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Abstract

Objectives Deep learning (DL) has been increasingly employed for automated landmark detection, e.g., for cephalometric
purposes. We performed a systematic review and meta-analysis to assess the accuracy and underlying evidence for DL for
cephalometric landmark detection on 2-D and 3-D radiographs.

Methods Diagnostic accuracy studies published in 2015-2020 in Medline/Embase/IEEE/arXiv and employing DL for cephalo-
metric landmark detection were identified and extracted by two independent reviewers. Random-effects meta-analysis, subgroup,
and meta-regression were performed, and study quality was assessed using QUADAS-2. The review was registered
(PROSPERO no. 227498).

Data From 321 identified records, 19 studies (published 2017-2020), all employing convolutional neural networks, mainly on 2-
D lateral radiographs (n=15), using data from publicly available datasets (n=12) and testing the detection of a mean of 30 (SD: 25;
range.: 7-93) landmarks, were included. The reference test was established by two experts (n=11), 1 expert (n=4), 3 experts
(n=3), and a set of annotators (n=1). Risk of bias was high, and applicability concerns were detected for most studies, mainly
regarding the data selection and reference test conduct. Landmark prediction error centered around a 2-mm error threshold (mean;
95% confidence interval: (—0.581; 95 CI: —1.264 to 0.102 mm)). The proportion of landmarks detected within this 2-mm
threshold was 0.799 (0.770 to 0.824).

Conclusions DL shows relatively high accuracy for detecting landmarks on cephalometric imagery. The overall body of evidence
is consistent but suffers from high risk of bias. Demonstrating robustness and generalizability of DL for landmark detection is
needed.

Clinical significance Existing DL models show consistent and largely high accuracy for automated detection of cephalometric
landmarks. The majority of studies so far focused on 2-D imagery; data on 3-D imagery are sparse, but promising. Future studies
should focus on demonstrating generalizability, robustness, and clinical usefulness of DL for this objective.
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Introduction

Medical applications using artificial intelligence (Al) are in-
creasingly common; one of the most prolific fields in this
regard is computer vision, i.e., Al-based image analysis.
Deep learning (DL), a subfield of machine learning, especially
DL using convolutional neural networks (CNNs) has been
demonstrated to be highly suitable for computer vision. One
of the most common strategies in machine learning is super-
vised learning, where an algorithm is exposed to pairs of data
and data labels (e.g., for computer vision, an image, and the
corresponding image label). During the model “training”
phase, these data pairs are repeatedly shown to the algorithm
by which the DL model (specifically the model weights) is
iteratively optimized to minimize the error in the model pre-
dictions. A well-trained DL model learnt to represent the
(nonlinear) statistical structure of the input data and its relation
to the given label [1] and is eventually capable to predict a
label on new, i.e., unseen data (images).

A range of relevant aspects when training and testing DL
models (e.g., CNNs) for medical applications have been iden-
tified [2—4]: (1) The representativeness of the training and test
datasets needs to be ensured if generalizability of the model is
expected. (2) Labelling of images is complex, as there is sel-
dom one hard “gold standard” (e.g., histological assessment)
available; more often, multiple human experts label the same
image, and a range of options to unify these “fuzzy” labels
have been used [5]. Different strategies to establish a reliable
gold standard are available, ¢.g., majority voting schemes. (3)
The value of any model should be demonstrated, for example,
by presenting its performance against that of the current stan-
dard of care (e.g., individual healthcare providers) on a sepa-
rate test dataset. Presenting the performance of a model on the
same dataset it learnt from will yield highly inflated perfor-
mance metrics [6].

Cephalometric radiographs are taken by orthodontists to
quantitatively evaluate the skeletal relationship between the
cranial base and the maxilla or mandible, the relationship be-
tween maxilla and mandible, and the dentoalveolar relation-
ship. They also serve for determining the growth pattern
through quantitative and qualitative evaluations and superim-
position of serial radiographs [7]. Moreover, cephalograms
are required for planning orthognathic surgery [8, 9]. A key
task on such cephalometric 2-D radiographs or 3-D CT or
cone beam CT (CBCT) images is landmark detection. While
the value of cephalometric analysis and the definition of land-
marks remains an issue of debate [10], automating this task
has been identified as useful, particularly as landmarking is
laborsome, requiring the time of experienced (and expensive)
experts [11, 12]. Automated landmark detection for cephalo-
metric analysis has been in the focus for decades, while DL
has been demonstrated to possibly exceed less advanced (e.g.,
knowledge-based or atlas-based) systems [13]. Moreover,
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DL-based cephalometric software applications from different
companies (e.g., CellmatlQ, Hamburg, Germany; ORCA Al,
Herzliya, Israel; WebCeph, Gyeonggi-do, Korea) are by now
available to orthodontists worldwide.

The number of studies involving DL for landmark detec-
tion on 2-D and 3-D cephalometric imagery is increasing rap-
idly, while it remains uncertain how robust and consistent the
emerging body of evidence is. Moreover, it is unclear if the
accuracy of DL or the quality of the studies is improving over
time, or if there are differences in accuracy on 2-D versus 3-D
imagery. The present systematic review and meta-analysis
evaluated studies employing DL for landmark detection on
cephalometric 2-D or 3-D radiographs. Our research question
was as follows: What is the accuracy of DL for detecting
landmarks on cephalometric radiographs?

Materials and methods

Reporting of this review and meta-analysis followed the
PRISMA checklist [14]. The study protocol was registered
after the initial screening stage (PROSPERO registry no.
227498). Our PICO question was as follows: In 2- or 3-D
radiographic imagery suitable for cephalometric landmark de-
tection (participants), comparing DL (intervention) versus
conventional landmarking of individual experts or against a
gold standard (e.g., of multiple experts) (control), what is the
accuracy (outcome)?

Eligibility criteria

The following selection criteria were applied: (1) diagnostic
accuracy studies employing DL, e.g., CNNs; (2) trained and
tested on 2-D- or 3-D cephalometric imagery like 2-D lateral
or frontal radiographs or 3-D CT or CBCT, with minimum 5
relevant landmarks to be detected and sufficient detail to ex-
tract information on the train and test dataset sizes; (3)
reporting their outcome as the mean deviation from a 2-mm
prediction error threshold (e.g., studies reporting their accura-
cy to be below or above this threshold) (including mean and
variance) or the proportion of landmarks correctly predicted
within this 2-mm prediction error threshold; and (4) published
2015-2020, as we did not expect DL studies in this field to be
published before that (mainly as DL was not available much
earlier and the first applications in medicine evolved since
2015), in English. Only studies fulfilling all of the above-
described criteria were included. Studies on non-
radiographic data, cephalometrically irrelevant landmarks
(e.g., those of the brain), or using non—deep learning methods
(e.g., knowledge- or atlas-based or involving shallow machine
learning) were excluded.
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Information sources and search

We systematically screened four electronic databases
(Medline via PubMed, Embase via Ovid, IEEE Xplore,
arXiv) for studies published up January 2015 to December
2020. Medline and Embase are widely used and partially com-
plementary medical databases. IEEE (Institute of Electrical
and Electronics Engineers) Xplore is a library for articles,
proceedings, and standards in physics, computer science, en-
gineering, and related fields, indexing 200+ journals and 3+
million conference papers. arXiv is an archive of electronic
preprints for research articles of scientific topics such as phys-
ics, mathematics, computer science, and statistics. Archived
articles may be published later in more traditional journals,
and while arXiv is not peer reviewed, there are moderators
who review the submissions [15]. The search was overall
designed to account for different publication cultures across
disciplines.

A two-pronged search strategy, combining the technique of
interest (A, CNN, DL, etc.) and the diagnostic target (land-
mark detection, cephalometry, orthodontics), was applied.
The search sequence was adapted for each database/reposito-
ry, an example for Medline can be found in Fig. 1. Reviews or
editorials were excluded, and cross-referencing from bibliog-
raphies was performed.

Screening

Screening of titles or abstracts was independently performed
by two reviewers (FS, AC). Any disagreement was resolved
by discussion. All papers which were found to be potentially
eligible were assessed in full text against the inclusion criteria.
Inclusion and exclusion were decided by two reviewers in
consensus (FS, AC).

Data collection, items, and preprocessing

A pretested spreadsheet was used to collect data. Study char-
acteristics, including country, year of publication, imagery (2-
D lateral or frontal radiographs or 3-D imagery), dataset
source, size and partitions (training, test), characteristics/
architecture of the DL strategy used, number of landmarks
detected, reference test and its unification in case of multiple
annotators, comparators (current standard of care, e.g., clini-
cians), accuracy metrics, and findings, were extracted by two
reviewers (FS, AC). If one study reported on several models
or test datasets, these were extracted.

Quality assessment
Risk of bias was assessed using the QUADAS-2 tool [16],

accounting for bias in the data selection (no inappropriate
exclusions, no case-control design, random or consecutive

inclusion), index test (assessment blinded for and independent
of reference test), reference test (valid reference test, assess-
ment independent from index test), flow and timing (sufficient
time between index and reference, all datapoints included in
analysis), as well as applicability concerns for the data (data
match review question), index test (test, conduct, and inter-
pretation match review question), and reference test (the way
landmarks were established matches review question). Risk of
bias was assessed independently by two reviewers, who
discussed their findings in case of disagreement to come to a
consensus. We do not provide further guidance as to the cer-
tainty of the evidence (e.g., using any kind of grading), but
provide descriptive statistics of the individual and overall risk
of bias together with meta-analytic estimates.

Summary measures and data synthesis

The criteria for a study to be included into meta-analysis was
that it reported one of our two accuracy outcomes, the devia-
tion from a 2-mm prediction error threshold (in mm) or the
proportion of landmarks correctly predicted within this 2-mm
prediction error threshold (reported as mean and measures of
variance and/or sample size, allowing weighing of the study
estimates). Our summary measures were the mean deviation
from the 2-mm threshold (in mm; only one study reported this
in another metric, namely pixels, and was therefore excluded)
or the proportion of landmarks predicted within this 2-mm
threshold, both with their 95% confidence intervals (CI).
Heterogeneity was assessed using Cochrane’s Q and I statis-
tics [17]. Random-effects models were used for meta-analysis;
the statistical package metaphor [18], implemented in
OpenMetaAnalyst [19], was employed. To allow weighting
of studies for the synthesis of proportions, we recalculated the
number of true predictions (within the 2-mm threshold) in the
overall test dataset, accounting for its size and the number of
landmarks predicted in each study. If studies reported on mul-
tiple test datasets, we handled them as independent units, ac-
counting for this multiplicity of accuracy data. To explore
reasons for heterogeneity, we performed subgroup analyses
and mixed-effect meta-regression. For the latter, the unre-
stricted maximum likelihood method was used.

Results
Study selection and characteristics

From 321 identified studies, 40 were screened in full texts, and
19 studies were eventually included in our review and meta-
analysis (Fig. 1). The 21 excluded studies, with reasons for
exclusion, can be found in Table S1. The included studies
(Table 1) were published between 2017 and 2020 (median:
2020) and stemmed from nine countries (Korea, 7 studies;
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Search (orthodontics OR cephalometric OR landmark) AND ("artificial intelligence" OR

| 281 records excluded by title/abstract

| 3 records identified by hand search

21 full-text articles excluded

8 not deep learning

5 unavailable

4 results not synthesizable
3 no landmark detection

1 testing software, no training
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Fig. 1 Flowchart of the search
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China, 4 studies; Japan, 2 studies; all six remaining countries, 1
study). Fifteen studies focused on the analysis of 2-D radio-
graphs, four on 3-D radiographs. Eleven studies used publicly
available data from the IEEE 2015 grand challenge [39]; one of
these also used own data. A second publicly available dataset
(CQ 500; http://headctstudy.qure.ai/dataset) was used, together
with own data, by one study. Seven studies used own data; one
study did not report on the dataset in detail.

All studies employed CNNs, with VGG-19 (n=2) and
YOLO V3 (n=2), Resnet50 (n=2) and ResNet34 (n=2) being
the most frequent architectures. The studies tested the detec-
tion of a mean of 30 (SD: 25; range: 7-93) landmarks. The
size of the training dataset was 479 in mean (150; 20—1875);
the size of the test dataset was 128 (83; 4-283).

The reference test in the training dataset was established by
two experts in 11 studies, 1 expert in four studies, and 3 experts
in three studies; one study used students to label the landmarks
and had these corrected by experts. Eight studies used the aver-
age to come to a unified label when having more than one an-
notator, one used a consensus process, one used a majority voting
scheme, and five studies did not report on that; for the studies
with only 1 annotator, this was not relevant. The reference test in
the test dataset was by large established similarly (2 experts:
n=13; 1 expert: n=4; 3 experts: n=1; corrected students: n=1).
Notably, many studies employed multiple test datasets, mainly as
the IEEE 2015 Grand Challenge included two test datasets, one
with 150 and one with 100 cephalometric images.

@ Springer

Risk of bias and applicability concerns

Risk of bias was assessed in four domains and found high for
most studies regarding the data selection (n=16), reference test
(n=18), but not index test (n=7) or flow and timing (n=1).
Applicability concerns were present for most studies toward
the data selection (n=16), reference test (n=18), but not index
test (n=8). A detailed assessment of risk of bias and applica-
bility concerns can be found in Table 2.

Meta-analysis

Two meta-analyses were performed, one synthesizing the
mean deviation from a 2-mm prediction error threshold (in
mm) (Fig. 2) and one on the proportion of landmarks detected
within this 2-mm threshold (Fig. 3). One study [33] reported
the mean deviation, but not in mm but pixel. As this study
would have introduced additional heterogeneity given the dif-
ferent outcome measure, it was not included in the first meta-
analysis (on the mean deviation from the 2-mm threshold), but
we could include it in the second meta-analysis (on the pro-
portion of landmarks lying within the 2-mm threshold).
Regarding the mean deviation from a 2-mm prediction er-
ror, an overall number of 10 studies contributed 15 estimates
(three studies had tested the DL model on 2 test datasets, one
study on 3 test datasets). Of these, 8 studies (13 estimates)


http://headctstudy.qure.ai/dataset
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of labels

Reference test on Unification

Unification Test sample
of labels test data

Reference
test on

Train/

Total
landmarks sample validate

N

Architecture/modelling
framework

Imagery  Data source

Year Country

Table 1 (continued)

1st author

@ Springer

training/

sample

validation

data

Average

2 experts

150+100

Average

2 experts

150

400

ROI extraction and ResNet50 19

IEEE Grand

Lateral 2D

2020 China

Song 2020[36]

Challenge 2015

Own dataset

NA

1 expert

NA

1 expert

22

Custom CNNs, combined skull 93 26

3D

2020 Korea

Yun 2020 [37]

normalization, and VAE for
coarse to fine detection tasks

2-stage (global and local)

Average

Average 150+100 2 experts

2 experts

150

400

19

IEEE Grand

Lateral 2D

2019  China

Zhong 2020 [38]

U-Net models

Challenge 2015

Abbreviations: FCN, fully convolutional neural network; ROI, region of interest. Single Shot Detector.

reported on 2-D radiographs, 2 on 3-D radiographs. Pooling
revealed moderate heterogeneity (I’=47%; P=0.05), mainly
due to differences between 2- and 3-D imagery. On 2-D im-
agery, predictions were largely below the 2-mm threshold (—
0.581; 95 CI: —1264 to 0.102 mm), on 3-D imagery above the
threshold (2.435; —0.038 to 4.908 mm). Overall, only 3 studies
(1 on 2-D, 2 on 3-D images) had a mean deviation exceeding
the 2-mm threshold (Fig. 2). The pooled deviation from the 2-
mm error was 0.054 (—0.833 to 0.942). Meta-regression re-
vealed no significant association between the mean deviation
and the year of publication (P=0.494).

Regarding the proportion of landmarks detected with the 2-
mm threshold, 12 studies with 22 estimates were included (20
estimates were for 2-D radiographs, 2 for 3-D radiographs);
heterogeneity was high (1’=99%; P<0.001). The overall pro-
portion was 0.799 (0.770 to 0.824); the proportion was lower
for 2-D (0.792; 0.762 to 0.821) than 3-D (0.870; 0.792 to
0.948) imagery. Meta-regression on the year of publication
did not reveal a significant association (P=0.916).

Discussion

In contrast to most other dental radiographs, cephalograms are
not only diagnosed qualitatively but also quantitatively
through angular and linear measurements often in relation to
reference planes (considered as stable structures) [40]. Most
quantitative analyses are based on the identification of refer-
ence points which are either skeletal landmarks, e.g., the an-
terior nasal spine, virtual points such as the sella (middle of
sella turcica), or constructed points like the gonion (crossing
point between two lines) [8]. To yield meaningful results, the
precise identification of the landmarks is crucial [41]. The
present review evaluated studies using DL for landmark de-
tection on 2-D or 3-D cephalometric imagery. Based on 19
included studies, we found DL accurate for this purpose; the
majority of studies did not exceed a 2-mm prediction error
threshold in mean, and the mean proportion of landmarks
detected within this 2-mm threshold was 80%. The findings
were largely consistent across studies; the most notable differ-
ence in accuracy was found between 2-D and 3-D images.
However, direction of this difference was not consistent be-
tween our two outcomes—for the mean deviation from a 2-
mm prediction error, 3-D images showed higher deviations,
while for the proportion of predictions below this 2-mm
threshold, 3-D images showed a higher proportion. Data on
3-D was generally sparse. The majority of studies showed
high risk of bias and applicability concerns. This needs
highlighting, as a number of software tools are by now already
on the market—often with unclear scientific underpinning.
The finding of high risk of bias and concerns in the current
body of evidence is worrisome in this regard.
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Table 2  Risk of bias and applicability concerns

Risk of bias Applicability concerns
flow and
data selection timing reference test
(no (sufficient (the way
inappropriate reference test time between landmarks
exclusions, no index test (valid reference index and index test (test, were
case-control (assessment test, reference, all data (data conduct and established
design, random  blinded for and assessment datapoints match interpretation matches
or consecutive independent of independent included in review match review review
Study inclusion) reference test), from index test analysis question), question) question)
Arik 2017 [31]

Chen 2019 [32]
Gilmour 2020 [33]
Huang 2020 [27]
Hwang 2020 [24]
Kim 2020 [34]

Lee 2020 [35]

Lee 2019a [36]
Lee 2019b [37]
Ma [38]

Muraev 2020 [25]
Noothout 2020 [39]
O'Neil 2018 [40]
Oh 2020 [21]

Park 2020 [41]
Qian 2020 [42]
Song 2020[28]
Yun 2020 [43]
Zhong 2020 [44]

A number of our findings need to be discussed. First, the
reported mean deviations were rather consistent across stud-
ies; the detected heterogeneity in our first meta-analysis was
mainly due to differences between 2-D and 3-D imagery. The
proportion of landmarks detected within the 2-mm threshold
varied more markedly, with one study showing only 62% of
landmarks achieving that threshold. When assessing which
specific landmarks were prone to not being detected correctly,
the porion, subspinale, gonion, articulare, and the anterior na-
sal spine were most often found to show larger deviations.
However, these findings were not necessarily consistent
across studies, and for these landmarks, DL did not necessar-
ily perform worse than clinicians. Overall, and based on the
two studies which evaluated human comparator groups
against DL, we conclude that DL performs similar as regular
clinicians [24] or even superior to inexperienced ones [30].
Generally, it is difficult to compare mean deviations between
studies, as they largely depend on the test dataset: Even in the
widely used and publicly available IEEE dataset, both the
clinicians but also DL consistently performed worse on the
test dataset 2 (containing 100 images) than dataset 1

(containing 150 images). Moreover, DL may not exceed ex-
perts’ accuracy but may obviously assist landmark detection
for regular or experienced examiners. Training models on
larger datasets may eventually help to even be as or more
accurate than experts [42].

Second, data on 3-D imagery were sparse; only four studies
employed DL for this purpose. A recent systematic review
compared DL with knowledge-, atlas- and shallow-learning—
based methods for 3-D landmark detection and concluded that
DL was most accurate [13]. Given the paucity in data, how-
ever, it is difficult to strongly endorse DL for 3-D landmark
detection at present. Generally, it should be considered that
CBCT-based assessments will not be the rule for many ortho-
dontic patients, but rather the exception, for example, when
planning orthognatic surgery [9].

Third, we did not identify significant changes in accuracy in
studies published in different years. One may expect more re-
cent studies to show higher accuracies, as larger datasets, more
powerful hardware, and more effective DL architectures might
be available. Regarding the datasets, this was obviously not the
case; the usage of the IEEE 2015 dataset was as common in
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Studies [Reference]

Estimate [95% Cl]

Gilmour 2020 [33] ——tt -0.990 [-2.656, 0.676]
Gilmour(2) 2020 [33] — -0.670 [-2.120, 0.780]
Hwang 2020 [24] § -0.540 [-6.361, 5.281]
Kim 2020 [34] —_——y -0.630 [-4.138, 2.878]
Kim(2) 2020 [34] (R S— -0.310 [4.054, 3.434]
Kim(3) 2020 [34] — -0.340 [-3.986, 3.306)
Lee 2020 [35] —_——— -0.470 [-3.880, 2.940)]
Lee 2019 [36] ; -0.680 [-7.540, 6.180]
Muraev 2020 [25] —— 0.870 [-1.070, 2.810)
Noothout 2019 [39] ——— -1.050 [-3.304, 1.204]
Noothout(2) 2019 [39] —— -0.930 [-4.066, 2.206)
Zhong 2019 [44] — -0.880 [-2.605, 0.845]

Zhong(2) 2019 [44]

2-D imagery (12 = 0.00%, P=0.997)

-0.780 [-5.582, 4.022)

-0.581 [-1.264, 0.102]

Ma 2020 [38] —.— 3.790 [ 1.869, 5.711]
Yun 2020 [43] 1.260 [-0.132, 2.652]
3-D imagery (12 = 77.12%, P=0.037) ~<>— 2.435 [-0.038, 4.908]
Overall (I = 47.04%, P=0.054) <> 0.054 [-0.833, 0.942]
f T ' T ]
-10.000 -5.000 0.000 5.000 10.000

Observed Outcome

Fig. 2 Forest plot of studies reporting the mean deviation from a 2-mm
prediction error threshold. Squares indicate the mean deviation of each
single study and lines the 95% confidence intervals (95% CI). Yellow and
blue diamonds show the pooled subtotal (on 2-D and 3-D imagery) and

2020 as it was in 2017-2019. Moreover, it is likely that more
powerful hard- or software can only be limitedly leveraged on
datasets containing only a few hundred images like the IEEE
2015 one. Also, we did not identify a consistent evolution of the
employed architectures and found only limited benefit of newer
architectures (there was only one study on this issue, and this
study found the accuracies of LeNet-5 and ResNet50 on the
same 3-D test data to be similar) [23].

Fourth, the relevance of the test dataset (as discussed) was
confirmed. The consistent difference in accuracy on the two
test datasets of the IEEE 2015 challenge has been mentioned;
an even more dramatic drop in accuracy was found when
models were tested on a fully external dataset [36]. It is com-
mendable that given the IEEE dataset composition, many
studies had two test datasets. However, as all studies tested
in this same dataset (and most also trained on this dataset), we
likely have high comparability but limited generalizability.
Future studies should aim to test DL models on broad data,
demonstrating robustness and generalizability.

This review and the included studies have a number of lim-
itations. First, we focused on DL for landmark detection; a
comparison against other (semi-)automated landmarking
methods has not been conducted. Second, we had to exclude
anumber of studies, e.g., those using DL for predicting skeletal

@ Springer

overall estimates, respectively. I-square and the P value indicate hetero-
geneity. Studies are ordered according to year; if multiple test datasets
were employed in the same study, the second or third is indicated accord-
ingly (e.g., Noothout 2019 (2))

anomalies (i.e., skipping landmark detection and analysis) or
those which were unavailable in full text, likely losing some
valuable data. Third, the included studies suffered from a range
of risks of bias. Data selection yielded small and possibly non-
representative populations; the majority of studies employed
the same dataset (meaning that all these studies can show their
DL model to work on exactly this single test dataset, not on data
from other populations). Regarding data representativeness, the
overall evidence was highly limited; especially for 3-D imag-
ery, scans in the test dataset usually stemmed from only few
patients. The reference test (i.e., how the ground truth was
established) was only sparsely described; in many studies, it
was not exactly clear how the labels of one or more human
annotator(s) eventually resulted in the training and test dataset.
Some studies used only one expert as reference test, a decision
which may be criticized given the wide variability in experts’
landmarking, as discussed. Any DL model trained on such
dataset will be only as good as this single expert. Fourth, and
as discussed, only few studies tested the developed DL models
on truly independent datasets, e.g., from different centers, pop-
ulations, or image generators, contributing to the limitations in
generalizability. Fifth, it must be kept in mind that a location
error of <2.0 mm may be acceptable for some, but not all
landmarks: For example, the location error of the A and B point
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Studies [Reference]

Proportion [95% CI]

Arik 2017 [31]

Arik(2) 2017 [31] .
Chen 2019 [32]

Chen(2) 2019 [32] n

Gilmour 2020 [33]

Gilmour(2) 2020 [33]

Huang 2020 [27]

Huang(2) 2020 [27] ]
Kim 2020 [34]

Kim(2) 2020 [34]

Kim(3) 2020 [34] ™
Noothout 2019 [39]

Noothout(2) 2019 [39] [ |
Oh 2020 [21]

Oh(2) 2020 [21]

Park 2019 [41]

Qian 2020 [42]

Qian(2) 2020 [42]

Song 2020 [28]

. 0.790 [0.789, 0.791]

0.750 [0.748, 0.752

[ 0.870 [0.869, 0.871

0.750 [0.748, 0.752

[ ] 0.880 [0.879, 0.881)

0.770 [0.768, 0.772)

n 0.870 [0.869, 0.871

0.740 [0.738, 0.742

= 0.830 [0.829, 0.831
0.760 [0.759, 0.761]

: 0.740 [0.739, 0.741]
‘m 0.820 [0.819, 0.821
: 0.720 [0.718, 0.722
= 0.860 [0.859, 0.861

: 0.760 [0.758, 0.762)
[ 0.800 [0.799, 0.801]
] 0.880 [0.879, 0.881
0.760 [0.758, 0.762

= 0.860 [0.859, 0.861

Song(2) 2020 [28] n 0.620 [0.617, 0.623]
2-D imagery (12 = 99.99%, P<0.001) 0.792 [0.762, 0.821]
Lee 2019 [37] - 0.910 [0.902, 0.918]
O'Neil 2018 [40] L om 0.830 [0.826, 0.834]
3-D imagery (I = 99.69%, P<0.001) —O 0.870 [0.792, 0.948]
Overall (I? = 99.99%, P<0.001) - 0.799 [0.770, 0.828]
I T ; T 1
0.600 0.700 0.800 0.900 1.000
Proportion

Fig. 3 Forest plot of studies reporting the proportion of landmarks
correctly predicted within a 2-mm prediction error threshold from the
reference. Squares indicate the mean proportion found in each single
study and lines the 95% confidence intervals (95% CI). Yellow and blue
diamonds show the pooled subtotal (on 2-D and 3-D imagery) and overall

is usually large in the vertical and small in the horizontal plane,
the latter being the important direction for determining the sag-
ittal jaw relationship [8, 41]. In this direction and on these
points, location errors of 1.9 mm would be considered
inacceptable [8, 43] It should be also kept in mind that so-
called stable reference structures are subject to variation, with
dental experts remaining needed to critically assess Al findings
[44] Last, the studies mainly employed accuracy estimates (this
was partially the result of our inclusion criteria), while different
outcome measures (deviations in mm, pixels, or proportions)
were employed, which are not necessarily comparable. Further
outcomes with relevance to clinicians, patients, or other stake-
holders (like the impact of using a DL tool in clinical routine on
diagnostic and treatment processes, their efficacy, safety, or
efficiency) were not reported. Future studies should consider
including a wider outcome set and aim to test DL applications
comprehensively in other study designs and settings (e.g., ob-
servational studies in clinical care, randomized controlled tri-
als). Also, it should be considered that the requirements toward
Al-based cephalometric analyses may differ according to the
resulting treatment decisions: Deviations acceptable when plan-
ning aligner treatments in Class I patients may be intolerable
when planning surgical interventions, for instance.

estimates, respectively. I-square and the P value indicate heterogeneity.
Studies are ordered according to year; if multiple test datasets were
employed in the same study, the second or third is indicated accordingly
(e.g., Arik 2017 (2))

Conclusion

DL shows relatively high accuracy for detecting landmarks on
cephalometric imagery. The majority of studies focused on 2-D
imagery; data on 3-D imagery are sparse, but promising. There is
heterogeneity in detection accuracy between landmarks, and it
remains unclear if clinicians are similar, more or less accurate than
DL for different landmarks. The overall evidence, while by large
consistent, is of limited generalizability and robustness, and the
true value of using DL in clinical care needs to be demonstrated.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00784-021-03990-w.

Funding Open Access funding enabled and organized by Projekt DEAL.

Declarations
Ethics approval Not needed.

Consent to participate Not needed.

Conflict of interest FS and JK are co-founders of a startup on deep
learning—based dental image analysis. The planning, conduct, and

@ Springer


https://doi.org/10.1007/s00784-021-03990-w

4308

Clin Oral Invest (2021) 25:4299-4309

reporting of this study was fully independent. This study was self-funded
by the authors and their institutions.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00784-021-03990-w.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article
are included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included
in the article's Creative Commons licence, unless indicated otherwise in a
credit line to the material. If material is not included in the article's
Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature
521(7553):436-444

2. Marcus G, Deep learning: a critical appraisal, arXiv.org https://
arxiv.org/abs/1801.00631 (2018)

3. Schwendicke F, Samek W, Krois J (2020) Artificial intelligence in
dentistry: chances and challenges. J Dent Res 99(7):769-774

4. Schwendicke F, Golla T, Dreher M, Krois J, Convolutional neural
networks for dental image diagnostics: a scoping review, Journal of
dentistry (2019) 103226

5. Walsh T (2018) Fuzzy gold standards: approaches to handling an
imperfect reference standard. J Dent 74(Suppl 1):S47—-s49

6. Schwendicke F, Singh T, Lee JH, Gaudin R, Chaurasia A, Wiegand
T, Uribe S, Krois J, Artificial intelligence in dental research: check-
list for authors, reviewers, readers, Journal of dentistry (2021)
103610.

7. Cook AH, Sellke TA, BeGole EA (1994) The variability and reli-
ability of two maxillary and mandibular superimposition tech-
niques. Part II, American journal of orthodontics and dentofacial
orthopedics : official publication of the American Association of
Orthodontists, its constituent societies, and the American Board of
Orthodontics 106(5):463-471

8. Miethke R-R (1995) Possibilities and limitations of various cepha-
lometric variables and analyses. Mosby-Wolfe, St. Louis

9. American Academy of Oral and Maxillofacial Radiology (2013)
Clinical recommendations regarding use of cone beam computed
tomography in orthodontics. [corrected]. Position statement by the
American Academy of Oral and Maxillofacial Radiology. Oral
Surg Oral Med Oral Pathol Oral Radiol 116(2):238-257

@ Springer

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Helal NM, Basri OA, Baeshen HA (2019) Significance of cepha-
lometric radiograph in orthodontic treatment plan decision. J
Contemp Dent Pract 20(7):789-793

Lagravere MO, Low C, Flores-Mir C, Chung R, Carey JP, Heo G,
Major PW (2010) Intraexaminer and interexaminer reliabilities of
landmark identification on digitized lateral cephalograms and for-
matted 3-dimensional cone-beam computerized tomography im-
ages. American journal of orthodontics and dentofacial orthopedics
: official publication of the American Association of Orthodontists,
its constituent societies, and the American Board of Orthodontics
137(5):598-604

Hassan B, Nijkamp P, Verheij H, Tairie J, Vink C, van der Stelt P,
van Beek H (2013) Precision of identifying cephalometric land-
marks with cone beam computed tomography in vivo. Eur J
Orthod 35(1):38-44

Dot G, Rafflenbeul F, Arbotto M, Gajny L, Rouch P, Schouman T
(2020) Accuracy and reliability of automatic three-dimensional
cephalometric landmarking. Int J Oral Maxillofac Surg 49(10):
1367-1378

Moher D, Liberati A, Tetzlaff J, Preferred reporting items for sys-
tematic reviews and meta-analyses: the PRISMA statement, Ann
Intern Med 151 (2009)

McKinney M (2011) arXiv.org. Ref Rev 25(7):35-36

Whiting P, Rutjes A, Westwood M, Mallett S, Deeks J, Reitsma J,
Leeflang M, Sterne J, Bossuyt P, QUADAS-2 Group (2011)
QUADAS-2: a revised tool for the quality assessment of diagnostic
accuracy studies. Ann Intern Med 155(8):529-536

Higgins JPT, Thompson SG (2002) Quantifying heterogeneity in a
meta-analysis. Stat Med 21(11):1539-1558

Viechtbauer W, Conducting meta-analyses in R with the metafor
package, Journal of Statistical Software; Vol 1, Issue 3 (2010)
(2010)

Wallace BC, Dahabreh 1J, Trikalinos TA, Lau J, Trow P, Schmid
CH (2012) OpenMetaAnalyst: closing the gap between methodol-
ogists and end-users: R as a computational back-end. J Stat Softw
49(5)

Arik SO, Ibragimov B, Xing L (2017) Fully automated quantitative
cephalometry using convolutional neural networks. ] Med Imaging
(Bellingham) 4(1):014501-014501

Chen R, Ma Y, Chen N, Lee D, Wang W, Cephalometric landmark
detection by attentive feature pyramid fusion and regression-voting,
MICCAI 2019 arXiv:1908.08841 (2019)

Gilmour L, Ray N, Locating cephalometric x-ray landmarks with
foveated pyramid attention, MIDL 2020 arXiv:2008.04428v1
(2020)

Huang Y, Fan F, Syben C, Roser P, Mill L, Maier A, Cephalogram
synthesis and landmark detection in dental cone-beam CT systems,
arXiv:2009.04420 (2020)

Hwang HW, Park JH, Moon JH, Yu 'Y, Kim H, Her SB, Srinivasan
G, Aljanabi MNA, Donatelli RE, Lee SJ (2020) Automated identi-
fication of cephalometric landmarks: part 2- might it be better than
human? The Angle orthodontist 90(1):69-76

Kim H, Shim E, Park J, Kim YJ, Lee U, Kim Y (2020) Web-based
fully automated cephalometric analysis by deep learning. Comput
Methods Prog Biomed 194:105513

Lee JH, Yu HJ, Kim MJ, Kim JW, Choi J (2020) Automated ceph-
alometric landmark detection with confidence regions using
Bayesian convolutional neural networks. BMC oral health 20(1):
270

Lee C, Tanikawa C, Lim J-Y, Yamashiro T, Deep learning based
cephalometric landmark identification using landmark-dependent
multi-scale patches, arXiv:1906.02961v1 (2019)

Lee SM, Kim HP, Jeon K, Lee SH, Seo JK (2019) Automatic 3D
cephalometric annotation system using shadowed 2D image-based
machine learning. Phys Med Biol 64(5):055002


https://doi.org/10.1007/s00784-021-03990-w
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/1801.00631
https://arxiv.org/abs/1801.00631

Clin Oral Invest (2021) 25:4299-4309

4309

29.

30.

31

32.

33.

34.

35.

Ma Q, Kobayashi E, Fan B, Nakagawa K, Sakuma I, Masamune K,
Suenaga H (2020) Automatic 3D landmarking model using patch-
based deep neural networks for CT image of oral and maxillofacial
surgery, The international journal of medical robotics + computer
assisted surgery. MRCAS 16(3):¢2093

Muraev AA, Tsai P, Kibardin I, Oborotistov N, Shirayeva T,
Ivanov S, Ivanov S, Guseynov N, Aleshina O, Bosykh Y,
Safyanova E, Andreischev A, Rudoman S, Dolgalev A, Matyuta
M, Karagodsky V, Tuturov N (2020) Frontal cephalometric
landmarking: humans vs artificial neural networks. Int J] Comput
Dent 23(2):139-148

Noothout JMH, De Vos BD, Wolterink JM, Postma EM, Smeets
PAM, Takx RAP, Leiner T, Viergever MA, Isgum I (2020) Deep
learning-based regression and classification for automatic landmark
localization in medical images. IEEE Trans Med Imaging 39(12):
4011-4022

O’Neil AQ, Kascenas A, Henry J, Wyeth D, Shepherd M,
Beveridge E, Clunie L, Sansom C, Seduikyté E, Muir K, Poole I
(2019) Attaining human-level performance with atlas location
autocontext for anatomical landmark detection in 3D CT data. In:
Leal-Taixé L, Roth S (eds) Computer Vision — ECCV 2018
Workshops. Springer International Publishing, Cham, pp 470484
Oh K, Oh IS, Le TVN, Lee DW, Deep anatomical context feature
learning for cephalometric landmark detection, IEEE journal of
biomedical and health informatics Pp (2020)

Park JH, Hwang HW, Moon JH, Yu Y, Kim H, Her SB, Srinivasan
G, Aljanabi MNA, Donatelli RE, Lee SJ (2019) Automated identi-
fication of cephalometric landmarks: part 1-comparisons between
the latest deep-learning methods YOLOV3 and SSD. The Angle
orthodontist 89(6):903-909

Qian J, Luo W, Cheng M, Tao Y, Lin J, Lin H (2020) CephaNN: a
multi-head attention network for cephalometric landmark detection.
IEEE Access 8:112633-112641

36.

37.

38.

39.

40.

41.

42.

43.

44,

Song Y, Qiao X, Iwamoto Y, Chen Y-w (2020) Automatic cepha-
lometric landmark detection on x-ray images using a deep-learning
method. Appl Sci 10(7):2547

Yun HS, Jang TJ, Lee SM, Lee SH, Seo JK (2020) Learning-based
local-to-global landmark annotation for automatic 3D cephalome-
try. Phys Med Biol 65(8):085018

Zhong Z, Li J, Zhang Z, Jiao Z, Gao X, An attention-guided deep
regression model for landmark detection in cephalograms, arXiv:
1906.07549 (2019)

Wang CW, Huang CT, Hsieh MC, Li CH, Chang SW, Li WC,
Vandaele R, Marée R, Jodogne S, Geurts P, Chen C, Zheng G,
Chu C, Mirzaalian H, Hamarneh G, Vrtovec T, Ibragimov B
(2015) Evaluation and comparison of anatomical landmark detec-
tion methods for cephalometric x-ray images: a grand challenge.
IEEE Trans Med Imaging 34(9):1890-1900

Bjork A (1969) Prediction of mandibular growth rotation. Am J
Orthod 55(6):585-599

Baumrind S, Frantz RC (1971) The reliability of head film mea-
surements. 1. Landmark identification. Am J Orthod 60(2):111—
127

Samala RK, Chan HP, Hadjiiski L, Helvie MA, Richter CD, Cha
KH (2019) Breast cancer diagnosis in digital breast tomosynthesis:
effects of training sample size on multi-stage transfer learning using
deep neural nets. IEEE Trans Med Imaging 38(3):686—-696
Steiner CC (1960) The use of cephalometrics as an aid to planning
and assessing orthodontic treatment: report of a case. Am J Orthod
46(10):721-735

Baumrind S, Miller D, Molthen R (1976) The reliability of head
film measurements: 3. Tracing superimposition, American Journal
of Orthodontics 70(6):617-644

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

@ Springer



	Deep learning for cephalometric landmark detection: systematic review and meta-analysis
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Materials and methods
	Eligibility criteria
	Information sources and search
	Screening
	Data collection, items, and preprocessing
	Quality assessment
	Summary measures and data synthesis

	Results
	Study selection and characteristics
	Risk of bias and applicability concerns
	Meta-analysis

	Discussion
	Conclusion
	References


