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Abstract: The aerosol layer height (ALH) is an important parameter that characterizes aerosol
interaction with the environment. An estimation of the vertical distribution of aerosol is necessary
for studies of those interactions, their effect on radiance and for aerosol transport models. ALH
can be retrieved from satellite-based radiance measurements within the oxygen absorption band
between 760 and 770 nm (O2A band). The oxygen absorption is reduced when light is scattered by
an elevated aerosol layer. The Ocean and Land Colour Imager (OLCI) has three bands within the
oxygen absorption band. We show a congruent sensitivity study with respect to ALH for dust and
smoke cases over oceans. Furthermore, we developed a retrieval of the ALH for those cases and
an uncertainty estimation by applying linear uncertainty propagation and a bootstrap method. The
sensitivity study and the uncertainty estimation are based on radiative transfer simulations. The
impact of ALH, aerosol optical thickness (AOT), the surface roughness (wind speed) and the central
wavelength on the top of atmosphere (TOA) radiance is discussed. The OLCI bands are sufficiently
sensitive to ALH for cases with AOTs larger than 0.5 under the assumption of a known aerosol
type. With an accurate spectral characterization of the OLCI O2A bands better than 0.1 nm, ALH
can be retrieved with an uncertainty of a few hundred meters. The retrieval of ALH was applied
successfully on an OLCI dust and smoke scene. The found ALH is similar to parallel measurements
by the Tropospheric Monitoring Instrument (TROPOMI). OLCI’s high spatial resolution and coverage
allow a detailed overview of the vertical aerosol distribution over oceans.

Keywords: aerosol layer height; O2 absorption; OLCI; radiative transfer; sensitivity study

1. Introduction

Aerosol is a mixture of particulate matter in the atmosphere with natural or anthro-
pogenic origin. Depending on its origin, aerosol can be distributed differently within the
atmosphere. For example, industrial aerosol is rather found within the boundary layer,
soil from a dust outbreak of a desert can be transported up to the free troposphere, smoke
plumes from large biomass burning events can reach the upper troposphere and volcanic
ash eruptions can transport the ash up to the stratosphere [1]. The main aerosol sources are
on the Earth’s surface, and aerosol is uplifted under certain weather conditions. Thus, 70%
of all aerosol particles are located in the boundary layer [1]. In contrast, dust and smoke
are regularly uplifted.

The vertical distribution of aerosol is a key parameter in climate modeling and remote
sensing. It is necessary for the calculation of the Earth’s energy budget by estimating
the direct and indirect radiative forcing of aerosol [2–4]. Aerosol is, in addition to the
greenhouse gases, the most important anthropogenic climate forcer. It has both cooling and
warming effects. However, uncertainties about aerosol composition and distribution induce
uncertainties in the prediction of the climate [5]. Large uncertainties in magnitude and sign
of radiative effect originate from unknown or imprecise aerosol layer height (ALH) [3,4].
An example of the impact of aerosol on the Earth’s environment is the current warming
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of the Atlantic Ocean [6]. We can observe a decrease in Saharan dust emissions and an
increase in the temperature of the Atlantic. Saharan dust is transported westward across
the Atlantic Ocean. It is assumed that those dust layers in the atmosphere above the ocean
had a cooling effect, as light was reflected back to space and not absorbed by the water.

A valid characterization of ALH is also important for the retrieval of numerous pa-
rameters from remote sensing data. The uncertainty of CO2 [7,8] and NO2 [9] retrieval can
be reduced by including the aerosol vertical distribution. Furthermore, aerosol parameter
retrievals themselves can be improved with a better knowledge of ALH, e.g., the aerosol
retrievals of aerosol optical thickness (AOT) and the single scattering albedo (SSA) from
the ultra violet spectral range [10]. In particular, the retrieval of AOT is sensitive to the
aerosol height over dark surfaces [11]. Eventually, with a constrained aerosol profile, the at-
mospheric correction is more accurate, which is important for land and ocean applications,
e.g., surface retrievals like the fluorescence [12] or ocean color experiments [13].

The aerosol vertical distribution can be derived on a global scale with remote sensing.
Active instruments like the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP)
mounted on Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations
(CALIPSO) [14] have a high accuracy of the retrieval of the aerosol height, but due to
their small foot print, the global coverage is low [1]. In contrast, passive remote sens-
ing instruments do have good global coverage but often a small sensitivity to aerosol
height. However, there have been several sensitivity studies (e.g., [5,15,16]) and attempts
to retrieve aerosol height, e.g., from the O2A absorption band (760–770 nm) or the O2-
O2 bands (470 nm). As part of a sensitivity study, Colosimo et al. [5] investigated the
possibility to retrieve aerosol profiles from O2 absorption bands with high spectral reso-
lution. They showed that with very high spectral resolution, up to two parameters of the
aerosol extinction profile can be retrieved for measurements with a resolution of 0.003 nm.
Hollstein and Fischer [16] developed an ALH retrieval for high spectral resolution O2
measurements with resolutions of 0.3 nm, as it is planned for the Fluorescence Explorer.
Dubuisson et al. [17] estimated the uncertainty of an ALH retrieval from MERIS oxygen
absorption bands. Preusker and Lindstrot [18] performed a sensitivity study about gaining
information about the cloud top pressure from the O2 absorption from MERIS. They also
showed that the retrieval of vertical information from the O2 band is possible even with
low spectral resolution. Spectral high resolution instruments like the Scanning Imaging Ab-
sorption Spectrometer for Atmospheric Chartography (SCIMACHY) [15,19], Global Ozone
Monitoring Experiment-2 (GOME-2) [20], Orbiting Carbon Observatory 2 (OCO-2) [21]
and Tropospheric Monitoring Instrument (TROPOMI) [22] have been used successfully for
the retrieval of aerosol height. Also, spectrally coarse top-of-atmosphere (TOA) radiance
measurements hold information about the aerosol height as it is shown for ALH retrievals
from the Medium Resolution Imaging Spectrometer (MERIS) and PoLarization and Direc-
tionality of the Earth’s Reflectances (POLDER) [17]. Expected in 2024, the Ocean Colour
Instrument (OCI) will be launched on the National Aeronautics and Space Administration’s
(NASA’s) Plankton, Aerosol, Cloud, Ocean Ecosystem (PACE) spacecraft combining the
settings of its precursors Visible Infrared Imaging Radiometer Suite (VIIRS) and ozone mon-
itoring instrument (OMI). OCI will have hyperspectral bands within the oxygen absorption
bands (O2A, O2B (680 nm)) and within the ultra violet band with a spectral resolution
of 5 nm and a spectral sampling of 2.5 nm [23]. With this band combination, the OCI
shall retrieve the aerosol height for aerosol layers with an AOT larger than 0.1 with an
uncertainty of 0.15 km over dark surfaces [24]. The retrieval will be based on the differential
optical absorption spectroscopy ratio (DOAS) using an absorbing and a non-absorbing
band. A similar method is the spectral fitting method of O2A and/or O2B bands as it is
applied on measurements of the Earth Polychromatic Imaging Camera (EPIC) sensor on
the Deep Space Climate Observatory (DSCOVR) satellite [25]. The aerosol height retrieval
of TROPOMI is also based on spectral fitting but with radiance simulations performed by a
neural network algorithm [22]. The third common method is the use of the O2-O2 band at
477 nm as presented by Chimot et al. [26].
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The existing passive remote sensing retrievals of the aerosol height have a rather
coarse horizontal spatial resolution but a high spectral resolution (e.g., SCIAMACHY:
0.48 nm, GOME-2: 0.48 nm, TROPOMI: 0.55 nm). The Ocean and Land Colour Imager
(OLCI) on Sentinel-3 satellites has a spatial resolution of about 300 × 300 m [27]. OLCI
has three spectral bands within the oxygen absorption band with spectral resolution of
2.5–3.75 nm [27]. So far, those bands have not been used to derive the aerosol height.
The Sentinel-3 series can be used to collect climate data over a long temporal range [27].
The large fleet of Sentinel-3 (currently Sentinel-3A and Sentinel-3B) allows a global coverage
of 2 to 3 days even without including sun glint pixels. As mentioned above, especially
for trace gas-retrievals and ocean color algorithms, the aerosol height is an important
parameter. By retrieving ALH directly with OLCI, the information could be used to enhance
its atmospheric correction and to provide new insight in aerosol–cloud interactions on
a small spatial scale. With an ALH product from OLCI, no ALH products from other
instruments are necessary, and thus, a spatial overlap of those instruments does not need
to be considered.

We use OLCI’s radiance measurements in the O2 absorption band to distinguish
low, medium and high aerosol over oceans. We show a sensitivity study on the retrieval
of ALH from OLCI O2A bands, a proof of concept for retrieving ALH over oceans and
an uncertainty estimate for the ALH retrieved from OLCI. Due to the steep and distinct
oxygen absorption lines, an exact spectral characterization of the O2A bands is necessary.
For the best possible characterization, we use the temporal evolution model of the spectral
characterization of OLCI. With this characterization, we can show that OLCI’s radiance
measurements are sensitive to aerosol height. This is also shown in the application of an
aerosol height retrieval on two case studies. For this study, the retrieval is limited to dust
and smoke particles in cloud-free scenes over the ocean. It is based on radiative transfer
simulations. The radiative transfer model, input data and the retrieval algorithm are
described in the Methods Section 2. The results of the sensitivity study and the application
of the retrieval on the test scenes are presented in Section 3. The uncertainty of the retrieval
is presented in Section 4. The results are discussed in Section 5.

2. Methods
2.1. Radiative Transfer Model

Sensitivity studies and the look-up tables (LUTs) applied in the retrieval of ALH are
based on radiative transfer simulations calculated with the vector radiative transfer model,
the “matrix operator model” (MOMO), developed at the Freie Universität Berlin [28,29].
The interaction of the light that travels through the atmosphere is described with the
radiative transfer equation. Its matrix form is discretized, Fourier-decomposed, and solved
by a doubling and adding method [28]. The output of MOMO is the diffuse upward and
downward-directed radiance for discrete angles for each atmospheric layer.

The atmosphere is approximated with a model of plane parallel layers with homoge-
neously distributed particles. The ocean surface is approximated as randomly distributed
planes with Fresnel properties. The distribution of the surface normals depends on the
wind speed. This dependency is described by Cox and Munk [30]. The ocean interface is
described with a refractive index of 1.335 (water temperature: 20 °C; salinity: 36 PSU) with
no further description of the water constituents as the studied bands are not influenced
by them.

The gas absorption is described by a line-by-line model which is approximated with a
k-binning solution [31]. The input of the line-by-line model is taken from the HITRAN16
data base [32]. The oxygen cross sections originate from Drouin et al. [33].

2.2. Setup of Radiative Transfer Simulations

We study the sensitivity of the O2A absorption bands of OLCI with main focus on
the aerosol height. However, the bands are also sensitive to AOT, aerosol type, the surface
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roughness, viewing geometry and band characterization. To quantify the sensitivities, we
simulate TOA radiances for various quantities of those parameters.

The basic setup describing the ocean and the atmosphere is kept constant. The atmo-
sphere is split in 27 layers. The lower 6 km is split into layers every 25 hPa. We chose the
standard Air Force Geophysical Laboratory (AFGL) Atmospheric Constituent Profile [34]
for the mid-latitude summer case with a surface pressure of 1025 hPa.

To reduce the number of simulations, the TOA radiance is calculated for four rect-
angular spectral response functions at 754 nm with a width of 23.5 nm; at 762 nm with
a width of 10.4 nm; at 765 nm with a width of 12.9 nm; and at 768 nm with a width of
10.2 nm. From those simulations, we create look-up tables by convolving the simulations
with OLCI’s spectral instrument response functions.

The ocean roughness is tuned for wind speeds between 3 and 9 m/s. All simulations
are made for different observation and sun angles covering the whole hemisphere. The
aerosol is placed in one of the following layers with borders at: 1000 hPa (215 m) and
975 hPa (440 m); 950 hPa (665 m) and 925 hPa (890 m); 900 hPa (1117 m) and 875 hPa
(1367 m); 725 hPa (2934 m) and 700 hPa (3219 m); 550 hPa (5157 m) and 525 hPa (5530 m).
In all other layers but the one where the aerosol is placed, we assume that no aerosol is
present. We define the aerosol layer height (ALH) as

ALH =
a + b

2
(1)

with a as the lower layer boundary and b as the upper layer boundary. The ALHs of the
5 cases are 327, 777, 1244, 3076 and 5255 m (see Figure 1).
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Figure 1. Schematic overview of aerosol vertical distributions for five cases with ALH at 327, 777,
1244, 3076 and 5255 m. The lines indicate the layer interfaces.

We chose two different aerosol models, namely dust and strong absorbing fine mode
aerosol (SABS), which are described in the next section (Section 2.3). AOT at 550 nm ranges
from 0.05 up to 12 for dust and up to 5.5 for SABS.
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2.3. Aerosol Model

Elevated aerosol particles originate mostly from uplifted desert dust or smoke from
biomass burning. We use models that describe those two aerosol types. The spheroid
model of Dubovik et al. [35] is used to parameterize dust particles. The model is based on
LUTs with simulated size-dependent and shape-dependent optical properties for random
oriented particles. The complex shape of dust particles is approximated by spheroids.
The microphysical properties were chosen following the hybrid end-to-end aerosol classifi-
cation model for EarthCARE (HETEAC) [36]. For Saharan desert dust, the refractive index
at 550 nm is chosen to be 1.53 + i0.003, the effective radius is 1.94 µm, the mode radius of
the volume size distribution 2.32 µm and logarithmic mode width of 0.6.

Biomass burning aerosol is approximated by strong absorbing spherical fine-mode
particles following HETEAC and the Aerosol-CCI approach [36]. This approximation is
true especially for fresh smoke particles which have a large fraction of strong absorbing
soot and other absorbing material. We chose a particle distribution with an effective radius
of 0.14 µm and a spectrally constant refractive index of 1.5 − 0.043i.

The phase functions are shown in Figure 2 for different scattering angles and depend
on the sun zenith angle (SZA) φSZA, the viewing zenith angle (VZA) φVZA and the azimuth
difference angle (AZI) θAZI . It is calculated with the following formula (adapted from [37]):

cos(Θscat) = sin(φSZA) · sin(φVZA) · cos(θAZI)− cos(φSZA) · cos(φVZA) (2)
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Figure 2. Phase function of aerosol models dust in solid lines and strong absorbing aerosol (SABS) in
dashed lines at 760 nm.

The phase function for the spherical SABS particles is calculated with a Mie scattering
algorithm [38]. Further optical properties are shown for dust and SABS in Table A1.

2.4. OLCI Data

OLCI has three bands within the O2 A absorption band, namely Oa13, Oa14 and Oa15,
with nominal central wavelengths of 761.25 nm, 764.375 nm and 767.5 nm and nominal
full width at half maximum (FWHM) of 2.5 nm, 3.75 nm and 2.5 nm. As a reference
band without absorption, we chose the Oa12 band at 753.75 nm with nominal FWHM
of 7.5 nm. The relative response functions of those four bands are shown together with
the TOA transmission by oxygen in Figure 3. The input of the retrieval is the Level 1 (L1)
data, including the radiances at the named bands, the solar flux, the wind speed and the
observation and sun geometry. From the given sun and observation azimuth angle, we
calculate an azimuth difference angle with 0◦ pointing towards the sun, marking the sun
glint area, and 180◦ in the backscattering direction.
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Figure 3. Relative spectral response functions (RSR) of OLCI-B in O2 absorption band. Transparent
colors show RSR of different detectors and non-transparent colors are the harmonized response
functions. In grey, the TOA transmission is given for an air mass factor of Section 2.2.

2.4.1. Preprocessing

OLCI is built from 5 cameras with 740 across track pixels each. Each of those pixels has
its own spectral response function (see Figure 3). In particular, for the absorption bands, it
is crucial to know them as accurately as possible. Due to the deep O2 absorption lines, only
small shifts in the central wavelength result in large differences in the TOA radiance [18].
For the accurate choice of spectral response function, we use the model that characterizes
the time evolution of OLCI’s spectral responses (see [39] https://sentinels.copernicus.
eu/documents/247904/2700436/LUT.zip, accessed on 24 February 2023). Based on this
band characterization and on the Sentinel Application Platform (SNAP) plugin for the O2
harmonization of OLCI [40], the data are harmonized to the nominal spectral response
function for each band (Oa13, Oa14, Oa15). The harmonization is based on precalculated
LUTs of transmissions [41]. First, the OLCI bands 12–16 are normalized with respect to
their corresponding in-band solar irradiance. Secondly, reference window radiances are
calculated by a spectral interpolation of the window band Oa12 and Oa16 to the nominal
spectral position of the bands Oa13, Oa14 and Oa15. With these interpolated reference
window radiances, apparent transmissions are calculated for those bands. The apparent
transmission is shifted to the nominal wavelength using a combination of KD-search and
an inverse distance weighted interpolation [41]. The harmonization method is described in
more details in Appendix B.

The harmonized transmissions have the same spectral response function across track,
and thus, the LUTs for the ALH retrieval do not need to account for the central wavelength
or FWHM. For the sensitivity study, we introduce the central wavelength as dimension
of the LUT. The output of the simulations is convolved with the time-evolved spectral
response function, which is shown as non-transparent colored lines in Figure 3. For the
sensitivity study LUT, the response functions are shifted plus and minus 0.1 nm. In addition
to the transmissions at the absorption bands, the radiance of the absorption-free band is
used for the retrieval and the sensitivity study.

In Figure 4, the transmission for the band ratio at 761.25 and 753.75 nm is shown
before and after the harmonization of the central wavelength. Before the harmonization,
the interface between the cameras is clearly visible. The mean difference between camera
3 and 4 along the track is on average 6% with occasional 10% peaks. The harmonized
transmission shows only slight camera effects, especially between camera 3 and 4. Here,
the peak differences could be eliminated and the mean difference is reduced by 1.5%.

https://sentinels.copernicus.eu/documents/247904/2700436/LUT.zip
https://sentinels.copernicus.eu/documents/247904/2700436/LUT.zip
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The residual difference is set as measurement uncertainty for the band at 761.25 nm (see
Section 2.6).

Figure 4. Comparison of original transmission on the left, calculated as ratio of OLCI-B L1 radiance
at 761.25 and 753.75 nm, and harmonized transmission on the right.

2.4.2. Case Study and Reference Data

The retrieval algorithm is applied for two case study scenes: (i) during the large dust
storm in summer 2020 called “Godzilla” (see e.g., [42]) and (ii) during a large wild fire at
the coast of California in September 2020. Both scenes were selected to match our assumed
surface pressure of 1025 hPa.

For the dust scene, we chose two sequences of Sentinel-3B on 18 June 2020 over Cape
Verde at 11:35 UTC and 11:38 UTC. The scene is dominated by a large dust plume with a
large range of different optical thicknesses and only very few clouds. The two sequences
have a mean surface pressure according to the L1 OLCI data of 1015 and 1021 hPa.

For the smoke scene, we chose sequences of Sentinel-3A and Sentinel-3B on 8 Septem-
ber 2020 taken between 18:25 and 18:30 UTC. In the center of the scene is a very thick smoke
plume with clouds in the northeast and southwest. The sequences have a mean surface
pressure according to the L1 OLCI data of 1011, 1024 and 1025 hPa.

As reference data set, we use the ALH product (S5P_L2__AER_LH version 1 product
(https://doi.org/10.5270/S5P-j7aj4gr, accessed on 28 March 2023)) from TROPOMI on
board of Sentinel-5P (S5P) from the overpasses on the same days about two to four hours
after the Sentinel overpass: on 18 June 2020 at 14:13, 14:18 and 15:53 UTC and on 08/09/2020
between 20:24 and 20:29 UTC. TROPOMI has a spectral resolution within the O2A band of
0.38 nm with a spectral sampling interval of 0.12 nm and a spatial resolution of 7 km ×
3.5 km [43]. The retrieval is based on a neutral network approach [22].

Furthermore, we compare our results with CALIOP measurements on board of
CALIPSO. The active instrument provides the extinction profile at 532 nm with a ver-
tical resolution of 60 m and a horizontal resolution of 5 km. The effective aerosol height
can be approximated from the extinction profile by the weighted extinction or the cumula-
tive extinction. Both definitions have been used for the comparison with passive remote
sensing [2,44,45]. We use the weighted extinction, which is defined as

ALHCali =

n
∑

i=1
βext,i ∗ Zi

n
∑

i=1
βext,i

, (3)

https://doi.org/10.5270/S5P-j7aj4gr


Remote Sens. 2023, 15, 4080 8 of 26

with βext,i as the aerosol extinction (km−1) at 532 nm at altitude Zi in km and n number
lidar product layers.

We calculate the weighted extinction from the level 2 Aerosol Profile product (https://
doi.org/10.5067/CALIOP/CALIPSO/CAL_LID_L2_05kmAPro-Standard-V4-21, accessed
on 9 March 2023). For the dust case, we chose the overpass from 18 June 2020 between 03:22
and 03:45 in the morning, which was about eight hours earlier than the Sentinel overpass.
For the smoke case, we chose the overpass from 8 September 2020 between 21:45 and 22:07
UTC, which was about three hours after the Sentinel overpass.

2.5. 1D Variational Approach

The retrieval of ALH is based on a 1D variational approach (1Dvar). For given surface
and atmosphere description and measurement geometry, ALH and AOT are optimized
in order to reduce the difference between measured L1 radiances and forward-modeled
radiances. Forward-modeled radiances are calculated by interpolating within the above
described LUTs. Following the direction of the largest gradient, ALH and AOT are changed
step-wise in an iterative process taking an a priori knowledge, with its uncertainty and the
measurement uncertainty into account. The following description of the 1Dvar method
and all formulas are adapted from Rodgers [46].

The state vector is one input of the forward model. It includes ALH and AOT in our
case. Further, fixed parameters Pa , namely the wind speed and the measurement geometry,
are the input of the forward model. The state vector Xi is adjusted in each step i using
the Gauss–Newton method considering the gradient in terms of the Jacobian Ki and the
measurement error covariance Se:

Xi+1 = Xi − (Sa
−1 + Ki

TSe
−1Ki)

−1(Ki
TSe

−1 · (F(Xi, Pa)− Y)

− Sa
−1 · (Xa − Xi))

(4)

The difference between forward model F(Xi, Pa) and measurement Y is weighted with
the measurement error covariance matrix and the Jacobian. Furthermore, the difference
between state vector and a priori knowledge Xa weighted by the a priori error covariance
matrix Sa is taken into account. Once the maximum number of iterations (10) is reached or
the increment weighted by retrieval error covariance matrix Ŝ is small, the iteration stops.
The second stop criterion is given by

(Xi − Xi+1)
T · Ŝ−1

i · (Xi − Xi+1) < n · ε (5)

with ε = 0.01 and n = 2 is the number of parameter state dimensions and the retrieval
error covariance matrix:

Ŝi = (Sa
−1 + Ki

TSe
−1Ki)

−1. (6)

This method assumes Gaussian probability density functions of uncertainty and bias-
free measurements, priors and models.

2.6. Retrieval of ALH from OLCI Level 1 Data

We retrieve the ALH and AOT for cloud-free cases over ocean and for known aerosol
types. The input of the retrieval are harmonized, normalized radiance I of the absorption-
free band at 753.75 nm and of the absorption bands at i = 761.25, 764.375 and 767.5 nm on a
logarithmic scale:

Yi = log(
Ii

I753.75
). (7)

The radiances at the different bands are normalized with their corresponding solar
irradiances.

https://doi.org/10.5067/CALIOP/CALIPSO/CAL_LID_L2_05kmAPro-Standard-V4-21
https://doi.org/10.5067/CALIOP/CALIPSO/CAL_LID_L2_05kmAPro-Standard-V4-21
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The measurement errors are approximated with a signal-to-noise ratio of 200 for the
absorption-free band and of 50 for all other bands. At band i = 764.375 nm and i = 767.5 nm,
the Gaussian error propagation gives

Yerri =
1

200
+

1
50

. (8)

To include residual camera effects which are strongest for the band at 761.25 nm (see
Figure 4), the mean difference between the last detector row of camera 3 and the first
detector row of camera 4 is taken as measurement error for this band.

All four bands are optimized simultaneously. The a priori input for ALH and AOT is
chosen for each scene (dust: ALH = 3000 m; AOT = 3.7, smoke: ALH = 1000 m; AOT = 5.5)
according to other satellite, ground-based and model data. We use AERONET data for
the AOT at 550 nm from Cape Verde for the dust scene, which lies in the center of the
large dust plume, and from the AERONET stations at the west coast for the smoke scene
which measured AOTs between 5 and 6. The dust ALH is approximated roughly using the
back trajectory model Hysplit [47] and using the average of the CALIOP data which were
recorded about 12 h earlier than the OLCI data. The smoke ALH is approximated roughly
using the cloud top height of MODIS [48]. The choice of a priori parameter is restricted
to these case studies. A more general assumption could be based on, e.g., Copernicus
Atmosphere Monitoring Service (CAMS) data [49]. The a priori error covariance of ALH is
kept very large to ensure a free choice of ALH. In contrast, we chose a small AOT a priori
error covariance for robust convergence. The fixed input parameters are the wind speed,
SZA, VZA and AZI which are taken from OLCI level 1 data. All inputs for the retrieval are
listed in Table 1. The surface pressure, central wavelength and the FWHM are also fixed.
They are 1025 hPa and the nominal central wavelengths and FWHMs.

Table 1. Input for retrieval of ALH for the dust and smoke test scenes.

Parameter Values Data
Source

Y (I753.75, log( I761.25
I753.75

), log( I764.375
I753.75

), log( I767.5
I753.75

)) OLCI L1
Se[i, i] ( I753.75

200 )2, (log(TCam4)− log(TCam3))
2, ( 1

200 )
2 + ( 1

50 )
2, ( 1

200 )
2 + ( 1

50 )
2 OLCI L1

Pa wind speed, SZA, VZA, AZI OLCI L1
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3. Results
3.1. Sensitivity Study

The TOA radiance between 760 and 770 nm is mainly determined by the strong
absorption features of oxygen. It scales with the surface pressure. However, the surface
pressure is a well-known parameter. Consequently, we do not include it in our sensitivity
study. Instead, the sensitivity to ALH is studied. The sensitivity study is designed for the
OLCI nominal bands Oa12–Oa15 with their central wavelengths at 753.75, 761.25, 764.375
and 767.5 nm and typical observation and sun geometries with SZA of 30◦, VZA at 46◦ and
AZI at 170◦. In addition to the surface pressure and the measurement geometry, the surface
reflectance, aerosol properties and the characterization of the instrument determine the
TOA radiance at those bands. Hence, we study the sensitivity of the TOA radiance with
respect to the wind speed, which parameterizes the roughness of the ocean surface and thus
the surface reflectance over the ocean, ALH, AOT, aerosol type, and the central wavelength
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of the instrument bands. The sensitivity is given as derivative with respect to each of the
parameters and each band. To reduce the influence of AOT on the TOA signal, we take the
ratio of the absorption bands and the absorption-free band at 753.75 nm. The sensitivity
study is performed for different aerosol cases with two different aerosol types, namely dust
and SABS, with different AOTs (0.15, 0.55, 1) and different ALHs (1100, 3000 and 4900 m).

Results of the sensitivity study for a glint-free scene are summarized in Figure 5. The Ja-
cobians are given in percent. The sensitivity to ALH is given in Figure 5a. The absorption-
free band is not sensitive to the aerosol height. The band ratio at 761.25 nm shows the
largest sensitivity with a change of more than 8% for thick and low dust layers. The sensi-
tivity increases with AOT and decreases with ALH. The more aerosol particles are present
in the atmosphere, the more the signal is changed due to scattering and absorption by the
aerosol. In lower layers, the pressure is higher and the number of oxygen molecules is
larger. Thus, an aerosol layer closer to the ground has a stronger effect on the TOA signal.
Additionally, we observe that the ALH of dust is more sensitive, which can be explained by
its optical properties (see Table A1). Dust is scattering more than smoke and thus, more
light is reflected to TOA, reducing the interaction of the light with O2.
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Figure 5. Jacobians of TOA radiance ratios at different central wavelengths relative to (a) ALH,
(b) AOT, (c) wind speed and (d) central wavelength. Jacobians are given for two aerosol models
(circles: SABS, triangles: dust) and for different AOTs (transparent: 0.15, non-transparent: 1.0). All
results are given for SZA of 30◦, VZA at 46◦ and AZI at 170◦.

The largest sensitivity of the absorption-free signal can be observed for the AOT
(Figure 5b). For small AOTs, the signal is changed by 200–380% for changes of 1 in the
AOT in the absorption-free band. This strong dependence is true for both aerosol cases.
The sensitivity is smaller with 80% for smoke and 60% for dust at AOT of 1. The influence
of AOT on the absorption bands is reduced by taking the ratio of absorption band and
absorption-free band. For the ratios, the sensitivity to the AOT is small with a maximum
at 761.25 nm for small AOTs. The optical depth of dust influences the band ratio with up
to 100% at small AOTs of 0.15. For larger optical thickness, the sensitivity to the AOT is
reduced to less than 10% for a change in AOT of 1 at 761.25 nm. The band ratios at 764.375
and at 767.5 nm are less sensitive for all AOTs.

The wind speed does not influence the TOA signal strongly for our study case of an
off-glint case. Its sensitivity is negligible (see Figure 5c). For a glint observation geometry,
the sensitivity is larger than for the off-glint case (see Figure A1). In the absorption-free
band the sensitivity can be as high as 3%, which is small compared to the sensitivity to AOT.
For the glint case, the sensitivity to the ALH and the central wavelength are very similar
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compared to the off-glint case, and the sensitivity to AOT is reduced within the absorption-
free bands. However, AOT can only be determined accurately for glint geometry with an
exact description of the glint. If we assume a measurement uncertainty of about 0.5% for
OLCI and sensitivities to the ALH between 1 and 8%, it is possible to retrieve the ALH
from OLCI measurements both in off-glint and glint geometries. Only aerosol layers with
small AOTs are difficult to retrieve.

Another sensitivity parameter is the central wavelength (see Figure 5d). Again, the
sensitivity is only high in the absorption bands, which is due to their steep and distinct
nature. A change of the central wavelength of 0.1 nm changes the TOA signal between
1.5 and 2% for both aerosol types. The sensitivity to the wavelength is larger than the
uncertainty of the measurement and thus it will be relevant in the retrieval. We use the
temporal evolution model for the instrument characterization, which has an uncertainty of
0.1 nm. Hence, the accuracy of the definition of the central wavelength limits the retrieval
accuracy. The wavelength uncertainty of 0.1 nm contributes to the uncertainty budget
of the ALH by approximately 200 m in band Oa13, 500 m in band Oa14, and 1000 m in
band Oa15. The uncertainty of the retrieval using all three bands simultaneously is further
discussed in Section 4.

Using this sensitivity analysis, we showed that it is possible to retrieve ALH from
OLCI measurements for dust and smoke with an resolution better than 1 km and with the
restriction of a well known instrument characterization with a central wavelength accuracy
of 0.1 nm. Additionally, the aerosol type must be known.

3.2. Retrieval of ALH for Test Cases

We apply the retrieval of the ALH to two scenes, one showing elevated dust particles
over the Atlantic Ocean west of Africa and one showing smoke particles over the Pacific
Ocean from a forest fire on the west coast of North America. For each scene, the LUT
is chosen according to the known aerosol type and an a priori is assumed. We consider
only pixels with a retrieved AOT larger than 0.55. This threshold is selected based on the
sensitivity study and it can be further adjusted. For lower AOTs, the influence of a change
in AOT by 0.1 is stronger than a change in ALH by 1 km.

3.2.1. Dust Case

Two sequences of OLCI-B from 18/06/2020 over Cape Verde are evaluated and com-
pared with TROPOMI and CALIOP (see Section 2.4.2). The true color image (RGB) from
OLCI-B is shown in Figure 6a. A thick dust cloud is visible with varying AOT. Only
small parts of the images are covered by clouds. Clouds are flagged out using the IDEPIX
algorithm, which is implemented in SNAP [50]. The red line shows the CALIOP-track (of
sub-satellite points) from 03:29 UTC in the upper subfigures. The two OLCI sequences are
taken only 3 min apart from each other at 11:35 UTC and 11:38 UTC. Across the track, we
cannot observe any camera artefacts.

Figure 6b shows the retrieved ALH in kilometers. Clouds are flagged out, which is
indicated by white pixels. The retrieval did not converge for the light grey pixels, and the
dark grey pixels are flagged out due to found AOT smaller than 0.55. The main reason
for non-convergence is a low aerosol loading as present in the northwest. Comparing our
results to the ALH retrieved from TROPOMI measurements (Figure 6c), we can observe
the same distribution of ALHs. A higher dust plume is present around 22◦N, gradually
decreasing southward. The lowest aerosol layers are at 12.6◦N, which is true for both ALH
retrievals from TROPOMI and OLCI. Higher particles are present at about 10◦N. Overall,
the OLCI ALH is a bit larger than the one of TROPOMI. The western TROPOMI images
were recorded at 15:53 UTC and the eastern images at 14:13 and 14:18 UTC. The images
fit together very well, which indicates a stable situation. Additionally, we investigated
different CALIPSO overpasses at 03:29 and 15:29 UTC, which both showed a dust plume at
the same height at similar latitudes. From these observations, we are confident, that we
can compare our results measured between 11:35 and 11:38 UTC both with the TROPOMI
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data and the CALIPSO overpass at 03:29 UTC (see Figure 6d). The afternoon overpass of
CALIPSO did not cover our study scene.

Figure 6. (a) RGB composite generated from OLCI L1 on 18/06/2020 between 11:35 and 11:38 UTC
over the Atlantic west of central Africa. (b) Optimized ALH derived from OLCI-B measurements
(c) TROPOMI ALH on 18/06/2020 at 14:13, 14:18 and 15:53 UTC. (d) CALIOP, OLCI and CALIPSO
ALH along CALIPSO track on 18/06/2020 at about 03:29 UTC. White pixels are cloud flags, light
grey pixels are non-convergence pixels and dark grey pixels are flagged out due to AOT smaller than
0.55. The red line in a–c shows the same CALIPSO track as in (d).

Figure 6d shows the weighted extinction from the CALIPSO overpass at 03:29 UTC
and the co-located OLCI-B and TROPOMI ALHs. Along the CALIPSO track at 03:29
UTC, the overall ALH distribution from OLCI and TROPOMI is similar to the weighted
extinction from CALIOP with the exception for higher latitudes. Here, only a few aerosol
particles are present and the pixels are in the sun glint geometry (see Figure A2), which
reduces the sensitivity of our retrieval. The TROPOMI ALH is flagged out in this part
of the image. All valid TROPOMI ALH are very similar to the OLCI ALH with a slight
negative median offset of about 0.5 km. Considering only latitudes between 8◦ and 23◦N,
OLCI’s ALH is about 1.25 km lower than the one of CALIOP but closer to the CALIOP data
than TROPOMI.

3.2.2. Smoke Case

We evaluate a smoke case using sequences of OLCI-A and OLCI-B from 08/09/2020
and nearest overpasses of CALIPSO and S5P. The true color image generated from OLCI
L1 measurements in Figure 7a shows a thick smoke plume over the Pacific Ocean west of
California. The western image originates from OLCI-B. The eastern part of the image are
two OLCI-A scenes. The red line marks the CALIOP track of sub-satellite points in all three
upper subplots.

Figure 7b shows the retrieved ALH from those OLCI sequences. We did not apply
the IDEPIX cloud mask as it flagged our target smoke plume. Thus, Figure 7b does not
show white marked pixels. The ALH retrieval flagged out the cloud pixels, e.g., in the
northwest, anyway, as those pixels did not converge (see light grey pixels in Figure 7b). In



Remote Sens. 2023, 15, 4080 13 of 26

addition to cloudy pixels, the retrieval also failed for parts of the smoke plume. Here, the L1
radiance was very bright which is not represented in our SABS LUT. However, the height
of the eastern parts of the thick smoke plume (at longitudes between 124◦ and 130◦W and
latitudes between 45.5◦ and 41.5◦N) could be estimated. The plume is low compared to
the thinner plumes in the north (at longitudes between 124.5◦ and 132◦W and latitudes
between 47.5◦ and 46.5◦N). In contrast, in the very south of the scene, the smoke plume is
estimated at a high altitude of up to 5 km.

Figure 7. (a) RGB composite generated from OLCI L1 on 8 September 2020 at 18:26 UTC in west
of California. (b) Optimized ALH derived from OLCI-B measurements. (c) TROPOMI ALH on 8
September 2020 at 20:24 and 20:29 UTC. (d) OLCI, CALIPSO and TROPOMI ALH along CALIPSO
track on 08/09/2020 at 21:27 UTC. The red line in (a–c) shows the same CALIPSO track as in (d).

Comparing to TROPOMI’s ALH given in Figure 7c, we can observe similar features
in the ALH with high ALH in the south (at longitudes of around 123◦W) and low ALH in
the main plume (at longitudes between 124◦ and 130◦W and latitudes between 45.5◦ and
41.5◦N). Similar to our retrieval, TROPOMI flags out parts of the main plume (white pixels).
Only in the northwest (at longitudes between 134◦ and 130◦W and latitudes between 47.8◦

and 45.5◦N), our results deviate from TROPOMI’s ALH. Our ALH (about 3 km) is higher
than the one of TROPOMI (about 1 km). Here, the AOT is lower than in the main plume.

The direct comparison of OLCI, TROPOMI, and CALIOP in Figure 7d also shows a
good agreement of OLCI and TROPOMI. In the south, at around 31◦N, TROPOMI mea-
sures a high aerosol layer, whereas OLCI detects a low ALH. However, this area is very
cloudy and the conditions could have changed slightly between 18:26 UTC (OLCI over-
pass) and 20:24/20:29 UTC (TROPOMI overpass). Both retrieval results show differences
compared with the weighted extinction measured by CALIOP. The main smoke plume is
observed between 40 and 45◦N. Here, OLCI’s and TROPOMI’s ALH is more than 1 km
lower. In the north at around 47.8◦N, our estimated ALH is higher than the CALIOP one.
The difference in the north could be either explained by difference in measurement time or
uncertainties within our retrieval. As TROPOMI also shows lower values in the north than
OLCI, the discrepancy might be the result of a high uncertainty due to the small AOT for
those pixels.
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4. Uncertainty Propagation

We estimate the uncertainty of the retrieved ALH by applying a complete linear
uncertainty propagation and using a bootstrap method evaluating simulated radiances
with known noise. For both methods, all uncertainty sources must be quantified. For some
parameters we could only guess them in all conscience. Nevertheless, by applying both
methods we can give a sophisticated guess of the ALH uncertainty.

4.1. Linear Uncertainty Propagation

The linear uncertainty propagation is based on the error covariance matrix calculated
with Equation (6). It includes the a priori error covariance, the Jacobians with partial
derivatives of the radiance with respect to the ALH and the error covariance matrix Se,
which is substituted by the sum of all known uncertainty sources (adapted from [46]):

S∗
e = Separam + SeSNR + Sewvl (9)

Separam is calculated with parameter error covariance matrix Sparam, which is in the
parameter space. Sparam includes the input parameter uncertainties, which are transformed
to the measurement space using the derivatives of the TOA signal with respect to the
parameters (parameter Jacobian (Kparam) (adapted from [46]):

Separam = Kparam
TSparamKparam. (10)

The diagonal elements of Sparam are the approximated uncertainties of the wind
speed, the SZA, VZA and AZI, which are summarized in Table 2. The angles have a very
small uncertainty. Nevertheless, we chose perturbations up to 3◦ to change the scattering
angle slightly and thus change the sampling point of the phase function. The off-diagonal
elements of Sparam are set to zero because the wind speed and the observation geometry
are not correlated.

Table 2. Input for simulated truth and assumed uncertainty for the uncertainty propagation.

Parameter Input Values Uncertainty

ALH in m 450, 750, 1000, 3000, 5000 -
AOT 0.55–5.5 -

wind speed in m/s 4, 6, 8 +/− 1
SZA in Degrees 25–40 +/− 3
VZA in Degrees 0–60 +/− 3
AZI in Degrees 10–50; 130–150 +/− 3

wvl in nm 753.75, 761.25, 764.375 and 767.5 +/− 0.1

SeSNR gives the contribution of the measurement uncertainty on the diagonal matrix
elements (see Table 1). The off-diagonal elements of SeSNR are set to zero since correlations
are not quantified in the instrument characterization. Hence, this uncertainty source
is neglected.

The uncertainty contribution of the wavelength is estimated comparing two sets of
forward simulations for which known state parameters of all valid pixels including the
retrieved ALH and AOT have been applied. One set of forward simulations uses the
correct central wavelength, and one set is based on a spectral response function shifted by
0.1 nm. Both sets of simulations are created for all four bands. The mean squared difference
of those two sets gives an estimate of the contribution by the wavelength uncertainty.
The elements of the error covariance matrix are calculated by multiplying the square root
of mean squared differences of the bands scaled with the correlation coefficient cij:

Sewvl ij =

√
∑(I0

i − I0.1
i )2

N
∗

√
∑(I0

j − I0.1
j )2

N
∗ cij. (11)



Remote Sens. 2023, 15, 4080 15 of 26

i, j are integers between 0 and 3 counting the dimension of the used bands, and N
counts all pixels.

The pixelwise uncertainty is presented in Figure 8 for the dust case study scene and
in Figure 9 for the smoke case study scene. Both figures show the retrieved ALH and
the corresponding uncertainty for all valid pixels. As described before, cloudy pixels are
flagged out with white color, non-converging pixels are shown in light grey, and in dark
grey are all pixels with retrieved AOT smaller than 0.55. Pixels with small optical thickness
have a large ALH uncertainty. In the northeast in Figure 8 at the border to the flagged out
pixels, the uncertainty is about 1000 m. The reason for the high uncertainty in this area is
the combination of a low AOT and the sun glint. The dependence of the ALH uncertainty
on the AOT is discussed in more details in Figure A4a. A decrease in the uncertainty of
the ALH is shown for decreasing AOT, which is more prominent in the sun glint area.
The observation geometries and the sun glint risk area according to the L1 flag are shown
in Figure A2. In the upper right corner of the image, the uncertainty is low even though it
is still in the glint area. However, the thick AOT reduces the sensitivity to the glint for this
scene. The same is true for the southern glint area (east of the image). Here, the uncertainty
is not higher than in the rest of the scene. The optical thick dust cloud reduces the effect
of the glint and the ALH can be retrieved with a good precision. Over all, the uncertainty
of the ALH for the dust scene is mostly between 400 and 600 m with no dependency on
the ALH. With this precision, we can distinguish between low, medium and high aerosol
layers even with OLCI’s low spectral resolution.

Figure 8. (a) Optimized ALH derived from OLCI-B measurements on 18 June 2020 between 11:35
and 11:38 UTC over the Atlantic west of central Africa. (b) Estimated pixelwise uncertainty using
linear uncertainty propagation. White pixels are cloud flags, light grey pixels are non-convergence
pixels and dark grey pixels are flagged out due to AOT smaller than 0.55.

The precision for the smoke case in Figure 9 is even higher. Especially in the area of
large AOTs, the uncertainty ranges between 150 and 300 m. Only in the northwest, where
the AOT is small, the uncertainty is up to 800 m. At the border between the OLCI-A and
OLCI-B image, a jump in the uncertainty can be observed which is not present for the
ALH itself. The uncertainty is high for the observations in glint geometry and low for the
off-glint geometry. This effect is discussed in the Appendix (see Figure A4b). The jump in
uncertainty in our test scene must be differentiated between the northern part, where the
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AOT is low in both, S3A and S3B sequence, and the southern part, where the AOT is only
low in the S3B sequence. In the northern part, the jump can be explained by the difference
in geometry (see Figure A4b). The southern part differs in the AOT strongly and thus the
ALH uncertainty decreases from west to east. The glint risk areas are shown in Figure A3.

Figure 9. (a) Optimized ALH derived from OLCI measurements on 08/09/2020 at 18:26 UTC over the
Pacific west of California. (b) Estimated pixelwise uncertainty using linear uncertainty propagation.
White pixels are cloud flags, and light grey pixels are non-convergence pixels.

4.2. Uncertainty Based on Bootstrap Method

In the bootstrap method, noisy simulated radiances serve as input for the retrieval.
The retrieved ALH is compared to the result of the retrieval for the same simulated radiance
measurement but without noise. As a first step, about 37,000 cases were simulated to serve
as truth. Those cases result from all possible combinations of chosen ALH, AOT, wind
speed and measurement geometries. All simulations were performed at the nominal
central wavelength and a shifted central wavelength by +/− 0.1 nm. The ranges of the
input parameter and the respective noise are given in Table 2. The a priori knowledge for
the retrieval is chosen to be 1000 m for the ALH and 3.5 for the AOT in all cases. The a
priori and the state error covariances are given in Table 1.

Our bootstrap method comprises 1,000,000 iterations. Each time one of the 37,000 truths
were selected randomly. Additionally, the other input parameters were chosen randomly
within their uncertainty range (Table 2). The retrieval is done for the perturbed pixels and
the truth. The frequency distribution of the difference of both retrieved ALH is given in
a histogram in Figure 10. The method is applied for 37,000 dust and 37,000 SABS cases.
To study the uncertainty according to the aerosol type, the method is also applied on
simulated truth with dust particles which are retrieved using LUTs based on SABS particles
and vice versa. The corresponding frequency distributions of differences in the ALH are
given in Figure 10b.

The histograms in Figure 10 show only cases in which the retrieval converged. In the
case of dust, about 75% of all cases converged, and in the case of SABS, about 65% converged.
Most non-converging pixels belong to low AOT cases. The distributions of the difference for
retrieved truth with and without noise with the correct aerosol type show a Gaussian-like
shape with a small negative bias. The dust case distribution is less wide than the SABS case
as the optical properties of dust have a stronger contrast to the signal originating from the
ocean surface. The standard deviation is 230 m for dust cases. The standard deviation for
SABS cases is 420 m.

The investigation using the wrong aerosol types shows larger differences between
perturbed and non-perturbed retrieved ALH. In particular, the retrieval for the dust aerosol
layer based on SABS LUTs does not show a Gaussian shape (yellow histogram in Figure 10b).
Here, the AOT can not compensate due to the error in the aerosol type. The optical
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properties of SABS cause a saturation of the TOA radiance for AOTs larger than 5. Thus,
the SABS LUT is limited to smaller radiances. The retrieval based on the dust LUT is more
robust with regard to the aerosol type. The distribution is almost Gaussian with a standard
deviation of 630 m. With this uncertainty, we can still find appropriate ALH even using the
wrong aerosol type. However, the retrieval does not converge as frequently in both cases.
Thus, our retrieval method is rather applicable for cases of a known aerosol type.
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Figure 10. Histograms of differences of all 1,000,000 retrieved ALH with and without noise for dust
in yellow and SABS in grey using the LUT (a) based on the correct aerosol type and (b) based on the
wrong aerosol type.

5. Discussion

This study contains a sensitivity analysis for the radiance in OLCI’s O2 absorption
bands with respect to ALH, the application of an ALH retrieval to two OLCI test scenes over
ocean and an appropriate uncertainty estimation. We found that band ratios of OLCI bands
within the O2A absorption band are sensitive to ALH. A retrieval of ALH is possible for
thick dust and smoke plumes if the aerosol type is known and the spectral characterization
of the instrument is considered. The sensitivity of the absorption bands to the ALH increase
for increasing AOTs. Hence, we chose an AOT of 0.55 as threshold for the application of
the ALH retrieval. Pixels with lower AOT are flagged out after the retrieval. This threshold
was chosen to minimize the uncertainty of ALH which decreases with AOT. In a MERIS
study under similar conditions and a similar accuracy of the spectral characterization
by Dubuisson et al. [17], they found a standard error on the retrieval of the altitude of
0.5 km for an AOT of 0.6. Their retrieval was limited on the ALH assuming a known AOT.
Dubuisson et al. [17] also showed that for low AOTs, the method is less accurate.

The ALH could be retrieved from OLCI for the dust and the smoke test scene with an
uncertainty between 400 and 600 m for a dust scene and with uncertainty as low as 150 m
for the smoke scene for off-glint pixels with a low ALH and high AOT. Our generalized
uncertainty estimation using the bootstrap method based on simulated measurements
resulted in uncertainties of 230 m for dust and 420 m for SABS. Those ALH uncertainties are
comparable to the MERIS results shown in Dubuisson et al. [17]. Our uncertainty analysis
does not include uncertainties due to the surface pressure, which is a sensitive parameter
within the O2A absorption band. We minimized the uncertainty due to the surface pressure
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by selecting a matching surface pressure to the test scenes for the simulation. The retrieval
was not successful for pixels with small optical thicknesses or undetected clouds. For
converging pixels, we found very similar ALHs for optical thick aerosol layers compared
to the TROPOMI ALH. The median difference was about 500 m for the dust case, which
lies a bit above our estimated uncertainty range. Comparing OLCI’s ALH to the weighted
extinction from CALIOP, the weighted extinction is about 1.25 km higher than OLCI’s
dust ALH. This difference could have several reasons, e.g., the definition of height or
the set up of our retrieval using a fixed aerosol model and homogeneous aerosol layer.
Nevertheless, our ALH follows the pattern of the one measured by CALIOP. Thus, our aim
of distinguishing low, medium and high aerosol layers from OLCI’s O2 absorption bands is
achieved. Additionally, OLCI’s high spatial resolution allows the observation of very fine
spatial structures in the ALH.

The smoke case pixels did not converge as frequently even for large optical thicknesses.
Our SABS LUT is limited to relatively small radiances due to the optical properties of SABS.
Real-case smoke not only contains SABS but also other particles. For future retrievals,
a more complex aerosol model could be used. Converged pixels showed similar ALHs
as retrieved from TROPOMI. As for the dust case, those ALHs were lower than the ones
measured by CALIOP.

Our retrieved ALH showed systematic differences compared to the height from
CALIOP. Similarly, validation studies for TROPOMI’s ALH resulted in differences be-
tween TROPOMI and CALIOP for thin smoke plumes of about 700 m [51], of 1030 m for
different cases [44] and of 510 m for dust and smoke cases over ocean when comparing
with a ground-based LIDAR (EARLINET) [52]. Generally, TROPOMI measured lower
ALHs than CALIOP, which we also observed in our test scenes. Overall, the differences
between OLCI’s ALH and CALIOPs ALH are comparable to the ones found for TROPOMI.
Chen et al. [53] developed an improved ALH retrieval algorithm for TROPOMI, including
also the O2B band. The improved TROPOMI algorithm is applied to the same test scenes
as described in this paper. Using also the O2B band, the ALH is about 2 km higher in the
dust case and about 1 km higher in the smoke case compared to the standard TROPOMI
ALH product [53]. Compared to our ALH product, the improved ALH agrees better with
the CALIOP observations. However, OLCI does not cover the O2B absorption band and
thus this improvement can currently not be applied for OLCI. The planned advanced OLCI
will be hyperspectral, covering both O2A and O2B bands. Hence, the future OLCI verison
could be even more suitable for ALH retrievals.

Our sensitivity study and retrieval algorithm are limited to two aerosol models, one
homogeneous aerosol layer and an underlying ocean surface. We showed that the retrieval
works more robustly knowing the aerosol type. However, in operational cases, it is difficult
to determine the aerosol type. We showed that the retrieval based on a dust aerosol model
converges for some cases without a large increase in the uncertainty. In future, either an
aerosol type characterization based on the complete spectral range of OLCI or a synergy
product with Sentinel-3 Sea and Land Surface Temperature Radiometer (SLSTR) could
be developed to distinguish between dust and smoke aerosol. Another possibility to
characterize the aerosol type is to use Copernicus Atmosphere Monitoring Service (CAMs),
which delivers information about aerosol [54]. Our retrieval is limited to scenes with
large AOTs. It is successful with an uncertainty of a few hundred meters which was
demonstrated for two test scenes. Further validations are necessary, e.g., compassion with
ground-based measurements. We did not study the effect of different vertical distributions
on the uncertainty. In nature, the vertical profile can be very complex with exponential
decays or multi-layer profiles. The limited spectral resolution does not provide information
about the vertical distribution. Hence, the remaining uncertainty should be estimated.
Furthermore, the retrieval could be generalized also for land surfaces. For a retrieval of the
ALH over land, the surface must be very well spectrally characterized.

Overall, we could show that it is possible to retrieve the ALH from OLCI measure-
ments, which could allow the determination of ALH for long time series, improvement
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of ocean color products, improvement of atmospheric corrections and further studies of
aerosol cloud interactions. Even with the limited precision due to OLCI’s spectral resolu-
tion, the ALH retrieved by OLCI has a high spatial resolution and coverage. Thus, OLCI
can deliver useful information about the aerosol vertical distribution.
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TROPOMI Tropospheric Monitoring Instrument
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DSCOVR Deep Space Climate Observatory
OLCI Ocean and Land Colour Imager
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LUT Look-Up table
MOMO Matrix Operator Model
AOT Aerosol Optical Thickness
HETEACT Hybrid End-To-End Aerosol Classification Model for EarthCARE
SABS Strong Absorbing Aerosol
SSA Single Scattering Albedo
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VZA Viewing Zenith Angle
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S5P Sentinel-5P
1Dvar 1D Variational Approach
RGB True color image
IDEPIX Identification of Pixel
wvl Wavelength
ESA European Space Agency
SLSTR Sea and Land Surface Temperature Radiometer

Appendix A. Aerosol Optical Properties

The optical properties at 755 nm are shown for dust and SABS in Table A1. Comparing
dust and SABS, the SSA of dust is almost one, whereas the SSA of SABS is smaller than one.
The relative extinction coefficient is given as ratio of the extinction coefficient at 550 nm and
755 nm. The dust relative extinction coefficient larger than one shows its strong scattering
properties, whereas SABS absorbs more light than it scatters. The wavelength-dependency
of the extinction coefficient is given by the angstrom exponent given for the wavelengths
550 nm and 755 nm. The wavelength dependence of the phase function p(Θ) is given by
the asymmetry factor g [55]:

g(λ) =
1
2

∫ 1

−1
p(cosΘ)dcosΘ (A1)

Table A1. Aerosol optical properties at 755 nm for dust and SABS.

Aerosol Property Dust Strong Absorbing Aerosol

SSA 0.98 0.76
Rel. Extinction coeff. to

550 nm 1.04 0.56

Angstrom exponent (755/550) −0.11 1.748
Asymmetry factor g 0.72 0.565

Appendix B. Harmonization Method

The background of the harmonization is a sensitivity factor of the apparent trans-
mission t calculated from the normalized radiances IN

i measured outside and within the
absorption band:

t =
IN
i

IN
12
(i = 13, 14, 15) (A2)

ξ quantifies deviations due to changes of the band central wavelength and bandwidth
with respect to their nominal spectral characterization. The foundation is a look-up table
that has been calculated from transmissions for nominal band characteristics as well as
for all sensible modifications of the band characteristics. The sensitivity factor is the ratio
between the transmission with actual band characteristics to the transmission with nominal
characteristics.

ξ =
t(λ, FWHM)

tnominal
(A3)

The sensitivity factor has been calculated for a multitude of photon paths through an
atmosphere, reflecting cases without clouds, with thin, thick, high and low clouds above
dark and bright surfaces. The gas absorption is based on HITRAN16 [32]. Eventually,
30,000 different photon paths have been considered. The look-up table is utilized by a
KD-search [56] and an inverse distance weighted interpolation. This approach is well
suited for data that cannot be structured in an hypercube.
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The harmonization works as follows. First, the OLCI bands 12–16 are normalized with
respect to their corresponding in-band solar irradiance F.

IN
i =

Ii
Fi
(i = 12, . . . , 16) (A4)

Then, the window bands 12 and 16 are interpolated to the spectral position of the
bands 13, 14 and 15, respectively:

ĨN
i =

IN
16 − IN

12
λ16 − λ12

· (λi − λ12)(i = 13, 14, 15) (A5)

The apparent transmission is now calculated with

ti =
IN
i

ĨN
i
(i = 13, 14, 15) (A6)

For every pixel and band the sensitivity factor, ξ is searched within in the look-up
table, based on the following four quantities: the apparent transmission ti, the pixel specific
central wavelength λ, the bandwidth FWHM and the air mass factor am f .

am f =
1

cosθVZA
+

1
cosθSZA

(A7)

The look-up table search, as well as the inverse distance weighting, uses normalized
quantities, but we refrain from further indexing to maintain clarity.

xnorm =
x

xmax − xmin
(A8)

xmax and xmin are the smallest and largest values of the respective coordinate. The eight
closest matches are used to calculate an estimate of ξ by an inverse distance-weighted mean.

ξ
pixel
i =

1
8
∑

j=0
wj

i

·
8

∑
j=0

wj
i · ξ

j
i (i = 13, 14, 15) (A9)

ξ
j
i is the sensitivity factor of band i of the j closest neighbors. The weight w is the

inverse Euclidian distance:

wj
i =

1

ε +
√
(am f pixel − am f j)2 + (λ

pixel
i − λ

j
i)

2 + (FWHMpixel
i − FWHMj

i )
2 + (tpixel

i − tj
i)

2
(A10)

ε is a small number, preventing division by zero for cases where the closest distance
is zero. The final step is the calculation of the apparent transmission at nominal position:

tnominal
i =

ti

ξ
pixel
i

(i = 13, 14, 15) (A11)
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Appendix C. Sensitivity Study for Glint Scene
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Figure A1. Jacobians of TOA radiance ratios at different central wavelengths relative to the ALH,
AOT, wind speed and central wavelength. Jacobians are given for two aerosol models (circles: strong
absorbing, triangles: dust) and for different AOTs (transparent: 0.15, non-transparent: 1.0). All results
are given for SZA of 30◦, VZA at 46◦ and AZI at 10◦ (a–d).

Appendix D. Sun Glint Geometry for Test Scenes

Both test scenes are over ocean surfaces under cloud-free conditions. Under certain
sun and observation geometries, sun light is strongly backscattered by the ocean surface.
The size of this area depends on the surface roughness and thus the wind speed. This area
is called sun glint. OLCI’s L1 data includes a sun glint risk flag, which is presented in
Figure A2a for the dust test scene and in Figure A3a for the SABS scene. The congruent sun
and observation angles are shown in Figures A2b–d and A3b–d.

Figure A2. (a) Sun glint risk flag for dust test case on 18/06/2020 at the west coast of Africa. For the
red pixels, the sun glint risk is true, and for blue pixels, it is false. (b) SZA in degrees for the two
OLCI-B sequences. (c,d) VZA and AZI in degrees for the two OLCI-B sequences, respectively.
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Figure A3. (a) Sun glint risk flag for dust test case on 08/09/2020 at the west coast of North America.
For the red pixels, the sun glint risk is true, and for blue pixels, it is false. (b) SZA in degrees for the
OLCI-A and OLCI-B sequences. (c,d) VZA and AZI in degrees for the OLCI-A and OLCI-B sequences,
respectively.

Appendix E. Uncertainty of ALH Depending on AOT

Figure A4. Uncertainty of ALH from retrieval error covariance matrix over AOT for different simu-
lated dust cases (a) and SABS cases (b) with observation geometries of (i) the western representation
(solid lines): SZA of 40◦, VZA at 50◦ and AZI at 150◦ and (ii) the eastern representation (dashed
lines): SZA of 40◦, VZA at 25◦ and AZI at 40◦. The colors show simulations with different ALHs:
blue: 1100 m; green: 3000 m and orange: 4900 m.

The uncertainty of ALH is studied with respect to AOT. We simulated cases with dust
and SABS particles for different observation geometries which are representative for the
geometries at the western and eastern border of the S3A and S3B sequences. The SZA was
chosen according to the test scene over the west coast of north America on 08/09/2020
(Figure 7). The eastern geometries are a SZA of 40◦, a VZA at 50◦ and an AZI at 150◦, and
the western geometries are a SZA of 40◦, a VZA at 25◦ and an AZI at 40◦. We calculated the
retrieval error covariance matrix (Equation (6)), which includes uncertainty of the retrieval
parameter ALH and AOT. To include the same uncertainty for the wind speed of 1 m/s
as assumed in Section 4.1, we simulated the effect of the wind speed change of 1 m/s.
The simulation was used to calculate corresponding uncertainty, which is added to the
radiance uncertainty.

In all cases, the uncertainty of theALH decreases with the AOT with a saturation
at an AOT of about 1. For AOTs larger than 0.55, all uncertainties are below 500 m.
The ALH uncertainty is similar for aerosol at different heights. The eastern, glint-influenced
simulations show a larger uncertainty than the western ones. Both geometries differ in
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the scattering direction of the aerosol, while the western geometry is pointed in the back
scattering direction and the eastern in the forward scattering direction. Additionally, the sun
glint effects only the eastern simulations, which increases the ALH uncertainty further.
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