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Finite-size effects and thermodynamic accuracy in many-particle systems
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Finite-size effects arise when a sample of particles is not sufficient to provide a statistically satisfactory
description of the bulk environment of a physical system. As a consequence, a reliable estimate of finite-size
effects in many-particle systems is key to judge the validity of a theoretical model or the accuracy of a numerical
simulation. In this context, we propose the use of a theorem on the free-energy cost for separating a system
into smaller independent subsystems [J. Stat. Mech.: Theory Exp. (2017) 083201; Lett. Math. Phys. 112, 97
(2022)] to estimate the relevance of finite-size effects in thermodynamic quantities from computer simulations.
The key aspect of this study is that for two-body potentials, as mostly occurring in physics, the method requires
only two-body distribution functions and the particle number density. The calculation of the involved physical
quantities can be done numerically on a three-dimensional grid. In some cases even analytical estimates are
possible and as an example the uniform interacting electron gas in the ground state is considered; we derive an
approximating scaling law for the finite-size effects.
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I. INTRODUCTION

Many-particle systems are one of the most popular topics
in modern research, and it crosses different fields and disci-
plines: condensed matter, chemical physics, materials science,
biophysics, to name a few. Theoretical models and modern
simulation techniques are developing steadily so that realistic
systems can be treated at high microscopic accuracy. A key
problem in modeling and simulation of such systems is that
artifacts can be induced by the limited size of a system and
the limited simulation time allowed by current computational
technology. The size of the system and simulation time are
often small compared with an optimal or realistic system’s
size and an optimal or realistic timescale. The optimal sys-
tem’s size and the optimal timescale must include, as much as
possible, the essential characteristics of the system in question
so that the corresponding results can be generalized to larger
systems and longer timescales (see, e.g., Refs. [1, 2] and
references therein).

In this work we will not treat timescales and instead restrict
ourselves to the finite-size aspect. The problem of dealing
with systems whose current computationally affordable size
is not sufficient for a realistic representation of the system
is of course well known in the community, and several ap-
proaches have been developed to amend for it. For example, in
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molecular simulation the use of periodic boundary conditions
partly alleviates the problem, although if the unit cell is too
small to provide an accurate statistical description of the bulk
environment, then one has the paradox that the infinite replicas
are actually modeling, for example, a liquid made of physi-
cally unrealistic droplets. Other methods that account for the
finite-size effects, e.g., from the field of electronic structure
calculations (see, e.g., Refs. [3–5]), or from molecular dynam-
ics (see, e.g., Refs. [6,7]), are based on the extrapolation of
the large-scale behavior from very small systems. This work
adopts a complementary point of view: Our approach is based
on previous work by some of the authors that provides upper
and lower bounds of the free energy of a many-particle sys-
tem when the system is divided into separated noninteracting
subsystems. In essence, the theorem expresses the largest and
smallest free energy cost possible to construct an interface so
that the system can be represented as the union of smaller
independent subsystems [8,9].

The key point of the concept proposed here is that if
the largest free-energy cost possible, given by the theorem,
is small compared with some characteristic energy that is
supposed to describe bulk properties, then the current sys-
tem size must be sufficient for representing the statistical
or thermodynamic properties of the bulk environment since
interface effects represent a negligible thermodynamic con-
tribution. The theorem is valid for classical [8] and quantum
[9] systems. We will show in this work that, when dealing
with two-body potentials, the theorem can be easily applied
to realistic systems with the only requirement that the particle
density and the particle-particle radial distribution function
are available. Such quantities are routinely available in sim-
ulations or even offered by experiments. As a showcase, we
will treat the uniform gas of interacting electrons because in
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this case it is technically simple to show in a clear way the
essence of the idea proposed.

II. TWO-SIDED BOGOLIUBOV INEQUALITY, TWO-BODY
POTENTIALS, AND RADIAL DISTRIBUTION FUNCTION

In previous work we have defined the upper and lower
bound of the free-energy cost �F to divide a system of par-
ticles into smaller independent subsystems in the classical [8]
and quantum [9] case. The system can be partitioned in several
noninteracting subsystems, but for simplicity we will consider
here the simple (although already rather relevant) case that a
system is divided into two (equal) noninteracting subsystems;
the extension to more subsystems is then straightforward. The
theorem can be summarized as

E f [U ] � �F � E f1, f2 [U ], (1)

where f (r1, . . . , rN ) is the position probability density func-
tion of N particles confined in a volume � ⊂ R3 with
Hamiltonian H . For the classical case we have f = e−βH (r1 ,... ,rN )

Z

with Z = 1
h3N N!

∫
�N exp[−βH (r1, . . . , rN )]dr1 · · · drN , with

β = 1/kBT , kB being the Boltzmann constant, T the tem-
perature, and h the Planck constant. When the system has

been divided into two independent subsystems of n and
N − n particles confined in volumes �1 and �2, respectively
(� = �1 ∪ �2), we have f1(r1, . . . , rn) = e−βH1(r1,... ,rn )/Z1

and f2(rn+1, . . . , rN ) = e−βH2(rn+1,... ,rN )/Z2 as the probability
density functions of n and N − n particles, respectively, and
H = H1 + H2 + U , where U is the interaction potential be-
tween particles across the surface of separation. Similarly,
for the quantum case E f [U ] and E f1, f2 [U ] are calculated as
Tr(�U ) and Tr(�1�2U ), respectively, with � and �1�2 being
the density matrix of the system and the density matrix of
the two (noninteracting) separated subsystems; here �1 and
�2 commute because they describe two noninteracting sub-
systems, and thus they are independent of each other (and
act on different domains). In essence, in the quantum case,
f (r1, . . . , rN ) and f1(r1, . . . , rn) ⊗ f2(rn+1, . . . , rN ) are the
diagonal terms of the density matrices � and �1 ⊗ �2, respec-
tively (see Appendix A). If one considers two-body potentials,
U (ri − r j ), as those mostly occurring in particle-based rep-
resentations of matter, the formulas for E f [U ] in both the
classical and the quantum case are highly simplified and
reduced to a two-body integral. Assuming that interactions
mediated by U are only between particles in different domains
�1 and �2, but not within either of them, we have

E f [U ] = 2
N∑

i, j=1

( ∫
�1

∫
�2

[ ∫
�N−2

f (r1, . . . , rN ) dr1 · · · dri−1dri+1 · · · dr j−1dr j+1 · · · drN

]
U (ri − r j )dr jdri

)
, (2)

with ri ∈ �1 for all i = 1, . . . , N , r j ∈ �2 for all j = 1, . . . , N . In essence the integral above expresses the interaction of
two particles, both spanning the entire domain, with the constrain that they are not in the same subdomain at the same time.
The assumption � = �1 ∪ �2 implies that � × � = (�1 × �1) ∪ (�1 × �2) ∪ (�2 × �1) ∪ (�2 × �2) and the integral of the
total energy can be decomposed accordingly. Since the interdomain interactions are symmetric, the contributions to the free
energy coming from �1 × �2 and �2 × �1 will be the same and (in case of indistinguishable particles) they will give the
cross-interaction integral of Eq. (2).1

We define ∫
�N−2

f (r1, . . . , rN ) dr1 · · · dri−1dri+1 · · · dr j−1dr j+1 · · · drN =: ĝ(ri, r j ). (3)

Considering all particles indistinguishable, and taking the partitioning of all possible pairs obtained from the N particles
into account, the quantity N!

(N−2)!ρ2 ĝ(ri, r j ) = N (N−1)
ρ2 ĝ(ri, r j ) =: g(ri, r j ), with ρ = N/V being the average number density,

is defined as the normalized two-body correlation function (see, e.g., Ch. 4.6 of Ref. [10]). For an isotropic system, the two-body
correlation function corresponds to the particle-particle radial distribution function g(|ri − r j |), since a privileged direction does
not exist in an isotropic system. Under the hypothesis that we treat isotropic systems, the idea above can be put into practice
because the radial distribution function is routinely available from simulations and/or experiments. Following the definition of
Eq. (3), one has

E f [U ] = 2
ρ2

N (N − 1)

∑
i, j

∫
�1

∫
�2

U (ri − r j )g(ri, r j ) dr jdri. (4)

For the representation of the system as two noninteracting subsystems with n and N − n particles, respectively, one finds that
f (r1, . . . , rN ) = f1(r1, . . . , rn) f2(rn+1, . . . , rN ), thus one obtains

E f1, f2 [U ] =
n∑

i=1

{ N∑
j=n+1

∫
�1

∫
�2

( ∫
�n−1

1

f1(r1, . . . , rn) dr1 · · · dri−1dri+1 · · · drn

×
∫

�N−n−1
2

f2(rn+1, . . . , rN ) drn+1 · · · dr j−1dr j+1 · · · drN

)
U (ri − r j )1{|xi−x j |�σ} dr jdri

}
, (5)

1Since Cartesian products such as �1 × �2 are sets of ordered pairs, �1 × �2 and �2 × �1 can never be the same.
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where 1{x∈A} denotes the indicator function of a set A that is equal to one if x ∈ A and zero otherwise, and |xi − x j | denotes
the Cartesian distance between two particles along the direction perpendicular to the surface (in the yz plane) that separates the
system in subsystems.

Following a suggestion by Lebowitz and Lieb [11,12], the condition |xi − x j | � σ corresponds to a short-distance cutoff in
the particle-particle interactions across the interface, equivalent to the creation of a corridor at the interface that divides the
large system in disjoint subsystems. Such a corridor (or cutoff) avoids possible issues with singular potentials, such as Coulomb
or Lennard-Jones potentials. In fact, since the subsystems are independent, particles belonging to different domains can come
arbitrarily close to each other. For our practical application, the corridor shall be small enough so that its size is negligible
compared with the size of the system. At this point, note that one has∫

�n−1
1

f1(r1, . . . , rn) dr1 · · · dri−1dri+1 · · · drn = ρ̂1(ri ) = ρ1(ri )

n
,

with
∫
�1

ρ1(r)dr = n, and similarly∫
�N−n−1

2

f2(rn+1, . . . , rN ) drn+1 · · · dr j−1dr j+1 · · · drN = ρ̂2(r j ) = ρ2(r j )

N − n
,

with
∫
�2

ρ2(r)dr = N − n. The relevant consequence is that it is enough to know the respective average three-dimensional
particle density ρ1(r) and ρ2(r) of the two subsystems, so that

E f1, f2 [U ] = 1

n(N − n)

n∑
i=1

⎧⎨
⎩

N∑
j=n+1

( ∫
�1

∫
�2

ρ1(ri )ρ2(r j )U (ri − r j )1{|xi−x j |�σ } dr jdri

)⎫⎬
⎭. (6)

The expressions of Eq. (4) and Eq. (6) can be simplified
in case of particles which are indistinguishable. In this case
one has

∑
i j = N (N − 1),

∑n
i=1

∑N
j=n+1 = n(N − n), ri = r,

r j = r′, and thus

E f [U ] = 2ρ2
∫

�1

∫
�2

U (r − r′)g(r, r′) dr′dr, (7)

with r ∈ �1 and r′ ∈ �2, and

E f1, f2 [U ] =
∫

�1

∫
�2

ρ1(r)ρ2(r′)U (r − r′)1{|x−x′|�σ } dr′dr

(8)
again with r ∈ �1 and r′ ∈ �2.

To obtain a criterion to quantify the thermodynamic ac-
curacy that one can reach at a given size of the system, we
define a quality parameter which measures the estimate of �F
as introduced above, relative to some characteristic reference
energy of the system:

q := |�F |
|Eref | . (9)

Eref can be chosen as the total energy of the system or, for ex-
ample for liquid water, the total molecule-molecule hydrogen
bond energy of the system.

In practice, Eq. (1) allows us to determine the largest rela-
tive error by

qmax := max{|E f [U ]|, |E f1, f2 [U ]|}
|Eref | . (10)

It follows that the thermodynamic accuracy of the model,
chosen to represent the bulk properties of a system, can be
measured by qmax. In practice, the criterion can be summa-
rized as follows: a small qmax implies that the separation or
interface energy is negligible compared with the bulk refer-
ence energy, the consequence is that the bulk description of

the system is sufficient; thus we call a small value of qmax

high accuracy; conversely a high value of qmax represents
low accuracy. The reference to thermodynamic accuracy is
due to the fact that max{|E f [U ]|, |E f1, f2 [U ]|} represents the
largest free-energy cost possible in the creation of a sepa-
rating interface. Since the knowledge of the free energy of
a system in a given thermodynamic state implies the knowl-
edge of all thermodynamic quantities, the estimate of the
free-energy cost related to the degree of representation of
the bulk implicitly measures the thermodynamic accuracy of
the system.

III. APPLICATION TO A UNIFORM ELECTRON GAS
IN THE GROUND STATE

The homogeneous electron gas represents a theoretical and
computational reference for understanding and modeling the
relevant physics of Coulomb electron-electron interactions in
more complex systems [13]. In this section, we will show how
the idea presented before can be applied to the homogeneous
electron gas. It must be said that being a popular test system,
several approaches have been (and are being) developed to
account for the finite-size effects in the calculations (see,
for example, Refs. [3–5]). In this context, our idea is not in
competition with the other methods but actually complements
them since we look at the problem from a different perspec-
tive and thus provide further information. While the method
we propose can be applied to a large class of classical and
quantum systems, the choice of the homogeneous electron
gas, besides its popularity, is also due to the simplifications
for the calculations. In fact, as it will be clear later on,
several quantities are analytically or semi-analytically avail-
able, and thus the situation is optimal for a demonstrative
study.
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Coming to the implementation of Eqs. (7) and (8) in our
current system, the first important aspect is that the potential
used for simulating the uniform electron gas is the two-body
Coulomb interaction between particles with negative unit
charge: 1

2

∑
i

∑
j 1/ri j . In addition, to assure neutrality, an

artificial positively charged background is introduced (jellium
model, see, e.g., Ref. [14]), and the corresponding interac-
tions are two-body-like so that the basic requirements for the
application of our procedure is fulfilled; atomic units will be
used for every quantity of this study. Taking into account that
particles are indistinguishable and have a uniform density, one
finds

E f [U ] = ρ2
∫

�1

{∫
�2

[
g(|r − r′|) − 1

|r − r′|
]

dr′
}

dr (11)

and

E f1, f2 [U ] = 0. (12)

Explicit calculations are reported in Appendix B. The next
natural question is how one can apply the criterion of qmax

of Eq. (10) for a quantitative estimate of the overall thermo-
dynamic accuracy of the model, given the system size. The
reference energy with respect to which one can define in this
context the relative weight of E f [U ] and E f1, f2 [U ] is the total
average potential energy of the jellium model of N electrons
[15]:

Eref = 2πNρ

∫ R0

0
[g(r) − 1]r dr, (13)

with R0 defined as the smallest value for which g(r) � 1 for
all r � R0. The expression of Eq. (13) is nothing but the
average Coulomb potential per particle of the jellium model,
multiplied, in this case, by the number of particles of the
specific system (size) considered, N . One may even simplify
it further and consider a precise analytic approximation [16]
of the average Coulomb energy per particle corresponding to
Eq. (13):

Eref

N
= −0.916

rs
+ a ln

(
1 + b

rs
+ b

r2
s

)
, (14)

where rs = ( 3
4πρ

)1/3 is the Wigner-Seitz radius and a =
ln 2−1

4π2 = −0.0076, b = 27.42.
It follows that for the specific case of the interacting elec-

tron gas, one has

qmax = |E f [U ]|
|Eref | . (15)

The accuracy of the model system in representing bulk prop-
erties can be controlled by choosing a system’s size such that
qmax is below a certain threshold (chosen as a reference of
acceptable accuracy).

Data for ρ and g(|r − r′|) are available in literature (see,
e.g., Refs. [15]), thus we deal with integrals in three (one
particle integral) and six (two-particle integral) dimensions
which can be accurately calculated, for example, on a uniform
three-dimensional grid. In the current case one can reach a
reasonable estimate of qmax also by simple analytic arguments,
as will be shown later on.

It must be noticed that here we consider the gas in the
ground state, thus T = 0. This means that we actually deal
with the case where �F = �E . However, note that for T > 0
the density and the radial distribution function are available
[17], thus following the same procedure of the example treated
here, the calculation of E f [U ] and E f1, f2 [U ] would provide the
estimate of the largest �F . This means that one can access,
via routinely available quantities, the error in free energy to
assess the relevance of finite-size effects on the thermody-
namic accuracy of a given system also for the case of finite
temperatures.

IV. SCALING LAW FOR THE THERMODYNAMIC
ACCURACY OF THE UNIFORM GAS OF INTERACTING

ELECTRONS IN THE GROUND STATE

In first approximation, one can estimate the trend of qmax

as a function of the (cubic) box size L at different particle
densities for the uniform gas of interacting electrons in the
ground state as follows. The potential energy per electron is a
known quantity [see Eq. (13)]: εN = 2πρ

∫ R0

0 [g(r) − 1]r dr,
thus the total potential energy of the system is just EN = NεN

in a system of N particles. From EN , one can estimate the
energy per interaction EN,I , knowing that the total number
of interactions over the whole domain is N (N − 1)/2. It
follows that EN,I = 2

N (N−1) EN = 2
N−1 εN , and, assuming for

simplicity N � 1, one can use EN,I = 2
N εN . At this point,

notice that interactions across the interface region of �1 ∪ �2

will occur only for |r − r′| � R0, with r ∈ �1 and r′ ∈ �2.
This observation implies that the maximum distance of inter-
action along the direction perpendicular to the surface that
ideally represents � as �1 ∪ �2 is |x − x′| = R0. In turn,
the volume of � which contains the particles characterized
by the actual cross-interactions between the subsystems is
� = L2R0.

The number of particles in this volume is N� = L2R0ρ =
N R0

L . Given that we have uniform density, the number of
cross interactions is N�

2
N�

2 , that is, half of the interaction
sites are in �1 and the corresponding other half of interac-
tion sites is in �2 (that is, interactions among sites in the
same region are not counted). It follows that the total poten-

tial energy of cross interactions is Ecross = N2
�

4 EN,I = N2
�

2N εN .
Therefore, the maximum of the quality parameter can be
estimated by

qmax ≈ |Ecross|
|EN | =

∣∣N2
�

2N εN

∣∣
N |εN | = N2

�

2N2
,

from which one can infer the scaling law

qmax ≈ 1

2

(
R0

L

)2

. (16)

The relation of Eq. (16) provides a quick estimate of the
quality of the thermodynamic accuracy that the system would
have at the chosen simulation size. For example, taking data
from Ref. [15] one has R0 ≈ 2.5rs for all rs ∈ [0.8, 10] (in
atomic units). Since N

L3 = 3
4πr3

s
, one finds N = 3

4π
( L

rs
)3. For

L = 10rs it follows that qmax ≈ 0.03 which corresponds to
N ≈ 240, that is, 240 electrons are sufficient to have an overall
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TABLE I. Thermodynamic accuracy according to qmax as a func-
tion of the size of the system in terms of number of particles.

N qmax

10 ≈26%
50 ≈9%
75 ≈7%
100 ≈6%
250 ≈3%
500 ≈2%
1000 ≈1%

accuracy of about 3.0%, that can be considered a sufficiently
high accuracy. It should be noted that in Eq. (16) the particle
density of the system is encoded in R0 since one has R0 =
R0(rs); however the fact that R0 ≈ 2.5rs, for the whole range
of rs that we treat here, makes the scaling law universal, in
that it does not depend on rs.

Table I reports the accuracy, according to the criterion of
qmax, for different sizes of the system. The trend of con-
vergence of the system to a sufficient bulk size based on
qmax agrees well with the trend, determined from electronic
structure calculations, of convergence of the total energy as a
function of the system size [18]. Moreover, in a very detailed
Monte Carlo study of the finite-size effects for one-component
plasma [19,20], it is reported that, in a first approximation, the
scaling law for the excess internal energy per particle follows
an N−2/3 trend in the low-coupling regime. This is the same
trend that was found here, as qmax ≈ α

L2 and L ≈ N1/3, with
α a certain constant. However, in the same study it has been
found that the scaling law could be even of an N−1 form or
with some sizable corrections to the N−2/3 form; a character-
istic that could not be predicted by our current estimate. This
example makes clear the role that our results play; that is, our
approach is certainly valuable for giving a reliable magnitude
order of finite-size effects without the need of a numerical
simulation, however specific and precise details of the size
dependence (e.g., correlation lengths) must be provided by
accurate simulations as those reported above. Nevertheless,
it can be said further that, in principle, the criterion based on
qmax goes even beyond the criteria based on the convergence
of a structure [e.g., g(r)] or convergence of a total energy [18],
it actually involves the thermodynamics of the system. In fact,
it expresses the thermodynamic concept of the response of
the system to a perturbation, in this case: the building of an
interface. A large interface energy, compared with a global
quantity of reference, implies that the bulk characteristics (at
the given size) is not sufficient for distributing the perturba-
tion and yet keeping the same physical characteristics of the
overall system as before. As a consequence, one would not
have the bulk response as it would be in a sufficiently large
system. For example, in the simulation of magnetic surfactant
systems, the size of the system must be such that one can
investigate whether surface-active properties are independent
of the (bulk) paramagnetic response of the fluid [21]. As a
consequence, the definition of a “sufficiently well-described
bulk” involves the cost of building an interface as expressed
by the criterion of qmax.

V. CONCLUSIONS

We have proposed a procedure to estimate the relevance
of the finite size of a many-particle system in providing a
statistically or thermodynamically satisfactory description of
the bulk environment which characterizes a substance. Such a
procedure is based on a rigorous theorem, and we have shown
that for two-body potentials it can be written in terms of
simple two-particle integrals that require only the knowledge
of the particle density and the radial distribution function.
The theorem provides the upper and lower bound to the free-
energy cost to construct an interface that divides a system in
independent subsystems. The criterion proposed here uses this
theorem for the determination of the largest free-energy cost
and relates it to a characteristic energy of the system. If such
a free-energy cost is large, then it implies that the statistical
description of the bulk environment is not sufficient. At an
intuitive physical level the criterion is similar to a surface or
volume energy ratio which often has been empirically used to
define proper statistical or thermodynamic subsystems (e.g.,
in the grand canonical case, see Refs. [22–24] and references
therein). In the current case there is no empiricism, the the-
orem is rigorous, and the corresponding estimate provides
valid information about the sought-for size of the system. The
information provided by this procedure is complementary to
the other approaches that account for the finite-size effects by
extrapolating from small systems. In fact, the analysis that
we provide carries a direct, particle-based, thermodynamic
estimate of the validity of the statistical mechanics descrip-
tion of the bulk, at the given system size. As a showcase,
we have presented the treatment of the uniform interacting
electron gas in the ground state. The procedure of application
to this system is technically rather simple and allows us to
use analytic formulas, however the corresponding numerical
procedure of integration on a three-dimensional grid can be
straightforwardly extended to other systems, provided that
the particle density and the radial distribution functions of
the system are known. Beyond the example of the uniform
electron gas at T > 0, as discussed in the text, one may apply
the idea to classical systems as for example liquid water,
at a given average density and temperature, modeled with
classical molecular models [25], to semiclassical systems such
as parahydrogen at low temperature [26–28], to quantum sys-
tems such as ultracold atomic Fermi gases [29], to name a few.
It must be underlined that the application of the method to the
systems cited above may imply the need of additional physical
assumptions and implies an increase of technical complexity,
arising from the numerical integration on a grid. For example,
in the case of the most complex system cited above (in the
sense of molecular structure), that is liquid water, a particular
care is needed in the analytic derivation of each integral and on
its calculation on a grid. As discussed before, for interaction
potentials that present a singularity as the interparticle dis-
tance goes to zero, the need of a short-distance cut-off arises.
Its optimal choice would require well founded assumptions
regarding the specific physics of the system. Once the integral
is defined then one must deal with the computational com-
plexity of the calculation; in fact the choice of an optimal
grid size for the numerical integration will require a careful
study about the convergence of each integral as a function
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of the grid size. Such a study is mandatory to avoid that
numerical inaccuracy leads to misleading physical results. In
conclusion, the use of the proposed method, keeping in mind
the warnings above, would be rather useful in the estimate of
the optimal size of a simulation box. Specifically, it would
provide a thermodynamic information complementary to the
information based on other approaches for the estimate of
finite-size effects.
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APPENDIX A: TWO-PARTICLE DISTRIBUTION FUNCTION FROM THE DENSITY MATRIX

In terms of a density matrix ρ̂, the average of a physical quantity A is written as Eρ̂[A] := ρ̂A = ∑∞
i=1 ai〈ψi, Aψi〉, where

(ai )i∈N ⊂ [0, 1] is a sequence such that
∑∞

i=1 ai = 1, and (ψi )i∈N is an orthonormal basis of the underlying Hilbert space. In the
specific case of this paper, it holds A = A(rk, rl ), that is, A is a two-body potential. In such a case, the expectation value of A in
the state ψi is given by

〈ψi, Aψi〉 =
∫
R3N

A(rk, rl ) |ψi(r1, . . . , rk−1, rk, rk+1, . . . , rl−1, rl , rl+1, . . . , rN )|2 dr1 · · · drN

=
∫
R6

A(rk, rl )

[ ∫
R3(N−2)

|ψi(r1, . . . , rk−1, rk, rk+1, . . . , rl−1, rl , rl+1, . . . , rN )|2

× dr1 · · · drk−1drk+1 · · · drl−1drl+1 · · · drN

]
drkdrl .

Now for all i ∈ N, we define

gi(rk, rl ) :=
∫
R3(N−2)

|ψi(r1, . . . , rk−1, rk, rk+1, . . . , rl−1, rl , rl+1, . . . , rN )|2

× dr1 · · · drk−1drk+1 · · · drl−1drl+1 · · · drN

as the two-body distribution of the state i. Thus, one obtains for the average of A:

Eρ̂[A] =
∞∑

i=1

ai〈ψi, Aψi〉 =
∫
R6

A(rk, rl )

( ∞∑
i=1

aigi(rk, rl )

)
drkdrl .

It follows that the two-body distribution in a mixed state (i.e., in a superposition of different states represented by the density
matrix) is nothing but g(rk, rl ) = ∑

i aigi(rk, rl ), i.e., the (non-normalized) g(ri, r j ) as previously defined. For the gas of
interacting electrons in the ground state, the only term required (by the specific choice of the problem) is the ground state,
thus

g(rk, rl ) =
∫
R3(N−2)

|ψ (r1, . . . , rN )|2 dr1 · · · drk−1drk+1 · · · drl−1drl+1 · · · drN .

APPENDIX B: DETAILS ABOUT THE EXPLICIT CALCULATION OF E f [U ]

For the total electron-electron interactions one has

E f [Vee] = 1

2
ρ2

∫
�

{ ∫
�

[
1

|r − r′|
]

g(|r − r′|) dr′
}

dr. (B1)

The positively charged background is smeared uniformly over the whole simulation box with the same density as the electrons
and interacts electrostatically with itself,

Vb = 1

2

∫
�

∫
�

n(R)n(R′)
|R − R′| dRdR′, (B2)

and with the electrons,

Veb = −
∫

�

∫
�

ρ(r)n(R)

|r − R| drdR. (B3)

Note that n(R) = ρ(r) = ρ = constant, that is, the charge distribution of the positive charges is equivalent to the charge
distribution of the negative charges. This implies that one can substitute R with r and R′ with r′ in Eq. (B2) and obtain

Vb = 1

2
ρ2

∫
�

∫
�

1

|r − r′| drdr′, (B4)
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at the same time in Eq. (B3), one can substitute R with r′ and obtain

Veb = −ρ2
∫

�

∫
�

1

|r − r′| drdr′. (B5)

E f [Vee + Veb + Vb] = 1

2
ρ2

∫
�1

{ ∫
�2

[
g(|r − r′|) − 1

|r − r′|
]

dr′
}

dr + 1

2
ρ2

∫
�2

{∫
�1

[
g(|r − r′|) − 1

|r − r′|
]

dr′
}

dr

+ 1

2
ρ2

∫
�1

{ ∫
�1

[
g(|r − r′|) − 1

|r − r′|
]

dr′
}

dr + 1

2
ρ2

∫
�2

{ ∫
�2

[
g(|r − r′|) − 1

|r − r′|
]

dr′
}

dr. (B6)

It follows that

E f [Uee] = 1

2
ρ2

∫
�1

{ ∫
�2

[
g(|r − r′|) − 1

|r − r′|
]

dr′
}

dr + 1

2
ρ2

∫
�2

{∫
�1

[
g(|r − r′|) − 1

|r − r′|
]

dr′
}

dr. (B7)

Note that r and r′ are interchangeable, thus

E f [Uee] = ρ2
∫

�1

∫
�2

[
g(|r − r′|) − 1

|r − r′|
]

dr′dr. (B8)

E f1, f2 [Uee] = 0 can be easily derived from the results above, however the simple physical argument is that the interaction across
the surface of separation is nothing else than the interaction between two neutral domains.
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