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Abstract

English An often encountered problem in pre-clinical, early clinical or translational studies is
the analysis of complex data structures. In such studies, sample sizes are typically quite small;
outcomes might not be normally distributed; are highly skewed or are not even on a metric scale.
In these situations, nonparametric inference methods should be preferred over parametric proce-
dures. Furthermore, an issue that often arises in practical applications is the occurrence of missing
data. We develop nonparametric methods for the analysis of repeated measures designs that are
based on all-available information instead of using completely observed subjects only. Neither any
specific data distribution nor equal covariance matrices across the (treatment) groups are required.
The methods can be applied to metric, highly skewed, ordinal, ordered categorical and even bi-
nary data in a unified way. No adjustment for ties in the data is necessary as opposed to classical
nonparametric methods. We further generalize the framework to allow for possibly dependent
replicates or clustered data. One typical example where clustered data frequently arise are ani-
mal experiments, where several animals share the same cage. The assumption of independence
between animals from the same cage is likely to be violated since it can be assumed that these
animals are more similar than animals from other cages, for example in terms of their behaviour.
In this dissertation, statistical hypotheses are formulated in terms of the nonparametric relative
effect, which is easy to understand and to interpret. We present quadratic-type as well as multiple
contrast test-type procedures including simultaneous confidence intervals for the analysis of such
designs. Extensive simulation studies evaluate the precision of the proposed estimators as well as
type-I error rates and the power in various settings. It turns out that the methods are applicable in
many different situations. Real world data sets exemplify the application of the newly developed
procedures.

German Ein häufig auftretendes Problem in präklinischen, frühen klinischen oder translationalen
Studien ist die Analyse komplexer Datenstrukturen. In solchen Studien ist der Stichprobenum-
fang in der Regel recht klein; die Parameter sind möglicherweise nicht normalverteilt, schief verteilt
oder liegen nicht auf einer metrischen Skala. In solchen Situationen sollten nichtparametrische In-
ferenzmethoden gegenüber parametrischen Modellen bevorzugt werden. Ein weiteres häufiges
Problem sind fehlende Werte. Wir entwickeln nichtparametrische Methoden für die Analyse
von Modellen mit wiederholten Messungen, die auf allen verfügbaren Informationen beruhen,
anstatt nur die Information von vollständig beobachteten Subjekten zu verwenden. Es sind
weder eine bestimmte Datenverteilung noch gleiche Kovarianzmatrizen der Messwiederholungen
der (Behandlungs-)Gruppen erforderlich. Die Methoden können auf metrische, sehr schiefe, ordi-
nale, geordnete kategoriale und sogar binäre Daten in einheitlicher Weise angewendet werden. Im
Gegensatz zu den klassischen nichtparametrischen Methoden ist keine Anpassung für Bindungen
in den Daten erforderlich.
Wir verallgemeinern das Modell sowie die Prozeduren, um mögliche abhängige Wiederholungen
oder geclusterte Daten zu berücksichtigen. Ein typisches Beispiel für geclusterte Daten sind Daten
aus Tierexperimenten, in denen meist mehrere Tiere in einem Käfig gehalten werden. Hierbei
sollte von der Annahme der Unabhängigkeit der Tiere in einem Käfig abgesehen werden, da davon
ausgegangen werden kann, dass sich Tiere aus demselben Käfig ähnlicher sind als Tiere aus anderen
Käfigen. In dieser Dissertation werden Hypothesen in nichtparametrischen relativen Effekten for-
muliert, welche leicht verständlich und einfach zu interpretieren sind. Für die Analyse solcher
Modelle werden sowohl quadratische als auch multiple Kontrasttestverfahren einschließlich simul-
taner Konfidenzintervalle vorgestellt. Umfangreiche Simulationsstudien evaluieren die Präzision
der vorgeschlagenen Schätzer sowie die Typ-I-Fehlerraten und die Power in verschiedenen Set-
tings. Es zeigt sich, dass die Methoden in vielen verschiedenen Situationen anwendbar sind. Reale
Datensätze veranschaulichen die Anwendung der neu entwickelten Verfahren.
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1 Introduction

In many scientific applications, especially in medicine, subjects are observed repeatedly under differ-
ent conditions or time points. Such repeated measures (RM) designs are a cost saving alternative to
general factorial designs where only independent units are used. The simplest example of such RM
designs is a paired design involving one homogeneous group only. In the analysis of such designs, it
is important to consider a possible dependence between the repeated measures. If such a dependency
is ignored, the variance of differences or sums will be under- or overestimated and thus, the analysis
could lead to wrong decisions. Furthermore, one common assumption when modeling such designs is
the assumption of sphericity, which means that the variances of any differences between two repeated
measures are equal [4]. However, this assumption is often violated in practical applications and is not
easy to verify. Hence, statistical procedures which allow for any positive definite covariance structure
should be preferred in order to obtain valid results. In most cases, the structure of the covariance ma-
trix is unknown a priori and methods which make no assumption in terms of any covariance structure
represent a robust alternative to traditional approaches. Another issue arises whenever sample sizes
are quite small, outcomes are not normally distributed, highly skewed or ordinal. In such scenarios,
many parametric methods for the analysis of RM data, e.g. RM-Analysis of Variance (ANOVA),
Mixed Models or Generalized Estimating Equations (GEE) should not be considered since they rely
on assumptions such as normality and homoscedastic covariance matrices.
Besides specifying a correct model, it is important to consider a suitable effect measure to describe
any treatment effect or time differences in repeated measure models. The choice of the appropriate
effect measure relies often on the scale of the variable. One commonly used effect size for the analysis
of metric data in two groups is simply the difference between two means. However, analyses by using
the mean can be distorted if data is highly skewed or if many outliers are present. In case of ordinal
outcomes, means are not even defined - however, this fact is often ignored in practical applications.
In contrast to mean-based approaches, nonparametric rank-based methods are a suitable option for
the analysis of metric, ordinal, ordered categorical and even binary data in a unified way.
So called Wilcoxon-Mann-Whitney-type effects, also known as relative (treatment) effects or proba-
bilistic index defined as p = P (X < Y ) + 1

2P (X = Y ), (X,Y random variables coming from different
distributions FX , FY ) are intuitive nonparametric effects which can be used in these general situations.
In this dissertation, we present generalizations to the work of Konietschke et al. [5], who developed
inference methods in a simple repeated measures design, in more complex scenarios.
One issue that naturally arises in practical applications due to the nature of RM designs is the oc-
currence of missing data. There are many reasons for missing values in a data set, e.g. measurement
errors, subjects forget to answer an item on a questionnaire, drop out of the study or die before the
study ends. However, it is important to reflect on the missing value mechanism. Missing data can be
missing completely at random (MCAR), where the missingness is completely independent of predictors
and responses. The completely observed cases of such a data set represent an unbiased sample of the
population but using only complete observations results in a loss of power. Additionally, data is rarely
MCAR. Missing values can also be missing at random (MAR), which means that the probability of
missingness depends on other observed information, e.g. predictors. To obtain correct results, an
adjustment on this information must be made. However, if data is missing not at random (MNAR),
the missingness depends on the variable itself and analyses are biased. The problem is that there is no
way to be sure about the missing value mechanism in an actual data set. The easiest way to handle
missing values is to constrain the analysis simply on the completely observed cases (complete case
analysis, CCA). As mentioned before, this should only be done in scenarios where strong arguments
for MCAR exist. Further, this approach reduces the sample size and thus, results in a loss of power.
Another strategy is to impute the missing values to maintain the sample size and the power. There are
several ways to impute missing data; the most näıve approach would be to simply impute the missings
with the mean or median of the corresponding observed values, which typically leads to biased results.
Mean or median imputation, as well as regression based or stochastic regression imputation are ex-
amples for so called “Single Imputation Methods”. More advanced methods, so called “Model-based
Methods” include the Expectation Maximization approach and Multiple Imputation (MI). The latter is
structured in three consecutive steps. First, several imputed data sets are generated where the missing
values are replaced with “plausible” values, generated by using an appropriate imputation algorithm.
Second, each imputed data set is analyzed separately with an appropriate statistical technique. In the
final third step, parameters and standard errors from the separate analyses are combined according
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to Rubins’s Rules [6]. The advantage of using MI methods instead of single imputations is that the
uncertainty due to the missing values is directly modeled. However, there are many choices to be made
when conducting MI analyses, all leading to possibly different results, higher computation times and
no final complete data set. Additionally, as pointed out by Ramosaj et al. [7], a MI approach (Multiple
Imputation by Chained Equation) and a nonparametric imputation approach yield extremely inflated
type-I error rates, i.e. extremely liberal test decision. Thus, the approach within this dissertation will
be to not impute the missing data but to use all-available information from the data sets.
Another common scenario in (pre-) clinical and lab experiments is the presence of dependent replicates
or clustered data, not necessary equally sized. One typical example for clustered data are animal ex-
periments where several animals share the same cage. It can be assumed that those animals are more
similar than animals from different cages. Another example are lab experiments, where, for example,
the number of bacteria grown in the same petri dish is investigated. Ignoring the possibly present
correlated data structure and assuming independence of the subjects within a cluster (e.g. cage or
petri dish) introduces bias by inflating type-I error rates due to an underestimation of standard errors.
Furthermore, estimation of treatment effects is not straightforward due to the presence of intra-cluster
correlations and unequally sized clusters. A common approach is shrinking the observations from one
cluster to a single value by using a summary measure, e.g. the mean or median. Then, a statistical
method for independent observations is applied to obtain estimators, p-values and confidence intervals.
However, this approach is quite unsatisfactory since a lot of existing information is disregarded and
thus, the power of the experiment is decreased. Therefore, special procedures for clustered data have
been developed that take all observations into account. For the parametric framework, several proce-
dures of the analysis of such clustered data exists, e.g., Linear Mixed Models or Generalized Estimating
Equations (GEEs). However, these methods are based on assumptions such as multivariate normality
or linear relationships, which are hard to verify in practical applications, especially in studies with
small sample sizes. Several achievements in the nonparametric framework for special clustered data
designs have already been accomplished by Roy et al. [8], Gao et al. [9], Akritas and Brunner [10]
and Brunner et al. [11], see more in chapter 2.5. Within this dissertation, a general framework for the
analysis of factorial longitudinal data with a clustered data structure is developed. The new methods
improve already existing methods upon these following aspects:

• Traditional nonparametric methods for repeated measures data are formulated in terms of dis-
tribution functions (HF

0 : F1 = ... = Fd, where d is the number of time points or conditions and
Fs is the distribution function at time or condition s), which implies that variance homogeneity
under the null hypothesis is needed, which is rarely present in practical applications. Thus,
allowing for different distributions under the null hypothesis makes the methods more robust.
Therefore, the hypotheses are not formulated in terms of distribution functions but in terms of
so called nonparametric relative effects p (Hp

0 : p1 = ... = pd), which will be explained later in
chapter 2.3.

• Existing methods can only be used for testing the global hypothesis of no time- or interven-
tion/treatment effect, e.g. if any time point or intervention group differs significantly from the
other time points or groups. However in most practical applications, the main research ques-
tion is not answered by global testing procedures since these procedures do not report which
time point or group is significantly different from the others. Thus, pairwise testing procedures
have to be performed after obtaining a significant result of a global testing procedure. However,
multiple testing is an issue when applying several pairwise testing procedures, and adjustment
techniques such as the famous Bonferroni-correction tend to be quite conservative since the cor-
relation of the test statistics is not taken into account. Further, decisions from global testing
procedures and subsequent post-hoc tests may not be compatible, e.g. the global test could reject
the null hypothesis but no local test rejects any null hypothesis. Therefore, so called Multiple
Contrast Test Procedures (MCTP), which test all hypotheses simultaneously will be generalized
to complex data settings, such as repeated measures with missing values and/or clustered data.

• Another disadvantage of procedures formulated in terms of distribution functions is that they
cannot be converted into confidence intervals. According to international regulatory authorities
such as the ICH E9 [12] for clinical trials, the computation of confidence intervals is requested,
since they display variability of the data. Since the newly proposed methods are formulated
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in terms of relative effects, confidence intervals which are compatible to test decisions can be
obtained.

• Some procedures, e.g. Domhof et al. [13], are not even computable in some scenarios, since the
proposed estimator of the covariance matrix might not be positive semidefinite. In contrast, the
covariance matrix estimators developed within this dissertation are always positive semidefinite.

The thesis is structured as follows: After the introduction, a general model for repeated measures
data with missing values and a clustered data structure is presented. In a next step, nonparametric
relative effects and hypotheses for such designs are introduced. Furthermore, an overview of issues that
arise in scenarios with missing or clustered data is presented as well as a short overview of traditional
procedures for these situations. Nonparametric point estimators and test procedures will be presented
afterwards. In the results section, the theoretical properties of the procedures are shortly presented,
as well as results from Monte-Carlo simulation studies. Furthermore, the results of the analysis of
the study by Acker et al. [1], in which the new methods are applied, are also included in the results
section.

Aim of this thesis

The Ph.D. position of Kerstin Rubarth was funded by the German Research Foundation by a joint
project of Prof. Dr. Frank Konietschke and Prof. Dr. Markus Pauly called ”Resampling-based
inference methods for the evaluation of complex models in biometrics” (grant KO 4680/3-2). Thus,
Prof. Pauly and one postdoc, Dr. Paavo Sattler, of his team coauthored the two methodological
papers.
The global aim of this thesis was to generalize the rank-based nonparametric procedures for simple
longitudinal data by Konietschke et al. [5] to scenarios with missing and clustered data. These
generalisations are motivated by statistical consultations and joint projects with clinical partners at
the Charité, as data sets regularly appear there for which there is not yet an adequate methodology
available. For example, the data set on Moyamoya disease by Acker et al. [1] contains a large amount
of missing values and at the time point of the requested analysis, no adequate nonparametric method
was available to analyze the data. Therefore, the statistical inference was based only on the completely
observed subjects. This data set is re-analyzed within this thesis using the newly proposed methods.
These aspects are addressed in the following Thesis articles:

1. Kerstin Rubarth, Markus Pauly, and Frank Konietschke. Ranking procedures for repeated mea-
sures designs with missing data: Estimation, testing and asymptotic theory. Statistical Methods
in Medical Research, 31(1):105–118, 2022. PMID: 34841991

2. Kerstin Rubarth, Paavo Sattler, Hanna Zimmermann, and Frank Konietschke. Estimation and
testing of wilcoxon–mann–whitney effects in factorial clustered data designs. Symmetry, 14:244,
01 2022

3. Güliz Acker, Davide Giampiccolo, Kerstin Rubarth, Robert Mertens, Anna Zdunczyk, Juliane
Hardt, Daniel Jussen, Heike Schneider, Tizian Rosenstock, Vera Mueller, Thomas Picht, and
Peter Vajkoczy. Motor excitability in bilateral moyamoya vasculopathy and the impact of revas-
cularization. Neurosurgical Focus, 51:E7, 09 2021

2 Methods

As already described in the introduction, specifying a suitable model for RM data is of high importance
and should ideally be done before collecting any data. Therefore, a general nonparametric model for
factorial repeated measures with a clustered structure will be described in the following section. No
distributional assumptions such as normality is required. Further, the model can be used to represent
and analyze metric, ordinal, and ordered categorical data as well as binary data in a unified way.
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2.1 General model for clustered factorial repeated measures

The subjects within a RM model with possibly dependent replications from the i-th group can be
described with random vectors

Xik = (Xi1k, ..,Xidk), i = 1, ..., a and k = 1, ..., ni.

Here, a and d denote the number of groups and time points or conditions respectively and ni denotes
the sample size of group i. The number of groups a and time points d will be considered as fixed and
additionally, d is assumed to be smaller than the number of subjects in any group i (i.e. d < ni).
Then, indicators λisk are defined which specify subject k in group i at time s as observed or missing:

λisk =

{
1, Xisk is observed
0, Xisk is missing.

The (possibly) dependent replicates of subject k at time s in group i are denoted as

Xisk = (λisk, (Xisk1, . . . , Xiskmisk
)) , (1)

with misk being the number of dependent replicates of subject k at time s in group i. Furthermore,
λis =

∑ni

k=1 λisk denotes the number of observed subjects in group i at time s and mis =
∑ni

k=1 misk

denotes the number of dependent replicates in group i at time s. Finally, N =
∑a

i=1 ni denotes the
total sample size.
In order to account for metric, ordinal, ordered categorical or binary data and ties in the data, we use
the normalized version of the distribution function, introduced by Ruymgaart [16] as

Fis(x) = P (Xisku < x) +
1

2
P (Xisku = x),

which is the mean of the left- and right-continuous distribution functions F−(x) = P (Xisku < x) and
F+(x) = P (Xisku ≤ x), respectively.
Many scenarios can be described by this general model. The nonparametric formulation allows for
a unified analysis of both metric, discrete, ordinal and even binary data. Furthermore, no linear
treatment or time effects and no specific covariance structure are assumed. The variance of the
observations can be completely different and any correlation structure between the observations can
be present. In the following section, a detailed introduction of a nonparametric effect measure, the so
called relative effect is presented.

2.2 Nonparametric relative effects

Model (1) does not contain any parameters to describe any differences between the distributions of
time points and groups. Further, describing differences between groups or time points in terms of the
mean is not appropriate for highly skewed metric data or metric data with many outliers. Furthermore,
in case of ordinal data, means are even not defined. One could think of categories in a survey such as
”strongly agree”, ”agree”, ”disagree” and ”strongly disagree”. The sum of e.g., ”strongly agree” and
”strongly disagree” is not defined and does not make any sense. Therefore, to allow for robust analyses,
marginal distribution functions will be used for a unified analysis of e.g., non-normally distributed or
ordinal data. Thus, the unweighted mean distribution function over all groups and time points is
defined as

G(x) =
1

ad

a∑

i=1

d∑

s=1

Fis(x). (2)

Here, unweighted means that the group sizes n1, ..., na do not have an impact on G(x). Basically,
the mean distribution G(x) describes the distribution of a randomly sampled observation from an
experiment. Then, the so called nonparametric relative effect

pis =

∫
GdFis = P (Z < Xis11) +

1

2
P (Z = Xis11), i = 1, . . . , a; s = 1, . . . , d, (3)

relates the marginal distribution Fis to the mean distribution G. Here, Z denotes a random variable
from the mean distribution G, which is stochastically independent from Xis11. These relative effects
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Figure 1: Interpretation of nonparametric relative effects, first row: density functions of Fis and G,
second row: distribution functions of Fis and G, adapted from Konietschke et al. [2].

are also called relative marginal effects by Brunner, Domhof and Langer [17] as well as probabilistic
index by Acion et al. [18]. Their interpretation is very intuitive, they simply describe the probability,
that a randomly sampled observation Z from the whole experiment is smaller than a randomly sampled
observation from group i at time s.
As opposed to the definition of the mean distribution function in equation (2), Kruskal [19] intro-
duced a weighted mean distribution function which accounts for the group sizes by defining the mean
distribution

H(x) =
1

Nd

a∑

i=1

d∑

s=1

niFis(x). (4)

However, relative effects based on equation (4) with ris =
∫
HdFis depend on the sample sizes n1, ..., na,

are therefore no model constants and thus, should not be used to formulate hypotheses. Therefore this
definition of relative effects by using the weighted mean distribution function will not be regarded in
this thesis.
It directly follows from equation (3) that data in group i at time s tend to be larger as a randomly
sampled observation from the whole experiment (i.e. from the mean distribution Z) if pis > 0.5 and
that there is no tendency to larger nor smaller values if pis = 0.5. One can also directly compare two
groups i and j at two time points s and t by comparing the relative effects pis and pjt. If pis > pjt
then it follows that data in group i at time s tend to be larger than data in group j at time t and
if pis = pjt then there is no tendency to larger nor smaller values between both groups i and j at
both time points s and t. The relationship between two normal distributions Fis and G and the
corresponding relative effect is depicted in figure 1. Until now, the distribution of the observations was
not specified and as already mentioned, nonparametric relative effects represent a robust alternative
to mean based approaches in case of highly skewed or heavy tailed distributions. However, if the
actual data generating distribution is known, one can use the parameters of the distribution in order
to describe effects. Assuming independent and normally distributed data with G ∼ N (µ, σ2) and
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Xis1 ∼ N (µis, σ
2
is), then one can calculate the relative effect in group i at time s as

pis = Φ

(
µis − µ√
σ2 + σ2

is

)
,

where Φ denotes the distribution function of a standard normal distribution. Further, the following
relationship between the mean difference and the relative effect exists:

µis − µ = Φ−1(pis)
√

σ2 + σ2
is.

Another point to consider is that effect sizes should not be dependent on the choice of the scale. Often,
the scale of ordinal data is chosen in an arbitrary way and the advantage of using such nonparametric
relative effects is that these relative effects are invariant under order preserving (strongly monotone)
transformations of the data.
To conclude, the nonparametric relative effects can be used to quantify treatment or time effects in
many biomedical experiments as well as in many other applications. However, only reporting effects
is not sufficient in many practical applications. In most cases, researchers want to test hypotheses
and present confidence intervals. In the next section, different ways of formulating nonparametric
hypotheses will be discussed.

2.3 Nonparametric global and multiple hypotheses

Akritas und Brunner [20] as well as Brunner and Puri [21] first presented nonparametric ranking
procedures for testing hypotheses formulated in terms of distribution functions. Within the framework
of this dissertation, these hypotheses could be formulated as follows:

HF
0 : F11 = ... = Fad or HF

0 : CF = 0,

Here F = (F11, ..., Fad)
′ denotes the vector of distribution functions and C is a contrast matrix. Hence,

HF
0 implies that all distributions in each group at each time point are equal. As already mentioned, the

procedures for testing HF
0 have the disadvantage that they do not allow for variance heteroscedasticity

under the null hypotheses, i.e. they assume a specific covariance structure under the null, which is
unrealistic in many practical applications. Another issue is that no confidence intervals can be derived
from these procedures. However, they display variability in the data and uncertainty of estimation and
are therefore required in many biomedical applications by regulatory authorities, such as stated by
the ICH E9 [12]. Furthermore, the interpretability of the method and their implications are difficult
to understand for users without a statistical background. Therefore, Konietschke et al. [5] formulated
hypotheses in RM designs in terms of nonparametric relative effects instead of distribution functions.
As already explained before, if pis = pjt holds, than data from group i and j at time s and t do not
tend to larger nor smaller values. Hence, the null hypothesis of no treatment or time effect can be
formulated as

Hp
0 : p11 = ... = pad or Hp

0 : Cp = 0.

Here, p = (p11, ..., pad)
′ denotes the vector of nonparametric relative effects. In case of normally

distributed data, the null hypotheses Hµ
0 : µis − µ = 0 and Hp

0 : pis =
1
2 are equivalent. Furthermore,

it holds that pis =
1
2 even if the variances are unequal. Therefore, Brunner and Munzel [11] suggested

to call procedures for testing Hp
0 : pis = 1

2 the ”Nonparametric Behrens-Fisher Problem”. Here, data
can have different distribution and thus, different variances or shape parameters even under the null
hypothesis of no treatment or time effect which is the most realistic case in many practical applications.
Hence, HF

0 can be considered as the more ’strict’ hypothesis in comparison with Hp
0 and it directly

implies Hp
0 , i.e. H

F
0 : CF = 0 =⇒ Hp

0 : Cp = 0.
However, testing only the global hypothesis Hp

0 or HF
0 usually does not answer the primary research

question. Usually, it is not only of interest whether a difference between several treatment groups or
time points exists, but which specific treatment group or time point differs (from the others) is key. To
specify multiple hypotheses, so called contrast matrices will be used, which will be briefly explained.
A formal property of a contrast matrix is that each of its rows sum up to zero, i.e. C1ad = 0, with

11



1ad being a column vector of 1s of length ad and

C =



c1
...
cq


 =



c11 . . . c1ad
... . . .

...
cq1 . . . cqad


 ,

with q being the number of formulated hypotheses. These matrices are used to translate practical
research questions into formal statistical hypotheses. Depending on the research question of interest,
different contrast matrices can be used. The most commonly used contrast matrices are Tukey-type
[22] and Dunnett-type [23] contrast matrices. An example of such contrast matrices would be given in
a scenario with three treatment groups measured at one time point. Then, the Tukey matrix is defined
as

CTukey =



−1 1 0
−1 0 1
0 −1 1




and the Dunnett matrix is defined as

CDunnett =

(
−1 1 0
−1 0 1

)
.

Finally, global and multiple nonparametric hypotheses can be described in this scenario by using, for
example, a Tukey-type contrast matrix:

Hp
0 :





p11 = p21

p11 = p31

p21 = p31

⇐⇒ Hp
0 : CTukeyp =



−1 1 0
−1 0 1
0 −1 1





p11
p21
p31


 = 0.

Generally, the Tukey contrast matrix compares all treatment groups or repeated measures with each
other and is therefore labelled as the all-pairwise contrast, whereas the Dunnett contrast matrix is
applied when all groups or time points should be compared with one control group or time point, such
as

Hp
0 :





p11 = p21

p11 = p31

p21 = p31

⇐⇒ Hp
0 : CDunnettp =

(
−1 1 0
−1 0 1

)

p11
p21
p31


 = 0.

In this example, the first treatment group represents the control group.
Bretz et al. [24] present several other versions of contrast matrices, e.g. those that detect change points
or trends. Furthermore, user-specified contrast matrices for special hypotheses can also be defined, as
long as they fulfill the property of a contrast matrix.
So far, the relative effects have been described as hypothetical quantities. Section 2.6 describes how
to estimate them from the data. However, before introducing estimators and test procedures, a short
overview of the problems of missing data and clustered data are presented in the following two sections.

2.4 Missing Data

A famous quote by David Hand is ”We should be suspicious of any data set (large or small) which
appears perfect” [25]. The occurrence of missing data is a commonly encountered problem in biomedical
sciences and the quality of studies is often assessed by whether or how many data is missing. Reviews
on reporting practices by Wood et al. 2004 [26], Powney et al. [27], Klebanoff and Cole 2008 [28] and
many others indicate that the amount of missing values is often not stated in scientific papers, default
methods such as list-wise deletion, which will be explained below, are often not even mentioned in
case of their application and that it is often unclear how many subjects were available for tables, plots
and models. Helpful and well-known reporting guidelines which include guidance on how to report
studies with missing data are the CONSORT statement [29] for clinical trials as well as the STROBE
statement [30] for observational studies.
Missing values can occur due to various reasons and Rubin [6] first presented three classes for missing
data, also called missing mechanisms:
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• Missing Completely At Random (MCAR) If data is MCAR, then the cause of the missing data
is independent from the data. An example for MCAR is a survey study, where the respon-
dents simply forgot to answer an item. If data is MCAR, the deletion of subjects with missing
data (list-wise deletion) only reduces the power to detect effects, however it does not introduce
any statistical bias. Hence, many researchers argue that their data is MCAR - however, this
assumption is hard to justify and is often unrealistic.

• Missing At Random (MAR) If data is MAR, than the missingness depends on other observed
data. In a survey study, an item would be MAR if women would be more prone to not answer
questions regarding their weight than men. Thus, in the group of women, the data would be
MCAR. Many modern methods such as multiple imputation [25] assume the data to be MAR.

• Missing Not At Random (MNAR) If missing data is not MCAR nor MAR, then the missing data
is considered to be missing not at random. In a survey study, richer people would not report
their salary. Scenarios with MNAR data are very complex and not easy to handle. The most
important task would be to detect data that cause the missingness and to perform sensitivity
analyses.

Ideally after determining the missing mechanism, one must decide how to handle the missing data
problem. A standard approach is list-wise deletion which is also called complete-case analysis. Here,
all subjects which have at least one missing value are discarded from the analysis. This procedure is
very easy to implement, however it is only valid under the MCAR assumption and can be extremely
inefficient in terms of the statistical power if many missing values occur. Therefore, another ”naive”
procedure is often applied: mean or median imputation, where the missing values are substituted
with the respective mean or median of the observed data. This approach is again only valid under
MCAR and distorts the distributions, underestimates variances and therefore lead to biased estimates.
For longitudinal data exists a similar procedure, called Last Observation Carried Forward (LOCF),
where the missing value is imputed with the last previously observed data point. This approach
has been formerly suggested by the FDA for the analysis of clinical trials [25]. However, the Panel
on Handling Missing Data advises against it [31] and Molenberghs and Kenward [32] showed that
estimates obtained after using LOCF can be biased even under MCAR. A more advanced technique
is regression imputation, where other variables are used to predict the missing value by first building
a regression model with the variable which has missing values as the dependent variable. In a second
step, the missing values are replaced by predictions from the regression model. Again, the approach is
valid in MCAR scenarios and also in MAR scenarios, if the variables which determine the missingness
of the dependent variable are included in the regression model as independent predictors. However,
this procedure often underestimates variances and overestimates correlations. Therefore, a refinement
of this method is made through stochastic regression imputation where a noise term is added to the
prediction of the regression model in order to account for the uncertainty of the imputation. However,
Rubin [33] argued, that handling a missing data problem by imputing only one value cannot be
correct in general since even for a given model, imputed values cannot be calculated with certainty.
Therefore, his idea was to create multiple imputed data sets in order to reflect the uncertainty of
the imputation. In a first step, the approach produces m different imputed data sets, where several
imputation algorithms are available. In a second step, for each of the m imputed data sets, the
analysis is run separately, producing m different results. Finally, the results are then pooled by using
Rubin’s rules [6]. So called Multiple Imputation (MI) is nowadays considered to be the state of the
art imputation technique and is explained in detail by van Buuren [25], among others. The benefits
of using MI are that the procedure incorporates residual and model uncertainty as well as a correct
estimation of variances and thus leading to correct inferences. The imputed data sets can be analyzed
by using standard methods for completely observed data sets. However, the application of multiple
imputation is more complex than using standard methods and its computation time can be quite long.
Furthermore, many imputation methods exist which all lead to slightly different results and reporting
is not straightforward since there is no final complete data set. Especially when sample sizes are quite
small, no or few covariates were observed such as in preclinical experiments and one would prefer a
simple but still sophisticated analysis, any imputation method might not be an appropriate choice.
Another option is an all-available case analysis, where all calculations are performed on observed
data. The difference to a complete-case analysis is, that the observed information from a subject
is still used even if some values from the subject are missing. However, also this method has some
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drawbacks: the estimates can be biased if the data are not MCAR and covariance matrices may be
not positive semidefinite which is a requirement for most statistical procedures. However, Domhof et
al. [13] developed an all-available case procedure for the nonparametric analysis of longitudinal data
with missing values. The hypotheses were formulated in terms of distribution functions (HF

0 ), see
Section 2.3, and the resulting covariance matrices may be not positive semidefinite in some scenarios
with many missing values. Therefore, the approach of this dissertation is to develop methods for
analyzing hypotheses formulated in terms of relative effects (Hp

0 ) in general RM designs with missing
data, where non-positive semidefinite covariance matrices do not occur, even if the amount of missing
values is high.

2.5 Clustered Data

Another commonly encountered problem in many (bio-) medical applications is the occurrence of
clustered data. A cluster is considered to be a group of possibly dependent subjects (possibly dependent
replicates), such as students in a class, animals sharing the same cage or bacteria cultivated in the
same petri dish. Several methods have been proposed on how to deal with clustered data. A brief
summary of these methods will be outlined. First of all, many researchers simply ignore clustered data
structures and treat the possibly dependent replicates as if they were independent and apply standard
procedures for independent data. This approach typically results in too small standard errors if a
correlation between the clustered subjects is present and thus, results in too small p-values leading
to possibly false positive findings. Another commonly used approach is summarizing the information
from a cluster by using a summary measure such as the mean, median or a weighted mixture of both.
By using this procedure, the information from a cluster is condensed to one numeric value and standard
procedures for independent data can be applied on the transformed values. However, this approach
goes in hand with a loss of information from individual subjects, a loss of statistical power and a
reduced precision of point estimators. Furthermore, the number of dependent subjects (cluster sizes)
are neglected. Therefore, also this approach should be avoided and whenever a clustered structure is
suspected, special procedures for clustered data should be considered.
First, parametric methods which account for the clustered structure were developed such as Linear
Mixed Models by Laird and Ware [34] and Generalized Estimating Equations by Liang and Zeger [35].
Many parametric methods for several designs such as longitudinal data and differently scaled outcome
variables have been proposed by many other authors. In contrast to the parametric framework, the
development of nonparametric methods for clustered data started later. Rosner and Groove [36] first
proposed a generalization of the classic Mann-Whitney test for clustered observations. Furthermore,
Dutta and Datta [37], Rosner et al [38] and Datta and Satten [39] also introduced methods for testing
HF

0 : F1 = F2 in case of two independent groups with dependent replicates. The work by Larocque
et al. [40] was the first solution for testing hypotheses formulated in terms of relative effects in a two
sample design with clustered data, which was then refined by the work of Roy et al. [8], who proposed
different weighting schemes for the clusters. Roy et al. [8] developed two versions of estimators, an
unweighted and a weighted version. By using the unweighted version, each cluster adds the same weight
to the estimation of point estimators, irrespectively of its size, whereas by using the weighted version,
larger clusters add more weight to the estimation. As Roy et al. [8] developed the methodology for
paired data, this dissertation generalizes the weighting scheme to clustered data embedded in general
factorial designs with repeated measures and allows for the occurrence of missing data. Missing
data here means, that no dependent replicates could be observed for one subject at a specific time
point. Furthermore, the theory and notation within this dissertation allow not only for weighted and
unweighted estimation but for other weighting schemes, e.g. a mixture of weighted and unweighted
estimation.

2.6 Point estimators

The distribution functions in Section 2.1 and thus, the relative effects in Section 2.2 are unknown
and must be estimated in order to be able to test hypotheses, calculate confidence intervals and
draw inferential conclusions. Brunner and Puri [21] as well as Brunner, Domhof and Langer [17] first
presented estimators for nonparametric effects and these results were later used by Konietschke and
Brunner [41], Konietschke et al. [5], Konietschke et al. [42], Konietschke and Pauly [43] and others in
longitudinal and factorial designs.
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The main idea is to first estimate the unknown distribution functions Fis and G and then to plug in
the empirical distribution functions F̂is and Ĝ into the integral representation of pis =

∫
GdFis.

In a model without missing and clustered data such as

Xik = (Xi1k, ..., Xidk)
′, i = 1, ..., a; k = 1, ..., ni,

an estimator of Fis would be given by

F̂is(x) =
1

ni

ni∑

k=1

c(x−Xisk),

with

c(u) =





0, u < 0
1
2 , u = 0

1, u > 0.

Thus, the estimator F̂is(x) simply counts how many observations Xisk in group i at time s are smaller
than a fixed scale point x and divides this sum by the number of subjects in group i. Additionally,
the case u = 0 accounts for ties in the data and therefore, no special adjustment for ties needs to be
made at a later stage as opposed to other nonparametric methods.
Thus, an estimator of G(x) is then given by the average of all estimated marginal distribution functions:

Ĝ(x) =
1

ad

a∑

i=1

d∑

s=1

F̂is(x). (5)

Finally, the estimators Ĝ(x) and F̂is(x) can be plugged into equation (3) in order to obtain

p̂is =

∫
ĜF̂is =

1

ad

a∑

j=1

d∑

t=1

1

ni

ni∑

k=1

F̂jt(Xisk) =
1

ad

a∑

j=1

d∑

t=1

1

ni

ni∑

k=1

1

nj

nj∑

ℓ=1

c(Xisk −Xjtℓ). (6)

Thus, the vector p̂ = (p̂11, ..., p̂ad)
′ contains all relative effects for each group at each time point.

Generalizing these methods to the case of repeated measures with missing or clustered data is not
straightforward and approaches to do so will be discussed in the following sections.

2.6.1 Point estimators in scenarios with missing data

First, an estimator for scenarios with missing data is presented. Recall model definition in Equation (1),
where indicators λisk were introduced to mark an observation as missing. The distribution functions
are then estimated by using all observed data and by disregarding only the missing values (all-available
cases):

F̂is(x) =
1

λis

ni∑

k=1

λiskc(x−Xisk).

This approach is reasonable if data is MCAR, since the distribution function would be over- or under-
estimated if the missing values were potentially smaller or larger than the observed values (MAR or
MNAR scenarios). However, simulation studies, see section 3.2, show that the procedures work quite
well even in MAR scenarios.
Then, an estimator of pis is given by plugging in the estimator of the distribution function which
accounts for missing values in equation (3):

p̂is =

∫
ĜdF̂is =

1

ad

a∑

j=1

d∑

s=1

1

λis

ni∑

i=1

F̂jt(Xisk)λisk

=
1

ad

ni∑

k=1

λisk

λis

a∑

j=1

d∑

t=1

nj∑

ℓ=1

λjtℓ

λjt
c(Xisk −Xjtℓ).
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2.6.2 Point estimators in scenarios with clustered data

Roy et al. [8] proposed two approaches for estimating the distribution functions in a two sample
setting with dependent replicates by developing unweighted and weighted estimators for distribution
functions and relative effects. In case of unweighted estimation, all clusters add the same weight to
the estimation of the distribution function, disregarding the size of the clusters, whereas in case of
weighted estimation, larger clusters add more weight to the estimation of the distribution function
than smaller clusters. This idea is generalized to factorial repeated measures designs with missing
data in this dissertation. The unweighted and weighted distribution functions are then defined as

F̂
(υ1)
is (x) =

1

λis

ni∑

k=1

1

misk

misk∑

u=1

c(x−Xisku)λisk (unweighted estimator)

and

F̂
(υ2)
is (x) =

1

mis

ni∑

k=1

misk∑

u=1

c(x−Xisku)λisk (weighted estimator).

In case of the unweighted estimator F̂
(υ1)
is (x), the count function is averaged separately for each cluster

and the average of these averages is calculated and therefore, each cluster adds the same weight to the
estimation of Fis. In contrast to the unweighted estimation approach, in case of the weighted estimator

F̂
(υ2)
is (x), the counts are averaged over all clusters, which means that larger clusters add more weight

to the estimation than smaller clusters.
In order to define both estimators (unweighted and weighted versions) and other possible versions in
a unified way, general weights are defined as:

wυ1

isk =
1

λismisk
and wυ2

isk =
1

mis
.

Estimators of Fis and G are then given by

F̂ ∗
is(x) =

ni∑

k=1

misk∑

u=1

w∗
iskc(x−Xisku)λisk, ∗ ∈ {υ1, υ2}

and

Ĝ∗ =
1

ad

a∑

i=1

d∑

s=1

F̂ ∗
is =

1

ad

a∑

i=1

d∑

s=1

ni∑

k=1

λisk

misk∑

u=1

w∗
iskc(x−Xisku).

An estimator of pis can then be written in a unified way as

p̂∗is =

∫
Ĝ∗dF̂ ∗

is =
1

ad

a∑

j=1

d∑

t=1

ni∑

k=1

misk∑

u=1

λiskw
∗
iskF̂

∗
jt(Xisku)

=
1

ad

ni∑

k=1

a∑

j=1

d∑

t=1

nj∑

ℓ=1

misk∑

u=1

mjtℓ∑

v=1

λiskλjtℓw
∗
iskw

∗
jtℓc(Xisku −Xjtℓv).

Finally, the proposed estimators can be used to test hypotheses in terms of distribution functions (HF
0 )

as well as relative effects (Hp
0 ). The focus of the next section lies on statistical test procedures for Hp

0 .

2.7 Test Procedures

In order to be able to conduct statistical inference in general factorial repeated measures designs
allowing for missing and clustered data, test statistics for global and multiple local hypotheses are
derived. All test procedures within this dissertation are formulated in terms of relative effects p by
using an appropriate contrast matrix C ∈ Rad such as

Hp
0 : Cp = 0,

which means that asymptotically valid test procedures for testing a family of hypotheses

Ω = {Hℓ
0 : c′ℓp = 0, ℓ = 1, ..., q}

will be derived.
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2.7.1 Global Test Procedures

First, global test procedures are presented. These procedures are a commonly used approach in many
scientific fields whenever several groups or time points are compared. The global null hypothesis for-
mulated in relative effects is always defined as Hglobal

0 : p11 = p12 = ... = pad. If a test procedure
rejects this global hypothesis, it can be concluded that at least one of the relative effects differs from
the others. This statement is rarely of practical importance since no information is given about which
time point or group led to the rejection of the null hypothesis. Therefore, subsequent post-hoc tests,
ideally adjusted for multiple testing, are applied to detect which relative effect is statistically different
from the others. Here, a local null hypothesis is defined as H local

0 : pis = pjt. However, this procedure
has some issues; the research question answered by the global hypothesis is mostly never answered
with the result of global testing procedures. Furthermore, incompatible results can occur: for exam-
ple, the global testing procedure rejects the global hypothesis but no local hypothesis is rejected which
is difficult to interpret and report in practical applications. However, quadratic test procedures are
commonly used. Within this dissertation, two global testing procedures are derived, the Wald -type
statistic (WTS) and the ANOVA-type statistic (ATS). These were first introduced by Brunner et al.
[11] as well as Domhof et al. [13] for the repeated measures design with missing data and are also
known as quadratic test procedures.

2.7.2 Multiple Contrast Test Procedure

The Multiple Contrast Test Procedure (MCTP), first introduced by Bretz et al. [24] and generalized
to the nonparametric framework by Konietschke et al. [44] is a multiple test procedure and thus a test
for local null hypotheses. The idea of this procedure is to reverse the order of classic test procedures.

In a first step, for each local hypothesis H
(ℓ)
0 : c′ℓp = 0 one test statistic T p

ℓ =
√
N

c′
ℓ(p̂−p)
σ̂ℓ

, ℓ = 1, ..., q

is calculated, where σ̂2
ℓ is a consistent variance estimator of

√
N(c′ℓ (p̂− p)). In a next step, all q test

statistics are collected in a vector T =
(
T p
1 , ..., T

p
q

)′
. Konietschke et al. [5] showed that the vector T is

asymptotically multivariate normally distributed with expectation 0 and unknown correlation matrix
R. The local hypothesis Hℓ

0 : c′ℓp = 0 will be rejected at multiple α level if |T p
ℓ | ≥ z1−α(R). Here,

z1−α(R) denotes the two-sided (1−α)-equi-coordinate quantile of the multivariate normal distribution
N (0,R), which means that

P

(
q⋂

ℓ=1

{−z(1− α,R) < Xℓ < z(1− α,R)}
)

= 1− α

holds for (X1, ..., Xq)
′ ∼ N (0,R). Figure 2 illustrates different equi-coordinate quantiles for different

bivariate normal distributions with different correlations. Further information on equi-coordinate
quantiles can be found in Bretz et al. [24]. An advantage of this procedure is that the critical value
takes the correlation of the test statistics T into account. Thus, further adjustments for multiple
testing are not necessary. Furthermore, the approach directly allows the computation of asymptotic
simultaneous (1− α)-confidence intervals with

CIℓ =

[
c′ℓp̂∓ z1−α(R)√

N
σ̂ℓ

]
.

These confidence intervals are always compatible with the corresponding local test decisions, which
means that it cannot happen that the ℓ-th confidence interval CIℓ contains zero but the ℓ-th null
hypothesis is rejected.
In a second step, the global null hypothesis Hp

0 : Cp = 0 = 1
2 will be rejected if at least one local

hypothesis is rejected, i.e. if T0 = max
{
|T p

1 |, ..., |T p
q |
}
≥ z1−α(R).

The correlation matrix R is almost always unknown in practical applications and must be therefore
estimated. Estimating the correlation and covariance matrices is not trivial, especially in scenarios
with missing data and a clustered data structure. Detailed derivations and approximations for small
sample sizes can be found in Rubarth et al. [14] and Rubarth et al. [15].
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Figure 2: Two-sided equi-coordinate 95 % quantiles of different bivariate distributions N(0, I2+ρ(J2−
I2)), adapted from Gunawardana [3]

3 Results

In this section, several mathematical results as well as results from simulation studies will be summa-
rized. Furthermore, the data from the third thesis article is again analyzed with the newly proposed
methods.

3.1 Mathematical results

Within this dissertation, the following mathematical results in the nonparametric framework of factorial
repeated measures with clustered and missing data could be achieved.

• In a first step, unbiased and strongly consistent estimators p̂(1) (unweighted) and p̂(2) (weighted)
of the vector of relative effects p were constructed.

• In a second step, the asymptotic distributions of
√
N(p̂(1) − p) and

√
N(p̂(2) − p) were derived.

• It was further shown that the statistics
√
N(p̂(1) − p) and

√
N(p̂(2) − p) follow a multivariate

normal distribution with expectation 0 and covariance matrices V 1
N (unweighted) and V

(2)
N

(weighted), respectively.

• Finally, positive semidefinite covariance estimators V̂
(1)

N and V̂
(2)

N of V
(1)
N and V

(2)
N could be

derived.

• Furthermore, by using all these results, quadratic- as well as multiple contrast-type test proce-
dures could be derived.

• In the paper of Rubarth et al. [14], the Greenhouse-Gaisser method, introduced by Box [45],
was applied in order to improve the performance of the ATS, since previous simulation studies
indicated that the procedure tends to be liberal in some scenarios, with many missing values,
’extreme’ heteroscedasticity or small sample sizes.

All test procedures rely on asymptotics and therefore, their performance in terms of their type-I error
control as well as their power was evaluated in Monte-Carlo simulation studies in the first and second
thesis articles. Furthermore, the precision of the unweighted and weighted estimator in terms of the
bias and mean squared error (MSE) was investigated in thesis article 2.

3.2 Simulation results

All results of extensive simulation studies can be found in the first thesis article [14] and the second
thesis article [15] as well as an detailed overview of all simulated scenarios. Here, a brief summary of
these findings is presented. First, some statements about the procedures’ ability to maintain the type-I
error level are given.
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• First, the procedures for testing Hp
0 are robust in terms of their type-I error if data is generated

under HF
0 instead of Hp

0 , which is intuitive, since equality in distribution directly implies equality
of relative effects.

• The WTS procedure is in every scenario extremely liberal, as already shown by Konietschke et
al. [5]. Therefore, the procedure should only be used in very large trials or experiments, e.g.
ni > 100, approximately. Thus, the subsequent findings are centered around the ATS and the
MCTP.

• In case of heteroscedastic covariance matrices, it turns out that in most scenarios, the procedures
hold the type-I error quite accurately. However, in case of smaller sample sizes, e.g. ni = 15 and
missing rates of 30%, the procedures over-reject the null hypothesis.

• In most scenarios, the newly proposed modification of the ATS by using the Greenhouse-Gaisser
method holds the type-I error better than the MCTP, while being slightly conservative.

• Due to the nonparametric nature of the procedures, no differences between the procedures’
performances in scenarios with different data generating distributions could be detected.

• The ATS and MCTP exhibit a conservative behaviour if strong correlations and a high amount
of missing data is present, as already noted by Konietschke et al. [42], Friedrich et al. [46],
Munzel et al. [47], Harrar et al. [48] as well as Amro et al. [49].

• The simulation studies suggest that the ATS and MCTP can be used in scenarios with ni ≥ 15.

• A comparison between MCAR and MAR scenarios was conducted with the conclusion that the
performance of the procedure is robust against violations of the MCAR assumption, although
the theory was grounded on MCAR.

• Furthermore, the ATS performs better in equally sized scenarios, whereas the MCTP performs
better in unbalanced settings.

• Regarding scenarios with clustered data, the procedures become more accurate in terms of their
type-I error control if more dependent replicates are present.

• Furthermore, in case of increasing intra-cluster correlations, the type-I error of the ATS decreases,
whereas the type-I error of the MCTP increases.

• The type-I error rates of the ATS using either the weighted or unweighted version of the estimator
are comparable, whereas the type-I error rates of the MCTP by using the weighted version tend
to be slightly larger than by using the unweighted version of the estimator.

Next, the performance of the ATS and MCTP in terms of their power to detect alternatives is briefly
outlined.

• The power of the ATS and MCTP are comparable in MCAR and MAR scenarios, none exhibits
a superior performance.

• As expected, analyses using completely observed units only is inferior to the newly proposed
procedures of this dissertation, which use all-available information, i.e. do not disregard units
which could not be completely observed.

• Again, the power of the procedures was not affected by the data generating distribution.

To conclude, the precision of the weighted and the unweighted estimators in terms of their MSE and
bias is investigated. The bias and MSE are defined here as

bias =
1

nsim

nsim∑

isim=1

1

ad

a∑

i=1

d∑

s=1

(
p̂∗is −

1

2

)

MSE =
1

nsim

nsim∑

isim=1

1

ad

a∑

i=1

d∑

s=1

(
p̂∗is −

1

2

)2

,

where nsim denotes the number of simulation runs and nsim = 10, 000 for each scenario.
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• The behaviour of the unweighted and weighted version of the estimator in terms of their MSE is
quite comparable in most scenarios. Roy et al. [8] concluded from their simulation study, that
the precision of both estimators depend on the correlation.

• Scenarios with small sample sizes exhibit larger MSEs and negative biases whereas scenarios with
larger sample sizes exhibit smaller MSES and positive biases, especially in the weighted version
of the estimator.

• MSEs increase with increasing missing rates. No specific behaviour of the biases can be detected
in terms of increasing missing rates.

• Furthermore, MSEs decrease with an increasing number of dependent replicates. Again, no
specific behaviour of the biases can be detected.

• Scenarios with higher intra-cluster correlations exhibit larger MSEs, the same can be observed
for the bias of the weighted estimator. However, scenarios with higher intra-cluster correlations
exhibit smaller biases in case of unweighted estimation.

3.3 New analysis of study by Acker et al. [1]

In this subsection, the study of Acker et al [1] of patients with Moyamoya vasculopathy (MMV) is
reconsidered.

3.3.1 Introduction

Moyamoya is a rare cerebrovascular condition and is one of the leading causes of stroke in children
and young adults [50]. One of its consequences is motor cortical dysfunction which has been shown to
be reversible after revascularization due to the brain’s adaptive properties [51]. So called transcranial
magnetic stimulation (TMS) which induces a electrical depolarization with a focal, rapid magnetic
field induction, allows to interrogate the brain in a noninvasive manner [52]. The aim of the study by
Acker et al. [1] was to analyze the corticospinal excitability and the role of bypass surgery in restoring
cortical motor function in MMV patients by using navigated TMS (nTMS). Intra- and interhemispheric
differences were analyzed before and after surgery, where the clinically more affected hemisphere, also
called leading hemisphere (LH), was operated first.

3.3.2 Statistical Analysis

In the prospective trial, a total of n = 30 patients with bilateral MVV were identified. An extensive
description of the data can be found in Acker et al. [1] and is therefore omitted here. The relevant
outcome variables were

• Resting motor treshold (RMT), which is defined as the amount of TMS intensity which produces
a motor-evoked potential that exceeds a defined peak to peak amplitude in 50 % of the time in
a set number of trials [53].

• Cortical representation area of the first dorsal interosseus (FDI) muscle (AREA). Dorsal interos-
sei are four muscles in the back of the hand. Cortical representations recreates features of the
outside world, here for the first dorsal interossesus, which can be interpreted and evaluated in
the brain [54].

• Short interval cortical inhibition (SICI) is defined as the relative amplitude reduction of motor
evoked potentials by subtreshold conditioning stimuli [55].

Due to the medium sample size and non-normally distributed variables, the analyses were conducted
by using nonparametric procedures such as Brunner-Munzel tests [11] and nonparametric ANOVA
using ranks [17]. An issue of the study was the occurrence of missing data in some patients which was
was assumed to be MCAR. Due to the fact that at the time of analysis, the newly proposed methods
of this dissertation were not available, the analyses using nonparametric ANOVA were restricted to
completely observed patients only. Since quadratic test procedures such as an ANOVA procedure can
only indicate whether there is any significant time effect, the analysis is now re-done by using the
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MCTP and by incorporating all-available information from the patients.
The variables RMT and AREA can be described by using the following model:

X = ((λ1, X1) , (λ2, X2) , (λ3, X3) , (λ4, X4))
′
,

where

• X1 denotes the pre-operative measurement of RMT or AREA of the LH,

• X2 denotes the pre-operative measurement of RMT or AREA of the non-leading hemisphere
(NH),

• X3 denotes the post-operative measurement of RMT or AREA of the LH,

• X4 denotes the post-operative measurement of RMT or AREA of the NH and

• λ1, ..., λ4 indicate, whether X1, ..., X4 could be observed.

The vector of relative effects is defined as follows:

p = (p1, p2, p3, p4)
′
,

where p1 is the relative effect regarding the pre-operative values from the LH, p2 is the relative effect
regarding the pre-operative values from the NH, p3 is the relative effect regarding the post-operative
values from the LH and p4 is the relative effect regarding the post-operative values from the NH.
Note that no factorial or clustered structure is present. The research question whether there are intra-
or interhemispheric differences between the hemispheres in terms of RMT and AREA can be answered
by using the following contrast matrix

C =




−1 1 0 0
−1 0 1 0
0 −1 0 1
0 0 −1 1


 .

Hence, the leading hemisphere is compared with the non leading hemisphere pre-operatively as well as
post-operatively (interhemispheric differences) and a comparison between the leading hemisphere as
well as the non leading hemisphere in pre- and post-operative conditions is conducted (intrahemispheric
differences).
Due to the fact that for the variable SICI a time series including measurements at Baseline, 3 ms, 5
ms, 7 ms, 10 ms and 17 ms, the variables are described by using the following model:

X = ((λ1, X1) , (λ2, X2) , ..., (λ24, X24))
′
,

where

• X1, ..., X6 denote the pre-operative measurements of SICI of the leading hemisphere at Baseline,
3 ms, 5 ms, 7 ms, 10 ms and 17 ms,

• X7, ..., X12 denote the pre-operative measurements of SICI of the non-leading hemisphere at
Baseline, 3 ms, 5 ms, 7 ms, 10 ms and 17 ms,

• X13, ..., X18 denote the post-operative measurements of SICI of the leading hemisphere at Base-
line, 3 ms, 5 ms, 7 ms, 10 ms and 17 ms,

• X19, ..., X24 denote the post-operative measurements of SICI of the non-leading hemisphere at
Baseline, 3 ms, 5 ms, 7 ms, 10 ms and 17 ms and

• λ1, ..., λ24 denote the respective indicators.

Here, analogously to the case of RMT or AREA, each time point is compared in an interhemispheric
(differences between LH and NH) and intrahemispheric (pre- and postoperative differences between
the same hemisphere) manner separately.
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Comparison (p̂j vs p̂i) p̂i − p̂j 95%-Confidence Interval p-value
LH vs. NH: pre-op. 0.058 [-0.069, 0.185] 0.581
LH: pre-op. vs. post-op 0.130 [0.026, 0.236] 0.011
NH: pre-op. vs. post-op 0.001 [-0.088, 0.089] 1.000
LH vs. NH: post-op. - 0.072 [-0.225, 0.080] 0.545

Table 1: Nonparametric analysis of RMT by using the MCTP

3.3.3 Results

First, the analysis of RMT using all-available information (Table 1) confirms the findings of analysis
using completely observed data only. RMT in the LH tended to lower values than in the NH pre-
operatively, which was reversed post-operatively, without reaching statistical significance. Again, it
could be shown that the RMT increased in the LH after revascularization (p̂i − p̂j = 0.130, pval =
0.011), whereas the RMT in the NH remained unchanged (p̂i − p̂j = 0.001, pval = 1.000).
Furthermore, the new analysis of AREA (Table 2) did not reveal any new findings compared to

Comparison (p̂j vs p̂i) p̂i − p̂j 95%-Confidence Interval p-value
LH vs. NH: pre-op. -0.096 [-0.241, 0.049] 0.277
LH: pre-op. vs. post-op -0.099 [-0.292, 0.094] 0.491
NH: pre-op. vs. post-op 0.087 [-0.196, 0.370] 0.821
LH vs. NH: post-op. 0.090 [-0.079, 0.258] 0.460

Table 2: Nonparametric analysis of AREA by using the MCTP

the complete-case analysis. The former analysis of SICI only compared inter- and intrahemispheric

Comparison (p̂j vs p̂i) p̂i − p̂j 95%-Confidence Interval p-value
LH vs. NH: pre-op. (baseline) 0.014 [-0.162, 0.190] 1.000
LH vs. NH: pre-op. (3 ms) -0.091 [-0.284, 0.103] 0.802
LH vs. NH: pre-op. (5 ms) 0.072 [-0.104, 0.248] 0.899
LH vs. NH: pre-op. (7 ms) 0.008 [-0.196, 0.213] 1.000
LH vs. NH: pre-op. (10 ms) 0.025 [-0.192, 0.242] 1.000
LH vs. NH: pre-op. (17 ms) 0.092 [-0.066, 0.251] 0.570
LH: pre-op. vs. post- op (baseline) 0.041 [-0.202, 0.284] 1.000
LH: pre-op. vs. post- op (3 ms) -0.060 [-0.273, 0.155] 0.992
LH: pre-op. vs. post- op (5 ms) -0.046 [-0.372, 0.281] 1.000
LH: pre-op. vs. post- op (7 ms) -0.005 [-0.363, 0.354] 1.000
LH: pre-op. vs. post- op (10 ms) -0.017 [-0.367, 0.335] 1.000
LH: pre-op. vs. post- op (17 ms) 0.001 [-0.326, 0.328] 1.000
NH: pre-op. vs. post- op (baseline) -0.046 [-0.234, 0.142] 0.997
NH: pre-op. vs. post- op (3 ms) -0.041 [-0.202, 0.121] 0.996
NH: pre-op. vs. post- op (5 ms) 0.024 [-0.151, 0.200] 1.000
NH: pre-op. vs. post- op (7 ms) -0.041 [-0.275, 0.193] 1.000
NH: pre-op. vs. post- op (10 ms) -0.022 [-0.205, 0.162] 1.000
NH: pre-op. vs. post- op (17 ms) 0.010 [-0.193, 0.213] 1.000
LH vs. NH: post-op. (baseline) -0.019 [-0.188, 0.150] 1.000
LH vs. NH: post-op. (3 ms) -0.009 [-0.140, 0.122] 1.000
LH vs. NH: post-op. (5 ms) -0.093 [-0.301, 0.115] 0.836
LH vs. NH: post-op. (7 ms) -0.055 [-0.344, 0.236] 1.000
LH vs. NH: post-op. (10 ms) -0.063 [-0.337, 0.211] 0.998
LH vs. NH: post-op. (17 ms) -0.082 [-0.300, 0.137] 0.938

Table 3: Nonparametric analysis of SICI by using the MCTP

differences regarding baseline values. Thus, this analysis (3) investigated also differences at all other
measured time points. However, all estimators p̂i− p̂j are very close to zero and p-values are very close
to one, indicating no effect of the nTMS on SICI.
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To conclude, the new analysis using all-available information did not reveal any new findings. However,
it was possible to test all relevant hypotheses simultaneously and to construct simultaneous confidence
intervals for the differences of relative effects.

4 Discussion and Outlook

Within this dissertation, a novel approach for the analysis of factorial longitudinal data with missing
data and a possible clustered data structure was presented. Therefore, the proposed methods can be
applied to a large variety of different data sets. Especially in pre- and early clinical trials, laboratory
and animal experiments, sample sizes are rather small and outcomes are often not metric but ordinal,
binary or highly skewed. The newly proposed procedures can be used in a unified way for the analysis
of such data. Classic nonparametric procedures test hypotheses formulated in terms of distribution
functions. Formulating such hypotheses is rather strict and mostly not relevant in applied research,
since expectations as well as variances are assumed to be equal under this formulation of the null hy-
pothesis. Therefore, the hypotheses within this dissertation are formulated in terms of relative effects.
These relative effects simply describe if data from one group or time point tend to be larger or smaller
than data from another group or time point. Further, the proposed methods allow the calculation of
confidence intervals, which display uncertainty in the estimation and are typically required by regula-
tory authorities, e.g. ICH E9 [12], when reporting the results from a trial.
However, the proposed methods have some limitations. As already presented in the results section,
the type-I error rate depends on the sample size. It was shown that in very small sample sizes, e.g.
ni = 10, high correlations, ’extreme’ heteroscedastic covariances or a high amount of missing data,
the procedures do not hold the type-I error rate accurately. By applying so-called resampling pro-
cedures, this problem could be tackled. Further, estimation of relative effects and the calculation of
their corresponding confidence intervals becomes an issue when the estimated relative effect is close to
0 or 1. A further practical limitation is the interpretation and dissemination of results of hypotheses
formulated in terms of relative effects to clinicians and applied researchers without a statistical or
methodological background. Furthermore, a common misconception of applied researchers is that the
well-known Wilcoxon-Mann-Whitney-test compares the median of two groups [56], instead of evalu-
ating two samples in terms of the relative effect described in this thesis. Therefore, the statistical
literacy of non-statisticians should be fostered, with a special focus on nonparametric procedures.
Additionally, no sample size formulas for such designs are available. Right now, Monte Carlo simu-
lations can be performed in order to obtain the power of the proposed procedures for a given sample
size and given effects in the data. However, this approach is quite unpractical or even impossible to
conduct for applied researchers without programming skills. Therefore, closed sample size formulas
and approximations via simulations, implemented in R [57] functions, will be derived and provided in
the near future. Besides providing sample size formulas, the proposed methods will be also added to
an already existing R-package called nparLD [58], which already contains nonparametric methods for
the analysis of factorial longitudinal data and provides procedures for testing hypotheses formulated
in terms of relative effects. However, the implemented procedures do not allow for missing data nor
clustered data. If missing data occur, the analysis is conducted on only completely observed data.
Therefore, this work closes an important methodological gap which was motivated by consulting cases
at the Institute of Biometry and Clinical Epidemiology at the Charité Universitätsmedizin Berlin,
where no adequate analysis method was available.
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Brazilian Journal of 
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Lasers & Imaging 
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INTERNATIONAL 
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182 Progress in 
Transplantation 1,005 1.187 0.001180 

183 PEDIATRIC 
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186 Vascular and 
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JOURNAL OF 
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191 Seminars in Vascular 
Surgery 734 1.000 0.000650 

191 UNFALLCHIRURG 1,710 1.000 0.001230 

194 Hand Surgery & 
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195 CHIRURG 1,451 0.955 0.000990 
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European Surgery-

Acta Chirurgica 
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330 0.953 0.000470 

197 Plastic Surgery 300 0.947 0.000670 

198 ZENTRALBLATT FUR 
CHIRURGIE 832 0.942 0.000490 
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200 AMERICAN 
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203 Indian Journal of 
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Bariatric Surgical 

Practice and Patient 
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JOURNAL OF 
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Clinical Epidemiology at the Charité - Universitätsmedizin Berlin. I very much enjoy the work climate
there. Especially, I would like to thank Dr. Asanka Gunawardana and Dr. Claus Peter Nowak, who
supported and encouraged me during my first days and months at the Charité. Furthermore, I would
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