rate goes to zero. Convergence is measured in terms of the Wasserstein distance

dW(π,π′) = inf
H∈C(π,π′)

ˆ
X×X

min{1,‖θ− θ′‖q}dH(θ,θ′),

9
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where q ∈ (0,1] and C(π,π ′) is the set of couplings of the probability measures π,π ′ on
(X,BX).

Theorem 3.3. Let assumption 3.2(i) and (ii) hold for a constant h and a stochastic approx-
imation process (i(t),θ(t))t⩾0 with initial values (i0,θ0) ∈ I×X. Moreover, assume that
limt→∞ η(t) = 0. Then,

lim
t→∞

dW (δ(· − θ∗),P(θ(t) ∈ ·|θ0, i0)) = 0.

Proof. Please see theorem A.1.

Hence, the process converges to the Dirac measure δ(· − θ∗).

3.2. EKI with subsampling

We introduce two possibilities of subsampling: EKI with single subsampling and EKI with
batch-subsampling. In the first case, we choose a single subsample y†i from y† essentially
replace the potential in (2.4) by the subsampled potential Φi. In the mini-batching case, we

pick a total of Nens subsamples
(
y†i(1), . . . ,y

†
i(Nens)

)
, i.e. one subsample for each particle in the

ensemble. Then, we evolve each of the ensemblemembers with respect to their data subsample,
i.e. θ( j)(t) is evolved with respect to Φi( j), for j = 1, . . . ,Nens.

After one remark, we continue by defining the single subsampling.

Remark 3.4. When defining the subsampling algorithms, we will only refer to the basic EKI.
Of course, it is possible to combine subsampling with Tikhonov regularisation. In this case,
we replace the potential Φi in (3.4) with

Φ′
i(θ) := Φi(θ)+

α

2Nsub
‖θ‖2X

for i ∈ I. In the same way, one can combine subsampling with variance inflation, by replacing
the empirical covariance Ĉt with the inflated covariance (Ĉt+α ′Cvi).

3.2.1. Single subsampling. The essential idea is now the following: at every time step, we
follow the EKI flow of the potential Φi, for one random i ∈ I, as determined by (i(t))t⩾0.
Indeed, the EKI with single subsampling is defined via the dynamical system

dθ( j)(t)
dt

=−ĈtDθΦi(t)(θ
( j)(t)) ( j ∈ J)

θ(0) = θ0.

(3.4)

We illustrate this single subsampling strategy in figure 1.

3.2.2. Batch-subsampling. In batch-subsampling, we define a set Î⊆ INens such that for all
i ∈ {1, . . . ,Nsub}, j ∈ J, the number of elements in {̂i ∈ Î : îj = i} is identical. Moreover, we
define a stochastic process i : [0,∞)×Ω→ Î. Here, the coordinate processes (i(t; j))t⩾0, for
j = 1, . . . ,Nens, are stochastically independent CTMPs with transition rate matrix (A(t))t⩾0, as
given in (3.3). The process (i(t; j))t⩾0 now represents the data subset with which the particle
θ( j) is evolved, for j = 1, . . . ,Nens. Hence, the EKI with batch-subsampling is given by

dθ(j)(t)
dt

=−ĈtDθΦi(t;j)(θ
(j)(t)) (j ∈ J)

10
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Figure 1. Cartoon of EKI with single subsampling: same data subset y1,y2, . . . for each
ensemble member.

Figure 2. Cartoon of EKI with batch subsampling: different data subsets y1,y2, . . . for
each ensemble member.

θ(0) = θ0.

We illustrate the batch subsampling strategy in figure 2.

4. Analysis of the EKI with subsampling in the linear setting

We present in the following a convergence theory for the two subsampling strategies in the
linear setting. Our goal is to verify the assumptions 3.2, in particular the condition

−〈θ1 − θ2,Fi(θ1, t)−Fi(θ2, t)〉⩽−h(t)‖θ1 − θ2‖2,

for t large enough, with −Fi(θ(t), t) denoting the right hand side of the dynamical system
and h : [0,∞)→ R being a measurable function. We will see that the analysis of the ensemble
collapse will play a central role for the construction of the function h. In order to derive conver-
gence results in the parameter space, we will focus in the following on the regularised setting,
i.e. we consider the potential Φreg.

4.1. TEKI with variance inflation

The variance inflation allows to explicitly control the ensemble collapse by controlling the
preconditioner in the following way:

11
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Theorem 4.1 (Single Subsampling TEKI with variance inflation). Let (θ( j)(t))t⩾0,j∈J satisfy

dθ(j)(t)
dt

=−(Ĉt+αviCvi)DθΦ
reg
i(t)(θ

(j)(t)) (j ∈ J)

θ(0) = θ0.

with index process (i(t))t⩾0) and

Φreg
i(t)(θ

(j)(t)) =
1
2
‖ỹi(t) − Ãi(t)θ‖2, Ãi(t) =

 Ai(t)(
α
Nsub

C0

) 1
2

 , ỹ=

(
y†i(t)
0

)
,

withα,αvi > 0, Ĉt denoting the empirical covariance matrix of the particles θ( j)(t), and C0,Cvi
being symmetric positive definite matrices. The tuple (i(t),θ(t))t⩾0 denotes the single sub-
sampling TEKI solution with variance inflation. Then,

lim
t→∞

dW
(
δ(· − θ∗),P(θ(j)(t) ∈ ·|θ0, i0)

)
= 0 (j ∈ J).

Proof. By theorem 3.3, we know that convergence of (θ( j)(t)), for j ∈ J, follows if assump-
tions 3.2 are satisfied. The continuous differentiability of the right hand side follows straight-
forwardly from the definition of the TEKI. The inequality holds with

h(t) = αviλmin(Cvi)

(
min

1,...,Nsub

λmin(Ã
T
i Ãi)

)
,

where obviously
´∞
0 h(t)dt=∞ is fulfilled. The details on the construction of h are given in

lemma A.5.

Theorem 4.2 (Batch subsampling TEKI with variance inflation). Let (θ( j)(t))t⩾0,j∈J satisfy

dθ(j)(t)
dt

=−(Ĉt+αviCvi)DθΦ
reg
i(t;j)(θ

(j)(t)) (j ∈ J)

θ(0) = θ0.

with index process (i(t; j))t⩾0,j∈1,...,Nens) and

Φreg
i(t; j)(θ

(j)(t)) =
1
2
‖ỹi(t; j) − Ãi(t; j)θ‖2, Ãi(t; j) =

 Ai(t; j)(
α
Nsub

C0

) 1
2

 , ỹi(t; j) =

(
y†i(t; j)
0

)
,

withα,αvi > 0, Ĉt denoting the empirical covariance matrix of the particles θ( j)(t), and C0,Cvi
being symmetric positive definite matrices. The tuple (i(t; j),θ(t))t⩾0 denotes the batch sub-
sampling TEKI solution with variance inflation. Then,

lim
t→∞

dW
(
δ(· − θ∗),P(θ(j)(t) ∈ ·|θ0, i0)

)
= 0,

for j ∈ J.

Proof. The proof follows the same lines as the proof of theorem 4.1.

4.2. TEKI without variance inflation

We have seen that the control on the smallest eigenvalue of the preconditioners, i.e. the empir-
ical covariances, is crucial in order to prove convergence. We will consider in the following

12
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the more general case, where the smallest eigenvalue converges to 0 with a rate such that´∞
0 h(t)dt=∞ still holds true and convergence follows by theorem 3.3.

Theorem 4.3 (Single Subsampling TEKI without variance inflation). Let (θ( j)(t))t⩾0,j∈J
satisfy

dθ( j)(t)
dt

=−ĈtDθΦ
reg
i(t)(θ

( j)(t)) ( j ∈ J) (4.1)

θ(0) = θ0.

with index process (i(t))t⩾0) and

Φreg
i(t)(θ

(j)(t)) =
1
2
‖ỹi(t) − Ãi(t)θ‖2, Ãi(t) =

 Ai(t)(
α
Nsub

C0

) 1
2

 , ỹ=

(
y†i(t)
0

)
,

with α > 0, Ĉt denoting the empirical covariance matrix of the particles θ( j)(t), and C0 being
a symmetric positive definite matrix. The tuple (i(t),θ(t))t⩾0 denotes the single subsampling
TEKI solution without variance inflation. Then,

lim
t→∞

dW
(
δ(· − θ∗),P(θ(j)(t) ∈ ·|θ0, i0)

)
= 0,

for j ∈ J.

Proof. The continuous differentiability of the right hand side follows with the same argument
as in theorem 4.3. The inequality holds with h(t) = λmin(Ĉ1

t )mini∈{1,...,Nsub}λmin(ÃTi Ãi), where´∞
0 h(t)dt=∞ is fulfilled due to λmin(Ĉ1

t ) ∈ O(t−1). The details on the minimal eigenvalue
are given in lemma A.6.

In the case of batch subsampling, the rate of convergence of each particle is exponential for
a fixed data set, as the ensemble collapse is prevented (under suitable assumptions of the data).
This is contrast to the single subsampling case, where the rate of convergence is algebraic due
to the ensemble collapse. This can be shown as follows:

Lemma 4.4. Given the Nsub subsamples
(
ỹ†(1), . . . , ỹ

†
(Nsub)

)
, assume that the centred initial

ensemble is a generator of the full space X, i.e. span{e( j)0 , j ∈ J}= X. We further assume that∑Nens
j=1(θ

†
j − θ̄†)(θ†j − θ̄†)⊤ has full rank d. Then the particles converge to the true solution θ†

exponentially fast, i.e. θ( j) → θ†i with θ
†
i denoting the minimiser of Φi(θ) =

1
2‖Ãi θ− ỹi‖2.

Proof. Please see lemma A.4.

The assumption on the ensemble spread being a generating set of the parameter space X is
rather restrictive and usually not satisfied in practice. Generalisation of the result is straight-
forward when working in the coordinate system of the linear subspace spanned by the initial
ensemble using the projection PE .

The batch subsampling case leads to exponential convergence rates for fixed data, however,
as theminimum eigenvalue depends on the initial data, the convergence result cannot be readily
applied. We modify the process such that we can control the minimum eigenvalue similar to
the variance inflation technique above. However, instead of considering a static lower bound,
we now allow the minimum eigenvalue to decrease at a certain rate.

13
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Theorem 4.5 (Batch subsampling TEKI with diminishing variance inflation). Let
(θ( j)(t))t⩾0,j∈J satisfy

dθ( j)(t)
dt

=−(Ĉt+
αvi
1+ t

Cvi)DθΦ
reg
i(t;j)(θ

( j)(t)) ( j ∈ J) (4.2)

θ(0) = θ0.

with index process (i(t; j))t⩾0,j∈1,...,Nens) and

Φreg
i(t;j)(θ

(j)(t)) =
1
2
‖ỹi(t;j) − Ãi(t;j)θ‖2, Ãi(t;j) =

 Ai(t;j)(
α
Nsub

C0

) 1
2

 , ỹ=

(
y†i(t;j)
0

)
,

withα,αvi > 0, Ĉt denoting the empirical covariancematrix of the particles θ( j)(t), andC0,Cvi
being symmetric positive definite matrices. The tuple (i(t; j),θ(t))t⩾0 denotes the batch sub-
sampling TEKI solution with variance inflation. Then,

lim
t→∞

dW
(
δ(· − θ∗),P(θ(j)(t) ∈ ·|θ0, i0)

)
= 0 (j ∈ J).

Proof. The proof follows the same lines as the proof of theorem 4.1. The only difference
being that we have here h(t) = αvi

t λmin(Cvi)mini∈{1,...,Nsub}λmin(ATi Ai), The diminishing rate
however is slow enough to obtain

´∞
0 h(t)dt=∞.

We now move on to proving the convergence of the subsampled EKI. We start by defining
an auxiliary EKI subsampling process. Let ε ∈ (0,1) and

dθ(j,ε)(t)
dt

=−ĈtDθΦi′(t,ε;j)(θ
(j,ε)(t)) (j ∈ J)

θ(j,ε)(0) = θ
(j)
0 (j ∈ J),

where (i ′(t,ε))t⩾0 is the CTMP on Î with transition rate matrix B(t) := A(t1[t ∈ [0,1/ε]] +
1/ε1[t ∈ (1/ε,∞)]).

Proposition 4.6. Let ε> 0. Then, the process (θ(·,ε)(t), ξε(t), i ′(t, ξ))t⩾0 has a unique station-
ary measure µε. Moreover, for every θ0 ∈ XNens and i0 ∈ Î there are c,c ′ > 0, with

dW
(
µε,P((θ(·,ε)(t), ξε(t), i′(t, ξ)) ∈ ·|θ(0) = θ0, i

′(t) = i0)
)
→ 0 (t→∞).

Proof. 1. We note that for any initial value θ0 ∈ XNens there is a compact setM⊆ XNens ,M 3 θ0
from which the process (θ( j,ε)(t), i ′(t,ε))t⩾0 cannot escape. See [2] for details. Moreover,
we note that under the hypothesis of theorem 4.4, we can assure that θ(·,ε)(t) 6∈ Xdiag :=
{(θ1, . . . ,θNens) ∈ XNens : ∃j, j ′ ∈ J,θj = θj ′}

2. We now show that two coupled processes (θ( j,ε)(t), i ′(t,ε))t⩾0 and (θ
( j,ε)
∗ (t), i ′(t,ε))t⩾0

starting at different initial points θ0,θ0,∗ contract in the Wasserstein-2 distance. Let
(i ′(t,ε; ·))t⩾0 be a realisation of i ′(t, ξ; ·))t⩾0. Then, again we try to find a continuous func-
tion hi ′ : [0,∞)→ (0,∞) with

−〈θ− θ∗, ĈtDθΦi′(t,ε;·)(θ)− ĈtDθΦi′(t,ε;·)(θ∗)〉⩽−hi′(t)‖θ− θ∗‖2.

Lemma A.5 gives us hi ′(t) =
αvi
1+tλmin(Cvi)mini∈{1,...,Nsub}λmin(ATi Ai).

Note that we are using variance inflation, however one that is diminishing at rate t−1. This
is slow enough so that we obtain

´∞
0 hi ′(t)dt=∞.
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In proposition 4.6, we showed that the auxiliary process (θε(t)))t⩾0 is ergodic (ε> 0) and
converges to a stationary measure. In the following, we will show that (θε(t)))t⩾0 → (θ(t)))t⩾0

as ε→ 0 and then also that θt → PYθ† as t→∞.

Theorem 4.7. Under the assumptions of proposition 4.6, we have

dW(δ(· −PYθ
†),P(θ(t) ∈ ·))→ 0 (t→∞).

Proof. The result follows from [23].

5. Numerical experiments

We now test our methodology in two numerical experiments: first, we aim to estimate the
source term in a 1D parabolic PDE using measurements from its solution. Then, we estimate
the log-diffusion coefficient in a 2D elliptic PDE, again using measurements of the solution.

5.1. 1D-Heat equation

In this experiment we consider a one-dimensional Heat equation, given by the following dif-
ferential equation

∂u(x, t)
∂t

− ∂2u(t,x)
∂x2

= f(x) (t> 0,x ∈ (0,1))

u(0,x) = 0 (x ∈ (0,1))

u(t,0),u(t,1) = 0 (t⩾ 0).

Our goal in this inverse problem is to estimate the unknown forcing f from perturbed
measurement data that we have obtained from the solution. Indeed, we define A=O◦ L−1,
where L= d

dt −
d2

d2x , and O : H1
0([0,1],R)→ RK,(p(·)) 7→ O(p(·)) = (p(x1), . . . ,p(xK))

T is an
equidistant observation operator on [0,1]×R⩾0 and p ∈ H1

0([0,1],R) is a solution operator of
the PDE. The inverse problem is given by:

u= Af+ η,

where η ∼N (0,Γ), with Γ = 0.12IdK.
The forcing is assumed to be a Gaussian random field with zero mean and covari-

ance C(s, t) = σ2 exp(− |s−t|2
Lsc

), where (s, t) ∈ [0,1]× [0,1],σ2 = 10 and Lsc = 0.1. We sim-
ulate the random field using a KL-expansion, which is truncated after 8 terms, i.e. f(x,ω) =∑8

i=1λ
1/2
i ei(x)ξi(ω), where λi are the largest eigenvalues of C(s, t),ei(x) the corresponding

eigenfunctions and ξi standard normal distributed random variables. Furthermore, we use a
spatial step size of h= 0.01, a time step size of ∆= 0.05 and a time horizon of T = 0.3.
Hence, we have 6 time steps. The PDE-solution is then computed through the Crank-Nicolson
method.

To solve the inverse problemwewill consider the numerical computed solutions of u(t,x) at
each time step as one subsample. Therefore we have Nsub = 6 many subsamples. Additionally
the choice of the step size h, yields Ndim(X) = 99 interior points that we seek to estimate.
Furthermore, we have Nobs = 6 · 99= 594 many observations and use Nens = 5 particles. Our
initial ensemble is assumed to have the same distribution of the Gaussian random field that we
choose for the forcing f. We sample from the random field by making Nens independent draws
from f(x,ω). Therefore, the generated solutions will lie in the subspace f⊥0 + E , where E is the
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Figure 3. Mean absolute errors of computed solutions in the parameter (left) and obser-
vation space (right). The red line illustrates the EKI, the blue line single subsampling
and the green line batch subsampling.

linear span of the centred initial ensemble and f⊥0 = f̄(0)−PE f̄(0). The best approximation in
this space is given by the solution f†E of the constrained optimisation problem (2.8), i.e.

min
c∈RNens−1

1
2
‖ÃEc− (ỹ− Ãf⊥0 )‖2,

withE denoting a basis of E and Ã and ỹ correspond to the regularised versions of the respective
variable. This solution can be computed analytically and is given by

c†E =
(
(ÃE)T(ÃE)

)−1
(ÃE)T(ỹ− Ãθ⊥0 ).

Thus the reference solution in the parameter space is given by

f†E = Ec†E + θ⊥0 .

We simulate N= 32 many runs and illustrate the mean absolute error of the runs in the
parameter space as well as in the observation space for single-subsampling, batch-subsampling
and compare it to the EKI. Lastly, we also illustrate the mean ensemble collapse for each
particle. The ODE solutions of the EKI as well as our subsampling methods are computed
using MATLABs ode45 ODE solver.

5.1.1. TEKI with variance inflation. The first conducted experiment uses constant variance
inflation of the magnitude αvi = 0.01 and regularisation of β= 10. Furthermore, the learning
rate decays at exponential speed, i.e. η(t) = aexp(−bt), with a= 0.01 and b= 10.We compute
the solution up until T = 1. With those parameter choices we obtain approx. 2 · 1e5 many data
changes. We illustrate our results in semi-log plots, i.e. we only apply the log function on to
the y-axis.

Figure 3 shows the mean relative error over allN= 32 runs, w.r.t the Tikhonov solution. The
left figure shows the mean error in the parameter space and the right figure in the observation
space.We can see that both methods converge towards the true solution at exponential rate, due
to the linear decay in the semi-log plots. They only differentiate themselves in the constants.

In figure 4 the mean ensemble collapse of the particles is illustrated. Again we can see that
the collapse happens at an exponential rate. Interesting to note is that there seem to be more
fluctuations in batch-subsampling than in single-subsampling. And that batch-subsampling is
also a bit slower than single-subsampling(see different scaling on y-axis).
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Figure 4. Mean ensemble collapse of all Nens = 5 particles for the three methods. The
different colours represent the ensemble collapse of one ensemble member respectively.
Left figure: EKI; middle figure: single subsampling; right: batch subsampling.

Figure 5. Mean absolute errors of computed solutions in the parameter (left) and obser-
vation space (right). The red line illustrates the EKI, the blue line single-subsampling
and the green line batch-subsampling.

5.1.2. TEKI with diminishing variance inflation. In this simulation we consider diminishing
variance inflation. We illustrate the results using the same parameters as chosen in the experi-
ment with constant variance inflation. We let variance inflation vanish at a linear rate, i.e. the
gradient flow is given by (4.2) with αvi = 0.01. We use again an exponential decaying learning
rate and we illustrate the results for EKI, single-subsampling and batch-subsampling.

We can see in figure 5 similar results as in 3. Both subsampling methods converge at a
similar rate towards the solution. However, they are both converging at a slower rate than the
EKI. Furthermore, this experiment shows less noise in the subsampling approaches as opposed
to a constant variance inflation. Figure 6 shows the ensemble collapse of all methods. We get
similar results to the experiment conducted before.

5.1.3. TEKI without variance inflation. In this subsection we consider experiments without
variance inflation. In theorem 4.1 we proved convergence for single-subsampling. However,
we were not able to obtain a result for batch-subsampling. We illustrate numerical res-
ults, indicating that we can also expect convergence for batch-subsampling without variance
inflation.
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Figure 6. Mean ensemble collapse of all Nens = 5 particles for the three methods. The
different colours represent the ensemble collapse of one ensemble member respectively.
Left figure: EKI; middle figure: single-subsampling; right figure: batch-subsampling.

Figure 7. Mean absolute errors± standard deviation of computed solutions in the para-
meter (left) and observation space (right). The red line illustrates the EKI, the blue line
single-subsampling and the green line batch-subsampling.

We consider again β= 10 as regularisation parameter and compute the solution up until
T= 1e6. This time we use a linear decaying learning rate η(t) = (at+ b)−1, with a,b= 100.
However, due to the decreasing switching times of the subsets, the algorithm becomes com-
putationally slow. We therefore only use the linear decaying learning rate up until T= 101.
Afterwards we consider 1e5 equidistant switching times. Up until T = 1 we obtain approx
6000 data switches. Finally, we illustrate our results in log-log plots, since we expect a similar
convergence rate as the EKI, which is algebraic. Through Log-log plots, it is easier to observe
this convergence rate as opposed to semi-log y plots. Again we conduct N= 32 experiments
and illustrate the mean absolute error.

Figure 7 depicts the mean absolute error in the parameter and observation space to the
Tikhonov solution. In those experiments we also included the mean errors ± one standard
deviation. Both subsampling methods show similar results to the EKI. Our methods are there-
fore suitable alternatives to the EKI, since we obtain the same convergence rate, however we
have less computational costs. Note that the mean minus standard deviation is negative in the
right picture and therefore not shown.
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Figure 8. Mean ensemble collapse of all Nens = 5 particles for the three methods. The
different colours represent the ensemble collapse of one ensemble member respect-
ively. Left figure: depicts EKI; middle figure: single-subsampling; right figure: batch-
subsampling.

Figure 9. Absolute error of computed solutions in the parameter (left) and observation
space (right). The red line illustrates the EKI, the blue line single-subsampling and the
green line batch-subsampling.

We can see in figure 8 that the ensemble collapse also happens at an algebraic rate for EKI
as well as both of our subsampling methods.

Furthermore, we illustrate the results of one single run: We simulate our prior distribution X
also by the same KL-expansion, using 18 terms. We then make Nens = 20 independent draws
to simulate our initial ensemble. Moreover, we do not use variance inflation and use a regu-
larisation of β= 10, we compute the solution until time T= 1e7 and use until time T = 10 the
same linear decaying learning rate as in the previous experiment with a,b= 10. Afterwards
we consider again a constant learning rate. We obtain around 600 switching times until T = 10
using those parameters.

In figure 9, we can see again that the error of all three solutions behaves similarly. Single
and batch subsampling compute nearly identical solutions, therefore the error of those two
methods are almost identical. The only difference to EKI is the starting time at which the
solution is evaluated. The randomly computed starting time of our subsampling approaches is
a little higher than the starting point of the EKI. Therefore, there is a slight shift in the error
curves.
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Figure 10. Development of computed solution over time in comparison with the
Tikhonov solution at times T= 10−1 (upper left), T= 102(upper right), T= 105 (lower
left) and T= 107 (lower right). The red line illustrates the EKI, the blue line single-
subsampling, the green line batch-subsampling and purple is the reference solution θ⋆.

Furthermore, we illustrate how the computed solution behaves over time. We compare the
solutions to the Tikhonov solution.

Figure 10 shows the development of the computed solution over time. Here one can see that
there is a slight difference between single and batch-subsampling at T = 0.1. However, both
methods quickly converge to one another as one can see in the computed results at T = 100.
As mentioned above the EKI is slightly faster due to beginning a bit earlier. However at T=
10000000 all methods approximate the Tikhonov solution quite similarly.

5.2. Nonlinear 2D Darcy flow

We introduce in this section one experiment with a non-linear forward operatorG. Even though
our theory only covers the linear case, we will illustrate that subsampling also leads to good
results in the nonlinear setting. As subsampling strategy we only consider single-subsampling.
The example is motivated by [11, 16].
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Consider the following elliptic PDE.{
−∇ · (exp(u)∇p) = f, x ∈ D

p= 0, x ∈ ∂D
, (5.1)

where D= (0,1)2. We seek to recover the unknown diffusion coefficient u† ∈ C1(D) = X,
given observation of the solution p ∈ H1

0(D)∩H2(D) := V . Furthermore, we assume that the
scalar field f ∈ R is known.

The observations are given by

y=O(p)+ η,

where O(p) : V → RK is the observation Operator, that considers K randomly chosen points
in X, i.e.O(p) = (p(x1), . . . ,p(xK)). Finally, η denotes the noise on our data and is assumed to
be Gaussian, i.e. a realisation of N (0,Γ), where Γ = 0.12IdK

Then our inverse problem is given by

y= G(u)+ η,

where G =O◦G andG : X→ RK denotes the solution operator of the PDE (5.1). We solve the
PDE on a uniform mesh with a grid size of h= 2−8 using an FEM method with continuous,
piecewise linear finite element basis functions. We model our prior distribution as the random
field

u(x,ω) =
s∑

i=1

λ
1/2
i ei(x)ξi(ω),

where we have λi =
(
π2(k2j + l2j )+ τ 2

)−α
and ei(x) = cos(π x1kj)cos(π x2lj) with τ =

0.01,α= 2,s= 25,(kj, lj)j∈{1,...,s} ∈ {1, . . . ,s}2. The variables ξi are i.i.d standard normal
variables. Afterwards we make Nens = 10 independent draws for our initial ensemble.

The dimension of the parameter space is d= 28 due to the grid size. We take K= 30 obser-
vations and divide them into Nsub = 5 many subsets.

We use a linear decaying learning γ(t) = (a+ bt)−1, where a,b= 10. As regularisation
factor we consider β= 10 and compute the solution up until time T= 105. Again we note that
due to the decrease of the switching times of the data sets the algorithm becomes computation-
ally very slow. Therefore, we only use a linear decaying switching rate up until time T= 101

from there on we consider 105 equidistant switching times.
Note that we again work in a subspace that is smaller than X. Therefore, we need to compare

the computed solution with the respective one given the subspace.
The particles stay in the affine space u⊥0 + E for all t⩾ 0. Therefore, the reference solution

is given by u⊥0 + u†E, j. We formulate it as a constrained optimisation problem

min
u∈E+θ⊥

0

1
2
‖G(u)− y‖2Γ +

β

2
‖u‖2,

and use MATLABs fmincon solver to compute it.
Figure 11 shows the computed solutions given by the different algorithms. The left picture is

the solution given by MATLABs fmincon solver. In the middle, the solution computed by the
normal EKI is depicted and on the right the result of the single-subsampling algorithm shown.
One can see that both algorithms compute visually very similar solutions as the optimiser.
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Figure 11. Comparison of computed diffusion coefficient u. Left figure: optimiser;
middle figure: EKI; right figure: single-subsampling.

Figure 12. Mean absolute errors± standard deviation of computed solutions in the para-
meter (left) and observation space (right). The red line illustrates the EKI and the blue
line single-subsampling.

Figure 12 depicts the mean errors of N= 32 runs± one standard deviation in the parameter
space (left subplot) as well as of the functionals (right subplot) evaluated in the corresponding
solutions. We can see that both errors behave similarly and are converging towards zero at an
algebraic rate. As in the linear example we note that the mean minus standard deviation is
negative in the right picture and therefore not shown.

Figure 13 shows the mean ensemble collapse of the N= 32 runs. Again the left figure
shows the results of the EKI, whereas the right for single subsampling. We can see that in both
methods the collapse occurs at a similar rate. One should note that single subsampling has a
smoother result, this however is only due to the amount of observations where we evaluate our
solutions. Due to the required frequent changes in subsampling, we obtain more observations.
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Figure 13. Mean ensemble collapse of all Nens = 10 particles for the two methods. The
different colours represent the ensemble collapse of one ensemble member respectively.
Left figure: EKI; right figure: single-subsampling.

6. Conclusions

We have introduced subsampling schemes for EKI to allow the application of the method also
in the large data regime. Based on recent results on continuous stochastic gradient processes
[23], two subsampling approaches, (i) single subsampling, where each particle obtains the
same data set when switching the data and (ii) batch-subsampling where data sets may differ
for each particle, have been considered in the continuous-time setting. By applying Tikhonov
regularisation and variance inflation on both methods (i) and (ii) we were able to show con-
vergence of the schemes to the solution of the original EKI version. For the non-variance
inflated variant of (i) convergence results with an algebraic rate could be proven. For batch-
subsampling we were only able to show convergence when using a vanishing variance inflation
over time. However, our numerical experiments in section 5.1 also showed similar conver-
gence results for non-variance inflated batch-subsampling. The analysis requires the control
of the eigenvalues of the empirical covariance w.r. to the initial ensemble. This will be sub-
ject to future work. Further, we also considered in section 5.2 a numerical experiment for
a non-linear forward operator. Single-subsampling without variance inflation shows similar
convergence results as the original EKI. Analysis of subsampling techniques for non-linear
forward operators will be also subject for future work.
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Appendix. Proof of theorem 3.3

We now prove theorem 3.3 which we first recall below.

Theorem A.1 (theorem 3.3). Let assumption 3.2(i) and (ii) hold for a function h and a
stochastic approximation process (i(t),θ(t))t⩾0 with initial values (i0,θ0) ∈ I×X. Then,

lim
t→∞

dW (δ(· − θ∗),P(θ(t) ∈ ·|θ0, i0)) = 0.

To prove this theorem, we first define an auxiliary process (i(ε)(t),θ(ε)(t))t⩾0 that converges
to (i(t),θ(t))t⩾0 as ε→ 0, but has a bounded transition rate matrix. For this process, we show
Wasserstein ergodicity. Let ε> 0 and B(t,ε) := A(− log(ε+ exp(−t))), t⩾ 0 where (A(t))t⩾0

is the transition rate matrix given in (3.3). We then define (i(ε)(t))t⩾0 to be the stochastic
process with transition rate matrix B(t,ε) and (θ(ε)(t))t⩾0 to be the related stochastic approx-

imation process. Moreover, we denote byK(ε)
t|t0 := P(θ(ε)(t) ∈ ·|θ(ε)(t0) = ·) theMarkov kernel

associated with (θ(ε)(t))t⩾0, we ignore the underlying dependency on (i(ε)(t))t⩾0. Similarly,
we write Kt|t0 := P(θ(t) ∈ ·|θ(t0) = ·).

In a first auxiliary result, we show that (θ(ε)(t))t⩾0 is ergodic and converges to a unique
stationary measure.

Lemma A.2. Let assumption 3.2(i) and (ii) hold and let ε> 0. Then, there is a unique prob-
ability measure µε such that for any initial distribution µ0 := P(θ(ε)(0) ∈ ·) with finite second
moment, we have

lim
t→∞

dW(µε,P(θ(ε)(t)) ∈ ·)) = 0.

Proof. 1. Let µ0,µ
†
0 be to different initial distributions. Moreover, let (θ(ε)(t))t⩾0, (θ

(ε)
† (t))t⩾0

be two realisations of the stochastic approximation process with µ0 = P(θ(ε)(0) ∈ ·) and µ†
0 =

P(θ(ε)† (0) ∈ ·). Furthermore, we assume that the processes are coupled through the associated

index processes. Indeed, we assume that (i(ε)(t))t⩾0 and (i
(ε)
† (t))t⩾0 are almost surely identical.

Then,

dW(µ0K
(ε)
t|0 ,µ

†
0K

(ε)
t|0 )

2 ⩽ E[‖θ(ε)(t)− θ
(ε)
† (t)‖2] (t⩾ 0).

Assumption 3.2(ii) implies that

d‖θ(ε)(t)− θ
(ε)
† (t)‖2

dt
= 2〈Fi(θ(ε)(t))−Fi(θ

(ε)
† (t)),θ(ε)(t)

− θ
(ε)
† (t)〉X ⩽−2h(t)‖θ(ε)(t)− θ

(ε)
† (t)‖2.
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Now, the Grönwall inequality implies that

‖θ(ε)(t)− θ
(ε)
† (t)‖2 ⩽ exp

(
−2
ˆ t

0
h(t)dt

)
‖θ(ε)(0)− θ

(ε)
† (0)‖2.

Taking expectations on both sides, we obtain:

dW(µ0K
(ε)
t|0 ,µ

†
0K

(ε)
t|0 )

2 ⩽ exp

(
−2
ˆ t

0
h(t)dt

)
E
[
‖θ(ε)(0)− θ

(ε)
† (0)‖2

]
(A.1)

which converges to 0 as t→∞ by assumption 3.2(ii).
2. To show the assertion of the theorem, we now choose some δ > 0 and consider the process
θ
(ε)
† (t) := θ(ε)(t+ δ). The contraction property (A.1) implies that

dW(µ0K
(ε)
t|0 ,µ0K

(ε)
t+δ|0)→ 0, (t→∞).

Thus, the sequence (µ0K
(ε)
δn|0)

∞
n=0 is a Cauchy sequence on the Wasserstein space associated to

dW. Thus, due to the completeness ofWasserstein spaces, see [7], we have thatµ0Kt|0 converges
to some probability distributionµε as t→∞ in dW. Again due to the contraction given in (A.1),
µε does not depend on the initial distribution µ0 and is, thus, unique.

In the second auxiliary result, we show that (θ(ε)(t))t⩾0 converges to (θ(t))t⩾0, as ε ↓ 0, and
that πε converges to δ(· − θ∗). This result is a small extension of proposition 4 in [23] and the
proof proceeds identically.

Proposition A.3. Let assumption 3.2(i) and (ii) hold. Then, we have

1. dW(µ0K
(ε)
t|t0 ,µ0Kt|t0)⩽ α ′(ε) (ε > 0) for any initial distribution µ0,

2. dW(µε, δ(· − θε))⩽ α ′ ′(ε) (ε > 0),

where α ′,α ′ ′ : [0,∞)→ [0,∞) are continuous and equal to 0 at 0.

The proof of theorem 3.3 now consists in a simple rearrangement of the auxiliary results
above.

Proof of theorem 3.3. By the triangular inequality, we have

dW (δ(· − θ∗),P(θ(t) ∈ ·|θ0, i0))
⩽ dW (δ(· − θ∗),µε)+ dW(µε,P(θ(ε)(t)) ∈ ·))+ dW(P(θ(ε)(t)) ∈ ·),P(θ(t)) ∈ ·))

where the last term in the sum is identical to dW(µ0K
(ε)
t|t0 ,µ0K

(ε)
t|t0 ). By lemma A.2 and proposi-

tion A.3, we have dW (δ(· − θ∗),P(θ(t) ∈ ·|θ0, i0))→ 0, as t→∞.

Lemma A.4 (lemma 4.4). Given the Nsub subsamples
(
ỹ†(1), . . . , ỹ

†
(Nsub)

)
, assume that the

centred initial ensemble is a generator of the full space X, i.e. span{e( j)0 , j ∈ J}= X. We
further assume that

∑Nens
j=1(θ

†
j − θ̄†)(θ†j − θ̄†)⊤ has full rank d. Then the particles converge

to the true solution θ† exponentially fast, i.e. θ( j) → θ†i with θ†i denoting the minimiser of
Φi(θ) =

1
2‖Ãi θ− ỹi‖2.

Proof. Note that we do not switch the data. Therefore, the subset that each particle obtains
does not depend on time.
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The gradients g( j) =∇Φ(i;j)(θ) = Ã⊤
(i;j)(Ã(i;j)θ

( j) − ỹ(i;j)) satisfy

dÃ⊤
(i;j)Ã(i;j)u(j)(t)

dt
=−Ã⊤

(i;j)Ã(i;j)ĈtÃ
⊤
(i;j)(Ã(i;j)θ

(j)(t)− ỹ(i;j)).

Wewill prove in the following that g( j) → 0 exponentially fast as t→∞. This is a sufficient
and necessary optimality condition as A⊤

i(;j)Ã(i;j) is positive definite due to regularisation. We
obtain

1
2

d‖g( j)‖2
Ã⊤
(i;j)Ã(i;j)

dt
=− 1

Nens

Nens∑
k=1

〈e(k),g( j)〉2 ⩽ 0, (A.2)

i.e. the gradients are monotonically decreasing. To prove convergence, we will now show that
1
2
d
dt‖g

( j)‖2
Ã⊤
(i;j)Ã(i;j)

< 0. Note that, if g( j) 6= 0 and {e(k)}Nens
k=1 is still a generating set of X at time

t, then there exists at least one k ∈ {1, . . . ,Nens} such that 〈e(k),g( j)〉 6= 0. The quantity e( j)

satisfies

de(j)(t)
dt

=−Ĉtv(j) =− 1
Nens

Nens∑
k=1

〈v(j),e(k)〉e(k),

with v( j) = g( j) − ḡ. Thus the dynamical behaviour of empirical covariance is given by

d
dt
Ĉ= DĈ+ ĈD⊤

with D=− 1
Nens

∑Nens

j=1 v
( j) ⊗ e( j).

Therefore, the rank of the empirical covariance stays constant over time (see [27]) and the
members {e( j)}Nens

j=1 still form a generating set of X at time t.

Then, there exists at least one k in (A.2) such that 〈e(k),g( j)〉2 6= 0, i.e. the gradients converge
to 0.

This implies the convergence θ( j) → θ†j due to the strong convexity. By assumption, the

limit of the empirical covariance has full rank d, since θj → θ†j , i.e. the minimal eigenvalue

λmin(Ĉt) of the empirical covariance is bounded from below uniformly in time. Thus, we have

1
2

d‖g(j)‖2
Ã⊤
(i;j)Ã(i;j)

dt
=−〈g(j),C(t)g(j)〉⩽− λmin

λmax((Ã⊤
i; Ãi)

−1)
‖g(j)‖2Ã⊤

(i;j)Ã(i;j)
,

where λmin > 0 denotes the lower bound on the minimal eigenvalue of the empirical
covariance.

Lemma A.5. The particles θ( j)converge at exponential speed to the unique solution of the
regularised data misfit, i.e. ρ( j)(t) = Ai(t;j)θ( j) − yi(t;j) → 0. Hence, there exists a (unique) θ†j ∈
S= span{θ(1)0 , . . . ,θ

(J)
0 } such that θ( j) → θ†j .

Furthermore, let θ1 and θ2 be two coupled process with different initial values θ1(0),θ2(0).
Then there exists a measurable function h : [0,∞)→ R such that the following holds

−〈θ1 − θ2,(Ĉ
1
t +αviCvi)DθΦi′(t,ε;·)(θ1)− (Ĉ1

t +αviCvi)DθΦi′(t,ε;·)(θ2)〉⩽−h(t)‖θ1 − θ2‖2,

for t large enough. We have
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1. Single-Subsampling with variance inflation:

h(t) = αviλmin(Cvi) min
i∈{1,...,Nsub}

λmin(Ã
T
i Ãi).

2. Batch-Subsampling with variance inflation:

h(t) = αviλmin(Cvi) min
i∈{1,...,Nsub}

λmin(A
T
i Ai)

3. Single-Subsampling without variance inflation:

h(t) = λmin(Ĉt) min
i∈{1,...,Nsub}

λmin(Ã
T
i Ãi).

4. Batch-Subsampling with diminishing variance inflation:

h(t) =
αvi
t
λmin(Cvi) min

i∈{1,...,Nsub}
λmin(A

T
i Ai).

Proof. 1. We first consider single subsampling with variance inflation
The gradients Ã⊤

(i;j)ρ
( j) for a constant (w.r. to time and particle) data stream satisfy the

following differential equation for all subsets i.

dÃ⊤
i ρ

(j)(t)
dt

=−Ã⊤
i Ãi[Ĉt+αviCvi]Ã

⊤
i ρ

(j)(t).

The norm of the gradients thus satisfies

1
2

d‖Ã⊤
i ρ

(j)(t)‖2
Ã⊤
i Ãi

dt
⩽−αvi

λmin(Cvi)

λmax(Ã⊤
i Ãi)

‖ρ(j)(t)‖2Ã⊤
i Ãi

,

which implies the exponential convergence of the mapped residuals and with the injectivity
of the modified forward operator the exponential convergence in the parameter space to the
(unique) solution of the regularised data misfit.

Therefore, we have θ( j) → θ†j .

Then θ†j is an equilibrium point of

Fi(θ(j), t) = (Ĉt+αviCvi)DθΦ
reg
i (θ(j)(t)) (j ∈ J).

Hence, there exists a function κ(t)⩾ 0 for all t> 0 that converges exponentially fast to 0 for
t→∞ such that:

‖θ(j)t −PYθ
†
j ‖⩽ κ(t) ∀t⩾ 0.

Due to linearity w.r. to the initial values, we obtain

‖θ(t,θ0)(j) − θ(t,θ1)
(j)‖= ‖θ(t,θ0)(j) −PYθ

†
j − (θ(t,θ1)

(j) −PYθ
†
j )‖⩽ 2κ(t).

The next step is to consider equation (ii) from assumption 3.2. Note that θ1 and θ2 are
column vectors consisting of the stacked particle vectors.

Therefore, we define the following matrices to represent the gradient flow for
the stacked vector. We set: Ã= diag{Ã1, Ã2, . . . , ÃNsub}, ÃT = diag{ÃT1 , ÃT2 , . . . , ÃTNsub

},Ct =

diag{Ĉt+αviCvi, Ĉt+αviCvi, . . . , Ĉt+αviCvi}.
Then the dynamics are given by:

dθ
dt

=−ĈÃT(Ãθ− y).

We want to show:

−〈θ1 − θ2,C1
tDθΦi′(t,ε;·)(θ1)−C2

tDθΦi′(t,ε;·)(θ2)〉⩽−hi′(t)‖θ1 − θ2‖2,
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We can split the left hand side into two parts:

−〈θ1 − θ2,C1
tDθΦi′(t,ε;·)(θ1)−C2

tDθΦi′(t,ε;·)(θ2)〉
=−〈θ1 − θ2,C1

tDθΦi′(t,ε;·)(θ1)−C1
tDθΦi′(t,ε;·)(θ2)

+C1
tDθΦi′(t,ε;·)(θ2)−C2

tDθΦi′(t,ε;·)(θ2)〉
=−〈θ1 − θ2,C1

t

[
DθΦi′(t,ε;·)(θ1)−DθΦi′(t,ε;·)(θ2)

]
〉

− 〈θ1 − θ2,
[
C1
t −C2

t

]
DθΦi′(t,ε;·)(θ2)〉.

Substituting the corresponding gradient flows into the equations, we obtain

−〈θ1 − θ2,C1
t

[
DθΦi′(t,ε;·)(θ1)−DθΦi′(t,ε;·)(θ2)

]
〉

− 〈θ1 − θ2,
[
C1
t −C2

t

]
DθΦi′(t,ε;·)(θ2)〉

=−〈θ1 − θ2,C1
t Ã

TÃ(θ1 − θ2)〉
− 〈θ1 − θ2,

[
C1
t −C2

t

]
ÃT(Ãθ2 − ỹ)〉.

We consider both terms separately. For the first part we obtain

−〈θ1 − θ2,C1
t Ã

TÃ(θ1 − θ2)〉⩽−λmin(C1
t )λmin(Ã

TÃ)‖θ1 − θ2‖
=−λmin(Ĉ

1
t +αviCvi)λmin(Ã

TÃ)‖θ1 − θ2‖

⩽−αviλmin(Cvi)

(
min

i∈{1,...,Nsub}
λmin(Ã

T
i Ãi)

)
‖θ1 − θ2‖2,

where we used the positive definiteness of Ĉ1
t for every t⩾ 0 in the third step. For the second

term we obtain

−〈θ1 − θ2,
[
C1
t −C2

t

]
ÃT(Ãθ2 − ỹ)〉⩽ |〈θ1 − θ2,

[
C1
t −C2

t

]
ÃT(Ãθ2 − ỹ)〉|

⩽ ‖θ1 − θ2‖‖C1
t −C2

t ‖‖ÃT(Ãθ2 − ỹ)‖.

We can compare the rates of convergence. Considering the results from above we have

‖θ1 − θ2‖2 ∈ O(κ(t)2),

and also

‖ÃT(Ãθ2 − ỹ)‖ ∈ O(κ(t)).

Finally, we have for the covariance matrices

‖C1
t −C2

t ‖= ‖1
J

J∑
j=1

(u(j)1 − ū1)(u
(j)
1 − ū1)

T− (u(j)2 − ū2)(u
(j)
2 − ū2)

T‖

⩽ 1
J

J∑
j=1

‖u(j)1 (u(j)1 )T− u(j)2 (u(j)2 )T‖+ ‖u(j)1 (ū1)
T− u(j)2 (ū2)

T‖

+ ‖ū1(u(j)1 )T− ū2(u
(j)
2 )T‖+ ‖ū1(ū1)T− ū2(ū2)

T‖.
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Since we know that all particles converge with rate κ(t), the mean values also converge
with the same rate. By using triangle inequality we obtain the following

‖C1
t −C2

t ‖ ∈ O(κ(t)).

Hence

‖θ1 − θ2‖‖C1
t −C2

t ‖‖ÃT(Ãθ2 − ỹ)‖ ∈ O(κ(t)3),

showing that the second term converges faster and we can therefore neglect it.
2. In batch subsampling with variance inflation the only difference is that the forward oper-

ator and data both depend on the particle, i.e. the mapped residuals satisfy

dρ(j)

dt
=−Ai(t;j)

[
Ĉt+αviCvi

]
ATi(t;j)ρ

(j)(t)

with ρ( j) = A(i;j)θ
( j) − ỹ(i;j). The exponential convergence of each particle to the minimiser of

the functional 1
2‖Ã(i;j)θ

( j) − ỹ(i;j)‖2 + α
2 ‖θ‖C0 follows again from standard arguments with the

Lyapunov function ‖ÃT(i;j)ρ
( j)‖2. Hence, the convexity analysis does not change.

3. If we do not use variance inflation the gradients Ã⊤
(i;j)ρ

( j) satisfy the following differential
equation

dÃ⊤
(i;j)ρ

(j)(t)

dt
=−Ã⊤

(i;j)Ã(i;j)ĈtÃ
⊤
(i;j)ρ

(j)(t).

Again, by basic Lyapunov theory we obtain convergence at an algebraic speed, which
however is enough to do the same analysis as above. Similar to above we obtain h(t) =
λmin(Ĉt)(mini∈{1,...,Nsub}λmin(ATi Ai))

4. Batch subsampling with diminishing variance inflation: theorem 4.4 gives us the expo-
nential convergence to the respective solution. Then the convexity analysis is similar to the
above calculations and we obtain h(t) = αvi

1+tλmin(Cvi)
(
mini∈{1,...,Nsub}λmin(ATi Ai)

)
.

Subsampling without variance inflation

Lemma A.6. For the regularised single-subsampling EKI flow, given by the solution of (4.1),
the following lower bound for the smallest eigenvalue λmin(t) of the empirical covariance Ĉ(t)
holds

λmin(t)⩾
(
2ct+

1
λmin(0)

)−1

.

Proof. The proof follows the ideas used in [12, theorem 3.5].
W.l.o.g we assume that our initial ensemble is a generator of Rd. Otherwise we consider

the dynamics of the corresponding coordinates, which correspond to the minimisation prob-
lem (2.8). The particles satisfy (3.4). Substituting the covariance matrix
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Ĉt =
1
Nens

Nens∑
j=1

(
θ(j)(t)− θ̄t

)(
θ(j)(t)− θ̄t

)T
=

1
Nens

Nens∑
j=1

e(j)t
(
e(j)t
)T

into the dynamics of the particles gives

dθ(j)(t)
dt

=− 1
Nens

Nens∑
k=1

e(k)t
(
e(k)t
)T
ÃTi(t)

(
Ãi(t)θ

(j)(t)− ỹi(t)
)

=− 1
Nens

Nens∑
k=1

e(k)t (Ãi(t)e
(k)
t )T

(
Ãi(t)θ

(j)(t)− ỹi(t)
)

=− 1
Nens

Nens∑
k=1

Dkje
(k)
t ,

where we set Dkj := 〈Ãi(t)e
(k)
t ,
(
Ãi(t)θ( j)(t)− ỹi(t)

)
〉.

Next we consider the dynamics of the weighted particles, i.e.

dθ̄(t)
dt

=
1
Nens

Nens∑
j=1

dθ(j)(t)
dt

=− 1
Nens

Nens∑
j=1

1
Nens

Nens∑
k=1

Dkje
(k)
t

=− 1
Nens

Nens∑
j=1

1
Nens

Nens∑
k=1

〈Ãi(t)e
(k)
t ,
(
Ãi(t)θ

(j)(t)− yi(t)
)
〉e(k)t

=− 1
Nens

Nens∑
k=1

Fke
(k)
t ,

where we set Fk := 〈Ãi(t)e
(k)
t ,
(
Ãi(t)θ̄− ỹi(t)

)
〉.

The difference of the scalars Djk and Fk is given by

〈Ãi(t)e
(k)
t ,
(
Ãi(t)θ

(j)(t)− ỹi(t)
)
〉− 〈Ãi(t)e

(k)
t ,
(
Ãi(t) ¯θ(t)− ỹi(t)

)
〉

= 〈Ãi(t)e
(k)
t , Ãi(t)e

(j)
t 〉 := Ekj.

Obviously we have Ekj = Ejk. With this we can quantify the dynamics of the centred particles,
i.e.

de(j)(t)
dt

=
dθ(j)(t)− θ̄(t)

dt

=− 1
Nens

Nens∑
k=1

Dkje
(k)
t +

1
Nens

Nens∑
k=1

Fke
(k)
t

=− 1
Nens

Nens∑
k=1

(Dkj−Fk)e
(k)
t

=− 1
Nens

Nens∑
k=1

Ekje
(k)
t .
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Finally, we obtain for the dynamics of the empirical covariance Ĉt

dĈ(t)
dt

=
1
Nens

Nens∑
j=1

d
dt

(
e(j)t
(
e(j)t
)T)

=
1
Nens

Nens∑
j=1

(
− 1
Nens

Nens∑
k=1

Ekje
(k)
t

)(
e(j)t
)T

+
1
Nens

Nens∑
j=1

e(j)t

(
− 1
Nens

Nens∑
k=1

Ekje
(k)
t

)T

=− 2

Nens
2

Nens∑
j,k=1

Ekje
(k)
t

(
e(j)t
)T

.

Now let λmin(t) be the smallest eigenvalue of Ĉ(t) with unit-norm eigenvector v(t). Then
we have

0=
d
dt
‖v(t)‖2X = 2〈v(t), d

dt
v(t)〉.

The dynamics of the smallest eigenvalue are then given by:

dλmin(t)
dt

=
d
dt
〈v(t), Ĉ(t)v(t)〉

= 〈v(t), d
dt
(Ĉ(t))v(t)〉+ 〈 d

dt
v(t), Ĉ(t)v(t)〉

= 〈v(t), d
dt
(Ĉ(t))v(t)〉+λmin〈

d
dt
v(t),v(t)〉

= 〈v(t), d
dt
(Ĉ(t))v(t)〉

=− 2

Nens
2

Nens∑
j,k=1

Ekj〈v(t),e(k)t
(
e(j)t
)T
v〉.

Note that the following holds

〈v(t),e(k)t
(
e(j)t
)T
v〉= 〈

(
e(k)t
)T
v(t),

(
e(j)t
)T
v〉= 〈e(k)t ,v〉〈e(j)t ,v〉.

Substituting this and Ekj into the latter equation, gives us

dλmin(t)
dt

=− 2

Nens
2

Nens∑
j,k=1

〈Ãi(t)e
(k)
t , Ãi(t)e

(j)
t 〉〈e(k)t ,v〉〈e(j)t ,v〉

=− 2

Nens
2

Nens∑
j,k=1

〈Ãi(t)e
(k)
t 〈e(k)t ,v〉, Ãi(t)e

(j)
t 〈e(j)t ,v〉〉

=−2〈Ãi(t)Ĉ(t)v(t), Ãi(t)Ĉ(t)v(t)〉

=−2‖Ãi(t)Ĉ(t)v(t)‖2

⩾−2‖Ãi(t)‖2λ2
min(t).

Setting c=maxi∈{1,...,Nsub} ‖Ai(t)‖2, we obtain for this ODE the following lower bound for
the solution

λmin(t)⩾
(
2ct+

1
λmin(0)

)−1

.
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