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Abstract—Analyzingmass spectrometry-based proteomics data with deep learning (DL) approaches poses several challenges due to the

high dimensionality, low sample size, and high level of noise. Additionally, DL-basedworkflows are often hindered to be integrated into

medical settings due to the lackof interpretable explanation.We present DLearnMS, a DL biomarker detection framework, to address these

challenges on proteomics instances of liquid chromatography-mass spectrometry (LC-MS) - a well-established tool for quantifying complex

proteinmixtures.Our DLearnMS framework learns the clinical state of LC-MSdata instances using convolutional neural networks. Based on

the trained neural networks, we showhow biomarkers can be identified using layer-wise relevance propagation. This enables detecting

discriminating regions of the data and the design ofmore robust networks. One of themain advantages over other establishedmethods is

that no explicit preprocessing step is needed in our DLearnMS framework. Our evaluation shows that DLearnMS outperforms conventional

LC-MS biomarker detection approaches in identifying fewer false positive peakswhilemaintaining a comparable amount of true positives

peaks. Code availability: The code is available from the followingGITrepository: https://github.com/SaharIravani/DlearnMS

Index Terms—Biomarker detection, mass spectrometry, LC-MS proteomics, deep learning interpretation, layer-wise relevance propagation
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1 INTRODUCTION

LIQUID chromatography-mass spectrometry (LC-MS) based
proteomics allows analysis and quantification of complex

protein mixtures. This technique quantifies the components
based on their physio-chemical properties and their molecu-
lar mass which yields a LC-MS map with two orthogonal
dimensions chromatographic retention time (RT) andmass to
charge ratiom=z. Due to the precise and fast analysis, the LC-
MS technique has been widely used in high-throughput pro-
teomics applications, such as biomarker detection, disease
diagnosis/prognosis, or drug target identification [1], [2], [3].
The main difficulties of analysing LC-MSmaps, however, lies
in their properties: they are high-dimensional, typically
highly complex, and contain a high level of noise. This makes
it for example very challenging to detect biomarkers from
raw LC-MS maps of proteins [1], [4]. The idea of biomarker
detection - sometimes also called feature selection - is to iden-
tify proteins by which a specific medical condition can be
determined. Thus, biomarkers are differentially abundant sin-
gle peaks specified bym=z and RT on a rawLC-MSmap.

1.1 Related Work

Many of the well established tools for LC-MS biomarker dis-
covery – such as MsInspect [5], MZmine 2 [6] or Progenesis
[7] – are organized inmultiple (often three) main stages. They
usually begin with a pre-processing stage that commonly
includes noise reduction, RT alignment [8], [9], [10], data nor-
malization [11], data filtering [12], batch-effect correction [13],
baseline correction, and peak grouping. This is followed by a
second stage that involves peak detection. Here, informative
areas within the LC-MS maps are extracted. This is done in
multiple ways – MsInspect, for example, identifies peaks
using wavelet decomposition, MZmine 2 applies a deconvo-
lution algorithm on each chromatogram to detect peaks, and
Progenesis uses a wavelet-based approach, but this time in
such a way that all relevant quantitation and positional infor-
mation are retained. Other well known frameworks include:
XCMS [14] where the peak detection step is addressed by a
patternmatching approach on overlaid extracted ion chroma-
tograms with Gaussian kernels; AB3D [15] which iteratively
takes the highest intensity peak candidates and heuristically
keeps or removes neighboring peaks to formpeptide features;
MSight [16] which adapts an image-based peak detection on
the generated images from LC-MS maps; and MaxQuant [17]
in which a correlation analysis involving a fit to a Gaussian
peak shape is applied. A common design in all these methods
is that they are dependent on some kind of pre-definedmodel
for signal detection. One of the main benefits of the Deep
Learning approaches is that the model is not pre-defined, but
rather learned from the input data through the training phase.
We will show later that this is indeed beneficial if it is com-
binedwith an interpretation phase.

After the second stage, a differential analysis is done on the
selected peaks to identify the actual biomarkers. However,
two main problems that arise often during the aforemen-
tioned steps are (1) that low-intensity and biological relevant
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peaks are lost and (2) many parameters need to be tuned for
these methods to perform well, e.g., by adjusting them for
newdata sources.

In this paper, we present a novel approach for biomarker
detection in LC-MS maps that does not need explicit prepro-
cessing steps. Our deep learning based approach implicitly
learns the needed transformations and can identify bio-
markers with an overall improved performance compared
to the mentioned traditional approaches.

1.2 Deep Learning for Proteomics Analysis

The success of deep learning (DL)-based methods, which
have been replacing state-of-the-art methods in many fields
[18], [19], [20], have also entered the field of proteomics data
analysis already some time ago. Notable examples are:
DeepIso [21], which combines a convolutional neural net-
work (CNN) with a recurrent neural network (RNN) to
detect peptide features; DeepNovo [22] and DeepNovo-DIA
[23] that use DL-based approach (CNN coupled with RNN)
for peptide sequencing on tandem mass spectra from data-
dependent acquisition and data-independent acquisition,
respectively; pDeep [24] adapts the bidirectional long short
term memory for the spectrum prediction of peptides; and
DeepRT [25] employs a capsule network to predict RT by
learning features of embedded amino acids in peptides.

Despite the current successful approaches, most of these
studies are empirically driven, and are lacking a justifiable
interpretation foundation [26]. Moreover, as machine learn-
ing (ML) and DL have been rapidly growing also for real-
world applications, a concern has emerged that the high
precision accuracy may not be enough in practice [27].
Rather, interpretation and understanding of the made deci-
sions is important for robustness, reliability, and enhance-
ment of a system. On top of it all, supervised data-driven
biomarker detection models require annotated data at the
peak level which is in most cases rather expensive or even
infeasible to acquire. To address these challenges, in this
paper we leverage deep learning interpretability to under-
stand and analyze LC-MS proteomics data which requires
just the instances class labels for training, rather than expen-
sive peak annotations.

1.3 Interpretation of Deep Neural Networks

Methods for interpreting Deep Neural Networks (DNNs)
provide information about what makes a network arrive at a
certain decision. These methods can roughly be divided into
four categories: (1) the function analysis that explains DL
model itself through gradient and shows howmuch changes
in input pixels affect the output [28], [29], (2) the attribution
method that interprets the output of the model and explain
which features and to what extent contribute to the model’s
output [30], [31], [32], (3) the signal method that tries to find
patterns in inputs on which the decision is based on [33],
[34], [35], and (4) the perturbation analysis that calculates the
importance of features through measuring the effect of per-
turbing the elements of inputs on the output [36], [37], [38].
The application of DNN explanation employing perturba-
tion analysis has previously studied in metabolomics [39].
However, permutation analysis is not computationally feasi-
ble for high-throughput LC-MS analysis. Among three other

interpretation categories the out-performances of attribution
analysis has been demonstrated in [26] on MALDI-TOF MS
data. In this study, therefore, one of the methods in attribu-
tion category called layer-wise relevance propagation (LRP)
[32] is employed for interpretation of the model predictions
of LC-MS proteomics. The LRP approach has been broadly
used in many applications [40], [41], [42], and shows very
good benchmark performance [43]. LRP takes advantage of
the structured layer of neural networks and simplifies
the explanation problem. It decomposes the whole neural
network to simpler functions and explains these easier func-
tions, which potentially results inmore reliable explanations.
Besides, despite widely used gradient based methods that
are locally calculated, LRP takes into account of the whole
input, which makes it less prone to the discontinuity prob-
lem [44] and consequently more applicable for very noisy
proteomics data. To guarantee the trustworthiness of the
LRP explanation in our feature selection task we analyse the
sensitivity of the interpretations in terms of their repeatabil-
ity, reproducibility, and their robustness.

1.4 DLearnMS: A Novel Approach for Biomarker
Detection

In this paper we present DLearnMS, a biomarker detection
approach based on interpretable deep learning to allow ana-
lyzing and – ultimately – understanding LC-MS data. The
basic idea is as follows: Given two groups of LC-MS samples
(say, healthy and diseased), a convolutional neural network
(CNN) is trained, and the learned configuration is interpreted
through the layer-wise relevance propagation (LRP) tech-
nique. We use the result from the interpretation step to iden-
tify the areas in the input-data that play a crucial role for
differentiating the two groups (Fig. 1). This is analysed further
to Firstly verify the robustness of the network and improve
the network architecture and Secondly detect the differen-
tially abundant peaks as biomarkers. Our biomarker detection
model benefits from optimizing on class labels rather than
expensive annotations at peak levels. Since high-quality
labeled datasets are not widely available, we suggest a
method to tune the network architecture using synthetically
generated data through performing systematic series of
experiments and quantitatively measuring the interpreta-
tions. We evaluate the proposed model also on real-world
data and demonstrate the superiority ofDLearnMS compared
to conventional biomarker detection frameworks. One of the

Fig. 1. Overview of DLearnMS approach for discovery of disease related
biomarkers. A CNN is robustly trained on diseased and healthy LC-MS
maps for the binary classification task. The predictions of the trained net-
work are interpreted by layer-wise relevance propagation strategy on
samples belonging to each class, separately. The peaks on the interpre-
tation heatmap represent the peaks that the CNN relies to make classifi-
cation decisions. Those peaks that occurred only on heatmaps of
diseased samples, are considered as possible diseased biomarkers.
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major advantages here is that ourmethod does not depend on
the otherwise necessary preprocessing steps. Nevertheless,
LC-MS preprocessing approaches e.g., [45], [46], could be
potentially added to DLearnMS framework for further
improvement. The stability of the detected biomarkers includ-
ing the reproducibility and robustness are examined through
cross-validation strategies. Finally, we discuss the shortcom-
ings of conventional ML models for analysing raw LC-MS
data classification and interpretations. Our contributions in
this paper lies in the combination of the following triad:

(A) Wepresent an interpretableDeepLearning (DL)-based
approach that can identify biomarker candidates from
high-throughput LC-MS proteomics data. One of the
main advantages is that the method does not need
(potentially) expensive peak level annotations.

(B) We show how to use layer-wise relevance propaga-
tion as an interpretation technique for deep learning
networks and how this can be used for feature iden-
tification in this context.

(C) We demonstrate how to tackle the scarcity and spar-
sity of labeled LC-MS data by using synthetically
generated data and evaluate the improvements com-
pared to only using experimental data.

2 DESIGNING THE MODEL

Let In 2 R2 for n ¼ 1; . . . ; N be a set of LC-MS maps with
On 2 f0; 1g as the assigned class labels (e.g., the respective
medical conditions). The model takes the raw LC-MS map
I, a matrix of ðx; yÞ entries, as the input. Each ðx; yÞ entries
of I where, x ¼ m=z and y ¼ RT , contains the ion-counts of
the LC-MS map. The aim of biomarker detection is to find
the smallest subset of ðx̂, ŷÞ pairs where the ion-counts are
differentially abundant between conditions 0 and 1. Our
strategy is to design a CNN architecture, modeled as a func-
tion f , to classify LC-MS samples into two classes, and learn
from the prediction behavior to detect ðx̂, ŷÞ pairs. Mathe-
matically speaking, a CNN with L layers can be abstracted
as fðIÞ ¼ fL � . . . � f1ðIÞ where each layer is a linear func-
tion followed by an element-wise non-linear activation,
such as the rectified linear unit function (ReLu [47]). The
power of CNN prediction comes from combining many
layers, which at the same time makes it complex and conse-
quently difficult to interpret. The layer-wise relevance prop-
agation (LRP) method [32] uses the layered structure of the
neural network to interpret the predictions. The network is
assumed to be fully trained in order to use LRP, and the pre-
dictions are redistributed backward layer-by-layer to give a
score to all the input features. A feature ðx̂; ŷÞ will be attrib-
uted with strong relevance, if the function f is sensitive to the
presence of that feature. The relevance values of all ðx; yÞ
pairs form the matrix of relevances R1

i is known as a heat-
map. The goal is to adapt this information for verifying the
network predictions of medical conditions and learn form
the network behaviour to find the most relevant attributions
associated with this these condition.

2.1 Classification Model and Interpretation

The first step is to design a robust classification CNN for the
LC-MS samples of two classes where we are interested in

the differences. A CNN is usually characterized by the
depth and width of the layers. Depth refers to the number of
layers, and width determines the number of filters. We train
multiple types of networks with different width and depth
based on standard structures like variants of ResNet [48] and
also tailored (or customized) structures. We observe that
training very deep networks like ResNet32 on the LC-MS data
(both synthetic and real data) leads to overfitting. The better
performance of our shallower network compared to the very
deep networks can intuitively be explained by the local
dependent characterization of the peaks on the LC-MS map.
Very deep networks capture both the local - gained by reach
feature representation - and global dependencies - gained by
large receptive fields. Therefore, very deep networks may
learn some global patterns irrelevant to the data information
but relevant to the noise, such as quantification calibration
error in the data acquisition. Apart from the depth of the net-
work, we observe that changing a few layers on the architec-
ture of the customized network has not change the training
and testing accuracy and loss, which can cause by unrelated
biological variation, such as batch effect. To decide keeping or
removing these layers, one may select a network with fewer
learnable parameters to decrease the computational cost.
Whereas, one may select a network with more learnable
parameters to increase the capacity and a better generalization
accuracy. Our strategy to select a proper network architecture
is however to leverage CNN interpretation.We quantitatively
compare the interpretations of the network predictions with
different architectures, and select the one whose predictions
are aligned the most with the actual differences between the
two groups. To obtain the interpretations we employ LRP
method using Eq. (1). Applying LRP on the network’s predic-
tion of given input In highlights the important parts of In
through redistributing the neuron score backwards through
the layers until the input layer and assigns a relevance to each
element of the input. Eq. (1) shows a rule for redistributing the
relevances known as LRP.�.

R
ðl;lþ1Þ
i j ¼

zij
zjþ" :R

ðlþ1Þ
j ; if zj � 0

zij
zj�" :R

ðlþ1Þ
j ; otherwise

8<
: (1)

where zij ¼ Oiwij, zj ¼
P

i zij þ bj, and Oj ¼ gðzjÞ. g is a
non-linear activation function, and wij defines the weight
that connect the neuron j in layer l to the neuron i in layer
lþ 1. Other redistribution rules to control the flow of posi-
tive and negative relevances include LRP.ab and LRP.z [32].
All rules at each step must hold such that

P
R
ðl;lþ1Þ
i j ¼ R

ðlþ1Þ
j ,

which means all relevance values that flow into a neuron at
layer lþ 1 flow out towards the neurons of the layer l. All
Relevances, Rl

i, are calculated for l ¼ 1; . . . ; num layers pro-
gressively from last layer, layer after layer, until the input
layer is reached and yield R1

i . Please see [32] for more
details. R1

i for i ¼ ðx; yÞ demonstrates how much pixel ðx; yÞ
- representing m=z and RT - contributes to the decision mak-
ing.We choose a network whoseR1

i highlight the differences
between the classes the most. As quantitatively assessing the
interpretations requires the annotations at the peak levels,
this experiment is performed on large synthetically gener-
ated data. The detail explanation on selecting the network
architecture is delayed to Section 3.
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2.2 Feature Selection

Once the network architecture has been selected, we
employed the network to learn representation of real data
and to discover the discriminating peaks from its interpre-
tation. Our assumptions to use the interpretation for bio-
marker discovery is the reproducibility and robustness of
the interpretations, which are justified later in Section 3.5.
Considering offsets, the presence of noise, and different
peak indices on the samples, we are interested in interpret-
ing the decisions on statistics of the whole training-set. We
take the mean of LC-MS samples belonged to the diseased
class D and healthy class H, separately. Each mean is
given to the trained network f and the predictions are
interpreted by LRP function. This results in two matrices
of diseased relevance values R1

d and healthy relevance
values R1

h.

R1
d ¼ LRP

�
f
� 1

Nd

X
n2D

In

��
; R1

h ¼ LRP
�
f
� 1

Nh

X
n2H

In

��
;

where Nd and Nh are the number of samples in diseased
and healthy classes, respectively. The spatial location of
peaks, however, on LC-MS map are widely distributed,
where we estimate the exact location of peaks by finding
their index with maximum intensity within a predefined
window. To this end, we first select the peak with stron-
gest relevances on R1

d. Then, the neighbor’s relevances in
the window are set to zero. We iterate this process until all
the high-intensity relevances are covered. The selected
peaks are distinguished as biomarkers if corresponding
indices on R1

h are attributed non-negative relevances. We
will discuss the effect of incorporating R1

h along with R1
d in

Section 3.3.
To extract the biomarkers of a test sample, the sample is

fed to the trained network to be classified. The peaks are
selected locally from LRP interpretation similar to selecting
the peaks from training samples. These peaks are distin-
guished as biomarkers if corresponding indices on R1

h are
existed and attributed non-negative on R1

h.

3 MODEL PARAMETER TUNING

As our DLearnMS feature selection is built on top of a trained
deep convolutional classifier, our aim in this section is to
select a network architecture that is more reliable and robust
to be the basis of our feature selection model. To this end, we
interpret different trained architectures as heatmaps and
assesswhich heatmap is alignedmorewith the discriminating
regions of the data. We will show that although the variation
in some layers results in very small differences in accuracy,
their interpretation focus towards discriminating peaks differ.
To assess the interpretation, however, we need the annota-
tions at the peak level. Since the annotation at the peak level
in large amount is too expensive or infeasible to acquire, this
experiment is performed on a synthetically generated dataset.
In the following, we first introduce how the synthetic LC-MS
dataset is generated, and then describe how the network
architecture is tuned through assessing their interpretation
quantitatively.

3.1 LC-MS Data Simulation

LC-MS consists of two levels of separations. First, a protein
solute (mobile phase) passes through a chromatography col-
umn (stationary phase), which effectively separates the
components based on the chemical affinity and weight. RT
measures the time taken from the injection of the solvent to
the detection of the components. Second, each component is
ionized and scanned through a mass spectrometer that gen-
erates a mass spectrum (MS). Each MS scan measures m=z
values of charged particles and peak intensities. Stacking all
MS scans on top of each other forms a three-dimensional
data whose x, y, and z axes are m=z values, RT, and ion-
count intensities, respectively.

To generate the synthetic LC-MS dataset, two groups of
samples representing healthy and diseased classes are
simulated. The peptide/protein sequences are read from
Uniport human-reviewed data from a FastA file [49]. The
healthy class are formed from 20 peptides that are ran-
domly selected from the data. Two peptides that are inde-
pendent from the peptides in the healthy samples are
added to the peptides in healthy group to form the dis-
eased group. As a results, there are 20 and 22 peptides in
healthy and diseased classes. The two extra peptides in
diseased group define the biomarkers (discriminating fea-
tures) that we intend to detect on LC-MS map. Investigat-
ing such differences is the basis of diagnosis of different
biological conditions and disease treatment, e.g., measur-
ing the concentration level of cardiac troponin that enters
in the blood soon after a heart attack, or measuring thyro-
globulin, a protein made by cells in the thyroid, which is
used as a tumor marker test to help guide thyroid cancer
treatment.

The data then is read and converted to mzML by
OpenMS [50], with random noise selected between biologi-
cal and technical noise at each run, Trypsin for digestion,
and electrospray ionization (ESI). The samples are then read
by TOPPAS [51] to generate images. The width, height, and
pixel intensities of images present m=z, RT, and ion-count
intensity, respectively. It should be noted that the images
still represent the raw data. The only difference between the
matrix of raw data and the converted images is that the ion-
count intensity range in raw data is scaled to [0,255]. We
also run the pipeline and all the experiments on the raw
data matrix to make sure the scaling would not cause loos-
ing small peaks in our analysis. No noise filtering, spectra
filtering, or other corrections are applied in this stage. The
only noise reduction we applied to the raw data is that we
remove the ion-count intensities less than two of the data.
The resolution of m/z and RT remain as it is defined for the
real data. The dataset contains 4000 samples of each group.
10% of each group is left out for testing, and the rest is used
for training and validation.

3.2 Interpretation Assessment Metrics

Lets now introduce the metrics we selected to evaluate
the capability of interpretation heatmap R1

i on reflecting
the discriminating regions. The metrics should be repre-
sentative of the percentage of true-positive (TP) and
false-positive (FP) peaks. Therefore, we consider intersec-
tion over union (IOU), precision, and recall metrics defined
as follows:
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IOU ¼ relevant peaks \ selected peaks

relevant peaks [ selected peaks

Precision ¼ relevant peaks \ selected peaks

selected peaks

Recall ¼ relevant peaks \ selected peaks

relevant peaks
; (2)

where the relevant peaks and selected peaks are ground-
truth and predicted peptides peaks. To extract the ground
truth on synthetic data, the mean of the images in the dis-
eased group is subtracted from the mean of the images in
the healthy group and the absolute value of the resulting is
taken. The result contains all discriminating peaks and is
referred to as ground-truth image (GTI). This is identical to
average of several replicas of the spike-in peptides. We
apply a threshold, ggt, on the GTI to ignore small perturba-
tions generated by LC-MS quantification error. As previ-
ously described in Section 2.2 since the spatial location of
peaks is distributed widely, we restrict our attention to the
peaks with the highest intensities in local region. To this
end, first the index of the highest intensity value on GTI is
selected. Then, the surrounding peaks in the window of w
and h are set to zero. Next, this process is iterated until all
the high-intensity peaks are covered. We refer to the result-
ing as ground truth peak map (GTPM). The selected peaks
in Eq. (2) are extracted similar to GTPM from the LRP rele-
vances and form prediction peak map (PPM). The metrics
of Eq. (2) can be rewritten as follows:

IOU ¼ 2ð
P
ðx;yÞ2I GTPMðx;yÞ:PPMðx;yÞÞ

=P
ðx;yÞ2I ðGTPMðx;yÞþPPMðx;yÞÞ

Precision ¼
P
ðx;yÞ2I GTPMðx;yÞ:PPMðx;yÞ

=P
ðx;yÞ2I PPMðx;yÞ

Recall ¼
P
ðx;yÞ2I GTPMðx;yÞ:PPMðx;yÞ

=P
ðx;yÞ2I GTPMðx;yÞ ;

where I covers the entire range of (m=z,RT) values.

3.3 Network Architecture Selection

Up to this point, we explained the specification of the syn-
thetic data, and introduced the metrics for interpretation
assessment. We will now discuss how we choose and
improve the network architectures including the number of
FCL, CL, and MPL through interpretation assessment on
synthetic data. Our experiment on the synthetic data shows
that changing these parameters in a variation presented in
Table 1 does not change the classification accuracy while
their interpretation move significantly towards the discrimi-
nating peaks for making decisions. To show this effect, these
networks are separately trained, and their interpretations
are assessed using IOU, Precision, and Recall in Table 1.

We assume that networks with higher values of interpre-
tation assessment metrics - IOU, precision, and recall- are
more generalized due to the fact that these networks know
on which part of the data look for the reason of distinguish-
ing a sample in one class from others and less biased toward
irrelevant regions; therefore, it is more likely to act as the
same on an unseen data. According to the research in DL
field, exploiting deeper networks are recommended for bet-
ter generalization as they offer richer representation. Con-
trary to our results (see Table 1), the deeper networks (more

CL and FCL layers) show less reliance on the discriminating
peaks. As a result, among the networks with the same accu-
racy performance, the one with four CL, one FCL, and one
MPL reach the best interpretation performance. Hence, with
more confidence we can say that the network distinguishes
the samples according to the regions of the data that are truly
discriminating. This is also theway howwe as humanwould
make classification decisions. Therefore, we can hope for
more generalization performance for the real world instan-
ces where sometime strong perturbations are possible and
clearly hard to predict. (The classification performances of
designed network on simulated LC-MS data and real LC-MS
data are depicted in supplementary material, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TCBB.2022.3141656).

3.4 Interpretation Importance Across Different
Classes

After selecting the network architecture, we now explain the
effect of incorporating the interpretation of the healthy pre-
dictions along with the interpretation of the diseased pre-
dictions on reducing the FP peaks. In Section 3.2, we
described in detail how prediction peak map (PPM) is calcu-
lated through LRP relevance values. As a recap, to estimate
relevance values on the training set, we calculate the mean
of the diseased samples, run the trained network on this
mean, and calculate the relevances. By convention, positive
relevance values are the evidence of existing relevant peaks
that are belong to the respected class. Therefore, in our
study, positive relevance values on the interpretation of dis-
eased class have been associated with the discriminating
peaks. We now aim to experimentally show that with the
information from interpretation of healthy instances we can
reduce the FP peaks that are highlighted with the interpreta-
tion of the diseased instances. This is because the positive
relevances in the interpretation of the healthy instances can
be explained as the absence of diseased relevant peaks, or
presence of healthy relevant peaks. In our study, since all
the discriminating peaks are appeared in diseased class, the
positive relevances of healthy group is just explained as the
absence of diseased relevant peaks. Accordingly, in our fea-
ture selection pipeline, the indices of high-ranked relevan-
ces in the diseased group are selected as biomarkers only if

TABLE 1
Network Architecture Selection Through Interpretation

Assessment

# CL # MPL #FCL Samples IOU Precision Recall

6 4 2 Rd 0.3975 0.3814 0.4149
6 4 1 Rd 0.5006 0.4513 0.5621
6 4 1 Rd;Rh 0.6177 0.6188 0.616
4 3 1 Rd 0.6599 0.5985 0.7353
4 3 1 Rd;Rh 0.7008 0.6756 0.7281
4 1 1 Rd 0.7165 0.6171 0.8441
4 1 1 Rd;Rh 0.8501 0.8554 0.8448

This table shows the effect of adding fully connected layers (FCLs), convolu-
tional layers (CLs), max-pooling layers (MPLs) on focusing of the network on
the discriminating peaks for decision making. The parameters are tuned
according to the intersection over union (IOU), precision, and recall. The effect
of incorporating the interpretation of diseased samples’ mean (Rd) and the
interpretation of healthy samples’ mean (Rh) on peak detection is also
demonstrated.
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the corresponding indices in the healthy group attribute
non-negative relevances. The results of this study are shown
in Table 1, in which the interpretation column is assigned
with Rd, Rh. As it is apparent, IOU and Precision that are
both directly affected by FP in their denominator, have con-
siderably improved.

As a result of architecture selection and parameter tun-
ing, the feature selection performance has been improved
from 40% to 85% shown in Table 1. Hence, our verified
DL network architecture has four CL, one MPL after the
second CL, and one FCL on top of the network as the
prediction layer. We use the interpretation of this net-
work for biomarker detection as it has been described in
Section 2.2.

3.5 Interpretation Sensitivity Analysis Using
Cross-Validation

The sensitivity analysis of deep learning interpretation
methods has recently gained attentions with the aim of
addressing this question that how much we can trust on
the outcome of interpretations. For example, [52] dis-
cussed that it is important to examine the utility and
robustness of the explanation in the context of medical
imaging data. They posit that the explanation trustworthi-
ness require repeatability and reproducibility. In addition,
in the context of MS feature importance discovery we also
posit that the explanations need to be consistent from one
sample to other samples of the same group in order to
guarantee the robustness of the results. We assess this
assumptions by comparing the IOUs when the network is
run in cross-validation mode. This experiment specifically
run on the synthetic data in order to avoid problems of
disentangling errors made by the model from errors
made by the explanation. First, 10% of the data is left out
for testing, and the rest is used for training and validation
sets in five-fold cross-validation split. On every run of
cross validation, network is trained on the training set,
then inference is run for testing and validation set, and
finally LRP interpretation is run on the predictions. The
interpretations of the test set, which are generated five
times over five-fold cross-validation reaches almost 99%
IOU. The high level of overlapped regions demonstrate
the reproducibility and repeatability of the interpreta-
tions. Likewise, the interpretations of the five validation
sets over training using five-fold cross-validation reaches
almost 98% IOU. This results shows the robustness of the
interpretations with respect to changing the samples in
the data.

These results not only justify the stability of the interpre-
tations and the designed classification but also imply the
robustness of feature selection performance.

4 BIOMARKER DETECTION RESULTS ON REAL

DATASET

In this section, the performance of the proposed method is
assessed on a published benchmark LC-MS dataset [4] which
we refer to as real dataset. Many other Mass spectrometry
datasets are available at repositories such as PRIDE or
CompMS. However, the focus of this paper is to assess the
feature selection on a raw LC-MS map of samples from two
conditions (healthy and control) with known biomarkers
presented by theirm=z and RT, which is perfectly met in the
selected dataset. We retrain the designed network on this
dataset while all the hyper-parameters of the model includ-
ing the classification, and interpretation parts aremaintained
as they have been tuned on the synthetic dataset.

4.1 Real-Data Description

The real LC-MS dataset, consists of two groups. The first
group was derived from five serum samples of healthy indi-
viduals that have been spiked with a known concentration of
spike-in peptides. The second group was obtained from the
serum samples only. We refer to the first and second groups
as diseased and healthy, respectively. The added peptides to
the diseased group are the selection of nine peptides with dif-
ferent concentrations to be representative of real datasets.
They have predictable retention behavior and elution order
that let the ground truth available in m=z and RT [4]. LC-MS
acquisition yields 13 peaks from nine peptides due to the dif-
ferent charges. The specifications of these peaks are presented
in Table 2. The concentration of 1 pmol=mL was selected for
spike-in peptides. It is common to deplete serum of high
abundant proteins such that low abundant proteins can be
detected. Hence, in preparation of this data, 60 mL of human
serum of Immunoglobulin G (IgG) and Albumin was
depleted. While different concentrations of spike-in peptides
(0.05, 0.1, and 0.5 pmol=mL) were evaluated, a concentration
of 1 pmol=mL showed the minimal intensity that would not
swamp the MS signals of serum peptides in LC-MS acquisi-
tion [4] (Please see supplementary material, available online
for visualization of the spike-in peaks). Each RT bin on the
LC-MS represents seven seconds, covering a total time of 240
minutes. MS level-1 scans have a m/z range from 350 to 2000
with a resolution of 10 ppm. We quantify the raw data and
form chromatograms matrices, which are then converted into
imageswhosewidth and height arem=z and RT, respectively.
Pixel intensities are demonstrating the ion-counts. LC was
run for 240minutes, however, similar to the benchmarkmeth-
ods, we filter the samples to retain features within 150
minutes because there is no significant peak out of this range.
We remove the features with the ion-count intensities less
than two as the only noise reduction on the samples.

TABLE 2
Specification of the Real Data Spike-in Peptides

Features No. 1 2 3a 3b 4 5a 5b 6 7a 7b 8 9a 9b

m=z 501.25 450.23 530.78 354.19 523.77 648.84 432.89 586.98 624.99 630.35 943.43 712.43 570.15
Charge 2 2 2 3 2 2 3 3 3 3 3 4 5
RT(min) start-end 4-8 45-49 53-56 53-56 59-62 63-67 63-67 73-77 77-81 82-86 79-83 103- 107 103-107

Base peak chromatograms of the group with spike-in peptides are presented based on their mass-to-charge ration (m=z), retention time (RT), and ion charge.
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4.2 Results

Our proposed method is intended to detect differentially
abundant spike-in peaks as biomarkers and to keep
detected FP peaks low. We aim to decrease the amount of
the FP candidates that saves lots of time for data analysis
and for further examinations, but at the same time, we
deem to avoid losing true positive peaks which make an
important role for example in early diagnosis of diseases.
The evaluation will be reported as the exact number of TP
and FP peaks. Table 3 compares our proposed method on
the described real dataset with the benchmark methods
including: msInspect, MZmine 2, Progenesis, and XCMS
[4]. The first row in Table 3 demonstrates that our method
outperforms the other methods in terms of detecting fewer
FP peaks without being depended to the preprocessing
steps used in other workflows. We follow the same statisti-
cal analysis on the selected peaks, similar to [4]. The t-test
for p < 0:05 is calculated on each selected feature, and mul-
tiple testing correction (Benjamini-Hochberg method [53]) is
applied. The features that satisfy q < 0:05 are selected as
the discriminating features presented on the third row of
Table 3. The fourth row shows the number of selected fea-
tures satisfied q < 0:05 and fold change (FC) > 10. Extract-
ing features from each sample and extracting the ones that
are statistically significant, may help in practice to avoid los-
ing features that have multiple modes across different sam-
ples. We detect nine biomarker peaks similar to msInspect,
while we achieve almost 10 times fewer FP peaks, 195 in
comparison with 2099 FP peaks in msInspect. We also out-
performMZmine 2 and Prognesis with respect to both evalu-
ation metrics, namely the number of biomarker peaks (seven
in MZmine 2 and eight in Prognesis) and FP peaks (539 in
MZmine 2 and 467 in Prognesis). Our experiments show that
although XCMS finds fewer FP peaks, it looses low intensity

9a and 9b peaks, while DLearnMS is able to find them. Note
that, as already emphasized FPs reduction should not result
in loosing TPs. Specially in medical domain application, it is
crucial to avoid loosing the peaks that are deemed as poten-
tial candidate for disease biomarkers. The last two columns
of the Table 3 demonstrate incorporating healthy samples
interpretation, R1

h, along with the diseased interpretation ,
R1

d. The performances show that the number of FP peaks is
degraded, although it is not as pronounced as the perfor-
mance on the synthetic data.

The biomarker peaks that are selected according to the
statistical analysis are presented in Table 4. Six peaks that
are commonly selected by all four other methods as differ-
entially abundant [4] peaks have also been detected by our
method.

5 CONVENTIONAL MACHINE LEARNING MODELS

FOR HIGH-THROUGHPUT LC-MS DATA

CLASSIFICATION

In this section, we discuss the challenges that hinder conven-
tionalMLmethods for LC-MS data classification andwhywe
rather use DL models in the first place. The initial problem
with the conventionalmachine learningmethods is that these
models over-fits quickly on high dimensional data, and to
avoid this problem, they should be Firstly equipped with
dimension reduction. Our early experiment using principle
component analysis however showed that it looses the bio-
logical relevant biomarker even before the data analysis.
Therefore, any further analysis may not be reliable since
some important parts of the data will not be part of the deci-
sion making analysis. Hence, in this study, all the experi-
ments are carried out on raw data without any dimension
reduction to avoid loosing information. This might, however,

TABLE 3
Real Data Feature Selection Comparision

msInspect MZmine 2 Progenesis XCMS DLearnMS: R1
d DLearnMS: R1

d; R
1
h

# All selected features 31168 (12) 12271 (12) 9267 (9) 21486 (13) 8044 (12) 6992(11)
# Features for statistical analysis 6525 (9) 12092 (9) 8415 (9) 8703 (10) 8044 (12) 6992(11)
t-test (q < 0:05) 4824 (9) 3505 (7) 4465 (9) 1896 (7) 3985 (11) 3499(11)
t-test (q < 0:05) + FC (>10) 2099 (9) 539 (7) 467 (8) 66 (7) 222 (9) 195(9)

The number of selected features using DLearnMS is compared with features seleted using MZmine 2 [6], Prognoses LC-MS [7], and XCMS [14]. The total num-
ber of selected features is represented for all methods in the first row. Only features presented in at least two replicates in each group were used for statistical anal-
ysis for the baseline methods. The third and forth rows are demonstrating the number of features satisfying two representative criteria including t-test with
multiple hypothesis testing (q-value< 0:05), and fold change (FC > 10). The plus sign denotes the combination of different criteria. The numbers written in
parentheses indicate the selected biomarker peaks. The effect of incorporating the interpretation of diseased samples (R1

d) and the interpretation of healthy samples
(R1

h) on peak detection are shown in the two last columns.

TABLE 4
Real Data Biomarker Detection Comparision

Features No. 1 2 3a 3b 4 5a 5b 6 7a 7b 8 9a 9b

msInspect ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - ✓ - - -
MZmine 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ - - - - - -
Progenesis ✓ ✓ ✓ ✓ ✓ - ✓ - - ✓ - - ✓
XCMS. ✓ ✓ ✓ ✓ ✓ - ✓ - - ✓ - -

DLearnMS ✓ ✓ ✓ ✓ ✓ - ✓ - - ✓ - ✓ ✓

Detected biomarkers satisfies the creteria presented in the forth row of Table 3. Detected differential abundant spike-in peaks are shown by check marks. Note that,
our method detects all the features that are commonly selected by all other methods.
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cause the model to overfit or at worst cause the model per-
forms well on training and testing but not after deployment.
This is where the model’s interpretation makes roles, but not
always all the ML models can be interpreted. To examplify
this shortcoming, we compare the classification comparison
of ML methods including, support vector machine (SVM)
with linear kernel, decision tree (DT), and Adaboost with our
CNNmodel in Table 5. The parameters of the selected meth-
ods are tuned using grid search in scikit-learn. We use five-
fold and leave-on-out cross-validation for training on the syn-
thetic and real datasets, respectively. As it is apparent from
Table 5 in contrary to our designed CNN which perform
equally well across two datasets, there are a huge gap in the
classification performances of ML methods between the syn-
thetic data and the real data. To investigate we tried to inter-
pret the results and check if model make decision based on
relevant discriminating features. There are model agnostic
methods that enable estimating the importance of features
for decision making by predictive models, such as permuta-
tion feature importance, that measures importance of fea-
tures by randomly shuffling them and tracking the drop in
the model’s score, or LIME [54], which locally interprets any
model around a single prediction through perturbing instan-
ces and fit a linear model on the perturbations. These meth-
ods, however, are computationally infeasible for measuring
the importance of high-dimensional LC-MS instances that
could have more than 50000 features. On the other hand,
employing inherently interpretable models that enable reli-
able explanations are not capable of correctly classifying com-
plex LC-MS data. For example, linear models in which the
weights of the variables serve as the explanation or shallow
decision trees in which the normalized total reduction of the
Gini index by every feature yields the explanation. These
models do not even fit on synthetic data based on our experi-
ments. Hence, in Table 5, despite Adaboost that is not inher-
ently interpretable and Decision tree (DT) that is not shallow
enough to be interpreted, linear SVM can still be explained
by the weights assigned to the features. According to this
table, SVM reaches comparable classification performance as
the CNN. However, the explanation results in a very poor
IOU - less than 10% - between the important features selected
by coefficient of SVM model and actual differences. This

effect - the high accuracy and weak explanation- resulted by
SVM can be explained by low fidelity of themodel’s interpre-
tation or overfitting of the model caused by some biases or
pattern (comes with the simulation), unrelated to actual dif-
ferences. But, the overfitting effect is more likely since SVM
with the same parameter setting, trained on the synthetic
data, results in a very poor accuracy on the real data. The
overfitting effect can also be explained by the Adaboost and
DT classification gap between the real and synthetic data as
well.

Unreliability and poor performance of ML models on
raw high-throughput LC-MS proteomics demonstrate the
reasons that we choose DNN models for our analysis. We
exemplify not only DNNs enable reaching the high perfor-
mance, but also their interpretation is now more alleviated
by the recent interpretation technologies.

6 IMPLEMENTATION SETUP

The experiments in this study are implemented in Python
for data analysis, Scikit-learn library[55] for ML analyzes,
Keras [56] with Tensorflow backend [57] for DL analysis,
and “iNNvestigate” library [58] for DL interpretation anal-
ysis on a machine with a 3.50 GHz Intel Xeon(R) E5-1650
v3 CPU and a GTX 1080 graphics card with 8 GiB GPU
memory. We use the weight of the network that has been
trained on synthetic data for initializing the network for
training the real data. We retrain the whole network on
the real data using leave-one-out cross validation. The
classification network is trained for 20 epochs with batch
size of two using Adam optimizer [59] with the learning
rate of 0.00001 and momentum of 0.9. We use binary cross-
entropy as the loss function. The kernel size in all layers is
set to 3�3 with the dropout rate of 0.3. The convolution
layers in the network are two dimensions and contain the
following number of kernels: 32 in the first and second
layers, 64 in the third layer, and two in the fourth layer.
The fully connected layer as the last layer has two neurons
for binary classification1.

TABLE 5
Classification Comparision of the Convolutional Neural Network (CNN) with conventional Machine Learning Methods

Synthetic dataset Accuracy Sensitivity Specificity Interpretation (IOU)

SVM 0.98 0.99 0.98 feature importance(< 0:1)
DT 1.0 1.0 1.0 -
Adaboost 0.99 1.0 0.99 -
CNN 1.0 1.0 1.0 LRP (0.85)

Real dataset Accuracy Sensitivity Specificity Interpretation (TP/13)

SVM <0.5 <0.5 <0.5 -
DT <0.5 <0.5 <0.5 -
Adaboost <0.5 <0.5 <0.5 -
CNN 0.8 0.8 0.8 12/13

Conventional machine learning methods include Decision Tree (DT), Support Vector Machine (SVM), and Adaboost. CNN shows significantly better classifica-
tion performance on the real datasets. The interpretation is not available for weak classifiers. On the synthetic dataset ML methods are as accurate as CNN. How-
ever, SVM interpretation demonstrates the overfitting effect. Interpretation on the synthetic data is reported by intersection over union (IOU) between the
selected and true peaks. Interpretation on the real data is reported by the amount of true positive peaks from 13 spike-in peaks. ’-’ shows no interpretation is avail-
able for the models.

1. The datasets and implementation are available upon request from
the first author.
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7 DISCUSSION

Identifying a set of biomarkers (proteins in this study) from
LC-MS data is a standard task in the context of precision
medicine. Performing this task on raw data is challenging
due to the high dimensionality, complexity, and high noise
level. Despite available tools, current workflows require sev-
eral preprocessing steps to address LC-MS biomarker detec-
tion. Moreover, learning biomarkers directly using ML/DL
models using supervised models require peak level annota-
tions which can be too expensive or even infeasible to
acquire. On top of it all, despite the importance of interpret-
able explanation in biomedical settings the application of
ML/DL interpretation has been neglected in this area. To
address aforementioned challenges, we introduce a deep
learning (DL)-based method combined with an approach for
interpretation of the learned DL configuration using the
layer-wise relevance propagation (LRP) technique [32]. We
showed how to use the interpretation to identify potential
biomarkers. Our method only requires class labels for the
given training data – rather than expensive peak annotations
– and is independent of otherwise necessary preprocessing
steps. We trained a CNN network on the LC-MS map of the
healthy and diseased samples and then used LRP interpreta-
tion Firstly for network architecture selection and Secondly
for learning from the trained network where to look for dif-
ferentially abundant peaks as biomarkers.

The first challenge with any supervised DLmethod is that
it requires a large labeled dataset for parameter tuning; oth-
erwise, it overfits quickly, particularly on the high dimen-
sional and sparse LC-MS dataset. Due to the insufficient real
labeled LC-MS dataset for training, our model was tuned
and optimized on a large synthetically generated dataset.
Besides, we verified the model robustness by measuring the
dependency of the network’s decision on true features. The
second challenge is that the interpretation of a DL model is
not always informativewhen it comes to very small discrimi-
nating peaks in the sparse LC-MS dataset. Therefore, we run
systematic experiments using feature selection metrics to
quantitativelymeasure the network’s interpretation.

Note that we generated synthetic data that is similar in
characteristic to the data being studied and expected to see
a similar network behavior on these two datasets. When the
network is trained on the simulated data, since we know
exactly which elements we want to make decisions based
on, we can check through the means of interpretation for
instance if a certain depth of layers is able to learn the repre-
sentation of such data, or adding too much pooling layer
lose local dependent information in the prediction analysis,
etc. We showed that this information is transferable to real
data analysis and leads to robust classification and bio-
marker detection performances.

According to the results in Section 3.3, we showed the
interpretations of different network architectures that share
similar classification performance - with almost 99% train-
ing and testing accuracy - differ considerably. These differ-
ences consequently affect biomarker detection. To select
network architecture we quantitatively assessed interpreta-
tion of these networks, and select the one whose interpreta-
tion is aligned the most with discriminating regions of the
data. We examined the repeatability, reproducibility, and

robustness of the selected model interpretation through
cross validation on synthetic data in Section 3.5. Then, we
built the biomarker detection on the interpretation of the
selected network.

We assessed the biomarker detection of the proposed
tuned model on a real dataset with predictable spike-in pep-
tides. We showed DLearnMS achieved overall better perfor-
mance in comparison with the conventional methods ([4],
[6], [7], [14]) in terms of detecting fewer FP peaks despite
being independent to otherwise necessary preprocessing
steps.

Training DL models on small datasets are not often rec-
ommended due to underfitting and overfitting effects, and
lack of sufficient evidence (labeled data) to show the mod-
el’s robustness. We showed that a properly designed net-
work can still be reliable through its validation using a
proper DL interpretation. If the data is scarce and the anno-
tation is not available to be checked, which is targeted in
our study and is also the case for many real-world data
analyses, we suggested studying the model behavior on
similar data. (for instance, synthetic data or a known data
with reliable annotations). We showed that training a net-
work on datasets, similar in characteristic, results in similar
behaviors.

Despite the common belief that in transfer learning, the
source data should share high-level semantic overlap with
the target data, recent work [60] has been shown that similar
characteristics on low-level and mid-level features make a
role. Following this idea, we showed that pretraining real
data classification with weights of the synthetic data that has
a similar low-level characteristic leads to successful informa-
tion transfer. This requirement in our analysis has been met
by synthesizing the data with similar quantification, diges-
tion, ionization, and filtering techniques as real data; and by
defining a similar task (the disease/healthy classification).

On the synthetic data, we showed that exploiting the
interpretation of both classes can considerably improve the
FP in comparison with the setting when only the diseased
class were considered. This observation stressed the impor-
tance of understanding the implications that are provided
by interpretation analyzes. Leveraging this valuable infor-
mation can foster more plausible network architectures
resulting in a more meaningful conclusion. Recent advances
in the image processing field confirm this important fact
[27], [32], [61].

The improvement in the FP rate on the real dataset was
not as pronounced as the synthetic dataset. This behavior
can be statistically explained by the number of samples in
the synthetic dataset (� 8000) that outnumber the real data-
set (� 10). We calculated the interpretation analysis on the
mean of the samples’ intensities. Therefore, themean intensi-
ties on the large set of data is a better representative of whole
data distribution than a small set. Consequently, the impor-
tance of features belonging to the larger dataset, which are
assigned by the network’s decision, would bemore precise.

According to Section 5, conventional ML models are
failed to correctly fit on LC-MS real dataset. Despite high
accuracy on the synthetic data, the poor interpretation of
linear SVM on synthetic data and the huge gap between
classification performance of real and synthetic data demon-
strate the overfitting effect.
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This study was assessed on the dataset whose biomarkers
have been spiked before LC-MS acquisition. To further our
research, we plan to apply our proposed method to more real
diseased cases. In such cases, the data may require some nec-
essary preprocessing steps, such as the batch-effect correction
that we consider to investigate if DlearnMs can be adapted to
remove the effect. Our study can be extended to the multi-
subject biomarker detection, as well. In this case, the interpre-
tation of a robust multi-class classification network on the LC-
MSmap of sampleswould highlight the dominant differences
of each class from the others. These differences are the poten-
tial position of biomarkers. We also consider adapting differ-
ent LRP rules to different layers of the network due to their
confirmed success inmachine vision applications [27].

8 CONCLUSION

We present DLearnMS, an interpretable deep learning
approach for LC-MS biomarker detection. DLearnMS is built
on a generalized convolutional neural network combined
with an interpretation method to allow understanding of the
results. We successfully leverage the quantification of deep
learning prediction interpretations for biomarker identifica-
tion. Towards this end, the lack of labeled LC-MS data is
addressed by utilizing synthetically generated data formodel
parameter tuning and optimization of the network architec-
ture. DLearnMS shows bette results compared to conven-
tional biomarker detection methods (such as msInspect,
MZmine 2, Progenesis, and XCMS) in terms of detecting
fewer false positive peaks and maintaining true positives –
while decreasing additional computational costs by exclud-
ing commonly used preprocessing steps.
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