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Abstract 

Objective: This thesis aims to evaluate the relationship between the skeletal muscle index derived 

from computed tomography (CT) images and patient outcomes, as well as its implications for patient 

care. This goal was pursued in five individual studies: Studies A and B evaluated the relationship be-

tween the lumbar skeletal muscle index (L3SMI) and patient outcomes in the intensive care unit (ICU) 

and oncology setting, respectively. Studies C and D evaluated the effect of CT acquisition parameters 

on body composition measures. Study E proposed a novel technique to automate the segmentation 

of skeletal muscle using a fully automated deep learning system.  

Material and methods: In total, 1328 axial CT images were included in the five studies. Patients in 

studies A and B were part of the clinical trials NCT01967056 and NCT01401907 at Massachusetts 

General Hospital (MGH), respectively. Body composition indices were computed using semi-auto-

mated segmentation. Multivariable regression models with a priori defined covariates were used to 

analyze clinical outcomes. To evaluate whether CT acquisition parameters influence segmentation, the 

Bland-Altman approach was used. In study E, a fully convolutional neural network was implemented 

for deep learning-based automatic segmentation. 

Results: Study A found lower L3SMI to be a predictor of increased mortality within 30 days of extu-

bation (p = 0.033), increased rate of pneumonia within 30 days of extubation (p = 0.002), increased 

adverse discharge disposition (p = 0.044), longer hospital stays post-extubation (p = 0.048), and higher 

total hospital costs (p = 0.043). In study B, low L3SMI was associated with worse quality of life (p = 

0.048) and increased depression symptoms (p = 0.005). Threshold-based segmentation of skeletal 

muscle in study C and adipose tissue compartments in study D were significantly affected by CT 

acquisition parameters. The proposed deep learning system in study E provided automatic segmenta-

tion of skeletal muscle cross-sectional area and achieved a high congruence to segmentations per-

formed by domain experts (average Dice coefficient of 0.93). 

Conclusion: L3SMI is a useful tool for the assessment of muscle mass in clinical practice. In critically 

ill patients, L3SMI can provide clinically useful information about patient outcomes at the time of 

extubation. Patients with advanced cancer who suffered from low muscle mass reported worse quality 

of life and increased depression symptoms. This highlights the clinical relevance of addressing muscle 

loss early on as part of a multimodal treatment plan. Importantly, indices utilized in body composition 

analysis are significantly affected by CT acquisition parameters. These effects should be considered 

when body composition analysis is used in clinical practice or research studies. Finally, our fully auto-

mated deep learning system enabled instantaneous segmentation of skeletal muscle. 
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Abstract in German 

Zielsetzung: Das Ziel der vorliegenden Dissertation war es, den Einfluss des auf CT-Bildern berech-

neten Skelettmuskelindexes auf klinische Ergebnisse von Patienten und die daraus resultierenden Im-

plikationen für die Patientenversorgung zu evaluieren. Dieses Ziel wurde in fünf Einzelstudien verfolgt: 

In den Studien A und B wurde der Einfluss des lumbalen Skelettmuskelindex (L3SMI) auf klinische 

Endpunkte von Patienten auf der Intensivstation sowie in der Onkologie untersucht. Die Studien C 

und D evaluierten die Auswirkungen von CT-Akquisitionsparametern auf Indizes der Körperzusam-

mensetzung. Studie E stellte eine neuartige Technik der automatisierten Segmentierung von Skelett-

muskulatur vor, die durch maschinelles Lernen ermöglicht wurde. 

Material und Methoden: Insgesamt wurden 1328 axiale CT-Bilder in die fünf Studien eingeschlossen. 

Die Patienten der Studien A und B waren Teilnehmer der klinischen Studien NCT01967056 und 

NCT01401907 am Massachusetts General Hospital. Die Indizes der Körperzusammensetzung wurden 

mithilfe halbautomatischer Segmentierung berechnet. Die klinischen Endpunkte wurden in multivari-

ablen Regressionsmodellen mit a priori definierten Kovariaten analysiert. Um zu evaluieren, ob CT-

Akquisitionsparameter die Segmentierung beeinflussen, wurde der Bland-Altman-Ansatz verwendet. 

In Studie E wurden ein künstliches neuronales Netzwerk sowie maschinelles Lernen für die automati-
sche Segmentierung eingesetzt. 

Ergebnisse: In Studie A war ein niedriger L3SMI ein Prädiktor für eine höhere Mortalität (p = 0.033) 

und Pneumonierate (p = 0.002) innerhalb von 30 Tagen nach der Extubation sowie für mehr ungüns-

tige Entlassungen (p = 0.044) und höhere Behandlungskosten für den gesamten Krankenhausaufent-
halt (p = 0.043). Ein niedriger L3SMI war in Studie B mit einer schlechteren Lebensqualität (p = 0.048) 

und stärkeren depressiven Symptomen (p = 0.005) assoziiert. Die schwellenwertbasierte Segmentierung 

der Skelettmuskulatur in Studie C und der Fettgewebekompartimente in Studie D wurde durch CT-

Akquisitionsparameter signifikant beeinflusst. Das in Studie E vorgestellte vollautomatische Segmen-

tierungssystem erreichte eine hohe Übereinstimmung mit den durch Experten erstellten Segmentatio-

nen (durchschnittlicher Dice-Koeffizient von 0.93). 

Fazit: Der L3SMI ist ein Werkzeug zur Beurteilung von Muskelmasse. Bei Intensivpatienten kann 

L3SMI zum Zeitpunkt der Extubation nützliche klinische Informationen liefern. Patienten mit fortge-

schrittener Krebserkrankung, die zudem eine geringere Muskelmasse hatten, berichteten über eine 

schlechtere Lebensqualität und stärkere depressive Symptome. Dies unterstreicht die Notwendigkeit, 

die Muskulatur frühzeitig als Teil eines multimodalen Behandlungskonzeptes zu adressieren. Die Indi-

zes der Körperzusammensetzung werden signifikant von CT-Akquisitionsparametern beeinflusst. Dar-

über hinaus ermöglichte unser vollautomatisiertes System dank maschinellen Lernens die verzöge-

rungsfreie Segmentierung von Skelettmuskulatur. 
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Synopsis 

1 Introduction 

In medical imaging, the quantification of muscle mass has been demonstrated to correlate with a wide 

variety of relevant outcomes in clinical settings, including intensive care (1, 2), surgery (3, 4), and on-

cology (5, 6). There is a demand for an objective muscle assessment because clinical muscle assessments 

depend on the examiner’s experience and patient cooperation, which can be affected by pain, restriction 

by medical devices, or communication barriers (7). Estimates of a patient’s muscle reserves in routine 

care often rely on weight, bedside tests of muscle strength (7-9), or subjective judgment, which is re-

ferred to as the “eyeball test” by experienced clinicians (4). In contrast, body composition analysis based 

on medical imaging provides an objective assessment of muscle mass and does not rely on patient 

cooperation. Clinicians are often unaware of their patient’s muscular resources based on routine clinical 

assessment (10). An international consensus highlighted the importance of evaluating sarcopenia (low 

muscle mass) on computed tomography (CT) imaging (11). Imaging data is readily available in various 

clinical settings, including surgery and oncology, as imaging protocols are integrated into routine clinical 

care (2, 12). Body composition analysis enables the extraction of clinically useful information from 

already-available medical imaging without additional costs or further radiation exposure. CT imaging is 

considered to be the gold standard for the quantification of muscle mass in body composition analysis 

(9, 12), and cadaver studies validated medical imaging as a reliable method of muscle measurement (13). 

Previous estimates of muscle mass on medical imaging often required multi-slice whole-body imaging 

and were therefore time-consuming and expensive. In search of a compromise between precision and 

cost, muscle cross-sectional area (CSA) at the level of the third lumbar vertebral body (L3) has been 

shown to correlate with whole-body muscle mass (14). Furthermore, muscle CSA measurements on 

CT were highly reproducible (2) and an objective technique to quantify muscle mass. By normalizing 

muscle CSA at L3 level for patients’ statue (CSA divided by the square of patients’ height), the resulting 

L3 skeletal muscle index (L3SMI) has been established as a surrogate marker for the muscle mass of 

patients (5, 6).  

This doctoral thesis aimed to evaluate the relationship between skeletal muscle (represented by L3SMI) 

derived from CT images and patient outcomes as well as its implications for patient care. This aim was 

pursued in five published studies: studies A and B investigated the relationship between L3SMI and 

clinical outcomes in intensive care and oncology settings, studies C and D evaluated the effect of CT 

acquisition parameters on body composition indices, and study E explored the opportunity to automate 

the computation of L3SMI. Figure 1 provides a high-level overview of the studies conducted as part 

of this MD/PhD thesis. 
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Figure 1.  High-level overview of the studies conducted as part of this thesis. CSA = cross-sectional area; CT 

= computed tomography; IV = intravenous; L3 = third lumbar vertebral body; L3SMI =L3 skeletal 
muscle index; SMD = skeletal muscle density. 

First, we aimed to evaluate the relationship between L3SMI and patient outcomes in two studies in 

different clinical settings: intensive care (A) and oncology (B). Study A, including 231 patients from 

the intensive care unit (ICU), aimed to evaluate the relationship between CT-derived L3SMI and post-

extubation outcomes in the ICU. In the intensive care setting, effective physiological ventilation is 

essential for successful extubation. Conventionally, it is presumed that lower muscle mass negatively 

impacts physiological ventilation (15), but the association between lean muscle mass and post-extuba-

tion outcomes has not previously been investigated. The hypothesis was that increased lean muscle 

mass is associated with lower 30-day mortality, decreased incidence of adverse discharge disposition, 

decreased incidence of pneumonia, and several secondary outcomes (16). Study B aimed to explore 

the relationship of L3SMI, quality of life (QoL), and mood in newly diagnosed patients with advanced 

cancer. In the face of an incurable disease, palliative care is often implemented to improve patients’ 
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symptom burden and QoL. Although QoL and mood are suitable measures of the effectiveness of 

palliative care, data on the relationship between sarcopenia (objectively evaluated on CT images) and 

these patient-reported outcomes is missing. Investigating the relationship between sarcopenia and pa-

tients’ mood and QoL might open up new opportunities to improve palliative care in patients with 

advanced cancer. A total of 237 oncology patients were included because sarcopenia is often present 

in patients with advanced cancer and adversely affects patient survival (5, 6) and physical function 

(17). The hypothesis was that a substantial share of patients with advanced cancer would fulfill the 

criteria for sarcopenia based on L3SMI measurements and that patients affected by sarcopenia would 

report worse mood and QoL symptoms (18).  

Second, studies C and D aimed to evaluate the effect of imaging parameters on the obtained indices 

of body composition analysis. During the literature review, it became clear that previous studies rarely 

reported CT acquisition parameters of the analyzed scans. CT acquisition parameters affect image 

quality and can vary significantly between imaging protocols in clinical practice. Studies evaluating the 

effect of CT acquisition parameters on muscle segmentation were limited, and several influencing CT 

acquisition parameters had not been evaluated. Study C therefore aimed at quantifying the effect of 

CT acquisition parameters, including intravenous (IV) contrast, tube current, and slice thickness on 

the segmentation of skeletal muscle (19). This study, including 216 CT images, evaluated the effect of 

CT acquisition parameters on muscle CSA and skeletal muscle density (SMD). These two indices were 

chosen because they are frequently used in the body composition analysis of muscle. The mean atten-

uation of a computed CSA in Hounsfield units (HU) is defined as SMD, a measurement of muscular 

fat infiltration (20). CSA and SMD were calculated utilizing imaging software (OsiriX or 3D Slicer) 

which classifies pixels based on HU thresholds, a process known as image segmentation. Fixed thresh-

olds are the current standard approach, using segmentation thresholds of -29 to +150 HU for muscle 

and -190 to -30 HU for fat (6, 13). Study D, including 244 CT images, aimed to evaluate the effect of 

CT acquisition parameters (IV contrast, tube current, tube potential, and slice thickness) on adipose 

tissue indices (21). Quantification and characterization of adipose tissue compartments is another 

emerging area of body composition analysis. Adipose tissue compartments include subcutaneous 

(SAT), visceral (VAT), and intermuscular adipose tissue (IMAT). Prior literature showed that SAT 

and VAT are associated with relevant clinical outcomes such as mortality (22, 23). Similar to the pre-

viously discussed topic of skeletal muscle segmentation, the effects of CT acquisition parameters on 

adipose tissue segmentation are incompletely understood. Therefore, we designed study D to evaluate 

the effect of CT acquisition parameters on adipose tissue segmentation.  

Third, while working on the previous studies, the need for an efficient and reliable atomization tool for 

the segmentation of skeletal muscle became evident. Performing body composition analysis manually 
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on hundreds of CT examinations is time-consuming and carries a rater-dependent bias. Semi-auto-

mated threshold-based segmentation requires manual correction of segmentation errors based on visual 

analysis by domain experts. In order to establish body composition analysis as a clinical tool, automated 

segmentation systems are required, because they provide rapid and objective results. Adipose tissue 

segmentation can be reliably performed using a consistent HU range, but muscle segmentation is com-

plicated by the potentially overlapping HU spectra of muscle and neighboring organs. Previously pub-

lished automated segmentation strategies rely on experienced descriptive models of the appearance and 

shape of body compartments and cannot be generalized. Accurate differentiation between muscle tis-

sue and adjunctive organs is challenging for traditional, intensity-based muscle segmentation algorithms 

due to their overlapping HU ranges. In contrast, data-driven approaches in machine learning have 

created a pathway for versatile, automated medical image segmentation applications. In study E, in-

cluding CT images of 400 patients, we aimed to develop an automated deep learning system that enables 

fast and reliable muscle segmentation. This system could potentially facilitate the clinical application of 

body composition analysis across large patient populations (24). The neural network was trained to 

differentiate features between skeletal muscle and neighboring regions in order to achieve precise re-

sults. These approaches can be generalized because of their potential to learn distinguishing image 

features from raw data (25) instead of depending on descriptive models from domain experts.  

2 Material and methods 

Essential elements of the study designs and methodologies are outlined in this section. These aspects 

are presented in greater detail in the methods sections of the respective publications (16, 18, 19, 21, 24). 

2.1 Study design 

All studies conducted as part of  this dissertation were HIPAA-compliant and approved by the insti-

tutional review board (IRB) of  Massachusetts General Hospital (MGH) (16, 19, 21, 24) or the Dana-

Farber Cancer Institute/ Harvard Cancer Center (18). Patient populations and study protocols were 

designed to tackle the particular research questions. Therefore, study protocols differed between the 

five studies and can be reviewed in detail in the respective publications (16, 18, 19, 21, 24). 

Data from a prospective cohort study (NCT01967056) was utilized in the secondary analysis for study 

A. 231 adult patients were consecutively enrolled in two ICUs at the MGH. Patients who required 

intubation and mechanical ventilation were eligible for enrollment (16). As an example, figure 2 

demonstrates the inclusion and exclusion criteria for study A.  
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Figure 2.  Inclusion and exclusion criteria for study A illustrated in a consort diagram. This figure was adapted 

from one of my previously published articles (16). ICU = intensive care unit; CT = computed 
tomography. 

The study sample for study B comprised of 237 patients from the MGH Cancer Center who were 

approached within eight weeks after being diagnosed with incurable lung or non-colorectal gastroin-

testinal cancer. Patient-reported data were collected after informed consent, as part of a randomized 

clinical trial (NCT01401907) comparing early integrated palliative and oncology care versus oncology 

care alone (26). 

For studies C and D, CT examinations were required that included at least two CT series of the same 

patient acquired within the same exam session. The departmental database (Department of Radiology 

at the MGH) was searched for CT examinations that included at least two series that were acquired 

using different CT acquisition parameters. In order to evaluate the effect of specific CT acquisition 

parameters, the series could only differ in the parameter that was investigated. A total of 216 images 
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in study C and 244 images in study D were included. Figure 3 illustrates the specific type of images 

chosen for these comparisons in study C (19). 

 
Figure 3.  The two types of CT examinations that were used to investigate the effects of CT acquisition pa-

rameters on CT images. This figure was first published in one of my previous articles (19). Each 
CT examination comprised of three CT series that were acquired using different parameters. Two 
images of the same patient were compared (shaded boxes) that were obtained during the same 
examination (same time, same scanner). This allowed for appropriate analyses of the effects of CT 
acquisition parameters. CT = computed tomography; CTA = computed tomography angiography; 
IV = intravenous; PET = positron emission tomography. 

The dataset for study E comprised of 400 CT examinations, including 200 female and 200 male pa-

tients. Patients were identified using an institutional database of lung cancer treatment at MGH. The 

treatment regimen required patients to undergo an abdominal CT scan with contrast, which was uti-

lized in this study (24).  

2.2 Image acquisition 

All images were acquired on MGH CT scanners. Manufacturer-supplied phantoms were used for the 

daily calibration of CT scanners to ensure consistency with manufacturer recommendations. All im-

ages were acquired utilizing standardized departmental imaging protocols with patients in supine po-

sition. Detailed information on the scanner specifics and imaging protocols for each study is presented 

in the respective publications (16, 18, 19, 21, 24). 

2.3 Image analysis 

CT images were analyzed using open-source 3D Slicer (version 4.10.1; www.slicer.org) or OsiriX (ver-

sion 7.0.2; Pixmeo, Bernex, Switzerland) software. Images were initially analyzed by the doctoral can-

didate (16, 18, 19) or another research assistant (21, 24) blinded to all clinical data and reviewed by a 

board-certified radiologist (minimum of 8 years of experience). All research assistants were trained by 

the radiologist to analyze radiological images and utilize the required image analysis tools. Exclusion 
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criteria were only met if the research assistant and the radiologist agreed that the muscle compartment 

could not be discriminated from the surrounding tissues. As an example, the exclusion criteria for 

study A are presented in figure 2. To evaluate inter- and intra-analyst agreement, the primary analyst 

and a second research assistant re-analyzed a random sample of 10 % of the CT images. The board-

certified radiologist once again verified this reliability assessment.  

All five studies utilized analyses of skeletal muscle CSA on a single axial image at the level of L3. CT 

images were identified and downloaded using the departmental picture archiving and communication 

system (PACS) and uploaded to OsiriX (16, 18, 19, 24) or 3D Slicer (21). The research database was 

managed on a departmental computer using OsiriX software connected to the departmental PACS 

server. Muscle CSA was measured using semi-automated, threshold-based segmentation with thresh-

olds set at the standard HU range of -29 to +150 (6, 13). Based on anatomical landmarks, the analyst 

selected the regions of interest (ROIs) which contained muscle tissue. The threshold-based segmenta-

tion algorithm included in the OsiriX “Grow Region (2D/3D Segmentation)” software tool automat-

ically segmented muscle compartments based on the defined HU thresholds. When necessary, the com-

partment boundaries were manually corrected prior to calculating CSA and mean attenuation. The 

“ExportROIs” plugin (an OsiriX software tool) was used to export numerical values for CSA and mean 

attenuation to STATA or SPSS software. A detailed manual on how to utilize the segmentation algo-

rithm and the software tools, including a step-by-step guide, is available in my laboratory journal. High-

lighted in figure 4 are the paraspinal, external and internal obliques, psoas, transversus abdominis, and 

rectus abdominis muscles, which are included in the calculated muscle CSA. The measured muscle 

cross-sectional area’s mean attenuation (in HU) was defined as SMD, as previously described in the 

literature (20). For adipose tissue compartments, CSA and mean attenuation of SAT, VAT, and IMAT 

were computed similarly using semi-automated, threshold-based segmentation. For adipose tissue, 

thresholds of -190 HU to -30 HU were applied as previously described in the literature (13).  

A 

 

 

 B 

 

Figure 4.  Axial images showing patients with low (A; 10th percentile) and high (B; 90th percentile) muscle 
mass. This figure was first published in one of my previous articles (18). The CT images are pre-
sented at the level of L3, with muscle CSA highlighted in red. CSA of paraspinal, external and 
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internal obliques, psoas, transversus abdominis, and rectus abdominis muscles was calculated using 
semi-automated threshold-based segmentation. A: Image of a 61-year-old female patient with a 
L3SMI of 34.2 cm2/m2. B: Image of a 53-year-old male patient with a L3SMI of 60.4 cm2/m2. CSA 
= cross-sectional area; CT = computed tomography; L3 =third lumbar vertebral body; L3SMI = 
L3 skeletal muscle index. 

2.4 Clinical data 

Clinical data for study A were collected from medical records and study documents. Data comprised 

age, body mass index (BMI), gender, height, hospital length of stay (LOS), post-extubation and total 

ICU LOS, mortality within 30 days post-extubation, past medical history, re-intubation within 72 h 

post-extubation, Acute Physiology and Chronic Health Evaluation (APACHE) II score on ICU ad-

mission, and Charlson Comorbidity Index (CCI). Acute respiratory failure, atelectasis, pneumonia, 

and pulmonary edema within 30 days post-extubation were defined based on the international classi-

fication of diseases, 9th edition (ICD-9) diagnosis codes. Data on total hospital costs and discharge 

destination were extracted through Enterprise Performance Systems Inc. software (Allscripts 

Healthcare, Chesterfield, USA). The sum of direct (fixed and variable costs) and indirect costs (fixed 

costs assigned in a step-down structure to respective departments) associated with patient services is 

presented as total hospital costs. Total hospital costs represent estimates of what MGH senior man-

agement believes to be the “true” costs of care at MGH. The outcome “adverse discharge disposition” 

is based on the primary discharge destination from the MGH. Discharges to a skilled nursing facility, 

a swing bed provider, a long-term care facility, or the occurrence of in-hospital mortality were defined 

as adverse. Other discharge destinations were defined as non-adverse (27).  

Clinical data for study B were collected from medical records, a demographic questionnaire, and as-

sessments which participants completed as part of the study protocol at baseline. Data from medical 

records included age, cancer diagnosis, initial cancer treatment, Eastern Cooperative Oncology Group 

(ECOG) performance status, and sex. A patient questionnaire was used to capture the patient’s edu-

cation, ethnicity, income, race, relationship status, religion, and smoking history. Functional Assess-

ment of Cancer Therapy - General (FACT-G) was used to assess patients’ QoL (28). A total of 27 

items, applying a five-point Likert scale ranging from 0 (not at all) to 4 (very much), are utilized as part 

of the FACT-G to assess patients’ well-being across four domains (emotional, functional, physical, 

and social). Higher scores suggest a better QoL. The Hospital Anxiety and Depression Scale (HADS) 

monitored patients’ anxiety and depression symptoms (29). The 14-item HADS comprises two seven-

item subscales, both with a score range of 0 to 21, aimed at assessing anxiety and depression symp-

toms, with higher scores indicating worse symptoms. 
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2.5 Statistical analysis 

Descriptive statistics, such as frequencies, means, medians, interquartile range (IQR), and standard 

deviations (SDs) were used to analyze the clinical data. Statistical testing was two-tailed, and the sta-

tistical significance level was defined as p d 0.05. To investigate whether radiological markers inde-

pendently correlate with clinical outcomes, multivariable linear regression models were built for con-

tinuous outcomes, and multivariable logistic regression models were built for categorical outcomes. 

Independent variables were defined a priori based on the respective literature and their importance 

for clinical care to prevent falsely identifying significant results. Results of the multivariable models 

are reported as adjusted incidence rate ratios (aIRRs) or adjusted odds ratios (aORs) with 95 % con-

fidence intervals (CIs) and p-values. Predicted probabilities derived from multivariable logistic regres-

sion models were used to illustrate the effect of radiological markers on dichotomous outcomes across 

a spectrum of possible values. Independent samples Student’s t-test for continuous variables, and 

Wilcoxon sign-ranked test (21) or Fisher’s exact test (18) for categorical variables were used as appro-

priate to compare study samples. The effects of CT acquisition parameters on CSA and mean attenu-

ation measurements were assessed using the Bland-Altman approach (30). For the Bland-Altman anal-

ysis, CSA and mean attenuation values were computed from CT examinations that included at least 

two series that were acquired using different CT acquisition parameters. These series of the same 

patient were obtained during the same examination on the same scanner. Therefore, differences be-

tween series of that examination were attributed to the change in specific CT acquisition parameters 

(figure 3). The Shapiro-Wilk (21) or the Kolmogorov-Smirnov (19) normality test showed that differ-

ences in muscle measurements were normally distributed. Within-subject coefficients of variation 

(CVs) and two-way mixed-effects intraclass correlation coefficients (ICCs) were used to evaluate intra- 

and inter-analyst agreement of the image analysis. The level of agreement was based on the congruence 

of segmented regions. SPSS version 25.0 (IBM, Armonk, NY) or STATA version 13.0 (StataCorp, 

College Station, USA) software was used to perform the statistical analyses. 

2.6 Utilization of  a fully automated deep learning system  

A fully automated, deep learning-based tool for skeletal muscle segmentation on axial CT images is 

proposed in study E (24). The proposed segmentation pipeline is outlined in figure 5 and described 

in technical detail in the paper (24). In brief, a dataset of 400 CT images paired with their manual 

segmentation was used for training a fully convolutional network (FCN). The proposed system ena-

bles instantaneous segmentation of skeletal muscle.  
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Figure 5.  A high-level overview of the fully automated deep learning-based segmentation system for skeletal 
muscle on axial CT images. This figure was adapted from one of my previously published articles 
(24). Axial CT images at the L3 level are processed using a fully convolutional network approach, 
including grayscale image conversion followed by post-processing. CT = computed tomography; 
HU = Hounsfield units; L3 = third lumbar vertebral body. 

Domain experts manually created muscle segmentation masks in OsiriX software to train the system. 

Axial images connected to their corresponding segmentation maps were reformatted to serve as input 

for the FCNs. Out of the 400 patients included in this study, images of 150 patients were withheld for 

subsequent system testing. This subset, which was used for validation, comprised randomly selected 

images of 25 female and 25 male patients from each weight group (normal weight, overweight, and 

obese). The remaining images of 250 patients were used to train the FCNs. All evaluated systems were 

trained for a period of approximately 500 epochs. Deep neural networks are typically trained for mul-

tiple epochs. An epoch, in the context of machine learning, is one complete pass of the training data. 

All computations were performed on a developer machine (DevBox, NVIDIA Corp, Santa Clara, CA) 

holding four TITAN X graphics processing units (GPUs) with 12 gigabytes of memory per GPU 

using Nvidia DIGITS (version 5.1) and Nvidia-Caffe (version 0.15.14). The degree of overlap between 

the semi-automated segmentation mask approved by the radiologist and the FCN-derived mask was 

evaluated across five FCN architectures. These models of increasing granularity (FCN-32s, FCN-16s, 

FCN-8s, FCN-4s, and FCN-2s) were assessed using the held-out subset of 150 patient images to 
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determine the best performing FCN. Dice similarity coefficient (DSC), a metric for congruence of 

two binary segmentation results, and CSA error were calculated to evaluate the segmentation quality. 

Please see study E for the detailed equations (24). This work was realized in collaboration with the 

MGH Laboratory of Medical Imaging and Computation. A detailed technical description of the train-

ing process and system evaluation is provided in study E (24). This thesis primarily describes the 

radiological image analysis and its implications for clinical practice. 

3 Results  

This section provides an overarching summary of the key results. Further information on additional 

outcomes is presented in the respective sections of the five published articles (16, 18, 19, 21, 24). A 

total of 1328 axial images at the L3 level were selected from routine CT examinations and included in 

the studies conducted as part of this MD/PhD thesis. For the analysis of muscle CSA, the inter-analyst 

agreement was excellent, with ICC values ranging from 0.985 to 0.999 in the studies. Intra-analyst 

agreement analysis also showed excellent ICC values, ranging from 0.996 to 1.000 in the studies.  

3.1 Associations of  skeletal muscle index and clinical outcome 

In the two clinical studies, a higher skeletal muscle index was associated with improved clinical out-

comes in the ICU as well as the oncology setting. The results of studies A and B are presented in the 

two following subsections. 

3.1.1 Associations of  skeletal muscle index and post-extubation outcomes in the intensive 

care setting 

The ICU study population in study A was comprised of N = 231 patients from various diagnostic 

categories, including non-surgical (25.5 %), emergency surgery (31.6 %), surgery after trauma (20 %), 

and elective surgery (22.9 %).  

Mortality at 30 days post-extubation was 6.5 % (n = 15). Figure 6 illustrates the significant difference 

between the deceased patients and the remaining study population at 30 days post-extubation, respec-

tively (mean [M] = 46.9 cm2/m2 [SD ± 10.7] vs. M = 58.5 cm2/m2 [SD ± 15.3]; p = 0.005). The 

multivariable logistic regression analysis found L3SMI to be a predictor for 30-day mortality (aOR = 

0.94; 95 %-CI = [0.890–0.995]; p = 0.033). 
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Figure 6.  Box plot illustrating the distribution and difference of L3SMI values between patients who were 

deceased (death) or alive (survival) at 30 days after extubation. This figure was first published in 
one of my previous articles (16). Asterisks (**) indicate a p-value < 0.01, two-sample t-test (p = 
0.005). L3SMI = L3 skeletal muscle index. 

Adverse discharge after extubation occurred in 33.3 % (n = 77) of patients. In a multivariable logistic 

regression analysis, L3SMI predicted adverse discharge (aOR = 0.98; 95 %-CI = [0.957–0.999]; p = 

0.044). Mean predicted probabilities which were derived from the multivariable logistic regression 

model are displayed in figure 7. The covariates age, CCI, and APACHE II score were set at their 

medians for illustrative purposes. The model estimated a 45.1 % probability of adverse discharge dis-

position for a 60-year-old patient with an L3SMI of 35 cm2/m2, CCI of 1, and APACHE II score of 

16. For a ten-unit increase in L3SMI (from 35 to 45 cm2/m2), the model estimated a 5.5 % decreased 

likelihood of adverse discharge. 
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Figure 7.  Mean predicted probabilities of adverse discharge disposition illustrated as a function of L3SMI 

including 95 % confidence intervals. This figure was first published in one of my previous articles 
(16). Covariates of the multivariable logistic regression model were set at their medians for illustra-
tive purposes (age = 60 years, Charlson Comorbidity Index = 1, Acute Physiology and Chronic 
Health Evaluation II score = 16). L3SMI = L3 skeletal muscle index. 

Of the ICU-patients, 32.5 % (n = 75) had a pneumonia diagnosis within 30 days of extubation. In the 

multivariable logistic regression model, L3SMI predicted pneumonia (aOR 0.96; 95 %-CI = 

[0.941,0.986]; p = 0.002). The model estimated a 49.5 % probability of acquiring pneumonia for a 60-

year-old patient with an L3SMI of 35 cm2/m2, CCI of 1, and APACHE II score of 16. For a ten-unit 

increase in L3SMI (from 35 to 45 cm2/m2), the model estimated a 9.3 % decreased likelihood of 

acquiring pneumonia within 30 days of extubation.  

Within 72 hours of extubation, 11.7 % of patients (n = 27) were reintubated. L3SMI values were 

significantly lower for patients who were reintubated than for patients that were not (M = 51.47 

cm2/m2 [SD ± 13.20] vs. M = 58.53 cm2/m2 [SD ±15.40]; p = 0.024). Increased L3SMI predicted 

shorter hospital LOS after extubation (aIRR 0.99; 95 %-CI = [0.986, 1.000]; p = 0.048) with the aver-

age hospital LOS post-extubation being 19.3 days (SD ± 18.3). In a multivariable ordered logistic 

regression model with total hospital costs divided into quartiles, L3SMI predicted total hospital costs 

(aOR 0.98; 95 %-CI = [0.966, 0.999]; p = 0.043) (16). 
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3.1.2 Associations of  skeletal muscle index and patient-reported measures in the oncology 

setting 

Within the oncologic study population included in study B (N = 237), L3SMI was used to differentiate 

between patients with and without sarcopenia. Based on the sarcopenia definition by the international 

consensus for cancer cachexia (L3SMI of < 39 cm2/m2 for women and < 55 cm2/m2 for men) (31), 

55.3 % (n = 131) of patients in study B were sarcopenic. Linear multivariable regression models were 

used to evaluate the association between sarcopenia and patient-reported measures. The models were 

adjusted for patients’ age, cancer type, sex, education, and marital status. 

The regression model showed an association between sarcopenia and worse QoL, as indicated by 

decreased FACT-G scores (unstandardized coefficient beta [B] = -4.26, standard error [SE] = 2.15, 

95 %-CI = [-8.49, 0.03], p = 0.048). Increased rates of clinically significant depression symptoms (29.0 

% vs. 16.0 %, p = 0.021) were also found in the sarcopenic patient population. Sarcopenia was inde-

pendently associated with increased HADS-depression scores in the multivariable linear regression 

model (B = 1.56, SE = 0.55, 95 %-CI = [0.47, 2.65], p = 0.005) (18). 

3.2 Effect of  CT acquisition parameters on body composition analysis 

The CT acquisition parameters (IV contrast, tube current, tube potential, and slice thickness) signifi-

cantly affected the computation of tissue compartments on CT images. The results of studies C and 

D are presented in the two following subsections. 

3.2.1 Effect of  CT acquisition parameters on semi-automated threshold-based segmenta-

tion of  skeletal muscle 

IV contrast, tube current, and slice thickness significantly affected the computation of skeletal muscle 

in study C (19). Figure 8 illustrates the effects of each CT acquisition parameter utilizing graphs that 

highlight the changes within the CT image’s pixel distribution between HU values. 
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A  B 

C   

Figure 8.  Effect of CT acquisition parameters on the distribution of pixels between Hounsfield unit (HU) 
values. This figure was first published in one of my previous articles (19). The lines between data-
points facilitate the visual differentiation between the two different scenarios of CT acquisition 
parameters per graph. Plot A illustrates the histograms of 5 mm low-dose and 5 mm diagnostic CT 
images. Less articulated spectral peaks and increased histogram spread can be observed in the low-
dose image compared to the diagnostic image. This can be explained by higher noise within the CT 
image resulting in less differentiation between the two peaks of the histogram. Plot B shows the 
histograms of 5 mm diagnostic and 2 mm diagnostic CT images. Only subtle but significant (p < 
0.0001) differences (shallower peaks and slightly elevated valleys) can be observed between the 
histograms. Compared to the 5 mm CT image, the increased spread of the histogram indicates 
slightly higher noise within the 2 mm CT image. Plot C displays the histograms of 2 mm non-
contrast and 2 mm IV contrast-enhanced CT images. The presence of IV contrast results in a slight 
rightward shift (and therefore greater HU values) of the histogram for the IV contrast-enhanced 
image. 

The tube current had a significant effect on the computation of CSA as well as SMD values on CT 

images. CSA values were significantly smaller when calculated on 5 mm low-dose CT images (average 

-4.8 %) compared to 5 mm diagnostic CT images (Mean difference [MD] = -6.44 cm2; 95 %-CI = 

[-9.10, -3.78]; p < 0.0001). SMD values were significantly greater when computed on 5 mm low-dose 

images (average +46.5 %) compared to 5 mm diagnostic CT images (MD = 8.10 HU; 95 %-CI = 

[6.48, 9.71] HU; p < 0.0001).  

Varying slice thickness affected the computation of CSA values less than that of SMD values. CSA 

values were significantly greater when computed on 5 mm CT images (average +1.1 %) compared to 

2 mm CT images (MD = 1.32 cm2; 95 %-CI = [0.78, 1.85]; p < 0.0001). SMD values were significantly 
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smaller when calculated on 5 mm CT images (average -11.6 %) compared to 2 mm CT images (MD 

= -2.36 HU; 95 %-CI = [-2.79, -1.94]; p < 0.0001). 

The effect of intravenous contrast on calculated CSA as well as SMD values was significant. CSA 

values were significantly greater when computed on IV contrast-enhanced CT images (average +1.9 

%) compared to non-contrast CT images (MD = 2.33 cm2; 95 %-CI = [1.76, 2.89]; p < 0.0001). SMD 

values were significantly greater on IV contrast-enhanced CT images (average +6,0 %) compared to 

those computed on non-contrast CT images (MD = 1.35 HU; 95 %-CI = [0.79, 1.91]; p < 0.0001). 

3.2.2 Effect of  CT acquisition parameters on semi-automated threshold-based segmenta-

tion of  adipose tissue compartments 

In study D, the tube potential significantly affected CSA of all three adipose tissue compartments 

(SAT, VAT, and IMAT). Computed CSA values for higher tube potential were decreased for SAT 

(-4.2 %, p < 0.001) as well as VAT (-2.8 %, p = 0.001), but increased for IMAT (+5.4 %, p = 0.001). 

For higher tube potential mean attenuation values were increased in all compartments (+20.8 % for 

SAT, p < 0.001; +11.7 % for VAT, p < 0.001; +6.2 % for IMAT, p < 0.001). 

Lower effective milliampere-second (mAs) affected CSA in all adipose tissue compartments (-3.2 % 

for SAT, p < 0.001; -12.6 % for VAT, p = 0.001; +58.8 % for IMAT, p < 0.001). For all three com-

partments, mean attenuation was reduced on low-dose images (-1.8% for SAT, p < 0.001; -3.6 % for 

VAT, p < 0.001; -8.7 % for IMAT, p < 0.001). 

Thinner slice thickness significantly increased the computed CSA values for VAT (+3.0 %, p = 0.005) 

and IMAT (+17.3 %, p < 0.001). The CSA values for SAT were less affected (-0.2 %, p = 0.851). For 

thinner slices, mean attenuation values were significantly decreased in all three compartments (-1.0 % 

for SAT, p < 0.001; -2.4 % for VAT, p < 0.001; -5.4 % for IMAT, p < 0.001).  

Presence of IV contrast significantly decreased CSA values of SAT (-0.4 %, p = 0.029) and IMAT 

(-9.3 %, p < 0.001). The CSA for VAT was also decreased (-2.0 %, p = 0.131). In all three compart-

ments, mean attenuation values were increased significantly (+0.8 % for SAT, p < 0.001; +1.7 % for 

VAT, p < 0.001; +0.8 % for IMAT, p = 0.03) (21). Figure 9 illustrates the effect of CT acquisition 

parameters which were investigated in study D.  
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Figure 9.  CT acquisition parameters’ effect on segmentation outputs of adipose tissue compartments. This 

figure was adapted from one of my previously published articles (21), and was presented at the 
RSNA annual meeting 2019. Axial CT image pairs of the same patient were obtained during the 
same examination (same time, same scanner). Each CT examination included at least two series that 
were acquired using different CT acquisition parameters. Illustrated are the effects of tube potential 
(100 kVp [1A] vs. 150 kVp [1B]), tube current (diagnostic quality [2A] vs. low dose CT image [2B]), 
slice thickness (5 mm [3A] vs. 2 mm thick CT slices [3B]) and IV contrast (non-contrast [4A] vs. 
contrast-enhanced CT image [4B]). Green = subcutaneous adipose tissue (SAT); yellow = visceral 
adipose tissue (VAT); red = intermuscular adipose tissue (IMAT); blue = skeletal muscle. 

3.3 Fully automated deep learning system for the segmentation of  skeletal muscle 

In study E, the performance of five trained FCN models with different architectures was compared 

to manually created segmentation masks approved by a board-certified radiologist (minimum of 8 

years of experience). The most fine-grained FCN-2s model achieved an average CSA error of 3.68 % 

(SD ± 2.29) and an average DSC of 0.93 (SD ± 0.02). Compared to the most coarse-grained FCN 

model, this represents an 80 % decrease in CSA error and a 59 % improvement in DSC. The best 

performing FCN-2s model achieved excellent agreement with manually segmented images, as illus-

trated in figure 10. Even though the errors were small in relation to the overall CSA, the three main 

errors were incomplete muscle segmentation (n = 58; 38.7 % of test cases), incorrect organ segmen-

tation (n = 52; 34.7 % of test cases), and subcutaneous edema mischaracterized as muscle (n = 17; 

11.3 % of test cases). In obese patients, the incorrect characterization of subcutaneous soft tissue 

edema as muscle CSA was significantly more common compared to non-obese patients (p = 0.018). 

The complete segmentation of the 150-patient subset took 25 seconds on average (0.17 seconds per 

CT image), performed by utilizing a single TITAN X GPU. Manual segmentation of these 150 images 

would take approximately 50 working hours. On average, the creation of the segmentation mask by 

domain experts plus the subsequent evaluation by the consultant radiologist required approximately 

20 minutes per CT image. 
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Figure 10.  Six examples of muscle segmentation masks created by the fully automated deep segmentation sys-

tem compared to manual segmentation maps. This figure was adapted from one of my previously 
published articles (24). One CT image from every category (weight and gender) is presented, in-
cluding its segmentation mask next to the original axial CT image. The Dice similarity coefficient 
(DSC) is indicated below each image, which was segmented by the fully convolutional network 
FCN-2s. Compared to the manually segmented image, areas over-sampled by the FCN-2s are high-
lighted in blue, under-sampled areas are highlighted in yellow, and correctly segmented areas are 
highlighted in red. 
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4 Discussion 

4.1 Overarching summary 

The five studies add to the growing body of literature that establishes body composition analysis as a 

useful tool for the assessment of muscle mass in clinical practice. This doctoral thesis evaluates the 

relationship between skeletal muscle measurements and patient outcomes and its implications for pa-

tient care. Studies A and B evaluated associations of L3SMI and clinical outcomes in two different 

clinical settings. In the ICU setting in study A, the muscle mass surrogate L3SMI predicted a variety of 

important clinical outcomes in adult ICU patients. Measurement of this muscle index can be reliably 

computed from routine abdominal CT images. The covariates CCI and APACHE II score were se-

lected to control for underlying comorbidities and acute illnesses. Lower L3SMI was a predictor of 

increased mortality within 30 days of extubation (p = 0.033), increased rate of pneumonia within 30 

days of extubation (p = 0.002), increased adverse discharge disposition (p = 0.044), longer hospital LOS 

post-extubation (p = 0.048), and higher total hospital costs (p = 0.043). The univariable analysis also 

revealed that patients who were reintubated within 72 hours after extubation had a significantly lower 

L3SMI than patients who did not require reintubation (p = 0.024). Study A demonstrated that L3SMI 

could be utilized as a prognostic tool in an adult ICU population at the time of extubation (16). 

Study B showed in the oncology setting that sarcopenia is highly prevalent among patients with re-

cently diagnosed, advanced lung and gastrointestinal cancer. In this study, L3SMI thresholds were 

used for the definition of sarcopenia as suggested by the international consensus for cancer cachexia 

(31). Based on this definition, more than half of the patient sample met the criteria for sarcopenia. 

Sarcopenia was associated with increased depression symptoms and worse QoL. Specifically, sarco-

penia was associated with decreased FACT-G scores (p = 0.048) and increased HADS-depression 

scores (p = 0.005) (18). These findings suggest that addressing sarcopenia early on as part of the treat-

ment plan for patients with advanced cancer could improve patients’ quality of life and mood. How-

ever, this relationship is not necessarily causal and needs to be explored more thoroughly. 

As a next step, we aimed to further evaluate the validity of indices used in body composition analysis. 

Studies C and D therefore systematically evaluated the effect of modifiable CT acquisition parameters 

on the threshold-based segmentation used for body composition analysis. By modifying only one CT 

acquisition parameter at a time and keeping all other factors constant, the studies managed to quantify 

the effect of individual CT acquisition parameters. Study C showed that IV contrast (p < 0.0001), slice 

thickness (p < 0.0001), and tube current (p < 0.0001) significantly affect threshold-based segmentation 

of skeletal muscle CSA and SMD (19). Study D analyzed the effect of CT acquisition parameters on 
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the threshold-based segmentation of adipose tissue compartments. It showed that IV contrast, tube 

current, tube potential, and slice thickness significantly affect the computation of CSA and mean at-

tenuation of adipose tissue in SAT, VAT, and IMAT (21). The two studies suggested that the effects 

of CT acquisition parameters on threshold-based segmentation should be taken into account when 

body composition analysis is used in clinical practice or research studies. 

Finally, in study E, we propose a fully automated, deep-learning-based tool for skeletal muscle seg-

mentation on axial CT images. Due to overlapping HU ranges, traditional, intensity-based muscle 

segmentation algorithms often fail to distinguish muscle from the neighboring tissues. By training a 

fully convolutional network with the manual segmentation maps obtained previously, this method was 

able to mimic the segmentation quality of experts for every new image. An average DSC of 0.93 (SD 

± 0.02) and CSA error of 3.68 % (SD ± 2.29) indicated excellent agreement with manually segmented 

images. By intrinsically learning characteristics of skeletal muscle, this processing pipeline enabled 

instantaneous segmentation of large datasets. It is also a shareable tool for other researchers. Com-

pared to the time-consuming semi-automated threshold-based segmentation, the deployment time 

was greatly accelerated from about 20 minutes to 0.17 seconds per CT image analysis. An overview of 

the findings presented in the five respective publications is provided in figure 11. 
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Figure 11.  High-level overview of the studies conducted as part of this thesis including the results. CSA = 

cross-sectional area; CT = computed tomography; DSC = Dice similarity coefficient; FACT-G = 
Functional Assessment of Cancer Therapy - General; HADS = Hospital Anxiety and Depression 
Scale; IMAT = intermuscular adipose tissue; IV = intravenous; L3SMI = skeletal muscle index at 
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the level of the third lumbar vertebral body; LOS = length of stay; SAT = subcutaneous adipose 
tissue; SD = standard deviation; SMD = skeletal muscle density; VAT = visceral adipose tissue. 

4.2 Lean muscle mass and clinical outcomes 

The findings in study A highlight the importance of lean muscle mass for respiratory outcomes. Study 

A showed that low skeletal muscle mass is associated with higher rates of pneumonia (16) which adds 

to the prior literature linking muscle weakness and symptomatic aspiration, typically presenting as 

pneumonitis or pneumonia (32). Our study relied on L3SMI, which is more objective than the clinical 

bedside assessments utilized in prior studies because L3SMI can be reliably measured on imaging, and 

there is no need for patient cooperation. Thus, there is less room for influencing biases. In addition, 

patients who were reintubated within 72 h post-extubation had significantly lower L3SMI. It has pre-

viously been assumed that decreased muscle mass has a negative impact on physiological ventilation 

(15). This study was the first to show a connection between low lean muscle mass and higher reintu-

bation rates as well as pneumonia. Effective management of muscle weakness may have the potential 

to become a new target for the prevention of aspiration pneumonia and subsequent respiratory com-

plications. To date, little is known about the importance of sarcopenia for respiratory muscles. A more 

comprehensive understanding of the underlying mechanisms may lead to treatment strategies that 

focus on preserving well-functioning muscles, such as early integration of physical therapy or dietary 

and nutrition services.  

Study A was the first to establish that lower L3SMI is independently associated with increased total 

hospital costs (16). Previous studies described the association between increased hospital costs and 

decreased muscle area (4, 27). In the ICU setting, study A was the first to establish a link between low 

L3SMI and increased total hospital costs. Study A was also the first to demonstrate that low L3SMI 

is a predictor of increased hospital LOS post-extubation. This finding further supports the association 

between low muscle mass and increased utilization of health care resources. Appropriate allocation of 

health care resources is of growing importance as the costs of health care services increase (33). Body 

composition analysis, including muscle indices derived from CT, has the potential to improve clinical 

risk prediction and inform physicians which patients are at high risk of sarcopenia-related complica-

tions. Therefore, indices like L3SMI may help to inform the allocation of health care resources. 

A previous study reported the association between skeletal muscle index and discharge disposition in 

trauma patients over 80 years (34). Compared to the univariable analysis used in the previous study, 

study A provides evidence that L3SMI is a predictor of adverse discharge disposition by using a mul-

tivariable model and controlling for comorbidities (16). What is more, our study includes younger 

patients (mean of 56.3 years, SD ± 18.9) from a wider variety of diagnostic categories (non-surgical 
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and elective surgery in addition to emergency trauma surgery included in the previous study [34]). Our 

findings suggest that muscle mass can help to predict adverse discharge disposition in ICU patients 

from a wide age range and various diagnostic categories. In an exploratory analysis, we utilized only 

age as a covariate, given that CCI and APACHE II score are often not available at the bedside. This 

simplified model did maintain its predictive power and might become clinically useful once the inte-

gration of deep-learning-based segmentation algorithms makes muscle measurements readily available 

in clinical practice (24). 

To the best of our knowledge, study B first reported the association between sarcopenia, objectively 

measured on routine CT scans, and worse quality of life as well as increased depression symptoms in 

patients with advanced cancer. Sarcopenia and the associated physical decline have been previously 

proposed to negatively impact patients’ QoL (35). Our study provides evidence to support this hy-

pothesis by establishing an association between objective measurements of sarcopenia and patients’ 

QoL. In addition, patients’ increased physical activity has previously been linked to decreased depres-

sion symptoms (36). These findings may provide a mechanism explaining the association between 

sarcopenia and worse depression symptoms in our patient population. The majority of patients with 

advanced cancer (55.3 %) fulfilled the criteria for sarcopenia (18). Our findings highlight the need to 

screen patients with newly diagnosed advanced cancer for sarcopenia to address their functional status 

early in the course of their treatment. By screening for sarcopenia, potentially by using CT scans that 

are already part of routine care, patients at risk for low functional status and poor emotional well-

being can be identified, and their care plans can be tailored to their needs. Therefore, addressing the 

highly prevalent issue of sarcopenia in patients with advanced disease early on can enable physicians 

to support these patients better and improve their quality of care.  

4.3 Influencing factors of  body composition analysis 

Studies C and D systematically present the effect of modifiable CT acquisition parameters on thresh-

old-based segmentation of muscle and adipose tissue, respectively. It may seem intuitive that CT ac-

quisition parameters, such as IV contrast, slice thickness, tube current, and tube potential affect the 

computation of body composition indices. However, these effects have not been evaluated suffi-

ciently. By comparing CSA and mean attenuation of skeletal muscle in study C and three adipose 

tissue compartments in study D, we add to the literature and provide a comprehensive evaluation of 

the effects of CT acquisition parameters on body composition indices. It is important to establish that 

the influence of CT acquisition parameters on these indices is significant. Previous studies established 

that body composition indices computed from CT images are associated with relevant clinical 
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outcomes in surgery (4), oncology (6), and ICU patients (2) but none of the referenced studies speci-

fied the CT protocols and acquisition parameters used to acquire the underlying CT scans.  

Study C showed that muscle CSA is decreased by 4.8 %, and SMD is increased by 46.5 % on low-

dose images compared to diagnostic CT images (19). This difference in low-dose images likely occurs 

due to a reduced signal-to-noise ratio. This high noise in the low-dose technique leads to a change in 

the distribution of pixels between HU values and affects the output of subsequent threshold-based 

segmentation of these images (as presented in figure 8A). SMD on 5 mm diagnostic CT slices is de-

creased by 11.6 %, and CSA is increased by 1.1 % compared to 2 mm slices (19). Partial volume 

averaging is less prominent on thinner slices. Therefore, thinner slices are expected to provide a more 

accurate measurement. However, an increased spread of the pixel distribution between HU values can 

be observed on 2 mm slices compared to 5 mm slices (figure 8B). Additionally, SMD is increased by 

6.0 % and CSA by 1.9 % when IV contrast is present (19). This difference is likely due to the increased 

HU values of muscle fibers when a high-density contrast medium is present in the circulation. Muscle 

compartments below the HU threshold on non-contrast images then meet the threshold on contrast-

enhanced images, which is represented by a rightward shift of the pixel distribution between HU 

values (figure 8C).  

The findings in study D show that an increased slice thickness affects the mean attenuation of all 

adipose tissue compartments (21). To the best of our knowledge, study D was also the first to show 

that tube potential significantly affects both, adipose tissue CSA and mean attenuation measurement 

in all three adipose tissue compartments. In addition, it evaluates the effect of IV contrast on SAT 

and IMAT measurements. It is essential to distinguish between the body composition measures of 

adipose tissue compartments. CSA for VAT and SAT are considered adiposity measures and correlate 

with adiponectin and leptin levels (37). High IMAT CSA is an indicator of poor muscle quality. The 

mean attenuation values for adipose tissue compartments are indicators of the metabolic state. For 

example, a higher mean attenuation of VAT and SAT compartments is associated with smaller adipo-

cytes and lower serum leptin levels (22).  

Neglecting the influence of CT acquisition parameters on threshold-based segmentation can introduce 

systemic errors when comparing CT images that were acquired with different parameters. For exam-

ple, study C quantified the mean difference in SMD between 2 mm and 5 mm CT slices as 2.36 HU 

(19). A recent study utilizing IV contrast-enhanced CTs of patients suffering from non-small-cell lung 

cancer postulated that a 1 HU increase in SMD was associated with a 2 % lower mortality rate (38). 

However, the slice thickness of the CT examinations is not specified in the respective study. According 

to this study (38), if images were acquired with different protocols regarding slice thickness (2 mm 
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and 5 mm), then about 4 % of the observed difference in mortality rate could solely be attributed to 

the difference in slice thickness. This shows the importance of potential systemic errors in studies that 

use threshold-based segmentation with inconsistent CT acquisition protocols. Furthermore, longitu-

dinal analyses of the same patient can also be distorted if varying CT acquisition protocols are used 

over time. Unless identical protocols are used, serial measurements could fail to detect slight differ-

ences between images. CT acquisition protocols should be reported, and the effect of varying CT 

acquisition parameters should be scrutinized when body composition indices are used in research or 

clinical practice. 

4.4 Fully automated segmentation system for skeletal muscle 

Accurate segmentation of skeletal muscle in a semi-automated threshold-based fashion requires about 

20 minutes per CT image on average (24). Our previous studies (A-D) rely on the manual labor of 

domain experts, which places a financial and time-intensive burden on transferring this measurement 

into clinical practice. In order to overcome this limitation, a rapid muscle segmentation pipeline is 

needed, which requires minor to no user interaction. The most recently proposed algorithms for the 

segmentation of muscles at the L3 level require less than one minute to process an abdominal region 

study (39). Our system requires only 0.17 seconds per CT image on average and enables near-instan-

taneous segmentation of skeletal muscle. The integration of body composition analysis into clinical 

practice has so far been limited by the resources needed to acquire the data. Body composition analysis 

of skeletal muscle is associated with a wide variety of important clinical outcomes (1-6, 40) and 

emerged as a valuable tool for risk stratification. CT is an essential technology in the current healthcare 

environment, and millions of CT examinations are performed each year. Utilizing this enormous data 

pool may improve the risk stratification of patients, which is essential for the advancement of person-

alized medicine. Enabling instantaneous muscle segmentation can help radiologists facilitate the tran-

sition of body composition analysis from research applications into clinical practice. 
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4.5 Limitations 

The five studies presented above have several limitations worth considering. First, not all ICU patients 

had CT examinations available within five days of extubation in study A, which may have resulted in 

the preferred inclusion of sicker patients. Second, ICD-9 diagnosis codes were used to establish the 

diagnosis of pneumonia, which may have overestimated the true incidence of this primary outcome 

(16). Third, the study population of study B comprised patients solely from the Harvard Cancer Cen-

ter, a large but single academic cancer center with limited racial and ethnic diversity. We cannot make 

assumptions about the generalizability of our findings to more heterogeneous populations. Fourth, in 

this randomized clinical trial, patients that already received palliative services or needed immediate 

hospice referral were excluded. These patients may have had more severe disease, which may have led 

to the underestimation of sarcopenia prevalence within palliative care patients in study B. Fifth, be-

cause of its cross-sectional nature, Study B can only report associations between patients’ QoL and 

mood (18). It cannot provide information about the directionality of the relationships. 

The first limitation for studies C and D is that the sample sizes, including 216 and 244 images, respec-

tively, are relatively small. However, at the MGH, they are the largest sample of consecutive examina-

tions, which was acquired using identical imaging protocols. Second, we did not evaluate the influence 

of IV contrast dose in both studies since bolus volume and contrast phase were kept constant. Third, 

images were acquired using automatic exposure control, which is common for routine imaging (19, 

21). Therefore, the difference between contrast-enhanced and non-contrast CT examinations likely 

includes a variation in tube current. 

The fully automated deep learning system proposed in Study E exhibits great potential for accelerating 

the computation of body composition indices, but there are limitations. First, the system tends to 

underestimate muscle CSA, which can probably be explained by overlapping HU values of muscle 

and neighboring organs and the variable appearance of organs. Especially in critically ill and obese 

patients with extensive soft-tissue edema, the system tends to overestimate muscle CSA due to the 

radiographic appearance of edema, which exhibits HU values within the HU thresholds for muscle. 

Second, the fully automated deep learning system was trained on data of a lung cancer cohort because 

the clinical protocol required these patients to undergo an abdominal CT scan with similar CT acqui-

sition parameters. Third, the average age within this cohort was 63 years (SD ± 12) which is expected 

for a lung cancer cohort (24). Further studies are warranted to assess whether the segmentation system 

can be generalized for different age groups. 
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4.6 Future directions 

Building on the knowledge that lean muscle mass is a predictor of important surgical outcomes, the 

Fintelmann Lab at the MGH, where the presented five studies were conducted, strives to implement 

body composition indices into risk stratification models for surgical interventions. The goal is to im-

prove personalized risk assessments for patients in order to provide them with the resources they 

need. The team is further working on automated segmentation systems for body composition analyses 

and has created an advanced software tool as well as the MGH-file format in the process. The Fintel-

mann Lab aims to aid the transition of body composition analysis from research applications into 

clinical practice. 

The research questions investigated as part of this MD/PhD thesis yield the potential for exciting 

future research. Ethnic diversity was limited in the study population of study B. Further studies are 

needed to evaluate the issue of sarcopenia among a more heterogeneous population of patients with 

cancer. Additionally, study B does not support statements about the directionality of the relationship 

between sarcopenia and patients’ QoL because of its cross-sectional design (18). A longitudinal study, 

which evaluates how changes in muscle mass throughout the cancer treatment affect patients’ QoL 

and mood, could provide a deeper insight into the importance of sarcopenia. It could be essential to 

understand in which ways sarcopenia affects patient outcomes and what additional interventions are 

needed to improve the supportive care of patients with advanced cancer.  

Another crucial topic is the implementation of best practices for imaging protocols used in body 

composition analysis. Based on study C, diagnostic quality IV-contrast enhanced CT scans are pre-

sumably most suitable for the analysis of skeletal muscle (19). Further studies are required to establish 

the ideal CT acquisition parameters for body composition analysis. The standardization of imaging 

protocols will facilitate the comparability between clinical trials and enable researchers to determine 

generalizable reference values. For example, the currently proposed L3SMI cut-off values for sarco-

penia (31) might only apply for specific imaging protocols. The standardization of imaging protocols 

will help to interpret results from body composition analysis correctly and to prevent systematic errors. 

Furthermore, the automation of adipose tissue segmentation is an exciting new target. The HU thresh-

old range for adipose tissue (-190 to -30 HU [13]) is considerably specific and enables the algorithms 

to segment fat reliably. In order to accurately differentiate between SAT and VAT compartments, 

precise determination of muscular boundaries is required, which can be generated by the segmentation 

of skeletal muscle. The combination of an adipose tissue thresholding system with our fully automated 

muscle segmentation system could accurately provide data on adipose tissue compartments in addition 

to information on skeletal muscle. Our segmentation system could also be enhanced to a whole-body 
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volumetric analysis in order to provide a comprehensive analysis of a patient’s body composition. 

With versatile, automatic segmentation tools, as proposed in study E (24), there is the potential to 

integrate body composition analysis into clinical practice. 

5 Conclusion 

In summary, the lumbar skeletal muscle index is a useful tool for the assessment of muscle mass in 

clinical practice and can be reliably computed from routine abdominal CT scans. In critically ill pa-

tients, lower L3SMI was associated with worse clinical outcomes and can add clinically useful infor-

mation at the time of extubation. For patients with advanced cancer, L3SMI can aid the clinical diag-

nosis of sarcopenia, which affected most patients in our oncologic study population. Patients with 

advanced cancer who suffered from sarcopenia reported increased depression symptoms and worse 

quality of life. This highlights the clinical relevance of addressing muscle loss early on as part of a 

multimodal treatment plan. Importantly, L3SMI and other indices utilized in body composition anal-

ysis are significantly affected by CT acquisition parameters. Intravenous contrast, slice thickness, tube 

current, and tube potential influence the quantification and characterization of muscle mass and adi-

pose tissue. These effects of CT acquisition parameters should be considered when body composition 

analysis is used in clinical practice or research studies. Finally, our fully automated deep learning system 

achieved excellent agreement with images segmented by domain experts and enabled instantaneous 

segmentation of skeletal muscle. 
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MEDICAL IMAGE 

ANALYSIS 5,539 4.188 0.010720 
15 EUROPEAN RADIOLOGY 16,381 3.967 0.033340 

16 
IEEE TRANSACTIONS ON 

MEDICAL IMAGING 15,215 3.942 0.019660 

17 
JOURNAL OF NUCLEAR 

CARDIOLOGY 3,021 3.930 0.003920 

18 
MAGNETIC RESONANCE 

IN MEDICINE 29,816 3.924 0.035960 

19 
CLINICAL NUCLEAR 

MEDICINE 4,008 3.640 0.006470 

20 
SEMINARS IN NUCLEAR 

MEDICINE 2,056 3.630 0.002800 

21 
AMERICAN JOURNAL OF 

NEURORADIOLOGY 21,720 3.550 0.032180 

22 
MOLECULAR IMAGING 

AND BIOLOGY 2,228 3.466 0.005880 

23 
ULTRASCHALL IN DER 

MEDIZIN 1,907 3.452 0.003930 
24 RADIOGRAPHICS 10,286 3.427 0.009660 
25 Biomedical Optics Express 6,187 3.337 0.021610 

26 
Contrast Media & Molecular 

Imaging 1,131 3.307 0.002810 

27 
INTERNATIONAL JOURNAL 

OF HYPERTHERMIA 3,030 3.262 0.003810 
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28 
Journal of Cardiovascular 

Computed Tomography 1,331 3.185 0.004220 

29 
JOURNAL OF MAGNETIC 

RESONANCE IMAGING 15,073 3.083 0.029170 

30 
Journal of the American 

College of Radiology 2,690 2.993 0.006840 
31 NMR IN BIOMEDICINE 6,766 2.872 0.014560 

32 

JOURNAL OF VASCULAR 
AND INTERVENTIONAL 

RADIOLOGY 8,371 2.780 0.012840 

33 
AMERICAN JOURNAL OF 

ROENTGENOLOGY 31,676 2.778 0.035740 

34 
PHYSICS IN MEDICINE 

AND BIOLOGY 22,873 2.742 0.034390 

35 
STRAHLENTHERAPIE UND 

ONKOLOGIE 2,687 2.735 0.004990 
36 Clinical Neuroradiology 433 2.618 0.001550 
37 MEDICAL PHYSICS 22,942 2.617 0.037250 
38 Radiation Oncology 4,358 2.568 0.013680 
39 RADIATION RESEARCH 8,394 2.539 0.007920 

40 
JOURNAL OF BIOMEDICAL 

OPTICS 12,700 2.530 0.024520 

41 
JOURNAL OF 

NEURORADIOLOGY 792 2.526 0.001310 

42 
ULTRASOUND IN 

MEDICINE AND BIOLOGY 9,759 2.494 0.012640 

43 

QUARTERLY JOURNAL OF 
NUCLEAR MEDICINE AND 

MOLECULAR IMAGING 1,030 2.481 0.001800 
44 CLINICAL RADIOLOGY 5,717 2.478 0.008540 

45 
EUROPEAN JOURNAL OF 

RADIOLOGY 11,328 2.462 0.026500 

46 
NUCLEAR MEDICINE AND 

BIOLOGY 3,918 2.426 0.006210 
47 CANCER IMAGING 1,008 2.404 0.001930 

48 

RADIATION AND 
ENVIRONMENTAL 

BIOPHYSICS 1,468 2.398 0.002460 
49 ULTRASONICS 5,752 2.327 0.008130 

50 
Diagnostic and Interventional 

Imaging 957 2.277 0.002420 

51 
MAGNETIC RESONANCE 

IMAGING 6,465 2.225 0.011370 

52 

CARDIOVASCULAR AND 
INTERVENTIONAL 

RADIOLOGY 4,859 2.191 0.008890 

53 
KOREAN JOURNAL OF 

RADIOLOGY 1,941 2.156 0.003730 
54 ACADEMIC RADIOLOGY 4,804 2.128 0.009150 
55 NEURORADIOLOGY 5,191 2.093 0.007520 
56 Dose-Response 671 2.088 0.001310 
57 Brachytherapy 1,442 2.082 0.003540 

58 
BRITISH JOURNAL OF 

RADIOLOGY 7,990 2.050 0.011760 
59 EJNMMI Research 844 2.033 0.003380 
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60 ACTA RADIOLOGICA 4,199 2.011 0.006600 

61 
JOURNAL OF THORACIC 

IMAGING 1,265 2.010 0.002550 

62 
INTERNATIONAL JOURNAL 

OF RADIATION BIOLOGY 4,417 1.992 0.004350 

63 
Physica Medica-European 
Journal of Medical Physics 1,385 1.990 0.003530 

64 

INTERNATIONAL JOURNAL 
OF CARDIOVASCULAR 

IMAGING 2,742 1.896 0.007940 

65 
RADIOLOGIC CLINICS OF 

NORTH AMERICA 2,330 1.890 0.002560 

66 
Diagnostic and Interventional 

Radiology 1,029 1.886 0.002530 

67 

International Journal of 
Computer Assisted 

Radiology and Surgery 1,474 1.863 0.003300 
68 ABDOMINAL IMAGING 3,246 1.842 0.006240 
69 Radiologia Medica 1,881 1.795 0.003430 

70 
JOURNAL OF RADIATION 

RESEARCH 2,270 1.788 0.004620 
71 ULTRASONIC IMAGING 1,040 1.780 0.000750 

72 
COMPUTERIZED MEDICAL 
IMAGING AND GRAPHICS 1,800 1.738 0.002530 

73 SKELETAL RADIOLOGY 5,263 1.737 0.009010 

74 

MAGNETIC RESONANCE 
MATERIALS IN PHYSICS 

BIOLOGY AND MEDICINE 1,391 1.718 0.002840 

75 

CANCER BIOTHERAPY 
AND 

RADIOPHARMACEUTICALS 1,567 1.689 0.002330 
76 Radiology and Oncology 604 1.681 0.001500 

77 
JOURNAL OF 

NEUROIMAGING 1,772 1.664 0.004420 

78 

JOURNAL OF 
RADIOLOGICAL 

PROTECTION 974 1.657 0.001970 

79 
DENTOMAXILLOFACIAL 

RADIOLOGY 2,076 1.594 0.003040 

80 

JOURNAL OF 
ULTRASOUND IN 

MEDICINE 6,094 1.547 0.007920 

81 
Zeitschrift fur Medizinische 

Physik 450 1.531 0.001220 

82 
Journal of Contemporary 

Brachytherapy 332 1.496 0.000630 
83 Molecular Imaging 1,135 1.479 0.001900 

84 
NUCLEAR MEDICINE 

COMMUNICATIONS 2,752 1.472 0.004640 
85 PEDIATRIC RADIOLOGY 5,489 1.465 0.007820 

86 

Magnetic Resonance 
Imaging Clinics of North 

America 870 1.446 0.001490 

87 

ROFO-FORTSCHRITTE 
AUF DEM GEBIET DER 

RONTGENSTRAHLEN UND 
DER BILDGEBENDEN 

VERFAHREN 1,428 1.418 0.002530 
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88 
JOURNAL OF DIGITAL 

IMAGING 1,518 1.407 0.002650 

89 
ANNALS OF NUCLEAR 

MEDICINE 1,980 1.396 0.003440 

90 
JOURNAL OF COMPUTER 
ASSISTED TOMOGRAPHY 5,549 1.394 0.005280 

91 

SEMINARS IN 
MUSCULOSKELETAL 

RADIOLOGY 705 1.374 0.001340 

92 
Journal of Applied Clinical 

Medical Physics 1,775 1.338 0.004390 

93 
NEUROIMAGING CLINICS 

OF NORTH AMERICA 1,017 1.325 0.001350 
94 HEALTH PHYSICS 4,176 1.276 0.003730 

95 

CANADIAN ASSOCIATION 
OF RADIOLOGISTS 

JOURNAL-JOURNAL DE L 
ASSOCIATION 

CANADIENNE DES 
RADIOLOGISTES 489 1.266 0.000890 

96 
Journal of Medical Imaging 

and Radiation Oncology 945 1.189 0.002740 

97 

SEMINARS IN 
INTERVENTIONAL 

RADIOLOGY 863 1.150 0.001480 

98 
Magnetic Resonance in 

Medical Sciences 606 1.141 0.001160 

99 
SEMINARS IN 

ULTRASOUND CT AND MRI 828 1.130 0.001240 

100 
APPLIED RADIATION AND 

ISOTOPES 7,005 1.128 0.008660 

101 
Journal of Innovative Optical 

Health Sciences 355 1.120 0.000810 
102 Medical Ultrasonography 492 1.118 0.001330 

103 
NUKLEARMEDIZIN-

NUCLEAR MEDICINE 534 1.087 0.000970 
104 BMC MEDICAL IMAGING 592 1.060 0.001490 

105 
SURGICAL AND 

RADIOLOGIC ANATOMY 2,583 1.051 0.003240 

106 
Hellenic Journal of Nuclear 

Medicine 347 1.048 0.000570 
107 CLINICAL IMAGING 1,684 1.015 0.003420 

108 
Japanese Journal of 

Radiology 797 0.982 0.002260 
109 Medical Dosimetry 687 0.957 0.001110 

110 

Revista Espanola de 
Medicina Nuclear e Imagen 

Molecular 386 0.951 0.000720 
111 Cancer Radiotherapie 780 0.930 0.001060 

112 
RADIATION PROTECTION 

DOSIMETRY 5,723 0.917 0.007160 

113 
JOURNAL OF CLINICAL 

ULTRASOUND 2,012 0.906 0.001950 
114 Ultrasound Quarterly 461 0.902 0.000790 

115 
INTERVENTIONAL 

NEURORADIOLOGY 900 0.739 0.001590 

116 
SEMINARS IN 

ROENTGENOLOGY 423 0.667 0.000500 
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Pixel-Level Deep Segmentation: Artificial Intelligence Quantifies
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Abstract Pretreatment risk stratification is key for personal-
ized medicine. While many physicians rely on an Beyeball test^
to assess whether patients will tolerate major surgery or chemo-
therapy, Beyeballing^ is inherently subjective and difficult to
quantify. The concept of morphometric age derived from
cross-sectional imaging has been found to correlate well with
outcomes such as length of stay, morbidity, and mortality.
However, the determination of the morphometric age is time
intensive and requires highly trained experts. In this study, we
propose a fully automated deep learning system for the segmen-
tation of skeletal muscle cross-sectional area (CSA) on an axial
computed tomography image taken at the third lumbar vertebra.
We utilized a fully automated deep segmentationmodel derived
from an extended implementation of a fully convolutional net-
work with weight initialization of an ImageNet pre-trained
model, followed by post processing to eliminate intramuscular
fat for amore accurate analysis. This experiment was conducted
by varying window level (WL), window width (WW), and bit
resolutions in order to better understand the effects of the pa-
rameters on the model performance. Our best model, fine-tuned

on 250 training images and ground truth labels, achieves
0.93 ± 0.02 Dice similarity coefficient (DSC) and
3.68 ± 2.29% difference between predicted and ground truth
muscle CSA on 150 held-out test cases. Ultimately, the fully
automated segmentation system can be embedded into the clin-
ical environment to accelerate the quantification of muscle and
expanded to volume analysis of 3D datasets.

Keywords Muscle segmentation . Convolutional neural
networks . Computer-aided diagnosis (CAD) . Computed
tomography . Artificial intelligence . Deep learning

Introduction

Image segmentation, also known as pixel-level classification, is
the process of partitioning all pixels in an image into a finite
number of semantically non-overlapping segments. In medical
imaging, image segmentation has been considered a fundamen-
tal process for various medical applications including disease
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diagnosis, prognosis, and treatments. In particular, muscle seg-
mentation on computed tomography (CT) for body composi-
tion analysis has emerged as a clinically useful risk stratification
tool in oncology [1–3], radiation oncology [4], intensive care
[5, 6], and surgery [7–10]. Cadaver studies have established
muscle cross-sectional area (CSA) at the level of the third lum-
bar (L3) vertebral body as a surrogate marker for lean body
muscle mass [11, 12]. These studies applied semi-automated
threshold-based segmentation with pre-defined Hounsfield unit
(HU) ranges to separate lean muscle mass from fat. However,
segmentation errors require manual correction based on visual
analysis by highly skilled radiologists [13]. As a result, semi-
automated body composition analysis on large datasets is im-
practical due to the expense and time required. Thus, there is a
role for automated tissue segmentation in order to bring body
composition analysis into clinical practice.

Adipose tissue segmentation on CT images is a relatively
straightforward process as fat can be thresholded with a con-
sistent HU range [−190 to −30] [14]. Muscle segmentation is
less straightforward as muscle and neighboring organs have
overlapping HU values [−29 to 150]. Few published strategies
exist for automated muscle segmentation with various ap-
proaches. A series of publications by Kamiya et al. [15–17]
focused on segmentation of a single muscle (psoas major) at
L3. Popuri et al. have studied the segmentation of all skeletal
muscles visible at the L3 [18] and T4 levels [19, 20]. Their
approach involves a deformable shape model based on the
ideal muscle appearance with fitting based on a statistical de-
formation model (SDM). Another study [21] attempted to
segment a 3D body CT dataset with seven segmentation clas-
ses including fat and muscle by classifying each class using
random forest classifiers when given 16 image features ex-
tracted from statistical information and filter responses. All
these attempts require sophisticated hand-crafted features to
define knowledge-based parameters and select constraints for
well-formed statistical shape and appearance models. As a
result, these approaches cannot be generalized.

Deep learning has demonstrated enormous success in im-
proving diagnostic accuracy, speed of image interpretation,
and clinical efficiency for a wide range of medical tasks, rang-
ing from the interstitial pattern detection on chest CT [22] to
bone age classification on hand radiographs [23]. Particularly,
a data-driven approach with deep neural networks has been
actively utilized for several medical image segmentation ap-
plications, ranging from segmenting brain tumors onmagnetic
resonance images [24–26], organs of interest on CT [27, 28],
to segmenting the vascular network of the human eye on fun-
dus photography [29]. This success is attributed to its capabil-
ity to learn representative and hierarchical image features from
data [30], rather than relying on manually engineered features
based on knowledge from domain experts.

In this study, we propose a fully automated deep segmenta-
tion system for the segmentation of muscles on an axial CT

slice taken at L3 using the improved fully convolutional net-
work (FCN) [31] and post processing. This system enables real-
time segmentation of muscle and possibly fat tissue, facilitating
clinical application of body morphological analysis sets.

Method

Dataset

Data Acquisition and Characteristics

IRB approval was obtained for this retrospective study. Four
hundred patients with an abdominal CT and lung cancer treat-
ed with either surgery or systemic therapy between 2007 and
2015 were identified in an institutional database. The surgical
cohort (tumor stages I, II, and III) represented a cross section
of all patients who underwent lung cancer resection at our
institution, while the medical cohort were patients who re-
ceived chemotherapy (tumor stage IV). Only examinations
with intravenous contrast were included to ensure consistency
of HU values. Four hundred examinations of 200 females and
200 male patients were included in the study, as detailed in
Table 1. A test subset of 150 cases was created for evaluating
the algorithm performance by taking 25 cases from each BMI
category per gender, as explained in BData Categorization.^

Images were acquired for routine clinical care as detailed in
Table 2. Scanners were calibrated daily using manufacturer-
supplied phantoms to ensure consistency in attenuation

Table 1 Patient characteristics of the entire cohort (n = 400) and the test
subset (n = 150)

Patient characteristics n = 400 (entire
cohort)

n = 150 (test
subset)

p values

Age, mean (SD) (years) 63 (12) 62 (11) 0.31

Gender, no. (%) 1
Female 200 (50) 75 (50)

Male 200 (50) 75 (50)

Height, mean (SD) (cm) 168 (10) 168 (10) 0.70

Weight, mean (SD) (kg) 77 (18) 79 (19) 0.16

Lung cancer treatment,
no. (%)

0.78

Systemic therapy 227 (57) 86 (57)

Surgery 173 (43) 64 (43)

Lung cancer stage, no.
(%)

0.84

I 102 (26) 38 (25)

II 33 (8) 10 (7)

III 38 (10) 16 (11)

IV 227 (57) 86 (57)

Note that there is no statistically significant difference between the entire
cohort and the test subset
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measurements in accordance with manufacturer specifica-
tions. Full resolution 512 × 512 pixel diagnostic quality CT
examinations were loaded onto a research workstation run-
ning OsiriX without downsampling (Pixmeo, Bernex,
Switzerland). Segmentation maps of skeletal muscle CSA at
the level of L3 were created on a single axial image using
semi-automated threshold-based segmentation (thresholds
−29 to +150 HU). Analyzed muscles included the transversus
abdominis, external and internal abdominal obliques, rectus
abdominis, erector spinae, psoas major and minor, and
quadratus lumborum. A research assistant (initials [JM])
blinded to all other data created the segmentation maps. All
cases were reviewed and corrected as necessary by a
fellowship-trained board-certified radiologist (initials [FJF]
with 8-years of experience). A subset of the images were ran-
domly selected and then re-analyzed by a second research
assistant (initials [GF]) with an inter-analyst agreement of
0.998. These muscle segmentation maps were used for ground
truth labeling during training, testing, and verification.

Data Preparation

We reformatted the manually tuned muscle segmentation
maps created by domain experts as described previously into
acceptable input for convolutional neural networks (CNN). As
shown in Fig. 1, the axial images and their corresponding
color-coded images served as original input data and ground
truth labels, respectively. The main challenge for muscle seg-
mentation is the accurate differentiation of muscle tissue from
neighboring organs due to their overlapping HU ranges. We
manually drew a boundary between organs and muscle, set-
ting the inside region as additional segmentation class
(BInside^) in an effort to train the neural network to learn
distinguishing features of muscle for a precise segmentation
from adjacent organs. The color-coded label images were
assigned to pre-defined label indices, including 0 (black) for
BBackground^, 1 (red) for BMuscle^, and 2 (green) for
BInside^, before passing through CNNs for training as pre-
sented in Fig. 1.

Data Categorization

We hypothesized that differences in body habitus could rep-
resent a confounding feature if the network was to be present-
ed unbalanced examples, particularly because prior work has
demonstrated that obese patients have higher image noise
[32]. To minimize this possibility, the patients were catego-
rized into eight groups based on gender and body mass index
(BMI) (Fig. 2). We randomly selected 25 male and 25 female
patients from the groups with normal weight, overweight, and
obese in order to create a subset of 150 cases to bewithheld for
testing. All underweight cases were included in the training
dataset without being used for testing due to their small num-
ber. The other 250 cases were used for training. We chose the
best model out of several trained models by selecting the last
model after the loss became converged for a sufficiently long
period of training time, approximately 500 epochs. The best
CNN was evaluated using the held-out test datasets to deter-
mine howmuch the predicted muscle regions overlap with the
ground truth. In order to make a fair comparison, we used the
same seed value for the random selection from the test dataset
for each experiment.

System Architecture

Our proposed fully automated deep segmentation system for
muscle segmentation includes grayscale image conversion
using the best combination of window settings and bit depth
per pixel with post processing to correct erroneous segmenta-
tion (Fig. 3).

Segmentation AI: Fully Convolutional Network

Several state-of-the-art deep learning algorithms have been
validated for natural image segmentation applications [31].
We chose to develop our muscle segmentation model based
on a fully convolutional network (FCN) for three reasons:
First, a set of convolutional structures enables learning highly
representative and hierarchical abstractions fromwhole-image
input without excessive use of trainable parameters thanks to
the usage of shared weights. Second, fine-tuning the trainable
parameters of the FCN after weights that are initialized with a
pre-trained model from a large-scale dataset allows the net-
work to find the global optimum with a fast convergence of
cost function when given a small training dataset. Third, the
FCN intentionally fuses different levels of layers by combin-
ing coarse semantic information and fine appearance informa-
tion to maximize hierarchical features learned from earlier and
later layers. As shown in Fig. 4, FCN-32s, FCN-16s, and
FCN-8s fuse coarse-grained and fine-grained features and
upsample them at strides 32, 16, and 8, for further precision.
Prior implementations of FCN describe further fusion of ear-
lier layers beyond pool3; however, this was not pursued in

Table 2 Image acquisition parameters

Imaging system n = 400 (entire cohort) n = 150 (test subset)

Tube current, mA (SD) 360.78 (124.10) 363.41 (126.85)

kV, (SD) 120.85 (5.68) 120.67 (5.85)

Oral contrast, no. (%) 191 (48) 70 (47)

Manufacturer, no. (%)

Siemens 141 (35) 92 (35)

GE 241 (60) 52 (61)

Philips 17 (4) 6 (4)

Toshiba 1 (0) 0 (0)

J Digit Imaging (2017) 30:487–498 489
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their implementation due to only minor performance gains
[31]. However, we decided to extend to FCN-4s and FCN-
2s (highlighted in red in Fig. 4) by fusing earlier layers further
because muscle segmentation requires finer precision than
stride 8.

Image Conversion: HU to Grayscale

Medical images contain 12 to 16 bits per pixel, ranging from
4096 to 65,536 shades of gray per pixel. A digital CT image
has a dynamic range of 4096 gray levels per pixel (12 bits per

pixel), far beyond the limits of human perception. The human
observer can distinguish many hundred shades of gray, and
possibly as high as 700–900, but substantially less than the
4096 gray levels in a digital CT image [33]. Displays used for
diagnostic CT interpretation support at most 8 bits per pixel,
corresponding to 256 gray levels per pixel. To compensate for
these inherent physiologic and technical limitations, images
displayed on computer monitors can be adjusted by changing
the window level (WL) and window width (WW), followed
by assigning values outside the window range to minimum (0)
or maximum (2BIT-1) value, as described in Fig. 5a. The

Fig. 2 Patients stratification
based on gender and body mass
index (BMI). For each gender, 25
cases were randomly selected
from normal, overweight, and
obese weight categories for the
testing cohort. Underweight cases
were excluded. One hundred fifty
total cases were withheld for
algorithm testing. The remaining
cases were used to train the
segmentation convolutional
neural network

Fig. 1 Examples of (a) axial images and (b) ground truth labels used for
training and testing the segmentation convolutional neural network
(CNN). (c) Superimposed images demonstrate the target output by the

CNN. Note that BInside^ corresponds to the entire region surrounded by
muscle, including organs, fat, and vertebra

490 J Digit Imaging (2017) 30:487–498

92



WL—the center of the window range—determines which HU
values are converted into gray levels. The WW determines
how many of HU values are assigned to each gray level,
related to the slope of the linear transformation shown in
Fig. 5a. BIT, the available number of bits per pixel, determines
how many shades of gray are available per pixel. The effects
of the three configurations on image appearance are demon-
strated with four examples images in Fig. 5b. The optimal
window setting configuration is dependent on the HUs of
the region of interest (ROI) and the intrinsic image contrast
and brightness. These settings are ultimately workarounds for

the constraints of human perception. However, computer vi-
sion does not necessarily have these limitations.

Most prior investigations have converted CT images to
grayscale with the commonly used HU range for the target
tissue or organ without studying the effect of window settings
on the performance of their algorithms. While recent work has
identified that image quality distortions limit the performance
of neural networks [34] in computer vision systems, the effect
of window setting and bit resolution on image quality is often
overlooked in medical imaging machine learning. Therefore,
we evaluated the effects of window and BIT settings on

Fig. 4 Overview of the proposed fully convolutional network (FCN). FCN-32s, FCN-16s, and FCN-8s appeared in the original FCN implementation
[31]. The red-rimmed FCN-4s and FCN-2s are our extended version of FCN required for more detailed and precise muscle segmentation

Fig. 3 Overview of proposed
fully automated deep
segmentation system for muscle
tissue segmentation. HU
Hounsfield units
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segmentation performance by sweeping different combina-
tions of window configurations and bit depth per pixel.

Comparison Measures

The primary comparison measure utilizes the Dice similarity
coefficient (DSC) to compare the degree of overlap between
the ground truth segmentation mask and the FCN-derived
mask, calculated as Eq. 1.

DSC ¼ 2" ground truth∩predictj j
groiund truthj jþ predictj j

ð1Þ

An additional comparison measure was the cross-sectional
area (CSA) error, calculated as Eq. 2. This represents a standard-
ized measure of the percentage difference in area between the
ground truth segmentation mask and the FCN-derived mask.

CSA error %ð Þ ¼ ground truth−predictj j
ground truth

" 100 ð2Þ

Intramuscular Fat Post Processing

Muscle tissue HUs do not overlap with adipose tissue HUs.
As a result, a binary image of fat regions extracted using HU
thresholding can be utilized to remove intramuscular fat in-
correctly segmented as muscle.

Validation and Quality Control

Subsequent to post processing, the results of the test subset
were visually analyzed by a research assistant together with a
fellowship-trained board-certified radiologist (initials [FJF],

8 years of experience). Common errors were identified and
occurrence was noted for each image.

Training

We trained the models by a stochastic gradient descent (SGD)
with a momentum of 0.9 and with a minibatch size of 8 to
achieve full GPU utilization. As performed in [31, 35], we
utilized a fixed, tiny learning rate and weight decay because
training is highly sensitive to hyperparameters when
unnormalized softmax loss is used. We empirically found that
a learning rate of 10−10 and a weight decay of 10−12 were
optimal for our application to obtain stable training conver-
gence at the cost of convergence speed. Since training losses
eventually converged if the models were trained for sufficient
period of epochs, all models in this paper were trained for 500
epochs and the last model was selected without a validation
phase to evaluate performance on our held-out test subset. All
experiments were run on a Devbox (NVIDIA Corp, Santa
Clara, CA) containing four TITAN X GPUs with 12GB of
memory per GPU [36] and using Nvidia-Caffe (version
0.15.14) and Nvidia DIGITS (version 5.1).

Statistical Analysis

Descriptive data were presented as percentages for categorical
variables and as means with standard deviation (SD) for con-
tinuous variables. We used two-tailed statistical tests with the
alpha level set at 0.05. We performed Student’s t test for nor-
mally distributed values. Dichotomous variables were com-
pared using the Mann Whitney U test and ordinal variables
were compared using the Kruskal Wallis test. Inter-analyst
agreement was quantified with intraclass correlation coeffi-
cients (ICC). All statistical analyses were performed using

Fig. 5 (a) The relationship between gray level and Hounsfield units (HU) determined by window level (WL), window width (WW), and bit depth per
pixel (BIT). (b) The effect of different WL, WW, and BIT configurations on the same image
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STATA software (version 13.0, StataCorp, College Station,
TX).

Experiments

Fully Convolutional Network

To identify the best performing fully convolutional network,
five models of increasing granularity—FCN-32s, FCN-16s,
FCN-8s, FCN-4s, and FCN-2s—were trained and evaluated
using the test dataset at 40,400 and 8 bits per pixel by mea-
suring the DSC and CSA error between ground truth and
predicted muscle segmentation. These results were compared
to the HU thresholding method, selecting HU ranging from
−29 to 150 to represent lean muscle CSA.

Image Conversion: HU to Grayscale

Subsequently, we compared the performance of the best FCN
model (FCN-2s) with seven different combinations of window
settings for each bit depth per pixel—(40,400), (40, 240),
(40,800), (40,1200), (−40,400), (100,400), and (160,400)
expressed in WL and WW and 8, 6, and 4 bit resolutions per
pixel. The selected window ranges cover the HU range of lean
tissue [−29 to 150] for a fair comparison to see if partial image
information loss degrades model performance. These window
settings contain extremewindow ranges as well as typical ones.
For example, the window setting (40,240) has a range of −80 to
160 HU values, which corresponds to almost the HU range of
lean muscle, while the configuration (40,1200) converts all HU
values between −560 and 1240 into shades of gray resulting in
low image contrast.

Results

FCN Segmentation Performance

The five different FCN models were compared to the previ-
ously described HU thresholding method. Performance was
evaluated using the DSC and muscle CSA error and detailed
in Fig. 6. Even the most coarse-grained FCN model (FCN-
32s) achieved 0.79 ± 0.06 of DSC and 18.27 ± 9.77% of CSA
error, markedly better than the HU thresholding method with-
out human tuning. Performance increased as the number of
features of different layers was fused. The most fine-grained
FCNmodel achieved DSC of 0.93 and CSA error of 3.68% on
average, representing a 59% improvement in DSC and an
80% decrease in CSA error when compared to the most
coarse-grained model. The representative examples are de-
tailed in Fig. 7 to visually show the performance of FCN-2s
segmentation.

Effect of Window and Bit Settings on Segmentation
Performance

Results of the systematic experiment comparing seven dif-
ferent combinations of window settings for each bit depth
per pixel are presented in Fig. 8. The DSC and CSA error
were not meaningfully influenced by changes in window
ranges as long as 256 gray levels per pixel (bit8) were
available. When 6-bit depth per pixel was used, perfor-
mance was similar compared to the results of 8-bit cases.
However, model performance deteriorated when 8-bit
pixels were compressed to 4-bit pixels.

Fig. 6 Comparison of the HU thresholding method and five different FCNs. (a) Dice similarity coefficient (DSC) and (b) cross-sectional area (CSA)
error between ground truth manual and predicted muscle segmentation areas. All numbers are reported as mean ± SD
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Deployment Time

Segmentation was performed using a single TITAN X GPU.
Segmentation took 25 s on average for 150 test images, cor-
responding to only 0.17 s per image.

Statistical Analysis of Model Segmentation Errors

In the majority of cases (n = 128), FCN CSAwas smaller than
ground truth CSA, while only few cases resulted in
oversegmentation (n = 22; p < 0.0001). Review of incorrectly

Fig. 7 Six examples of the better segmented CT images for six groups
according to gender and BMI. Dice similarity coefficient (DSC) is
marked on each segmented image above. Oversampled regions are

colored in blue, undersampled areas are colored in yellow, and correctly
segmented areas are colored in red

Fig. 8 Performance of FCN-2s when input images are generated with different window settings (WL, WW) for each bit depth per pixel (BIT). The
selected window settings were (40,400), (−40,400), (100,400), (160,600), (40,240), (40,800), and (40,1200)
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segmented images identified three main errors: incomplete
muscle segmentation (n = 58; 39% of test cases), incorrect
organ segmentation (n = 52; 35%), and subcutaneous edema
mischaracterized as muscle (n = 17; 11% of test cases).
Representative examples of these errors are demonstrated in
Fig. 9.

Obesity

To evaluate the influence of obesity on the performance of the
segmentation algorithm, segmentation results of patients with
BMI >30 kg/m2 were compared to those of patients with BMI
<30 kg/m2. The average DSC was 0.93 in non-obese patients,
but only 0.92 in obese patients, a statistically significant dif-
ference (p = 0.0008). The incorrect inclusion of subcutaneous
soft tissue edema into muscle CSA was more common in
obese patients than in non-obese patients (p = 0.018).
However, inclusion of adjacent organs into muscle CSA
(p = 0.553) and incomplete muscle segmentation (p = 0.115)
were not significantly associated with obesity. There was no
statistically significant association between obesity and CSA
error (p = 0.16).

Oral Contrast

Forty-eight percent of the cohort received oral contrast in ad-
dition to intravenous contrast. The ratio was the same in the
training and testing datasets. There was no statistically signif-
icant association between the presence or absence of oral con-
trast and segmentation performance measured as DSC
(p = 0.192) or CSA error (p = 0.484), probably because the
network became invariant to its presence in the balanced
cohorts.

Discussion

We have developed an automated system for performing mus-
cle segmentation at the L3 vertebral body level using a fully
convolutional network with post processing at a markedly
faster deployment time when compared to conventional
semi-automated methods.

Our model was derived from a highly granular fully
convolutional network and compared to the semi-automated
HU thresholding method which requires tedious and time-

Fig. 9 Segmentation errors most
commonly presented as muscle
partly excluded (a), organs partly
included (b), and edema
mischaracterized as muscle (c).
Oversampled regions are colored
in blue, undersampled areas are
colored in yellow, and correctly
segmented areas are colored in
red
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consuming tuning of erroneous segmentation by highly
trained human experts. When compared to the HU
thresholding method without human tuning, even the coarsest
FCN had markedly better performance. It is not surprising as
HU thresholding is so inaccurate, as it includes overlapping
HU ranges between organs and muscle. However, by combin-
ing hierarchical features and different layers of increasing
granularity, our model was able to extract semantic informa-
tion, overall muscle shape, fine-grained appearance, and mus-
cle textural appearance. These results persisted even when
varying theWL andWWinto ranges unsuitable for the human
eye. Changes in WW had greater effects on segmentation
performance than WL, particularly when the number of gray
shades was small (bit6 and bit4). These results imply that this
network’s performance depends mostly on image contrast and
possibly due to the number of HU values assigned to a single
gray level, rather than inherent image brightness. It also im-
plies that preserving image information using the original 12-
bit resolution with 4096 shades of gray could provide consid-
erable performance gains by allowing the network to learn
other significant identifying features of muscle which are lost
in the conversion to 8 bits. These results are consistent with
other published findings that CNNs are excellent at textural
analysis [37, 38].

Deployment Time

Accurate segmentation of muscle tissue by the semi-
automated HU thresholding method requires roughly 20–
30min per slice on average [18]. Algorithms proposed inmost
prior works [16, 18, 19] required between 1 and 3 min per
slice. More recent works have reported that their algorithms
require only 3.4 s [21] and 0.6 s per image on average. To the
best of our knowledge, our model is the fastest reported seg-
mentation algorithm for muscle segmentation and needs only
0.17 s per slice on average. Segmenting 150 test images can be
performed in 25 s. This ultra-fast deployment can allow real-
time segmentation in clinical practice.

Clinical Applications

Muscle CSA at L3 has been shown to correlate with a wide
range of posttreatment outcomes. However, integration of
muscle CSA measurements in clinical practice has been lim-
ited by the time required to generate this data. By dropping the
calculation time from 1800 to 0.17 s, we can drastically speed
up research into new applications for morphometric analysis.
CT is an essential tool in the modern healthcare arena with
approximately 82 million CT examinations performed in the
USA in 2016 [39]. In lung cancer in particular, the current
clinical paradigm has been on lesion detection and disease
staging with an eye toward treatment selection. However, ac-
cumulating evidence suggests that CT body composition data

could provide objective biological markers to help lay the
foundation for the future of personalized medicine. Aside
from preoperative risk stratification for surgeons, recent work
has used morphometric data to predict death in radiation on-
cology and medical oncology [4]. Our system has the great
advantage of not requiring a special protocol (other than intra-
venous contrast) and could derive muscle CSA from routine
CT examinations near-instantaneously. This would enable
body composition analysis of the vast majority of CT
examinations.

Limitations

While the system has great potential for accelerating calcula-
tion of muscle CSA, there are important limitations. The net-
work statistically tends to underestimate muscle CSA. This is
probably due to a combination of overlapping HUs between
muscle and adjacent organs and variable organ textural ap-
pearance. On the other end of the spectrum, segmentation is
also confused by the radiographic appearance of edema par-
ticularly in obese patients, which has a similar HU range to
muscle, leading to higher CSA than expected. Extensive ede-
ma tends to occur in critically ill patients, leading to potential-
ly falsely elevated CSA in patients actually at higher risk for
all interventions.

The average age of our cohort is 63 years. While this is
representative of the lung cancer population, it may limit the
generalizability of our system for patients with different dis-
eases and age groups. Further training with data from a wider
group of patients could enable the algorithms to account for
these differences. In addition, the network should be trained to
segment CT examinations performed without intravenous
contrast and ultra-low radiation dose.

Future Directions

The muscle segmentation AI can be enhanced further by using
the original 12-bit image resolution with 4096 gray levels
which could enable the network to learn other significant
determinants which could be missed in the lower resolution.
In addition, an exciting target would be adipose tissue seg-
mentation. Adipose tissue segmentation is relatively straight-
forward since fat can be thresholded within a unique HU range
[−190 to −30]. Prior studies proposed creating an outer muscle
boundary to segment HU thresholded adipose tissue into vis-
ceral adipose tissue (VAT) and subcutaneous adipose tissue
(SAT). However, precise boundary generation is dependent
on accurate muscle segmentation. By combining our muscle
segmentation network with a subsequent adipose tissue
thresholding system, we could quickly and accurately provide
VAT and SAT values in addition to muscle CSA. Visceral
adipose tissue has been implicated in cardiovascular outcomes
andmetabolic syndrome, and accurate fat segmentation would
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increase the utility of our system beyond cancer prognostica-
tion [40]. Ultimately, our system should be extended to whole-
body volumetric analysis rather than axial CSA, providing
rapid and accurate characterization of body morphometric
parameters.

Conclusion

We have created an automated, deep learning system to auto-
matically detect and segment the muscle CSA of CT slices at
the L3 vertebral body level. This system achieves excellent
overlap with hand-segmented images with an average of less
than 3.68% error while rapidly accelerating segmentation time
from 30 min to 0.17 s. The fully automated segmentation
system can be embedded into the clinical environment to ac-
celerate the quantification of muscle to provide advancedmor-
phometric data on existing CT volumes and possible expand-
ed to volume analysis of 3D datasets.
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