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Abstract
Given a closed, convex cone K ⊆ R

n , a multivariate polynomial f ∈ C[z] is called
K -stable if the imaginary parts of its roots are not contained in the relative interior
of K . If K is the nonnegative orthant, K -stability specializes to the usual notion
of stability of polynomials. We develop generalizations of preservation operations
and of combinatorial criteria from usual stability toward conic stability. A particular
focus is on the cone of positive semidefinite matrices (psd-stability). In particular, we
prove the preservation of psd-stability under a natural generalization of the inversion
operator. Moreover, we give conditions on the support of psd-stable polynomials and
characterize the support of special families of psd-stable polynomials.

Keywords Stable polynomial · Conic stability · Positive semidefinite stability · Jump
system · Stability preserver · Geometry of polynomials

1 Introduction

Multivariate stable polynomials can be seen as a generalization of real-rooted polyno-
mials, and they enjoy many connections to other branches in mathematics, including
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differential equations [3], optimization [23], probability theory [4], matroid theory
[6, 9], applied algebraic geometry [24], theoretical computer science [18, 19] and
statistical physics [2]. See also the surveys of Pemantle [20] and Wagner [25].

Classical related notions include hyperbolic polynomials [11] or stability with
respect to an arbitrary domain (see, e.g., [12] and the references therein). Recently,
further variants and generalizations have been developed, including conic stability
introduced by Jörgens and the third author [14], Lorentzian polynomials introduced
by Brändén and Huh [7] and positively hyperbolic varieties introduced by Rincón,
Vinzant and Yu [22].

In this work we focus on the notion of conic stability. Given a closed, convex cone
K ⊆ R

n , a polynomial f ∈ C[z] = C[z1, . . . , zn] is called K -stable, if Im(z) /∈
relint K for every root z of f , where Im(z) denotes the vector of the imaginary parts of
the components of z and relint K denotes the relative interior of K . Note that (R≥0)

n-
stability coincides with the usual stability. In the case of a homogeneous polynomial,
K -stability of f is equivalent to the containment of relint K in a hyperbolicity cone of
f . The notion of K -Lorentzian polynomials recently introduced byBrändén andLeake
[8] is, up to scaling, a generalization of homogeneous K -stable polynomials. Stability
with respect to the positive semidefinite cone on the space of symmetric matrices is
denoted as psd-stability. In the homogeneous case such polynomials are also known as
Dirichlet–Gårding polynomials [13]. Prominent subclasses of psd-stable polynomials
arise from determinantal representations [10]. Blekherman, Kummer, Sanyal et al.
[1] have constructed a family of psd-stable lpm-polynomials (linear principle minor
polynomials) from multiaffine stable polynomials.

The purpose of the current paper is to initiate the study of generalizations of two
prominent research directions in stable polynomials toward conically stable polyno-
mials: preservation operators and combinatorial criteria. In particular, a focus is to
understand the transition from the classical stability situation to the conic stability
with respect to non-polyhedral cones such as the positive semidefinite cone.

With regard to preservation, stable polynomials have been recognized to remain
stable under a number of operations, see the survey [25]. Prominent examples include
the inversion operation (see [2]), the preservation under taking partial derivatives (as
a consequence of the univariate Gauß–Lucas Theorem), the Lieb-Sokal Lemma ( [17,
Lemma 2.3], see also [2, Lemma 2.1]) and the celebrated characterization of Borcea
and Brändén of linear operators preserving stability [2, Theorem 1.3]. Many of the
mentioned applications of stability rely on the preservation properties.

With regard to combinatorial criteria, several important combinatorial results have
been achieved, which provide effective criteria for the recognition of stable polynomi-
als. A groundbreaking result of Choe, Oxley, Sokal andWagner states that the support
of a multi-affine, homogeneous and stable polynomial f ∈ R[z] = R[z1, . . . , zn] is
the set of bases of a matroid [9, Theorem 7.1]. Brändén [6, Theorem 3.2] proved a
generalization of this result for the support of any stable polynomial f ∈ R[z], show-
ing that it forms a jump system, i.e., it satisfies the so-called Two-Step Axiom. See
Sect. 2 for formal definitions. Recently, Rincón, Vinzant and Yu gave an alternative
proof of the matroid result, based on a tropical proof of the auxiliary statement that
positive hyperbolicity of a variety is preserved under passing over to the initial form
[22, Corollary 4.9].
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The proofs of these combinatorial properties strongly rely on the preservation prop-
erties of stable polynomials. These preservation properties establish the connection
between the combinatorial and the algebraic viewpoint. For example, taking the par-
tial derivative of a polynomial f shifts the support vectors of f by a unit vector in
a negative coordinate direction (and some support vectors may disappear). Since sta-
bility of a polynomial is preserved under taking partial derivatives, one can use this
preserver to argue about the combinatorics of the support. In the univariate case, these
considerations are classical for deriving log-concavity of sequences with real-rooted
generating functions.
Our contributions. 1. We generalize several preserving operators for usual stability
to the conic stability. In particular, we derive a conic version of the Lieb-Sokal Lemma
(see Lemma 2.2 and Corollary 3.6).

2. For the case of psd-stability, we can prove the preservation under a natural
generalization of the inversion operator. See Theorem 4.3. This generalized inversion
operator is specific to the case of psd-stability and exhibits a prominent role of this
class. Furthermore, we show that psd-stable polynomials are preserved under taking
initial forms with respect to positive definite matrices. See Theorem 4.10.

3. Combinatorics of psd-stable polynomials.We prove a necessary criterion on the
support of any psd-stable polynomial in Theorem 5.1 and characterize the support of
special families of psd-stable polynomials. In particular, we characterize psd-stability
of binomials (Theorem 5.5), give a necessary criterion for psd-stability of a larger
class containing binomials (Theorem 5.4), and introduce a class of polynomials of
determinants, which satisfies a generalized jump system criterion with regard to psd-
stability. Theorem5.11 characterizes the restrictive structure of psd-stable polynomials
of determinants. These results are complemented by an additional conjecture on the
support of general psd-stable polynomials. We provide evidence for this conjecture
by verifying it for the classes of polynomials treated previously.

The paper is structured as follows. Section2 collects relevant background on
preservers of the usual stability notion as well as an introduction to the notion of
K -stability.

In Sect. 3, we study preservers of conic stability for general and polyhedral cones,
including the generalized version of the Lieb-Sokal Lemma. Section4 treats the case of
psd-stability, in particular, the preservation of psd-stability under an inversion opera-
tion and under passing over to certain initial forms. Section5 deals with combinatorial
conditions of psd-stable polynomials. Therein, Subsections 5.1 and 5.2 discuss the
support of special families of psd-stable polynomials. Subsection 5.3 considers the
support of general psd-stable polynomials and also raises a conjecture.

2 Preliminaries

LetR≥0 andR>0 denote the sets of non-negative and of positive real numbers. Further,
letH:={z ∈ C : Im(z) > 0} be the open upper half-plane of C. Throughout the text,
bold letters will denote n-dimensional vectors unless noted otherwise.
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In this section, we collect known properties of stable polynomials and then intro-
duce the generalization of stability, namely conic stability, with which the paper is
concerned.

2.1 Stable polynomials

A polynomial f ∈ C[z] is called stable if for every root z of f , there exists some
j ∈ [n] with Im(z j ) ≤ 0. Hence, a univariate real polynomial f is stable if and
only if it is real-rooted, because the non-real roots of univariate real polynomials
occur in conjugate pairs. The following collection from [25, Lemma 2.4] recalls some
elementary operations that preserve stability, where f) can be derived from the Gauß-
Lucas Theorem. Denote by degi the degree in the variable zi .

Proposition 2.1 Let f ∈ C[z] be stable.
(a) Permutation: f (zσ(1), . . . , zσ(n)) is stable for every permutation σ : [n] → [n].
(b) Scaling: c · f (a1z1, . . . , anzn) is stable or zero for every c ∈ C and a ∈ R

n
>0.

(c) Diagonalization: f (z) z j=zi ∈ C[z1, . . . , z j−1, z j+1, . . . , zn] is stable or zero for
every i �= j ∈ [n].

(d) Specialization: f (b, z2, . . . , zn) ∈ C[z2, . . . , zn] is stable or zero for every b ∈ C

with Im(b) ≥ 0.
(e) Inversion: z

deg1( f )
1 · f (−z−1

1 , z2, . . . , zn) is stable.
(f) Differentiation: ∂ j f (z) is stable or zero for every j ∈ [n].

A prominent linear stability preserver is the Lieb-Sokal Lemma ( [17, Lemma 2.3],
see also [2, Lemma 2.1] or [25, Lemma 3.2]). It is an essential ingredient in Borcea and
Brändén’s full characterization of linear operations preserving stability [2, Theorem
1.1], see also [3, Section 3.2].

Proposition 2.2 (Lieb-Sokal Lemma) Let g(z)+y f (z) ∈ C[z, y] be stable and assume
degi ( f ) ≤ 1. Then g(z) − ∂i f (z) ∈ C[z] is stable or identically zero.

The following statement due to Hurwitz allows us to obtain (conic) stability
statements as limit of statements on compact subsets under a uniform convergence
condition.

Proposition 2.3 [15, Par. 5.3.4] Let { fk} be a sequence of polynomials not vanishing
in a connected open set U ⊆ R

n , and assume it converges to a function f uniformly
on compact subsets of U. Then f is either non-vanishing onU or it is identically zero.

As a consequence of [9, Theorem 6.1], the following necessary condition for
homogeneous stable polynomials based on their coefficients applies.

Theorem 2.4 All nonzero coefficients of a homogeneous stable polynomial f ∈ C[z]
have the same phase.
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2.2 Stability and initial forms

The initial form inw( f ) of a polynomial f (z) = ∑
α∈S cαzα with respect to a

functional w in the dual space (Rn)∗ is defined as

inw( f ) =
∑

α∈Sw
cαzα,

where Sw:={α ∈ S : 〈w, α〉 = maxβ∈S〈w, β〉} and 〈·, ·〉 is the natural dual pairing.
That is, we restrict the polynomial f to those monomials whose exponents lie on the
face of the Newton polytope of f where the functional w is maximized.

In the context of their work on positively hyperbolic varieties, Rincón, Vinzant and
Yu [22, Proposition 4.1] showed that for polynomials with real coefficients, stability is
preserved under taking initial forms. Their proof is based on tropical geometry. For the
convenience of the reader, we give here a simplified proof and at the same time slightly
generalize the statement to also cover polynomials with complex coefficients. The
observation that the statement is also valid for complex coefficients has independently
been derived by Kummer and Sert [16, Proposition 2.6].

Theorem 2.5 If f ∈ C[z] is stable and w ∈ (Rn)∗\{0}, then inw( f )(z) is also stable.

Proof Let ϕ:=max {〈α,w〉 : α ∈ supp( f )}, and for λ > 0, define the polynomial
fλ(z):= 1

λϕ · f (λw1 z1, . . . , λwn zn), which is stable by Proposition 2.1.
To apply Hurwitz’ Theorem to finally achieve stability of the initial form, we need

to ensure that fλ converges uniformly to inw( f ) on every compact subset C ⊆ C
n .

Let μ = max{〈α,w〉 : 〈α,w〉 < ϕ, α ∈ supp( f )} and δ = ϕ − μ > 0. Then

lim
λ→∞ sup

z∈C
| fλ(z) − inw( f )(z)| ≤ lim

λ→∞ sup
z∈C

∑

〈α,w〉<ϕ

∣
∣
∣
∣
1

λδ
cαzα

∣
∣
∣
∣

= lim
λ→∞

1

λδ
sup
z∈C

∑

〈α,w〉<ϕ

∣
∣cαzα

∣
∣ = 0,

since the norm in the last equality is bounded, given that C is a compact set. �

The discussion of the preservation of conically stable polynomials when passing

over to initial forms is continued at the end of Sect. 4.

2.3 Combinatorics of stable polynomials

For α, β ∈ Z
n , the steps between α and β are defined as the set

St(α, β):= {
σ ∈ Z

n : |σ | = 1, |α + σ − β| = |α − β| − 1
}
,

where |σ |:=∑n
i=1 |σi |. A collection of points F ⊆ Z

n is called a jump system if for
every α, β ∈ F and σ ∈ St(α, β)with α +σ /∈ F there is some τ ∈ St(α +σ, β) such
that α +σ + τ ∈ F . In words, if after one step from α toward β we have left the setF ,
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then there must be a second step that takes us back intoF . This property is also known
as the Two-Step Axiom. The support of a complex polynomial f (z) = ∑

α cαzα is
defined as supp( f ) = {α ∈ Z

n≥0 : cα �= 0}, that is, it is the set of all exponent vectors
α such that the corresponding coefficient cα is non-zero in f . The following theorem
reveals the connection between stable polynomials and jump systems.

Theorem 2.6 (Brändén [6]) If f ∈ C[z] is stable, then its support is a jump system.

In [22, Proposition 4.1], the support of stable binomials is explicitly classified as
follows. Here, ei denotes the i-th unit vector in R

n .

Theorem 2.7 Let f = cαzα + cβzβ with cα, cβ �= 0 and α, β ∈ Z
n≥0 be stable and let

zα and zβ do not have a common factor. Then one of the following holds,

a) {α, β} = {0, ei } for some i ∈ [n],
b) {α, β} = {ei , e j } for some i, j ∈ [n] and cα

cβ
∈ R≥0, or

c) {α, β} = {0, ei + e j } for some i, j ∈ [n] and cα
cβ

∈ R<0.

2.4 Conic stability

The following notion of conic stability as introduced in [14] generalizes stability to
more general cones. Let K be a closed, convex cone in R

n and denote by relint K its
relative interior.

Definition 2.8 A polynomial f ∈ C[z] is called K -stable, if f (z) �= 0 whenever
Im(z) ∈ relint K .

Observe that by choosing the cone K = R
n≥0, we recover the usual notion of

stability. For any closed, convex cone K , conic stability can be characterized through
stability of univariate polynomials (see [14, Lemma 3.4], that proof literally alsoworks
without the assumption of full-dimensionality made there).

Proposition 2.9 ([14], Lemma 3.4) A polynomial f ∈ C[z]\{0} is K -stable if and
only if for all x, y ∈ R

n with y ∈ relint K , the univariate polynomial t �→ f (x + ty)
is stable or identically zero.

Remark 2.10 A homogeneous polynomial f ∈ C[z] is called hyperbolic w.r.t. e ∈ R
n

if f (e) �= 0 and the univariate polynomial t �→ f (x + te) is real rooted. For a full-
dimensional cone K ⊂ R

n , every homogeneous K -stable polynomial is hyperbolic
w.r.t. every e ∈ relint K = int K by [14, Theorem3.5] and hence, up to amultiplicative
constant every homogeneous K -stable polynomial has real coefficients [11].

2.5 Positive semidefinite stability

We introduce the notion of psd-stability, an important special case of conic stability
where the cone is chosen to be the positive semidefinite cone.

Denote by SC
n the vector space of complex symmetric matrices (rather than Hermi-

tian matrices) and by Sn the space of real ones. The cones of real positive semidefinite
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and positive definite matrices are denoted by S+
n and S++

n . Let C[Z ] denotes the ring
of polynomials on the symmetric matrix variables Z = (zi j ). More precisely, C[Z ]
is the vector space generated by monomials of the form Zα = ∏

1≤i, j≤n z
αi j
i j with

some nonnegative symmetric matrix α whose diagonal entries are integers and whose
off-diagonal entries are half-integers. Polynomials in C[Z ] can also be interpreted as
polynomials in the polynomial ring C[{zi j |1 ≤ i ≤ j ≤ n}], by identifying zi j and
z ji for i �= j . For example, consider the monomial

Z

(
0 1/2
1/2 0

)

= z1/212 z1/221 = z12

in the polynomial ring C[Z ] over the vector space SC

2 .

Definition 2.11 Psd-stability is defined asS+
n -stability for polynomials over the vector

spaceSC
n of complex symmetricmatrices. That is, a polynomial f ∈ C[Z ] is psd-stable

if it has no root M ∈ SC
n such that Im(M) ∈ S++

n .

The notion of psd-stability generalizes usual stability in the sense that for every
stable polynomial f = f (z1, . . . , zn), the polynomial f̄ : Z �→ f (z11, . . . , znn) is a
psd-stable polynomial.

The support supp( f ) of a polynomial f ∈ C[Z ] is the set of all symmetric exponent
matrices of the monomials occurring with nonzero coefficients in the polynomial. The
variables zii are called diagonal variables, while the variables zi j with i �= j are the
off-diagonal variables. We say that a monomial with exponent matrix α is a diagonal
monomial if αi j = 0 for all i �= j ∈ [n], andwe say that it is an off-diagonalmonomial
if αi i = 0 for all i ∈ [n]. By convention, we say that a constant is a diagonal monomial,
but not an off-diagonal one.

Example 2.12 Let f (Z) = det(Z) in the polynomial ring C[Z ] over the vector space
SC

2 . Then

f (Z) = z11z22 − z212 = Z

(
1 0
0 1

)

− Z

(
0 1
1 0

)

.

The monomial z11z22 is a diagonal monomial while the other one is an off-diagonal
monomial.

A prime example of psd-stable polynomials are determinants. The proof is included
for completeness.

Lemma 2.13 f (Z) = det(Z) is psd-stable.

Proof Suppose that f is not psd-stable, that is, there exist real symmetric matrices A
and B with B positive definite, such that f (A + i B) = 0. Then B is invertible and

0 = f (A + i B) = det(A + i B) = det(B) det(B− 1
2 AB− 1

2 + i In), where In denotes
the identity matrix of size n. Hence, −i is a root of the characteristic polynomial of,

and thus an eigenvalue of, B− 1
2 AB− 1

2 : a contradiction, since a symmetric real matrix
has only real eigenvalues. �
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Contrary to the usual stability notion, monomials are not necessarily psd-stable. In
fact, every monomial with an off-diagonal variable as a factor is not psd-stable since
it evaluates to zero for Z = i · In .

Psd-stability can be viewed as stability with respect to the Siegel upper half-space
HS = {A ∈ C

n×n symmetric : Im(A) is positive definite}. The Siegel upper half-
space occurs in algebraic geometry and number theory as the domain of modular
forms.

3 Preservers for conic stability

We provide generalizations of the stability preservers from Sect. 2 to conic stability
with respect to some closed, convex cone K . Our focus is on general cones and on
the subclass of polyhedral cones. A main result in this section is Theorem 3.4, a
conic version of the Lieb-Sokal Lemma. In Sect. 4, the specific case of preservers for
psd-stability will be studied.

A conical analogue of property b) from Proposition 2.1, scaling, holds trivially
since K is a cone: for any c ∈ C and a ∈ R≥0, the polynomial c · f (az1, . . . , azn) is
K -stable or identically zero. We now study the preservation of conical stability under
directional derivatives. For a vector v ∈ R

n\{0}, denote by ∂v the directional derivative
in direction v, i.e., ∂v f (z) = d

dt f (z + tv)
∣
∣
t=0.

Lemma 3.1 Let f ∈ C[z] be K -stable. For v ∈ K, the polynomial ∂v f is K -stable or
identically zero.

In the homogeneous case, this statement follows from the concept of a Renegar
derivative [21] for hyperbolic polynomials.

Proof Let f be K -stable and v ∈ K . Assume that ∂v f is neither 0 nor K -stable. Then
there is some z ∈ C

n such that Im(z) ∈ relint K and ∂v f (z) = 0.
To aim at a contradiction to the univariate Gauß-Lucas Theorem, we construct

through a substitution in f a univariate polynomial g �≡ 0, which has a non-real
zero. Since Im(z) ∈ relint(K ), there exists some ε > 0 such that Im(z) − εv ∈
relint K . Define the univariate polynomial g : t �→ f (z − iεv + tv). If g ≡ 0, then
f (z) = g(iε) = 0 in contradiction to the K -stability of f . Hence, g �≡ 0. Since
Im(z) − εv ∈ relint(K ) and v ∈ K , the univariate polynomial g is stable: if it had
any root t with Im(t) > 0, z − iεv + tv would be a root of f , but its imaginary part
Im(z) − εv + Im(t)v is in the relative interior of the cone K , a contradiction to the
conical stability of f . Moreover, g is not constant, because ∂v f �≡ 0. Hence, by the
Gauß-Lucas Theorem, the derivative g′ is stable. Since

g′(iε) = ∂

∂t
f (z − iεv + tv)

∣
∣
∣
t=iε

= ∂v f (z) = 0,

we obtain a contradiction to the stability of g′. �

There is a natural generalization of property d) in Lemma 2.1 to conic stability.
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Lemma 3.2 Let f ∈ C[z] be K -stable, a ∈ C
n and v(1), . . . , v(k) ∈ R

n. Further set
K ′ = pos{v(1), . . . , v(k)} and assume that Im(a) + K ′ ⊆ K. Then the polynomial
g ∈ C[z] defined by

g(z1, . . . , zk) = f

(

a +
k∑

j=1

z jv( j)
)

is stable or the zero polynomial.

Setting K = R
n≥0, k = n − 1, v( j) = e( j+1) with the ( j + 1)-th unit vector e( j+1),

1 ≤ j ≤ n − 1, and a2 = · · · = an = 0 yields Lemma 2.1 d).

Proof First consider the special case where Im(a) + relint K ′ ⊆ relint K . Further
assume that the polynomial g ∈ C[z] is neither zero nor stable. Then there exists
w ∈ C

k with Im(w) ∈ R
k
>0 and g(w) = 0, and thus, f (a+ ∑k

j=1 w jv( j)) = 0. Since

Im(a)+∑k
j=1 w jv( j) ∈ Im(a)+relint K ′ ⊆ relint K , f is not K -stable, contradiction.

The general case (Im(a) + K ′ ⊆ K ) follows from Hurwitz’ Theorem. �

In the rest of this section, we present and prove a generalization of the Lieb-Sokal

Lemma (Lemma 2.2) to conic stability. In the usual Lieb-Sokal Lemma, we take a
partial derivative of a polynomial which has degree at most 1 in the corresponding
variable. To formulate a similar result for arbitrary cones, we take a directional deriva-
tive in a direction lying in the cone, since these directional derivatives preserve conic
stability by Lemma 3.1. To this end, we need a generalized notion of degree with
respect to an arbitrary direction.

Definition 3.3 For v ∈ R
n , we call ρv( f ) the degree of f in direction v, defined as

the degree of the univariate polynomial f (w + tv) ∈ C[t] for generic w ∈ C
n .

In particular, after taking the directional derivative in direction v exactly ρv( f )+ 1
times, we obtain the identically zero polynomial. The degree in the direction of a unit
vector e( j) coincides with the univariate degree with respect to the variable j . We can
now state the conical version of Lieb-Sokal stability preservation.

Theorem 3.4 (Conic Lieb-Sokal stability preservation) Let K ′ be given by K ′ =
K × R≥0 and g(z) + y f (z) ∈ C[z, y] be K ′-stable and such that ρv( f ) ≤ 1 for some
v ∈ K . Then g − ∂v f is K -stable or g − ∂v f ≡ 0.

We first establish a connection between a cone K and its lift K ′ into a higher-
dimensional space, which we will use to prove Theorem 3.4.

Lemma 3.5 Let f , g ∈ C[z], where f �≡ 0 and K-stable and let K ′ = K × R≥0.
Then g + y f ∈ C[z, y] is K ′-stable if and only if

Im
(
g(z)
f (z)

)

≥ 0 for all z ∈ C
n with Im(z) ∈ relint K .

123



820 Journal of Algebraic Combinatorics (2023) 58:811–836

Proof Let g + y f be K ′-stable. Fix some z with Im(z) ∈ relint K . By K -stability,
we have f (z) �= 0, and thus, we may consider g(z) + y f (z) as a univariate stable
polynomial.

Setting w = −g(z)/ f (z), the stability of the univariate polynomial y �→ g(z) +
y f (z) implies Im(w) ≤ 0. It follows that

Im
(
g(z)
f (z)

)

= Im(−w) ≥ 0.

Conversely, suppose Im
(
g(z)
f (z)

)
≥ 0 for all z ∈ C

n with Im(z) ∈ relint K . Assume

g �≡ 0, since otherwise y f (z) would clearly be K ′-stable. For z ∈ C
n with Im(z) ∈

relint K , we have for w ∈ C with Im(w) > 0 that g(z)
f (z) �= −w. So g(z) + w f (z) �= 0

and K ′-stability follows. �

We can now complete the proof of Theorem 3.4.

Proof of Theorem 3.4. We begin by observing that g is K -stable or g ≡ 0. Let v ∈ K
with ρv( f ) ≤ 1. If ∂v f ≡ 0, there is nothing to prove. So assume ∂v f �≡ 0 and
thus implies f �≡ 0. For a fixed z ∈ C

n with Im(z) ∈ relint K we may consider
g(z) + y f (z) as a univariate polynomial in y. By Lemma 3.1, the polynomial f (z) =
∂y(g(z) + y f (z)) is K -stable. For z ∈ C

n with Im(z) ∈ relint K , v ∈ K and y ∈ C

with Im(y) > 0, we have Im(z − 1
y v) ∈ relint K , because

Im
(

z − 1

y
v
)

= Im(z) − Im
(
1

y

)

v = Im(z) + 1

|y|2 Im(y) · v ∈ relint K .

It follows that y f (z − 1
y v) is K

′-stable. Since ρv( f ) ≤ 1, there exist polynomials f0
and f1 with ρ f0(v), ρ f1(v) = 0 and f (z) = f0(z) + 〈v, z〉 · f1(z). Thus, the identity

y f

(

z − 1

y
v
)

= y f (z) − ∂v f (z)

implies the K ′ stability of y f (z) − ∂v f (z). Applying Lemma 3.5 twice gives

Im
(
g(z) − ∂v f (z)

f (z)

)

= Im
(
g(z)
f (z)

)

+ Im
(−∂v f (z)

f (z)

)

≥ 0.

Using Lemma 3.5 again, the K ′-stability of g(z) − ∂v f (z) + y f (z) follows. By spe-
cializing to y = 0 and using Lemma 2.1, we obtain that g(z) − ∂v f (z) is K -stable or
g(z) − ∂v f (z) ≡ 0. �


Theorem 3.4 not only generalizes the usual Lieb-Sokal Lemma to the case of
arbitrary cones, but also extends it to directional derivatives with respect to every
direction in the positive orthant. We can formulate this explicitly as the following
refined version for the usual stability notion.
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Corollary 3.6 (Refined Lieb-Sokal Lemma) Let g(z) + y f (z) ∈ C[z, y] be stable and
assume ρv( f ) ≤ 1 for some v ∈ R

n≥0. Then g(z) − ∂v f (z) ∈ C[z] is stable or
identically 0.

4 Preservers for psd-stability

In this section, we restrict to psd-stability. For a complex symmetric matrix Z ∈ SC
n ,

we write Z = X + iY with X ,Y ∈ Sn . After collecting some elementary preservers,
our main results of this section are the preservation of psd-stability under an inversion
operation (see Theorem 4.3 and Corollary 4.7) and the preservation of psd-stability
under taking initial formswith respect to positive definitematrices (see Theorem4.10).

For a polynomial f ∈ C[Z ], let fDiag ∈ C[Z ] denote the polynomial obtained
from f by substituting all off-diagonal variables by 0. For 1 ≤ i �= j ≤ n, let Bii
be the matrix which is 1 in entry (i, i) and zero otherwise, and let Bi j be the matrix
which is 1/2 in entry (i, j) and ( j, i) and zero otherwise. Then, for a polynomial
f = ∑

α cαZα ∈ C[Z ] and its equivalent version f̃ = ∑
α cα

∏n
k=1 z

αkk
kk

∏
k<l z

2αkl
kl in

C[{zkl |1 ≤ k ≤ l ≤ n}], we have the identities ∂ f
∂Bii

∣
∣
zlk :=zkl

= ∂ f̃
∂zii

and ∂ f
∂Bi j

∣
∣
zlk :=zkl

=
1
2

∂ f̃
∂zi j

as symbolic expressions. To see this, it suffices to observe that for i < j and a

monomial f (Z) = z
αi j
i j z

α j i
j i ∈ C[Z ], we have f̃ = z

2αi j
i j and

∂

∂Bi j
f (Z) = 1

2
αi j z

αi j−1
i j z

α j i
j i + 1

2
α j i z

αi j
i j z

α j i−1
j i ∈ C[Z ].

Substituting z ji by zi j gives ∂
∂Bi j

f (Z)
∣
∣
z ji :=zi j

= αi j z
2αi j−1
i j = 1

2
∂

∂zi j
f̃ .

Lemma 4.1 (Elementary preservers for psd-stability) Let f ∈ C[Z ] be psd-stable.
(a) Diagonalization: The polynomial Z �→ fDiag(Z) is psd-stable.
(b) Transformation: Let S ∈ GLn(R), then f (SZS−1) and f (SZST ) are psd-stable.
(c) Minorization: For J ⊆ [n], let Z J be the symmetric |J | × |J | submatrix of Z

with index set J . Then f (Z J ), the polynomial on SC|J | obtained from f by setting
to zero all variables with at least one index outside of J , is psd-stable or zero.

(d) Specialization: For a fixed index i ∈ [n], let Ẑi be any matrix obtained from Z by
assigning real values to zi j , z ji for all indices j �= i and a value from H to zii .
Then f (Ẑi ), viewed as polynomial on SC

n−1, is psd-stable or zero.
(e) Reduction: For i, j ∈ [n], let Z̄i j be any matrix obtained from Z by choosing

real values for zik = zki for k �= i and setting zii :=z j j . Then f (Z̄i j ), viewed as
polynomial on SC

n−1, is psd-stable or zero.
(f) Permutation: Let π : [n] → [n] be a permutation. Then f ((Zπ( j),π(k))1≤ j,k≤n)

is a psd-stable polynomial on SC
n .

(g) Differentiation: ∂V f (Z) is psd-stable or zero for V ∈ S+
n .

Proof (a) Assume fDiag is not psd-stable. Then there are real symmetric matrices
A, B with B � 0 and fDiag(A + i B) = 0. Let A′ and B ′ be the matrices obtained

123



822 Journal of Algebraic Combinatorics (2023) 58:811–836

from A and B by setting all off-diagonal variables to zero. In particular, B ′ is positive
definite. Since the only variables occurring in fDiag are the diagonal ones, we have
f (A′ + i B ′) = fDiag(A + i B) = 0. Hence, f is not psd-stable.
(b) Both transformations Z �→ ST Z S and Z �→ S−1ZS preserve the inertia of

Im(Z) and thus also psd-stability.
(c) Set k:=|J | and assume without loss of generality J = {1, . . . , k}. For ε > 0,

let gε be the polynomial on the space Sk defined by gε(Z) := f (Diag(Z , iε In−k)),
where Diag(Z , iε In−k) is the block diagonal matrix with blocks Z and iε In−k . The
psd-stability of g implies the psd-stability of gε for all ε > 0. Hurwitz’ Theorem 2.3
then gives the desired result, because f (Z J ) = g0(Z).

(d) is obvious, e) and f) are similar to c), and g) is the special case of Lemma 3.1
when K is the psd-cone. �


The diagonalization property from Lemma 4.1 plays a central role in the theory of
psd-stable polynomials, since it establishes connections to the usual stability notion
and also gives further insights into the monomial structure of psd-stable polynomials.

Corollary 4.2 Let f ∈ C[Z ] be psd-stable. Then:
(a) The polynomial (z11, z22, . . . , znn) �→ fDiag(Z) is stable in C[z11, z22, . . . , znn].
(b) If f (0) = 0, i.e., if f does not have a constant term, then there is a monomial in

f consisting only of diagonal variables of Z.
(c) If f is homogeneous, then

(c1) the sum of the coefficients of all diagonal monomials of f is nonzero.
(c2) all nonzero coefficients of diagonal monomials of f have the same phase.

Proof (a) By Lemma 4.1, we know that fDiag(Z) �≡ 0 is psd-stable. Now it suffices to
observe that fDiag(Z) �= 0 whenever the diagonal of Im(Z) has positive entries only.

(b) Let f (0) = 0. If each monomial in f contains an off-diagonal variable of Z ,
then fDiag(Z) ≡ 0, in contradiction to the psd-stability of fDiag(Z).

(c1) The claim follows since the sum of the coefficients of all diagonal monomials
is given by f (In) which cannot be zero due to f (i · In) = ideg( f ) f (In) �= 0.

(c2) The claim follows by combining a) with Theorem 2.4. �

When investigating the combinatorics of psd-stable polynomials in Sect. 5, we will

refer to the following observation, which could also be considered as a special case of
specialization. Let f (Z) be psd-stable. For the real matrix variables X and any fixed
real matrix B � 0, the polynomial f (X + i B) does not have any real roots.

As the first main result in this section, we show the following preservation statement
under inversion for psd-stability.

Theorem 4.3 (Psd-stability preservation under inversion) If f (Z) ∈ C[Z ] is psd-
stable, then the polynomial det(Z)deg( f ) · f (−Z−1) is psd-stable.

Here, the factor det(Z)deg( f ) serves to ensure that the product is a polynomial again.
For the proof of Theorem 4.3, we begin with a technical lemma.

Lemma 4.4 Let A, B ∈ Sn with B � 0. Then the symmetric matrix C :=A + i B is
invertible and the imaginary part matrix of the symmetric matrix C−1 is negative
definite.
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We will use the following elementary computation rules, which can be verified
immediately.

Lemma 4.5 Assume that C = A + i B is invertible, and denote its inverse by W =
U + iV .

(a) If A is invertible, then U = (A + BA−1B)−1.
(b) If B is invertible, then V = (−B − AB−1A)−1.

Wealso use the following basic statement on eigenvalues in the proof of Lemma 4.4.

Lemma 4.6 Let A, B ∈ Sn and set C = A + i B. If B � 0 then λ ∈ H for all
eigenvalues λ of C.

Proof Let B � 0, and let λ be an eigenvalue ofC with some corresponding eigenvector
v. Then

λ = vHλv
vHv

= vH Av
vHv

+ i
vH Bv
vHv

. (1)

Since B � 0, we have vH Bv
vH v

> 0 and thus λ ∈ H. �

Proof of Lemma 4.4. Let C = A + i B with A, B ∈ Sn and B � 0. Lemma 4.6
gives that C is invertible. The symmetry of C−1 is an immediate consequence of the
invertibility. Indeed, C−1C = I implies I = I T = (C−1C)T = CT (C−1)T . Since C
is symmetric, the matrix (C−1)T is the inverse of C , that is, (C−1)T = C−1.

By Lemma 4.5, the imaginary part ofW = C−1 is given by (−B− AB−1A)−1. We
observe that B−1 is positive definite and thus AB−1A is positive semidefinite. Hence,
−B − AB−1A is negative definite. Since the inverse of that matrix is negative definite
as well, the claim follows. �


We can complete the proof of Theorem 4.3.

Proof of Theorem 4.3 The inverse of a symmetric matrix C = A + i B with posi-
tive definite imaginary part B has a negative definite imaginary part, as shown in
Lemma 4.4. Thus, f (−C−1) �= 0 if B � 0. Since det(Z) is a psd-stable polynomial
as well as f , the polynomial det(Z)deg( f ) f

(−Z−1
)
is psd-stable. Note that the factor

det(Z)deg( f ) ensures that det(Z)deg( f ) f
(−Z−1

)
is a polynomial. This directly follows

from Cramer’s rule, saying Z−1 = 1
det(Z)

· adj(Z), where adj(Z) denotes the adjugate
matrix of Z . �


The following is a slight generalization which resembles the existing formulation
of the scalar version in Lemma 2.1.

Corollary 4.7 If Z is a symmetric block diagonal matrix with blocks Z1, . . . , Zk and
f (Z) = f (Z1, . . . , Zk) is psd-stable, then det(Z1)

degZ1 f · f (−Z−1
1 , Z2, . . . , Zk) is

a psd-stable polynomial. Here, degZ1
f denotes the total degree of f with respect to

the variables from the block Z1.
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We close the section with a brief discussion and our second main result of this
section on the preservation of the psd-stability of a polynomial f ∈ C[Z ] when
passing over to an initial form. For f = ∑

α∈S cαZα ∈ C[Z ], the initial form of f is
defined with respect to some functional W in the dual space S∗

n . It is defined as

inW ( f ) =
∑

α∈SW
cαZ

α,

where SW :={α ∈ S : 〈W , α〉F = maxβ∈S〈W , β〉F } and 〈·, ·〉F is the Frobenius
product. The following example shows that Theorem 2.5 on stability preservation
under taking the initial form for any non-zero functional w does not generalize to the
case of psd-stability.

Example 4.8 The polynomial f ∈ C[Z ] given by

f (Z) = det

⎛

⎝
z11 z12 z13
z12 z22 z23
z13 z23 z33

⎞

⎠

= z11z22z33 − z11z
2
23 − z22z

2
13 − z33z

2
12 + 2z12z13z23

is a psd-stable polynomial. However, taking the initial form inW ( f ) for

W =
⎛

⎝
4 4 6
4 4 6
6 6 0

⎞

⎠

yields inW ( f ) = −z11z223 − z22z213 + 2z12z13z23, which vanishes at Z = i I3. Since
the imaginary part of i I3 is a positive definite matrix, inW ( f ) is not psd-stable.

To answer the natural question of whether psd-stability is preserved by passing
over to the initial form with respect to certain symmetric matrices, we show that it is
enough for W to be positive definite.

Forλ > 0 andmatricesW ∈ Sn , letλW denote the operationgivenby (λW )i j :=λwi j .
Furthermore, for two matrices A, B ∈ Sn let A ◦ B denote the Hadamard product of
A and B with (A ◦ B)i j = ai j · bi j . Generalizing the notation | · | for vectors, we write
|α| = ∑

1≤i, j≤n |αi j | for an exponent matrix α.

Lemma 4.9 Let f ∈ C[Z ] be psd-stable and let W ∈ Sn be such that there exists some
λ0 > 0 such that for every λ > λ0, λW is positive definite. Then inW ( f ) is psd-stable.

Proof The Schur product theorem states that the Hadamard product of the two posi-
tive definite matrices is positive definite. Thus, we have λW ◦ A � 0 for all A � 0
and λ > λ0. Let ϕ = max {〈α,W 〉F : α ∈ supp( f )} and define the polynomial
fλ(Z):= 1

λϕ f (λW ◦ Z). This is psd-stable for any λ > λ0, since the positive semi-
definiteness of the imaginary part is preserved due to the previous observation. Let
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μ:=max{〈α,W 〉 : α ∈ supp( f ), 〈α,W 〉 < ϕ} and δ:=ϕ − μ > 0. Now, for any
compact subset C ∈ Sn ,

lim
λ→∞ sup

Z∈C
| fλ(Z) − inW ( f )(Z)| ≤ lim

λ→∞ sup
Z∈C

∑

〈α,W 〉<ϕ

∣
∣
∣
∣
1

λδ
cαZ

α

∣
∣
∣
∣

= lim
λ→∞

1

λδ
sup
Z∈C

∑

〈α,W 〉<ϕ

∣
∣cαZ

α
∣
∣ = 0,

since the norm in the last equality is bounded. By Hurwitz’ Theorem 2.3, inW ( f ) is
psd-stable. �

Theorem 4.10 Let f ∈ C[Z ] be psd-stable and W ∈ Sn be positive definite, then
inW ( f ) is psd-stable.

Proof LetW ∈ Sn be positive definite. ThenW ◦k , the k-fold Hadamard product ofW ,

is positive definite for all k ≥ 1 and so is exp[W ]:=∑∞
k=0

W ◦k
k! , with the convention

that W ◦0 is the all-ones matrix. For λ > 1, we have ln(λ) · W � 0. Therefore,

exp[ln(λ) · W ] = (ewi j ln(λ))i j = (λwi j )i j = λW

is positive definite. The claim now follows from Lemma 4.9 with λ0 = 1. �


5 Combinatorics of psd-stable polynomials

This section is about combinatorial properties of the support of psd-stable polynomials,
inspired by the results in [6, 9, 22] on the support of stable polynomials listed in
Sects. 1 and 2. Theorem 5.1 gives a necessary condition on the support of any psd-
stable polynomial. In Sects. 5.1 and 5.2, we characterize psd-stability of binomials and
non-mixed polynomials and the class of polynomials of determinants. Finally, Sect. 5.3
discusses some aspects on the support of general psd-stable polynomials, provides a
conjecture and verifies this conjecture for some special families of polynomials. We
sometimes write both zi j and z ji with some i �= j , but both denote the same variable
zi j with i ≤ j , as explained at the beginning of Sect. 4.

Theorem 5.1 If an off-diagonal variable zi j (where i < j ) occurs in a psd-stable
polynomial f ∈ C[Z ], then the corresponding diagonal variables zii and z j j must
also occur in f .

This mimics the basic fact about positive semidefinite matrices that if an off-
diagonal entry is nonzero, the corresponding diagonal entries must also be nonzero.

Proof We prove the contrapositive. Suppose without loss of generality that z1n is a
variable appearing in f but znn is not. We can choose an (n − 1) × (n − 1) complex
symmetric matrix A and a2n, . . . , an−1,n ∈ C such that Im(A) is positive definite and
such that substituting these values into f gives a non-constant univariate polynomial
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g in the variable z1n . The second condition is possible because the set S++
n−1 × C

n−2

is an open set. Indeed, we can choose all real parts to be zero.
The univariate non-constant polynomial g has a complex root a1n . The assignment

zi j = ai j for all (i, j) �= (n, n) gives therefore a root of f no matter what value we
choose for znn . We now claim that if we assign a value ann with Im(ann) positive
and large enough, the matrix A′ which results from assigning these values to Z has a
positive definite imaginary part.

Observe that by Sylvester’s criterion of leading principle minors, it is enough to
check that the determinant of Im(A′) is strictly positive; the remaining leading principal
minors will necessarily be positive because they are minors of Im(A), which we chose
positive definite. Now, by developing the determinant along the last row, we obtain

det Im(A′) = Im(ann) · det Im(A) + c,

where c is a constant. Since det Im(A) is positive, we can choose Im(ann) positive and
sufficiently large so that det Im(A′) is positive. Thus, f (A′) = 0 with Im(A′) positive
definite, which proves that f is not psd-stable. �

The argument used in the proof is connected to the ’positive (semi-)definite matrix
completion problem’, see for example [5, Section 3.5]. In the special case of binomials
Theorem 5.1 can be extended as follows.

Lemma 5.2 Let f (Z) = cαZα +cβ Zβ be a psd-stable binomial. If the two monomials
Zα and Zβ do not have a common factor, then either both consist only of diagonal
variables, or one only of diagonal and the other only of off-diagonal variables.

Proof Zα and Zβ cannot both be off-diagonal monomials, since this contradicts The-
orem 5.1. It remains to be shown that neither monomial can contain both diagonal and
off-diagonal variables. Suppose toward a contradiction that one of the two monomials
did contain both, w.l.o.g. Zβ , and choose j such that β j j > 0. Since the monomials
of f do not share any variable, ∂Zα

∂z j j
≡ 0, where we use the derivative notation ∂

∂zi j
on

the symmetric matrix space as introduced at the beginning of Sect. 4.
Hence, g(Z):= ∂ f

∂z j j
= cββ j j Zβ ′

is a non-zeromonomialwithβ ′
kl = βkl for (k, l) �=

( j, j) and β ′
j j = β j j −1, that is, g is a monomial containing an off-diagonal variable.

Thus, g(i · In) = 0, which is a contradiction since g is psd-stable by Lemma 3.1. �


5.1 Binomials and non-mixed polynomials

We give characterizations of the support of psd-stable binomials. Some of the results
will be stated for the family of non-mixed polynomials, which includes irreducible
binomials thanks to Lemma 5.2.

Definition 5.3 We call a polynomial f ∈ C[Z ] non-mixed if every monomial that
occurs in f either consists only of diagonal variables or only of off-diagonal variables.
We always write such a non-mixed polynomial as f = ∑

α∈A cαZα + ∑
β∈B cβ Zβ ,
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where A refers to the exponent matrices of diagonal monomials and B refers to the
exponent matrices of off-diagonal monomials.

It is useful to consider this larger family because it is closed under directional
derivatives while the family of binomials is not. The following two theorems are the
main results in this subsection.

Theorem 5.4 Let f (Z) = ∑
α∈A cαZα + ∑

β∈B cβ Zβ be a homogeneous non-mixed
polynomial of degree d ≥ 3 and assume cβ �= 0 for some β ∈ B. Then f is not
psd-stable.

The following theorem is a complete characterization of the support of psd stable
binomials, analogous to the classification of stable binomials from Theorem 2.7.

Theorem 5.5 Every psd-stable binomial is of one of the following forms:

(a) Only diagonal variables appear in f and f satisfies the conditions of Theorem 2.7:
f (Z) = Zγ (c1Zα1 + c2Zα2) with |α1 − α2| ≤ 2 and at least one of α1, α2 is
non-zero,

(b) f (Z) = Zγ (c1zii z j j + c2z2i j ) with i < j and c1
c2

∈ R,

where c1, c2 �= 0 and Zγ is a diagonal monomial.

This theorem shows that the only psd-stable binomials with off-diagonal variables
are those described in b): in particular, at most one off-diagonal variable occurs in a
psd-stable binomial, and it has degree exactly 2.

The following lemma is a first step toward a proof of the main theorems and shows
that the exponents of psd-stable binomials cannot be far apart. The proof relies on
taking derivatives in direction V (i j), with i �= j , which denotes the n × n matrix
with vi i = v j j = vi j = v j i = 1 and 0 elsewhere. In terms of the basis matrices Bi j
introduced at the beginning of Sect. 4, we have V (i j) = Bii + Bj j + 2Bi j .

Lemma 5.6 Let f (Z) = cαZα + cβ Zβ be a psd-stable binomial (thus cα, cβ �= 0).
Then ||α| − |β|| ≤ 2.

Proof We may assume that the monomials of f do not have a common factor since
this does neither affect |α − β| nor ||α| − |β||. By Lemma 5.2, either both monomials
are diagonal monomials or w.l.o.g. only Zβ is an off-diagonal monomial. If both
monomials are diagonal, the claim follows directly from Theorem 2.6, because psd-
stable polynomials involving only diagonal variables are stable polynomials.

Now assume that Zβ is an off-diagonal monomial. Then |β| ≤ |α| follows
from Theorem 5.1 after possibly taking derivatives in direction V (i j) for some
zi j appearing in Zβ . It remains to show |α| ≤ |β| + 2. Assume to the contrary
that |α| − |β| ≥ 3. Choose i and j with i < j such that zi j occurs in Zβ .

Since ∂ f
∂V (i j) (Z) =

(
∂

∂zii
+ ∂

∂z j j

)
(cαZα) + ∂

∂zi j
(cβ Zβ) by the computation rules at

the beginning of Sect. 4, we see that ∂ f
∂V (i j) (Z) has at most two diagonal mono-

mials, each of degree |α| − 1, and exactly one off-diagonal monomial of degree
|β| − 1. By applying this procedure consecutively |β| times, we obtain a polyno-
mial g(Z) = ∑

α′ cα′ Zα′ + cβ ′ , where
∑

α′ cα′ Zα′
is a homogeneous polynomial in

123



828 Journal of Algebraic Combinatorics (2023) 58:811–836

diagonal variables of degree |α| − |β| ≥ 3 and cβ ′ is a constant. Further g(Z) is
psd-stable by Lemma 3.1. Since g does not involve any off-diagonal variables, it is a
stable polynomial. This is a contradiction to Theorem 2.6, since the support of g does
not satisfy the Two-Step Axiom. �


In the following, we show that most binomials are not psd-stable by explicitly
constructing a root S (of the binomial or a directional derivative of it) whose imaginary
part lies in the interior of the psd-cone. This root S will be a symmetric n × n matrix
of the form

S =

⎛

⎜
⎜
⎜
⎜
⎝

s + i t · · · t

t s + i
. . .

...
...

. . .
. . . t

t · · · t s + i

⎞

⎟
⎟
⎟
⎟
⎠

with s, t ∈ R. (2)

Since Im(S) = In � 0, any polynomial with root S is not psd-stable.

Lemma 5.7 Let f (Z) = cαZα + cβ Zβ be a binomial (thus, cα, cβ �= 0) with |α| >

|β| ≥ 1 and such that Zα and Zβ do not have a common factor. Then f is not
psd-stable.

Proof Assume toward a contradiction that f is psd-stable. Since |α| > |β| ≥ 1 and
Zα and Zβ do not share a factor, we have that |α − β| ≥ 3. If both monomials were
diagonal monomials, psd-stability would imply stability, and |α −β| ≥ 3 would yield
a contradiction to Theorem 2.6.

Now assume that Zβ is an off-diagonalmonomial.Wewill show that there are s, t ∈
R such that S is a root of f , thus contradicting that f is psd-stable. By Lemma 5.6,
the only possibly psd-stable cases are |α| = |β| + 1 and |α| = |β| + 2.

First consider the case |β| = 1. Then |α| ∈ {2, 3}. After substituting S, f = 0 is of
the form

(s + i)a + bt = 0 with a:=|α| ∈ {2, 3}, s, t ∈ R, b ∈ C \ {0}. (3)

One may split the real and imaginary part of equation (3) to obtain two real equations,
denoted by (Re) and (Im). First let a = 2. If Im(b) �= 0, there is a real solution

s = Re(b)
Im(b) +

√(
Re(b)
Im(b)

)2 + 1 and t = 1−s2
Im(b) . If Im(b) = 0, the solution t = 1

Re(b) and

s = 0 may be found. Now let a = 3. If Im(b) �= 0, (Im) implies t = 1−3s2
Im(b) , which

then gives s3 − 3s + Re(b)
Im(b) (1 − 3s2), which has a real solution. If Im(b) = 0, (Im)

becomes 3s2 = 1, which has the real solutions s = ± 1√
3
. Substituting these into (Re)

gives a linear function in t , which has a real solution as well.
Now consider the case |β| > 1. Choose i and j with i < j such that the variable

zi j occurs in f . Since f is psd-stable, its partial derivative in direction V (i j) is psd-

stable by Lemma 3.1. Further ∂ f
∂V (i j) (Z) =

(
∂

∂zii
+ ∂

∂z j j

)
(cαZα) + ∂

∂zi j
(cβ Zβ) is a
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non-mixed polynomial with the degree of each monomial reduced by 1 and exactly
one off-diagonal monomial. Taking |β| − 1 consecutive derivatives in a similar way,
we obtain a non-mixed polynomial of the form g(Z) = ∑

α′ cα′ Zα′ + cβ ′ Zβ ′
with

|β ′| = 1 and |α′| ∈ {2, 3}. Substituting S into g gives equation (3). Thus, neither g
nor f can be psd-stable. �


Now we prove Theorem 5.4, which shows that homogeneous non-mixed polyno-
mials of high degree cannot be psd-stable.

Proof of Theorem 5.4 Assume to the contrary that f is a homogeneous non-mixed psd-
stable polynomial of degree at least 3. By Remark 2.10, we can assume without loss
of generality that all coefficients of f are real.

First assume the degree of f is d = 3. We will show a contradiction to psd-stability
by explicitly finding a forbidden root of f .

Let a:= ∑
α∈A cα and b:= ∑

β∈B cβ . Note that a and b are real and a = f (In) �= 0
by Corollary 4.2 c1). If b �= 0, w.l.o.g. we normalize so that a = 1. To obtain the
desired forbidden root we look for a solution of the form S introduced above, that
is, real solutions s, t for the equation f (S) = (s + i)3 + bt3 = 0. By splitting the
equation into real and imaginary part, we obtain the system

(Re) : (s3 − 3s) + bt3 = 0,
(Im) : 3s2 − 1 = 0.

Consider the positive real solution s∗ = 1√
3
of (Im). Plugging this solution into (Re)

gives a real cubic in t , which has a real solution t∗.
If instead b = 0, we tweak matrix S to S′ as follows: let β0 ∈ B such that cβ0 �= 0,

and let zi j be a variable occurring in themonomial Zβ . Thenwe let S′
i j = S′

j i = (1+ε)t
for a small ε > 0. The remaining entries of S′ are the same as those in S. Since
b = ∑

β cβ = 0, we have that f (S′) = (s + i)3 + εcβ0 t
3, and εcβ0 > 0, which

means we fall into the case above with the coefficient of t3 non-zero. We have thus
constructed solutions violating psd-stability for any such degree 3 polynomial f .

Now let d > 3 and assume d is the smallest degree such that there is a polynomial
f of the specified form which is psd-stable of degree d. Its partial derivative in any
direction V (i j) is psd-stable by Lemma 3.1. If we choose (i, j), i �= j such that the
variable zi j occurs in f , ∂ f

∂V (i j) is a polynomial of the same form of degree d − 1:

since ∂ f
∂V (i j) (Z) =

(
∂

∂zii
+ ∂

∂z j j

)
(
∑

α cαZα) + ∂
∂zi j

(
∑

β cβ Zβ), the coefficients of

off-diagonal monomials are positive multiples of those of f and therefore there must
be a non-zero one. This is a contradiction, since we assumed that d was the smallest
degree which a psd-stable polynomial of this form could have. �


We finally have all the tools needed to prove Theorem 5.5, which provides a
complete classification of the support of psd-stable binomials.

Proof of Theorem 5.5 Let f be a binomial. Then f can be written in the form f (Z) =
Zγ f̃ (Z), where f̃ (Z) = cαZα + cβ Zβ is an irreducible psd-stable binomial and
therefore also a non-mixed polynomial.
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If all variables appearing in f are diagonal variables, then f is stable, and by
Theorem 2.6 its support has to satisfy the Two-Step Axiom, which leads to |α−β| ≤ 2
in the case of binomials. Thus, now we can assume the occurrence of an off-diagonal
monomial, say Zβ . By the structure Theorem 5.1 and after possibly taking derivatives
in direction V (i j) for some zi j appearing in Zβ , we see |β| ≤ |α|.

In the homogeneous case, by Theorem 5.4, we have deg( f̃ ) ≤ 2. The only possibil-
ity is given by f̃ (Z) = c1zii z j j +c2z2i j with c1, c2 �= 0 and i �= j , since otherwise we
would get a contradiction to the structure Theorem 5.1. Clearly |α−β| ≤ 2 holds. Fur-
ther we have c1

c2
∈ R by Remark 2.10. In the non-homogeneous case, i.e., |α| �= |β|,

Lemma 5.7 implies β = 0 or |β| > |α|. β = 0 is not involving an off-diagonal
variable. The case |β| > |α| contradicts the earlier observation that |β| ≤ |α|.
Therefore, there is no non-homogeneous psd-stable binomial involving off-diagonal
variables. �


FromTheorem5.5,weobserve that psd-stable binomials cannot contain amonomial
which is the product of different off-diagonal variables. This also holds for psd-stable
homogeneous non-mixed polynomials.

Theorem 5.8 Let f be a psd-stable homogeneous non-mixed polynomial of degree 2.
Then f is of the form f (Z) = ∑

α∈A cαZα + ∑
i< j ci j z

2
i j .

Proof Let f (Z) be a psd-stable homogeneous non-mixed polynomial of degree 2 and
assume to the contrary that there is a monomial zi j zkl in f involving distinct variables,
that is, {i, j} �= {k, l}. Note that the index sets {i, j} and {k, l} can intersect. The order
of the variable matrix must therefore be at least 3.

Consider S′ as a modified version of S from (2) with S′
i j :=S′

j i :=t1, S′
kl :=S′

lk :=t2
for complex t1 and t2 and set all other off-diagonal entries of S′ to 0, while the diagonal
of S is set to some complex value s. Thus, up to a factor, f (S′) = 0 is of the form

s2 + c1t
2
1 + ct1t2 + c2t

2
2 = 0 (4)

with some constants c1, c2, c and c �= 0. Since f is hyperbolic due to its homogeneity
and psd-stability, we may assume c1, c2, c to be real.

Since f is hyperbolic, the quadratic polynomial g in s, t1, t2 on the left-hand side
of (4) is hyperbolic aswell. Hyperbolic quadratic polynomials have signature (n−1, 1)
or (1, n−1) ( [11], see, e.g., also [20]). Since the term s2 in g comes from a substitution
into the terms z211, . . . , z

2
nn , the representation matrix of g must have signature (2, 1).

Hence, the lower right 2 × 2-matrix of the representation matrix

⎛

⎝
1 0 0
0 c1

c
2

0 c
2 c2

⎞

⎠

has signature (1, 1). If at least one of the ci is positive, then we can choose real values
for t1 and t2 such that s2 + γ = 0 with some γ > 0, which gives among the two
solutions for s one with positive imaginary part. If one of the ci , say, c2, is zero and
c1 ≤ 0, then setting t1 = 1 and t2 = 1−c1

c gives the solution s = i with positive
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imaginary part. It remains to consider the case c1 < 0, c2 < 0, in which the signature
condition implies (c/2)2 > c1c2. By choosing t1, t2 to satisfy t21 = − 1

c1
, t22 = − 1

c2
,

we obtain

t21 t
2
2

( c

2

)2
> t21 c1t

2
2 c2 = 1

4
(t21 c1 + t22 c2)

2,

which can formally be viewed as the equality case of the arithmetic–geometric inequal-
ity. We can pick the signs of t1, t2 such that ct1t2 > 0. And the previous inequality
implies

|ct1t2| > |c1t21 + c2t
2
2 |

(and the expression in the argument of the absolute value on the right hand side is
negative). Hence, we obtain s2 + γ = 0 for some positive γ , which gives among the
two solutions for s one with positive imaginary part.

Altogether, we have constructed a zero S′ of f with Im(S′) � 0, which contradicts
the psd-stability of f . �


5.2 Polynomials of determinants

Weshow that the following class of polynomials of determinants satisfies a generalized
jump system criterion with regard to psd-stability. Suppose that the symmetric matrix
of variables Z is a diagonal block matrix with blocks Z1, . . . , Zk . A polynomial of
determinants is a polynomial in Z of the form f (Z1, . . . , Zk) = ∑

α cα det(Z)α ,
where we define det(Z)α = det(Z1)

α1 · · · det(Zk)
αk .

We say a polynomial of determinants f (Z1, . . . , Zk) = ∑
α det(Z)α is written

in standard form if the largest possible determinantal monomial is factored out, i.e.,
f (Z1, . . . , Zk) = det(Z)γ

∑
β cβ det(Z)β = det(Z)γ f̃ (Z), and all cβ �= 0. We

investigate the following notion of support for polynomials of determinants.

Definition 5.9 Let f (Z1, . . . , Zk) = ∑
α cα det(Z)α be a polynomial of determinants.

Then the determinantal support is defined as suppdet( f ) = {α ∈ Z
k≥0 : cα �= 0}.

Note that the determinantal support specializes to the usual support when Z is a
diagonal matrix, that is, all Zi are 1× 1 matrices of a single variable. Since diagonal-
ization preserves psd-stability by Lemma 4.1 a), we obtain the following corollary of
Theorem 2.6 for the determinantal support of psd-stable polynomials of determinants.

Corollary 5.10 Let f (Z1, . . . , Zk) = ∑
α cα det(Z)α be psd-stable. Then the deter-

minantal support of f forms a jump system.

The next theorem shows that psd-stable polynomials of determinants have a very
special structure.

Theorem 5.11 Let f (Z1, . . . , Zk) = det(Z)γ
∑

β∈B cβ det(Z)β = det(Z)γ f̃ (Z)

be a psd-stable polynomial of determinants in standard form. Then any block Zi

appearing in f̃ (that is, any Zi such that there is β ∈ B with βi > 0) has size di ≤ 2.
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Further, for any matrix Zi which has size exactly 2, let Ci = maxβ∈B βi . Then if
β ∈ B, then also β + cei ∈ B for all −βi ≤ c ≤ Ci − βi .

Proof Observe that, by construction, a variable in the matrix Zi does not appear in
any other matrix Z j . This ensures that all vectors in the support of the polynomial
f̃Diag(Z), which involves only the diagonal variables, are of the form

(β1, . . . , β1︸ ︷︷ ︸
d1 times

, . . . , βk, . . . , βk︸ ︷︷ ︸
dk times

), (5)

where β = (β1, . . . , βk) ∈ B is an exponent vector of det(Z) in f̃ and di is the size
of the matrix Zi for each i .

Further, f̃Diag is stable and its support is therefore a jump system. Suppose now
that some matrix Zi , say Z1, has size d1 ≥ 3. Since f is in standard form, there are
β ∈ B such that β1 > 0 and β ′ ∈ B such that β ′

1 = 0. Then there are corresponding
vectors α = (β1, . . . , β1︸ ︷︷ ︸

d1 times

, β2, . . . ) and α′ = (0, . . . , 0
︸ ︷︷ ︸
d1 times

, β ′
2, . . . ) in the support of f̃Diag,

which is a jump system. Thus, e1 is a valid step from α′ to α, but since α′ + e1 =
(1, 0, . . . , 0, . . . ) is not of the form (5) it cannot belong to the support of f̃Diag. Now
by definition of a jump system, there must be a step from α′ + e1 to α which is in the
support. However, whichever step we take will lead us again to a vector where the first
d1 entries are not all equal, since d1 ≥ 3, and thus, none of these vectors can be in the
support of f̃Diag, contradicting the fact that it is a jump system. Thus, all blocks Zi in
f̃ must have size di ≤ 2.
Now suppose that di = 2 for some block Zi , without loss of generality let it be

Z1. Just as before, we know there are β ∈ B such that β1 > 0 and β ′ ∈ B such that
β ′
1 = 0; further, If C1 = maxβ∈B β1, then there is also a vector β ′′ ∈ B such that

β ′′
1 = C1. This implies that in the support of f̃Diag there are vectors α = (β1, β1, . . . ),

α′ = (0, 0, . . . ) and α′′ = (C1,C1, . . . ). Thus, α − e1 = (β1 − 1, β1, . . . ) is a valid
step from α to α′. Just as before, α−e1 does not belong to the support of f̃Diag because
it is not of the form of (5). Thus, there must be a further step from α − e1 toward α′
which is in the support. The only such step is in the second coordinate, so that (5) is
satisfied, and thus, α − e1 − e2 ∈ supp( f̃Diag). This argument can be repeated until
we obtain the statement of the theorem. �


5.3 Considerations on the support of general psd-stable polynomials

By Theorem 2.6, the support of a stable polynomial defines a jump system. Hence,
there cannot be large gaps in the support, that is, if two vectors are in the support and
are far apart, there is some other vector of the support between them. The families
studied in Subsections 5.1 and 5.2 suggest that a similar phenomenon happens for
psd-stability: when there are too-large gaps in the support, the polynomial cannot be
psd-stable.

In order to quantify what a large gap should be, we make two observations. First,
since restricting a psd-stable polynomial in the symmetric matrix variables Z to its
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diagonal yields a stable polynomial, between two monomials involving only diagonal
variables the Two-Step Axiom holds. A weaker statement is that between any two
such monomials there is a sequence of linear and double steps which does not leave
the support of the polynomial, where we define a linear step from a monomial to be
multiplying the monomial by z±1

i j , a double step multiplying by z±1
i j z±1

kl .
Recall from Lemma 2.13 that a prominent example of psd-stable polynomials is the

symmetric determinant det(Z). In the symmetric matrix variables (zi j )i≤ j , its support
has a special structure: it contains all monomials that can be obtained from z11 · · · znn
by transpositions of indices, that is, by successively multiplying the monomial by
zi j zkl z

−1
ik z−1

jl for some indices i, j, k, l ∈ [n]. We call such a move on monomials a
transposition step.

Lemma 5.12 Any two monomials in the support of the symmetric determinant det(Z)

are linked by a sequence of transposition steps decreasing the distance between the
monomials which never leave the support.

Proof Monomials in det(Z) are precisely those products of symmetric variables zi j
(where i ≤ j) such that each index k ∈ [n] appears exactly twice. Indeed, when
considering the determinant as a polynomial in n2 (i.e., non-symmetric) variables, each
monomial corresponds to a permutation in the symmetric group Sn , and thus, each
element of [n] must appear precisely once in the rows and once in the columns index
in the monomial. When considering the determinant as a polynomial in the symmetric
variables, certain distinct permutations define the same monomial. Observe that the
variable zi j appears in the monomial defined by a permutation π if either i = π( j)
or j = π(i). Thus, both a cycle σ = (i1i2 . . . ik) ∈ Sk and its inverse (i1ik ik−1 . . . i2)
yield the monomial � j zi j i j+1 , and in general, two permutations correspond to the
same monomial if and only if their cycle decompositions are made of pairwise the
same or inverse cycles. Since two such permutations have the same sign, there is no
cancelation of monomials in the symmetric determinant det(Z).

Thus, applying any transposition step to any monomial of det(Z)will yield another
monomial of det(Z): exchanging zi j zkl with zik z jl or zil zk j preserves the property
that each index appears exactly twice. We now only need to show that, given any two
monomials Zα and Zβ of det(Z), there exists a transposition step from α to β. Choose
a variable zi j such that zi j | Zα but zi j � Zβ . There must be an index k �= j such that
zik | Zβ and an index l �= i such that z jl | Zβ . Then multiplying Zα by z−1

i j z−1
kl zik z jl

is a transposition step, since it decreases the distance to β in the norm | · |. �

We conjecture that a property inspired by the structure of the determinant and that

of stable polynomials holds for all psd-stable polynomials.

Conjecture 5.13 For any monomial Zβ appearing in a psd-stable polynomial, there
is a diagonal monomial Zα appearing in f which can be reached by a sequence of
linear, double and transposition steps which decrease the distance from β to α and
which never leave the support of f .

Example 5.14 The polynomial

f (Z) = (z11 + z22 − 2z12)(z11z33 − z213)
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= z211z33 + z11z22z33 − 2z11z33z12 − z11z
2
13 − z213z22 + 2z12z

2
13

is psd-stable because it is the product of two psd-stable polynomials: the first one is
the derivative in direction V (12) of the 2 × 2 determinant, the other one is a 2 × 2
determinant sharing one variable with the first.

This polynomial satisfies Conjecture 5.13: for example, if we choose the monomial
z12z213, with a double step we reach z11z

2
13, which is also in the support of f , and with

a transposition step we reach z211z33, a diagonal monomial in the support. Notice that
the double step produces a monomial whose exponent vector is closer to the exponent
of the final diagonal monomial (with respect to | · |). Such a sequence of valid steps
can be found for all monomials of f .

As evidence for the conjecture, we observe that it holds for the classes of
polynomials we have studied.

Lemma 5.15 Psd-stable binomials satisfy Conjecture 5.13.

Proof By Theorem 5.5, cαzii z j j + cβ z212 is the only irreducible psd-stable binomial
involving off-diagonal variables. Clearly, it is exactly one transposition step between
the both monomials. �

Lemma 5.16 Psd-stable homogeneous non-mixed polynomials satisfy Conjec-
ture 5.13.

Proof Let f be apsd-stable homogeneousnon-mixedpolynomial. If f does not involve
off-diagonal monomials, the claim follows from the jump system property of usual
stable polynomials. Thus, assume that f involves off-diagonal variables. We have
d:= deg( f ) ≤ 2 by Theorem 5.4. In the case of d = 1 there is a double step between
every two monomials of f ; thus, assume d = 2 and let cβ Zβ be an off-diagonal
monomial of f . By Theorem 5.8, cβ Zβ is of the form c jk z2jk for some j �= k. Let
J = { j, k}, then f (Z J ) is psd-stable by Lemma 4.1 c). By the structure Theorem 5.1,
f (Z J ) is of the form

f (Z J ) = c1z
2
j j + c2z j j zkk + c3z

2
kk + c jk z

2
jk

with ck ∈ C such that z j j and zkk both appear. We claim that c2 �= 0. Assuming
c2 = 0 gives c1, c3 �= 0. Reducing f (Z J ) to the diagonal contradicts the jump system
property and thus we obtain c2 �= 0. Therefore, the monomial c2z j j zkk appears in
f (Z J ) and hence also in f (Z). Thus, it is a transposition step from c jk z2jk to the
corresponding diagonal monomial c2z j j zkk . �

Lemma 5.17 Psd-stable polynomials of determinants satisfy Conjecture 5.13.

Proof Every monomial Zβ in a polynomial of determinants f belongs to a determi-
nantal monomial det(Z)γ and thus is a product of monomials Zβ j (with multiplicities
γ j ) belonging to determinantal blocks det(Z j ), 1 ≤ j ≤ k. Let Zα j be the diago-
nal monomial of block det(Z j ). By Lemma 5.12 there is a sequence of transposition
steps from Zβ j to Zα j which never leaves the support of det(Z j ) for all 1 ≤ j ≤ k.
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Concatenation of these sequences (with multiplicities γ j ) gives a sequence of trans-
position steps from Zβ to the diagonal monomial Zα of det(Z)γ which never leaves
the support of f . �


Another class of psd-stable polynomials which satisfy Conjecture 5.13 are the
psd-stable lpm polynomials introduced in [1], which are polynomials of the form
f (Z) = ∑

J⊆[n] cJ det(Z J ), where Z J is the square submatrix of Z with index set J .
Indeed, every monomial belongs to a square minor of Z , and since every minor has a
different index set, there is no cancellation of monomials in the sum. Thus, for each
summand Lemma 5.12 holds and it holds for the whole polynomial as well.
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