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Abstract
The ability to implement any desired quantum logic gate on a quantum processing unit is
equivalent to evolution-operator controllability of the qubits. Conversely, controllability analysis
can be used to minimize the resources, i.e. the number of external controls and qubit–qubit
couplings, required for universal quantum computing. Standard controllability analysis, consisting
in the construction of the dynamical Lie algebra, is, however, impractical already for a
comparatively small number of qubits. Here, we show how to leverage an alternative approach,
based on a graph representation of the Hamiltonian, to determine controllability of arrays of
coupled qubits. We provide a complete computational framework and exemplify it for arrays of five
qubits, inspired by the ibmq_quito architecture. We find that the number of controls can be reduced
from five to one for complex qubit–qubit couplings and to two for standard qubit–qubit couplings.

1. Introduction

Universal quantum computing requires evolution-operator controllability on the quantum processing units
in order to perform every possible quantum logic gate. One way to achieve this, pursued for example in most
superconducting qubit architectures, is to couple each qubit to at least one other qubit and drive all qubits
locally. This approach becomes impractical for larger qubit arrays due to increasing requirements on physical
space for control lines and on calibration time for control pulses. One may wonder whether a number of
local drives smaller than the number of qubits would already be sufficient. If so, this would suggest the
possibility of more resource-efficient architectures than currently in use.

Here, we show that controllability analysis provides a systematic approach to determine the minimum
number of local controls for which any desired quantum logic gate can be implemented. We find that indeed
the number of local controls can be smaller than the number of qubits. The minimum number of local
controls, for a given size of the qubit array, depends on the type of qubit-qubit couplings. To facilitate
analysis of medium-sized qubit arrays, we leverage a graph theory-based approach to controllability analysis
and investigate five-qubit arrays starting from the ibmq_quito architecture.

Controllability analysis answers the question, in a yes–no fashion, which states can be reached by time
evolution from a set of initial states [1, 2]. The standard approach consists in determining the rank of the
dynamical Lie algebra of the system and comparing it to the dimension of the algebra that generates the
unitary group of all time evolutions [3]. This approach has been extensively used to prove controllability for
finite-dimensional systems with sufficiently small Hilbert space dimension [4–6] and can also be employed
in subspaces of infinite-dimensional systems, when combined with Galerkin-type approximations [7–10].
The focus of these studies has been on single quantum systems. For multi-partite systems, where the Hilbert
space dimension scales exponentially in the number of subsystems, evaluating the Lie rank condition quickly
becomes challenging. It has thus mainly been used to identify controllable subspaces in systems which as a
whole are not controllable [11–14]. Positive controllability results for qubit arrays, as needed for universal
quantum computing, require an alternative approach.
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The exponential scaling of Hilbert space dimension with the number of qubits is evidently inherent to
gate-based quantum computing and represents a fundamental obstacle to controllability analysis that cannot
be overcome with classical computers. But even for qubit arrays which are classically simulable, use of the Lie
rank condition is hampered by numerical instabilities which are common when constructing orthogonal
bases in large operator spaces. This latter obstacle can be avoided by resorting to graph theory-based methods
for controllability analysis [9, 15, 16] which have successfully been applied to quantum walks [17], quantum
networks [18], and quantum rotors [10, 19]. The latter are characterized by a highly degenerate spectrum
which results in multiple resonant transitions, i.e. transitions with the same resonance frequency that are
driven by the same external control. Controllability can then not simply be read off from the connectivity of
the graph. This problem is also present for arrays of locally driven coupled qubits but the different spectral
structure requires different graphical methods to prove controllability, as we will discuss below.

The manuscript is organized as follows. The basic concepts of controllability analysis are briefly reviewed
in section 2. The methodology we suggest to use for controllability analysis of coupled qubit arrays is
presented in section 3 with section 3.1 explaining how to deal with resonant transitions, section 3.2
presenting the actual graph test in the form of a flow chart and three algorithms and section 3.3 illustrating
the use of the algorithms on simple two-qubit examples. Our results on five-qubit arrays inspired by the
ibmq_quito architecture are presented in section 4, and section 5 concludes.

2. Controllability analysis

We study quantum systems that couple linearly to controls, such that their Hamiltonian can be expressed as

Ĥ(t) = Ĥ(t;u1, . . .um) = Ĥ0 +
m∑
j=1

uj(t)Ĥj , (1)

where the controls uj(t) are real-valued functions and Ĥj are the control operators. A state that evolves under
equation (1) is given by |ψ (t)⟩= Û(t;u1, . . .um)|ψ (0)⟩. We consider coherent evolutions because it is the
relevant foundation for gate-based quantum information.

For qubit arrays, the drift Ĥ0 is split into Ĥ0 =
∑NQ

l=1 Ĥ0,l + Ĥc, representing the independent local
Hamiltonians Ĥ0,l of the NQ free qubits and the time-independent couplings Ĥc between them. Typically,
local controls Ĥj act on single qubits, for example in the form of laser pulses in ion arrays [20] or varying
microwave fields for certain superconducting qubits [21]. Regardless of the physical implementation of the
qubits, we would like to answer the question whether a system with a set of controls is capable of performing
any unitary operation.

The answer can be found by analyzing the controllability; in particular, the evolution-operator
controllability of the system [3]. It is defined as follows:

Definition 1. A system with controls as defined in equation (1) and Hilbert space dimension n is
evolution-operator controllable if and only if for every unitary evolution Ûtarget ∈ U(n) there exist a final
time T⩾ 0, a phase angle θ ∈ [0,2π) and a set of controls {uj}mj=1 such that |ψ (T)⟩= eiθÛtarget|ψ (0)⟩=
Û(t;u1, . . .um)|ψ (0)⟩ for any initial state |ψ (0)⟩ in the system’s Hilbert space.

Note that eiθ is a global phase that does not depend on the choice of the initial state. In other words, a
system is evolution-operator controllable if and only if we can always choose controls and a final time to
carry out any unitary operation, up to a global phase. For simplicity, we refer to this property as ‘controllable’.

A widely used method for studying the controllability of a quantum system is to analyze the dynamical
Lie algebra [3, 17, 22]. It is generated by the drift and them control operators of the system,
L := Lie(iĤ0, iĤ1, . . ., iĤm), i.e. it contains the skew-Hermitian operators iĤ0, iĤ1, . . ., iĤm, and their (nested)
commutators. A system with Hilbert space dimension n is controllable if the dimension of the dynamical Lie
algebra is n2 or n2 − 1. In other words, it is controllable if the dimension of the Lie algebra matches either
that of su(n) (which generates the special unitary group SU(n)) or u(n) (which generates the unitary group
U(n)). This is sometimes referred to as the Lie algebra rank condition [3]. The main difference between
generating U(n) or SU(n) is that the former allows the system to perform any unitary evolution including all
global phases. Conversely, the latter encompasses all unitary evolutions up to a non-controllable global phase.

Alternatively to constructing the dynamical Lie algebra, a graph test can be used to analyze controllability
[10, 16, 23]. The graph encodes the information of the Hamiltonian.

Definition 2. Given a quantum system evolving under equation (1), we can construct an undirected graph
according to the rules:
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(i) For every eigenstate |ek⟩ of Ĥ0, add a vertex to the graph with a corresponding label.
(ii) For every control Ĥj and every nonzero element ⟨ei|Ĥj|ek⟩, add an edge between the vertices labelled |ei⟩

and |ek⟩. Additionally, add a label to every edge stating which control drives that transition.

We call this the graph of a quantum system1.

Since the nodes of the graph are labelled by the eigenstates |ek⟩, we use these labels also to name the edges
that represent the transitions generated by the controls. The edge joining the vertices |ea⟩ and |eb⟩ is denoted
by (a, b). For Hermitian controls, the transitions will necessarily happen in both directions, implying an
undirected graph. This means, in particular, that both (a, b) and (b, a) refer to the same edge.

An important aspect of the graph are the energy gaps related to the graph edges∆Ea,b :=
∣∣E|ea⟩ − E|eb⟩

∣∣. If
two transitions have the same energy gap∆Ea,b, they are called ‘resonant’. Resonant transitions may pose a
challenge to controllability since, depending on the local controls, it may be impossible to address them
independently.

Definition 3. Let G be the graph of a system. If two edges (a,b),(c,d) ∈ E(G) belong to the same control Ĥj

and have degenerate energy gaps∆Ea,b =∆Ec,d, then the two transitions represented by the edges are coupled
to one another. Alternatively, if an edge (a,b) ∈ E(G) is not coupled to any other transition belonging to its
own control Ĥj, the transition is said to be decoupled.

This leads to the following theorem whose proof can be found in [7]:

Theorem 1. Let S be a quantum system following equation (1) and let G be its associated graph. The system S is
controllable if there exists a connected subgraph of G that contains all vertices of G and only decoupled
transitions.

An undirected graph is said to be connected if for every two vertices there exists a chain of adjacent edges
that creates a path between the two selected vertices. A subgraph of a graph G is a graph defined by a subset
of the vertices V(G) and a subset of the edges E(G) that only link vertices in the subset. This means that a
subgraph is a graph that we obtain by removing any number of the edges and vertices from the original graph.

The main benefit of the graph test in theorem 1 is that it allows us to avoid calculating the full dynamical
Lie algebra. The graph of a quantum system with Hilbert space dimension n has n vertices. To have a
connected subgraph we need to find n− 1 decoupled transitions such that they create a single connected
component. This works quite efficiently if there are no resonant transitions in the system.

In the following, we expand this graph test such that it also works with resonant transitions. To this end,
we adapt graphical methods for controllability analysis in degenerate systems [19] to systems with degenerate
energy gaps driven by multiple controls. Since resonant transitions are very common in qubit arrays due to
the multi-partite structure of the system, this modification opens the route to efficient analysis of
controllability of qubit arrays.

3. Graph test of controllability for coupled subsystems

In this section we outline the algorithm for a graph test for coupled subsystems with resonant transitions. In
section 3.1 we present methods to determine the graphical commutators already used in rotor systems [10]
and we introduce the concept of subalgebras to treat resonant transitions driven by multiple controls. We
show in section 3.2 that the graphical commutators can be calculated in a systematic way, avoiding the
construction of the entire dynamical Lie algebra of a system. We illustrate the use of these methods in
section 3.3 with simple two-qubit examples.

3.1. Resonant transitions and graphical commutators
We first present two concepts to decouple resonant transitions without calculating the complete Lie algebra
of the system. To this end, we introduce the generalized skew-Hermitian Pauli matrices

Ĝj,k = ej,k − ek,j ,

F̂j,k = iej,k + iek,j , (2)

D̂j,k = iej,j − iek,k ,

1 Note that given two vertices there can be more than one edge between the two of them (belonging to different controls). Technically,
this makes the graph of a system a multigraph.
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Figure 1. Examples for graphical commutators. The circles represent the vertices of the graph and the edges (transitions) are
depicted by the arrows. Same-color arrows represent coupled transitions. In all cases, the commutator between the transitions
depicted by dashed blue and dash-dotted green arrows result in transitions depicted by solid red arrows. The four panels present
the following cases: (a) graphical commutator between two decoupled transitions [(0,1),(0,2)] = (1,2) (b) graphical
commutator between the coupled transitions {(0,3),(1,4)} and the decoupled transition (1,2) results in the decoupled
transition (2,4) (c) graphical commutator between the coupled transitions {(0,1),(2,3)} and the decoupled transition (1,2)
results in the coupled transition {(0,2),(1,3)}. (d) The commutator between the coupled transitions {(0,2),(1,3)} and
{(0,1),(2,3)} cannot be determined graphically.

where ej,k is the null matrix except for a 1 in the entry (j, k). The commutators of these matrices with the
skew-Hermitian drift are given by [19, 23]

[iĤ0, Ĝj,k] =
(
Ej − Ek

)
F̂j,k ,

[iĤ0, F̂j,k] =−
(
Ej − Ek

)
Ĝj,k . (3)

Consider a transition (i, k) with transition matrix element

⟨ei |Ĥj|ek⟩= α− iβ , (4)

where |ei⟩, |ek⟩ with i ̸= k are eigenstates of the drift Hamiltonian, Ĥ0, α,β ∈ R and at least one of them is
nonzero. If (i, k) is a decoupled transition, the Lie algebra of the system contains the element

T̂= αF̂i,k +βĜi,k , (5)

and the generalized skew-Hermitian Pauli matrices Ĝi,k, F̂i,k and D̂i,k are also elements of the Lie algebra
Lie(i Ĥ0, T̂), i.e. dim[Lie(i Ĥ0, T̂)] = 4.

If a system contains the two decoupled transitions {(i,k),(i, l)} with T̂1 = α1F̂i,k +β1Ĝi,k and
T̂2 = α2F̂i,l +β2Ĝi,l, respectively, and i ̸= l ̸= k, their commutator is of the form T̂3 := [T̂1, T̂2]
= α3F̂k,l +β3Ĝk,l. The graph of the system thus has an additional edge (k, l), as depicted in figure 1(a) for
i= 0, k= 1 and l= 2. For testing controllability, it is often sufficient to know that there exists a transition
(k, l), without calculating the coefficients α3,β3. Since the existence of the transition (k, l) can be deduced
from the graph with edges (i, k) and (i, l), we refer to this operation as graphical commutator and denote it as
(k, l) = [(i,k),(i, l)].

Graphical commutators can be used as an efficient tool to decouple resonant transitions. This is shown in
the example depicted in figure 1(b). Consider transitions T̂1 = α1Ĝ1,2 +β1F̂1,2 (dash-dotted green arrow in
figure 1(b)) and T̂2 = α2F̂0,3 +β2Ĝ0,3 + γ2F̂1,4 + δ2Ĝ1,4 (dashed blue arrows) with T̂1 decoupled (i.e. the
transition (1,2) is not coupled to any other one) and T̂2 consisting of the pair of coupled transitions
{(0,3),(1,4)}, which are not coupled to any other transition. The graphical commutator between T̂1 and T̂2

has then only contributions corresponding to the transition (2,4), depicted by the red arrow. The graph has
thus the additional decoupled transition (2,4). Furthermore, the graphical commutator between the
decoupled transitions (1,2) and (2,4) is the decoupled transition (1,4). In this example, the resonant
transitions {(0,3),(1,4)} can thus be decoupled by taking graphical commutators.

In certain instances, the graphical commutators might not give enough information to decouple resonant
transitions and determine the controllability of the system. Examples are shown in figures 1(c) and (d). In
figure 1(c), the graphical commutator between the coupled transitions {(0,1),(2,3)} (dashed blue arrows)
and the decoupled transition (1,2) (dash-dotted green arrows) results in the coupled transitions
{(0,2),(1,3)} (red arrows). This does not allow for decoupling any of the coupled transitions. In figure 1(d),
two pairs of coupled transitions are considered, namely {(0,1),(2,3)} (dashed blue arrows) and
{(0,2),(1,3)} (dash-dotted green arrows). The graphical commutators [(0,1),(0,2)] and [(1,3),(2,3)] both
result in the transition (1,2). Without further knowledge of the coefficients of the corresponding Lie algebra
elements, it is not possible to determine whether the two terms result in a non-zero transition (1,2), or
whether they cancel each other.
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In such cases, we make use of an alternative procedure to decouple resonant transitions, which takes into
account that, in qubit systems, the same (coupled) transitions are often driven by different controls. Consider
a system with drift Ĥ0 and two controls that both drive the two resonant transitions {(1,2),(3,4)}. The Lie
algebra of the system thus contains the terms

T̂4 = α4F̂1,2 +β4Ĝ1,2 + γ4Ĝ3,4 + δ4Ĝ3,4 ,

T̂5 = α5F̂1,2 +β5Ĝ1,2 + γ5Ĝ3,4 + δ5Ĝ3,4 . (6)

The two transitions (1,2) and (3,4) are decoupled if T̂6 := α6F̂1,2 +β6Ĝ1,2 is an element of the Lie
algebra Lie(iĤ0, T̂4, T̂5) for any real α6,β6 (at least one of them nonzero). This is true if and only if

dim
[
Lie(iĤ0, T̂4, T̂5)

]
= dim

[
Lie(i Ĥ0, Ĝ1,2, Ĝ3,4)

]
= 7, i.e. when the generated sub-algebra has maximum

dimension (for a given number of transitions). Note that we have deliberately chosen transitions
{(1,2),(3,4)}, which have no vertex in common, i.e. they are disjoint. Restricting ourselves to disjoint
transitions, the maximum dimension of the generated sub-algebra is 3nt + 1, where nt is the number of
transitions that are coupled. In order to determine, if a set of nt transitions driven by nt different controls is
decoupled, it is thus sufficient to calculate the dimension of the sub-algebra with maximal dimension
3nt + 1. This is typically much smaller than the dimension of the Lie algebra of the complete system. If the
transitions are not disjoint, the dimension of the relevant subalgebra scales quadratically with the number of
transitions nt. This, although feasible for a small number of transitions, would make the construction of the
subalgebras more demanding.

In the following we use both methods, i.e. graphical commutators and the calculation of the dimension
of small sub-algebras, in order to decouple resonant transitions. This allows us to extend the graph test for
controllability to coupled susbystems with resonant transitions.

3.2. Algorithms for graph test of controllability for coupled subsystems with resonant transitions
Our graph test for controllability of a quantum system with resonant transitions is divided into several steps,
depicted in figure 2. The main output of the complete algorithm is a variable conveying whether the system is
controllable, not controllable or whether the test remains inconclusive.

As can be seen in figure 2, the first stage is creating the initial graph of the quantum system (A1). The
step-by-step definition is found in algorithm 1. To compute this graph, we diagonalize the drift Ĥ0, taking its
eigenstates as the vertices of the graph. Then, we determine the nonzero transitions ⟨ea|Ĥj|eb⟩ for allm
controls and take these to be the edges (a, b) of the graph. Numerically, we take into account all transitions
that are larger or equal than a certain tolerance, δH > 0, i.e.∣∣⟨ea|Ĥj|eb⟩

∣∣⩾ δH −→ (a,b) . (7)

The next step is to determine which transitions are coupled. As defined in section 2, two or more
transitions are coupled if and only if they have the same energy gap and are generated by the same control.
Any transition not coupled to any other one is by definition a decoupled transition. Note that two transitions
generated by different controls can never be coupled to one another. To numerically compare the energy
gaps, we define a minimal tolerance δE > 0 such that two transitions driven by the same control, (a, b) and
(c, d), are considered coupled if |∆Ea,b −∆Ec,d|⩽ δE.

We sort all the transitions of each control according to the energy gaps∆Ea,b and separate them
depending on whether they are coupled or not. If a coupled transition (a,b)( j) is generated by multiple

controls Ĥj, we also calculate and store the corresponding transition coefficients ⟨ea|Ĥj|eb⟩= α
( j)
a,b +β

( j)
a,b i.

Note that here, we have introduced the notation (a,b)( j) to indicate that the transition (a, b) is driven by the
control Ĥj.

The output of algorithm 1 encompasses the decoupled-graph, the coupled-transitions and the
coupled-coefficients. The first output, decoupled-graph, is a dictionary that contains all vertices (eigenstates)
and all decoupled edges (decoupled transitions) of the systems graph. These are the elements that we can use
directly to test the controllability of the system using theorem 1. In the second output, coupled-transitions,
every set of coupled transitions is stored as a list of tuples (a, b). Coupled transitions cannot be immediately
used for the test in theorem 1, but are necessary for generating additional decoupled transitions, by using
graphical commutators or subalgebras of resonant transitions. The last output variable coupled-coefficients

consists of the entries ⟨ea|Ĥj|eb⟩= α
( j)
a,b +β

( j)
a,b i for every coupled transition (a,b)( j) which are required for

calculating the dimension of the subalgebras.
Once the initial graph of the system has been computed, we check if the graph containing only decoupled

transitions (decoupled-graph) is connected. To do so, we determine the number of connected components in
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Figure 2. Flowchart representing the necessary steps and order in which the three main subroutines (A1-3) are used. The three
possible results for this test are displayed in the three green round cells.
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Algorithm 1. Compute the initial graph of the system.

1 Input:
• H_op: list including the drift Ĥ0 and all control operators Ĥj in the logical basis.
• δH: minimum tolerance for a nonzero transition coefficient.
• δE: minimum tolerance for two energy gaps to be identical.

2 Diagonalize Ĥ0 and represent all control operators Ĥj in the eigenbasis of Ĥ0.
3 Initialize decoupled-graph, representing every eigenstante |ea⟩ of Ĥ0 as a vertex in the graph.
4 for every control Ĥj in H_op do
5 for 0⩽ a< b< Hilbert space dimension do
6 if

∣∣⟨ea|Ĥj|eb⟩
∣∣> δH then

7 Add (a, b) to transition-list.
8 end if
9 end for
10 Sort transition-list by the energy gaps∆Ea,b := |Ea − Eb|
11 for every (a, b) in transition-list do
12 Add all transitions (c, d) resonant to (a, b) (i.e. |∆Ea,b −∆Ec,d|< δE) to a new, separate list resonant-trans-ab

(including (a, b)).
13 Add coefficients ⟨ec|Ĥj|ed⟩ of all resonant transitions (c, d) into a new list resonant-coef-ab (including (a, b)).
14 if resonant-trans-ab has more than one element then
15 Add resonant-trans-ab as a new entry in the list coupled-transitions.
16 Add resonant-coef-ab as a new entry in the list coupled-coefficients.
17 else
18 Add resonant-trans-ab as a decoupled transition in decoupled-graph.
19 end if
20 Remove all resonant transitions (c, d) and (a, b) from transition-list.
21 end for
22 end for
23 Output:

• decoupled-graph: a dictionary containing all vertices of the graph (eigenstates of Ĥ0) and all decoupled
transitions as edges.
• coupled-transitions: a list of lists containing all coupled transitions stored as dictionaries and sorted by their
respective energy gap∆Ea,b. Resonant transitions from the same control with the same∆Ea,b are stored in the
same inner list since they are coupled.
• coupled-coefficients: a list of lists of the transition coefficients, matching the order of coupled-transitions.

the graph. In terms of graph theory, a component is a connected subgraph that it is not contained in any
larger connected subgraph. In other words, each of the connected parts into which we can divide a graph is
called a component of the graph. Therefore, the graph is connected if and only if it has exactly one
component. One of the many possible ways to count the number of components is to use the depth-first
search (DFS) algorithm2. If the decoupled-graph is already connected, we can stop the routine and state that
the system is indeed controllable.

If the graph is not connected, then algorithm 2 is called. The aim of this algorithm is to search for an
additional edge of the graph by using graphical commutators. As explained in section 2, the graphical
commutators of a coupled transition and a decoupled transition may generate a new decoupled transition.
Note that, instead of identifying and adding every possible combination of commutators between a
decoupled transition and a set of coupled transitions, we are only interested in commutators that result in a
decoupled transition which connects different components of the graph and therefore potentially creates a
connected graph. That is, in algorithm 2 we compute the commutator of a coupled transition that connects
two separate components of decoupled-graph with a decoupled transition in one of the two components. If
the result of this commutator is a decoupled transition, then this new edge will connect the two components
in decoupled-graph, merging them into a single component. If a new decoupled transition is added to the
decoupled-graph during this step, the number of connected components is counted again to determine if the
graph is now connected.

If the number of components is still larger than one, i.e. if the decoupled-graph is not connected after
algorithm 2, and no new transition was added during its last call, then we check if there is any transition in
coupled-transitions that connects different components of decoupled-graph. If this is not the case, the routine
is stopped. If all transitions, coupled and decoupled, only connect vertices within the same components, then

2 The DFS algorithm is a common recursive algorithm to explore systematically all vertices in a graph. It uses an exhaustive search by
traversing down a chain of edges, or by backtracking when not possible.
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Algorithm 2. Add a single decoupled transition using graphical commutators.

1 Input:
• decoupled-graph: from algorithm 1.
• graph-components: list containing the sets representing the connected components of decoupled-graph.
• coupled-transitions: from algorithm 1.

2 transition-added = False
3 connecting-transitions-found = False
4 i= 0
5 while (i < length of coupled-transitions) and (transition-added = False) do
6 i = i+ 1
7 element_i= coupled-transitions[i]

# element_i is a set of coupled transitions of the form {(a0,a1),(a2,a3), . . .}
8 j= 0
9 while (j < length of element_i) and (transition-added = False) do
10 j = j+ 1
11 (b0,b1) =element_i[j]
12 if b0 and b1 belong to different components in graph-components then
13 connecting-transitions-found = True
14 component_0= component in graph-components containing b0
15 component_1= component in graph-components containing b1
16 k= 0
17 while (k < number of transitions in decoupled-graph) and (transition-added = False) do
18 k= k+ 1
19 (c0, c1) = kth transition in decoupled-graph
20 if ({c0, c1} ⊂component_0) or ({c0, c1} ⊂component_1) then
21 graphical-commutator = [element_i, (b0,b1)]
22 if graphical-commutator is a single transition then
23 transition-added = True
24 Add graphical-commutator to decoupled-graph
25 Merge component_0 and component_1 in graph-components
26 end if
27 end if
28 end while
29 end if
30 end while
31 end while
32 Output:

• decoupled-graph: updated after the routine.
• graph-components: updated after the routine.
• transition-added: True if a transition was added during this subroutine to decoupled-graph; False otherwise.
• connecting-transitions-found: True if at least one transition in coupled-transitions connects different
components;False otherwise.

all possible commutators result in transitions within the same components. The number of components will
stay constant and the graph will never be connected. This implies that the system is not controllable.

However, if there exists at least one coupled transition connecting different components, then this
argument is no longer valid and the controllability of the system is not yet decided. For these cases, we use
the coupled-coefficients that are related to the coupled-transitions to obtain a more conclusive answer.

This step is carried out by algorithm 3. It builds upon the updated decoupled-graph from algorithm 2 and
tries to add new decoupled transitions by computing the low-dimensional subalgebras of resonant
transitions driven by different controls. First, the algorithm selects the transitions from coupled-transitions
that connect different components. In particular, we are exclusively interested in sets of disjoint transitions,
such that the dimension of the associated subalgebras remains low. Next, the algorithm finds out if those
transitions have a multiplicity equal to or higher than 2, that is, if the same sets of coupled transitions

{(a0,a1),(a2,a3), . . .}( j) are generated multiple times by different controls Ĥj. Following the reasoning
presented in section 3.1, we try to generate the full associated subalgebra of the coupled-transitions,
{(a0,a1),(a2,a3), . . .}, by using their respective coupled-coefficients. If a subalgebra with maximal dimension
is generated, we take all transitions {(a0,a1),(a2,a3), . . .} as effectively decoupled. This allows us to add every
transition (ak,al) as a decoupled edge to decoupled-graph. Note that in algorithm 3, we compute the Lie
subalgebras of the resonant transitions including iĤ0, where we deduce the commutators
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Algorithm 3. Subroutine to compute subalgebras of repeated resonant transitions.

1 Input:
• decoupled-graph: from algorithm 2.
• graph-components: from algorithm 2.
• coupled-transitions: from algorithm 1.
• coupled-coefficients: from algorithm 1.

2 for every set of resonant transitions{(a0,a1),(a2,a3), . . .}in coupled-transitions do
3 resonant-set = {(a0,a1),(a2,a3), . . .}
4 if resonant-set contains only disjoint transitions then
5 if resonant-set connects different components in graph-components

then
6 if resonant-set appears multiple times in coupled-transitions then
7 Setm as the number of times resonant-set is generated by different controls.
8 Set nt as the number of coupled transitions in resonant-set
9 for 0⩽ j <m do
10 Using the coefficients in coupled-coefficients related to the jth instance of resonant-set, generate an array

T-array-j to represent the transition.

# T̂j = α
( j)
a0,a1 F̂a0,a1 +β

( j)
a0,a1 Ĝa0,a1 +α

( j)
a2,a3 F̂a2,a3 +β

( j)
a2,a3 Ĝa2,a3 + . . .

# T-array-j=
(
α
( j)
a0,a1 ,β

( j)
a0,a1 ,0,α

( j)
a2,a3 ,β

( j)
a2,a3 ,0, . . .

)
11 end for
12 if dim

(
Lie

{
iĤ0,T-array-0, . . .,T-array-m

})
= 3nt + 1 then

13 Add every transition in resonant-set to decoupled-graph
14 end if
15 end if
16 end if
17 end if
18 end for
19 Output:

• decoupled-graph: updated after the routine.

[
iĤ0,{(0,1),(2,3)}( j)

]
using equation (3). This makes these calculations simple and encompassed within a

vector space of dimension 3nt, with nt being the number of transitions in {(a0,a1),(a2,a3), . . .}.
Finally, we compute the new number of components in decoupled-graph using DFS once again. If the

graph is still not connected, we use algorithm 2 to add as many graphical commutators as possible to connect
the remaining components. If the graph ends up with one single component, the system is controllable. If
there are more components and there are no transitions in coupled-transitions that connect any of them, then
the system is proven to be not controllable. If none of these two hold to be true, then the controllability test
remains inconclusive. Indeed, unlike the dynamical Lie algebra method, the test might yield no definitive
answer. If a graph is not connected, we cannot ensure that the system is not controllable, generally speaking.
It might be that the graph can be connected after computing a large number of commutators or that it will
remain forever not connected. Calculating this quantity of commutators is tantamount to computing the
dynamical Lie algebra and would therefore be unfeasible for relatively large systems.

3.3. Illustrative examples
Here we present two examples constructed to showcase how the algorithms described in section 3.2 work. We
start by considering the two-qubit system shown in figure 3(a), described by the Hamiltonian

Ĥ2A(t) = Ĥ0 + u1(t)Ĥ1 (8)

with the drift

Ĥ0 =
1∑

i=0

−ωi

2
Ẑ i + J(X̂0X̂1 + Ẑ0Ẑ1) , (9)

and a single local control Ĥ1 = X̂1 acting on qubit 1. Here, ωi are the natural frequencies of the qubits and J
is the coupling strength. For simplicity, we use the notation X̂ j = σ̂

j
x for the Pauli matrices. Algorithm 1

results in the graph shown in figure 3(b) with the circular vertices representing the eigenstates of Ĥ0. The
local control Ĥ1 gives rise to four non-zero transitions, which form the edges of the graph, denoted by the
arrows in figure 3(b). The different lengths of the arrows indicate that all four transitions have different
energy gaps and are thus decoupled. The actual controllability test for this example consists simply of

9
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Figure 3. (a) Two-qubit system with Hamiltonian (8), where ω0 = 5GHz, ω1 = 5.5GHz, J= 150MHz, (b) Graph of the system.
All transitions are decoupled, making the system controllable by theorem 1.

Figure 4. (a) Two-qubit system with Hamiltonian (10) where ω0 = 5GHz, ω1 = 5.5GHz, J= 150MHz. Both local controls are
necessary for the system to be controllable. (b) Graph of the system. Theorem 1 is not directly applicable due to the coupled
transitions. A study of the coefficients reveals that it is possible to decouple all transitions.

algorithm 1 and the DFS algorithm, which proves that the graph is connected and the system is controllable.
In other words, from every vertex i = 0, . . .3, every other vertex of the graph can be reached by following the
edges belonging to decoupled transitions, as seen in figure 3(b).

A second example is illustrated in figure 4(a). Here, the Hamiltonian is given by

Ĥ2B(t) = Ĥ0 +
2∑

j=1

uj(t)Ĥj (10)

with the drift

Ĥ0 =
1∑

i=0

−ωi

2
Ẑ i + JX̂0X̂1 , (11)

and two local controls

Ĥ1 = X̂1 and Ĥ2 = X̂0 (12)

acting on the qubits 1 and 0, respectively. The main difference between equations (8) and (10) is the omission
of Ẑ0Ẑ1 in the drift Hamiltonian. This severely impacts the graph, as seen in figure 4. The symmetries that
had previously been broken by including Ẑ0Ẑ1 appear in the energy gap degeneracies,∆E0,1 =∆E2,3 and
∆E0,2 =∆E1,3. There are no decoupled transitions and the number of components in the initial graph is
equal to four. A second difference is the second local control. The transitions driven by the controls X̂1

(which is the same local control as in equation (8)) and X̂0 consist of two pairs of coupled transitions
{(0,1),(2,3)} and {(0,2),(1,3)} shown by purple solid and dashed blue arrows respectively in figure 4(b).

10
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Table 1. Control coefficients ⟨ea|Ĥj|eb⟩ for the system (10). The coupled transitions are {(0,1),(2,3)} and {(0,2),(1,3)}. They appear
with double multiplicity, once for each control.

Transition parameters

(0,1) (2,3) (0,2) (1,3)

X̂0 0.967 0.967 −0.253 0.253
X̂1 −0.281 0.281 −0.960 −0.960

In this example, graphical commutators do not yield any new transition that we could add to the graph.
In fact, we can only take commutators of pairs of coupled transitions, analogously to the case depicted in
figure 1(d). Since there is no definitive answer, graphical commutators are not useful in this particular
instance. However, since there exist coupled transitions which connect different components of the graph,

algorithm 3 can be applied. The coefficients ⟨ea|Ĥj|eb⟩= α
( j)
a,b +β

( j)
a,b i of the coupled transitions are shown in

table 1. Note that in this example, the coefficients are real, β( j)
a,b = 0. The Lie algebra thus contains the terms

T̂0 = α
(0)
0,1 F̂0,1 +α

(0)
2,3 F̂2,3 ,

T̂1 = α
(1)
0,1 F̂0,1 +α

(1)
2,3 F̂2,3 . (13)

It is immediate to see that we can isolate the term F̂2,3 by a linear combination of T̂0 and T̂1. This means that
all operators F̂2,3, Ĝ2,3, D̂2,3 are elements of the subalgebra. Similarly, the opposite linear combination can
isolate the element F̂0,1, adding F̂0,1, Ĝ0,1, D̂0,1 to the generated subalgebra. This means that the dimension of

Lie
(
iĤ0, T̂0, T̂1

)
= 7 (including the contribution of iĤ0) is maximal and thus the transitions (0,1) and (2,3)

can be decoupled. Analogously, (0,2) and (1,3)may be decoupled as well. This means that all the edges are
decoupled in the graph of figure 4. By virtue of theorem 1, this implies controllability of the system.

4. Results

In this section, we examine qubit systems which are used for quantum computing. With the algorithm
presented in section 3, we can efficiently prove if a given qubit array is controllable. We present three
different examples based on the IBM five-qubit array ibmq_quito [24]. We do not use the exact parameters of
this system, but simply its configuration and realistic parameters (except for the natural frequencies which
correspond to the real data [24]).

The Hamiltonian of an array similar in structure to ibmq_quito can be expressed as:

Ĥquito(t) =−
4∑

j=0

ωj

2
Ẑ j + Ĥquito

c +
m∑

k=1

uk(t)Ĥk , (14)

where uk(t) represent local controls and the couplings Ĥquito
c are of the form

Ĥquito
c = J0,1Ĥ0,1 + J1,2Ĥ1,2 + J1,3Ĥ1,3 + J3,4Ĥ3,4 (15)

with each Ĥj,k representing an entangling (time-independent) coupling between the qubits j and k. The
following three examples are based on equation (14) for different types of couplings and local controls. We
will prove that while the original IBM design is indeed controllable there exist options that require fewer
resources for controllability.

The set of parameters, including the natural frequencies ωj and the coupling strengths Ji,j are found in
table 2. We use these parameters for all examples presented in this section.

4.1. Example A: five-qubit system similar to IBM’s ibmq_quito
This example mimics the qubit arrangement of ibmq_quito. The static couplings in equation (15) are [25]

Ĥi,j = Ji,j
(
X̂ iX̂ j + Ŷ iŶ j

)
. (16)

A local control Ĥj = X̂ j is added to every qubit. The system diagram is shown in figure 5.
For a five-qubit system, there is a total of 32 vertices. After running algorithm 2 for this example with an

energy gap tolerance of δE = 0.01GHz, we obtain an initial graph with only 7 decoupled edges, resulting in a
total of 25 different connected components. Use of algorithm 2 alone is not enough in this case, since the
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Table 2. Parameters for the system (14). The qubit frequencies are those of [24]. The coupling strengths have been chosen to be in the
range of hundreds of MHz, common for this type of qubits.

Coupling strengths (MHz)

J0,1 J1,2 J1,3 J3,4
100 250 170 300

Qubit frequencies (GHz)

ω0 ω1 ω2 ω3 ω4

5.301 5.081 5.322 5.164 5.052

Figure 5. Five-qubit system inspired by IBM’s ibmq_quito with Hamiltonian found in equation (14). The rectangles present the
qubits with natural frequencies ωj, j = 1− 5, and the lines indicate the couplings between the qubits. Local controls are to be

assumed in every qubit in the form of X̂ j.

graphical commutators do not yield any new results. Executing algorithm 3, a total of 192 new edges are
added to the graph. These turn out to be more than sufficient to connect all the components and achieve a
connected graph.

We can thus conclude that the system presented in figure 5 is controllable and therefore suitable to
perform any unitary operation. In the following examples we investigate whether the five-qubit array is also
controllable if the number of local controls is reduced.

4.2. Example B: five-qubit system with reduced number of controls
Next, we investigate the controllability of a five-qubit system with a reduced number of local controls. For the
drift Hamiltonian, we consider the same five-qubit system as before with all parameters as listed in table 2
but decrease the number of local controls to two. This is depicted in figure 6, which represents one of the ten
different scenarios with two local controls Ĥj = X̂ j.

Running algorithm 1 we obtain identical results to those in section 4.1: a graph with only seven
decoupled transitions and 25 different connected components. Again, it is crucial to use algorithm 3 to make
the graph connected. It may come as a surprise that the number of new edges that we can add is again 192. In
other words, the number of new decoupled edges has not been reduced by removing three of the local
controls. With the new decoupled edges included, the system is indeed controllable.

We could attempt to take this study further to single local control. However, with a single local control
X̂ j, we always obtain an inconclusive result, no matter on which qubit we apply it. Although this hints to the
possibility of the system not being controllable, the algorithm cannot conclusively determine it, similarly to
the case shown in figure 4. In that two-qubit example we can prove using the Lie algebra method that a single
local control X̂ j is never sufficient. We therefore conjecture that the least number of local controls required
for the system to be controllable is two. One may wonder whether independent X̂ j- and Ŷ j-controls acting on
the same qubit change the controllability. Assuming the local, field-free Hamiltonians to be proportional to
Ẑ j, there is no additional benefit from a second control, since a single local control X̂ j that does not commute
with Ĥ0 is sufficient to also generate a Ŷ j contribution and viceversa.

Since two local controls is the minimum number to obtain a controllable system, we now study how the
position of the control affects controllability. We categorize all possible arrangements of two local controls X̂ j
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Figure 6. Same as figure 5 with fewer controls, located on qubits 1 and 3 (pink rectangles).

Table 3. Study of controllability for a five-qubit system similar to ibmq_quito but with only two local controls.

Distance Controllability # cases

1 Controllable 4
2 Inconclusive 4
3 Controllable 2

by their distance. For example, the local controls for qubits 1 and 3, shown in figure 6, have distance equal to
1 since they are direct neighbors connected by a single coupling. Analogously, we can set local controls
separated by two couplings (e.g. on qubit 2 and 3) that have distance 2, or local controls for qubits separated
by three couplings (e.g qubits 0 and 4) that have distance 3. The results of the controllability tests for all these
possible arrangements of two local controls are shown in table 3.

Accordingly, the five-qubit system is controllable with two local controls if they have either distance one
or three, independent of the position of the controls themselves. On the other hand, if the controls are at
distance 2, the algorithm returns an inconclusive answer. This implies that algorithm 3 cannot decouple
enough transitions for the graph to be connected. In fact, it turns out that no new transitions could be added
at all. This is because the coefficients ⟨ea|Ĥj|eb⟩ of the different transitions depend on the position of the local
control that drives them. By shifting a local control to a neighboring qubit, it is common to see a change in
some of the coefficients. The transition coefficients of same-type controls for a set of coupled transitions tend
to be linearly independent when the controls are shifted by an odd number of qubits and dependent in the
even case. This allows us to generate maximal subalgebras only for controls that are at an odd qubit-distance,
turning the coupled transitions into decoupled transitions that can eventually make the graph connected.

4.3. Example C: five-qubit system with single local control
To conclude the list of examples, we demonstrate that the number of local controls that is required for the
system to be controllable also depends on the type for couplings connecting the qubits. We showcase a
system that is controllable with a minimal number of local controls, i.e. a single local control. The main
difference between this example (shown in figure 7) and the previous ones (displayed in figures 5 and 6) is
that the couplings are of the form

Ĥi,j = Ji,j
(
X̂ iX̂ j + Ŷ iŶ j + Ẑ iẐ j

)
, (17)

i.e. they have an extra term Ẑ iẐ j compared to the couplings considered in the examples before. These kinds of
couplings can be achieved in systems of superconducting qubits by harnessing both capacitive and inductive
interactions between the qubits. Executing algorithm 1 with δE = 0.1GHz, we obtain a total of 24 initially
decoupled edges and a total of 14 connected components. This is already more promising than the examples
in sections 4.1 and 4.2. Furthermore, use of graphical commutators results in the system being controllable,
ending up with 37 decoupled edges that are sufficient to make the graph connected. The controllability
analysis thus shows that with the Ẑ iẐ j addition, the system is controllable with only one local control. In
figure 7, we have added a local control on qubit 1, but additional tests show that the same statement is true
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Figure 7. Diagram introducing a modified version of IBM’s ibmq_quito with contributions added to every coupling and all local
controls removed except for X̂1.

for any single local control X̂ j, independent of its position at qubit 0 to 4. Therefore, this controllable system
has a minimal number of local controls at the cost of using a more complex type of two-qubit couplings.

The effect of couplings of the form Ẑ iẐ j on the graph of the system can be understood by considering the
simple two-qubit systems shown in figures 3 and 4. In figure 4, couplings of the form X̂ iX̂ j result in two pairs
of resonant (coupled) transitions for each local control. Therefore, two local controls are required to
decouple the transitions and ensure controllability. In figure 3, a single control X̂ is sufficient due to the Ẑ0Ẑ1

term in its coupling. This term is already diagonal in the eigenbasis of the free qubits, which means that it
does not mix the eigenstates of the free qubits. However, it shifts their eigenenergies, such that all four
vertices of the graph correspond to different transition frequencies and thus a single local control
corresponds to four decoupled transitions, making the system controllable. A similar effect happens in the
present five-qubit example, where the couplings have an off-diagonal contribution X̂ iX̂ j + Ŷ iŶ j and a
diagonal part Ẑ iẐ j. The former mixes the free-qubit eigenstates and in turn creates more edges in the graph
with the inclusion of a local control like X̂ j. The latter changes some resonant energy gaps and decouples the
transitions associated to them. The combination of these two effects achieves controllability with a minimal
number of local controls, as seen in figure 7. The special role of this coupling has already been observed for
spin systems, where spin chains have been proven to be controllable with a number of local controls smaller
than the number of spins [11].

5. Summary and conclusions

We have presented a practical way to test for evolution-operator controllability in order to numerically verify
the ability of a given qubit array to implement universal quantum computing. The graph theory-based
approach allows for analyzing comparatively large qubit systems for which the evaluation of the Lie rank
condition for controllability would be difficult or impossible. Indeed, the computationally expensive
calculation of nested commutators of the drift and control Hamiltonians, which is required to construct the
system’s dynamical Lie algebra, is avoided in graphical methods. On the other hand, in some cases, a
graphical controllability test remains inconclusive. We believe that the disadvantage is small in view of the
positive results that can be obtained for systems not amenable to the Lie rank condition.

The key challenge in controllability tests for systems of coupled qubits using graph theory-based methods
is due to the tensor product structure of Hilbert space. This leads to graphs that often consist of sets of
coupled (resonant) transitions. A similar problem was encountered in the controllability analysis of driven
quantum rotors [10] which are highly degenerate systems with multiple resonant transitions. In that case, the
specific spectral structure allowed for an inductive evaluation of the graphical commutators [19]. Here, we
have made no assumptions on the spectral structure of the system. Instead, we have found and implemented
numerically efficient ways to decouple the resonant transitions such as to make them exploitable for the
graph test. In particular, our algorithm only determines those graphical commutators which are relevant
because they add to the connectivity of the graph. Moreover, we have made use of fact that in qubit arrays,
coupled transitions are typically driven by several controls: These coupled transitions become decoupled if
the dimension of the subalgebra that they generate when driven by different controls is maximal. Since the
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sub-algebras are very small compared to the Hilbert space of the complete system, their numerical
construction does not pose a challenge. The remaining limitation to the number of qubits NQ, for which a
controllability test can be carried out, is the exponential scaling of the Hilbert space dimension with NQ

because the drift Hamiltonian (including the qubit–qubit couplings) needs to be diagonalized. Typically, the
drift is sparse in the logical basis. For the graph test presented here, only a single diagonalization of the
(sparse) drift Hamiltonian is necessary to obtain the initial graph.

We have illustrated the utility of our approach by showing how controllability analysis can be used to
determine the minimum number of local controls required for universal quantum computing in existing
quantum processing units. To this end, we have chosen the five-qubit array ibmq_quito [24] as specific
example, treating the qubit–qubit couplings as fixed. This is justified since, whenever a system with
time-independent couplings is controllable, the corresponding system with tunable couplings is controllable
as well. The actual ibmq_quito system contains a local control for each of the five qubits. Our analysis has
shown that by modifying the couplings between the qubits, the number of local controls necessary for
universal quantum computing can be reduced to a single local control. For standard qubit–qubit couplings
the minimal number of local controls is two. Analyzing the controllability for different positions of the two
local controls reveals that the distance between the local controls is essential for the system to be controllable:
the two local controls must be separated by an odd number (one or three) of qubit–qubit couplings in order
to provide controllability and allow for universal quantum computing. These results showcase the utility of
our graph test for improving the design and scalability of qubit arrays.

In future work, it will be interesting to gather a deeper understanding of the required control distance, as
this might allow for generalizing our findings to larger qubit arrays. One natural next step will be extending
our approach from local to non-local controls, as obtained when using e.g. tunable couplers. Our graph test
is limited by the exponential scaling of the Hilbert space, a common issue among algorithms run on a
classical computer, which can only be overcome by mapping the controllability analysis to a quantum device.
Another important open question is the relationship between the minimal number of local controls and the
quantum speed limit for universal quantum computing. The quantum speed limit [26] refers to the
minimum time in which a quantum process, such as a quantum gate, can be executed. For a complete
universal set of gates, the quantum speed limit can be obtained using quantum optimal control [27]. Given a
quantum system and a set of controls, the time required for any particular operation will always be equal or
longer than the time required for the same operation in the same system with more controls added.
Conversely, reducing the number of local controls is likely to increase the time needed to carry out a gate.
Thus, reducing the number of local controls has to be balanced with the requirement of sufficiently fast
logical operations. The minimal sets of local controls from controllability analysis as suggested here offers a
good starting point to find the best balanced set of controls with quantum optimal control. Finally, a further
important perspective for future work is the question of controllability of systems coupled to the
environment. It will be interesting to see whether graph methods can be utilized in this context.
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