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Abstract

When we observe a scene in our daily lives, our brains seemingly effortlessly extract var-
ious aspects of that scene. This can be attributed to different aspects of the human visual
system, including but not limited to (1) its tuning to natural regularities in scenes and (2)
its ability to bring different parts of the visual environment into focus via eye movements.
While eye movements are a ubiquitous and natural behavior, they are considered unde-
sirable in many highly controlled visual experiments. Participants are often instructed to
fixate but cannot always suppress involuntary eye movements, which can challenge the in-
terpretation of neuroscientific data, in particular for magneto- and electroencephalography
(M/EEG).

This dissertation addressed how scene structure and involuntary eye movements in-
fluence the extraction of scene and object information from natural stimuli. First, we
investigated when and where real-world scene structure affects scene-selective cortical
responses. Second, we investigated whether spatial structure facilitates the temporal anal-
ysis of a scene’s categorical content. Third, we investigated whether the spatial content of
a scene aids in extracting task-relevant object information. Fourth, we explored whether
the choice of fixation cross influences eye movements and the classification of natural
images from EEG and eye tracking. The first project showed that spatial scene structure
impacts scene-selective neural responses in OPA and PPA, revealing genuine sensitivity
to spatial scene structure starting from 255 ms, while scene-selective neural responses are
less sensitive to categorical scene structure. The second project demonstrated that spatial
scene structure facilitates the extraction of the scene’s categorical content within 200 ms
of vision. The third project showed that coherent scene structure facilitates the extraction
of object information if the object is task-relevant, suggesting a task-based modulation.
The fourth project showed that choosing a centrally presented bullseye instead of a stan-
dard fixation cross reduces eye movements on the single image level and subtly removes
systematic eye movement related activity in M/EEG data. Taken together, the results ad-
vanced our understanding of (1) the impact of real-world structure on scene perception
as well as the extraction of object information and (2) the influence of eye movements on
advanced analysis methods.
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Zusammenfassung

Wenn wir in unserem täglichen Leben eine Szene beobachten, extrahiert unser Gehirn
scheinbar mühelos verschiedene Aspekte dieser Szene. Dies kann auf verschiedene As-
pekte des menschlichen Sehsystems zurückgeführt werden, unter anderem auf (1) seine
Ausrichtung auf natürliche Regelmäßigkeiten in Szenen und (2) seine Fähigkeit, verschie-
dene Teile der visuellen Umgebung durch Augenbewegungen in den Fokus zu bringen.
Obwohl Augenbewegungen ein allgegenwärtiges und natürliches Verhalten sind, werden
sie in vielen stark kontrollierten visuellen Experimenten als unerwünscht angesehen. Die
Teilnehmer werden oft angewiesen, zu fixieren, können aber unwillkürliche Augenbewe-
gungen nicht immer unterdrücken, was die Interpretation neurowissenschaftlicher Daten,
insbesondere der Magneto- und Elektroenzephalographie (M/EEG), in Frage stellen kann.

In dieser Dissertation wurde untersucht, wie Szenenstruktur und unbewusste Augenbe-
wegungen die Extraktion von Szenen- und Objektinformationen aus natürlichen Stimuli
beeinflussen. Zunächst untersuchten wir, wann und wo die Struktur einer realen Szene
die szenenselektiven kortikalen Reaktionen beeinflusst. Zweitens untersuchten wir, ob
die räumliche Struktur die zeitliche Analyse des kategorialen Inhalts einer Szene erleich-
tert. Drittens untersuchten wir, ob der räumliche Inhalt einer Szene bei der Extraktion
aufgabenrelevanter Objektinformationen hilft. Viertens untersuchten wir, ob die Wahl
des Fixationskreuzes die Augenbewegungen und die Klassifizierung natürlicher Bilder
aus EEG und Eye-Tracking beeinflusst. Das erste Projekt zeigte, dass sich die räum-
liche Szenenstruktur auf szenenselektive neuronale Reaktionen in OPA und PPA auswirkt,
wobei eine echte Empfindlichkeit für räumliche Szenenstrukturen ab 255 ms festgestellt
wurde, während szenenselektive neuronale Reaktionen weniger empfindlich auf katego-
riale Szenenstrukturen reagieren. Das zweite Projekt zeigte, dass die räumliche Szenen-
struktur die Extraktion des kategorialen Inhalts der Szene innerhalb von 200 ms nach dem
Sehen erleichtert. Das dritte Projekt zeigte, dass eine kohärente Szenenstruktur die Ex-
traktion von Objektinformationen erleichtert, wenn das Objekt aufgabenrelevant ist, was
auf eine aufgabenbezogene Modulation hindeutet. Das vierte Projekt zeigte, dass die Wahl
eines zentral präsentierten Bullauges anstelle eines Standard-Fixationskreuzes Augenbe-
wegungen auf Einzelbildebene reduziert und systematische Augenbewegungsaktivität in
M/EEG-Daten auf subtile Weise beseitigt. Zusammengenommen haben die Ergebnisse
unser Verständnis (1) der Auswirkungen der Struktur der realen Welt auf die Wahrnehmung
der Szene und die Extraktion von Objektinformationen und (2) des Einflusses von Augen-
bewegungen auf fortgeschrittene Analysemethoden verbessert.
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Chapter 1

General introduction

The overarching aim of this thesis is to understand how scene structure and involuntary
eye movements influence the extraction of scene and object information from natural sti-
muli. The general introduction will introduce the concepts necessary to achieve this goal.
Therefore, the first section gives a general overview of object recognition and the difficul-
ties and pitfalls associated with it. The second section introduces scene perception and
explains how object recognition and scene perception are inherently interconnected. The
third section explains the need to understand eye movements as a window into our cogni-
tive world and establishes problems and considerations that need to be taken into account
when investigating visual experiments in a lab environment. The general introduction con-
cludes with the aim of this thesis and the derived research questions for the four studies
presented in the core part of this thesis.

1.1 A general introduction to object recognition
During our daily lives, we constantly solve tasks such as recognizing the coffee cup in
front of us. These tasks are so effortlessly and automatically that in the mind of most peo-
ple, they would not even qualify as tasks. However, different complex processing steps
are required to solve this seemingly easy problems. To be able to identify an object reli-
ably, a person must recognize said object under different lighting conditions, viewpoints,
and in front of different backgrounds in a fraction of a second (Logothetis & Sheinberg,
1996). Adding to the complexity of the problem, objects from the same category present
a multitude of different features, e.g., a mug can have numerous different shapes or colors.
This problem is called the invariance problem (DiCarlo & Cox, 2007).

Decades of research have established that the invariance problem is solved primarily
in the ventral visual stream through a cascade of largely feedforward computations con-
cluding in object representations in the inferior temporal cortex (IT) (DiCarlo et al., 2012;
Goodale & Milner, 1992; Mishkin et al., 1983). Numerous studies have identified several
object-selective areas in the inferior temporal cortex that are preferentially activated by
specific object categories. These include the ventral fusiform gyrus as well as the lateral
superior and middle temporal gyri for animals and tools (Chao et al., 1999; Martin et al.,
1996), the fusiform face area for faces (Kanwisher et al., 1997), and the extrastriate body
area (EBA) in the lateral occipitotemporal cortex for body parts (Downing et al., 2001).
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However, the categorical representations of these objects are not strictly limited to specific
areas. Representations often overlap across regions in the ventral temporal areas. Patterns
that discriminate between different object categories could even be found within cortical
regions whose maximal response was to only one category (Haxby et al., 2001). This re-
search suggests that the ventral visual pathway does not contain purely category-specific
modules but instead forms a continuous representation of information about objects (Ishai
et al., 1999).

However, to form a comprehensive understanding of object processing, both, spatial
and temporal information needs to be investigated. Even though object recognition is
such a complex process, magnetoencephalography (MEG) and electroencephalography
(EEG) studies have shown that within the first 100 ms individual object exemplars can
be classified. By 240 ms, a clear categorical distinction between animate and inanimate
objects evolved (Carlson et al., 2013; Cichy et al., 2014; Contini et al., 2017). A seminal
study combined spatial and temporal information and showed that early signals correlated
more with early visual cortex V1 while later stages correlated more with IT, indicating a
cascade of computations in the ventral visual stream (Cichy et al., 2014).

1.1.1 Interim summary

Decades of neuroscientific research have revealed that the complex process of object pro-
cessing is achieved within a few hundred milliseconds along the ventral visual stream.
Several areas in the inferior temporal cortex selectively respond to specific object cate-
gories. Overall, object recognition is one of the core abilities that human beings use to
navigate and understand a complex world.

1.2 A general introduction to scene processing
During everyday life, we rarely encounter individual objects in isolation. Most of the time,
these objects are embedded in larger contexts (Oliva & Torralba, 2007). Epstein (2005)
contrasted object perception to so-called scene perception using the following definition:
“[S]cene perception can be usefully contrasted to object perception: whereas objects are
spatially compact entities that one acts upon, scenes are spatially distributed entities that
one acts within“.

Even though scenes are complex compositions, consisting of several objects as well as
fore- and backgrounds, humans are able to efficiently extract information about objects and
the gist of a scene within a few hundred milliseconds, or - in other words - within a single
glance (Potter, 1975; Thorpe et al., 1996). This gist of a scene includes the scene’s basic
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level category (e.g., natural versus artificial), as well as an estimate of the basic feature
distribution (Oliva & Schyns, 2000; Rousselet et al., 2005), allowing observers to classify
the content of a scene within a few hundred milliseconds. This classification allows ob-
servers to rapidly judge, e.g., whether a scene contains an animal or a tool (Li et al., 2002).

It was long assumed that visual exploration and guided search of individual objects
within a scene is necessary to understand the content of a scene as our object recognition
processes are limited to very few objects at a time and are guided by low-level stimulus
properties (Wolfe, 2007). However, the classic guided search cannot account for the rapid
conceptualization of scenes under real-world circumstances. One partial explanation for
this rapid conceptualization can be found in the fact that all real-world scenes follow pre-
dictable statistical regularities. Spatial regularities are one example of these predictable
statistical regularities. The spatial context of a scene aids human participants in correctly
identifying objects within a scene. The importance of the spatial context for the recog-
nition and identification of objects was demonstrated early on by a so-called jumbling
paradigm. A typical scene was divided into six quadrants and then rearranged while the
rotation of the individual quadrants was kept constant. Jumbling reduced the accuracy of
identifying an object within a scene and the accuracy of scene identification. Therefore,
the perception of a scene seems to be more than the sum of the individual parts of that
scene (Biederman, 1972; Biederman et al., 1974).

Spatial regularities particularly aid scene recognition and the recognition of objects
within a scene. They provide a framework of where specific objects are most commonly
found in a scene, e.g., planes are usually located in the sky, whereas cars are usually on
roads. This effect has not only been demonstrated for objects (Kaiser et al., 2018) but also
for faces and bodies (Chan et al., 2010; de Haas et al., 2016) and translated into behavioral
recognition advantages (Quek & Peelen, 2020). This indicates that the human experience
with real-world regularities leads to enhanced perceptual processing of objects when they
appear at their predicted absolute locations. Several neuroimaging studies have corrobo-
rated that the real-world structure of scenes impacts visual cortex responses to everyday
objects (Kaiser et al., 2018; Kaiser & Peelen, 2018; Kim & Biederman, 2011) and faci-
litated cortical processing in the object-selective lateral occipital cortex (LOC) and early
visual cortex (Kaiser & Cichy, 2018).

While the disruption of spatial regularities mainly disrupts the global position of ob-
jects within a scene, their positioning can also be described in relative terms (Hock et al.,
1974; Oliva & Torralba, 2007). It is statistically more likely, e.g., for chairs to be grouped
around a table and then for them to be grouped around a trash can. These statistical re-
gularities, like the global positioning of objects, affect visual processing. Both behavioral
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and neuroimaging studies have supported this. Participants are faster in detecting objects
positioned in typical relative positions versus atypical relative positions toward each other
(Hock et al., 1974; Stein et al., 2015) and greater activity can be found LOC when objects
interact with each other instead of simply being described side by side (Kim & Biederman,
2011). This transition from individual to integrative object processing emerges along the
posterior-anterior axis of the visual cortex (Kaiser & Peelen, 2018).

Apart from the local and global positioning of objects within a scene, semantic infor-
mation has been shown to guide an observer (e.g. to determine whether a kitchen or a
garden is observed). These semantic concepts do not seem to arise from categorizing each
individual object in a scene but rather from the above-mentioned gist of a scene. Contex-
tual information has been shown to facilitate object processing (Bar, 2004) via an efficient
allocation of attention (Torralba et al., 2006; Võ et al., 2019; Wolfe et al., 2011) but also
disambiguates object information under uncertainty (Brandman & Peelen, 2017; Oliva &
Torralba, 2007).

This raises the question, of which mechanisms facilitate this rapid extraction of con-
textual information. Wolfe et al., 2011 suggested that a two-pathway architecture could
explain the rapid contextualization of scene content. Based on this architecture, a non-
selective pathway enables the rapid extraction of statistical information from an image.
These statistical regularities, in turn, enable a certain amount of semantic processing in
the visual system, such as extracting and categorizing scenes and basic spatial structures,
but do not allow the precise recognition of objects. To be able to understand the full con-
tent of a scene, including its individual objects, an interaction between the non-selective
and selective pathways is necessary. This selective pathway allows binding features and
recognizing objects but is, therefore limited in processing capabilities (Wolfe et al., 2011).
This theory facilitates the proposition that the gist of a scene is computed from the global
properties of the scene instead of the linear recognition of objects within the scene (Greene
& Oliva, 2009).

In sum, the visual brain adapted to spatial and contextual regularities in visual scenes,
allowing fast and efficient processing of the global and local properties. However, which
areas in the human brain are responsible for recognizing such scenes?

Several areas in the human brain aid explicitly with scene perception. More specifi-
cally, the parahippocampal place area (PPA) (Epstein & Kanwisher, 1998), the retrosple-
nial cortex (RSC) (RSC/MPA) (O’Craven & Kanwisher, 2000), and the Occipital Place
Area (OPA) (Dilks et al., 2013; Hasson et al., 2003) are causally involved in the percep-
tion of scenes and strongly connected (Epstein & Baker, 2019). All three areas respond
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strongly to local spatial layout, e.g., an empty room (Epstein & Kanwisher, 1998) or a
scene conveyed from Lego blocks (Epstein et al., 1999), suggesting a sensitivity toward
scenes versus object-like layouts. More recently it has been proposed that human visual
scene processing seems to be composed of at least two distinct systems in which PPA
preferentially responds to the category of a scene instead of the location of a scene, and
RSC and OPA show the exact opposite results, preferentially responding to the location of
a scene (Persichetti & Dilks, 2018, 2019).

1.2.1 Interim summary

In sum, decades of research have shown a strong impact of real-world structure on the
cortical processing of everyday objects and human beings. Local and global properties of
a scene have a beneficial impact on extracting a scene’s category and recognizing objects
within that scene. Several seminal papers have shown that spatial and contextual regula-
rities interact, leading to a meaningful distribution of visual content in real-world scenes.
Consequently, cortical responses differ if scene elements violate that typical real-world
structure. Taken together, these results show that the rapid extraction of scene content
aids with the recognition and classification of objects and therefore demonstrate that object
and scene processing mechanisms interact to enable the efficient processing of object and
scene information.

1.3 A short definition of eye movements
Eye movements are integral to how we perceive the world and are used to explore scenes
and objects (Schütz et al., 2011). They can roughly be divided into voluntary and invo-
luntary eye movements. Most important for conscious human perception are voluntary
eye movements, saccades, and smooth pursuit (Gegenfurtner, 2016). Big, voluntary eye
movements (saccades) are used, e.g., to explore a scene. These saccades are rapid move-
ments that abruptly change the point of fixation and are used to bring parts of a scene or
image from the periphery into the fovea. These rapid movements are crucial for the ex-
ploration of an environment as the visual acuity quickly decreases when moving from the
fovea to the periphery (Campbell & Green, 1965). The fovea only covers around 2 degrees
of visual angle and receives disproportionally more cortical processing resources (Tootell
et al., 1982). Saccades are ballistic movements achieved by three pairs of extraocular
muscles attached to the eyeballs and allow horizontal, vertical, and diagonal movements
(Walls, 1962). They elicit a cascade of activity from the retina via the visual cortex, the
frontal eye fields, and the cerebellum to the oculomotor plant (Lisberger, 2010).
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The underlying mechanisms that guide where saccades land still need to be fully un-
derstood. Saccades are guided by several different factors including saliency (Itti & Koch,
2000; Koch & Ullman, 1985), task demands (Thielen et al., 2019), spatial biases (Tatler,
2007), objects (Einhäuser et al., 2008), and geometric properties of the saccades (for dif-
fering opinions see Brockmann and Geisel, 1999 and Millidge and Shillcock, 2018). How-
ever, one example of open questions is the ongoing debate on whether objects or saliency
are a better predictor of eye movements (Borji et al., 2013; Einhäuser et al., 2008). Af-
ter a saccade is executed, fixations are used to keep the image stable in the foveal center.
Nevertheless, even during fixations, the eyes never stay entirely still. They drift slowly
with intermixed small involuntary eye movements (microsaccades), which are used to,
e.g. keep the retinal image from fading out of perception (Rolfs, 2009).

1.3.1 Interim summary

Eye movements are integral to the exploration of our surroundings, and decades of re-
searchers have dedicated their lives to their understanding. While they are opening a win-
dow into our cognitive world, they might also cloud our understanding of underlying corti-
cal processes. During a saccade, the part of the retina that is exposed to a specific stimulus
changes, and eye movement induced electric potentials might either vary systematically
with the stimulus of interest or create artifacts in M/EEG data. To be able to understand
whether and to which extent eye movements influence the results of neuroimaging studies,
their effects need to be studied further.

1.4 The effect of eye movements on the analysis of
neuroimaging data

As mentioned above, humans are able to process the gist of a scene within a single glance
(Potter, 1975; Thorpe et al., 1996). However, this does not negate the importance of eye
movements as an integral part of scene and object exploration (Schütz et al., 2011). If
not instructed otherwise, people perform several saccades per second to bring the parts of
the scene or object of interest into their foveal vision as the acuity of peripheral vision is
limited. Nevertheless, in many neuroimaging studies, participants are instructed to fixate
on a fixation cross or dot in the middle of the screen while viewing the stimulus. What is
the reasoning behind this?

Evidence suggests that - both - large and small eye movements can lead to systematic
and unsystematic effects in neuroimaging measurements such as EEG, MEG, or functional
magnetic resonance imaging (fMRI) (Dijkstra et al., 2018; Dimigen et al., 2009; Mostert
et al., 2018; Plöchl et al., 2012; Thielen et al., 2019). The neural activity measured with
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EEG or MEG yields activity with amplitudes in the range of a few microvolts. It is, there-
fore, prone to masking from artifacts emerging from the eye, muscles, or electrical devices.
These artifacts can be several magnitudes larger than the initial signal evoked from brain
sources and might bury the signal in noise (Plöchl et al., 2012). Microsaccades as small as
0.15 degrees generate a field potential of around 100-150 ms after movement onset over
the occipital cortex and mid-central scalp (Dimigen et al., 2009). An EEG can then pick
up these field potentials as a saccadic spike potential (Thickbroom & Mastaglia, 1986).
Therefore, even though humans inherently use their eyes to scan their surroundings effi-
ciently, many neuroimaging studies control eye movements in one way or another.

Some experimental setup requires stimuli to be presented at specific locations on the
retina (e.g. to investigate hemispheric or eccentricity-based differences in visual process-
ing) while others might manipulate covert visual attention and therefore require the reduc-
tion of overt eye movements (Guzman-Martinez et al., 2009). Another reason altogether is
to avoid excessive eye movements and the corresponding signal. Systematic effects of eye
movements on M/EEG data have been found in several studies employing different analy-
sis techniques. These include event-related potential (ERP) research (Dimigen & Ehinger,
2019; Dimigen et al., 2009), gamma band activity (Yuval-Greenberg et al., 2008), and
multivariate pattern analysis (Dijkstra et al., 2018; Mostert et al., 2018; Quax et al., 2019;
Thielen et al., 2019).

Several different methods are employed to avoid these confounds. Participants can be
instructed ad-hoc to fixate on a fixation cross and to blink only during so-called catch trials.
However, novice participants cannot accurately control their eye movements (Guzman-
Martinez et al., 2009), and fixation behavior varies wildly even between experienced par-
ticipants (Bargary et al., 2017; Guzman-Martinez et al., 2009; Thielen et al., 2019).

Another solution is removing eye movements post-hoc via algorithms like indepen-
dent component analysis (ICA) or linear regression. Unfortunately, it has been shown that
these algorithms are not sufficient to remove all residual signals generated by eye move-
ments. One possible explanation is that these techniques assume a linear relation between
the EEG and data and eye movements, whereas eye movements might induce strong non-
linear effects (Quax et al., 2019).

Consequently, even if precautions are taken, eye movements might still confound the
recorded data. There are at least two ways in which these large and small eye move-
ments can affect neuroimaging measurements. On the one hand, if the eye movements
are unsystematic and hence decrease the signal-to-noise ratio, they enhance the chance
of incorrectly accepting the H0 (False negative, Type II error). On the other hand, if eye
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movements are systematic and co-vary with the experimental conditions, they increase the
possibility of incorrectly rejecting the H0 (False positive, Type I error).

Depending on the techniques used for analysis, the influence of eye movement-related
artifacts differs. This is, in part, due to the different computational steps used for analyses.
Univariate M/EEG analyses evaluate differences in activation, by quantifying relative dif-
ferences in average activity between experimental conditions. In comparison, multivariate
analysis methods (e.g., multivariate pattern analysis (MVPA)) have the potential to exam-
ine differences in information, e.g., by comparing differences in distributed patterns of
brain activation between experimental conditions (de-Wit et al., 2016; Grootswagers et
al., 2017). For univariate analysis methods, trials are averaged within conditions and over
electrodes to enhance the signal-to-noise ratio, in part, averaging out noise-related arti-
facts and reducing their effect on the data (Plöchl et al., 2012). However, saccades also
elicit strong ERPs, related to the saccade offsets, which often temporally overlap with the
condition of interest. While these ERPs are interesting in themselves, they also add com-
plexity to the analysis pipeline by being convoluted with the stimulus ERP (Dimigen &
Ehinger, 2019).

In contrast, multivariate analysis techniques analyze patterns of activation associated
with experimental conditions from multiple voxels/sensors simultaneously. Multivariate
methods, therefore, have the potential to detect differences in activation which are lost
when averaging data for univariate analyses, making them more sensitive to patterns in
the data that are relevant to the experimental task or stimulus. Consequently, multivariate
analysis techniques are more sensitive to within-subject-trial-by-trial variance than their
univariate counterpart (Carlson et al., 2003; Cox & Savoy, 2003; Grootswagers et al.,
2017; Haxby et al., 2001; Haynes & Rees, 2006), increasing their sensitivity to stimulus-
related eye movement confounds. In sum, both ERP research and MVPA are affected by
eye movements, but to varying degrees.

1.4.1 Interim summary

Eye movements are integral to the exploration of our surroundings, and decades of re-
searchers have dedicated their lives to their understanding. While they are opening a win-
dow into our cognitive world, they might also cloud our understanding of underlying corti-
cal processes. During a saccade, the part of the retina that is exposed to a specific stimulus
changes, and eye movement induced electric potentials might either vary systematically
with the stimulus of interest or create artifacts in M/EEG data. To be able to understand
whether and to which extent eye movements influence the results of neuroimaging studies,
their effects need to be studied further.
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1.5 Aim of this thesis
The overarching aim of this thesis is to further understand how the inherent structure of
scenes in our world and involuntary eye movements influence the extraction of scene and
object information from natural stimuli. To this end, we conducted four different studies
using a mixture of EEG, fMRI, and eye tracking. We focused on answering four main
questions:

Project I: Does real-world structure have an impact on scene-selective neural responses?

Project II: Does the spatial structure of a scene help facilitate the cortical analysis of the
scene’s categorical content?

Project III: Does the spatial structure of a scene’s context aid in the extraction of task-
relevant object information from the scene?

Project IV: Does the choice of fixation cross influence eye movements and the classification
of natural images from EEG and eye tracking?
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Chapter 2

Project I: Cortical sensitivity to natural scene struc-
ture

The current chapter comprises the research article entitled "Cortical sensitivity to natu-
ral scene structure" which was published in Human Brain Mapping in 2020. This first
research project demonstrated that spatial (but not categorical) scene structure impacts
cortical processing in scene-selective occipital and parahippocampal cortices and after
255ms, by accurately differentiating between spatially intact and jumbled scenes.

Authors:
Daniel Kaiser, Greta Häberle, Radoslaw M. Cichy

Contributions:

D. K. and R. M. C. designed research, D. K. and G. H. acquired data, D. K. and G. H.
analyzed data, D. K., G. H., and R. M. C. interpreted results, D. K. prepared figures, D.
K. drafted manuscript, D. K., G. H., and R. M. C. edited and revised manuscript.

Contributions to open and reproducible science:
To contribute to open and reproducible science, the paper is published in an open-access
journal. The original article can be found here: doi: 10.1002/hbm.24875. Data are pub-
licly available on OSF: doi: 10.17605/OSF.IO/ W9874.

Copyright note:
Human Brain Mapping is an open-access journal. All articles are published under a Cre-
ative Commons Attribution 4.0 International License and are free to re-use.
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Abstract

Natural scenes are inherently structured, with meaningful objects appearing in predict-

able locations. Human vision is tuned to this structure: When scene structure is pur-

posefully jumbled, perception is strongly impaired. Here, we tested how such

perceptual effects are reflected in neural sensitivity to scene structure. During separate

fMRI and EEG experiments, participants passively viewed scenes whose spatial struc-

ture (i.e., the position of scene parts) and categorical structure (i.e., the content of

scene parts) could be intact or jumbled. Using multivariate decoding, we show that spa-

tial (but not categorical) scene structure profoundly impacts on cortical processing:

Scene-selective responses in occipital and parahippocampal cortices (fMRI) and after

255 ms (EEG) accurately differentiated between spatially intact and jumbled scenes.

Importantly, this differentiation was more pronounced for upright than for inverted

scenes, indicating genuine sensitivity to spatial structure rather than sensitivity to low-

level attributes. Our findings suggest that visual scene analysis is tightly linked to the

spatial structure of our natural environments. This link between cortical processing and

scene structure may be crucial for rapidly parsing naturalistic visual inputs.

K E YWORD S

EEG, fMRI, multivariate decoding, scene representation, spatial structure, visual perception

1 | INTRODUCTION

Humans can efficiently extract information from natural scenes even

from just a single glance (Potter, 1975; Thorpe, Fize, & Marlot, 1996).

A major reason for this perceptual efficiency lies in the structure of

natural scenes: for instance, a scene's spatial structure tells us where

specific objects can be found and its categorical structure tells us

which objects are typically encountered within the scene (Kaiser,

Quek, Cichy, & Peelen, 2019; Oliva & Torralba, 2007; Võ, Boettcher, &

Draschkow, 2019; Wolfe, Võ, Evans, & Greene, 2011).

The beneficial impact of scene structure on perception becomes

apparent in jumbling paradigms, where the scene's structure is purpose-

fully disrupted by shuffling blocks of information across the scene. For

instance, jumbling makes it harder to categorize scenes (Biederman,

Rabinowitz, Glass, & Stacy, 1974), recognize objects within them

(Biederman, 1972; Biederman, Glass, & Stacy, 1973) or to detect subtle

visual changes (Varakin & Levin, 2008; Zimmermann, Schnier, & Lappe,

2010). These findings suggest that typical scene structure contributes

to efficiently perceiving a scene and its contents.

Such perceptual effects prompt the hypothesis that scene structure

also impacts perceptual stages of cortical scene processing. However,

while there is evidence that real-world structure impacts visual cortex

responses to everyday objects (Kaiser & Cichy, 2018; Kaiser & Peelen,

2018; Kim & Biederman, 2011; Roberts & Humphreys, 2010) and human

beings (Bernstein, Oron, Sadeh, & Yovel, 2014; Brandman & Yovel, 2016;

Chan, Kravitz, Truong, Arizpe, & Baker, 2010), it is unclear whether real-

world structure has a similar impact on scene-selective neural responses.

To answer this question, we conducted multivariate pattern analy-

sis (MVPA) and univariate analyses on fMRI and EEG responses to

intact and jumbled scenes, which allowed us to spatially and tempo-

rally resolve whether cortical scene processing is indeed sensitive to

scene structure. During the fMRI and EEG experiments, participants
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viewed scene images in which we manipulated two facets of natural

scene structure: We orthogonally jumbled the scene's spatial structure

(i.e., whether the scene's parts appear in their typical positions or not)

or its categorical structure (i.e., whether the scene's parts belong to

the same category or different categories).

Our results provide three key insights into how scene structure

affects scene representations: (a) Cortical scene processing is primarily

sensitive to the scene's spatial structure, more so than to the scene's

categorical structure. (b) Spatial structure impacts the perceptual analy-

sis of scenes, in occipital and parahippocampal cortices (Epstein, 2014)

and shortly after 200 ms (Harel, Groen, Kravitz, Deouell, & Baker,

2016). (c) Spatial structure impacts cortical responses more strongly for

upright than inverted scenes, indicating robust sensitivity to spatial

scene structure that goes beyond sensitivity to low-level features.

2 | MATERIALS AND METHODS

2.1 | Participants

In the fMRI experiment, 20 healthy adults participated in session

1 (mean age 25.5, SD = 4.0; 13 female) and 20 in session 2 (mean age

25.4, SD = 4.0; 12 female). Seventeen participants completed both

sessions, three participants only session 1 or session 2, respectively.

In the EEG experiment, 20 healthy adults (mean age 26.6, SD = 5.8;

9 female) participated in a single session. Samples sizes were deter-

mined based on typical samples sizes in related research; a sample of

N = 20 yields 80% power for detecting effects sizes greater than

d = 0.66.1 All participants had normal or corrected-to-normal vision.

Participants provided informed consent and received monetary reim-

bursement or course credits. All procedures were approved by the

ethical committee of Freie Universität Berlin and were in accordance

with the Declaration of Helsinki.

2.2 | Stimuli and design

Stimuli were 24 scenes from four different categories (church, house,

road, supermarket; Figure 1a), taken from an online resource (Konkle,

Brady, Alvarez, & Oliva, 2010); the complete scene image set can be

found in the Appendix S1. We split each image into quadrants and

systematically recombined the resulting parts in a 2 × 2 design, where

both the scenes' spatial structure and their categorical structure could

be either intact or jumbled (Figure 1b,c). This yielded four conditions:

F IGURE 1 Stimuli and Paradigm. We combined parts from 24 scene images from four categories (a) to create a stimulus set where the
scenes' structural (e.g., the spatial arrangements of the parts) and their categorical structure (e.g., the category of the parts) was orthogonally
manipulated; all scenes were presented both upright and inverted (b, c). In the fMRI experiment, scenes were presented in a block design, where
each block of 24 s exclusively contained scenes of a single condition (d). In the EEG experiment, all conditions were randomly intermixed (e).
During both experiments, participants responded to color changes of the central crosshair [Color figure can be viewed at wileyonlinelibrary.com]
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(a) In the “spatially intact & categorically intact” condition, parts from

four scenes of the same category were combined in their correct loca-

tions. (b) In the “spatially intact & categorically jumbled” condition,

parts from four scenes from different categories were combined in

their correct locations. (c) In the “spatially jumbled & categorically

intact” condition, parts from four scenes of the same category were

combined, and their locations were exchanged in a crisscrossed way.

(d) In the “spatially jumbled & categorically jumbled” condition, parts

from four scenes from different categories were combined, and their

locations were exchanged in a crisscrossed way. For each participant

separately, 24 unique stimuli were generated for each condition by

randomly drawing suitable fragments from different scenes.2 During

the experiment, all scenes were presented both upright and inverted.

2.3 | fMRI paradigm

The fMRI experiment (Figure 1d) comprised two sessions. In the first

session, upright scenes were shown, in the second session inverted

scenes were shown; the sessions were otherwise identical. Each ses-

sion consisted of five runs of 10 min. Each run consisted of 25 blocks

of 24 s. In 20 blocks, scene stimuli were shown with a frequency of

1 Hz (0.5 s stimulus, 0.5 s blank). Each block contained all 24 stimuli

of a single condition. In five additional fixation-only blocks, no scenes

were shown. Block order was randomized within every five consecu-

tive blocks, which contained each condition (four scene conditions

and fixation-only) exactly once.

Scene stimuli appeared in a black grid (4.5� visual angle), which

served to mask visual discontinuities between quadrants. Participants

were monitoring a central red crosshair, which twice per block

(at random times) darkened for 50 ms; participants had to press a but-

ton when they detected a change. Participants on average detected

80.0% (SE = 2.5)3 of the changes. Stimulus presentation was con-

trolled using the Psychtoolbox (Brainard, 1997).

In addition to the experimental runs, each participant completed a

functional localizer run of 13 min, during which they viewed images of

scenes, objects, and scrambled scenes. The scenes were new exem-

plars of the four scene categories used in the experimental runs;

objects were also selected from four categories (car, jacket, lamp, and

sandwich). Participants completed 32 blocks (24 scene/object/scram-

bled blocks and 8 fixation-only blocks), with parameters identical to

the experimental runs (24 s block duration, 1 Hz stimulation fre-

quency, color change task).

2.4 | EEG paradigm

In the EEG experiment (Figure 1e), all conditions were randomly inter-

mixed within a single session of 75 min (split into 16 runs). During

each trial, a scene appeared for 250 ms, followed by an inter-trial

interval randomly varying between 700 ms and 900 ms. In total, there

were 3,072 trials (384 per condition), and an additional 1,152 target

trials (see below).

As in the fMRI, stimuli appeared in a black grid (4.5� visual angle)

with a central red crosshair. In target trials, the crosshair darkened

during the scene presentation; participants had to press a button and

blink when detecting this change. Participants on average detected

78.1% (SE = 3.6) of the changes. Target trials were not included in

subsequent analyses.

2.5 | fMRI recording and preprocessing

MRI data was acquired using a 3 T Siemens Tim Trio Scanner

equipped with a 12-channel head coil. T2*-weighted gradient-echo

echo-planar images were collected as functional volumes (TR = 2 s,

TE = 30 ms, 70� flip angle, 3mm3 voxel size, 37 slices, 20% gap,

192 mm FOV, 64 × 64 matrix size, interleaved acquisition). Addition-

ally, a T1-weighted anatomical image (MPRAGE; 1mm3 voxel size)

was obtained. Preprocessing was performed using SPM12 (www.fil.

ion.ucl.ac.uk/spm/). Functional volumes were realigned, coregistered

to the anatomical image, and normalized into MNI-305 space. Images

from the localizer run were additionally smoothed using a 6 mm full-

width-half-maximum Gaussian kernel.

2.6 | EEG recording and preprocessing

EEG signals were recorded using an EASYCAP 64-electrode4 system

and a Brainvision actiCHamp amplifier. Electrodes were arranged in

accordance with the 10–10 system. EEG data was recorded at

1000 Hz sampling rate and filtered online between 0.03 Hz and

100 Hz. All electrodes were referenced online to the Fz electrode.

Offline preprocessing was performed using FieldTrip (Oostenveld,

Fries, Maris, & Schoffelen, 2011). EEG data were epoched from –

200 ms to 800 ms relative to stimulus onset and baseline-corrected

by subtracting the mean pre-stimulus signal. Channels and trials con-

taining excessive noise were removed based on visual inspection.

Blinks and eye movement artifacts were removed using independent

component analysis and visual inspection of the resulting compo-

nents. The epoched data were down-sampled to 200 Hz.

2.7 | fMRI region of interest definition

We restricted fMRI analyses to three regions of interest (ROIs): early

visual cortex (V1), scene-selective occipital place area (OPA), and

scene-selective parahippocampal place area (PPA) (Figure 2). We addi-

tionally localized scene-selective retrosplenial cortex (RSC), but did

not observe reliable above-baseline activations to our scene stimuli in

this region, all t(19) < 0.14, p > .45. The results for RSC can be found

in the Appendix S1.

V1 was defined based on a functional group atlas (Wang et al.,

2015), from which we selected all voxels that had a higher probability

of belonging to V1 than belonging to another region in the atlas

(905 voxels). Changing the number of voxels included did not qualita-

tively change the results in V1 (see Appendix S1).

Scene-selective ROIs were defined using the localizer data, which

were modeled in a general linear model (GLM) with nine predictors

(three regressors for the scene/object/scrambled blocks and six

movement regressors). Scene-selective ROI definition was
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constrained by group-level activation masks for OPA and PPA (Julian

et al., 2012). Within these masks, we first identified the voxel

exhibiting the greatest t-value in a scene>object contrast, separately

for each hemisphere, and then defined the ROI as a 125-voxel sphere

around this voxel (similar results were obtained for different ROI sizes,

see Appendix S1). Left- and right-hemispheric ROIs were

concatenated for further analysis.5

2.8 | fMRI decoding

fMRI response patterns for each ROI were extracted directly from the

volumes recorded during each block. After shifting the activation time

course by three TRs (i.e., 6 s) to account for the hemodynamic delay,

we extracted voxel-wise activation values from the 12 TRs

corresponding to each block of 24 s. Activation values for these

12 TRs were then averaged, yielding a single response pattern across

voxels for each block. To account for activation differences between

runs, the mean activation across all blocks was subtracted from each

voxel's values, separately for each run. Decoding analyses were per-

formed using CoSMoMVPA (Oosterhof, Connolly, & Haxby, 2016),

and were carried out separately for each ROI and participant. We

used data from four runs to train linear discriminant analysis (LDA)

classifiers to discriminate multi-voxel response patterns (i.e., patterns

of voxel activations across all voxels of an ROI) for two conditions

(e.g., spatially intact versus spatially jumbled scenes). Classifiers were

tested using response patterns for the same two conditions from the

left out, fifth run. This classification routine was done repeatedly until

every run was left out once and decoding accuracy was averaged

across these repetitions.

2.9 | fMRI univariate analysis

To establish univariate activation differences, we modeled the fMRI

data in a GLM analysis. For this analysis, all functional volumes were

smoothed using a 6 mm full-width-half-maximum Gaussian kernel.

For each run, we constructed a GLM with 10 predictors (four regres-

sors reflecting the four scene conditions and six movement regres-

sors). For each of the four scene conditions, this analysis yielded five

beta maps (one for each run) for the upright scenes (from Session 1),

and five beta maps (one for each run) for the inverted scenes (from

Session 2). We first averaged beta weights for every condition across

runs. These beta weights were then averaged across all voxels of each

ROI, yielding one activation value for each condition, ROI, and partici-

pant. For each ROI (V1, OPA, PPA), and separately for the two stimu-

lus orientations (upright, inverted), we computed three effects: (a) The

main effect of spatial structure, reflecting the difference between the

two spatially intact and the two spatially jumbled scenes, (b) the main

effect of categorical structure, reflecting the difference between the

two categorically intact and the two categorically jumbled scenes, and

(c) the interaction effect of spatial and categorical structure. Subse-

quently, to uncover inversion effects, we compared these effects

across the upright scenes and inverted scenes.

2.10 | EEG decoding

EEG decoding was performed separately for each time point

(i.e., every 5 ms) from –200 ms to 800 ms relative to stimulus onset,

using CoSMoMVPA (Oosterhof et al., 2016). We used data from

all-but-one trials for two conditions to train LDA classifiers to discrim-

inate topographical response patterns (i.e., patterns across all elec-

trodes) for two conditions (e.g., spatially intact versus spatially

jumbled scenes). Classifiers were tested using response patterns for

the same two conditions from the left-out trials. This classification

routine was done repeatedly until each trial was left out once and

decoding accuracy was averaged across these repetitions. Classifica-

tion time series for individual participants were smoothed using a

running average of five time points (i.e., 25 ms).

2.11 | EEG univariate analysis

To establish univariate EEG response differences (i.e., ERP effects)

between conditions, we averaged evoked responses for all trials of

each condition. Based on a previous study on scene-selective ERPs

(Harel et al., 2016), we then averaged these responses across six

posterior-lateral EEG electrodes (P4, P8, O2, P7, P3, O1), yielding one

ERP response for each condition and participant. For these ERPs, we

computed the same effects as outlined above for the fMRI data: a

main effect of spatial structure, a main effect of categorical structure,

and interactions with scene inversion.6

F IGURE 2 Location of the fMRI regions of interest (ROIs). fMRI
data analysis was restricted to three ROIs: primary visual cortex (V1),
the occipital place area (OPA) and the parahippocampal place area
(PPA). The V1 ROI was based on a functional atlas (Wang, Mruczek,
Arcaro, & Kastner, 2015), and identical for all participants. The

scenes-selective regions were defined as spheres around each
participant's peak activation in a separate scene-localizer run,
constrained by functional group masks (Julian, Fedorenko, Webster, &
Kanwisher, 2012). The colormap represents the consistency of ROI
locations across participants (i.e., how many participants' ROIs
covered the respective voxels) [Color figure can be viewed at
wileyonlinelibrary.com]
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2.12 | Statistical testing

For the fMRI data, we used t-tests to compare decoding against chance

and between conditions. For the univariate data, we used ANOVAs to

tests for differences in activations. To Bonferroni-correct for compari-

sons across ROIs, all p-values were multiplied by 3. For the EEG data,

given the larger number of comparisons, we used a threshold-free clus-

ter enhancement procedure (Smith & Nichols, 2009) and multiple-

comparison correction based on a sign-permutation test (with null dis-

tributions created from 10,000 bootstrapping iterations), as

implemented in CoSMoMVPA (Oosterhof et al., 2016). The resulting

statistical maps were thresholded at z > 1.96 (i.e., pcorr < .05).

2.13 | Data availability

Data are publicly available on OSF (doi.org/10.17605/OSF.IO/

W9874). Materials and code are available from the corresponding

author upon request.

3 | RESULTS

For both the fMRI and EEG data, we performed two complimentary

decoding analyses. In the first analysis, we tested sensitivity for spatial

structure by decoding spatially intact from spatially jumbled scenes

(Figure 3a). In the second analysis, we tested sensitivity for categorical

structure by decoding categorically intact from categorically jumbled

scenes (Figure 3d). To investigate whether successful decoding indeed

reflected sensitivity to scene structure, we performed both analyses

separately for the upright and inverted scenes. Critically, inversion

effects (i.e., better decoding in the upright than in the inverted condi-

tion) indicate genuine sensitivity to natural scene structure that goes

beyond purely visual differences.

3.1 | Sensitivity to spatial scene structure

First, to uncover where and when cortical processing is sensitive to

spatial structure, we decoded between scenes whose spatial structure

was intact or jumbled (Figure 3a).

F IGURE 3 MVPA results. To reveal sensitivity to spatial scene structure, we decoded between scenes with spatially intact and spatially
jumbled parts (a). Already during early processing (in V1 and before 200 ms) spatially intact and jumbled scenes could be discriminated well, both
for the upright and inverted conditions. Critically, during later processing (in OPA/PPA and from 255 ms) inversion effects (i.e., better decoding
for upright than inverted scenes) revealed genuine sensitivity to spatial scene structure (b, c). To reveal sensitivity to categorical scene structure,
we decoded between scenes with categorically intact and categorically jumbled parts (d). In this analysis, no pronounced decoding and no
inversion effects were found, neither across space (e) nor time (f). Error margins reflect standard errors of the difference. Significance markers
denote inversion effects (pcorr < .05) [Color figure can be viewed at wileyonlinelibrary.com]
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For the fMRI data (Figure 3b), we found highly significant

decoding between spatially intact and spatially jumbled scenes. For

upright scenes, significant decoding emerged in V1, t(19) = 13.03,

pcorr < .001, OPA, t(19) = 7.61, pcorr < .001, and PPA, t(19) = 5.92,

pcorr = .002, and for inverted scenes in V1, t(19) = 9.92, pcorr < .001,

but not in OPA, t(19) = 2.08, pcorr = .16, and PPA, t(19) = 0.85,

pcorr > 1. Critically, we observed inversion effects (i.e., better decoding

for the upright scenes) in the OPA, t(16) = 4.41, pcorr = .001,7 and

PPA, t(16) = 3.67, pcorr = .006, but not in V1, t(16) = 1.32, pcorr = .62.

Therefore, decoding in V1 solely reflects visual differences, whereas

OPA and PPA exhibit genuine sensitivity to the spatial scene struc-

ture. This result was confirmed by further ROI analyses and a spatially

unconstrained searchlight analysis (see Appendix S1).

For the EEG data (Figure 3c), we also found strong decoding

between spatially intact and jumbled scenes. For upright scenes, this

decoding emerged between 55 ms and 465 ms, between 505 ms and

565 ms, and between 740 ms and 785 ms, peak z > 3.29, pcorr < .001,

and for inverted scenes between 65 ms and 245 ms, peak z > 3.29,

pcorr < .001. As in scene-selective cortex, we observed inversion

effects, indexing stronger sensitivity to spatial structure in upright

scenes, between 255 ms and 300 ms and between 340 ms and

395 ms, peak z = 2.78, pcorr = .005.

Together, these results show that in scene-selective OPA and

PPA, and after 255 ms, cortical activations are sensitive to the spatial

structure of natural scenes. Critically, this sensitivity becomes appar-

ent in inversion effects, and thus cannot be attributed to image-

specific differences between intact and jumbled scenes, as these are

identical for the upright and inverted scenes. Our findings rather indi-

cate a genuine sensitivity to spatial structure consistent with real-

world experience.

3.2 | Sensitivity to categorical scene structure

Second, to uncover where and when cortical processing is sensitive to

categorical structure, we decoded between scenes whose categorical

structure was intact or jumbled (Figure 3a).

For the fMRI (Figure 3e), the upright scenes' categorical structure

could be decoded only from V1, t(19) = 3.11, pcorr = .017, but not the

scene-selective ROIs, both t(19) < 2.15, pcorr > .13. Similarly, for the

inverted scenes, significant decoding was only observed in V1, t

(19) = 4.58, pcorr < 0.001, but not in the scene-selective ROIs, both t

(19) < 2.29, pcorr > .10. No inversion effects were observed, all t(16)

< 0.60, pcorr > 1.

For the EEG (Figure 3f), we found only weak decoding between

the categorically intact and jumbled scenes. In the upright condition,

decoding was significant between 165 ms and 175 ms and between

215 ms and 265 ms, peak z = 2.32, pcorr = .02, and in the inverted con-

dition at 120 ms, peak z = 1.97, pcorr = .049. No significant inversion

effects were observed, peak z = 1.64, pcorr = .10.8

Together, these results reveal no substantial sensitivity to the cat-

egorical structure of a scene, at least when none of the scenes are

fully coherent and when they are not relevant for behavior. Please

note that this absence of an effect does not in no way entail that

there is no representation of category during scene analysis. In our

analysis, we did not decode between different scene categories, but

between scenes whose categories were intact or shuffled (collapsed

across their categorical content); as a consequence, our analysis only

reveals an absence of sensitivity for categorical structure, but not an

absence of sensitivity for category per se.

This absence of sensitivity for categorical scene structure is in

marked contrast with sensitivity for spatial scene structure, which is

observed in the absence of behavioral relevance and is disrupted by

stimulus inversion.

3.3 | Enhanced responses to spatially structured
scenes

Our decoding analyses show that scene-selective cortex exhibits a

profound sensitivity to spatial scene structure. To further understand

this sensitivity, we conducted a univariate analysis in which we com-

pared the magnitude of responses evoked by intact and jumbled

scenes (Figure 4a,c). Critically, this analysis allowed us to disentangle

two opposing interpretations: On one side, sensitivity to scene struc-

ture could indeed reflect a visual tuning to real-world properties—in

this case, enhanced responses to intact scenes, compared to jumbled

scenes, are expected. On the other side, sensitivity to scene structure

could mainly reflect the coding of stimuli that are incoherent with

real-world experience, reflecting a type of “surprise” response— in this

case, enhanced responses to jumbled scenes, compared to intact

scenes, are expected. Analyzing response magnitudes across space

(fMRI) and time (EEG) allowed us to arbitrate these two

interpretations.

In the fMRI, we found significant main effects of spatial structure

in the upright condition in OPA, F(1,19) = 21.00, pcorr < .001, and PPA,

F(1,19) = 55.30, pcorr < .001, but not in V1, F(1,19) = 5.11, pcorr = .11

(Figure 4b). No main effects of categorical structure, all F(1,19) < 5.69,

pcorr > .08, and no interactions between spatial and categorical struc-

ture were found, all F(1,19) < 1.18, pcorr > .88. In the inverted condi-

tion, we observed no significant effects, all F(1,19) < 1.12, pcorr > .92

(Figure 4e). Critically, we inversion effects revealed greater effects of

spatial structure in the upright than in the inverted condition in OPA,

F(1,16) = 17.04, pcorr = .002, and PPA, F(1,16) = 21.82, pcorr < .001. In

accordance with the MVPA results, this finding indicates genuine sen-

sitivity to spatial scene structure in OPA and PPA. Additionally, the

univariate results highlight that scene-selective cortex preferentially

responds to the spatially intact scenes, rather than the spatially jum-

bled scenes.

In the EEG, we only found a significant main effect of spatial

structure for the upright scenes (Figure 4c,f), which emerged between

225 ms and 425 ms, peak z = 3.09, pcorr = .002. None of the other

main effects or interactions were significant. However, we observed

trending inversion effects (at a more liberal threshold of pcorr < .1),

which emerged between 260 ms and 270 ms, and at 305 ms, peak

z = 1.72, pcorr = .086. Although not significant, these trending effects

qualitatively resemble the findings obtained in the more sensitive

6 KAISER ET AL.

24



MVPA, which showed that from 255 ms responses become sensitive

to spatial scene structure.

Together, the univariate results highlight that responses to natural

scenes are stronger for scenes that are spatially structured. This sug-

gests a preferential processing of scenes that are composed in accor-

dance with real-world experience—rather than an enhanced response

to scenes that do not adhere to this experience.

4 | DISCUSSION

Our findings provide the first spatiotemporal characterization of corti-

cal sensitivity to natural scene structure. As the key result, we

observed sensitivity to spatial (but not categorical) scene structure,

which emerged in scene-selective cortex and from 255 ms of vision.

By showing that this effect is stronger for upright than for inverted

scenes, we provide strong evidence for genuine sensitivity to spatial

structure, rather than low-level properties.

Sensitivity to spatial structure may index mechanisms enabling

efficient scene understanding. Previous work on object processing

shows that in order to efficiently parse the many objects contained in

natural scenes, the visual system exploits regularities in the

environment, such as regularities in individual objects' positions

(Kaiser & Cichy, 2018; Kaiser, Moeskops, & Cichy, 2018), relationships

between objects (Kaiser & Peelen, 2018; Kaiser, Stein, & Peelen,

2014; Kim & Biederman, 2011; Roberts & Humphreys, 2010), and

relationships between objects and scenes (Brandman & Peelen, 2017;

Faivre, Dubois, Schwartz, & Mudrik, 2019). Further, a recent fMRI

study suggests that low-level representations of small and incomplete

scene fragments partly depend on the fragment's typical position

within the visual world (Mannion, 2015). Relatedly, we recently

showed that in scene-selective occipital cortex and after 200 ms of

vision, the representations of such scene fragments are sorted with

respect to their typical location in the world (Kaiser, Turini, & Cichy,

2019). Focusing on the interplay of multiple scene elements, the cur-

rent study shows that on higher levels of the scene processing hierar-

chy, the visual system uses spatial regularities to concurrently process

the multiple elements of complex scenes in an efficient way. This

result is in line with the emerging view that real-world structure facili-

tates processing in the visual system across diverse naturalistic con-

tents (Kaiser, Quek, Cichy, & Peelen, 2019).

What mechanism underlies the preferential processing of spatially

structured scenes? As one possibility, a scene's intact spatial structure

F IGURE 4 Univariate results. To reveal sensitivity to scene structure in univariate response magnitudes, we looked at average responses to
each of the four conditions, separately for the upright scenes (a) and the inverted scenes (d). For the upright scenes, we found main effects of
spatial structure in OPA and PPA (b) and between 225 ms and 425 ms (c), while no effects of spatial structure were found for the inverted scenes
(e, f). Supporting our MVPA results, inversion effects (i.e., greater effects of spatial structure in the upright, compared to the inverted scenes)
were found in OPA and PPA (at pcorr < .05) and from 260 ms (at a more liberal pcorr < .1), indicating increased responsiveness to spatially
structured scenes. No main effects of categorical structure and no interaction effects were found. Error margins reflect standard errors of the
mean. Significance markers denote main effects of spatial structure (pcorr < .05) [Color figure can be viewed at wileyonlinelibrary.com]
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may trigger integrative processing across the scene, akin to integrative

processing of multiple objects that are positioned in accordance with

spatial regularities (Baldassano, Beck, & Fei-Fei, 2017; Kaiser &

Peelen, 2018). Alternatively, spatially structured scenes may contain

typical global properties (Oliva & Torralba, 2006) that are absent in

spatially jumbled scenes, and the sensitivity to spatial structure may

partly reflect sensitivity to the formation of such global properties. At

this point, more studies are needed to understand which types of fea-

tures drive the sensitivity to spatial structure.

Our results also shine new light on the temporal processing cas-

cade during scene perception. Sensitivity to spatial structure emerged

after 255 ms of processing, which is only after scene-selective peaks

in ERPs (Harel et al., 2016; Sato et al., 1999)9 and after basic scene

attributes are computed (Cichy, Khosla, Pantazis, & Oliva, 2017).

Interestingly, after 250 ms brain responses not only become sensitive

to scene structure, but also to object-scene consistencies (Draschkow

et al., 2018; Ganis & Kutas, 2003; Mudrik et al., 2010; Võ & Wolfe,

2013). Together, these results suggest a dedicated processing stage

for the structural analysis of objects, scenes, and their relationships,

which is different from basic perceptual processing. However,

whether these different findings indeed reflect a common underlying

mechanism requires further investigation. For instance, future investi-

gations need to clarify which of these findings reflect enhanced

processing of consistent structure (as our finding does) and which pri-

marily reflect responses to inconsistencies.

Further, our results suggest more pronounced sensitivity to spatial

structure than to categorical structure. This is in line with studies

showing that scene-selective responses are mainly driven by spatial

layout, rather than scene content (Dillon, Persichetti, Spelke, & Dilks,

2018; Harel, Kravitz, & Baker, 2013; Henriksson, Mur, & Kriegeskorte,

2019; Kravitz, Peng, & Baker, 2011). However, our results need not to

be taken as evidence that categorical structure is not represented at

all during visual analysis.10 It is conceivable that visual processing is

less sensitive to categorical structure when, as in our study, all scenes

are jumbled to some extent and not behaviorally relevant.

On the contrary, robust sensitivity to spatial scene structure

emerged in the absence of behavioral relevance. This suggests that

spatial structure is analyzed automatically during perceptual

processing and is not strongly dependent on attentional engage-

ment with the scene. As in real-world situations, we cannot explic-

itly engage with all aspects of a scene concurrently, this automatic

analysis of spatial structure may be crucial for rapid scene

understanding.
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ENDNOTES

1 Related studies on object-object and object-scene consistencies typi-

cally yield large effect sizes which exceed this value, both for fMRI

responses, d = 0.72 (Brandman & Peelen, 2017), d = 0.67 (Kaiser &

Peelen, 2018), d = 2.14 (Kim & Biederman, 2011), d = 0.94 (Roberts &

Humphreys, 2010), and EEG responses, d = 0.71 (Draschkow, Heikel,

Võ, Fiebach, & Sassenhagen, 2018), d = 0.88 (Ganis & Kutas, 2003),

d = 0.67 (Mudrik, Lamy, & Deouell, 2010), d = 0.69 (Võ & Wolfe, 2013).
2 Note that all scenes were jumbled to some extent, as also in the cate-

gorically intact scenes four different exemplars were intermixed.
3 For two participants, due to technical problems, no button presses were

recorded.
4 For two participants, due to technical problems, only data from 32 elec-

trodes was recorded.
5 Analyzing the data from the two hemispheres separately did not yield

any significant differences between hemispheres (F < 2.04, p > .17, for

all interactions with hemisphere).
6 For using the same statistical tests as for the decoding results, interac-

tions in the univariate EEG analyses were computed by testing the dif-

ferences between conditions against each other (e.g., the difference

between intact and jumbled scenes in the upright condition versus the

difference between intact and jumbled scenes in the inverted

conditions).
7 Statistics for fMRI inversion effects are based on the 17 participants

who completed both sessions.
8 Note that the strongest tendency towards an inversion effect

(at 115 ms) was against the predicted direction.
9 In our study, ERP responses in posterior-lateral electrodes peaked at

235 ms.
10 In the Appendix S1, we show that the four scene categories can be suc-

cessfully decoded from the EEG signals.
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Kaiser D, Häberle G, Cichy RM. Real-world structure facilitates
the rapid emergence of scene category information in visual brain
signals. J Neurophysiol 124: 145–151, 2020. First published June 10,
2020; doi:10.1152/jn.00164.2020.—In everyday life, our visual sur-
roundings are not arranged randomly but structured in predictable
ways. Although previous studies have shown that the visual system is
sensitive to such structural regularities, it remains unclear whether the
presence of an intact structure in a scene also facilitates the cortical
analysis of the scene’s categorical content. To address this question,
we conducted an EEG experiment during which participants viewed
natural scene images that were either “intact” (with their quadrants
arranged in typical positions) or “jumbled” (with their quadrants
arranged into atypical positions). We then used multivariate pattern
analysis to decode the scenes’ category from the EEG signals (e.g.,
whether the participant had seen a church or a supermarket). The
category of intact scenes could be decoded rapidly within the first 100
ms of visual processing. Critically, within 200 ms of processing,
category decoding was more pronounced for the intact scenes com-
pared with the jumbled scenes, suggesting that the presence of
real-world structure facilitates the extraction of scene category infor-
mation. No such effect was found when the scenes were presented
upside down, indicating that the facilitation of neural category infor-
mation is indeed linked to a scene’s adherence to typical real-world
structure rather than to differences in visual features between intact
and jumbled scenes. Our results demonstrate that early stages of
categorical analysis in the visual system exhibit tuning to the structure
of the world that may facilitate the rapid extraction of behaviorally
relevant information from rich natural environments.

NEW & NOTEWORTHY Natural scenes are structured, with dif-
ferent types of information appearing in predictable locations. Here,
we use EEG decoding to show that the visual brain uses this structure
to efficiently analyze scene content. During early visual processing,
the category of a scene (e.g., a church vs. a supermarket) could be
more accurately decoded from EEG signals when the scene adhered to
its typical spatial structure compared with when it did not.

EEG; multivariate pattern analysis; real-world structure; scene repre-
sentation; visual processing

INTRODUCTION

IN EVERYDAY SITUATIONS, the input to our visual system is not
random; rather, it rather arises from highly organized scenes,

which follow a predictable structure. In practically every real-
word scene, visual information (such as the scene’s layout
properties or the objects contained in a scene) is distributed in
meaningful ways across space (Bar 2004; Kaiser et al. 2019a;
Oliva and Torralba 2007; Võ et al. 2019; Wolfe et al. 2011).
Neuroimaging studies have shown that the visual system is
sensitive to this structure, with cortical responses differing
when scene elements do or do not adhere to typical real-world
structure (Abassi and Papeo 2020; Baldassano et al. 2017;
Bilalić et al. 2019; Kaiser et al. 2014; Kaiser and Peelen 2018;
Kim and Biederman 2011; Roberts and Humphreys 2010).
Although such studies suggest that the presence of real-world
structure aids efficient scene representation, it is unclear how
real-world structure impacts the representation of scene con-
tent. Specifically, does the presence of real-world structure
facilitate the extraction of categorical information from a
scene?

Evidence for an increase of visual category information in
the presence of real-world regularities has already been re-
ported for individual object processing. Several studies showed
that typical real-world positioning enhances the neural repre-
sentation of object category (Chan et al. 2010; de Haas et al.
2016; Kaiser and Cichy 2018; Kaiser et al. 2018); for example,
neural responses to an airplane are better discriminable from
responses to other objects when the airplane is shown in the
upper visual field, where it is typically encountered in the real
world. Does the presence of real-world structure similarly
facilitate the representation of categorical scene content in
scenes?

To address this question, we used a jumbling paradigm
(Biederman 1972; Biederman et al. 1974) that manipulates
natural scenes’ spatial structure. Individual parts of the scene
could either appear in their typical, “intact” positions or in
atypical, “jumbled” positions (Fig. 1). In a recent neuroimag-
ing study (Kaiser et al. 2020a), we employed this paradigm to
show that in scene-selective visual cortex (fMRI) and after 250
ms of vision (EEG), spatially intact scenes were represented
differently from jumbled scenes. Here, we analyzed the EEG
data from this jumbling paradigm to investigate whether the
typical real-world structure, in contrast to an atypical structure,
facilitates the visual representation of scene category.Correspondence: D. Kaiser (danielkaiser.net@gmail.com).
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To extract differences in category information between in-
tact and jumbled scenes with high sensitivity, we used a
cumulative multivariate decoding approach (Ramkumar et al.
2013), which maximizes the amount of data available at every
time point along the processing cascade. In line with previous
reports (Dima et al. 2018; Kaiser et al. 2019b, 2020b; Lowe et
al. 2018), this analysis showed that scene category information
emerges rapidly (within the first 100 ms of vision). Critically,
the early emergence of scene category information was facil-
itated for intact compared with jumbled scenes. This benefit
was only present for upright but not inverted scenes, indicating
that the early facilitation of scene analysis is related to the
presence of real-world structure rather than differences in basic
visual features.

MATERIALS AND METHODS

Participants. Twenty healthy adults (mean age 26.6 yr, SD � 5.8;
9 female) participated. All participants had normal or corrected-to-
normal vision. Participants provided written informed consent and
received either monetary reimbursement or course credits. All proce-
dures were approved by the ethical committee of the Department of
Psychology at Freie Universität Berlin and were in accordance with
the Declaration of Helsinki.

Stimuli. Stimuli were scenes from four different categories:
churches, houses, roads, and supermarkets (Fig. 1A). The stimuli were
taken from an online resource (Konkle et al. 2010). For each category,
six different exemplars were used. To manipulate scenes’ adherence
to real-world structure, we first split each original image into quad-
rants. We then systematically recombined parts (quadrants) from
different scenes such that the scenes’ spatial structure was either intact
or jumbled (Fig. 1B). For the intact scenes, four parts from four
different scenes of the same scene category were combined in their
correct spatial locations. For the jumbled scenes, four parts from
four different scenes of the same scene category were combined, but
their spatial locations were arranged in a crisscrossed way. This
jumbling manipulation simultaneously disrupted multiple structural
regularities in the scene, such as visual feature distributions, scene
geometry, absolute and relative object positions, and cues to three-
dimensional structure. Additionally, the stimulus set entailed scenes
that were jumbled in their categorical content (with the individual
scene parts stemming from different categories); these scenes were
created to answer a different research question (see Kaiser et al.
2020a) and not used in the analyses reported in this paper. In both

conditions relevant for this paper, we used parts from four different
scenes to equate the presence of visual discontinuities between frag-
ments. Separately for each participant, 24 unique intact and 24 unique
jumbled stimuli were generated by randomly drawing suitable frag-
ments from different scenes. Each scene was presented upright and
upside down. Although the key manipulation was the positioning of the
individual scene parts relative to each other, it is worth noting that stimuli
from the four resulting conditions adhered to, or violated, real-world
structure on different levels: 1) upright intact scenes featured typical
orientation of the individual parts, typical absolute locations of the parts,
and typical relative positions of the parts; 2) upright jumbled scenes
featured typical orientation of the individual parts, atypical absolute
locations of the parts, and atypical relative positions of the parts; 3)
inverted intact scenes featured atypical orientation of the individual parts,
atypical absolute locations of their individual parts, and typical relative
positions of the parts; and 4) inverted jumbled scenes featured atypical
orientation of the individual parts, typical absolute locations of the parts,
and atypical relative positions of the parts.

Paradigm. During the EEG experiment, the different stimuli were
randomly intermixed within a single session. Within each trial, a
scene appeared for 250 ms. Stimuli appeared in a black grid (4.5°
visual angle), which served to mask visual discontinuities between
quadrants (Fig. 1C). Each trial was followed by an intertrial interval
that varied randomly between 700 ms and 900 ms. For this paper, only
parts of the collected data (spatially intact and spatially jumbled
scenes in upright and upside-down orientation) were analyzed. Each
of these four conditions covered 384 trials (96 trials per scene
category). Additionally, 1,152 target trials were measured. During the
target trials, the crosshair changed into a slightly darker red at the
same time the scene was presented. When detecting a target, partic-
ipants had to press a button; additionally, they were asked to blink
during the target trials, making it easier for them to refrain from
blinking during nontarget trials. Target detection was purposefully
made challenging to ensure sufficient attentional engagement (mean
accuracy 78.1%, SE � 3.6%). Target trials were not included in
subsequent analyses. Furthermore, 1,536 trials where the scenes’
categorical structure was altered were measured. This data has been
analyzed elsewhere (see Kaiser et al. 2020a). Furthermore, partici-
pants were instructed to maintain central fixation throughout the
experiment. Stimulus presentation was controlled using the Psych-
toolbox (Brainard 1997).

EEG recording and preprocessing. The EEG data were the same as in
Kaiser et al. (2020a). EEG signals were recorded using an EASYCAP
64-electrode system and a Brainvision actiCHamp amplifier. For two
participants, only data from 32 electrodes were recorded because of

Fig. 1. Experimental design. A: stimulus set was constructed from natural scene photographs of 4 categories. B: intact and jumbled scenes were created by
combining parts of 4 different scenes of the same category in either typical locations or in atypical locations (with positions swapped in a crisscrossed way). C:
during the EEG experiment, participants viewed the scenes in upright and inverted orientation for 250 ms each, in random order. Participants performed an
orthogonal task, where they responded whenever the fixation cross darkened.
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technical problems. Electrodes were arranged in accordance with the
10–10 system. EEG data was recorded at 1,000 Hz sampling rate and
filtered online between 0.03 Hz and 100 Hz. All electrodes were
referenced online to the Fz electrode. Offline preprocessing was
performed using FieldTrip (Oostenveld et al. 2011). EEG data were
epoched from �200 ms to 800 ms relative to stimulus onset and were
baseline corrected by subtracting the mean prestimulus signal. Chan-
nels and trials containing excessive noise were removed based on
visual inspection. Blink and eye movement artifacts were removed
using independent components analysis and visual inspection of the
resulting components (Jung et al. 2000). The epoched data were
downsampled to 200 Hz.

EEG decoding. Decoding analyses were performed using CoSMo-
MVPA (Oosterhof et al. 2016). To track cortical representations
across time, we used a cumulative classification approach that takes
into account all time points before the current time point for each time
point across the epoch (Ramkumar et al. 2013). This classification
technique uses larger amounts of data at each subsequent time point
while maintaining temporal precision in the forward direction (i.e., it
only collapses across information backward in time but not forward).
Cumulative decoding may thus provide increased sensitivity for
detecting decoding onsets compared with standard timeseries decod-
ing (Grootswagers et al. 2017).

We used such cumulative classifiers to discriminate between the
four scene categories. This analysis was done separately for the intact
and jumbled scenes. Classification analyses were performed repeat-
edly, with the amount of information available to the classifier
accumulating across time (Fig. 2); that is, for the first time point in the
epoch, the classifier was trained and tested on response patterns across
the electrodes at this time point. At the second time point in the epoch,
the classifier was trained and tested on response patterns across the

electrodes at the first and second time point in this epoch. Finally, at
the last time point in the epoch, the classifier was trained on response
patterns across all electrodes and at all time points in this epoch.

The richer information contained in these cumulative response
patterns comes at the expense of a higher dimensionality of the data,
which potentially harms classification. To reduce the dimensionality
of the data at each time point, we performed principal component
analyses (PCAs). These PCAs were always done on the classifier
training set, and the PCA solution was projected onto the testing set
(Grootswagers et al. 2017). For each PCA, we retained as many
components as needed to explain 99% of the variance in the training
set data (average number of components retained at example time
points; at 0 ms: 225, SE � 11; at 200 ms: 250, SE � 10; at 800 ms:
269, SE � 10).

For classification, we used linear discriminant analysis classifiers.
For each classifier, the covariance matrix was regularized by adding
the identity matrix scaled by 1% of the mean of the diagonal elements
(as implemented in the cosmo_classify_lda function in CoSMo-
MVPA; Oosterhof et al. 2016). Classification was performed in a
cross-validation scheme with 12 distinct folds. Classifiers were trained
on data from 11 of these folds and tested on data from the left-out fold.
The amount of data in the training set was always balanced across the
four categories. Classification was done repeatedly until every fold
was left out once. Classification accuracies were averaged across these
repetitions. These analyses resulted in separate decoding timeseries
for intact and jumbled scenes, which reflect the temporal accrual of
category information (i.e., how well the four categories are discrim-
inable from the neural data).

Statistical testing. To compare decoding timeseries against chance
level and the different conditions’ decoding timeseries against each
other, we used a threshold-free cluster enhancement (TFCE) proce-

Fig. 2. Schematic depiction of the cumulative decoding approach. A: for each time point t1 across the epoch, a separate decoding analysis was performed. B: for
each of these analyses, we aggregated event-related potential waveforms across all EEG electrodes and all time points between t1 and the beginning of the epoch
(t0). C: for each trial, we then unfolded these two-dimensional response patterns across electrodes and time into a one-dimensional response pattern. D: these
one-dimensional response patterns were first subjected to principal component analysis to reduce dimensionality (see MATERIALS AND METHODS) and then fed to
linear discriminant analysis classifiers, which were trained to discriminate the 4 scene categories. Decoding accuracy was computed by repeatedly assessing
classifier performance on single trials left out during classifier training. E: repeating this analysis across time yielded a decoding timeseries with 200 Hz
resolution. Importantly, the cumulative nature of this analysis allowed us to increase power by increasing the amount of data available to the classifier without
losing temporal precision regarding the onset of category information.
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dure (Smith and Nichols 2009). Multiple-comparison correction was
based on a sign-permutation test (with null distributions created from
10,000 bootstrapping iterations) as implemented in CoSMoMVPA
(Oosterhof et al. 2016). The resulting statistical maps were thresh-
olded at z � 1.96 (i.e., Pcorr � 0.05). However, the onset of statistical
significance for TFCE methods may be biased by the presence of
strong clusters following the onset (as expected from the cumulative
decoding performed here) and can therefore not be directly interpreted
(Sassenhagen and Draschkow 2019). We thus additionally provide
statistics for conventional one-sample t tests, which we corrected for
multiple comparisons using false discovery rate (FDR) corrections.
For all tests, only clusters of at least 4 consecutive significant time
points (i.e., more than 20 ms) were considered.

Data availability. Data are publicly available on OSF (https://doi.
org/10.17605/OSF.IO/ECMA4).

RESULTS

We first analyzed data from the upright scenes, where we
expected a facilitation of category information for spatially

intact, compared with jumbled, scenes. We found that EEG
signals conveyed robust scene category information. Catego-
ries were discriminable for both intact scenes (significant
decoding obtained from TFCE statistics: between 75 ms and
800 ms; significant decoding obtained from FDR-corrected
statistics: between 75 ms and 800 ms) and jumbled scenes
(TFCE: between 120 ms and 800 ms; FDR: between 135 ms
and 800 ms) (Fig. 3A). Crucially, we found significantly
enhanced decoding for the spatially intact scenes compared
with the jumbled scenes (TFCE: between 105 ms and 800 ms;
FDR: between 105 ms and 800 ms) (Fig. 3C).

The inclusion of inverted scenes allowed us to investigate
whether the effects of scene structure were genuinely related to
the scenes adhering to real-world structure rather than differ-
ences in their low-level visual attributes. If the enhanced
category information for spatially intact scenes is indeed re-
lated to their adherence with real-world structure, then no
effects should be seen when the same scenes are viewed upside

Fig. 3. Decoding of scene category for intact and jumbled scenes. A: first, we decoded the category of intact and jumbled scenes when they were presented upright.
B: this analysis revealed widespread clusters of category decoding for both intact and jumbled scenes. C: critically, we found more accurate decoding of scene
category when the scene was intact, suggesting that adherence to real-world structure boosts early visual category information. D: second, we decoded the
category of upside-down scenes. E: for upside-down scenes, category could be similarly decoded from the EEG signals. F: however, there was no benefit of intact
scene structure when the scenes were inverted, suggesting that adherence to real-world structure, rather than low-level differences, explains the enhanced category
decoding for structured scenes when they are upright. Error margins indicate standard errors of the difference. Significance markers (colored horizontal lines)
indicate P � 0.05, corrected for multiple comparisons using threshold-free cluster enhancement.
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down, as both types of inverted scenes do not adhere to
real-world structure in the same way as upright scenes: (1)
although their individual parts appear in typical relative posi-
tions, the inverted intact scenes have parts that are themselves
inverted and each appear in atypical absolute locations, and 2)
although their individual parts appear in typical absolute posi-
tions, the inverted jumbled scenes have parts that are them-
selves inverted and each appear in atypical relative positions.

Performing the category decoding analysis on the inverted
scenes (Fig. 3D) revealed a qualitative difference to the upright
scenes. The effect of scene structure was significantly stronger
for the upright scenes (TFCE: between 170 ms and 800 ms;
FDR: between 95 ms and 115 ms and between 185 ms and 800
ms). Indeed, no significant differences between intact and
jumbled scenes were observed for the inverted scenes, al-
though the category of both intact scenes (TFCE: between 55
ms and 800 ms; FDR: between 60 ms and 800 ms) and jumbled
scenes (TFCE: between 60 ms and 800 ms; FDR: between 75
ms and 800 ms) could be decoded from the EEG signals (Fig.
3, E and F). This indicates that the early facilitation of scene
category information for spatially structured scenes can be
attributed to the scenes adhering to typical real-world structure,
rather than to low-level features differing between the intact
and jumbled scenes.

Our results establish that for processing of upright scenes,
scene structure matters more than for processing inverted
scenes. Additionally, one can also ask how robustly category
information emerges as a function of whether the scene is
presented upright or upside down. To answer this question, we
directly compared category information for the intact upright
scenes, the jumbled upright scenes, and the inverted scenes
(Fig. 4A). For the inverted scenes we averaged across the intact
and jumbled conditions, because there were no statistical
differences between them. We found that category decoding
accuracy for the inverted scenes was numerically in between
the intact and jumbled upright scenes (Fig. 4B). When directly
comparing the decoding time courses (Fig. 4C), we found that

category decoding was not significantly stronger in the intact
upright scenes compared with the inverted scenes. By contrast,
category decoding for the upright jumbled scenes was signif-
icantly weaker than for the inverted scenes (TFCE: between
170 ms and 800 ms; FDR: between 200 ms and 800 ms). This
result suggests that for the inverted scenes, category can be
decoded similarly as for the intact upright scenes. However,
once the structure of an upright scene is destroyed, only weaker
categorical representations emerge in the visual system.

DISCUSSION

Our results provide evidence that real-world regularities
facilitate the extraction of scene category information during
visual analysis. We show that this facilitation of category
information emerges within the first 200 ms of vision. Our
findings highlight the pervasive role of real-world structure in
perceptual processing, suggesting that already at relatively
early processing stages cortical scene representations are
tightly linked to the typical composition of our daily surround-
ings.

Here, we used a cumulative decoding technique to establish
differences in the initial emergence of information in EEG
signals. This technique uses all the available historical data
(i.e., data before the current time point) for classification.
Together with using PCA for dimensionality reduction, the
availability of this larger amount of data promises high detec-
tion sensitivity. The availability of historical data at later time
points may also hold true for the brain, where downstream
regions have access to information coded earlier in upstream
regions. However, as a note of caution, classifiers may also use
temporally distinct information that is not necessarily available
in the same way in the brain, particularly when looking at late
processing stages. Cumulative decoding nonetheless provides a
useful approach to reveal early differences in cortical informa-
tion processing.

The early facilitation of category information is consistent
with results from single-object processing, where representa-

Fig. 4. Comparing category decoding between upright and inverted scenes. A: we compared the emergence of category information for the intact upright scenes,
the jumbled upright scenes, and the inverted scenes; for the inverted scenes, we averaged across the intact and jumbled scenes, as no significant differences
between the two were found. B: numerically, category decoding accuracy for the inverted scenes was in between the accuracies observed for the intact and
jumbled upright scenes. C: when subtracting decoding in the inverted condition from decoding in the upright conditions, we found that statistically, category
information was comparable for intact upright scenes and inverted scenes. By contrast, weaker category information was found for the jumbled upright scenes,
compared with the inverted scenes, suggesting that jumbling specifically harms the emergence of category information in upright scenes. Error margins indicate
standard errors of the difference. Significance markers (colored horizontal lines) indicate P � 0.05, corrected for multiple comparisons using threshold-free
cluster enhancement.
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tions of individual objects are rapidly enhanced (within the first
150 ms of vision) when the objects appear in their typical
real-world locations, such as an eye in the upper visual field
(Issa and DiCarlo 2012) or a shoe in the lower visual field
(Kaiser et al. 2018). Together, these findings therefore support
the idea that real-world structure can boost basic visual anal-
ysis across diverse stimuli and processing levels (Kaiser et al.
2019a).

When directly comparing neural category information in
upright and inverted scenes, we found that it was equally
pronounced when the scenes were intact and upright and when
the scenes were inverted, regardless of their structural arrange-
ment—only when the upright scenes were jumbled did we find
significantly reduced category information. One interpretation
of this result is that jumbling causes a specific disruption for
upright scenes because for these scenes, the jumbling manip-
ulation may be perceptually more salient. Alternatively, the
pattern of results may be explained by an interaction of two
different effects. The inverted intact scenes still retain the
intact relative positioning of their parts, which may explain
why they are better decodable than the upright jumbled scenes.
The inverted jumbled scenes do not have this intact relative
positioning, but by means of inversion they gain an intact
absolute positioning of their parts (e.g., a piece of sky would be
in the upper part of an inverted jumbled scene, which is where
it belongs); this may explain why these scenes yield better
category decoding than upright jumbled scenes. At this point,
further studies are needed to fully understand this pattern of
results. Challenges with interpreting inversion effects in the
current paradigm may necessitate the inclusion of other low-
level stimulus controls in these future studies.

Although our effects demonstrate an enhanced early repre-
sentation of scenes that adhere to real-world structure com-
pared with scenes that do not, studies on object-scene consis-
tency suggest that EEG waveforms only become affected by
typical object positioning after around 250 ms of vision (Coco
et al. 2020; Draschkow et al. 2018; Ganis and Kutas 2003;
Mudrik et al. 2010, 2014; Võ and Wolfe 2013). How do these
early and late effects of scene structure relate to each other?

As one possibility, later effects may partly reflect increased
responses to inconsistencies rather than an enhanced process-
ing of consistent scene-object combinations (Faivre et al.
2019). Together with our results, these findings may suggest
that early responses are biased toward scenes that predictably
follow real-world structure, whereas later responses may be
more biased toward violations of this structure. This idea is
consistent with a recent proposal in predictive processing,
which suggests a temporal succession of more general process-
ing biases, first toward the expected and then toward the
surprising (Press et al. 2020).

Alternatively, the beneficial effects of real-world regularities
may not immediately result in consistency signals. Whether
visual inputs generally are consistent with our real-world
experience may only be analyzed following more basic visual
analysis. Supporting this idea, generic consistency signals in
our data only emerge later than the enhanced category process-
ing. As previously reported, intact and jumbled scenes (inde-
pendent of their category) evoked reliably different responses
only after 255 ms of processing (Kaiser et al. 2020a).

More broadly, the findings can add to our understanding of
efficient everyday vision. Even under challenging real-world

conditions, human vision is remarkably efficient; in fact, it is
much more efficient than findings from simplified laboratory
experiments would predict (Wolfe et al. 2011; Peelen and
Kastner 2014). Behavioral studies using jumbling paradigms
have suggested that typical scene structure contributes to this
efficiency. When scenes are structurally intact, observers can
better categorize them (Biederman et al. 1974), recognize
objects within them (Biederman 1972), or detect visual
changes in the scene (Varakin and Levin 2008). These percep-
tual benefits may be linked to the rapid facilitation of neural
category information for typical scenes observed in the current
study. However, our participants performed an orthogonal
fixation task, which precludes directly linking brain and be-
havior here. Future studies combining neural recordings with
naturalistic behavioral tasks may reveal that the early cortical
tuning to real-world structure may be a crucial asset for solving
complex real-world tasks.
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a b s t r a c t 

Looking for objects within complex natural environments is a task everybody performs multiple times each day. 
In this study, we explore how the brain uses the typical composition of real-world environments to efficiently 
solve this task. We recorded fMRI activity while participants performed two different categorization tasks on 
natural scenes. In the object task, they indicated whether the scene contained a person or a car, while in the 
scene task, they indicated whether the scene depicted an urban or a rural environment. Critically, each scene was 
presented in an “intact ” way, preserving its coherent structure, or in a “jumbled ” way, with information swapped 
across quadrants. In both tasks, participants’ categorization was more accurate and faster for intact scenes. These 
behavioral benefits were accompanied by stronger responses to intact than to jumbled scenes across high-level 
visual cortex. To track the amount of object information in visual cortex, we correlated multi-voxel response 
patterns during the two categorization tasks with response patterns evoked by people and cars in isolation. We 
found that object information in object- and body-selective cortex was enhanced when the object was embedded 
in an intact, rather than a jumbled scene. However, this enhancement was only found in the object task: When 
participants instead categorized the scenes, object information did not differ between intact and jumbled scenes. 
Together, these results indicate that coherent scene structure facilitates the extraction of object information in a 
task-dependent way, suggesting that interactions between the object and scene processing pathways adaptively 
support behavioral goals. 

1. Introduction 

Despite the complexity of our everyday environments, perceiving ob- 
jects embedded in natural scenes is remarkably efficient. This efficiency 
is illustrated by studies that require participants to categorize objects 
under conditions of limited visual exposure: For instance, participants 
can tell whether a scene contains an animal or not from just a single 
glance ( Thorpe et al., 1996 ; Potter, 1975 , 2012 ), and even when only 
limited attentional resources are available ( Li et al., 2002 ). 

The ability to effortlessly make such categorization responses is un- 
derpinned by the efficient extraction of object information in visual cor- 
tex. Neuroimaging research has shown that the category of task-relevant 
objects can be reliably decoded from fMRI activity patterns in visual 
cortex, even when the objects are embedded in complex natural scenes 
( Peelen et al., 2009 ; Peelen and Kastner, 2011 ; Seidl et al., 2012 ) or 
movies ( Cukur et al., 2013 ; Nastase et al., 2017 ; Shahdloo et al., 2020 ). 

∗ Corresponding author at: Department of Psychology, University of York, Heslington, York, YO10 5DD, UK. 
E-mail address: danielkaiser.net@gmail.com (D. Kaiser). 

M/EEG studies demonstrate that object category is represented well 
within the first 200ms of vision, even when the object is shown under 
such naturalistic conditions ( Cauchoix et al., 2014 ; Kaiser et al., 2016 ; 
VanRullen and Thorpe, 2001 ; Thorpe et al., 1996 ). Together, these re- 
sults highlight that the cortical processing of objects appearing within 
rich real-world environments is surprisingly efficient. 

This processing efficiency becomes less surprising if scene context 
is not just considered as a nuisance that puts additional strain on our 
visual resources. Indeed, contextual information can facilitate object 
processing ( Bar, 2004 ): For instance, scene context allows for efficient 
allocation of attention ( Torralba et al., 2006 ; Wolfe et al., 2011 ; Võ
et al., 2019 ), or for disambiguating object information under uncertainty 
( Brandmann and Peelen, 2017 ; Oliva and Torralba, 2007 ). Such findings 
demonstrate that object and scene processing mechanisms interact with 
each other to enable the efficient processing of object information. 

https://doi.org/10.1016/j.neuroimage.2021.118365 . 
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Here, we investigated how the coherent spatial structure of the scene 
context aids the extraction of object information from the scene. To this 
end, we used a jumbling paradigm, in which we disrupted the scenes’ 
coherent structure by dividing them into multiple rectangular pieces 
and shuffling those pieces. Classical studies suggest that jumbling dras- 
tically impairs participants’ ability to categorize both the scene itself 
( Biederman et al., 1974 ), and the object embedded within the scene 
( Biederman et al., 1972 , 1973 ). Such impairments can be linked to 
changes in cortical scene processing: We have recently shown that scene- 
selective brain responses are less pronounced and contain less scene 
category information when the scene is jumbled ( Kaiser et al., 2020a , 
2020b ). However, it is unclear how these changes in scene-selective ac- 
tivations modulate the representation of objects within the scene. 

In the current study, we thus set out to characterize how the pres- 
ence of an intact – versus a jumbled – scene context modulates object 
representations in visual cortex. First, we asked whether cortical object 
processing is indeed facilitated by the presence of a coherent scene con- 
text. Second, we asked whether such facilitation effects depend on the 
objects being relevant or irrelevant for current behavioral goals. 

To answer these questions, we recorded fMRI activity while partic- 
ipants categorized objects contained in intact or jumbled scenes. We 
found that fMRI responses across high-level visual cortex were generally 
higher for intact scenes than for jumbled scenes, revealing widespread 
sensitivity to scene structure. When analyzing object category infor- 
mation in multi-voxel response patterns, we found that coherent scene 
structure enhanced object information in object-selective visual cortex. 
However, this enhancement was task-specific: When participants cate- 
gorized the scenes instead of the objects, we found no such enhancement 
of object information. These results suggest that the visual brain uses 
coherent real-world structure to more efficiently extract task-relevant 
object information from complex scenes. 

2. Materials and methods 

2.1. Participants 

Twenty-five healthy adults (mean age 26.4 years, SD = 5.3; 15 fe- 
male, 10 male) participated. All participants had normal or corrected-to- 
normal vision. They all provided informed written consent and received 
either monetary reimbursement or course credits. Procedures were ap- 
proved by the ethical committee of the Department of Psychology at 
Freie Universität Berlin and were in accordance with the Declaration of 
Helsinki. 

2.2. Stimuli 

The stimulus set consisted of colored natural scene photographs 
(640 × 480 pixels resolution). Scenes were selected to cover three in- 
dependent manipulations. First, each scene contained one of two object 
categories: half of the scenes contained a person (or multiple people), 
whereas the other half contained a car (or multiple cars). Second, the 
person or car appeared equally often in each of the quadrants of the 
scene. Third, each scene belonged to one of two scene categories: half 
of the scenes depicted urban environments, the other half depicted ru- 
ral environments. For each possible combination of these factors (e.g., a 
person appearing in the bottom left quadrant of a rural scene), 10 unique 
scene exemplars were available, yielding 160 scenes in total (2 object 
categories × 4 object locations × 2 scene categories × 10 exemplars). 
During the experiment, the scenes could be presented in their origi- 
nal orientation or mirrored along their vertical axis (as in Kaiser et al., 
2016 ), yielding a total of 320 different scene stimuli. Example scenes 
are shown in Fig. 1 a. 

To manipulate scene structure, we either presented the scenes in a 
coherent, “intact ” condition or in an incoherent, “jumbled ” condition. 
Jumbled scenes were generated by shuffling the four quadrants of the 

image in a crisscrossed way (i.e., top-left was swapped with bottom- 
right, and top-right was swapped with bottom-left; Fig. 1 b). This manip- 
ulation solely affected the scene’s structure, but not the people or cars 
contained in the scene: First, as the objects never straddled the boundary 
between quadrants, the objects themselves always remained unaltered. 
Second, as the objects appeared equally often in each quadrant before 
jumbling the scenes, they also appeared equally often in each quadrant 
after jumbling them. 

In total, 640 scene images were used, which covered 320 intact 
scenes and 320 jumbled scenes. Additionally, 200 colored texture masks 
( Kaiser et al., 2016 ) were used to visually mask the scenes during the 
experiment (see below). 

2.3. Experimental paradigm 

Each participant completed four experimental runs of 17 minutes 
each. Each run contained 320 experimental trials, corresponding to 320 
unique scene stimuli. Both intact and jumbled scenes were included in 
each run. For half of the participants, the even runs only contained the 
original scenes, while the odd runs only contained the horizontally mir- 
rored scenes; for the other half of the participants, the odd runs only 
contained the original scenes, while the even runs only contained the 
horizontally mirrored scenes. Each of the scenes was presented once 
during the run. Trial order was fully randomized for each participant 
and run. 

On each trial, the scene was presented for 83ms, immediately fol- 
lowed by a visual mask (chosen randomly from the 200 available masks) 
for 800ms. Masks were shown to establish a sensitive performance range 
for reasonably long presentation times, as they disrupt ongoing visual 
processing after the offset of the stimulus. All images were shown within 
a black rectangle (10deg X 7.5deg visual angle). After an inter-trial in- 
terval of 1,617ms, during which a pink fixation dot was shown, the next 
trial started. An example trial is illustrated in Fig. 1 c. In addition to the 
experimental trials, each run contained 80 fixation-only trials, during 
which only the fixation dot was displayed. Runs started and ended with 
a brief fixation period. 

In two of the four runs, participants were asked to categorize the ob- 
ject contained in each scene as either a person or a car ( “object task ”). 
In the other two runs, participants were asked to categorize the scene 
as either a rural or an urban environment ( “scene task ”). Participants 
were instructed to respond as accurately and quickly as possible, with 
an emphasis on accuracy. Button-press responses were recorded dur- 
ing the whole inter-trial interval (i.e., until 2,500s after stimulus onset). 
The four runs were alternating between the object and scene tasks. The 
task in the first run was counter-balanced between participants. No- 
tably, physical stimulation was completely identical across the object 
and scene tasks. 

All stimuli were back-projected onto a translucent screen mounted 
to the head end of the scanner bore. Participants viewed the stimulation 
through a mirror attached to the head coil. Stimulus presentation was 
controlled using the Psychtoolbox ( Brainard, 1997 ). 

2.4. Benchmark localizer paradigm 

In addition to the experimental runs, each participant completed a 
benchmark localizer run, which was designed to obtain “benchmark ”
patterns in response to people and cars in isolation ( Peelen et al., 2009 ; 
Peelen and Kastner, 2011 ). During this run, participants viewed images 
of bodies, cars, and scrambled images of bodies and cars. For each of 
the three categories, 40 images were used. All images were different 
than the ones used in the main experiment. These images were pre- 
sented in a block design. Each block lasted 20 seconds and contained 20 
images of one of the three categories, or only a fixation cross. Images 
were presented for 500ms (5deg × 5deg visual angle), separated by a 
500ms inter-stimulus interval. The benchmark localizer run consisted 
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Fig. 1. Stimuli, paradigm, and behavioral results. a) Stimuli consisted of natural scene images from two categories: urban or rural environments. Each of the scenes 
contained one of two object categories: people or cars. b) During the experiment, these scenes were shown in an unaltered way ( “intact ” condition) or with their 
quadrants intermixed ( “jumbled ” condition). The jumbled scenes were created by shuffling the quadrants in a crisscrossed way, as illustrated. c) Participants viewed 
each scene briefly, followed by a visual mask. In separate runs, they performed two different tasks: They were either asked to indicate whether the scene contained 
a person or a car ( “object task ”) or whether the scene depicted an urban or a rural environment ( “scene task ”). d) In both tasks, scene structure impacted behavioral 
performance: Participants were significantly more accurate and faster for the intact scenes than for the jumbled scenes. Error bars represent standard errors of the 
mean. 

of a total of 24 blocks (6 blocks for each of the three stimulus cate- 
gories, and 6 fixation-only blocks). Four consecutive blocks always con- 
tained the four different conditions in random order. Participants were 
instructed to respond to one-back image repetitions (i.e., two identical 
images back-to-back), which happened once during each non-fixation 
block. The benchmark localizer run lasted 8:30 minutes and was com- 
pleted halfway through the experiment, after two of the four experimen- 
tal runs. 

2.5. fMRI recording and preprocessing 

MRI data was acquired using a 3T Siemens Magnetom Tim Trio Scan- 
ner equipped with a 12-channel phased-array head coil. T2 ∗ -weighted 
gradient-echo echo-planar images were collected as functional volumes, 
with the following parameters: TR = 2s, TE = 30ms, 70° flip angle, 3mm3 
voxel size, 37 slices, 20% slice gap, 192mm FOV, 64 × 64 matrix size, 
interleaved acquisition, A/P phase encoding, acquisition time 17min 
(main experiment) / 8:20min (benchmark localizer), whole-brain cover- 
age, ACPC orientation. Additionally, a T1-weighted 3D MPRAGE image 
was obtained as an anatomical reference, with the following parame- 
ters: TR = 1.9s, TE = 2.52ms, 9° flip angle, 1mm3 voxel size, 176 slices, 
50% slice gap, 256mm FOV, ascending acquisition, A/P phase encod- 
ing, acquisition time 4:26min, whole-brain coverage. All acquisitions 
contained four initial dummy volumes that were discarded later. 

Preprocessing and hemodynamic response modelling was performed 
using SPM12 ( www.fil.ion.ucl.ac.uk/spm/ ). Functional volumes were 
realigned and coregistered to the anatomical image. Further, transfor- 
mation parameters to MNI-305 standard space were obtained using the 
“segmentation ” routine in SPM12. 

Functional data from each experimental run were modelled in a gen- 
eral linear model (GLM) with 16 experimental predictors (2 object cat- 
egories × 4 object locations × 2 scene categories). Additionally, we in- 
cluded the six movement regressors obtained during realignment. Data 
from the benchmark localizer run were modelled in a GLM with three 

experimental predictors (person, car, scrambled) and six movement re- 
gressors. 

2.6. Region of interest definition 

We restricted fMRI analyses to five regions of interest (ROIs): early 
visual cortex (EVC), object-selective lateral occipital cortex (LO), body- 
selective extrastriate body area (EBA), scene-selective occipital place 
area (OPA), and scene-selective parahippocampal place area (PPA). 
ROIs masks were defined using group-level activation masks from 

functional brain atlases: For EVC, we selected all voxels that were 
most probably assigned to primary visual cortex (V1v, V1d) in the 
Wang et al. (2015) atlas, and for LO, EBA, OPA, and PPA we selected 
region masks from the Julian et al. (2012) atlas. ROIs were defined sep- 
arately for each hemisphere. All ROI masks were inverse-normalized 
into individual-participant space using the parameters obtained dur- 
ing T1 segmentation. Average voxel counts in individual-participant 
space amounted to 248/271 (EVC; SD = 42/41, left/right), 929/947 (LO; 
SD = 103/102), 402/443 (EBA; SD = 45/52), 26/47 (OPA; SD = 5/8), and 
140/105 (PPA; SD = 14/10). Notably, the LO and EBA ROIs overlapped 
to some extent (300/406 voxels overlap, left/right); the inclusion of the 
EBA allowed us to see whether the results hold in a smaller cortical re- 
gion with a narrower category preference for bodies. As we did not have 
any hypothesis related to hemispheric differences, all results for the left- 
and right-hemispheric ROIs were averaged before statistical analysis. 
Separate results for the right- and left-hemispheric ROIs are reported in 
the Supplementary Information. 

2.7. Univariate analysis 

Response magnitudes during the experimental runs were analyzed 
separately for each ROI. We first averaged beta values across the two 
object-task and scene-task runs, respectively. We then averaged beta 
values across object categories, object locations, and scene categories. 
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This way, we obtained response magnitudes for four conditions: (1) re- 
sponses to intact scenes in the object task, (2) responses to jumbled 
scenes in the object task, (3) responses to intact scenes in the scene task, 
and (4) responses to jumbled scenes in the scene task. These four con- 
ditions allowed us to separately estimate the effects of task (object task 
versus scene task) and scene structure (intact versus jumbled) on neural 
responses across the five ROIs. For a univariate analysis of category- 
specific responses across the two tasks, see the Supplementary Informa- 
tion. 

2.8. Multivariate pattern analysis 

Multivariate pattern analysis (MVPA) was carried out in CoS- 
MoMVPA ( Oosterhof et al., 2016 ). Our MVPA approach closely followed 
similar fMRI studies that investigated the representation of objects in 
natural scenes ( Peelen et al., 2009 ; Peelen and Kastner, 2011 ). We first 
computed a one-sample t-contrasts for every condition against baseline 
(i.e., against the fixation trials). In the benchmark localizer run, there 
were 2 such t-contrasts (one for people versus baseline, and one for cars 
versus baseline). In the object task and scene task runs, there were 16 
t-contrasts each (one contrast for each experimental condition against 
baseline, reflecting 2 object categories × 4 object locations × 2 scene cat- 
egories). For each of the three tasks (benchmark localizer, object task, 
and scene task), the resulting t-values were normalized for each voxel by 
subtracting the average t-value across conditions. For each ROI, multi- 
voxel response patterns were constructed by concatenating the t-values 
across all voxels belonging to the ROI. 

To obtain an index of object discriminability (i.e., how discriminable 
people and cars in scenes are based on multi-voxel response patterns), 
we performed a correlation-based MVPA. The goal of this analysis was 
to quantify how “person-like ” or “car-like ” the cortical representation 
of each of the scenes was, thereby isolating the amount of object cat- 
egory information in visual cortex (note that each of the scenes either 
contained a person or a car). To this end, we correlated multi-voxel re- 
sponse patterns evoked by people and cars in isolation (from the bench- 
mark localizer) with response patterns evoked by people and cars con- 
tained in a scene (from one of the experimental tasks). These correla- 
tions were Fisher-transformed. To quantify object discriminability, we 
then subtracted the correlations between different categories (e.g., per- 
son in isolation and car within a scene) from correlations between the 
same categories (e.g., person in isolation and person within a scene). 
This yielded an index of category-discriminability, with values greater 
than zero indicating that the two categories are represented differently 
( Haxby et al., 2001 ). Results for different analysis routines (using Spear- 
man correlations and no mean-removal across conditions) can be found 
in the Supplementary Information. 

Before performing this analysis, response patterns in the main ex- 
periment were averaged across object locations and scene categories. 
This way, we obtained an index of object category-discriminability for 
four separate conditions: (1) category-discriminability for intact scenes 
in the object task, (2) category-discriminability for jumbled scenes in the 
object task, (3) category-discriminability for intact scenes in the scene 
task, and (4) category-discriminability for jumbled scenes in the scene 
task. The resulting four conditions allowed us to estimate the effects of 
scene structure on the quality of object representations in visual cortex, 
both when the objects were task-relevant and task-irrelevant. 

2.9. Statistical testing 

To compare behavioral performance, univariate responses, and 
multi-voxel pattern information across conditions, we used repeated- 
measures ANOVAs and paired-sample t-tests. We report partial eta- 
squared ( 𝜂p 

2 , for F-tests) and Cohen’s d (for t-tests) as measures of effect 
size. Descriptive statistics (means and standard errors) are reported in 
the Supplementary Information. 

2.10. Data availability 

Data are publicly available on OSF (doi.org/10.17605/osf.io/gs2t5). 
Other materials are available from the corresponding author upon re- 
quest. 

3. Results 

3.1. Coherent scene structure facilitates the perception of objects within 

scenes 

We first analyzed participants’ behavioral performance in the object 
and scene tasks, separately for the intact and jumbled scenes ( Fig. 1 d). 
In the object task, participants’ categorization (person versus car) of ob- 
jects within the intact scenes was more accurate, t(24) = 8.28, p < .001, 
d = 1.61, and faster, t(24) = 3.26, p = .0033, d = 0.65, compared to the jum- 
bled scenes. In the scene task, participants’ categorization (rural ver- 
sus urban) of the intact scenes was more accurate, t(24) = 4.77, p < .001, 
d = 0.95, and faster, t(24) = 3.26, p = .0033, d = 0.65, compared to the jum- 
bled scenes. These results are in line with classical findings on ob- 
ject and scene categorization in jumbling paradigms ( Biederman, 1972 ; 
Biederman et al., 1973 , 1974 ), showcasing that scene jumbling has a 
profound impact on perception. 

Further, when directly comparing the two tasks, we did not find 
differences in accuracy, F(1,24) = 3.13, p = .090, or response times, 
F(1,24) = 0.04, p = .84. Any differences in neural responses are therefore 
unlikely to reflect differences in task difficulty, and therefore attentional 
engagement, between the two tasks. 

Together, these results demonstrate that jumbling similarly impairs 
the perception of the scene and the objects contained in it, demonstrat- 
ing a cross-facilitation between scene and object vision that can be ob- 
served on the behavioral level. 

3.2. Scene structure impacts univariate responses across object- and 

scene-selective cortex 

To quantify the effects of scene jumbling on the neural level, we first 
ran univariate analyses. In these analyses, we compared fMRI response 
magnitudes across the intact and jumbled scenes and across the two 
tasks ( Fig. 2 ). To do so, we performed a 2 × 2 repeated measures ANOVA 

with the factors scene structure (intact versus jumbled) and task (object 
task versus scene task). The analysis was performed separately and in 
turn for each of the five ROIs: EVC, LO, EBA, OPA, and PPA. Detailed 
results for these analyses can be found in Table 1 . 

In EVC, responses were comparable across all conditions, all F < 1.25, 
p > .27, 𝜂p 

2 < 0.06, suggesting that EVC is not sensitive to typical scene 
composition. 

In all extrastriate ROIs, we found a main effect of scene structure, 
which indicated stronger responses to intact than to jumbled scenes, 
all F(1,24) > 7.95, p < .010, 𝜂p 

2 > 0.24. Comparing this effect across re- 
gions, we found that it was more pronounced in the scene-selective 
regions, OFA versus LO/EBA, both F(1,24) > 31.17, p < .001, 𝜂p 

2 > 0.56, 
and PPA versus LO/EBA, both F(1,24) > 35.54, p < .001, 𝜂p 

2 > 0.59. This 
finding confirms our previous fMRI results, which revealed particularly 
strong effects of scene jumbling in scene-selective areas of visual cortex 
( Kaiser et al., 2020a ). 

In all ROIs, scene structure affected univariate responses similarly 
across the two tasks, as indexed by no significant interaction effects, all 
F < 2.46, p > .12, 𝜂p 

2 < 0.10. This pattern of results mirrors the pattern ob- 
served in behavior, where scene jumbling produced comparable effects 
in the object and scene tasks. 

PPA was the only region that additionally showed an effect of task, 
F(1,24) = 6.51, p = .017, 𝜂p 

2 = 0.21, with stronger responses in the scene 
task compared to the object task. This suggests an increased importance 
of computations in higher-level scene-selective cortex when scene at- 
tributes were behaviorally relevant. 
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Fig. 2. Univariate results. In all extrastriate regions, but not in EVC, we found a significant main effect of scene structure: Intact scenes led to significantly stronger 
responses than jumbled scenes. This effect was comparable across the two tasks and most pronounced in scene-selective ROIs. PPA was the only region that additionally 
showed a modulation by task, with significantly stronger responses when participants were categorizing the scenes, compared to when they were categorizing the 
objects within them. For illustration purposes, ROI masks are shown on the right hemisphere of a standard-space template using MRIcroGL ( Li et al., 2016 ); the 
displayed results are averaged across ROIs in both hemispheres. Error bars represent standard errors of the mean. 

Table 1 

Univariate responses, analyzed in a 2 × 2 repeated measures ANOVA with the factors scene structure (intact 
versus jumbled) and task (object task versus scene task). Significant effects are highlighted in bold. 

ROI Main effect scene structure Main effect task Interaction effect structu re × Task 

EVC F(1,24) < 0.01, p = .98, 𝜂p 
2 < 0.01 F(1,24) = 1.25, p = .28, 𝜂p 

2 = 0.05 F(1,24) = 0.09, p = .76, 𝜂p 
2 < 0.01 

LO F(1,24) = 9.74, p = .005, 𝜼p 
2 = 0.29 F(1,24) = 0.04, p = .85, 𝜂p 

2 < 0.01 F(1,24) = 0.97, p = .33, 𝜂p 
2 = 0.04 

EBA F(1,24) = 7.95, p = .009, 𝜼p 
2 = 0.25 F(1,24) = 0.21, p = .65, 𝜂p 

2 < 0.01 F(1,24) = 2.46, p = .13, 𝜂p 
2 = 0.09 

OPA F(1,24) = 27.18, p < .001, 𝜼p 
2 = 0.53 F(1,24) = 0.09, p = .77, 𝜂p 

2 < 0.01 F(1,24) = 0.97, p = .34, 𝜂p 
2 = 0.04 

PPA F(1,24) = 48.02, p < .001, 𝜼p 
2 = 0.67 F(1,24) = 6.51, p = .017, 𝜼p 

2 = 0.21 F(1,24) = 0.51, p = .48, 𝜂p 
2 = 0.02 

Having established that scene structure enhanced cortical responses 
across object- and scene-selective cortex, and similarly for both tasks, we 
next asked how scene structure contributes to the extraction of object 
information – both when the objects are behaviorally relevant and when 
they are not. 

3.2. Coherent scene structure enhances task-relevant object information in 

multi-voxel response patterns 

To understand how the coherent spatial structure of the scene im- 
pacts cortical object processing, we performed a correlation-based mul- 
tivariate pattern analysis (MVPA). In this analysis, we correlated the 
multi-voxel response patterns evoked by objects embedded in scenes 
(from the object and scene tasks) with the patterns evoked by the ob- 
jects in isolation (from the benchmark localizer) ( Fig. 3 a). This approach 
allowed us to quantify how “person-like ” or “car-like ” the cortical rep- 
resentation of each of the scene conditions was, thereby isolating the 
amount of object information present in visual cortex (note that each 
of the scenes either contained a person or a car). When object informa- 
tion is operationalized in this way, it can be separated from differences 
in the scene context (as in the benchmark localizer no scene context is 
presented) and task-related differences (as in the benchmark localizer 
participants perform a different task). 

To quantify object information, we computed a correlation measure 
by subtracting correlations between different categories (e.g., person in 
isolation and car within a scene) from correlations between the same 
categories (e.g., person in isolation and person within a scene) ( Fig. 3 a). 
This measure was computed separately for each of the object and scene 
tasks, the intact and jumbled scenes, and all ROIs. 

To test whether multi-voxel response patterns contained any infor- 
mation at all about the object contained in the scenes, we first av- 
eraged the correlation measure across all conditions. We then tested 
whether the average category information was significantly different 
from zero, separately for each ROI. As expected, people and cars could 
be reliably discriminated from response patterns in the object-selective 
LO, t(24) = 7.56, p < .001, d = 1.51, and body-selective EBA, t(24) = 8.00, 
p < .001, d = 1.60, but not from response patterns in EVC, t(24) = 0.80, 
p = .43, d = 0.18, or scene-selective OPA, t(24) = 0.49, p = .63, d = 0.10, and 
PPA, t(24) = 0.70, p = .49, d = 0.14. 

Given that we only found robust object information in LO and EBA, 
we only performed further analyses for these two regions ( Fig. 3 b). Data 
were again analyzed in a 2 × 2 ANOVA with factors scene structure 
(intact vs jumbled) and task (object task vs scene task), separately for 
LO and EBA. 

When analyzing the amount of object information contained in LO 

response patterns, we found a significant interaction between task and 
scene structure, F(1,24) = 5.63, p = .026, 𝜂p 

2 = 0.19: When participants 
performed the object task, object information in LO was more pro- 
nounced for objects embedded in intact compared to jumbled scenes, 
t(24) = 2.65, p = .014, d = 0.53. This effect was absent when participants 
performed the scene task, t(24) = 1.22, p = .24, d = 0.24. A similar inter- 
action effect was found in the EBA, F(1,24) = 5.19, p = .032, 𝜂p 

2 = 0.18: 
Object information was again enhanced for intact scenes during the ob- 
ject task, t(24) = 2.30, p = .030, d = 0.46, but not during the scene task, 
t(24) = 0.92, p = .37, d = 0.18. These results demonstrate that coherent 
scene structure indeed enhances object representations in visual cor- 
tex. However, this enhancement depends on the behavioral relevance 
of the object: When scene category, rather than object category, was 
task-relevant, no such enhancement was observed. 
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Fig. 3. Correlation MVPA logic and results. a) To measure object discriminability, we extracted multi-voxel response patterns for each ROI, separately for objects 
in isolation (from the benchmark localizer) and objects appearing within the scenes (from the main experiment). We then computed within- and between-category 
correlations. By subtracting the between-category from the within-category correlations, we obtained an index of category information ( Δr). b) In both LO and EBA, 
category information was significantly higher for objects that were embedded in intact scenes than for objects embedded in jumbled scenes. However, this was only 
true when participants performed the object task; when they performed the scene task, no significant difference in object category information was observed when 
comparing intact and jumbled scenes. For illustration purposes, ROI masks are shown on the right hemisphere of a standard-space template using MRIcroGL ( Li et al., 
2016 ); the displayed results are averaged across ROIs in both hemispheres. Error bars represent standard errors of the mean. 

4. Discussion 

4.1. Coherent scene structure facilitates task-relevant object processing 

In this study, we shed light on neural object processing in situa- 
tions where the object is either embedded within a coherent, intact 
scene or an incoherent, jumbled scene. Consistent with classical stud- 
ies ( Biederman, 1972 ; Biederman et al., 1973 , 1974 ), our participants 
were more accurate and faster in perceiving intact, compared to jum- 
bled scenes, both when performing an object categorization task and a 
scene categorization task. Our univariate findings are consistent with 
previous fMRI work ( Kaiser et al., 2020a ): We replicate the finding that 
intact scenes yield stronger neural responses than jumbled scenes, across 
high-level visual cortex and prominently in scene-selective regions. This 
suggests a widespread sensitivity to typical scene structure in the visual 
system. Importantly, our current results show that scene structure also 
matters when it comes to the neural representation of objects within the 
scene: When analyzing the amount of object information contained in 
multi-voxel response patterns in object and body-selective visual cortex, 
we found an enhancement of object information when the objects were 
embedded within intact scenes, compared to jumbled scenes. Critically, 
this enhancement only emerged in the object categorization task, sug- 
gesting that coherent scene structure facilitates the extraction of object 
information only when the objects are relevant for current behavioral 
goals. 

4.2. Interactions between object and scene processing are mediated by 

scene structure 

Our findings support the view that the scene and object processing 
pathways are not functionally separate, but that scene information can 
aid the extraction of object information ( Brandmann and Peelen, 2017 ). 
Theories of contextual facilitation propose that scene structure is an- 
alyzed rapidly, potentially based on coarse low-spatial frequency in- 
formation ( Bar, 2004 ; Bar et al., 2006 ). This idea is consistent with 
the observation that an initial representation of scene meaning – the 
scene’s “gist ” – can be extracted from just a single glance ( Greene and 
Oliva, 2009 ; Oliva and Torralba, 2006 , 2007 ). Contextual facilitation 

theories argue that detailed object analysis is facilitated by this more 
readily available information about scene gist ( Bar, 2004 ; Hochstein and 
Ahissar, 2002 ). Informing object analysis through the analysis of coarse 
scene properties may be particularly useful when perception is chal- 
lenged by the presence of many distracter items and limited visual expo- 
sure. Probing perception with such a challenging task, our study shows 
that the cross-facilitation between object and scene processing is me- 
diated by the scene’s structural coherence: When the analysis of scene 
gist is disrupted by jumbling the scene, contextual information cannot 
amplify object processing in the same way as it can for intact scenes. 

The enhanced extraction of object information from the intact scenes 
suggests that useful information about scene gist is extracted less effi- 
ciently from the jumbled scenes. Indeed, the rapid analysis of scene gist 
depends on our priors about typical scene composition ( Csathó et al., 
2015 ; Greene et al., 2015 ). Neuroimaging studies suggest that the cor- 
tical scene processing network is tuned to these priors ( Kaiser et al., 
2020a ; Torralbo et al., 2013 ), and that the early extraction of properties 
like the scene’s basic-level category depends on the structural coherence 
of the scene ( Kaiser et al., 2020b ). Jumbling is a strong manipulation in 
the sense that is disrupts multiple aspects of the scene’s spatial coherence 
at the same time: it disrupts the spatial positioning of individual pieces 
of information in visual space ( Kaiser and Cichy, 2018 ; Mannion, 2015 ), 
the positioning of objects relative to each other ( Kaiser et al., 2019 ; 
Kaiser and Peelen, 2018 ), as well as the typical geometry of the scene 
( Dillon et al., 2018 ; Spelke and Lee, 2012 ). Future research is needed to 
disentangle these different factors, and how much they each contribute 
to the facilitation of object representation. 

Alternatively, one could argue that the jumbling manipulation gen- 
erates a more general “artificiality ” in the stimuli (through the salient 
borders between quadrants of the jumbled images) that puts additional 
strain on the visual system. Based on this assertion, one would predict 
lower responses for jumbled scenes. In previous studies ( Kaiser et al., 
2020a , 2020b ), we have shown that strong effects of scene jumbling are 
also obtained when introducing similar artificial discontinuities to the 
typical scenes, suggesting that the degree of image artificiality intro- 
duced by the jumbling manipulation alone cannot explain the results. 

However, although jumbling is a strong manipulation that conflates 
multiple factors of scene structure, it preserves critical characteristics of 
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the objects: First, the objects remain completely unaltered across the in- 
tact and jumbled scenes. Second, the objects’ absolute positions in visual 
space were matched across the intact and jumbled scenes. Finally, each 
object’s local visual context remains constant across the intact and jum- 
bled scenes. These properties allow us to attribute differences in object 
representations to facilitates effects from cortical scene analysis: If the 
visual brain would not take global scene context into account and would 
only analyze the objects in their local visual surroundings, our paradigm 

should yield comparable results for structurally coherent, intact scenes 
and incoherent, jumbled scenes. 

4.2. Attention mediates contextual facilitation effects 

Unlike task-relevant objects, task-irrelevant objects were not pro- 
cessed differently as a function of scene coherence. This finding shows 
that contextual facilitation of object processing is not an automatic pro- 
cess. On the contrary, interactions between the object and scene pro- 
cessing systems seem to be mediated by attention. This observation fits 
well with previous results from studies on object detection in natural 
scenes. Compared to task-relevant objects, multi-voxel response patterns 
in visual cortex contain far less information about unattended objects 
( Peelen et al., 2009 ; Peelen and Kastner, 2011 ). Further, MEG decoding 
results suggest strong differences in the representation of attended and 
unattended object categories ( Kaiser et al., 2016 ): Particularly at early 
stages of processing, within the first 200ms after stimulus onset, the cat- 
egory of unattended objects is represented less accurately. Beyond the 
visual brain, differences in task demands also affect more widespread 
activations across the cortex ( Cukur et al., 2013 ; Harel et al., 2014 ; 
Hebart et al., 2018 ; Nastase et al., 2017 ), potentially causing substantial 
task-related changes in processing dynamics. One such change may be 
an alteration of the crosstalk between representations in different visual 
domains. Our data indeed suggests that the exchange of information 
between the object and scene processing pathways is not mandatory, 
but rather constitutes an adaptive mechanism for improving task per- 
formance. Under this view, interactions between the scene and object 
processing pathways may be specifically “switched on ” when objects are 
part of current attentional templates ( Battistoni et al., 2017 ; Peelen and 
Kastner, 2011 ). The specific mechanism underlying this adaptive con- 
trol of the crosstalk between scene and object processing needs further 
investigation. 

How does the apparent importance of attention tie in with previ- 
ous studies that reported a cross-facilitation between the object and 
scene-processing systems ( Brandmann and Peelen, 2017 , 2019 )? While 
these studies did not use object categorization tasks, they still explicitly 
asked participants to attend to the objects appearing within the scene 
(either by asking them to memorize them or through one-back tasks). 
In our scene categorization task, the situation was entirely different, 
as the objects were completely irrelevant for solving the task. In fact, 
this orthogonality of object and scene category in our design may have 
introduced an active suppression of object information when partici- 
pants performed the scene categorization task. Previous studies suggest 
that task-irrelevant distracter objects can be suppressed effectively and 
quickly ( Seidl et al., 2012 ; Hickey et al., 2019 ). During the scene task, 
we indeed found numerically better object representations for jumbled 
scenes. This tentative reversal of the facilitation effect could potentially 
hint at a more efficient suppression of object information when the ob- 
ject is embedded in a structurally coherent scene. However, as this re- 
versal is not statistically significant in our data and is somewhat suscep- 
tible to changes in analysis choices (see Supplementary Information), 
this assertion is largely speculative at this point. As another interesting 
observation, object information for the jumbled scenes was compara- 
ble between the object and scene tasks, suggesting that attention can- 
not as efficiently amplify object information when the scene is jumbled. 
However, some caution needs to be applied when directly comparing 
representations across the two tasks (rather than comparing differences 
between conditions), because different task-specific demand character- 

istics and attentional requirements complicate the interpretation of such 
comparisons. 

4.3. Conclusion 

In conclusion, our results show that the object and scene processing 
pathways can interact to facilitate the processing of task-relevant object 
information embedded in coherent scenes. However, such interactions 
are not mandatory. They rather seem to be guided by current behavioral 
goals. Our findings therefore suggest that the visual brain adaptively ex- 
ploits coherent scene context to resolve object perception in challenging 
real-world situations. 

Data availability : Data are publicly available on OSF (doi.org/ 
10.17605/osf.io/gs2t5). Other materials are available from the 
corresponding author upon request. 
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1 Abstract 16 

Eye movements are a ubiquitous and natural behavior, but in many tightly controlled 17 
experimental visual paradigms, eye movements are undesirable. Their occurrence can pose 18 
challenges to the interpretation of behavioral and neuroscientific data, in particular for 19 
magneto- and electroencephalography (M/EEG), which is sensitive to signals created by eye 20 
muscle movement. Here we compared the effect of two different fixation symbols – the 21 
standard fixation cross and the bullseye fixation cross – in the context of a visual paradigm 22 
with centrally presented naturalistic object images. We investigated eye movements and EEG 23 
data recorded simultaneously using behavioral and multivariate analysis techniques. Our 24 
findings comparing the bullseye to the standard fixation cross are threefold. First, the bullseye 25 
fixation cross reduces the number of saccades and amplitude size of microsaccades. Second, 26 
the bullseye fixation cross subtly reduces classification accuracy in both eye tracking and EEG 27 
data for the classification of single object images, but not for the superlevel category animacy. 28 
Third, using representational similarity analysis, we found a systematic relationship between 29 
eye tracking and EEG data at the level of single images for the standard, but not for the 30 
bullseye fixation cross. In conclusion, we recommend the bullseye fixation cross in 31 
experimental paradigms with fixation when particularly tight control of fixation is beneficial.  32 

48



 

2 Introduction 33 

Eye movements are a diverse, ubiquitous, and integral part of visual behavior1. For example, 34 
we use saccades, i.e., large voluntary eye movements, to explore a scene, and 35 
microsaccades, i.e., small involuntary eye movements, to keep the retinal image from fading2. 36 
 37 
However, for human cognitive neuroscience experiments that aim to establish statistical 38 
dependencies between tightly controlled visual input and brain activity eye movements pose 39 
experimental challenges. Eye movements change the visual input to the brain and also 40 
influence the recordings of brain activity by magneto- and electroencephalography (M/EEG)3,4 41 
through the currents created by eye muscle movements. Eye movements can thus introduce 42 
noise, add confounds, or both simultaneously into the experimental settings as shown for 43 
analyses of event-related potentials5,6, frequency-resolved responses7, and multivariate 44 
activation patterns8–10. 45 
 46 
A straight-forward way to reduce the effect of eye movements is to avoid them in the first place 47 
and ask participants to fixate. However, participants do not follow such instructions perfectly - 48 
novice participants, in particular, do not control their eye movements accurately11, and fixation 49 
behavior varies widely among participants11–13.  50 
 51 
The amount of residual eye movements depends on the type of visual symbol used as a 52 
fixation target. An influential study14 systematically evaluated the effect of different fixation 53 
symbols on eye movements when presented on a uniform gray background. The combination 54 
of a bullseye and cross hair fixation cross was associated with the smallest number of eye 55 
movements14. Throughout this paper, we will refer to this combination as the bullseye fixation 56 
cross. If this observation generalized to situations in which the fixation symbol appeared on 57 
top of visual stimuli for which brain responses were recorded, it should reduce the effect of 58 
eye movements on the neural analysis. 59 
 60 
To investigate we collected eye tracking and EEG data simultaneously while participants 61 
viewed naturalistic still images of everyday objects overlaid with one of two different fixation 62 
symbols: a classical fixation cross and the bullseye fixation cross. We used time-resolved 63 
multivariate analysis methods to establish statistical dependencies between the experimental 64 
stimuli and the EEG data. 65 
 66 
As anticipated, we replicate the behavioral advantage of the bullseye fixation cross over a 67 
standard fixation cross for experimental setups involving naturalistic still images14. We further 68 
show that the bullseye fixation cross reduced the influence of eye movements on the analysis 69 
of EEG brain data by reducing stimulus-specific eye movements. We thus recommend using 70 
the bullseye fixation cross to avoid unwanted eye movements and their effects on brain 71 
measurements in studies involving static, naturalistic still images. 72 

3 Materials and methods 73 

3.1 Participants  74 

30 healthy adults (20 female, 9 male, 1 diverse, mean age = 24.77, SD = 4.08) were recruited 75 
at Freie Universität Berlin. Participants provided informed consent and received either course 76 
credit or monetary reimbursement for their participation. All participants had normal vision and 77 
no history of neurological disorders. The experiment was approved by the Ethics committee 78 
of Freie Universität Berlin and was conducted in accordance with the Declaration of Helsinki.  79 
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3.2 Stimulus set and stimulus presentation 80 

The main stimulus set consisted of 40 images of everyday objects on natural backgrounds 81 
(Fig. 1a). Twenty images depicted animate and twenty inanimate objects. The set is a subset 82 
of the stimulus set used in a previous study15. 83 
 84 
Stimuli subtending 5-degree visual angle were presented centrally on a gray background on 85 
a Samsung Screen (SyncMaster 2233) (Fig. 1b) and either overlayed with a standard or 86 
bullseye fixation cross subtending 0.6-degrees visual angle (Fig. 1c). 87 
 88 
Stimulus presentation was controlled by custom-made scripts in MATLAB 2021a16 and the 89 
Psychtoolbox extension17–19. 90 

3.3 Experimental design 91 

 92 
Fig.1: Stimulus set and paradigm. a) The stimulus set consisted of 40 images with natural objects, 93 
split equally into the animate and inanimate subcategories. b) We used two different fixation crosses 94 
overlaid onto the stimuli: the standard fixation cross and the bullseye fixation cross. c) Trials were 95 
blocked by fixation symbol. Participants were instructed to fixate the fixation symbol while objects 96 
appeared for 500 ms in random order with an inter-stimulus-interval of 400-500 ms and not to blink. 97 
Every 4-6 trials the image of a paperclip was shown for which participants were asked to press a 98 
button and to blink their eyes. Due to copyright, the stimuli in this figure are not the exact stimuli used 99 
in the experiment but resemble the original. 100 

The combined EEG and eye tracking study consisted of one session, partitioned into 14 101 
blocks. In each block only one fixation symbol was used, resulting in 7 blocks for the fixation 102 
cross and seven blocks for the bullseye fixation cross. The order of blocks was randomized. 103 
 104 
During each block, stimuli were presented with object images in random order. On each trial, 105 
an image overlaid with a fixation symbol was presented for 500 ms, followed by an inter-trial 106 
interval randomly varying between 400 and 500 ms. 107 
 108 
Participants were instructed to fixate on the fixation symbol in the middle of the screen and 109 
not to blink their eyes. Every 4th-6th trial an image of a paper clip was shown that was not part 110 
of the main stimulus set. Participants were instructed to press a button, blink, and refrain from 111 
blinking otherwise. Responses were collected with a standard keyboard attached to the 112 
presentation computer. Participants could take self-paced breaks after each block. On 113 
average participants detected 81,9% of catch trials. 114 
 115 
In each block each image of the main stimulus set was repeated six times, resulting in 240 116 
trials plus 60 additional paperclip trials. Over the course of the experimental session, this 117 
resulted in 3380 trials for the main stimulus set and 840 paperclip target trials. Paperclip trials 118 
were excluded from further analysis 119 
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3.4 Eye tracking recording and preprocessing 120 

3.4.1 Recording 121 

We monocularly recorded the right eye of each participant using the Eyelink 1000 Tower 122 
Mount (SR Research Ltd., Osgoode, Ontario, Canada) and the Eyelink Toolbox extensions20 123 
with a sampling rate of 1000 Hz. Participants were seated comfortably in front of the screen 124 
and instructed to rest their chins on the chinrest, 60cm away from the monitor. Before each 125 
block, we calibrated the eye tracker using a nine-point calibration. The data was recorded in 126 
gaze position coordinates. 127 

3.4.2 General preprocessing 128 

Before applying the saccade detection algorithm, we cleaned the eye tracking data from 129 
artifacts by excluding (i) all trials containing blinks21, (ii) all data samples outside the screen 130 
range, (iii) all negative data samples, and (iv) additionally all data samples in a 100 ms period 131 
around excluded samples from steps one to three22. 132 
 133 
After artifact exclusion we converted the eye tracking data samples from screen coordinates 134 
in pixels to spherical angles in degree, using the following formula: 135 
 136 

𝛽𝑥 = 2 ∗ 𝑎𝑡𝑎𝑛2(𝑝𝑥 ∗ 𝑚, 𝑑) 137 
 138 

where 𝛽𝑥 is the azimuth angle in visual degree from the monitor center, 𝑝𝑥 represents the 139 
horizontal position relative to the center of the monitor and is measured in pixels, 𝑚 is the 140 

conversion factor to convert pixels to millimeters and d represents the distance from the 141 
observer's eyes to the monitor, and is measured in millimeters21. An equivalent procedure was 142 
applied to the y-coordinate. This yielded a data frame with x and y coordinates for the position 143 
of the eye in degree visual angle (dva) for each time point for all included trials. 144 

3.4.3 Saccade and microsaccade detection 145 

We used a velocity-based algorithm23 to detect saccades and microsaccades. Numerous 146 
studies have shown that the magnitude of microsaccades mostly falls below one degree23–26. 147 
Therefore, we defined all saccades with amplitudes smaller than one degree as 148 
microsaccades and all saccades with amplitudes larger or equal to one degree as saccades. 149 
 150 
To detect saccades and microsaccades, the position vector (x and y positions of the eye in 151 
dva) was transformed into a two-dimensional velocity space. The velocity of the eye was 152 
required to exceed eight standard deviations of the eye’s velocity during the trial for at least 8 153 
ms to be detected as an event. These values are higher than the typically proposed values23 154 
to minimize noise emerging from our monocular recording setup (R. Engbert, personal 155 
communication). 156 
 157 
To further boost the signal-to-noise ratio, we implemented a ratio criterion where data points 158 
were only considered if the ratio of path length to amplitude exceeded 0.514. Together the 159 
procedures yielded a data frame with all detected saccades and microsaccades and their 160 
amplitudes for all trials. 161 

3.4.4 Preprocessing for multivariate pattern analysis 162 

We took specific steps to preprocess the eye tracking data for multivariate pattern analysis 163 
(MVPA). We epoched the data from -200 to +1000 ms around stimulus onset, downsampled 164 
the data to 200 Hz, and baseline corrected each epoch by subtracting the mean of the 200 ms 165 
prestimulus interval from the entire epoch. Each epoch thus contained a time course of x and 166 
y positions of the eye. 167 
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 168 
We only kept trials for MVPA that were neither excluded during the eye tracking data 169 
preprocessing, nor the EEG data preprocessing (see below). This amounted to, on average, 170 
40 trials per object image and 802 trials per category (animate/inanimate) per participant. 171 

3.5 EEG recording and preprocessing 172 

3.5.1 Recording 173 

We recorded EEG data using the ActiCap64 electrodes system and Brainvision actiChamp 174 
amplifier. 64 Electrodes were placed according to the 10-10 system27 with an additional ground 175 
and reference electrode placed on the scalp. We recorded the data with Brainvision recorder 176 
software, using a 1000 Hz sampling rate and online filtering between 0.03 Hz and 100 Hz28. 177 
We kept all impedances below 10kΩ. 178 

3.5.2 Preprocessing 179 

We preprocessed the EEG data offline using Fieldtrip29 in MATLAB 2021a16. We epoched the 180 
data between -200 and +1000 ms relative to stimulus onset, notch filtered it at 50 Hz, 181 
downsampled it to 200 Hz, and performed baseline correction by subtracting the mean of the 182 
200 ms prestimulus interval from the entire epoch. Each epoch thus contained a 64-183 
dimensional EEG time course. Subsequently, we excluded all trials which were excluded 184 
during the eye tracking preprocessing (see above for details) from the EEG data and 185 
additionally manually removed all channels and trials containing excessive noise. We then 186 
interpolated missing channels by using the average of all surrounding channel neighbors. This 187 
procedure resulted in the equivalent number of matched EEG and eye tracking trials, i.e., on 188 
average, 40 trials per object image and 802 trials per category (animate/inanimate) per 189 
participant. 190 

3.6 Generalized linear mixed model 191 

We analyzed saccade and microsaccade numbers and amplitudes using Generalized Linear 192 
Mixed Models (GLMMs) with the lmer4 package30 in R version 1.3.109331. Saccades and 193 
microsaccades were analyzed separately. A general description of the models is given by the 194 
following formula: 195 
 196 

𝑔(𝑚𝑜𝑑𝑒𝑙𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒) =  𝛽0 + 𝑢0,𝑗 + 𝑒0 197 

𝑔(𝑚𝑜𝑑𝑒𝑙𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛) =  𝛽0 + 𝛽1 ∗ 𝑐𝑟𝑜𝑠𝑠 + 𝑢0,𝑗 + 𝑢1,𝑗 ∗ 𝑐𝑟𝑜𝑠𝑠 + 𝑒0 198 

 199 
with g() defining the link function, 𝛽0 the intercepts, 𝛽1 ∗ 𝑐𝑟𝑜𝑠𝑠 the fixed effect fixation cross, 200 

𝑢0,𝑗 the subjects’ random intercept, 𝑢1,𝑗 ∗ 𝑐𝑟𝑜𝑠𝑠 the random slopes for the factor fixation cross 201 

and 𝑒0 the error term. We included random intercepts to capture variances in the individual 202 
subject means and random slopes to allow for participant-specific effect magnitudes32. 203 
 204 
We modeled the effect of the factor fixation cross on amplitude size and the number of 205 
saccades and microsaccades separately. In each case, we fitted two models (baseline and 206 
full model), with a linear link function for the amplitude and a Poisson link function for the 207 
number of saccades and microsaccades. The full model included the factor fixation cross, 208 
whereas the baseline model did not. We used sum coding (-0.5 and 0.5) for all contrasts to be 209 
able to interpret differences in condition means. 210 

3.7 Multivariate pattern analysis 211 

To characterize the time course with which object and category representations emerge, we 212 
conducted MVPA using linear support vector machine (SVM)33 as implemented in libsvm34. 213 
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 214 
We conducted 8 separate analyses: 2 (modality: EEG, eye tracking) * 2 (classification type: 215 
image identity, object animacy) * 2 (fixation cross: standards, bullseye), and each participant 216 
was analyzed separately. 217 
 218 
Each analysis had three main steps, with each step performed independently for each time 219 
point in the epoch. First, we averaged over individual trials to create pseudo-trials, thereby 220 
increasing the signal-to-noise ratio35. Second, we trained an SVM on all but one pseudo-trial 221 
to differentiate either image identity or image category in a pairwise fashion. Third, we tested 222 
the prediction accuracy of the SVM on left-out data. 223 
 224 
We conducted each analysis in two ways: time-resolved and time-generalized MVPA. For 225 
time-resolved analysis36,37, the SVM was trained and tested on data from the same time points 226 
only, yielding a single time course with which object information emerges as a result. For time-227 
generalized analysis38, the SVM was trained and tested for all possible combinations of time 228 
points, yielding a two-dimensional result array, indicating how stable EEG activation patterns 229 
are. We describe the details of each analysis type below. 230 

3.7.1 Time-resolved MVPA 231 

We used time-resolved MVPA to determine the time course with which object identity and 232 
animacy representations emerged. We conducted equivalent analyses based on EEG and 233 
eye tracking data. For each time point, we extracted trial-specific EEG channel activations (64 234 
channels for EEG classification) or trial-specific eye positions (x and y coordinates in dva for 235 
eye tracking classification). 236 
 237 
We averaged trials aggregated for each object (for object classification) or by animacy (for 238 
classification animate vs. inanimate) into six pseudo trials35. We used multivariate noise 239 
normalization39 to whiten the data and further improve the signal-to-noise ratio40. For this, we 240 
multiplied the data by the inverse of the square root of the covariance matrix of electrode 241 
activations from the entire epoch. We trained the SVM classifier in a pairwise fashion on data 242 
of all but one pseudo trial and tested the SVM classifier on the left-out trial. We repeated this 243 
procedure 100 times, each time with a different random assignment of trials to pseudo-trials. 244 
To ensure that the SVM classifier was not biased by an excess of data for one or the other 245 
condition, we included the same number of trials in the creation of pseudo-trials for each 246 
condition. We averaged the resulting decoding accuracies over the 100 repetitions. 247 
 248 
Across our analysis space, this resulted in one decoding accuracy number per participant, 249 
modality, classification type, and fixation cross and time point. 250 

3.7.2 Time generalization MVPA 251 

We used time generalization MVPA38 to determine the temporal stability of object and animacy 252 
representations. The procedure was equivalent to the time-resolved MVPA described above, 253 
except that we tested the SVM classifier trained on any one specific time point iteratively on 254 
all time points. Further, for object classification, the EEG and eye tracking data were 255 
downsampled to 50 Hz for time and memory efficiency. 256 
 257 
Across our analysis space, this resulted in a 2D matrix of classification accuracies, indexed in 258 
rows and columns by the time points of the epoch, per participant, modality, classification type, 259 
and fixation cross. 260 
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3.8 Representational similarity analysis 261 

We performed representational similarity analysis (RSA)41 to compare data quantitatively 262 
across modalities (EEG, eye tracking). This was a two-step process. First, for each participant, 263 
we constructed representational dissimilarity matrices (RDMs) for each modality and fixation 264 
cross type separately. Second, we related the RDMs directly by calculating their similarity. We 265 
describe each of the two steps in detail below. 266 

3.8.1 Construction of RDMs 267 

We created RDMs using the preprocessed EEG and eye tracking data for each fixation cross 268 
type separately. For each time point, we calculated dissimilarity for all pairs of conditions (i.e., 269 
the 40 different object images) by using 1-Pearson correlations39 (Fig. 5a). This resulted for 270 

each time point in a 4040 RDM, indexed in rows and columns by the conditions compared. 271 
We equalized the number of trials across conditions by randomly subsampling trials with the 272 
minimum number of trials across conditions. We repeated the analysis 100 times, calculating 273 
an RDM each time, and averaged the RDMs across the iterations. We used the vectorized 274 
upper triangular matrix of the symmetric RDM (without the diagonal) for further analysis. 275 

3.8.2 RDM comparison 276 

We determined how visual representations measured with EEG and eye movements 277 
measured with eye tracking relate. For this, we correlated the EEG RDMs and eye tracking 278 
RDMs using Spearman’s r for each participant, time point, and fixation cross separately. 279 
Averaging over participants, we obtained a time course of similarity between the EEG and eye 280 
tracking data for each fixation cross type. 281 

3.8.3 Noise ceiling 282 

The RSA results are bound by measurement noise, as the calculated correlation values are 283 
affected by both the variance in the data as well as by noise in the data. To determine how 284 
much variance could, in principle, be explained by the model if we knew the true data-285 
generating-model42,43 we determined the noise ceilings for the EEG and eye tracking data. We 286 
estimated an upper and lower bound for the noise ceiling43 in a time-resolved fashion. For the 287 
lower bound, we singled out a participant RDM and compared it with the average of the RDMs 288 
for all participants except the one singled out, iterated this for each participant, and averaged. 289 
For the upper bound, we singled out a participant’s RDM and compared it with the average of 290 
the RDMs for all participants, including the one singled out, iterated for each participant, and 291 
averaged. 292 

3.9 Statistical testing 293 

MVPA-related statistical analyses were performed using MATLAB. We evaluated the statistic 294 
of interest (classification accuracy, correlation coefficient) using nonparametric tests. The null 295 
hypothesis stated that the statistic of interest was equal to chance level (i.e., 50% classification 296 
accuracy or a Spearman’s r of 0). To estimate a null distribution we used a sign permutation 297 
test, multiplying participant-specific data randomly with +1 or -1 and recomputing the statistic 298 
of interest 10,000 times. To obtain p-values, we calculated the rank of the test statistic with 299 
respect to the null distribution. 300 
 301 
We controlled the family-wise error rate across time points using cluster size inference44 with 302 
a p < 0.05 cluster-definition threshold and p < 0.05 cluster threshold. For all tests, both 303 
thresholds were right-sided, with the exception of EEG classification difference curves where 304 
the thresholds were two-sided. 305 
 306 
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We used bootstrapping to compute 95% confidence intervals for peak latencies. For this, we 307 
sampled the participant pool 10,000 times with replacement and calculated peak latencies for 308 
each sample. This created an empirical distribution of peaks on which we determined 95% 309 
confidence intervals. 310 
 311 
For the GLMMs, we performed statistics using R version 1.3.109331. The derivation of p-values 312 
for the different predictors in GLMMs is debated with two prominent candidate approaches- 313 
the Wald test and the likelihood ratio test (LRT). For Wald tests, the z distribution is used to 314 
obtain p-values from Wald t-values. This is generally appealing as the t distribution 315 
approximates the z distribution for increasing numbers of degrees of freedom (identical for 316 
infinite degrees of freedom). LRTs are classically used to test whether a certain predictor 317 
should be part of a model or whether the predictor can be excluded. LRTs determine which 318 
and whether one of two models fits the data better. We report the outcome of both tests that 319 
here, in all cases, concur. 320 

4 Results 321 

We investigated the effect of fixation cross type on naturalistic still images in a three-step 322 
procedure. First, we assessed eye movement behavior alone, analyzing the number and 323 
amplitudes of saccades and microsaccades using GLMMs. Second, we, in parallel, assessed 324 
EEG and eye tracking data using MVPA, delineating how fixation cross type influences 325 
classification of visual information presented alongside the fixation cross. Third, to directly and 326 
quantitatively evaluate systematic relationships between eye tracking data to EEG data, we 327 
used RSA. 328 

4.1 The bullseye fixation cross reduces eye movements 329 

We analyzed the influence of fixation cross type on eye movements. We used a velocity-based 330 
algorithm23 to detect saccades and microsaccades, with microsaccades being smaller than 331 
one degree of visual angle. 332 
 333 
Visual inspection of the descriptive statistics for the numbers and amplitudes of saccades and 334 
microsaccades (Fig 2a, b) revealed similar distributions, indicating that any potential effects of 335 
fixation crosses are subtle. To statistically evaluate the effect of fixation cross type on saccade 336 
and microsaccade amplitudes and numbers, we fitted pairs of GLMMs, once with the predictor 337 
fixation cross type included and once excluded. We evaluated statistical significance with both 338 
the likelihood ratio test (LRT) and the Wald test, yielding equivalent results (see Table 1 for 339 
amplitudes, Table 2 for numbers). 340 
 341 
Using the LRT, we found that the standard fixation cross was associated with a 3.4% increase 342 
in saccades (𝜒2(1) = 10.35, 𝑝 = 0.001297) and a 0.023 dva increase in amplitudes (𝜒2(1) =343 

7.96, 𝑝 = 0.004785). There was no evidence that fixation cross type affected saccade 344 

amplitudes and microsaccade numbers. 345 
 346 
Together this shows that the bullseye fixation cross reduces eye movements compared to the 347 
standard fixation cross when participants are asked to fixate on naturalistic still images. Our 348 
results contextualize the effect size as subtle with respect to the overall observed distribution 349 
of eye movements and generalize previous findings from fixation on uniform backgrounds14. 350 
 351 
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 352 
Fig. 2: Descriptive statistics for the amplitude and number of microsaccades and saccades per trial. 353 
a) Violin plots of saccade and microsaccade amplitudes. b) Distribution of number of saccades and 354 
microsaccades per trial. Stars indicate significant fixed effects with p < 0.01. 355 

 356 
 357 

 saccades microsaccades 

 (1) (2) (3) (4) 

intercept 1.553*** 1.551*** 0.369*** 0.378*** 

 (1.485, 1.620) (1.483, 1.619) (0.342, 0.395) (0.351, 0.405) 

fixation cross  -0.006  0.023*** 

  (-0.040, 0.027)  (0.008, 0.037) 

log likelihood -8,805.197 -8,805.133 7,123.959 7,127.938 

Akaide inf. crit. 17,620.400 17,622.270 -14,237.920 -14,243.880 

Bayesian inf. 
crit. 17,657.220 17,666.460 -14,191.040 -14,191.040 

  Note: *p<0.1; **p<0.05; ***p<0.01 

Table 1: Summary of model fits, intercepts, and fixed effect estimates for saccade and microsaccade 358 
amplitude models. Estimates are in real values and represent the difference between conditions. Stars 359 
represent significance, calculated with Wald’s t-as-z approach. Confidence intervals are stated in 360 
parentheses below. 361 
  362 
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 363 

 saccades microsaccades 

 (1) (2) (3) (4) 

intercept 0.011*** 0.012*** 0.158*** 0.149*** 

 (0.008, 0.015) (0.008, 0.017) (0.139, 0.181) (0.130, 0.170) 

fixation cross  1.256***  1.034 

  (1.109, 1.421)  (0.988, 1.082) 

log likelihood -51,131.250 -51,126.070 -266,203.600 -266,202.800 

Akaide inf. crit. 102,270.500 102,262.100 532,415.200 532,415.600 

Bayesian inf. 
crit. 102,315.000 102,317.800 532,459.700 532,471.200 

  Note: *p<0.1; **p<0.05; ***p<0.01 

Table 2: Summary of model fits, intercepts, and fixed effect estimates for saccade and microsaccade 364 
number models. Estimates are in rate ratios and represent the difference between conditions. Stars 365 
represent significance, calculated with Wald’s t-as-z approach. Confidence intervals are stated in 366 
parentheses below. 367 

4.2 The impact of fixation cross type on MVPA of visual information from eye tracking and 368 
EEG data 369 

We investigated how fixation cross type influences the classification of visual information 370 
available in the naturalistic object images on which the fixation cross symbols were overlaid. 371 
For this, we analyzed eye tracking and EEG data in parallel to identify common patterns that 372 
might suggest an influence of eye movements on EEG data. We assessed visual information 373 
at two levels commonly queried in current cognitive neuroscience experiments: at the level of 374 
single object images and at the higher categorization level by classifying object animacy (i.e., 375 
animate vs. inanimate). We present the classification results for the eye tracking data first. 376 
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4.2.1 Classifying visual information from eye tracking data 377 

 378 
Fig. 3: Eye tracking MVPA results. a) Time-resolved object and b) animacy classification. The 379 
vertical dotted line shows stimulus onset, error bars indicate SEMs across participants. Peak latencies 380 
and 95% confidence intervals are indicated above the curves as dotted lines color coded as the result 381 
curves. The lines below the curves denote significant time points. c) Object and d) animacy time-382 
generalization analyses, and e, f) differences between fixation crosses for each. Statistically significant 383 
time points are outlined in white. The diamond shapes indicate peak latencies. The dashed lines 384 
indicate stimulus onset and the diagonal. Results are corrected for multiple comparisons by cluster 385 
correction (cluster definition threshold p < 0.05, cluster threshold p < 0.05). Detailed information about 386 
cluster extents can be found in Table 3. 387 
 388 
We determined whether there is a systematic relationship between eye movements and the 389 
visual material presented. For this, we applied time-resolved multivariate pattern analysis to 390 
the eye tracking data classifying both object/image identity (Fig. 3a) and object animacy (Fig. 391 
3b). We conducted the classification analyses separately for the two fixation cross types and 392 
compared the outcome. We assessed statistical significance with cluster permutation tests 393 
(cluster-definition threshold p < 0.05; cluster threshold p < 0.05) and reported peak latencies 394 
with 95% confidence intervals in square brackets. 395 
 396 
For object identity classification, we found significant information for both fixation crosses (Fig. 397 
3a, turquoise and red curves). The result curves increased gradually from 200 ms after 398 
stimulus onset, followed by a prolonged plateau and slow decay over the duration of the trial 399 
with peaks at 525 ms [450 675] and 665 ms [320 895]. The difference curve between those 400 
results (Fig. 3a, purple curve) had a similar shape, showing higher accuracy for the standard 401 
than the bullseye fixation cross with a peak at 475 ms [20 620]. 402 
 403 
For animacy classification, we also found significant information for both fixation crosses (Fig. 404 

3b, turquoise and red curve) with peaks at 345 ms [-160 560] and 385 ms [-40 855], 405 

respectively. However, the difference curve fluctuated around chance level and was not 406 
significantly different from it. 407 
 408 
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Together, these results indicate a systematic relationship between eye movements and the 409 
visual material presented at the level of single images and image identity, but not at the level 410 
of more abstract, categorical object divisions. 411 
 412 
4.2.2. Time-generalized visual information classification on eye tracking data 413 
The finding of prolonged object information in the time-resolved eye tracking classification 414 
analysis poses the question about the temporal stability of the data patterns underlying this 415 
result: is the prolonged effect due to a data pattern stable over time, or due to a rapidly evolving 416 
data pattern? To assess temporal stability, we conducted time-generalized MVPA38, 417 
classifying object information across time points in the epoch. 418 
 419 
Visual inspection of the results suggested a stable data pattern as classification generalized 420 
across data points for both object identity (Fig. 3c) and object animacy (Fig. 3d) and for both 421 
fixation crosses. However, statistically, results were significant only for object identity. 422 
 423 
As expected from the time-resolved analysis, visually we observed higher classification 424 
accuracy for the standard than the bullseye fixation cross (Fig. 3e), with strong off-diagonal 425 
classification results again indicating temporal stability of the underlying data patterns. 426 
However, neither the difference curve for object identity nor for object animacy (Fig. 3e, f) was 427 
statistically significant, precluding interpretation. 428 
 429 
Together this shows that object identity classification from eye tracking data depends on a 430 
temporally stable rather than strongly dynamic data patterns.  431 
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4.2.3 Classifying visual information from EEG data 432 

 433 
Fig. 4: EEG MVPA results. a) Time-resolved object and b) animacy classification. The vertical dotted 434 
line shows stimulus onset, error bars indicate SEMs across participants. Peak latencies and 95% 435 
confidence intervals are indicated above the curves as dotted lines color coded as the result curves. 436 
The lines below the curves denote significant time points. c) Object and d) animacy time-437 
generalization analyses, and e, f) differences between fixation crosses for each. Statistically 438 
significant time points are outlined in white. The diamond shapes indicate peak latencies. The dashed 439 
lines indicate stimulus onset and the diagonal. Results are corrected for multiple comparisons by 440 
cluster correction (cluster definition threshold p < 0.05, cluster threshold p < 0.05). Detailed 441 
information about cluster extents can be found in Table 3. 442 

Using an equivalent analysis strategy as for the eye tracking data, we determined whether 443 
there is a systematic relationship between EEG data and the visual material presented and to 444 
which degree this is influenced by fixation cross type 445 
 446 

For object identity classification, we found significant information for both fixation crosses (Fig. 447 
4a, turquoise and red curves). The result curves increased rapidly from 60 ms after stimulus 448 
onset, followed by peaks at 125 ms [120 180] (standard fixation cross), at 180 ms [110 185] 449 
(bullseye fixation cross), and a gradual decline. This result mirrors the commonly observed 450 
MVPA results pattern for classifying visual information at the image level from M/EEG45–49. 451 
The difference curve between results of classification for the different fixation crosses (Fig. 4a, 452 
purple curve) had a similar, though highly down-scaled shape with a peak at 165 ms [125 640] 453 
with higher accuracy for the standard fixation cross. 454 
 455 
For animacy classification, we also found significant information for both fixation crosses (Fig. 456 
4b, turquoise and red curve) with peaks at 200 ms [170 280] (standard fixation cross) and 170 457 
ms [160 280] (bullseye fixation cross), consistent with previous results45–47,50. However, the 458 
difference curve (Fig. 4b, purple curve) fluctuated around chance level and was not 459 
significantly different from it.  460 
 461 
In sum, these results indicate an influence of fixation symbols on classification of visual 462 
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information from EEG at the level of single images, but not more abstract, categorical object 463 
divisions. This result pattern parallels that from eye tracking classification, suggesting that 464 
observations of stronger eye movements for the standard fixation cross compared to the 465 
bullseye fixation cross are related to the increased classification accuracy in the EEG data 466 
analysis. 467 
 468 
  fixation cross type 

method classification standard bullseye difference 

eye tracking 

 

object identity 265-1000 ms 365-1000 ms 380-590 ms 

animacy 230-1000 ms 225-1000 ms no significant clusters 

EEG 

 

object identity 60-1000 ms 65-1000 ms 90-415 ms, 545-715 ms 

animacy 70-1000 ms 65-1000 ms no significant clusters 

Table 3: Cluster extent of time-resolved eye tracking and EEG MVPA. Overview of earliest and latest 469 
time points of significant clusters for the different fixation cross types and classification schemes (cluster 470 
definition threshold p < 0.05, cluster threshold p < 0.05). 471 

4.2.4 Time-generalized visual information classification from EEG data 472 

We assessed temporal stability of EEG activation patterns underlying time-resolved EEG 473 
classification with the same methodology as for eye tracking data patterns using time 474 
generalization analysis. 475 
 476 
For both object identity and object animacy, we observed evidence for both rapidly changing 477 
as well as more stable activation pattern dynamics for both fixation cross types (Fig. 4c, d), 478 
consistent with previous studies investigating perception with time-generalized 479 
analysis8,45,46,51. The rapidly changing dynamics were indicated by the relatively high 480 
classification accuracy along the diagonals and the stable aspects by significant effects far 481 
beyond the diagonal, in particular, a broadening of effects after 200 ms. 482 
 483 
The difference curve for object identity classification (Fig. 4e) comparing results based on 484 
fixation cross symbols revealed both rapidly changing and stable activation pattern dynamics 485 
underlying the higher classification accuracy for the standard compared to the bullseye fixation 486 
cross. The difference curve for animacy classification (Fig. 4f), as predicted from the time-487 
resolved analysis (Fig. 4b), was not significant. 488 
 489 
Together these results show that fixation cross type influences EEG classification in both 490 
rapidly changing as well as stable neural dynamics, with higher classification for the standard 491 
fixation cross. 492 
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4.3 The bullseye fixation cross reduces systematic eye movement-related confounds in EEG 493 
classification 494 

 495 
 496 
Fig. 5: Relating EEG and eye tracking data using RSA. a) Analysis pipeline for time-resolved RSA. 497 
In the first step, we built RDMs separately for EEG and eye tracking data and for both fixation crosses. 498 
For this, we calculated the pairwise dissimilarity (1 – Pearson’s r) between all 40 individual object 499 
conditions, resulting in 40*40 RDMs for each time point. In the second step, we compared RDMs 500 
using Spearman’s r. b) RSA results. The vertical dotted line shows stimulus onset, error bars indicate 501 
SEMs across participants. The lines below the curves denote significant time points. Peak latencies 502 
and the corresponding CIs are indicated by the dotted line below the curve. The dark and light grey 503 
shaded areas delineate the upper and lower bounds on the noise ceilings for the EEG and the eye 504 
tracking data, respectively. 505 
 506 
Our analyses revealed - both for eye movement and for EEG data - a decrease in classification 507 
accuracy for object identity classification for the bullseye fixation cross compared to the 508 
standard fixation cross. This suggests the hypothesis that the decrease in EEG classification 509 
accuracy is systematically related to a decrease in eye movement-related effects, such as 510 
confounding eye muscle activity or differences in neural processing as a consequence of eye 511 
movements. 512 
 513 
A prediction of this hypothesis would be that images eliciting similar activation patterns in the 514 
EEG data should also elicit similar activation patterns in the eye tracking data. To test this 515 
prediction directly and quantitatively, we used representation similarity analysis41,52,53. In a 516 
time-resolved fashion, and for each fixation symbol separately, we aggregated all pairwise 517 
dissimilarities between object identities in representational dissimilarity matrices that abstract 518 
away from the disparate measurement spaces of eye tracking and EEG into a common 519 
similarity space (Fig 5a). We then related the eye tracking and EEG data by calculating the 520 
similarity between their RDMs. 521 
 522 
This analysis revealed a systematic relationship between EEG and eye tracking data for the 523 
bullseye fixation cross, but not for the standard fixation cross (Fig. 5b). This shows that for the 524 
standard fixation cross condition eye movements confound EEG data to a small but systematic 525 
degree. In contrast, the difference curve between the RSA results for the two fixation symbols 526 
was not significant. 527 
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5 Discussion 528 

5.1 Summary 529 

We compared the effect of two fixation cross types - the standard and the bullseye fixation 530 
cross - on eye movements and EEG data in the context of a paradigm presenting naturalistic 531 
object images that were either animate or inanimate. We made three key observations. First, 532 
we showed that the bullseye fixation cross reduced eye movements compared to the standard 533 
fixation cross. Second, we showed that the bullseye fixation cross reduced classification of 534 
object identity, but not animacy from both eye tracking and EEG data. Third, we established a 535 
systematic relationship between classification results from eye tracking and from EEG data 536 
for the standard fixation cross, but not the bullseye fixation cross. 537 

5.2 The bullseye fixation cross reduces eye movements 538 

Previous research established that the bullseye fixation cross reduces eye movements 539 
compared to the standard fixation cross (and other fixation crosses) when presented in 540 
isolation on a uniform gray background14. Here we extend this research by reproducing the 541 
advantage of the bullseye fixation cross when superimposed on naturalistic object images. 542 
This result generalizes the previous findings14

 to a commonly used basic visual paradigm in 543 
cognitive neuroscience. This is further not a trivial result, as the naturalistic images were 544 
neither controlled for color, luminance, nor salience, while saccades are known to be 545 
modulated by perceptual attention54, background55, and salience56. 546 
 547 
While significant, the reduction in eye movements by fixation cross choice was subtle in effect 548 
size, and overall the distribution of saccades and microsaccades was similar irrespective of 549 
the fixation cross chosen. This highlights the need for additional measures to reduce the 550 
occurrence of eye movements in future studies. 551 

5.3 The impact of fixation cross type on MVPA of visual information from eye tracking and 552 
EEG data 553 

Our results are broadly consistent with previous studies that reported successful classification 554 
of diverse conditions of interest from eye movement alone, such as object category8 and 555 
grating orientation13 during perception, as well as stimulus information during the delay period 556 
of a working memory match to sample task9 or during the perception and attention phase of a 557 
working memory match to sample task10. We go beyond those studies by assessing the 558 
differential effect of fixation cross type on multivariate analysis. We observed that in 559 
multivariate pattern analysis on both eye tracking and EEG data, accuracy was reduced for 560 
the bullseye fixation cross compared to the standard fixation cross. However, this effect was 561 
limited to object identity, and did not extend to object animacy. One reason for this might be 562 
that in our data set single object images were associated systematically with different eye 563 
movements that supported classification, whereas object image sets at the supra-category 564 
level of animacy were not and eye movements averaged out into similar distributions for 565 
animate vs. inanimate objects. However, this is likely a function of the stimulus set used here. 566 
In an experimental setup with two categories that have low intra-group image variability at the 567 
pixel level (e.g., highly controlled images of front-view faces and houses), we would expect 568 
systematic eye movement effects at the level of category. 569 
 570 
The parallel reduction of classification accuracy for the bullseye fixation cross in the 571 
classification analyses based on eye tracking and on EEG data suggests a relationship 572 
between those observations. We substantiated this hypothesis by establishing that for the 573 
standard fixation cross, but not for the bullseye fixation cross, EEG and eye tracking were 574 
systematically related at the object image level. This is consistent with a previous study8 using 575 
a bullseye fixation cross that also observed both classification of visual stimulus information 576 
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from eye tracking and MEG data, but did not find a systematic relationship between them. We 577 
thus recommend the use of the bullseye fixation cross as a measure to reduce the confounding 578 
effect of eye movements in M/EEG, in particular but not limited to multivariate classification 579 
studies. 580 
 581 
To put the effect into context, the identified confounding effect of eye movements on 582 
classification analysis was significant, but the effect size comparing the two fixation crosses 583 
(3.41%) was small compared to the overall classification results (26.22% and 23.98%, Fig. 584 
4a). Together with the observation that the systematic relationship between EEG and eye 585 
tracking data was small or absent depending on the fixation cross, (Fig. 5b), this speaks for a 586 
limited confounding impact of eye movements systematically related to experimental 587 
conditions on EEG classification analyses under well-controlled laboratory conditions involving 588 
fixation control. 589 
 590 
One open question is how exactly eye movements systematically related to object images 591 
influenced the EEG data and thus the classification results. One possibility is that the EEG 592 
acquisition picked up electrical activity created by eye movements. Another possibility is that 593 
the eye movements led to changes in neural processing picked up by the EEG, e.g., elicited 594 
by changes in the visual input. Future studies relating eye movements to predicted changes 595 
in visual input combined with electromyography to isolate the effect of eye muscle activity are 596 
needed. 597 

5.4 Limitations 598 

Our results and conclusions are subject to several limitations. First, we measured data only 599 
from one eye, limiting the ability to distinguish measurement noise from microsaccades14,57. 600 
Future studies recording both eyes are needed for further scrutiny. Second, it is unclear how 601 
well our results generalize from the particular experimental setup of centrally presented 602 
naturalistic images. Moving images, images presented in the periphery, or images presented 603 
alongside with other sensory cues58 might affect other eye movement patterns that might be 604 
differently affected by the choice of a fixation symbol. Further studies assessing the effects of 605 
eye movements and their interaction with fixation crosses on M/EEG data are needed. Our 606 
data guide this research with the a priori hypothesis that the bullseye fixation cross will reduce 607 
eye movements compared to the standard fixation cross. 608 

5.5 Conclusion 609 

We conclude that the bullseye fixation cross reduced eye movements and their effects on 610 
M/EEG data for a visual setup with centrally presented naturalistic images. While the effect of 611 
eye movements on M/EEG data observed here was limited, and the reduction of eye 612 
movements and their associated effects on M/EEG is subtle, we recommend its use when 613 
tight control of eye movements is key for the experimental design and tested hypothesis. 614 

6 Data availability  615 

The code used for this project can be found at: 616 
https://github.com/Neural-Dynamics-of-Visual-Cognition-FUB/FixEyeEEG.  617 
The data set can be found at https://osf.io/4ekct/.  618 
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Chapter 6

General Discussion

6.1 Summary
This dissertation investigated how scene structure and involuntary eye movements influ-
ence the extraction of scene and object information from natural stimuli in the visual sys-
tem. Projects I-III used a combination of EEG and fMRI to investigate the effect of natural
scene structure on scene perception and the extraction of object information from natural
scenes. Project IV used a combination of EEG and eye tracking to quantify if and to
which extent eye movements influence the extraction of object and category information
from natural stimuli. The first section of the general discussion offers an overview of
the main findings and conclusions of the four studies conducted during this dissertation.
The second section will discuss the overarching implications of all projects. The third
section evaluates methodological considerations, resulting limitations and derives future
directions.

6.2 Main findings

6.2.1 Project I

In project I, we investigated the impact of spatial and categorical regularities on scene
representations in healthy human adults (Kaiser et al., 2020a). Humans efficiently extract
information from natural scenes (Potter, 1975; Thorpe et al., 1996). Several studies have
shown that one reason for this efficiency can be found in the inherent structure of natural
scenes. When this structure is interrupted, perception and categorization of these scenes
are strongly impaired (Biederman, 1972; Biederman et al., 1974). However, the impact
of spatial and categorical regularities on scene-selective neural responses have not been
investigated in the past. Participants participated in two fMRI sessions (upright scenes
n=20, inverted scenes n=20) and one EEG session (n=20). Seventeen participants par-
ticipated in both fMRI sessions, and three participants only participated in sessions one
or two. Participants passively viewed natural scene stimuli during all three experimental
sessions. At the same time, they completed a demanding orthogonal task by responding
to a subtle color change of the fixation cross. Each stimulus was partitioned into four qua-
drants. Each of the four quadrants was drawn from 24 scenes belonging to four categories.
All scene parts were either drawn from the same category (categorically intact) or from
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different categories (categorically jumbled). Those four quadrants were then either kept in
their correct spatial location (spatially intact) or systematically recombined (spatially jum-
bled). This manipulation generated a 2x2 design, answering how categorical and spatial
coherences are reflected in the neural sensitivity to scene structure. Stimuli were presented
both upright and inverted.

Using EEG and fMRI multivariate and univariate analyses, we tested for the sensi-
tivity to spatial and categorical structure using two complementary analyses. To test for
spatial sensitivity, we decoded spatially intact from spatially jumbled scenes (irrespective
of category). To test for categorical sensitivity, we decoded categorically intact from cate-
gorically jumbled scenes (irrespective of spatial structure). We showed that sensitivity to
spatial (but not categorical) scene structure emerged in OPA and PPA and after 255 ms.
This effect was stronger for upright than inverted scenes facilitating the interpretation that
this effect shows genuine sensitivity to spatial scene structure instead of just reflecting
differences in low-level properties of the scenes.

6.2.2 Project II

Building upon these findings, project II aimed to investigate whether the presence of an in-
tact scene structure facilitates the cortical analysis of the categorical content of that scene
(Kaiser et al., 2020b). Previous studies have shown that the visual system is sensitive to
the inherent structure of our natural world (Abassi & Papeo, 2020; Baldassano et al., 2017;
Kaiser et al., 2014; Kim & Biederman, 2011; Roberts & Humphreys, 2010). However, it
was still unclear how and whether this structure aids in the extraction of a scene’s catego-
rical content.

Project I did not reveal cortical sensitivity to categorical scene structure. Importantly,
even though no effect of categorical intact versus categorical jumbled scenes on scene-
selective responses could be detected, the scenes category could still be decoded from
the EEG data between 45 ms and 660 ms (Kaiser et al., 2020a). In project II, we reused
the EEG data collected for project I (n=20) to test whether real-world structure facilitates
the emergence of scene categories. Stimuli were drawn from four categories: churches,
houses, roads, and supermarkets. Four parts from different scenes drawn from the same
scene category were combined in their correct spatial locations for the categorical intact
scenes. Four parts from four different scenes of the same category were combined for the
jumbled scenes, with the spatial location jumbled in a crisscrossed way. All stimuli were
included upright and inverted. To track cortical representations across time, we used a
cumulative decoding approach. This approach uses a larger amount of data for decoding
than standard decoding techniques by considering all time points prior to the currently
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decoded time point. Therefore, more data were available at each subsequent step while
maintaining temporal precision in the forward direction. Consequently, this provided in-
creased sensitivity for detecting decoding onsets compared to standard time series decod-
ing (Ramkumar et al., 2013). The analysis was conducted separately for the intact and
jumbled scenes. For upright scenes, we found that the EEG signal conveyed robust cat-
egory information for both, the spatially intact and spatially jumbled scenes. Between
105 and 800 ms, significantly enhanced decoding for the spatially intact versus jumbled
scenes emerged. No significant difference between the intact and jumbled scenes could
be found for the inverted scenes, even though the category could be decoded from both.
Interestingly, category information was statistically comparable for the intact upright and
inverted scenes, suggesting that the jumbling manipulation specifically harms category in-
formation in the upright scenes. Our results, therefore, show that scene structure matters
more for the processing of upright scenes than for the processing of inverted scenes. Over-
all, our results provide evidence that the facilitation of category information by real-world
structure emerges within 200 ms of vision. In line with project I, we were able to show
that this facilitation can be attributed to the adherence to the real-world structure instead
of differences in low-level properties.

6.2.3 Project III

Projects I and II showed that cortical scene representations are tightly linked to real-world
structure (Kaiser et al., 2020a, 2020b). Participants in both studies were instructed to per-
form an orthogonal fixation task which did not allow us to directly assess the behavioral
relevance of the spatial regularities we observed in the brain data. Project III sought to
investigate the behavioral relevance of the previously described neural findings by com-
bining neural recordings with a more naturalistic task. In detail, we investigated whether
typical real-world environments help participants to efficiently solve an object (person
versus car) and a scene (rural versus urban) categorization task while recording fMRI
(n=25). The stimuli set consisted of colored natural scene photographs. In each photo-
graph, a person or a car was depicted in a rural or urban environment in either of the four
stimuli quadrants. Spatial regularities of the scenes were interrupted by jumbling the four
quadrants in a crisscrossed way. Using a combination of univariate and correlation-based
multivariate analysis techniques, we were able to show that participants were faster and
more accurate in performing the object and scene categorization task when perceiving in-
tact versus jumbled scenes. Object information was enhanced for intact versus jumbled
scenes only when the objects were relevant to the current behavioral goals. These findings
revealed that early real-world structure is a crucial asset for solving complex real-world
tasks (Kaiser et al., 2021).

70



6.2.4 Project IV

During the data collection for projects I, II, and III, participants were instructed to fixate on
a centrally presented fixation cross. Project IV sought to investigate the influence of two
different fixation crosses (a bullseye versus a standard fixation cross) on eye movements
and the classification of natural images from EEG. While eye movements are a ubiquitous
and natural behavior, they are undesirable in many highly controlled experimental visual
paradigms. Previous studies revealed that eye movements affect various analysis tech-
niques, including MVPA (Mostert et al., 2018; Quax et al., 2019) and univariate analysis
techniques (Dimigen & Ehinger, 2021; Dimigen et al., 2009).

In project IV, we used a combination of EEG and eye tracking to compare the effect
of two different fixation symbols – the standard fixation cross and the bullseye fixation
cross – in the context of a visual paradigm with centrally presented naturalistic object im-
ages, using behavioral and multivariate analysis techniques. Participants (n=30) viewed
natural object stimuli while performing an orthogonal task to keep them engaged. Our
findings were threefold. First, the bullseye fixation cross reduced the number of saccades
and amplitude size of microsaccades. Second, the bullseye fixation cross subtly reduced
classification accuracy in both eye tracking and EEG data for the classification of single
object images, but not for the super-level category animacy. Third, using representational
similarity analysis, we found a systematic relationship between eye tracking and EEG data
at the level of single images for the standard, but not for the bullseye fixation cross. These
findings suggest that systematic eye movements indeed influence the results of MVPA,
albeit to a small degree. Therefore, we recommend the bullseye fixation cross in experi-
mental paradigms with fixation, particularly when control of fixation is beneficial.

6.3 Key implications across projects
In summary, projects I-III aimed at answering three interconnected questions to further our
understanding of scene processing. While project I showed that intact spatial structure im-
pacts scene-selective cortical responses in space and time, project II provided evidence that
spatial structure facilitates the extraction of scene categories. Project III added a brain-
behavior link by investigating whether and how spatial regularities aid object extraction
from a scene, while manipulating attention through an object and a scene classification
task. The project results show that intact spatial structure enhances the representation
of objects in a scene only if the objects are behaviorally relevant. Data from all three
studies were analyzed using univariate and multivariate analysis techniques, while partic-
ipants were instructed to fixate on a centrally presented fixation cross. Not only has it been
shown that the choice of fixation cross affects participants’ eye movement patterns (Thaler
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et al., 2013), there has been a growing discussion in recent years about how univariate and
multivariate analysis techniques are influenced by participants’ voluntary and involuntary
eye movements (Mostert et al., 2018; Quax et al., 2019). Even though participants are of-
ten instructed to fixate during stimulus presentations, participants still exhibit involuntary
eye movements (Quax et al., 2019; Thaler et al., 2013). Project IV investigated whether
and to which extent eye movements influence EEG decoding during a simple perceptual
fixation task. We showed that the classification of neuroscientific data is influenced to a
small degree by systematic eye movements at the level of single images for the standard
but not for the bullseye fixation cross. This indicates that lower-but not higher-level order
stimulus properties might be influenced to a small degree by systematic eye movements.

6.3.1 The temporal dynamics of scene processing

Projects I and II expanded our understanding of the temporal and spatial dynamics of scene
processing, tying into an already extensive knowledge base. In the following paragraph, I
will shortly outline the timeline of scene processing and highlight where our results pro-
vide new insight.

Scene perception is aided by several different neural mechanisms. Human observers
are as fast in global context categorization as in object categorization (Fabre-Thorpe et al.,
2001; Joubert et al., 2007), even when the scene is only presented briefly. Such a perfor-
mance cannot be explained by the individual processing of every single object in a scene
sequentially because this would require significantly longer processing durations. This
suggests that scene perception is not a sequential process and seems to be more than the
combination of the scenes’ individual parts. Single images of natural scenes are discrim-
inated early, starting from 50 ms with a peak at 97 ms by visual representations similar to
single images with other visual content (Carlson et al., 2013; Cichy et al., 2014; Isik et al.,
2014). We could show that within 200 ms of vision, the extraction of a scene’s categorical
content is facilitated by spatial regularities (Kaiser et al., 2020b). These results go hand
in hand with results from single object processing, which showed that object representa-
tions are enhanced after 140 ms if they appear in their typical real-world location (Issa &
DiCarlo, 2012; Kaiser et al., 2018). This indicates that the adherence to typical real-world
location of scene parts facilitates the extraction of scene-relevant content.

Apart from facilitating the extraction of the scenes’ categories content, the adherence
to typical-real-world structure also modifies scene-selective neural responses. Using uni-
variate analysis, we found a significant main effect of spatial structure for the upright
scenes, emerging between 225 and 425 ms, with a peak at 235 ms (Kaiser et al., 2020a).
These results align with earlier studies, showing that approximately 220 ms after stimulus
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onset, ERP components elicited a significantly stronger response to scenes than to other
categories, corresponding to the P2 component. This component is sensitive to scenes at
both the categorical level (open versus closed natural scenes) and the single image level,
where it reflected scene statistics and behavioral ratings of naturalness and spatial ex-
panse (Harel et al., 2016). We replicated these findings in our study, with the difference
that this marker appeared slightly later at 235 ms, indicating an effect of spatial structure.
These findings align with earlier experiments showing that MEG signals are responsive
to scenes between 200 and 300 ms (Sato et al., 1999), strengthening our understanding of
scene-selective neural responses.

Several previous studies have shown that the jumbling of scene structure strongly im-
pairs perception (Biederman, 1972; Biederman et al., 1974). We showed that this im-
pairment in perception is also reflected in scene-selective neural responses. Sensitivity
to spatial structure emerged after 255 ms of processing, after scene-selective peaks in
ERPs (Harel et al., 2016; Sato et al., 1999) and shortly after scene layout properties like
scene size at around 250 ms (Cichy et al., 2016). Together, these results enhance our un-
derstanding of the impact of real-world scene structure on the analysis of the content of a
scene. More specifically, we showed that higher-level scene properties are analyzed during
a dedicated processing stage. We expanded the understanding of the temporal processing
cascade underlying scene perception by identifying at which time points the spatial struc-
ture of a scene facilitates the analysis of both its structural features and categorical content.

6.3.2 The spatial dynamics of scene processing

We did not only assess the temporal but also the spatial dynamics underlying scene pro-
cessing. Several previous studies have identified scene-selective areas that respond more
when viewing scenes compared with objects or faces and may be specialized for represen-
ting specific aspects of the environment (Dilks et al., 2013; Epstein et al., 1999; Persichetti
& Dilks, 2018) including PPA (Epstein & Kanwisher, 1998), OPA (Dilks et al., 2013; Has-
son et al., 2003), and the RSC (O’Craven & Kanwisher, 2000). The experiments conducted
in projects I and III extended our understanding of the contribution of these areas to scene
perception.

Our fMRI results showed that the structural analysis of scene content was reflected
through activity in PPA and OPA, showing a stronger response to spatially intact com-
pared to spatially jumbled scenes (Kaiser et al., 2020a). This aligns with findings showing
that PPA is responsive to viewpoint specificity and discriminates between different views
(Park & Chun, 2009). Findings from lesion studies further complement these findings. If
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PPA is damaged, e.g., through a stroke, patients report losing their sense of a scene as a
coherent whole and problems identifying places and landmarks (Aguirre & D’Esposito,
1999).

In addition to the structural content of a scene, PPA might also contain information
about the scene category being viewed. Previous studies revealed a network of regions,
including PPA, RSC, and LOC, contributing to the human ability to categorize natural
scenes (Walther et al., 2009). Irrespective of PPAs involvement in natural scene catego-
rization, project I did not reveal sensitivity to categorical scene structure, indicating that
spatial structure impacts cortical responses more strongly than categorical scene structure
(Kaiser et al., 2020a). Importantly, these results do not contradict the findings of the in-
volvement of PPA in natural scene categorization. Unfortunately, due to the nature of the
design, we were not able to classify the scene’s categorical content from the fMRI data
directly, as scene categories were intermixed in the fMRI blocks. However, in a supple-
mentary analysis, we showed that the scene category could be decoded from EEG data,
even though sensitivity to categorical scene structure could not be found. This suggests
that scene category can still be classified from the used stimulus set, implying that the
analysis of categorical scene content is independent of the effects of categorical scene
structure on the cortical response in PPA and OPA.

Project III replicated the sensitivity of both PPA and OPA to the structural content of
a scene with a different set of stimuli. PPA was the only area showing an additional mo-
dulation by task demand. PPA showed significantly stronger responses when participants
were asked to categorize scenes compared to being asked to categorize objects (Kaiser et
al., 2021). This expands our understanding of PPA’s involvement in scene processing by
suggesting an increasing importance of computation in higher-level scene-selective cortex
when the attributes of the scenes are relevant for behavior.

We were additionally able to show a main effect of spatial structure in LO and EBA.
These results are in line with earlier studies showing that positional regularities within the
real-world influence object perception, with more accurate decoding within LOC for ob-
jects appearing in their typical real-world positions (Kaiser & Cichy, 2018). Importantly,
we showed that spatial scene structure not only matters for scene-related neural responses
but also enhances object information in LO and EBA when objects are embedded in intact
versus jumbled scenes. Critically, this enhancement only occurred when the participants
were asked to identify the object instead of the scene, indicating that scene structure only
facilitated the extraction of objects from a scene background if the object is task-relevant
(Kaiser et al., 2021).
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6.3.3 The interplay between the object and scene network

The results from project III show that the interplay between attention and scene structure
aids in extracting task-relevant object information. The behavioral results of this study
revealed that incoherent scene structure impact task performance for both - the object and
scene categorization tasks. Additionally, object information was significantly enhanced in
LO and EBA, if the scene’s structure was coherent and the objects task-relevant. When par-
ticipants were instructed to perform the scene task, this facilitation could not be observed.
If the scene and object network would be functionally separate, we would expect to see the
the task-based enhancement of object information in both, spatially coherent and jumbled
scenes. Therefore, the findings from project III further support available evidence that the
object and scene networks are not functionally separate (Brandman & Peelen, 2017, 2019;
Wischnewski & Peelen, 2021). Recent studies revealed that that scene context strongly
enhances the category representation of degraded objects, which are hard to recognize
in isolation. Object-selective areas LO and pFs additionally showed strong scene-based
facilitation, demonstrating that degraded objects can be fully recognized when aided by
scene-based context. The facilitation of object information was correlated with activity in
scene-related areas RSC and PPA, showing that object and scene processing mechanisms
effectively interact with each other to help with the efficient processing of object infor-
mation (Brandman & Peelen, 2017). This context-based object recognition is causally
supported by OPA and LOC (Wischnewski & Peelen, 2021). We expanded these results
by showing that the interaction between the scene and object networks undergoes a task-
based modulation and is mediated by attention (Kaiser et al., 2021).

At a first glance, these results could be interpreted as contradictory to the study’s re-
sults by Brandman and Peelen, 2017, who showed a direct interaction between the object
and scene networks. These differing results could e.g., be explained by the different task
demands. Participants performed an orthogonal oddball task where they had to respond
every time a number was presented instead of a scene while being instructed to attend to the
object (Brandman & Peelen, 2017). In contrast, participants in project III were instructed
to perform an object or a scene categorization task, efficiently manipulating attention to-
ward the scene or the object content of the image. The objects themselves were completely
irrelevant if participants were asked to categorize the scenes effectively manipulating at-
tention away from the object. We found a strong enhancement of object information in
LO and EBA when the task was to attend to the object, while this enhancement was not
present when participants were asked to attend to the scenes. Our findings align with two
studies that have already shown that task-relevant objects are represented more accurately
than task-irrelevant objects (Peelen et al., 2009; Peelen & Kastner, 2011).
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However, this raises the question of why an intact scene structure enhances task-relevant
object information. According to the two-pathway hypothesis (Wolfe et al., 2011), the
combination of a selective and a nonselective pathway allows for efficient processing of
scenes. First, the observer rapidly extracts statistical information from the entire image
through global non-selective image processing. These statistical regularities include the
mean and distribution of several visual feature dimensions (e.g., size (Chong & Treisman,
2003), orientation (Parkes et al., 2001), some contrast texture descriptors (Chubb et al.,
2007), and the presence of classes of objects (Vanrullen, 2009)). Second, the image details
are analyzed in a selective step.

Due to the jumbling manipulation in project III, some statistical regularities are in-
terrupted and might hinder the rapid extraction of such regularities. Indeed, we showed
that people are more accurate and faster in identifying objects and scenes in an intact ver-
sus jumbled image. We also find that in both LO and EBA, object category information
was significantly higher for objects that were embedded in intact scenes than for objects
embedded in jumbled scenes. These findings underline the interpretation that adherence
to statistical regularities facilitates the extraction of other aspects of the scene, possibly
through global non-selective image processing (Greene & Oliva, 2009; Oliva & Torralba,
n.d., 2007).

6.3.4 The effect of eye movements on object and scene processing

The previous paragraph discussed the impact of real-world regularities on scene-selective
responses and the extraction of object and category information from natural stimuli.
While testing participants in experimental settings, we often simplify the stimuli they
are confronted with and make them look at these pictures in a highly standardized set-
ting. In most cases, these experimental settings involve the participants sitting in front
of a monitor with their heads stabilized on a chin rest and their eyes fixated on a fixation
cross in the center of the screen. Importantly, our eyes constantly move not only during
real-world interactions but also during fixation tasks. Therefore, project IV set out to in-
vestigate how participants‘ eye movements during fixation influence multivariate pattern
analysis of time-resolved EEG data. We showed that for a highly controlled experiment
where participants were instructed to fixate, classification at the level of single images is
influenced by systematic stimulus-specific eye movements. In contrast, the classification
of category, and hence higher-level conceptual aspects of the stimulus, was not influenced
by stimulus-specific eye movements. Single object images were associated systematically
with eye movements that supported classification. In contrast, object image sets at the
supra-category level of animacy were not and eye movements averaged out into similar
distributions for animate vs. inanimate objects. This might be a function of the stimulus

76



set used. In an experimental setup with two categories with low intra-group image vari-
ability at the pixel level (e.g., highly controlled images of front-view faces and houses), we
would expect systematic eye movement effects also at the category level. Alternatively,
the causal relationship may also operate in reverse, with brain activity being the instigator
of eye movements. In this scenario, neural activity could arise from low-level stimulus
characteristics, which trigger neural activity that can subsequently be decoded. As a re-
sult, the stimulus-dependent eye movements may be caused by the neural activity, rather
than being its consequence (Thielen et al., 2019). However, the reduction of classification
accuracies when a fixation cross is associated with fewer eye movements speaks in favor
of the first interpretation, even though an interaction of the two effects cannot be discarded.

Naturally, the question arises whether the results from project IV provide us with in-
sight into the interpretation of the results of projects I and II. Due to the narrowly tested
stimulus set in project IV, which only included 40 exemplars of natural object stimuli on
natural backgrounds, we cannot automatically assume that these findings generalize to the
analysis of scene stimuli. In line with scene stimuli from project I and II, the stimuli used
in project IV were not controlled for luminance, color, or background. This was deliber-
ately chosen as we aimed to replicate a setup with naturalistic stimuli closely.

Nevertheless, while this particular stimulus set up did not allow for a systematic varia-
tion of stimulus features, let us - for the sake of this discussion - assume that the findings of
project IV translate to other setups and that lower-level properties primarily drive stimulus-
relevant eye movements. What would this imply for interpreting the temporal results from
project I and II?

Scenes contain a lot of higher-level representations like scene categories (Walther et
al., 2009; Walther et al., 2011) and familiar places (Marchette et al., 2015; Park & Chun,
2009). However, several studies have shown that the recognition and classification of
scenes do not primarily rely on higher, but also on lower-level properties (Cant & Xu,
2012; Kauffmann et al., 2015; Nasr et al., 2014; Rajimehr et al., 2011). Other studies have
explicitly emphasized the role of midlevel features in scene recognition (Choo & Walther,
2016). Recently, it has been suggested that low-, mid-, and high-level features of scenes
can largely explain the same variance in brain responses in scene-selective regions (Le-
scroart et al., 2015).

Taken together, scene analysis does not only rely on high-level but also on low-level
properties. In turn, it is cogitable that lower-level properties of the scene stimuli could
drive stimulus-relevant eye movements. Based on the findings from project IV, it may be
possible that participants participating in projects I and II displayed more eye movements
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with the standard fixation cross than they would have with implementing a bullseye fixa-
tion cross. That being said, we are optimistic that, even if present, the effects of stimulus-
relevant eye movements on our results would be marginal. There are several reasons for
that. First, we classified global scene properties like the spatial arrangement and category
of a scene which are higher-level properties. Project IV revealed an effect of systematic
eye movements for the classification of single images only, not for the classification of the
category. Second, in line with the stimuli used in project IV variability between the differ-
ent scene stimuli was high (images were not highly controlled at the pixel level). Third, we
found that the decoding of spatial coherence and category in projects I and II are affected
by the jumbling manipulation only for upright but not inverted stimuli, suggesting that
the effect is driven by high and not low-level stimulus properties. Fourth, the effect of eye
movements on the classification accuracy of single images in project IV was much smaller
than the overall effect sizes (3.41% reduction compared to the overall classification results
of 26.22% and 23.98% for the standard and bullseye fixation cross).

The precise effect should be investigated by adopting the paradigm of project IV to
incorporate natural scene stimuli instead of natural object stimuli.

6.4 Methodological considerations and future directions
After already touching upon open questions based on our findings in the previous chapter, I
will now discuss further avenues for future studies taking into account experimental design
and methodological considerations.

6.4.1 Experimental design considerations

The jumbling paradigm

We manipulated spatial and categorical scene structure in projects I-III with a jumbling
paradigm. This paradigm introduces a strong manipulation that conflates several aspects of
a scene’s inherent structure (Biederman, 1972; Biederman et al., 1974). Jumbling the dif-
ferent scene quadrants disrupts the typical positioning of the individual pieces of a scene,
the positioning of objects relative to each other, and the typical geometry of the scene it-
self. Altogether, this results in non-naturalistic scene stimuli as artificial discontinuities
are introduced. We controlled for these artificial discontinuities in projects I and II by
introducing comparable discontinuities in the stimuli showing intact scenes. Using this
method, we could show that the effects of scene jumbling persists with artificial disconti-
nuities present in both intact and jumbled scenes (Kaiser et al., 2020a, 2020b).
Even though these artificial discontinuities were not controlled for in project III, these find-
ings strengthen the interpretation that the effect of natural scene structure and attention on
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the enhancement of object information extraction in project III is due to a genuine dif-
ference between intact and jumbled scenes and cannot solely be explained by discontinu-
ities in the stimulus presentation when the different quadrants of the image were jumbled.
Nevertheless, future studies are needed to disentangle the different features that drive the
sensitivity to spatial scene structure.

Real-world testing conditions of scenes and tightly controlled laboratory settings

One common disadvantage to all four projects is the generalizability of the findings to real-
world scenarios. While we used the term real-world scenes in the context of this thesis,
this term is related to predictable distributions of information across natural 2D scenes.
However, a scene in the real world entails much more than a 2D visual representation. In
addition to containing cues from odor and sound (for an opinion piece on how to integrate
different modalities in scene perception, see Cichy and Teng, 2017), scenes are 3D re-
presentations and can be acted within. Additionally, observers are usually unrestricted in
whether and how they move their eyes to understand the visual world around them. Trans-
lating effects from the lab to "the wild" has, for example, shown that the well-established
N170 effect in ERP research translates to a more ecological setting (Gert et al., 2021).
A logical next step would be to test whether the effect of spatial scene structure persists
when tested in a more ecologically valid framework. To do so, one could make use of the
recently advanced VR and mobile EEG possibilities.

6.4.2 Methodological considerations

Eye tracking data recording

Eye movement data collected for project IV was recorded using an Eyelink 1000 Tower
Mount, which only allowed for monocular recordings of one eye. Recently, there has been
a growing discussion about monocular and binocular microsaccades (Fang et al., 2018). A
monocular setup limits the ability to discriminate microsaccades from noise as the bino-
cular criterion cannot be taken advantage of (Ciuffreda & Tannen, 1995; Fang et al., 2018;
Krauskopf et al., 1960; Schulz, 1984; Thaler et al., 2013). This could be circumvented by
utilizing a setup that allows for binocular recordings, which was not accessible for this
thesis.

The interaction between EEG preprocessing pipelines and eye movements

In addition to the consideration that stimuli from projects I and II might not directly trans-
late to the experimental setup of project IV, different preprocessing pipelines were utilized.
This might limit the extraction and transfer of information from Project IV to the other
projects. EEG preprocessing in project IV was limited to baseline correction, filtering,
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and the removal of excessively noisy channels and trials. The preprocessing pipeline of
projects I and II additionally included the removal of eye movements from the collected
EEG data using ICA (Jung et al., 2000) (Project I) or the combination of ICA (Jung et al.,
2000) and principal component analysis (Jolliffe, 2011; Jolliffe & Cadima, 2016) (Project
II). This might further mitigate eye movements’ effects on decoding accuracies.

Several arguments can be made to justify the exclusion of further preprocessing steps
in the pipeline for project IV. First, ICA can detect and separate several sources within
EEG data, including eye movements, heart and muscle artifacts, and brain data. However,
using ICA without an automated detection algorithm for eye movement reduction hinders
reproduction, and common transformation techniques like ICA are sensitive to early pre-
processing pipeline choices and data preparation. Amplitude features often vary greatly
from headset to headset and session to session and, therefore, generally do not improve
the signal-to-noise ratio (Bigdely-Shamlo et al., 2015). Second, ICA and regression alone
are insufficient to remove systematic eye movements in M/EG data (Mostert et al., 2018;
Quax et al., 2019). Third, it has been a long-standing challenge in neuroscience to be able
to forgo as many manual steps in the preprocessing pipelines as possible. Fourth, a recent
paper showed that automated rejection of ICA eye and muscle artifacts did not increase
performance reliability for ERPs (Delorme, 2023). As these findings cannot directly be
transferred to MVPA, future studies should systematically test the interactions between
eye movements, removal techniques, and fixation cross usage.

Interindividual differences in eye movements

Another limitation on the interpretation of eye movement effects on EEG MVPA is in-
terindividual differences between observers. Several studies showed varying fixation be-
havior between individual participants (Bargary et al., 2017; Thielen et al., 2019). Thielen
et al., 2019 demonstrated that the amplitude of observers’ eye movements significantly cor-
related with classification accuracy from the eye movement data, indicating that larger
eye movements correlate with higher classification accuracy. A subset of participants
showed eye movements that covaried with the stimulus in question. One possible ex-
planation could be the (in)ability of participants to focus appropriately. In this particular
study, mainly saccades with large amplitudes drove classification accuracies (Thielen et
al., 2019). Interestingly, the reduction in decoding accuracies in project IV was mainly
driven by fewer saccades in general and smaller microsaccade amplitudes. However, we
cannot ascertain whether individual performances drive this effect as we did not control
for interindividual differences.

This needs to be addressed in future studies to substantiate the size of the effect and to
show whether the fixation cross has a differential impact on differently skilled observers.
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One possible solution would be to divide participants into groups of better and worse
observers. This would answer whether fixation improvement for different fixation crosses
has a differential impact on participants who perform better in fixations from the start and
whether participants who are better at suppressing saccades exhibit worse classification
accuracy for EEG data. Even though it might not be feasible to only test participants
with a better oculomotor signature, these steps could ensure to consider inter-individual
differences when interpreting decoding accuracies.

6.5 Conclusion
Humans can efficiently extract information from scenes in the environment. One reason
for this efficient behavior is the inherent natural structure of our surroundings. In projects
I-III, we investigated the effect of spatial and categorical regularities on scene and object
processing using a mixture of EEG and fMRI. Another factor that allows humans to extract
information from natural stimuli efficiently is eye movements. In project IV, we investi-
gated if and to which extent eye movements influence MVPA of EEG data. In detail, we
aimed to answer four main questions: (1) Does real-world structure impact scene-selective
neural responses? (2) Does the spatial structure of a scene facilitate the cortical analysis
of the scene’s categorical content? (3) Does the spatial structure of a scene’s context aid in
the extraction of task-relevant object information from the scene? (4) Does the choice of
different fixation crosses influence eye movements and the classification of natural images
from EEG and eye tracking?

We showed that: (1) Spatial scene structure impacts scene-selective neural responses
in OPA and PPA and reveals genuine sensitivity to spatial scene structure from 255 ms on,
while scene-selective neural responses are less sensitive to categorical scene structure. (2)
Spatial scene structure facilitates the extraction of the scene’s categorical content within
200 ms of vision. (3) Coherent scene structure facilitates the extraction of object infor-
mation if the object is task-relevant, suggesting a task-based modulation. (4) The bullseye
fixation cross reduces eye movements on the single image level and subtly removes sys-
tematic eye movement related activity in M/EEG data.

Overall, this thesis advanced our understanding of the impact of real-world structure
and eye movements on the extraction of scene and object information from natural stimuli.
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Complete scene image set  

 

Figure S1. Scene images used in the study. The intact and jumbled scene stimuli were 

generated from 24 scene images from four categories: churches, supermarkets, 

houses, and streets. All images were chosen to depict easily recognizable scenes, 
photographed from a typical real-life viewpoint.   

94



SUPPLEMENT – SENSITIVITY TO SCENE STRUCTURE    3 

fMRI decoding – searchlight analysis 

To substantiate our ROI analyses, we additionally ran a searchlight MVPA, 

where we probed sensitivity to spatial and categorical scene structure across the 

whole occipitotemporal visual cortex. 

For this searchlight MVPA, we repeatedly performed the two decoding 

analyses (i.e., decoding spatial or categorical scene structure; see Method) for a 

moving sphere of 250 voxels, which was centered on every voxel within an anatomical 

mask of the occipital and temporal cortices (taken from WFU PickAtlas for SPM12). 

This procedure allowed us to map sensitivity to spatial and categorical scene 

structure across the whole visual cortex, separately for the upright and inverted 

scenes, and separately for each participant. By testing decoding against chance 

across participants, we computed six effects: (1) sensitivity to spatial structure for the 

upright scenes, (2) sensitivity to spatial structure for the inverted scenes, (3) sensitivity 

to categorical structure for the upright scenes, (4) sensitivity to categorical structure 

for the inverted scenes, (5) an inversion effect for spatial structure (i.e., the difference 

between (1) and (2)), and (6) an inversion effect for categorical structure (i.e., the 

difference between (3) and (4)). Significance was established using a threshold-free 

cluster enhancement procedure (as used for the EEG data). The resulting statistical 

maps were thresholded at z>1.96 (i.e., pcorr<.05). 
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Figure S2. MVPA searchlight results in occipitotemporal cortex. Spatially intact and 

spatially jumbled scenes were discriminable in widespread regions of the visual 
cortex, both when presented upright (a) and inverted (b). Critically, when subtracting 

decoding in the upright and inverted conditions, we found inversion effects in regions 
overlapping with the typical locations of OPA and PPA (masks taken from Julian et 

al., 2012) (c), which indicated genuine sensitivity to spatial scene structure. Only 
voxels exhibiting significant effects (pcorr<.05) are shown. 
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The searchlight analysis yielded widespread significant decoding between 

spatially intact and jumbled upright scenes, covering early and high-level visual cortex 

(Figure S2a). For inverted scenes, this decoding was less pronounced (Figure S2b). 

Critically, we found inversion effects (i.e., better decoding for the upright, compared 

to the inverted scenes) in areas around the transverse occipital sulcus, corresponding 

to the location of OPA and areas around the parahippocampal cortex, corresponding 

to the location of PPA (Figure S2c). No significant inversion effects were found for 

categorical scene structure. 

These analyses strongly support the results of our ROI-based analysis (Figure 

3b/e), which revealed genuine sensitivity to spatial scene structure in the OPA and 

PPA.  
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fMRI decoding – additional ROIs 

In addition to the scene-selective OPA and PPA, we also performed MVPA on 

responses in scene-selective retrosplenial cortex (RSC) and object-selective lateral 

occipital cortex (LO). These ROIs were defined similarly to OPA and PPA: For both 

regions, we used a functional template mask (Julian et al., 2012), and within this mask 

defined the voxel exhibiting the greatest t-value in a scene>object (RSC) or an 

object>scrambled (LO) contrast. Then, the ROIs were constructed as 125-voxel 

spheres around this peak voxel, and concatenated for the left and right hemispheres. 

After extracting responses from these ROIs, we performed the same decoding 

analyses (Figure S3a/c) as for the other ROIs. 

For RSC, we did not find significant decoding between the spatially intact and 

spatially jumbled scenes (Figure S3b), neither in the upright, t(19)=2.49, pcorr=.066, nor 

the inverted condition, t(19)=0.13, pcorr>1. No significant inversion effect was 

observed, t(16)=1.82, pcorr=.26. Similarly, no significant effects were found when 

decoding between categorically intact and categorically jumbled scenes (Figure S3d), 

all t<1.64, pcorr>.35. These results suggest that scene structure is not represented in 

RSC. 

For LO, we found significant decoding between spatially intact and spatially 

jumbled scenes (Figure S3b), both in the upright, t(19)=4.19, pcorr=.001, and in the 

inverted condition, t(19)=3.48, pcorr=0.008. However, no inversion effect was found, 

t(16)=0.47, pcorr>1. No significant effects were found when decoding between 

categorically intact and categorically jumbled scenes (Figure S3d), all t<2.19, 

pcorr>.12. These results suggest that only scene-selective regions, but not object-
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selective regions of the occipital cortex are genuinely sensitive to spatial scene 

structure. 

  

 

Figure S3. MVPA results in RSC and LO. To reveal sensitivity to spatial scene 

structure, we decoded between scenes with spatially intact and spatially jumbled 

parts (a). Scene-selective RSC did not show any significant decoding of spatial scene 
structure and no inversion effects. Object-selective LO showed significant decoding 

between spatially intact and spatially jumbled scenes, but no significant inversion 
effect (b). To reveal sensitivity to categorical scene structure, we decoded between 
scenes with categorically intact and categorically jumbled parts (c). In this analysis, 

no significant decoding and no inversion effects were found for both regions (d). 
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fMRI decoding – varying voxel counts in V1 

To explore whether the results in V1 changed as a function of ROI size, we 

selected different numbers of voxels, depending on their probability to belong to V1, 

taken from the Wang et al. (2015) atlas. The resulting V1 sizes varied between 1032 

(10% probability cutoff) and 87 voxels (60% probability cutoff). 

For each of these voxel counts, we re-performed the main decoding analysis, 

where we decoded between (1) spatially intact and spatially jumbled scenes and (2) 

categorically intact and categorically scrambled scenes (Figure S4a/c). 

 

 

Figure S4. Results for different voxel counts in V1. Results were highly similar across 

different V1 sizes, ranging from voxels belonging to V1 with probabilities ³10% (1032 

voxels) to voxels belonging to V1 with probabilities ³60% (87 voxels). This shows that 
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independently of the region’s size, there is no reliable sensitivity to scene structure 
(i.e., no robust inversion effects) in early visual cortex. Error margins reflect standard 

errors of the difference. 
 

Independently of the voxel counts, we found similar results as in the main 

analysis (Figure 3b/e). Spatial structure could be decoded reliably from V1 activations, 

both in the upright and inverted conditions, all t(19)>7.32, pcorr<.001 (Figure S4b). We 

observed an inversion effect only for the 40% probability cutoff, t(16)=3.01, pcorr=.025, 

but not all other cutoffs, all t(16)<1.62, pcorr>.37. Across the different voxel counts, we 

did not find a difference between the upright and inverted conditions, F(1,16)=2.19, 

pcorr=.47, suggesting no genuine inversion effects in V1. Similarly, we did not observe 

any significant inversion effects when looking at categorical scene structure, all 

t(16)<1.07, pcorr>.90 (Figure S4d). These results corroborate our finding that V1 does 

not exhibit robust sensitivity to scene structure.  
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fMRI decoding – varying voxel counts in OPA / PPA 

To explore whether the results in OPA and PPA changed as a function of ROI 

size, we selected different numbers of voxels by varying the number of voxels 

selected around the localizer peak activation of each hemisphere (see Materials and 

Methods). Each ROI’s size was varied between 25 voxels and 225 voxels for each 

hemisphere (i.e., 50 to 450 voxels for the collapsed ROI). 

For each of these voxel counts, we re-performed the main decoding analysis, 

where we decoded between (1) spatially intact and spatially jumbled scenes and (2) 

categorically intact and categorically scrambled scenes (Figure S5a/c). 

 

 

Figure S5. To explore whether the results in scene-selective cortex change as a 

function of ROI size, we selected the nearest 25 to 225 voxels around the individual 
participants’ localizer peaks. Critically, the results were highly similar across the 

different ROI sizes, showing that the observed effect of sensitivity to spatial structure 
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in scene-selective cortex is not strongly dependent on the number of voxels 
considered part of each ROI. Error margins reflect standard errors of the difference. 

Shaded gray bars mark the 125-voxel spheres used in the main analysis.  
 

We found that results were largely independent of region size. Spatial structure 

could be reliably decoded for upright scenes in OPA, all t(19)>3.70, pcorr<.005, and 

PPA, all t(19)>5.19, pcorr<.003 (Figure S5b). This decoding was significantly weaker for 

in the inverted condition, both in OPA, all t(16)>3.37, pcorr<.012, and PPA, all 

t(16)>2.50, pcorr<.071, indicating inversion effects across all voxels counts. By 

contrast, we did not observe any significant inversion effects when looking at 

categorical scene structure, neither in OPA, all t(16)<0.61, pcorr>1, nor in PPA, all 

t(16)<0.51, pcorr>1 (Figure S5d). These results show that our finding of robust 

sensitivity to spatial scene structure in scene-selective cortex cannot be attributed to 

the ROI definition criteria applied.  
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EEG decoding – classifying scene category 

Our data suggest that categorically intact and categorically shuffled scenes 

were not represented differently during the experiments. Could this result be 

explained by an absence of category information from neural signals in the first place? 

To investigate how well cortical representations tracked the scenes’ 

categorical content, we performed a decoding analysis on the EEG data in which we 

classified scenes into the four categories used in the experiment (church, house, 

supermarket, street). Note that this analysis could not be performed for the fMRI 

experiment, where scenes of all categories were intermixed within each block of the 

block design.  

 

 

Figure S6. Decoding of scene categories from EEG signals. The four scene categories 

(example stimuli on the left) could be reliably decoded from the EEG data between 
45ms and 660ms, showing that the neural data contained robust information about 

scene category. Error margins reflect standard errors of the mean. Significance 
markers denote above-chance decoding (pcorr<.05).  
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For decoding scene category from the EEG signals, we only used the 

conditions where scene category remained intact across the four scene parts. For 

each of these four conditions separately, we then performed a four-way decoding 

analysis in a leave-one-trial-out fashion (see Materials and Methods for details on the 

decoding procedure), and subsequently averaged across these analyses. Note that 

the purpose of this analysis was to show that the EEG signals contained reliable 

category information. Further analyses on the nature of this category information are 

beyond the scope of the current paper.  

Across the conditions analyzed, we found that scene category information was 

robustly decodable between 45ms and 660ms after scene onset, peak z>3.71, 

pcorr<.001 (Figure S6). This shows that there was robust category information in the 

EEG signals, although across scenes there was no sensitivity to the scenes’ 

categorical structure (i.e., whether categorical content matched within a scene or not). 

 

105



Supplementary Material Project III

Supplementary material to Project III "Coherent natural scene structure facilitates the ex-
traction of task-relevant object information in visual cortex."

Authors:

Daniel Kaiser, Greta Häberle, Radoslaw M. Cichy

Contributions:

Daniel Kaiser: Conceptualization, Methodology, Software, Validation, Formal analysis,
Investigation, Resources, Data curation, Writing – original draft, Writing –review and
editing, Visualization, Supervision, Project administration, Funding acquisition. Greta
Häberle: Investigation, Writing –review and editing. Radoslaw M. Cichy: Resources,
Writing –review and editing, Supervision, Project administration, Funding acquisition.

Contributions to open and reproducible science:
To contribute to open and reproducible science, the paper is published in an open-access
journal. The original article can be found here: doi: 10.1016/j.neuroimage.2021.118365.
Data are publicly available on OSF: doi: 10.17605/osf.io/gs2t5.

Copyright note:

According to Elsevier, the author has the right to include this article in a thesis or dis-
sertation provided that it is not separately downloadable and the thesis is not published
commercially. The article is published under a CC BY-NC-ND license.

106

https://doi.org/10.1016/j.neuroimage.2021.118365
https://doi.org/10.17605/osf.io/gs2t5
https://creativecommons.org/licenses/by-nc-nd/4.0/


 1 

Supplementary Information 

 

 

Coherent natural scene structure facilitates the extraction of task-relevant 

object information in visual cortex 

 

Daniel Kaiser, Greta Häberle, Radoslaw M. Cichy 
 

 

Supplementary Contents            Page 

 

Figure S1. Univariate results – category-selective responses   2 

Figure S2. Univariate results separately for both hemispheres   3 

Figure S3. MVPA results separately for both hemispheres   4 

Figure S4. MVPA results with alternative analysis routines   5 

 

Table S1. Descriptive statistics – behavior      6 

Table S2. Descriptive statistics – univariate analysis    7 

Table S3. Descriptive statistics – MVPA      8 

 

 

 

  

107



 2 

 
Figure S1. Univariate results – category-selective responses. Across all regions, 

we found stronger responses to scenes that contained a person than to scenes that 

contained a car (collapsed across intact and jumbled scenes), main effect of category 

across ROIs, F(1,24)=8.50, p=0.008, hp
2=0.62. This general bias towards person-

scenes was not modulated by participants’ current task, category × task interaction, 

F(1,24)=0.30, p=0.59, hp
2=0.01. For illustration purposes, ROI masks are shown on the 

right hemisphere of a standard-space template using MRIcroGL (Li et al., 2016); the 

displayed results are averaged across ROIs in both hemispheres. Error bars represent 

standard errors of the mean. 
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 3 

 
Figure S2. Univariate results separate for both hemispheres. Results for the left 

and right hemispheres were highly similar and closely resembled the results across 

both hemispheres (Figure 2). No qualitative difference between hemispheres was 

found, as indicated by non-significant main effects and interactions in all ROIs. The 

only exception was a hemisphere × scene structure interaction in OPA, F(1,24)=6.31, 

p=0.019, hp
2=0.21, with a stronger effect of scene structure in the right hemisphere. 

For illustration purposes, ROI masks are shown on the right hemisphere of a standard-

space template using MRIcroGL (Li et al., 2016). Error bars represent standard errors 

of the mean. 
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 4 

 
Figure S3. MVPA results separately for both hemispheres. Results for the left and 

right hemispheres closely resembled the results across both hemispheres (Figure 3). 

No qualitative difference between hemispheres was found, all interactions with 

hemisphere, LO: F(1,24)<2.03, p>0.16, hp
2<0.08, EBA: F(1,24)<2.49, p>0.12, hp

2<0.10. 

In LO, category information was generally stronger in the right-hemispheric than in the 

left-hemispheric ROI, main effect of hemisphere, F(1,24)=5.34, p=0.030, hp
2=0.18. For 

illustration purposes, ROI masks are shown on the right hemisphere of a standard-

space template using MRIcroGL (Li et al., 2016). Error bars represent standard errors 

of the mean. 
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 5 

 
Figure S4. MVPA results with alternative analysis routines. a) Category information 

in LO and EBA for intact and jumbled scenes across the two tasks, computed using 

Spearman correlations instead of Pearson correlations. As in the main analysis (Figure 

3), an interaction between task and scene structure was observed for both regions, 

LO: F(1,24)=6.29, p=0.019, hp
2=0.21, EBA: F(1,24)=5.10, p=0.033, hp

2=0.18. b) 
Category information, as in (a), but computed without removing the voxel-wise mean 
activation across conditions. Again, an interaction effect was observed for LO: 

F(1,24)=4.48, p=0.045, hp
2=0.16, but did not reach significance in EBA: F(1,24)=2.33, 

p=0.14, hp
2=0.09. For illustration purposes, ROI masks are shown on the right 

hemisphere of a standard-space template using MRIcroGL (Li et al., 2016); the 

displayed results are averaged across ROIs in both hemispheres. Error bars represent 

standard errors of the mean. 
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 6 

 
Table S1. Descriptive statistics – behavior. Means (M) and standard errors (SE) for 

the accuracies (in % correct) and response times (in ms), as shown in Figure 1.  

 
 
 

Object Task  
Intact 

Object Task  
Scrambled 

Scene Task  
Intact  

Scene Task  
Scrambled 

Accuracy M=77.1 
SE=1.6 

M=70.5 
SE=1.5 

M=76.7 
SE=1.4 

M=73.7 
SE=1.5 

Response Time M=717 
SE=16 

M=731 
SE=17 

M=715 
SE=15 

M=736 
SE=17 
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 7 

 
Table S2. Descriptive statistics – univariate analysis. Means (M) and standard 

errors (SE) for univariate activations in each ROI, as shown in Figure 2.  

 
 

ROI 
Object Task  

Intact 
Object Task  
Scrambled 

Scene Task  
Intact  

Scene Task  
Scrambled 

EVC M=3.50 
SE=0.30 

M=3.47 
SE=0.29 

M=3.68 
SE=0.30 

M=3.70 
SE=0.32 

LO M=0.65 
SE=0.12 

M=0.46 
SE=0.11 

M=0.63 
SE=0.13 

M=0.52 
SE=0.12 

EBA M=0.23 
SE=0.14 

M=0.01 
SE=0.13 

M=0.11 
SE=0.12 

M=0.03 
SE=0.11 

OPA M=1.74 
SE=0.29 

M=1.08 
SE=0.24 

M=1.61 
SE=0.30 

M=1.10 
SE=0.24 

PPA M=0.93 
SE=0.16 

M=0.56 
SE=0.13 

M=1.28 
SE=0.17 

M=0.84 
SE=0.17 
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 8 

 
Table S3. Descriptive statistics – MVPA. Means (M) and standard errors (SE) for 

object discriminability (difference of within- and between-category correlations) in 

each ROI, as shown in Figure 3.  

 
 

ROI 
Object Task  

Intact 
Object Task  
Scrambled 

Scene Task  
Intact  

Scene Task  
Scrambled 

LO M=0.13 
SE=0.02 

M=0.05 
SE=0.02 

M=0.06 
SE=0.02 

M=0.10 
SE=0.03 

EBA M=0.15 
SE=0.03 

M=0.07 
SE=0.03 

M=0.10 
SE=0.04 

M=0.14 
SE=0.03 
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Summary of main results
When we observe a scene in our daily lives, our brains seemingly effortlessly extract var-
ious aspects of that scene. This can be attributed to different aspects of the human visual
system, including but not limited to (1) its tuning to natural regularities in scenes and (2)
its ability to bring different parts of the visual environment into focus via eye movements.
While eye movements are a ubiquitous and natural behavior, they are considered unde-
sirable in many highly controlled visual experiments. Participants are often instructed to
fixate but cannot always suppress involuntary eye movements, which can challenge the
interpretation of neuroscientific data, in particular for magneto- and electroencephalogra-
phy (M/EEG).

This dissertation investigated the effect of scene structure and eye movements on the
extraction of scene and object information from natural stimuli in the visual system. Projects
I-III used a combination of EEG and fMRI to investigate the effect of natural scene struc-
ture on scene perception and extracting object information from natural scenes. Project IV
used a combination of EEG and eye tracking to quantify how and to which extent eye move-
ments influence the extraction of object and category information from natural stimuli. In
detail, we aimed to answer four main questions: (1) Does the real-world structure impact
scene-selective neural responses? (2) Does the spatial structure of a scene help facilitate
the cortical analysis of the scene’s categorical content? (3) Does the spatial structure of
a scene’s context aid in extracting task-relevant object information from the scene? (4)
Does the choice of different fixation crosses influence eye movements the classification of
natural images from EEG and eye tracking? In project I, we investigated the impact of spa-
tial and categorical regularities on scene representations in healthy human adults (Kaiser
et al., 2020a). Humans efficiently extract information from natural scenes (Potter, 1975;
Thorpe et al., 1996). Several studies have shown that one reason for this efficiency can
be found in the inherent structure of natural scenes. When this structure is interrupted,
perception and categorization of these scenes are strongly impaired (Biederman, 1972;
Biederman et al., 1974). However, the impact of spatial and categorical regularities on
scene-selective neural responses has yet to be investigated.

Using EEG and fMRI multi- as well as univariate analyses, we tested for the cortical
sensitivity to spatial and categorical structure by using two complementary analyses. To
test for spatial sensitivity, we classified spatially intact from spatially jumbled scenes (irre-
spective of category). To test for categorical sensitivity we classified categorically intact
from categorically jumbled scenes (irrespective of spatial structure). We showed that sen-
sitivity to spatial (but not categorical) scene structure emerged after 255ms and in OPA
and PPA. This effect was more substantial for upright than inverted scenes facilitating the
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interpretation that this effect shows genuine sensitivity to spatial scene structure instead
of just reflecting differences in low-level properties of the scenes.

To answer the second question, project II investigated whether the presence of an in-
tact scene structure facilitates the cortical analysis of the categorical content of that scene
(Kaiser et al., 2020). Previous studies have shown that the visual system is sensitive to the
inherent structure of our natural world (Abassi & Papeo, 2020; Baldassano et al., 2017;
Kaiser et al., 2014; Kim & Biederman, 2011; Roberts & Humphreys, 2010). However, it
is still unclear how and whether this structure aids in the extraction and representation of
a scene’s categorical content.

To track cortical representations across time, we used a cumulative decoding approach.
This approach uses a larger amount of data for decoding than standard decoding techniques
by considering all time points prior to the currently decoded time point. Therefore, more
data were available at each subsequent step while maintaining temporal precision in the
forward direction. Consequently, this provided increased sensitivity for detecting decod-
ing onsets compared to standard time series decoding (Ramkumar et al., 2013) Our re-
sults provide evidence that the facilitation of category information by real-world structure
emerges within 200 ms of vision. While the category of the intact scenes could reliably be
decoded within the first 100 ms, within 200 ms category decoding was more pronounced
for the spatially intact versus the spatially jumbled scenes. In line with project I, we were
able to show that this facilitation can be attributed to the adherence to the real-world struc-
ture instead of differences in low-level properties. Critically, we showed that for upright
scenes the jumbling manipulation had a greater effect than for inverted scenes.

To answer the third question, project III investigated the behavioral relevance of the
previously described neural findings by combining neural recordings with a more nat-
uralistic task. In detail, we investigated whether typical real-world environments help
participants to efficiently solve an object (person versus car) and a scene (rural versus ur-
ban) categorization task while recording fMRI. Using a combination of univariate and
correlation-based multivariate analysis techniques, we were able to show that participants
were faster and more accurate in performing the object and scene categorization task when
perceiving intact versus jumbled scenes. Object information was enhanced for intact ver-
sus jumbled scenes only when the objects were relevant to the current behavioral goals.
These findings revealed that early cortical tuning to the real-world structure is a crucial
asset for solving complex real-world tasks (Kaiser et al., 2021).

During the recordings of projects I, II, and III, participants were instructed to fixate on
a centrally presented fixation cross. To answer the fourth question, project IV sought to
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investigate the influence of two different fixation crosses (a bullseye versus a standard fix-
ation cross) on eye movements and the classification of natural images from EEG. While
eye movements are a ubiquitous and natural behavior, they are undesirable in many highly
controlled experimental visual paradigms. Previous studies revealed that eye movements
affect various analysis techniques, including MVPA (Mostert et al., 2018; Quax et al.,
2019). In the combined EEG and eye tracking study, we compared the effect of two dif-
ferent fixation symbols – the standard fixation cross and the bullseye fixation cross – in
the context of a visual paradigm with centrally presented naturalistic object images, using
behavioral and multivariate analysis techniques. Our findings were threefold. First, the
bullseye fixation cross reduced the number of saccades and amplitude size of microsac-
cades. Second, the bullseye subtly reduced classification accuracy in eye tracking and
EEG data for the classification of single object images, but not for the super-level cate-
gory animacy. Third, using representational similarity analysis, we found a systematic
relationship between eye tracking and EEG data at the level of single images for the stan-
dard, but not for the bullseye fixation cross. These findings suggest that systematic eye
movements indeed influence the results of MVPA, albeit to a small degree. Therefore, we
recommend the bullseye fixation cross in experimental paradigms with fixation, particu-
larly when control of fixation is beneficial.

In summary, projects I, II, and III aimed at answering three interconnected questions
to further our understanding of scene processing. While project I showed that showed that
scene-selective neural responses are sensitive to spatial scene structure, project II pro-
vided evidence that spatial structure facilitates the extraction of scene categories. Project
III added a brain-behavior link by investigating whether and how spatial regularities aid
object extraction from a scene while manipulating attention through an object and a scene
classification task. The project results show that intact spatial structure enhances the rep-
resentation of objects in a scene only if the objects are behaviorally relevant. Project IV
suggest that systematic eye movements indeed influence classification results for single
object images, albeit to a small degree.
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Zusammenfassung der Ergebnisse
Wenn wir in unserem täglichen Leben eine Szene beobachten, extrahiert unser Gehirn
scheinbar mühelos verschiedene Aspekte dieser Szene. Dies kann auf verschiedene As-
pekte des menschlichen Sehsystems zurückgeführt werden, unter anderem auf (1) seine
Abstimmung auf natürliche Regelmäßigkeiten in Szenen und (2) seine Fähigkeit, ver-
schiedene Teile der visuellen Umgebung durch Augenbewegungen in den Fokus zu brin-
gen. Obwohl Augenbewegungen ein allgegenwärtiges und natürliches Verhalten sind, wer-
den sie in vielen stark kontrollierten visuellen Experimenten als unerwünscht angesehen.
Die Teilnehmer werden oft angewiesen, zu fixieren, können aber unwillkürliche Augen-
bewegungen nicht immer unterdrücken, was die Interpretation neurowissenschaftlicher
Daten, insbesondere der Magneto- und Elektroenzephalographie (M/EEG), in Frage stellen
kann.

In dieser Dissertation wurde der Einfluss von Szenenstruktur und Augenbewegungen
auf die Extraktion von Szenen- und Objektinformationen aus natürlichen Reizen im vi-
suellen System untersucht. In den Projekten I-III wurde eine Kombination aus EEG und
fMRI verwendet, um die Auswirkungen der natürlichen Szenenstruktur auf die Szenen-
wahrnehmung und die Extraktion von Objektinformationen aus natürlichen Szenen zu un-
tersuchen. In Projekt IV wurde eine Kombination aus EEG und Eye Tracking eingesetzt,
um zu quantifizieren, wie und in welchem Ausmaß Augenbewegungen die Extraktion von
Objekt- und Kategorieinformationen aus natürlichen Reizen beeinflussen. Im Einzelnen
wollten wir vier Hauptfragen beantworten: (1) Wirkt sich die Struktur der realen Welt
auf szenenselektive neuronale Reaktionen aus? (2) Hilft die räumliche Struktur einer
Szene dabei, die kortikale Analyse des kategorialen Inhalts der Szene zu erleichtern? (3)
Hilft die räumliche Struktur des Kontextes einer Szene bei der Extraktion aufgabenrel-
evanter Objektinformationen aus der Szene? (4) Beeinflusst die Wahl unterschiedlicher
Fixationskreuze Augenbewegungen und die Klassifikation natürlicher Bilder aus EEG
und Eye-Tracking? In Projekt I untersuchten wir den Einfluss räumlicher und kategori-
aler Regelmäßigkeiten auf die Szenenrepräsentationen gesunder erwachsener Menschen
(Kaiser et al., 2020a). Der Mensch extrahiert effizient Informationen aus natürlichen
Szenen (Potter, 1975; Thorpe et al., 1996). Mehrere Studien haben gezeigt, dass ein
Grund für diese Effizienz in der inhärenten Struktur natürlicher Szenen zu finden ist. Wenn
diese Struktur unterbrochen wird, sind Wahrnehmung und Kategorisierung dieser Szenen
stark beeinträchtigt (Biederman, 1972; Biederman et al., 1974). Der Einfluss räumlicher
und kategorialer Regelmäßigkeiten auf szenenselektive neuronale Reaktionen muss je-
doch noch untersucht werden.
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Mithilfe von EEG- und fMRI multi- sowie univariaten Analysen testeten wir die ko-
rtikale Sensitivität für räumliche und kategoriale Strukturen mit Hilfe von zwei komple-
mentären Analysen. Um die räumliche Sensitivität zu testen, klassifizierten wir räumlich
intakte von räumlich durcheinander geworfenen Szenen (unabhängig von der Kategorie).
Um die kategoriale Empfindlichkeit zu testen, haben wir kategorial intakte von katego-
rial durcheinander geworfenen Szenen (unabhängig von der räumlichen Struktur) unter-
schieden. Wir konnten zeigen, dass die Sensitivität für räumliche (aber nicht kategori-
ale) Szenenstrukturen in OPA und PPA und nach 255 ms auftrat. Dieser Effekt war bei
aufrechten Szenen ausgeprägter als bei invertierten Szenen, was die Interpretation erle-
ichtert, dass dieser Effekt eine echte Sensitivität für die räumliche Szenenstruktur zeigt
und nicht nur Unterschiede in den niedrigen Eigenschaften der Szenen widerspiegelt.

Zur Beantwortung der zweiten Frage wurde in Projekt II untersucht, ob das Vorhan-
densein einer intakten Szenenstruktur die kortikale Analyse des kategorialen Inhalts dieser
Szene erleichtert (Kaiser et al., 2020). Frühere Studien haben gezeigt, dass das visuelle
System für die inhärente Struktur unserer natürlichen Welt empfindlich ist (Abassi & Pa-
peo, 2020; Baldassano et al., 2017; Kaiser et al., 2014; Kim & Biederman, 2011; Roberts
& Humphreys, 2010). Es ist jedoch noch unklar, wie und ob diese Struktur bei der Ex-
traktion und Darstellung des kategorialen Inhalts einer Szene hilft.

Um die kortikalen Repräsentationen über die Zeit zu verfolgen, haben wir einen ku-
mulativen Dekodierungsansatz verwendet. Bei diesem Ansatz wird eine größere Menge
an Daten für die Dekodierung verwendet als bei Standarddekodierungstechniken, da alle
Zeitpunkte vor dem aktuell dekodierten Zeitpunkt berücksichtigt werden. Daher standen
bei jedem nachfolgenden Schritt mehr Daten zur Verfügung, während die zeitliche Präzi-
sion in Vorwärtsrichtung beibehalten wurde. Dies führte zu einer höheren Sensitivität bei
der Erkennung von Dekodierungsanfängen im Vergleich zur standardmäßigen Zeitreihen-
dekodierung (Ramkumar et al., 2013) Unsere Ergebnisse belegen, dass die Erleichterung
der Kategorieninformation durch die Struktur der realen Welt innerhalb von 200 ms nach
dem Sehen einsetzt. Während die Kategorie der intakten Szenen innerhalb der ersten 100
ms zuverlässig dekodiert werden konnte, war die Kategoriedekodierung innerhalb von 200
ms für die räumlich intakten Szenen ausgeprägter als für die räumlich durcheinanderge-
worfenen Szenen. In Übereinstimmung mit Projekt I konnten wir zeigen, dass diese Erle-
ichterung auf das Festhalten an der Struktur der realen Welt zurückzuführen ist und nicht
auf Unterschiede in den Eigenschaften auf niedriger Ebene. Entscheidend war, dass wir
zeigen konnten, dass die Manipulation des Durcheinanders bei aufrechten Szenen einen
größeren Effekt hatte als bei invertiert Szenen.
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Zur Beantwortung der dritten Frage untersuchten wir in Projekt III die Verhaltensrel-
evanz der zuvor beschriebenen neuronalen Befunde, indem wir neuronale Ableitungen
mit einer eher naturalistischen Aufgabe kombinierten. Im Einzelnen untersuchten wir, ob
typische reale Umgebungen den Teilnehmern helfen, eine Objekt- (Person versus Auto)
und eine Szenen-Kategorisierungsaufgabe (ländlich versus städtisch) effizient zu lösen,
während wir fMRI-Aufnahmen machten. Mithilfe einer Kombination aus univariaten
und korrelationsbasierten multivariaten Analysetechniken konnten wir zeigen, dass die
Teilnehmer die Objekt- und Szenenkategorisierungsaufgabe schneller und genauer lösten,
wenn sie intakte Szenen im Vergleich zu ungeordneten wahrnahmen. Die Objektinforma-
tion war bei intakten Szenen nur dann besser als bei durcheinandergeworfenen Szenen,
wenn die Objekte für die aktuellen Verhaltensziele relevant waren. Diese Ergebnisse
zeigten, dass eine frühe kortikale Abstimmung auf die Struktur der realen Welt ein entschei-
dender Vorteil für das Lösen komplexer Aufgaben in der realen Welt ist (Kaiser et al.,
2021).

Während der Aufnahmen der Projekte I, II und III wurden die Teilnehmer angewiesen,
auf ein zentral präsentiertes Fixationskreuz zu fixieren. Um die vierte Frage zu beant-
worten, wurde in Projekt IV der Einfluss von zwei verschiedenen Fixationskreuzen (ein
Bullauge und ein Standard-Fixationskreuz) auf die Augenbewegungen und die Klassi-
fizierung natürlicher Bilder aus dem EEG untersucht. Obwohl Augenbewegungen ein all-
gegenwärtiges und natürliches Verhalten sind, sind sie in vielen stark kontrollierten exper-
imentellen visuellen Paradigmen unerwünscht. Frühere Studien haben gezeigt, dass Au-
genbewegungen verschiedene Analysetechniken beeinträchtigen, darunter MVPA (Mostert
et al., 2018; Quax et al., 2019). In der kombinierten EEG- und Eye-Tracking-Studie
verglichen wir die Wirkung von zwei verschiedenen Fixationssymbolen - dem Standard-
Fixationskreuz und dem Bullseye-Fixationskreuz - im Rahmen eines visuellen Paradigmas
mit zentral präsentierten naturalistischen Objektbildern, wobei wir verhaltensbasierte und
multivariate Analysetechniken verwendeten. Unsere Ergebnisse waren dreigeteilt. Er-
stens reduzierte das Bullseye-Fixationskreuz die Anzahl der Sakkaden und die Amplitu-
dengröße der Mikrosakkaden. Zweitens verringerte das Bullauge die Klassifizierungsge-
nauigkeit in den Eye-Tracking- und EEG-Daten für die Klassifizierung von Einzelobjek-
ten, nicht aber für die übergeordnete Kategorie der Lebendigkeit. Drittens fanden wir mit
Hilfe einer repräsentativen Ähnlichkeitsanalyse eine systematische Beziehung zwischen
Eye-Tracking- und EEG-Daten auf der Ebene der Einzelbilder für das Standard-, nicht aber
für das Bullseye-Fixationskreuz. Diese Ergebnisse deuten darauf hin, dass systematische
Augenbewegungen tatsächlich die Ergebnisse der MVPA beeinflussen, wenn auch nur in
geringem Maße. Daher empfehlen wir das Bullseye-Fixationskreuz in experimentellen
Paradigmen mit Fixation, insbesondere wenn die Kontrolle der Fixation von Vorteil ist.
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Zusammenfassend lässt sich sagen, dass die Projekte I, II und III darauf abzielten, drei
miteinander verknüpfte Fragen zu beantworten, um unser Verständnis der Szenenverar-
beitung zu erweitern. Während Projekt I zeigte, dass szenenselektive neuronale Reaktio-
nen empfindlich auf die räumliche Szenenstruktur reagieren, lieferte Projekt II Beweise
dafür, dass die räumliche Struktur die Extraktion von Szenekategorien erleichtert. Projekt
III stellte eine Verbindung zwischen Gehirn und Verhalten her, indem es untersuchte, ob
und wie räumliche Regelmäßigkeiten die Objektextraktion aus einer Szene unterstützen,
während die Aufmerksamkeit durch eine Objekt- und eine Szenenklassifikationsaufgabe
manipuliert wurde. Die Projektergebnisse zeigen, dass eine intakte räumliche Struktur die
Darstellung von Objekten in einer Szene nur dann verbessert, wenn die Objekte verhal-
tensrelevant sind. Projekt IV deutet darauf hin, dass systematische Augenbewegungen tat-
sächlich die Klassifikationsergebnisse für einzelne Objektbilder beeinflussen, wenn auch
nur in geringem Maße.
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