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Abstract
Mast cells (MCs) are critically involved in microbial defense by releasing antimicrobial peptides (such as cathelicidin LL-37 
and defensins) and phagocytosis of microbes. In past years, it has become evident that in addition MCs may eliminate invad-
ing pathogens by ejection of web-like structures of DNA strands embedded with proteins known together as extracellular traps 
(ETs). Upon stimulation of resting MCs with various microorganisms, their products (including superantigens and toxins), 
or synthetic chemicals, MCs become activated and enter into a multistage process that includes disintegration of the nuclear 
membrane, release of chromatin into the cytoplasm, adhesion of cytoplasmic granules on the emerging DNA web, and ejec-
tion of the complex into the extracellular space. This so-called ETosis is often associated with cell death of the producing MC, 
and the type of stimulus potentially determines the ratio of surviving vs. killed MCs. Comparison of different microorganisms 
with specific elimination characteristics such as S pyogenes (eliminated by MCs only through extracellular mechanisms), 
S aureus (removed by phagocytosis), fungi, and parasites has revealed important aspects of MC extracellular trap (MCET) 
biology. Molecular studies identified that the formation of MCET depends on NADPH oxidase-generated reactive oxygen 
species (ROS). In this review, we summarize the present state-of-the-art on the biological relevance of MCETosis, and its 
underlying molecular and cellular mechanisms. We also provide an overview over the techniques used to study the structure 
and function of MCETs, including electron microscopy and fluorescence microscopy using specific monoclonal antibodies 
(mAbs) to detect MCET-associated proteins such as tryptase and histones, and cell-impermeant DNA dyes for labeling of 
extracellular DNA. Comparing the type and biofunction of further MCET decorating proteins with ETs produced by other 
immune cells may help provide a better insight into MCET biology in the pathogenesis of autoimmune and inflammatory 
disorders as well as microbial defense.
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Abbreviations
BMMCs	� Bone marrow derived mast cells
DAPI	� 4,6-Diamino-2-phenylindole

ET	� Extracellular trap
GAS	� Group A Streptococcus
H3Cit	� Citrullinated histone H3
HIF-1α	� Hypoxia-inducible factor 1α
HMC-1	� Human Mast cell line-1
HMDM	� Human monocyte–derived macrophage
mAb	� Monoclonal antibody
MCETs	� MCs extracellular trap
mDCs	� Myeloid dendritic cells
MPO	� Myeloperoxidase
NOD	� Nucleotide-binding oligomerization domain
PAD	� Peptidyl arginase deiminase
PAD	� Peptidyl arginine deiminase
PMA	� Phorbol-12-myristate-13-acetate
RIG-I	� Retinoic acid-inducible gene I
ROS	� Reactive oxygen species
RSV	� Respiratory syncytial virus
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NLRP3	� NOD-like receptor protein 3
ASC	� Apoptosis-associated speck-like protein

Introduction

Formation of extracellular traps (ETs) by several types of leu-
kocytes occurs as a late antimicrobial response to the presence 
of microbial invaders (in vivo) or special chemicals (mostly 
reported in in vitro experiences) [1, 2]. Although ET formation 
was primarily described as a mechanism used by leukocytes in 
microbial defense, ETs were later shown to be associated with 
several non-infectious pathologies including psoriasis, systemic 
lupus erythematosus (SLE), liver damage, acute pancreatitis, 
and cancer metastasis [2–6]. ETs, the thread-like complexes of 
decondensed DNA (nuclear or mitochondrial DNA [7]) with 
attached proteins from cytoplasmic granules, were first reported 
in neutrophils to act as an extracellular mechanism in microbial 
defense [8]. The formation of ETs in leukocytes results in the 
cell death of the leukocyte which from a molecular point of 
view is neither necrosis nor apoptosis [9]. Extracellular traps 
gained attention when they were reported to be produced by 
other myeloid cells such as monocytes [10] or eosinophils [11]. 
The molecular structure of ETs depends on the type of the pro-
ducing cell and the stimuli; for instance, neutrophil ETs (NETs) 
are comprised of neutrophil elastase (NE), myeloperoxidase 
(MPO), cathepsin G, leukocyte proteinase 3 (PR3), lactoferrin, 
gelatinase, lysozyme C, calprotectin, cathelicidins, and defensins 
[9]. In contrast, mast cells (MCs), another innate immune cells, 
produce ETs (MCETs) containing histones, tryptase, and LL-37 
[12] (Fig. 1a). The main biologic functions of these biomol-
ecules and mediators are listed in Table 1. MCs are granulated 
leukocytes of innate immunity that differentiate in target tissues 
from CD117 + /CD34 + progenitors released from the bone mar-
row [13, 14]. Under the influence of growth factors such as stem 
cell factor (SCF), IL-3, IL-4, IL-9, IL-10, IL-33, and TGF-β 
[15], MC progenitors differentiate in functional mature cells that 
respond to a variety of environmental stimuli owing to expres-
sion of receptors including toll-like receptors and receptors to Fc 
portion of antibodies (such as FcεRI:IgE or FcγR: IgG) [16–18]. 
Beyond their classic role in allergic and anaphylactic reactions 
[19], MCs play an important role in microbial defense [12]. At 
very early steps of microbial invasion, MCs effectively recruit 
neutrophils to the site of infection by releasing TNF-α which is 
a preformed and stored mediator of MCs [20]. The results of 

Fig. 1   a structure of ETs, ET-associated proteins, and the nature 
of DNA depend on the producing cell types. b Role of MCs in anti-
microbial defense against S. aureus: MCs release TNF-α which is a 
critical neutrophil attractant to the site of infection. MCs from MC-
deficient KitW−sh/W−sh mice cannot effectively attract neutrophils when 
compared to the wild type Kit+/+ MCs. When WT MCs are injected to 
MC-deficient KitW−sh/W−sh mice, they restore their ability to eliminate 
the bacteria by recruiting neutrophils to the site of infection

▸
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Table 1   The main properties and biofunctions of ET-associated proteins in neutrophils and MCs

Producing 
cell

ET-associated 
proteins

Main properties and biofunctions of biomolecules and mediators attached to DNA strands Ref

Neutrophil Neutrophil 
elastase (NE)

• A serine protease expressed in primary granules [95]
• In humans, NE translocates from azurophilic granules to the nucleus upon formation of NET where it cleaves histones and 

contributes to chromatin decondensation by partially degrading specific histones
[96]

• Neutrophils of NE−/− mice produce NETs when stimulated by PMA [97]
• Maintains its catalytic ability after being localized to DNA [98]
• It is suggested that NE blocking would largely abrogate the protease activity associated with NETs [99]

Myeloperoxidase • Synergies with NE in decondensation of chromatin during NETosis [96]
• A granule component of neutrophil that possesses antiviral activity [100]

Cathepsin G • Cleaves the pro-IL-1α precursor and produces more IL-1α through which it activates endothelial cells [101]
• Plays a role in platelet activation, platelet aggregation, and dense granule secretion [102, 103]

Leukocyte 
proteinase 3

• Has similar substrates, structural and functional characteristics with NE [104]
• it is a neutral protease identified as the principal antigen of antineutrophil cytoplasm autoantibodies (c-ANCA) [104]
• Like other NET-associated proteases (NE and cathepsin G), leukocyte proteinase 3 is activated by dipeptidyl peptidase I 

(DPPI) in mature neutrophils
[105]

Lactoferrin • Deprives the bacteria of iron by capturing iron [106]
• Polysialic acid modulates the Binding of external lactoferrin in NETs [106]
• Binds DNA through interactions of positively charged residues located in the N-terminal with negatively charged DNA [107]
• Similar to elastase, lactoferrin is present in the cytoplasm of unstimulated neutrophils but is localized to the cell membrane 

after 2 h PMA- stimulation
[107]

• Lactoferrin has been reported to inhibit the release of NET [106]
Gelatinase • Matrix metalloproteinases (MMPs) are zinc-dependent proteases that degrade extracellular matrix and mediate the tissue 

remodeling
[108]

• MMP-9 cleaves laminin, chondroitin sulfate, collagen IV, and collagen V [109]
• MMP-9 activates the endothelial MMP-2 and drives endothelial dysfunction [110]

Lysozyme • NETs carry lysozyme upon exposure to several microorganisms including Pseudomonas aeruginosa [111]
Calprotectin • Structurally is a heterodimer and acts as an effective antifungal component in NETs [112]
Cathelicidins • LL-37 is the only human cathelicidin which is an amphipathic and cationic peptide and has been reported to act as chemot-

actic AMP. It has immunomodulatory properties
[113]

• May lose its antimicrobial properties when it binds to DNA [114]
• LL-37 induces the formation of NETs in ex vivo experiments [115]
• LL-37 has been reported in structure of NETs when neutrophils are exposed to microbes including bacteria and parasites [116, 117]

Defensins • Human β-defensin 1 (hBD-1) is produced by epithelial surfaces and acts mainly against gram-negative bacteria [118]
• Mature hBD-1 under influence of thioredoxin is modified and produces redhBD-1 by elimination of disulfide bonds [119]
• NET formation induces the production of hBD-2 by keratinocytes in psoriasis [120]

Mast cell Histones • Produced and released as the component of MCETs when MCs are exposed to intra/extracellular pathogens such as L. 
monocytogenes, Streptococcus pyogenes, and Leishmania

[12, 59, 63]

• Histones have been reported to have antimicrobial properties, i.e., H3 and H4 histones cause membrane damage accompa-
nied with blebbing and pore formation, while H2B disrupts the integrity of the cell

[121]

Tryptase • The most abundant protease found in the MC secretory granules, that is associated with the pathologies including allergy, 
inflammation, and tissue remodeling

[122]

• Tryptase acts as a ligand for protease activated receptor-2 (PAR-2); the cleavage of PAR-2 is the activation mechanism 
through which tryptase activates PAR-2

[123, 124]

• Tryptase β has been reported to effectively detoxify various venoms [125]

• Since MCs are the only producers of tryptase and that tryptase is a component of MCETs, immunofluorescence micros-
copy to identify tryptase and DAPI staining together form the routine protocol to visualize MCETs.

[8]

LL-37 • LL-37 is formed from an 18-kDa precursor protein (hCAP-18) [126]

• Other immune cells rather than MCs produce LL-37 including monocytes, neutrophils, MCs, NK cells, and B and T cells. [126]

• LL-37 possesses antimicrobial activity, induces the release of nucleic acids by MCs however, it has been reported not to 
play a role in formation of MCETs.

[61]

• Its effectiveness against bacteria is due to its pore-forming activity [62]
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experimental infection with S. aureus in MC-deficient KitW−sh/

W−sh mice and corresponding wild type (WT) littermates or 
reconstitution of MC-deficient mice with MCs derived from 
WT mice showed that (a) In KitW−sh/W−sh mice recruitment 
of neutrophils and elimination of bacteria were impaired, (b) 
reconstituting the MC population in KitW−sh/W−sh mice by injec-
tion of MCs from WT mice could restore their ability to elimi-
nate the bacteria, and (c) exogenous TNF-α could compensate 
the partial ineffectiveness of MC-deficient mice in recruiting 
neutrophils to the cite of infection supporting the notion that 
MC-released TNF-α participates actively in microbial defense 
[21] (Fig. 1b). MCs utilize both intracellular (including phago-
cytosis) and extracellular mechanisms (mainly via release of 
peptides with antimicrobial properties) for the elimination of 
invading pathogens [12, 22]. Additionally, MCs activate CD4+ 
T cells by acting as antigen presenting cells (APCs). It is now 
evident that MCs express MHC-II and costimulatory molecules 
such as OX40L, CD80, and CD86 to activate CD4+ T cells 
(expressing the corresponding receptors including OX-40 and 
CD28, respectively) and as such, orchestrate adaptive immune 
responses [23, 24]. Besides, MCs are abundant in B cell local-
izing areas in lymph nodes and the coculture of these two cell 
populations revealed that MCs induce the proliferation of both 
naïve and activated B cells and support their differentiation 
into IgA producing cells via expressing CD40L and releasing 
IL-6 [25]. Accordingly, MC-released IL-6 can play a critical 
role in the activation and proliferation of B cells in vivo [26]. 
MCs express different types of surface receptors to recognize 
microbes including TLR-2/Dectin-1 for the detection of C. albi-
cans and produce nitric oxide (NO) which possesses cytotoxic 
effects against microorganisms [27, 28]. The ability of MCs to 
produce extracellular traps (ETs) was first reported in 2008 [12] 
(Fig. 2). ETosis of MCs and subsequent cell death can be inhib-
ited by the NADPH oxidase inhibitor diphenyleneiodonium 
(DPI) indicating a critical role for reactive oxygen species (ROS) 
in MCET formation [12, 29]. In the following sections, we will 
review different aspects of MCETs with focus on their structure, 
microbial and chemical stimuli that induce their formation, their 
role in restriction of microbial infections, and finally possible 
involvement in several noninfectious pathologies [30]. Addition-
ally, we will discuss the technical procedure commonly used to 
stain the different components of MCETs and visualizing them 
under microscope.

Cell Death Pathways in Innate Immune

There are four cell death pathways described in innate 
immune cells when they are exposed to special bacteria 
and viruses including non-lytic and silent cell death mainly 
apoptosis, and inflammatory programmed lytic types includ-
ing necroptosis, pyroptosis, and ETosis [31].

Necroptosis

Engagement of TNF superfamily receptors, toll-like recep-
tors (mainly TLR3 and TLR4), and interferon receptors 
drives the process of necroptosis during which the interac-
tion between receptor-interacting protein kinase 1 (RIPK1) 
and RIPK3 leads in formation of heterodimer complex that 
promotes oligomerization of mixed-lineage kinase domain-
like protein (MLKL)—acts as the RIPK3 substrate—through 
phosphorylation. MLKL oligomers translocate towards the 
plasma membrane and cause pore formation and further 
inflammatory response [32].

Pyroptosis

The canonical pathway of pyroptosis is initiated when 
inflammasome sensor proteins mainly NLRP3 recognize 
the K+ efflux induced by microbial pathogens, toxins, 
and DAMPs [33]. Inflammasomes activated by DAMPs 
and PAMPs bind to apoptosis-associated speck-like pro-
tein (ASC) and recruit procaspase-1 and activate caspase-1. 
The latter molecule cleaves proIL-18 /1β and mediates the 
cleavage of gasdermin D (GSDMD). The N-terminal frag-
ment of GSDMD (GSDMD-NT) mediates the formation of 
the pores in the plasma membrane, through which IL-18 
/1β are released and water influx occurs. The final conse-
quences of these molecular events are cell swelling and 
finally osmotic lysis [34].

ETosis

In contrast to apoptosis, during ETosis, biologic changes such 
as nuclear condensation and DNA fragmentation do not hap-
pen. Indeed, nuclear chromatin decondensation in the cyto-
plasm is a common finding. Moreover, disintegration of the 
nucleus membrane, therefore cell death, results in release of 
nuclear DNA to form extracellular DNA nets [35]. From a 
molecular point of view, NADPH-oxidase-mediated produc-
tion of ROS plays a key role in the formation of ETosis [36, 
37]. Moreover, peptidyl arginine deiminase-mediated deimi-
nation of histone arginine residues to citrullines is another 
biochemical finding that contributes to chromatin deconden-
sation [38]. Therefore, not interestingly hypercitrullinated 
histones are found in the structure of ETs when chemicals 
such as LPS and H2O2 act as the stimuli [39]. Since formation 
of ETs is followed by biologic changes including disintegra-
tion of the nuclear and cellular membranes, decondensation 
of chromatin and DNA structural modification mainly citrul-
lination, and the release of both mitochondrial and nuclear 
DNA from the cells into the extracellular space, it is more 
likely that production of ETs results in the cell death [40] 
(Fig. 3).
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Extracellular Traps Formed by Immune Cells

Neutrophils

By studying inflammatory conditions including experi-
mental shigellosis in rabbits and appendicitis in humans, 
Brinkmann and colleagues were the first to describe a novel 
extracellular anti-microbial mechanism in neutrophils in 
2004. By staining histones, DNA, and neutrophil elastase, 
they reported the ability of neutrophils to eject DNA strands 
and utilize them for the trapping of pathogens [41]. A wide 
variety of stimuli including interferon (IFN)-α, interleukin 
(IL)-8, chemical agents (mainly phorbol myristate acetate; 
PMA), certain microbes, and their products have since been 
shown to induce the formation of neutrophil ETs (NETs) 
[42, 43]. NETosis is initiated by decondensation of chroma-
tin, and the release of nuclear contents into the cytoplasm. In 
the final stage, DNA is released into the extracellular space 
to ensnare the invading pathogens [42]. Upon ejection of 
NETs, a variety of substances with bactericidal properties 
including proteases, LL-37, and protease-containing matrix 
metalloproteinase 9 (MMP-9) are released and contribute 
to the elimination of the pathogen [43]. Moreover, citrul-
linated histone H3 (H3Cit) and peptidyl arginine deiminase 
(PAD) are commonly released in conjunction with DNA [44] 
(Fig. 4a). NETosis is activated not only upon exposure to the 
above listed cytokines or chemicals but also the crosstalk 
of several cell types with neutrophils may induce the for-
mation of NETs. Specifically, the production of NETs can 
be triggered by inorganic polyphosphate (polyP), notably 
also a secretory product of MCs which co-express it with 
CD68 [45]. The abundance of polyP expressing CD68+ MCs 
in the proximity of tumor cells in patients with colorectal 
cancer suggests that MCs may prime or trigger the produc-
tion of NETs in cancer [45]. NETs have also been linked to 
procoagulant activity in patients with acute stroke. Indeed, 
the interaction between neutrophils and activated platelets 
induces the production and release of NETs decorated with 
phosphatidylserine (provides binding sites for the activation 
of coagulation factors when it is expressed on microvesicles 

Fig. 2   Intracellular and extracellular mechanisms of microbial 
defense used by mast cells. (1) MCs act as antigen presenting cells 
by expressing MHC class II molecules and costimulatory molecules 
to activate CD4+ T cells and support the orchestration of adaptive 
immune responses; (2) MCs can act as phagocytes by directly engulf-
ing invading pathogens and killing them in phagolysosomes; (3) MCs 
produce MCETs consisting of DNA, histones, LL-37, and tryptase 
to trap and immobilize invading pathogens; (4) MCs produce and 
release antimicrobial peptides such as the cathelicidin LL-37; (5) 
MCs effectively recruit other phagocytes to the site of infection by 
releasing cytokines such as TNF-α for neutrophil recruitment; and (6) 
MCs play a role in induction of proliferation in B cells by releasing 
cytokines and surface receptors

▸
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or blood cells) [46]. Adhesion of coagulation factors and 
platelet-derived extracellular vesicles to NETs further con-
tributes to the formation of thrombin and fibrin in stroke 
patients [46]. During NETosis, a variety of proteases are 
released from neutrophil granules and attach to DNA that 
have special biofunctions; for instance, neutrophil elastase, 
cathepsin G, and myeloperoxidase (MPO) are released from 
azurophilic (primary) granules, while lactoferrin and gelati-
nase are released from specific (secondary) granules and 
tertiary granules, respectively [41].

Eosinophils

Over the recent years, it has become evident that neutro-
phils are not the only myeloid cells able to produce ETs. 
Release of eosinophil ETs (EETs) was first demonstrated 
when blood purified eosinophils were primed by IL-5 or 
IFN-γ for 20 min and then exposed to lipopolysaccharide 
(LPS) or complement factor C5a. In contrast to NETosis, 
EETosis results from the ejection of mitochondrial rather 
than nuclear DNA, presumably in a ROS–dependent man-
ner [11]. Immobilized IgA/IgG and GM-CSF/IL-5 with 
platelet-activating factor (PAF) are among other stimuli of 
EETosis in vitro [47]. Additionally, formation of EETs may 
be triggered by the presence of viral infection as eosino-
phils derived from Ovalbumin-sensitized BALB/cJ mice 
were shown to produce EETs following infection with res-
piratory syncytial virus (RSV) in vitro [48]. The released 
EETs were composed of DNA decorated with toxic major 
basic protein (MBP) [49] (Fig. 4b). Production of EETs has 
been primarily studied in the context of severe eosinophilic 
asthma. Eosinophils from patients with severe asthma were 
reported to be more activated than those with non-severe 
asthma, and these eosinophils produce higher levels of 
ROS and EETs. Notably, the number of EET producing 
eosinophils correlates negatively with forced expiratory 
volume in 1 s (FEV1) and the severity of the disease [50], 
indicating the potential functional relevance of EETs in 

Fig. 3   The molecular basis of inflammatory programmed lytic cell 
death types including necroptosis, pyroptosis, and ETosis. Engagement 
of TNFR, TLR3 and TLR4, and interferon receptors drives the interac-
tion between receptor-interacting protein kinase 1 (RIPK1) and RIPK3 
that promotes oligomerization of mixed-lineage kinase domain-like 
protein (MLKL) MLKL oligomers cause pore formation. In pyroptosis, 
inflammasomes activated by DAMPs and PAMPs bind to apoptosis-
associated speck-like protein (ASC) and recruit procaspase-1 and acti-
vate caspase-1. Then caspase-1 cleaves proIL-18/1β and gasdermin D 
(GSDMD). The N-terminal fragment of GSDMD (GSDMD-NT) medi-
ates the formation of the pores in the plasma membrane, through which 
IL-18/1β are released and water influx occurs. During ETosis, decon-
densation of chromatin, histone citrullination, and release of DNA into 
cytoplasm occur. DNA ejects into the extracellular space along with 
NET-associated antimicrobial peptides

▸

165Clinical Reviews in Allergy & Immunology  (2022) 62:160–179

1 3



asthma. Production of EETs in asthmatics was, however, 
not affected by allergen challenge or levels of eotaxin, IFN-
γ, and IL-5 in bronchoalveolar lavage [49]. Investigations 
of the structure of EETs showed that eosinophils release 
Charcot-Leyden crystals (CLCs) during the formation of 
EETs. CLCs are composed of eosinophil protein galec-
tin-10 and commonly found in patients with allergic dis-
eases such as asthma [51]. Non-stimulated eosinophils or 
those treated with diphenyleneiodium chloride were rarely 
found to release the crystals showing that crystals were 
associated with the formation of EETs. Considering the 
fact that formation of many crystals usually is associated 
with tissue injury, more studies are needed to clarify the 
significance of Charcot-Leyden crystals released during 
EETosis [47].

Monocytes

Similar to eosinophils, monocytes can produce ETs by 
ejection of mitochondrial DNA that is decorated with 
global histones (H1, H2A/H2B, H3, H4) and citrullinated 
histones such as histone H4 citrullinated 3 (H4Cit3) [52]. 
Monocyte ETs (METs) can trap other cells, as demon-
strated for spermatozoa from healthy individuals which 
showed a reduced mobility in the presence of monocytes 
simulated with E. coli [52]. Accordingly, monocytes have 
been found to be involved in microbial defense against 
parasites including viable Besnoitia besnoiti tachyzoites 
by the production of METs decorated with H3 histones 
and myeloperoxidase (MPO) [53]. In addition to humans, 
METosis has been reported in animals as well. In this 
regard, sensing of T. gondii-tachyzoites by monocytes of 
Harbour seals induces the formation of METs that results 
in entrapping and immobilizing of the parasite [54]. Nota-
bly, MET formation may also be induced by hormonal 
changes as demonstrated in a study of monocytes purified 
from peripheral blood of non-pregnant women during the 
menstrual cycle which showed that (a) more METs are 
produced during the luteal phase compared to the follicu-
lar phase and (b) revealed a positive correlation between 
the number of METs and serum levels of progesterone 
[55] (Fig. 5a).

Fig. 4   Production of ETs in neutrophils and eosinophils in response 
to chemical and biologic stimuli. a Stimuli including IL-8, IFN-α, 
PMA, and microbes induce the generation of NETs. Molecular events 
during ETosis include chromatin decondensation, DNA release into 
the cytoplasm, and release of DNA webs decorated with histones, 
LL-37, PAD, and MMP-9 into the extracellular space to trap invading 
pathogens. b Eosinophils produce EETs through releasing of mito-
chondrial DNA that becomes decorated with MBP upon exposure to 
stimuli including C5a, LPS, IgA/IgG, and GM-CSF/IL-5 + PAF

▸
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Macrophages

Both monocyte-derived macrophages and macrophage cell 
lines from humans and animals have been reported to pro-
duce and release macrophage extracellular traps (METs). 
Upon release, these web-like chromatin structures are dec-
orated with H3Cit, granule proteases, and PAD similar to 
NETs [44]. Macrophages produce METs in response to a 
variety of microbes as well as to exotoxins of bacteria [56] 
(Fig. 5b) such as Mannheimia haemolytica (which causes 
bovine respiratory disease) and its leukotoxin or E. coli-
derived hemolysin [56]. In macrophages stimulated with 
M. haemolytica, Aulik and colleagues showed that DNase 
treatment reduced the number of trapped and killed bacte-
ria, thereby consolidating the role of METs in antimicrobial 
defense [56]. Consistently, Loureiro and coworkers demon-
strated the role of METs in the control and killing of C. 
albicans in that (a) both forms of C. albicans yeast cells 
and hyphae can induce macrophages to produce METs and 
(b) both heat-killed and live C. albicans induce the genera-
tion of METs with the former more than the latter, possibly 
due to DNase activity in live C. albicans [57]. Importantly, 
this study introduces the DNase of C. albicans as a novel 
virulent factor. Indeed, METosis may act as a mechanism 
to confine the spread of C. albicans rather than killing the 
yeast [58] (Fig. 5c).

Mast Cell Extracellular Traps

Discovery and Early Reports

Just 4 years after the discovery of NETs by Brinkmann et al. 
[41], Köckritz-Blickwede and colleagues reported that just 
like neutrophils, MCs can produce extracellular traps [12]. 
Over the past decade, the structure, function, and relevance 
of MCETs in infectious disease have been elucidated by 
models of intracellular or extracellular bacterial infection, 
fungi, or parasites. The timeline of these discoveries is high-
lighted in Fig. 6 [12, 30, 59–68].

General Function and Composition of MCETs

The formation of MCETs is mainly considered to constitute 
an extracellular mechanism of host defense against invad-
ing pathogens [66]. A variety of stimuli have been found to 
induce the formation of MCETs, including several cytokines 
such as IL-23 and IL-1β that not only stimulate the forma-
tion of MCETs but also trigger MC degranulation [69]. Both 
intracellular and extracellular microbes, their products, can 
induce the release of MCETs [59]. Additionally, chemicals 
including PMA and endogenous molecules, namely, H2O2 
and glucose oxidase induce the production of MCETs [12]. 

In contrast to eosinophils and monocytes which form small 
ETs from mitochondrial DNA, MCs similar to neutrophils 
form ETs via release of nuclear DNA [8, 11, 62, 70]. First 
studies provided insights into the structure of MCETs as 
web-like DNA strands decorated with histones, tryptase, and 
the cathelicidin LL-37 [12]. Cathelicidins serve as a group 
of peptides with antimicrobial properties and are produced 
by several immune cells, epithelial and genital cells [71]. 
LL-37 is a cationic peptide produced in humans from its 
precursor molecule hCAP18 by kallikreins [72]. LL-37 is 
produced by epithelial cells of various tissues [72, 73], and 
enhances the function of neutrophils, induces the production 
of inflammatory chemokines including IL-8, and induces 
tissue vascularization [74] by stimulating angiogenesis [75]. 
LL-37 can activate and degranulate LAD2 cells, a mast cell 
line, and hematopoietic CD34 + derived MCs expressing 
MrgX2, the receptor for LL-37 [76]. Immunohistochemical 
studies show that exogenous LL-37 is taken up by LAD2 
cells and can be detected in their cytoplasm and nuclei. 
Treatment of LAD2 cells with LL-37 induces the release 
of nucleic acids and at high doses reduces the viability of 
the treated cells [61]. Following its release, LL-37 induces 
the expression of a variety of TLRs in MCs including both 
surface-expressed TLRs such as TLR2, TLR4, or TLR5, and 
endosomal TLRs including TLR7 and TLR9 [72]. In addi-
tion, LL-37 upregulates retinoic acid-inducible gene I (RIG-
I)-like receptors (RLRs) and nucleotide-binding oligomeri-
zation domain (NOD)-like receptors (NLRs) in peritoneal 
MCs [77]. Another element of MCETs is tryptase which 
exerts its effects mainly by proteolytic cleavage of protease-
activated receptor (PAR)-2 which is expressed in various 
immune cells but also in endo- or epithelial cells [78]. In 
addition to signaling via PAR-2, tryptase has additional 
important biofunctions as a protease including activation of 
matrix metalloproteinases and degradation of extracellular 
matrices [79].

Imaging Techniques for the Study of MCETs

Prior to discussing the functional role of MCETs in micro-
bial defense, we will briefly summarize the most relevant 
techniques used for the study of MCETs. Immunofluores-
cence and electron microscopy have been used successfully 
to demonstrate the ability of MCs to release ETs in the 
following protocol: (1) treatment of murine BMMCs (bone 
marrow–derived mast cells) or HMC-1 (Human Mast cell 
line-1) cells with PMA or glucose oxidase; (2) infection 
with S pyogenes that is either carboxyfluorescein labeled 
(if the imaging system is confocal microscopy) or unla-
beled (if imaging is performed by electron microscopy); 
(3) fixation of cells using paraformaldehyde and washing 
in PBS for fluorescence microscopy; (4) applying antibod-
ies against LL-37, tryptase, and histone; and (5) staining 
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of DNA using DAPI (4,6-diamino-2-phenylindole) (or 
SYTOX-Green [59]) [12]. Alternatively, transmission 
electron microscopy has been used to study the structure 
and function of MCETs. To this end, samples are typically 
treated with MCET-inducing triggers such as PMA or bac-
teria and then fixed with glutaraldehyde-paraformaldehyde 
and osmium tetroxide. Following dehydration by ethanol 
samples are embedded in a mixture of ethanol-Epon and 
Epon resin. Additionally, uranyl acetate and lead citrate 
may be used to improve contrast [59]. Based on the find-
ing that GreenGlo™ discriminates between nuclear DNA 
and strands of ETs by different excitation and emission 
wavelengths, Proust and colleagues developed a single-step 
protocol without washing to stain and discriminate these 
two types of DNA. Specifically in this protocol, nuclear 
DNA is detected by GreenGlo™ when excited at 470 nm 
with emission at 530 nm, while the same dye detects DNA 
strands of ETs at excitation of 350 nm and emission at 
450 nm [80].

Role in Microbial Defense

Role in Anti‑bacterial Defense

In their first report of MCETs, Köckritz-Blickwede and 
colleagues observed that S. pyogenes become entrapped by 
extracellular structures around MCs [12]. Subsequent stud-
ies revealed that MCETs are formed in response not only 
to extracellular bacteria but also to intracellular bacteria 
including L. monocytogenes. MC activation upon exposure 
to L. monocytogenes is mediated largely by listeriolysin with 
MCs releasing in response a cocktail of cytokines, mainly 
IL-1β, IL-6, IL-2, IL-4, IL-13, GM-CSF, and a variety of 
chemokines including CCL2, CCL3, CCL4, and CCL5. 
Additionally, the release of osteopontin from activated MCs 
contributes to the clearance of the bacteria [81]. In paral-
lel, L. monocytogenes induces the formation of MCETs in 
HMC-1 cells as demonstrated by the release of nuclear DNA 
and examination of the nuclear envelope showed the separa-
tion of the inner and outer membranes (Fig. 7a). Enterococ-
cus faecalis infection has gained growing relevance due to 
resistance of the bacteria to various antibiotics and as the 
cause of nosocomial infection with a mortality rate of above 
50% in critically ill hospitalized patients. Scheb-Wetzel and 
colleagues assessed the production and activation of MCETs 

Fig. 5   Production of ETs in monocytes and macrophages: a and b 
ETs produced by monocytes and macrophages are decorated with 
different types of peptides and proteins. c Both forms of C. albicans, 
yeast cells, and hypae induce the release of METs from macrophages. 
Additionally, both live and heat-killed C. albicans induce the forma-
tion of METs; however, heat-killed C. albicans are more potent in 
triggering MET formation from macrophages due to the absence of 
their DNase activity

▸
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in E. faecalis infected primary bone marrow–derived murine 
MCs using a β-hexosaminidase assay and toluidine staining. 
The authors also investigated the release of IL-6 and TNF-α 
(the release of which is dependent upon TLR-2) and showed 
that exposure to E. faecalis activates MCs and induces the 
degranulation and the release of IL-6 and TNF-α [66]. 
Injection of GFP-expressing E. faecalis into mice and sub-
sequent immunohistochemical staining for CD117 identified 
an interaction of E. faecalis and MCs in vivo. Experimen-
tal E. faecalis infection in MCs derived from TLR2−/− or 
MyD88−/− mice further revealed the importance of TLR2 
and MyD88 in the effective response to E. faecalis by the 
release of antimicrobial peptides. Moreover, application of 
endonuclease resulted in destruction of MCETs (and a par-
tial growth inhibitory effect of MCs on E. faecalis) [66]. 
In parallel, the low rate of internalized E. faecalis by MCs 
indicated the involvement of an extracellular mechanism in 
the elimination of the pathogen. Immunostaining for his-
tones next revealed that MCs cocultured with E. faecalis 
produce MCETs and confocal microscopy demonstrated 
that ensnared E. faecalis were killed, presumably as a direct 
consequence of their entrapment in MCETs [66]. MCETs 
also seem to play a role in the elimination of S. aureus, as 
both bone marrow–derived murine mast cells (BMMC) and 

HMC-1 have been shown to release MCETs upon expo-
sure to this pathogen. Interestingly, the bacterium seems to 
induce its own phagocytosis (partially through interaction 
between MCs expressing α5Β1 and fibronectin-binding pro-
teins FnBPA and FnBPB [82]) in an attempt to evade being 
trapped and killed in MCETs [83, 84] (Fig. 7b).

Role in Anti‑fungal Defense

MCs can detect fungi like C. albicans via receptors such 
as β-glucan recognizing receptors (e.g., Dectin-1) and in 
response, release a variety of mediators including tryptase, 
histamine, prostaglandins (PGs), leukotrienes (LTs), and 
various cytokines, mainly CCL3, CCL4, TNF-α, IL-6, and 
IL-10 [65, 85] (Fig. 8a). The critical role of Dectin-1 in 
the recognition and response to C. albicans was highlighted 
in studies of cultured BMMCs from Dec−/− mice, which 
showed only an impaired release of TNF-α, IL-6, and IL-13 
as compared to control BMMCs following stimulation with 
C. albicans yeast and hyphae [86]. Lopes and colleagues 
studied the mechanisms by which MCs limit the growth 
of C. albicans and reported that MCs produce MCETs. 
By measuring β-hexosaminidase, the authors showed that 
MCs become activated and degranulate when exposed to C. 

Fig. 6   Timetable illustrating important discoveries in MCET biology. 
Four years after the first description of NETs by Brinkmann et  al., 
MCETs were identified by Köckritz-Blickwede and colleagues in 
2008. Over the past 5  years, a variety of stimuli for MCET forma-

tion have been described, including various microbes, microbial prod-
ucts, and chemicals, and several neoplastic MC cell lines and organ-
derived MCs were reported to generate MCETs
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albicans. C. albicans-infected HMC-1 cells were shown to 
release not only IL-8 (acting as neutrophil chemoattractant), 
macrophage migration inhibitory factor (MIF), and IL-16 
(acting as chemoattractant for CD4 + T lymphocytes), but 
also MCETs evident as DNA decorated with tryptase after 
7 h [65]. To investigate the impact of MCETs the authors 
applied DNase prior to infection (Fig. 8b). However, C. 
albicans viability did not differ significantly in the presence 
vs. absence of DNase, suggesting that although MCs could 
ensnare C. albicans by MCETs, this mechanism may not 
play a major role in fungal elimination [65] (Fig. 8c).

Role in Anti‑parasitic Defense

Formation of MCETs has also been reported to play a role 
in the defense against parasites. To this end, Naqvi and cow-
orkers investigated the elimination of Leishmania donovani 
and Leishmania tropica by peritoneal MCs (PMCs) and Rat 
Basophilic Leukaemia (RBL-2H3) cells. The authors reported 
a significant decrease in the viability rate of RBL-2H3 cells 
cocultured with either L. tropica or L. donovani promastigotes 
[63]. To probe for the release of MCETs, RBL-2H3 cells were 
seeded on cover slides and then co-cultured with carboxyfluo-
rescein N-succinimidyl ester (CFSE) labeled promastigotes 
of L. donovani and L. tropica for 24 h. DNA was stained by 
DAPI, and fluorescently tagged antibodies were used to deter-
mine the presence of tryptase and histones. Treatment with 
DNase increased the viability of promastigotes demonstrat-
ing the functional relevance of MCETs in the anti-parasitic 
defense [63]. The results of this study showed that formation 
of MCETs was an extracellular mechanism used by MCs to 
eliminate leishmaniosis infection. However, coculturing RBL-
2H3 with L. donovani and L. tropica could decrease the viabil-
ity of the cells when compared to the control group after 18 h; 
in which, for example, coculturing the with promastigotes of 
L. tropica showed a decrease in cell viability (89.5% ± 2.5%; at 
18 h and 79.3% ± 3.5% at 24 h) when compared to the control 
group (96.2% ± 3%). This group of researchers, to confirm the 

Fig. 7   Production of MCETs in response to intra/extracellular bacte-
ria. a After being phagocytosed, L. monocytogenes become trapped 
in the phagosome. Listeriolysin becomes activated at the acidic pH 
of the phagosome and lyses it, allowing L. monocytogenes to escape 
into the cytosol. MCs in return release a wide spectrum of cytokines 
and chemokines and produce MCETs. Group A Streptococcus (GAS) 
stimulates the production of MCETs with LL-37 playing a cru-
cial role in the structure and function of the extracellular traps. b S. 
aureus induces the production of MCETs; however, it uses a molecu-
lar mechanism to evade elimination by MCETs in that it induces its 
phagocytosis into the MC cytoplasm through interaction of FnBPA/
FnBPB on S. aureus with fibronectin (as bridging molecule) and 
α5Β1 on MCs. Additionally, TLR2 and MyD88 play a role in recog-
nition and signaling, respectively, when MCs are exposed to E. faeca-
lis and produce MCETs in response

▸
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death of MCs during the production and the release of MCETs, 
investigated the presence of extracellular DNA using Sytox 
Green staining after co-culturing MCs with the promastig-
otes of L. donovani and L. tropica. Their results showed that 
only 2.3% ± 1.5% of MCs cultured in the absence of parasites 
released extracellular DNA after 18 h, while 6.5% ± 0.5% of 
the cocultured MCs with L. tropica did so. Interestingly, the 
rate increased and 21.6% ± 1.2% of MCs were reported to 
release extracellular DNA only after 24 h [63].

Regulation of MCET Formation

As compared to the process of NETosis, the insight into the 
molecular mechanisms regulating the formation of MCETs 
is still sparse. In one of the few mechanistic studies, Möller-
herm and colleagues recently demonstrated the formation 
of MCETs in response to short-term hypoxia (3 h). Notably, 
formation of MCETs in response to hypoxia was independ-
ent of hypoxia-inducible factor 1α (HIF-1α), a transcription 
factor that is critically involved in the adaptation to hypoxia. 
At normoxia, HIF-1α is rapidly degraded via the protea-
some but stabilized when the cells experience hypoxia 
resulting in the transcription of hypoxia-regulated genes 
including erythropoietin, glucose transporters, glycolytic 
enzymes, antimicrobial factors, and VEGF [68]. While it 
has previously been reported that HIF-1α may induce the 
formation of MCETs [64], hypoxia caused MCET formation 
via a HIF-1α independent mechanism while suppressing 
the release of proinflammatory mediators including TNF-α, 
possibly in an attempt to attenuate the development of an 
inflammatory state and thus, to prevent tissue injury during 
hypoxia [64].

Unmet Questions: Themes for Further 
Investigations

In this section, we highlight major unmet questions in the 
structure, biology, function, and regulation of MCETs 
as important topics for further investigations in the field 
(Table 2).

Fig. 8   Main mechanisms used by MCs to control C. albicans infec-
tion. a C. albicans are recognized by MCs upon engaging MC surface 
expressed Dectin-1, MCs in turn release mediators including tryptase, 
histamine, PGs, LTs, CCL3, CCL4, TNF-α, IL-6, and IL-10. b Upon 
recognizing C. albicans, MCs become activated and degranulate and 
release IL-8 (neutrophil chemoattractant), MIF, and IL-16 (chemoat-
tractant for CD4 + T lymphocytes); c comparing C. albicans viability 
either in the presence or absence of DNase showed no significant dif-
ference suggesting that MCET formation is not the main extracellular 
mechanism of C. albicans elimination

▸
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Table 2   Unmet questions: Themes for further investigations

Unmet questions in formation, structure, function, and regulation of MCETs Ref

Formation of MCETs
The molecular mechanism through which disruption of the nuclear membrane occurs in ETosis is still unknown. Notably, this 

mechanism may differ between neutrophils and mast cells, and as a function of the stimulus that triggers ETosis
[127]

The role of superantigens in the modulation of MCET formation deserves further investigation. It has previously been shown that 
Staphylococcal enterotoxin B (a superantigen expressed by S. aureus) induces the uptake of the bacterium. Considering that MCs 
produce MCETs to eliminate S. aureus, a better understanding of the effect of superantigens on MCETs formation and function 
may provide important insights into the mechanisms inducing or regulating MCET formation

[67]

The role of sterile inflammation in response to trauma, mechanical stress, or chemical challenge with respect to the induction of 
MCETs has so far not been addressed. Release of mitochondrial DNA in response to trauma can trigger the formation of NETs via 
a cyclic GMP‐AMP synthase and TLR-9 dependent pathway, suggesting a potential similar triggering role for MCETs that remains 
to be explored

[128]

Most recently, several papers suggested the activation of MCs during SARS-Cov-2 infection. Considering that MCs express ACE-2 
(the critical receptor used by the virus to infect the host cells) and that MCs express receptors including endosomal TLRs to sense 
ds-RNA, they may play a role in the pathology of Covid-19. Although production of NETs in response to a variety of viruses has 
been reported, to the best of our knowledge, the production of MCETs in Covid-19 infection has not been investigated; therefore, it 
may be an interesting theme of research for other colleagues

[129–131]

Structure of MCETs
The formation of MCETs and ejection of DNA decorated with proteins of which some act as autoantigens could potentially link 

MCETs to autoimmune diseases. Determining potential autoantigens released by MCETs may provide an interesting avenue for 
further investigations

[43]

While the exact role of histones in MCET is not yet clear, it has been shown that histones of NETs have cytotoxic effects like 
DAMPs. Conversely, extracellular histones induce the formation of NETs via interaction with TLR4/9 and application of anti-
histone Abs like BWA3 could inhibit NET formation

[132]

The origin of DNA web of MCETs either nuclear or mitochondrial (or mixed) remains unanswered. A variety of specific mark-
ers could be used to define the origin of the DNA web of MCETs such as NADH-ubiquinone oxidoreductase chain 1 (Nd1) and 
cytochrome c oxidase subunit 1 (Cox1) as markers of mitochondrial DNA. Moreover, markers mainly glyceraldehyde 3-phosphate 
dehydrogenase gene (Gapdh) and actin beta (Actb) that are specific for nuclear DNA can be used to identify the nuclear DNA

[133]

Investigation of MCTC formed MCETs in dermis of psoriasis plaques showed a colocalization of chymase and DNA suggesting 
that chymase may be a component of MCETs when they are produced by chymase positive MCs. Our knowledge regarding the 
biologic role of chymase in MCETs and maintaining its enzymatic activity upon binding to DNA web is poor, and more investiga-
tion is needed

[134]

Microbial evasion of MCETs
The mechanisms by which pathogens aim to evade microbial defense by interrupting the formation and function of MCETs present 

an interesting topic for further investigations. For example, catalase deficiency supports the release of MCETs from MCs exposed 
to Mycobacterium tuberculosis, yet the role of catalase in other catalase-positive pathogens remains to be elucidated

[60]

Regulation of MCETs
MCETs have been proposed to play an important role in coronary artery thrombosis; however, this potentially important pathogenic 

aspect remains to be resolved
[8]

NETs have previously been implicated in the pathogenesis of autoimmune diseases including systemic lupus erythematosus (SLE) 
as NETs are decorated by matrix metalloproteinase-9 (MMP-9) which upon release activates endothelial MMP-2 and induces 
endothelial damage in SLE. MCs likewise produce several MMPs including MMP-9, yet their possible involvement in autoim-
mune diseases including SLE remains to be addressed

[110]

A pathogenic role for MCs in psoriasis via formation of MCETs and release of IL-17 upon stimulation with IL-23 and IL-1β has 
been proposed. The role of MCETs in other pathologies dominated by MC-released cytokines like IL-17 awaits further study

[69]

To the best of our knowledge, no investigation has so far addressed the formation of MCETs in individuals with cutaneous or sys-
temic mastocytosis. A potential propensity or inability of neoplastic MCs to form MCETs in response to trauma, sterile inflamma-
tion, or microbes may reveal new mechanistic insights that may underlie or contribute to the pathological features of the disease

[57]

The pattern of NETosis regulation upon engagement of innate immune receptors has been previously investigated. Engagement 
of Dectin-1 (a receptor involved in the recognition of chitin as a biopolymer in the structure of fungi) upon exposure to Candida 
albicans but not to that efficacy to hyphae drives phagocytosis to elimination of the pathogen suggesting that Dectin-1 suppresses 
the NETosis and contributes to orchestration of innate immune response according to the size of the pathogen; the result of this 
experiment was supported when Dectin−/− neutrophils showed an aberrant production of NETs. MCs express Dectin-1, but its 
regulatory role on the production of MCETs needs to be investigated

[135–137]
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Summary and Conclusion

Following the initial discovery of NETs in 2004, a similar 
ability for ETosis—albeit at a smaller scale—was demon-
strated in various myeloid cells including eosinophils and 
monocytes by ejection of mitochondrial DNA. In contrast, 
mast cells seem to be the only other immune cell identi-
fied so far that is—similar to neutrophils—able to form 
ETs from nuclear DNA. Engagement of receptors by vari-
ous ligands and also chemicals induces the formation of 
MCETs. The main inducers and involved receptors are 
listed in Table 3.

It should be noticed that the shape of MCETs seems to 
differ according to the local tissue and testing environment 
which should be considered in the interpretation of results. 
Specifically, MCETs in skin specimen are more compact 
when compared to those formed in vitro [69]. Protocols 
for the investigation of ETs are overall similar for different 
innate immune cell populations, and the function of ETs 
is largely determined by the bioactivity and biofunction of 
peptides decorating the ejected DNA strands. While our 
understanding of their physiological and pathogenic role is 
still rudimentary—as compared to the well-established role 
of NETs—MCETs have recently become implicated in host 
defense as well as various autoimmune, cardiovascular, or 
pulmonary disorders. Like NETs, MCETs act as scaffolds 
composed of nuclear DNA and peptides with antimicrobial 
activity that act as extracellular mechanism for trapping and 
killing of invading pathogens. Although the production of 
extracellular traps by immune cells has been predominantly 

linked to antimicrobial defense, some lines of evidence sug-
gest a link to other pathologic conditions. For instance, MCs 
have been found to infiltrate and degranulate in skeletal 
muscles in autopsy samples of patients with amyotrophic 
lateral sclerosis (ALS) and are associated with NET produc-
ing neutrophils by recruiting them via the release of chy-
mase that acts as neutrophil chemoattractant. Interestingly, 
the application of masitinib (a widely used tyrosine kinase 
inhibitor) could suppress the axonal pathology and secondary 
demyelination in ALS by suppressing MCs and interference 
with their role in neutrophils recruitment [87]. Analogously, 
MCs have been shown to infiltrate lung and vascular tissue 
in pulmonary hypertension and lung fibrosis [88]. Notably, 
pathological remodeling in these diseases could be attenu-
ated or prevented not only by mast cell stabilizers or in mast 
cell deficient animals [89, 90], but also—at least in vitro—
by DNase treatment [91, 92], suggesting a potential patho-
genic contribution of MCETs. Interrupting the formation of 
MCETs may also act as a successful strategy of pathogens 
to evade the MC-mediated immune response. Along these 
lines, MCET formation can be detected following stimula-
tion with heat-killed Mycobacterium tuberculosis, yet not in 
response to its viable counterparts, as catalase from Myco-
bacterium tuberculosis seems to prevent MCET formation by 
degrading hydrogen peroxide [60]. Other pathogens such as 
C. albicans may evade entrapment by MCETs by expressing 
DNase as a virulence factor [57]. At present, our understand-
ing of MCETs, their formation, and structure, as well as their 
involvement in microbial defense and non-infectious patholo-
gies, is only beginning to emerge. Although formation of ETs 

Table 3   The main receptors and chemicals that are capable of inducing the formation of MCETs

Chemical inducers of MCET formation Specification, mechanism, and involved diseases Ref

phorbol-12-myristate-13-acetate (PMA) • Primarily was isolated from unripe fruit of Sapium indicum (a mangrove plant from 
Euphorbiaceae family). PMA is a highly pro-inflammatory agent and tumor promoter.

[138]

• As a general protocol, treatment of MCs with PMA before infection stimulates the 
production of MCETs.

[12]

Glucose oxidase • Catalyzes the production of H2O2 [12]
Cytokines as inducers of MCET formation Ref
IL-23 • induces MC degranulation and production of MCET in human skin and induces the 

release of IL-17 which is involved in psoriasis
[134]

IL-1β • induces MC degranulation and production of MCET in human skin and induces the 
release of IL-17 which is involved in psoriasis

[134]

Receptors involved in MCET formation Ref
Dectin-1? • MCs recognize the presence of fungi including candida mainly using Dectin-1 

dependent pathway and this receptor has been previously shown to have a role in 
NETosis and production. It is likely that Dectin-1 may have a similar role in produc-
tion of MCETs

[27, 139]

TLR-2? • MCETs formation is dependent on NADPH oxidase mediated production of ROS, 
and TLR-2 signaling plays a role in production of ROS. It is now clear that neutro-
phils recognize several pathogens using TLR-2 and produce NETs in turn; since MCs 
express TLR-2, the receptor is likely involved in production of MCETs, but it has not 
been specifically investigated.

[140, 141]
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including MCETs is likely to be a late response but effec-
tive one against the presence of intruding microorganisms, 
however, the release of DNA into extracellular space may 
orchestrate the immune responses such as the production of 
anti-citrullinated protein antibodies in seropositive rheuma-
toid arthritis. Not surprisingly, since many AMPs attached to 
DNA web should be normally restricted in cytoplasmic gran-
ules, their release may have harmful effects such as degrading 
ECM or activating tissue-destructive mechanisms [93, 94]. 
Better insight into the function and regulation of MCETs, as 
well as the mechanisms by which pathogens tend to evade 
MCET-mediated elimination may provide not only important 
biological insights but pave the way for novel interventions in 
infectious, autoimmune, and other mast cell-related diseases.
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