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Abstract

In this thesis, we establish a new method for describing the qualitative dy-
namics of the so-called Hopf–Smale attractors in scalar delay differential
equations with symmetric negative delayed feedback.

The dynamics of Hopf–Smale attractors are robust under regular perturba-
tions. Qualitatively, the attractor consists of an equilibrium, periodic orbits,
and connections between them. We describe the mechanism that produces
the periodic orbits and show how their formation creates new connecting
orbits via sequences of Hopf bifurcations. As a result, we obtain an enumer-
ation of all the phase diagrams, that is, the directed graphs encoding the
equilibrium and periodic orbits as vertices and the connections as edges.

In particular, we have obtained a prototype, the so-called enharmonic
oscillator, that realizes all Hopf–Smale phase diagrams. Besides describing
the Hopf–Smale attractors, our method also sheds insight into the formation
process of certain global attractors with positive delayed feedback.
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Chapter 1

Introduction

1.1 Self-regulation

Delayed negative feedback is a widespread method for self-regulation in
real-world processes. It involves a control mechanism that counteracts the
deviation of a dynamical variable from a baseline value or reference state.
Within this setting, the system often overcompensates due to a time lag in
the control mechanism, resulting in sustained oscillations.

Intuitively, picture a jet pilot steering a jet fighter. Pilot-induced os-
cillations arise from the interplay between the quick response of the plane
and the comparatively slow reaction time of a human pilot who tries to keep
the plane aligned with the runway; see [McR95]. In a different timescale,
the same phenomenon emerges in a regular car whose driver has a slower
reaction time than a well-trained pilot. The reader may experiment with
this give-and-take between system dynamics and delayed control risk-free
and first-person. It is why a longer stick is easier to balance on the tip of
their finger.

In this work, we discuss mathematical models of systems with delayed
self-regulation that satisfy three assumptions:

(A1) The system is scalar and possesses one discrete delay only. In other
words, we model the change in time of a single real-valued variable de-
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noted by x(t), and we assume that the derivative ẋ(t) is a differentiable
function of x(t) and x(t− 1), only.

(A2) The system has negative delayed feedback, i.e., the control mecha-
nism counteracts the deviation of x(t− 1) from the baseline value. We
model this by assuming that ẋ(t) is a monotonically decreasing function
of the delayed state x(t− 1) of the system.

(A3) The feedback strength is symmetric. In other words, the strength of
the control term depends on the size of the deviation from the baseline,
(|x(t)|, |x(t− 1)|), only.

In the pilot-induced oscillations example above, the quantity x(t) in (A1)
represents the angle by which the plane’s trajectory deviates from follow-
ing a straight line. The negative feedback (A2) corresponds to the pilot
turning more sharply as the deviation increases. Finally, (A3) applies to
ambidextrous pilots in perfectly symmetric environments that cannot distin-
guish between left and right.

Mathematically, we model any quantity x(t) satisfying (A1)–(A2) as a
solution of a delay differential equation (abbr., DDE) of the form

ẋ(t) = f(x(t), x(t− 1)).(1.1)

Here the nonlinearity f : R2 → R is a differentiable function whose deriva-
tive in the second component satisfies ∂2f(ξ, η) < 0 for all (ξ, η) ∈ R2.
Furthermore, we enforce (A3) by assuming the even-odd symmetry f(ξ, η) =
f(−ξ, η) = −f(ξ,−η) for all (ξ, η) ∈ R2.

The assumptions (A1)–(A2) lie at the core of this pilot-vehicle interaction
and often appear in applied sciences. Their use is especially prominent in bi-
ology, where delays often appear as response times in the self-regulation of a
biological or chemical species presenting self-inhibition. Hutchinson [Hut48]
already pointed out that oscillations appear due to delay effects in the equa-
tion

ẋ(t) = λx(t)(1− x(t− 1)), λ > 0.(1.2)

Here (1.2) satisfies (A1)–(A2) for all biologically relevant solutions. Origi-
nally, (1.2) was proposed as a model for population dynamics where the time
delay and negative feedback appear as a result of the competitive advantage
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of experienced individuals over younger ones in the intraspecies fighting of
certain rodent populations.

Later, Lasota and Wazewska [WL76] interpreted the delays in erythrocyte
production as a result of the maturation time during the formation process
in the bone marrow. They proposed the DDE

ẋ(t) = −λ1x(t) + λ2e
−x(t−1), λj > 0,

modeling the concentration of red blood cells, where negative feedback ap-
pears due to the observable self-regulation process by which a healthy human
body stimulates erythrocyte production after a sudden drop in population.
Simultaneously, Mackey and Glass [MG77] considered the class

ẋ(t) = −λ1x(t) +
λ2

λ3 + (x(t− 1))n
, λj > 0,(1.3)

satisfying (A1)–(A2) for all positive solutions. In their model, x(t) represents
the concentration of a population of blood cells, and the delays appear due to
cellular maturation times. Furthermore, they postulated that the oscillations
arising as the delay increases were a potential indicator of hematopoietic
disease processes.

More recently, Lewis [Lew03] has proposed autoinhibitory delayed effects
as a fundamental agent in the vertebrate somitogenesis oscillator. In mam-
mals [YKMN+20], delayed negative feedback arises in two different ways.
At an intracellular level, delays appear due to mRNA transcription and are
fundamental for self-regulation in the periodic expression of the Hes7 gene.
At an extracellular level, delays appear through lags in the Notch signaling
pathways used for cell-to-cell synchronization in the Hes7 expression. In ei-
ther case, a nonlinearity of Mackey–Glass type (1.3) governs the quantity of
functional Hes7 protein. Takashima et al. [TOG+11] have tested the influ-
ence of delays in the segmentation clock empirically. They have shown that
an effective reduction in the intracellular RNA transcription times via intron
removal within the Hes7 gene produces a faster ticking of the segmentation
clock. The result is the development of individuals presenting too many
vertebrae.

Further applications of delayed negative feedback to cellular dynamics
include the linear and solvable DDE

ẋ(t) = λ(x(t)− x(t− 1)), λ > 0.(1.4)
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The dynamics of (1.4) resemble the mechanism regulating the concentration
of calcium ion levels within the sarcoplasmic reticulum in a cardiomyocyte;
see [Tho13]. Here the delay appears due to the recovery time of the ryanodine
receptors.

The linear equation (1.4) also plays a vital role in modeling epidemics; see
[Del20]. Particularly, a delay in the recovery time of an infected patient in a
compartmental SIR epidemic model allows for replacing a three-dimensional
nonlinear ODE with the infinite-dimensional but solvable DDE (1.4).

In environmental sciences, Suárez and Schopf [SS88] have proposed the
delayed action oscillator

ẋ(t) = λ1
(
x(t)− (x(t))3

)
− λ2x(t− 1), λj > 0,

as a model for the El Niño Southern Oscillation phenomenon. In particular,
they suggested that a negative delayed feedback loop drives the temperature
x(t) in the Central Pacific region. Such interaction appears as the West-East
oceanic Kelvin waves weaken the East-West atmospheric currents by raising
the air temperature of the Central Pacific region. Time delays are a result
of the traveling times of the Kelvin waves, usually in the order of months.

In economics, price fluctuations for commodities emerge as a result of the
negative delayed feedback in

ẋ(t) = λ (x(t)− x(t− 1))− |x(t)|x(t), λ > 0.

A delay arises as the market responds to changes in the supply, and a negative
feedback loop appears as the higher price stimulates production. In turn, the
increase in the supply makes the price sink; see [BEW04].

Finally, the DDE (1.1) arises in analyzing pure mathematical problems.
At around the same time as Hutchinson, Wright [Wri55] used the Hutchin-
son equation (1.2) to discuss the asymptotic sparsity of the prime number
distribution.

The solutions of some ordinary differential equations (abbr. ODEs) having
spatiotemporal symmetries also solve (1.1). For instance, the traveling wave
solutions of the one-directional lattice ODE

ẋj = f(xj, xj+1), j ∈ Z,(1.5)
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satisfy the DDE (1.1); see [MP99]. The linear chain trick [Smi11] uses a
lattice equation of the type (1.5) to represent the dynamics of a single DDE
with distributed delay given by a gamma-distribution type kernel. Loos et
al. [LHK21] applied this approach successfully to model a single stochastic
colloidal particle under the influence of a control kernel with memory. They
concluded that a linear DDE

ẋ(t) = λ1x(t)− λ2x(t− 1)

characterizes the equilibrium stability at infinite memory capacity.

In contrast to assumptions (A1)–(A2), (A3) rarely appears in the litera-
ture. The role of (A1)–(A2) in the discussion of the DDE (1.1) is connected
to the structural stability of the dynamics, that is, the resistance to pertur-
bations. However, (A3) enables the most powerful tools we use throughout
this work to accurately describe such robust dynamics. Moreover, although
(A3) is not explicitly connected to previous academic work, it often appears
after taking regular limits for the equations considered above. For exam-
ple, (A3) holds for the Mackey–Glass equation (1.3) with λ1 = λ3 = 0 and
n = 3. Thus our framework is broader than it seems thanks to the structural
stability inherited from (A1)–(A2).

1.2 Long-term dynamics

We are interested in describing the long-term behavior of the solutions to the
DDE (1.1). Following [HVL93], we regard (1.1) as the infinitesimal recipe
for constructing a one-parameter family of transformations Sf (t) with t ≥ 0
called the semiflow. The semiflow Sf (t) transports bits of information, or
initial conditions, ϕ living on a yet-to-be-specified Hilbert space H. Any
differential equation generating such a notion of semiflow, which mimics the
action of time, is called an evolution equation; see [Lad91]. Further ex-
amples include ODEs, for which H = Rn, and parabolic partial differential
equations (abbr. PDEs), with a suitable choice of a Sobolev space H. Specif-
ically for DDEs, the phase space H often goes by the name of history space.

We assume that the semiflow is dissipative, that is, for all initial con-
ditions ϕ ∈ H, the evolution Sf (t)ϕ enters a uniformly bounded ball in the
history space H as t → ∞. In this setting, there exists a maximal com-
pact semiflow-invariant subset A(f) ⊂ H known as the global attractor
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of (1.1); see [HMO02,Lad91]. The most important property of A(f) is that
it attracts all initial conditions ϕ ∈ H as t → ∞. Thus, A(f) contains all
of the observable states of the real-world processes governed by the negative
delayed feedback DDE (1.1). Still, not all the invariant subsets of A(f) are
attracting; some elements are often repelling and not observable in practice.
Nevertheless, the repelling sets are essential because they play the role of
transition states, thereby determining the basins of stability within which
the stable sets attract.

The existence of a global attractor A(f) is a widespread phenomenon
in dissipative evolution equations. However, its mathematical construction
is abstract and conveys no detail about the complexity of the dynamics on
A(f). In absence of (A1)–(A2) complicated dynamics arise quickly and A(f)
can contain chaotic dynamics even in the simple-looking equation

ẋ(t) = −λ sin(x(t− 1)), λ > 0, x(t) ∈ R/2πZ,

modeling the phase difference of two identical Kuramoto oscillators with
symmetric coupling; see [LWS02].

However, (A1)–(A2) provide additional structure and vastly simplify the
dynamics within the attractor. Thanks to a Poincaré–Bendixson the-
orem [MPS96a, KW01], there exists a graph Γ(f) called phase diagram
that describes the dynamics on the global attractor A(f) of the DDE (1.1)
satisfying (A1)–(A2). Typically, the vertices of Γ(f) correspond to critical
elements, i.e., the closed Sf (t)-orbits in H. Denoting the set of critical ele-
ments by Crit(f), Γ(f) contains the directed edge (γ†, γ∗) for γ†, γ∗ ∈ Crit(f)
if and only if there exists an Sf (t)-orbit connecting γ† to γ∗. In other words,
if there exists ϕ ∈ H satisfying

γ†
t→−∞←−−−− Sf (t)ϕ

t→∞−−−→ γ∗.

Most examples in the literature describe the global attractor of (1.1) under
the positive delayed feedback assumption ∂2f(ξ, η) > 0 for all (ξ, η) ∈ R2.
However, such systems share the Poincaré–Bendixson theorem of negative
delayed feedback systems; see [MPS96a, KW01]. In particular, A(f) also
admits a phase diagram description Γ(f) in the positive delayed feedback
setting. Two examples have heavily influenced this work:

1. Spindle attractors, that is, topological spheres on which the dynam-
ics consist of a single center equilibrium from which solutions emanate
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Figure 1.1: (Left) Phase diagram of a three-dimensional spindle possessing three
equilibria (grey) and one periodic orbit (white). (Right) The phase diagram of the
Vas attractor consists of five equilibria (grey) and four periodic orbits (white).

and connect to a family of nontrivial periodic solutions lying on an
equatorial region and two sink equilibria at the poles each one of which
attracts all solutions lying on the North and South hemisphere, respec-
tively; see [KWW99b,KWW99a] and Figure 1.1 (Left).

2. The Vas attractor, first discussed in Vas’ doctoral work [Vas11],
that consists of two three-dimensional spindles as in Figure 1.1 (Left)
glued by the tips and enveloped by a superstructure formed by two
large-amplitude periodic solutions γ1 and γ2 oscillating around the
equator; see also [KV11] and Figure 1.1 (Right).

The relative simplicity of the phase diagram representation is a con-
sequence of a discrete Lyapunov function or zero number developed by
Mallet-Paret, Sell, and others; see [MPS96b, Cao90, MP88, Mys55]. Analo-
gous versions of the zero number exist for both negative and positive delayed
feedback systems. Essentially, they provide an abstract quantized entropy
function for the difference of any two solutions to (1.1). The zero number
only takes integer values and yields three critical properties:

(P1) A Poincaré–Bendixson theorem as mentioned above; see [MPS96a,
Theorem 2.1]. This guarantees that solutions x(t) accumulate to planar
sets in the long time limit t→∞. We highlight that only the limiting
behavior of the solutions is planar; in general, the dynamics on A(f)
have a higher dimensionality, as showcased both by spindles and the
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Vas attractor above.

(P2) An eigenvalue structure resembling the Sturm–Liouville eigenvalue
structure in linear second-order ODEs; see [MPN13,MPS96b].

(P3) A characterization of the structural stability of A(f) in terms of lo-
cal stability properties of the critical elements Crit(f). This is a conse-
quence of the appearance of exponential dichotomies due to (P1)–(P2);
see [LN17].

The zero number is not exclusive to monotone delayed feedback systems.
Analogous objects, also known as nodal properties, appear in completely
unrelated settings. We highlight the work of Mallet-Paret and Smith [MPS90]
in monotone cyclic feedback systems, Fusco and Oliva [FO87] in Ja-
cobi systems, as well as Angenent and Matano [Ang88, Mat82] in scalar
reaction-diffusion PDEs with compact one-dimensional domains

∂tu(t, ξ) = ∂2ξu(t, ξ) + h(ξ, u(t, ξ), ∂ξu(t, ξ)), t > 0, ξ ∈ [0, L].(1.6)

Thus properties (P1)–(P3) are not specific to DDEs; instead, they seem to
be a mere consequence of the existence of an abstract notion of zero number;
see [Ter94,Sá09].

Akin versions of the Poincaré–Bendixson theorem (P1) exist for monotone
cyclic feedback systems [MPS90] and reaction-diffusion on circular topologies
[FMP89]. The asymptotic dynamics become even lower-dimensional when
considering Jacobi systems [FO87] for which the only possible accumulation
points of the dynamics are equilibria. The same holds for reaction-diffusion
PDEs with separate boundary conditions, for which Matano and Zelenyak
[Mat88,Zel68] showed the existence of real-valued Lyapunov functions. Re-
cently, Lappicy and Fiedler [LF19] have extended Matano’s gradient struc-
ture to fully nonlinear parabolic PDEs.

On the other hand, the eigenvalue structure (P2) results from a gener-
alized Krein–Rutman theory distinctive of any evolution process possessing
a zero number; see [FO91, PT93, MPN13]. Having (P2) is vital in prov-
ing the structural stability property (P3), a defining feature of the so-called
Morse–Smale systems; see [Pal69,PdM82,Oli00]. In their independent pi-
oneering work, Henry [Hen85] and Angenent [Ang86] proved the Morse–Smale
property for parabolic PDEs (1.6) under separate boundary conditions. Later,
Hale et al. [CCH92] extended the proof to time-periodic PDEs with sepa-
rate boundary conditions. More recently, Czaja and Rocha [CR08] proved
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that the result still holds for scalar reaction-diffusion systems on circular
topologies. Furthermore, the Morse–Smale property is typical for the PDE
(1.6) in a topological sense. More precisely, Joly and Raugel [JR10a,JR10b]
showed that the attractor APDE(h) of (1.6) possesses the Morse–Smale prop-
erty for a generic family of nonlinearities h in the Baire category sense.
For comparison, we highlight that the set of Morse–Smale ODEs is not
generic; see [Sma66]. The same ideas as in the PDE setting have been
employed successfully to show structural stability properties for the ODE
examples above [FO87, FO90,WZ17] and similar techniques yield the DDE
variant [LN17].

This similarity between systems possessing zero numbers hints at a deep
connection relating monotone delayed feedback DDEs (1.1) to parabolic
PDEs (1.6). However, a grand theory encompassing all the known exam-
ples remains undiscovered. The first step in this direction is to understand
specific cases better. In that sense, the better-understood class of equations
is reaction-diffusion PDEs (1.6) under separate boundary conditions, that is,
in the gradient regime of Matano and Zelenyak [Mat88, Zel68]. In this set-
ting, all nonstationary solutions on the global attractor APDE(h) correspond
to connections between different equilibria ∂tu(t, ξ) ≡ 0. The equilibria form
an ordered set with nonstationary solutions only flowing from top to bottom.

Under Neumann boundary conditions, the equilibria in (1.6) arise by solv-
ing the ODE boundary value problem

∂2ξu(0, ξ) = −h(ξ, u(0, ξ), ∂ξu(0, ξ)), ∂ξu(0, 0) = ∂ξu(0, L) = 0.(1.7)

Surprisingly, Fusco and Rocha [FR91] showed that the complete connectiv-
ity web between the equilibria in (1.6) is determined by the shooting curve
resulting from solving (1.7) for time ξ = L. Thus the shooting curve ob-
tained in this way determines a meander permutation, which encodes a
sequence of local bifurcations. The phase diagram ΓPDE(h) of APDE(h) can
then be recovered thanks to the Morse–Smale property (P3) above [FR96].
The result is a complete, well-organized classification of the Sturm attrac-
tors APDE(h) up to topological orbit conjugacy [FR00]. In this way, Sturm
attractors form a mathematical phylogenetic tree whose complexity increases
quickly as the number of equilibria grows. The meander permutations ob-
tained this way do not yield unique phase diagrams. However, Fiedler and
Rocha [FR18a,FR18b,FR18c] have since pushed the study of Sturm attrac-
tors well beyond the graph structure ΓPDE(h) by showing that the meander
permutations are an enumeration of a finer structure called signed hemi-
sphere decomposition.
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Finally, we point out that the theory of Neumann-type Sturm attrac-
tors above has been extended to more complex settings. Nontrivially, un-
der S1-equivariance assumptions, it is possible to freeze all the rotating
waves appearing for periodic boundary conditions and reduce the descrip-
tion of the global attractor to the case with separate boundary conditions;
see [FRW04, FRW12b, FRW12a]. Further generalizations, following related
techniques, have been made to describe unbounded global attractors in the
slowly nondissipative regime [Pim16, PR16], and quasilinear [LP18, Lap20]
and fully nonlinear [Lap22] cases.

1.3 Goal and method

The purpose of this thesis is the development of a systematic method to
design global attractors A(f) of the DDE (1.1) satisfying the symmetric
negative delayed feedback assumptions (A1)–(A3). We achieve this by ap-
plying the methods developed over the last decades for Sturm attractors in
reaction-diffusion PDEs (1.6) and applying them to negative delayed feed-
back DDEs (1.1). Our main achievement is developing a new constructive
method to obtain an infinite family of DDE phase diagrams Γ(f), the vast
majority of which were previously unknown.

The vertex set Crit(f) of a phase diagram Γ(f) obtained by our method
consists of a single equilibrium, denoted γ0, and a family of periodic orbits
γ1, . . . , γN . We construct the edges in Γ(f) through a homotopy, i.e., a
smooth deformation fλ of nonlinearities satisfying (A1)–(A3) for all λ ∈ [0, 1]
and such that:

(i) The attractor of f0 satisfies A(f0) = γ0, and f1 = f .

(ii) The periodic orbits γ1, . . . , γN appear through a finite number of non-
degenerate Hopf bifurcations, only.

By the Morse–Smale property (P3), the structure of Γ(f) can only change at
a finite number of parameter values or Hopf points at which the equilibrium
γ0 of (1.1) either absorbs or emits a single bifurcating periodic orbit. This
emission-absorption mechanism happens in two distinct ways:
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Subcritically: if there exists an obit connecting the bifurcating periodic
solution to γ0.

Supercritically: if there exists an orbit connecting γ0 to the bifurcating
periodic orbit.

In this way, a combinatorial structure arises. More precisely, the admissible
sequences of Hopf bifurcations producing N periodic orbits enumerate the
phase diagrams that can be obtained by this method. The Morse–Smale
attractors A(f) that can be built by this process consisting exclusively of
Hopf bifurcation are called Hopf–Smale attractors.

Although our results apply to Hopf–Smale attractors in general, the sub-
class of enharmonic oscillators realizes all possible Hopf–Smale phase di-
agrams. We call enharmonic oscillators to the DDEs satisfying assumptions
(A1)–(A3) that have the special form

ẋ(t) = −π
2
Ω
(√

(x(t))2 + (x(t− 1))2
)
x(t− 1).(1.8)

Here Ω > 0 is a nonlinear frequency function depending on the amplitude√
(x(t))2 + (x(t− 1))2, only. We will show that all of the periodic solutions

x∗(t) of (1.8) are of harmonic type, that is, they satisfy

x∗(t) = a sin
(π
2
Ω(a)t+ t∗

)
, a, t∗ > 0, Ω(a) = 4n− 3,

for some n ∈ N. In other words, all periodic solutions are harmonic with
amplitude a and integer frequency of the form 4n−3. Hence the choice of the
term enharmonic borrowed from music theory. A sound is said to possess
an enharmonic equivalent whenever it admits more than one spelling on the
score. Just like in a keyboard E sharp and F produce the same sound, both
the DDE (1.8) and the standard harmonic oscillator described by Hooke’s
law

ξ̈ = λξ,(1.9)

possess harmonic solutions. However, the periodic solutions (1.8) are the
offspring of self-inhibition, while (1.9) is a conservative system and loses any
periodic behavior in the presence of friction. We have coined the name en-
harmonic oscillator to highlight this analogous property of two completely
disconnected evolution equations. We think of (1.8) as a figurative enhar-
monic equivalent of (1.9).

This thesis discusses three topics to prove the method above:
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1. Transverse intersections of invariant manifolds

Given a critical element γ∗ of the DDE (1.1), the set of initial conditions
ϕ ∈ H such that Sf (t)ϕ approaches γ∗ in positive time direction is a
Sf (t)-invariant manifold called stable manifoldW s(γ∗). Likewise, the
unstable manifold is the set W u(γ∗) containing all initial conditions
that approach γ∗ as t→ −∞.

Given two different γ†, γ∗ ∈ Crit(f), it was shown in [LN17] that if both
γ† and γ∗ are hyperbolic, their invariant manifolds intersect trans-
versely. In other words, either the intersection W u(γ†) ∩ W s(γ∗) is
empty, or the sum of the tangent spaces TϕW u(γ†)+TϕW

s(γ∗) spans the
phase spaceH at any point of intersection. The method of proof follows
Hale et al. [CCH92] and uses an Oseledets-type filtration [Mañ83]
together with the zero number [MPS96b] to construct complementary
subspaces within TϕW u(γ†) and TϕW s(γ∗).

We refine and complete the results in [LN17] by showing:

• The transverse intersection property still holds at Hopf points, i.e.,
if one of the critical elements involved is γ0 and it is nonhyperbolic.

• If all the equilibria and periodic orbits of the DDE (1.1) are hy-
perbolic, then (1.1) is a Morse–Smale system. Hence the global
attractor A(f) is orbitally structurally stable.

Proving that (1.1) is Morse–Smale requires a full characterization of the
nonwandering set, i.e., the set of recurrent dynamics of (1.1). We do
this by using a zero number argument that goes back to Mallet-Paret
[MP88]. More recently, Shen et al. [SWZ21] have used a similar ar-
gument to describe the nonwandering set of reaction-diffusion systems
that are not known to be gradient.

2. Periodic solutions and local stability

So far, a main obstacle in discussing A(f) was the lack of a method
to describe the formation process of periodic solutions in (1.1). A par-
ticularly cumbersome problem was the discussion of multiple periodic
orbits oscillating with the same frequency.

We have solved this issue by showing that if (1.1) satisfies (A1)–(A3),
then the curve (ξ(t), η(t)) := (x∗(t), x∗(t− 1)) solves the planar ODE

ξ̇ = f(ξ, η),

η̇ = −f(η, ξ),
(1.10)
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for all periodic solutions x∗(t) of the DDE (1.1). Thus, in the flavor
of [Sch90], the periodic solutions of (1.1) can be identified with certain
level sets of the period map pf taking the amplitude of the periodic
solutions to their minimal period in the reference ODE (1.10). Our
results are the converse to those of Kaplan and Yorke [KY74,KY75],
showing that the periodic solutions of (1.10) translate into DDE pe-
riodic solutions via the existence of spatiotemporal symmetry. Fur-
thermore, we also complete the results of Nussbaum [Nus79], and Cao
[Cao96], who showed that all slowly oscillating periodic solutions of the
DDE (1.1) satisfy the ODE (1.10) under further convexity assumptions.
Our fundamental tool is a planar projection developed by Mallet-Paret
and Sell [MPS96a] that maps DDE orbits onto R2 homeomorphically.
Since both negative and positive delayed feedback DDEs share this
property, the discussion in this thesis is a specialized version of the
results in [LN20].

Additionally, we show that the local stability properties of the peri-
odic orbits γ∗ are encoded in p′f . This characterization of the periodic
orbits and their local stability in terms of a time map is surprisingly
reminiscent of the situation in reaction-diffusion systems on the circle;
see [FRW04].

The enharmonic oscillator (1.8) has the convenient feature that the
period map is explicitly given by

pf (a) =
4

Ω(a)
.

This gives us complete control over the appearance of periodic orbits
in (1.8), enabling our analysis.

3. Hopf bifurcation analysis

The phase diagram Γ(f) changes at Hopf points only thanks to the
Morse–Smale property (P3) above. Furthermore, it is possible to track
the changes that local Hopf bifurcations have on the global structure
of the attractor. The two key tools are:

• Center manifold theory to guarantee a connection between the
equilibrium γ0 and the bifurcating periodic orbit.

• A principle of transitivity of connections to show that a connection
between two critical elements can only vanish if it proxies through
γ0 at a Hopf point.
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The conclusion will be that a {−1, 1}-sequence denoted χ(f) records
all the changes in Γ(f). Roughly, χ(f) encodes the shape of the period
map pf . We call χ(f) the signature of f because it is analogous, but
not equal, to the Rocha signature used by Rocha [Roc07] to classify
period maps of planar Hamiltonian systems. In particular, counting
the number of Hopf–Smale diagrams reduces to counting all admissible
signatures.

1.4 Outline

The previous sections already constitute a rough sketch of our main achieve-
ments and their relation to the current literature. Casual readers are rec-
ommended to skip ahead to Chapter 7. There we show which signatures
produce Hopf–Smale attractors and discuss how to reconstruct the phase di-
agram from the signature. More curious readers are welcome to read the
intermediate chapters.

Chapters 2 and 3 contain the technical fundamentals used throughout the
rest of the thesis. In contrast, Chapters 4 through 6 have the proofs of the
main results. Finally, Appendices A through C discuss generalities on differ-
ential geometry and dynamical systems. We include them for completeness.

In Chapter 2, we introduce the basic mathematical setting for treating
DDEs. Our approach deviates from the canon by introducing a slightly
unconventional phase space. We present the global attractor and define the
zero number, a distinctive property of scalar equations with negative delayed
feedback. Towards the end, we derive some essential properties of periodic
solutions and present the Sturm–Liouville eigenvalue structure.

Chapter 3 characterizes the invariant manifolds of the critical elements γ∗.
The most crucial point is that we characterize the tangent spaces in terms of
asymptotic convergence rates along the variational flow. Our approach uses
standard invariant manifold theory for compact maps; see [HPS77].

Chapters 4, 5, and 6 deal respectively with the Morse–Smale structure
generated by the semiflow, the two-dimensional reduction for finding critical
elements, and the appearance of connections through Hopf bifurcations.
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Chapter 7 concludes the thesis with a summary of our methods that in-
cludes a collection of examples. Furthermore, we discuss extending our re-
sults to positive delayed feedback systems and present a selection of open
problems.
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Chapter 2

Technical fundamentals

This chapter contains the basic framework for all our results. All of the
content that we present here is either well-known in the literature or is a
rearrangement in such a way that it is useful for the remainder of the thesis.

In Section 2.1, we define the semiflow Sf (t) mentioned in Chapter 1 and
set the phase space H. Our approach uses a Sobolev-type Hilbert space H
rather than the traditional space of continuous functions equipped with the
uniform norm C := (C0([−1, 0],R), ∥ · ∥C0) used by Hale and Lunel [HVL93]
and Diekmann et al. [DvGVLW95].

In Section 2.2, we define the global attractor A(f) as the set that contains
all the eternal solutions of the DDE (1.1). Our approach follows the general
dynamical systems theory for dissipative compact semiflows by Ladizhen-
skaya [Lad91] and Hale et al. [HMO84,HMO02].

In Section 2.3, we present the theory developed by Mallet-Paret and Sell
[MPS96b,MPS96a] for cyclic monotone delayed feedback systems. We focus
on the so-called zero number and a Poincaré–Bendixson theorem that vastly
simplifies the asymptotic dynamics of the DDE (1.1). This motivates the
existence of the phase diagram Γ(f) that we announced in Chapter 1 and
endows the periodic solutions of (1.1) with unique properties that we will use
extensively in Chapter 5.

Finally, in Section 2.4, we discuss a Sturm–Liouville eigenvalue structure
for the linearization of the semiflow at periodic orbits and equilibria. More
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precisely, we highlight the most vital consequences of the general results by
Mallet-Paret and Nussbaum [MPN13] in our simpler setting under assump-
tions (A1)–(A3).

2.1 Solution semiflow

We consider twice continuously differentiable nonlinearities f with finite
C2-norm and denote this by f ∈ BC2(R2,R). A solution of the DDE (1.1)
is a continuous curve x(t) defined for all t ≥ −1, such that x(t) is continu-
ously differentiable for all t > 0 and the derivative satisfies the differential
equality (1.1). In agreement with the assumptions (A1)–(A3) in Chapter 1,
we assume that f satisfies the negative delayed feedback assumption

∂2f(ξ, η) < 0 for all (ξ, η) ∈ R2,(2.1)

and the even-odd symmetry

f(ξ, η) = f(−ξ, η) = −f(ξ,−η) for all (ξ, η) ∈ R2.(2.2)

Hence, from this point, X− denotes the cone of functions in BC2(R2,R)
satisfying both assumptions (2.1) and (2.2).

We describe the solutions of (1.1) by considering the initial value problem

ẋ(t) = f(x(t), x(t− 1)), t ≥ 0,

x(θ) = ϕ(θ), θ ∈ [−1, 0],
(2.3)

where ϕ ∈ H is a continuous function acting as an initial condition.
Our approach differs slightly from the traditional choice of function space
in DDE literature. We only consider initial conditions ϕ in a subset H ⊂ C,
where H denotes the compact embedding into C of the standard Sobolev
space H1([−1, 0],R). To be accurate, H is the vector space containing
all continuous functions ϕ ∈ C with a square-integrable weak derivative
ϕ′ : [−1, 0]→ R, i.e., ϕ′ such that∫ 0

−1

(ϕ′(θ))2 dθ <∞ and
∫ 0

−1

ϕ(θ)φ̇(θ) dθ = −
∫ 0

−1

ϕ′(θ)φ(θ) dθ,

for all test functions φ ∈ C∞((−1, 0),R) with compact support. It is well
known that H is a separable Hilbert space when equipped with the norm
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∥ϕ∥H :=
√
⟨ϕ, ϕ⟩ induced by the Sobolev inner product

⟨ϕ, ϕ̃⟩ :=
∫ 0

−1

ϕ(θ)ϕ̃(θ) dθ +

∫ 0

−1

ϕ′(θ)ϕ̃′(θ) dθ.

We denote ∥·∥ := ∥·∥H and adopt the Sobolev topology on H unless specified
otherwise.

Since the initial value problem (2.3) has just one discrete delay x(t −
1), the existence and uniqueness of solutions follows by the Picard–Lindelöf
theorem using the so-called method of steps, i.e., step-by-step integration of
the nonautonomous ODEs

ẋn(t) =fn(t, xn(t))

:=f(xn(t), xn−1(t)), t ∈ [−1, 0],
xn(−1) =xn−1(0).

(2.4)

Indeed, any solution x(t), t ∈ [−1,∞), of the initial value problem (2.3)
connects to (2.4) by means of the notation

xn(θ) := x(n+ θ), x0(θ) := ϕ(θ), θ ∈ [−1, 0].

Furthermore, it follows from the C2-boundedness of f ∈ X− that the solutions
of the initial value problem (2.3) are well defined for all t ≥ 0.

However, (2.3) differs considerably from standard ODEs since the solutions
x(t) are not necessarily well defined for values t < −1. Specifically, the DDE
(1.1) defines an irreversible process. Indeed, solving by the method of steps
(2.4) shows that continuous initial data x0 = ϕ ∈ H regularizes in time so
that x(t) is continuously differentiable for all t > 0. In particular, after one
iteration, we have x1 ∈ C1([−1, 0],R) ⊂ H, which highlights a time-direction
asymmetry innate to DDE; see [HVL93, Section 2.5] for a detailed discussion.

By the remarks above, the semiflow announced in Chapter 1 is the
one-parameter family of operators Sf (t) : H → H with t ≥ 0 defined by set-
ting Sf (t)x0 = xt, where we used the notation xt(θ) := x(t+ θ), θ ∈ [−1, 0].
The trick of regarding the solutions of the DDE (1.1) as curves of functions
xt ∈ H, rather than curves of real points x(t) ∈ R motivates calling H a
history space. On the other hand, the term semiflow follows directly from
the fact that Sf defines, by construction, an action of the positive real line
(R+,+) on H. In other words, it satisfies the algebraic relations

Sf (0) = Id and Sf (t) ◦ Sf (s) = Sf (t+ s), for all t, s ≥ 0.
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Driver and Melvin [Dri65,Mel72] studied neutral DDEs with a Sobolev-type
history space like H for their better regularity properties compared to the
traditional choice of C. Nishiguchi [Nis19] gives a detailed discussion of how
this choice affects the regularity of (1.1) under changes in the delay. Rather
than proving the regularity of Sf (t) now, we postpone it to Appendix A.
Nevertheless, the general rule to remember is that all the relevant regularity
properties of the traditional semiflow defined on all of C are inherited by the
restriction to the smaller Hilbert space H.

More precisely, for all t ≥ 0, the map Sf (t) is twice continuously differen-
tiable in ϕ and f . Moreover, for all t ≥ 2, Sf (t) is compact, that is, it maps
bounded sets to precompact sets in H; see Propositions A.2 and A.3. Since
f ∈ X− is C2-uniformly bounded, [HMO02, Proposition A.0.5] guarantees
that the semiflow Sf (t) is dissipative in the sense of Chapter 1, i.e., there
exists a constant K > 0 such that for any initial condition ϕ ∈ H there exists
an entry time t∗ = t∗(ϕ) so that ∥Sf (t)ϕ∥ < K for all t > t∗.

2.2 Global attractors

As mentioned above, the processes modeled by the DDE (1.1) are irreversible,
i.e., switching the time direction t 7→ −t yields an ill-defined initial value
problem. However, eternal solutions, i.e., the uniformly bounded differ-
entiable curves x(t) solving (1.1) for all t ∈ R are essential in studying the
long-time limit t→∞ for (1.1).

Let us consider the subset of H formed by all the initial conditions yielding
eternal solutions of (1.1) and denote it

A(f) :=
{
ϕ ∈ H : sup

t∈R
∥Sf (t)ϕ∥ <∞

}
.

The monotone feedback condition (2.2) makes Sf (t) injective for all t ≥ 0; see
Lemma A.4. Therefore, the semiflow Sf restricted to A(f) defines a group
action, also known as flow, on A(f). In particular, A(f) is Sf (t)-invariant
by construction, that is,

Sf (t)A(f) = A(f) for all t ∈ R.(2.5)

For this reason, from this point on, the notation ϕ̃ = Sf (t)ϕ with t < 0 is
shorthand for there exists a ϕ̃ ∈ H such that ϕ = Sf (−t)ϕ̃.
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Given a compact dissipative semiflow, such as Sf (t), the set A(f) is
nonempty, compact, and attracts all bounded sets in H; see [HMO02,Lad91].
In other words, for all bounded U ⊂ H we have

lim
t→∞

(
sup
ϕ∈U

dist(Sf (t)ϕ,A(f))
)

= 0.(2.6)

Thus, under these conditions, we call A(f):

• Global attractor, since it attracts any bounded sets.

• Eternal core, since it contains all the eternal initial conditions.

• Maximal compact invariant set, since it contains all other compact
invariant subsets by the attractivity property (2.6).

Notice that, by the regularizing property of the semiflow above, the invariance
(2.5) guarantees that A(f) ⊂ C1([−1, 0],R). Moreover, the identity map

Id : (A(f), ∥ · ∥H) → (A(f), ∥ · ∥C0)

ϕ 7→ ϕ,
(2.7)

is a continuous bijection because H induces a stronger relative topology on
A(f) than C does. Thus, by the compactness of the global attractor (A(f), ∥·
∥H), (2.7) is a homeomorphism. In particular, our results for the global
attractor on the Sobolev space H apply to the standard global attractor on
C.

It follows from the maximality of A(f) that given any ϕ ∈ A(f), the
closure of the orbit

γ := {Sf (t)ϕ : t ∈ R},

belongs to A(f). Less trivially, given ϕ ∈ H the set of forward accumulation
points of the trajectory Sf (t)ϕ, also known as the ω-limit set ω(ϕ), belongs
to A(f). Indeed, since the semiflow Sf (t) is compact and dissipative, the set

ω(ϕ) :=
⋂
s≥0

clos ({Sf (t)ϕ : t ≥ s})(2.8)

is a nested intersection of nonempty, connected, and compact sets. Thus
ω(ϕ) is nonempty, connected, compact, and Sf (t)-invariant by construction.
In particular, ω(ϕ) ⊂ A(f) for all ϕ ∈ H.
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The analogous definition in the backward time direction is the α-limit set,
α(ϕ), which we can only define for the eternal initial conditions ϕ ∈ A(f).
Imitating (2.8), we define

α(ϕ) :=
⋂
s≤0

clos ({Sf (t)ϕ : t ≤ s}) ,

the same arguments above show that α(ϕ) ⊂ A(f) is nonempty, connected,
and compact for all ϕ ∈ A(f).

Thus the initial conditions ϕ ∈ A(f) whose orbits coincide with their
ω-limit set, i.e., those such that

γ = ω(ϕ) = α(ϕ),(2.9)

play a special role. The orbits satisfying (2.9) are the equilibria and periodic
orbits of (1.1).

We say that an orbit γ is an equilibrium of (1.1) if it is a singleton, i.e., if
γ = {ϕ} for ϕ ∈ H. In particular, equilibria correspond to initial conditions
ϕ(θ) ≡ x∗ ∈ R where x∗ is a zero of f(x∗, x∗). In our setting, the assumption
f ∈ X− ensures that the DDE (1.1) possesses only one equilibrium denoted
γ0 := {0} where 0 stands for the constant zero function in H. On the
other hand, periodic orbits are often harder to spot and correspond to
the nonequilibrium orbits γ through ϕ ∈ H for which there exists a period
p > 0 such that Sf (t + p)ϕ = ϕ. The smallest such p > 0 is called the
minimal period of γ(ϕ). Due to (2.9), we shall refer to both the equilibria
and periodic orbits of (1.1) as critical elements and denote them

Crit(f) := {γ ⊂ A(f) : γ = ω(ϕ) = α(ϕ)}.

The initial conditions ϕ ∈ H whose orbit is a critical element γ ∈ Crit(f)
are called periodic points. We denote the set of periodic points by Per(f).
Notice that the constant zero function in H is a periodic point of the DDE
(1.1). However, the corresponding orbit γ0 is not periodic.

In addition, we define the set of connecting points consisting of all the
initial conditions ϕ ∈ A(f) whose orbit γ ⊂ A(f) satisfies α(ϕ) ∈ Crit(f)
and ω(ϕ) ∈ Crit(f). If ϕ is a connecting point we say that the orbit γ is
homoclinic if α(ϕ) = ω(ϕ), otherwise we call γ a heteroclinic orbit.

Last, we define the nonwandering set Nw(f) ⊂ A(f) containing all of
the initial conditions ϕ ∈ H such that the nearby dynamics are recurrent. In
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other words, we require that for each δ > 0 and t∗ > 0 we can find ϕ̃ ∈ H
and t > t∗ such that

∥ϕ− ϕ̃∥ < δ and ∥ϕ− Sf (t)ϕ̃∥ < δ.

Given the standing assumptions, Nw(f) is nonempty, compact, and invariant
under the semiflow; see [HMO02, Proposition 2.0.2]. Moreover, by definition,
any initial condition ϕ ∈ H such that ϕ ∈ ω(ϕ) satisfies ϕ ∈ Nw(f). In par-
ticular, we obtain that Per(f) ⊂ Nw(f). Nevertheless, the main advantage
of considering the bigger set Nw(f) over Per(f) is that Nw(f) is closed by
construction. On compact manifolds, Pugh’s closing lemma [Pug67] char-
acterizes Nw(f) as the set of points that belong to Per(f̃) after an ε-small
perturbation of the nonlinearity ∥f − f̃∥C2 < ε. Thus Nw(f) \Per(f) repre-
sents the boundary of existence of critical elements.

2.3 Zero number

An essential feature of the DDE (1.1) possessing the negative delayed feed-
back condition (2.1) is the existence of a specialized comparison principle. In
the following, we consider linear DDEs of the form

ẏ(t) = c1(t)y(t) + c2(t)y(t− 1), t ≥ s

ys(θ) = ψ(θ), θ ∈ [−1, 0]
(2.10)

with coefficients c1(t), c2(t) ∈ BC1([s,∞),R) and such that c2(t) satisfies the
negative feedback condition

c2(t) < 0 for all t ∈ R.(2.11)

Notice that (2.10) arises naturally in studying the original DDE (1.1) with
f ∈ X−. Indeed, let x∗(t), x†(t), t ≥ 0, be two different solutions of (1.1).
Then ẋ∗(t) solves (2.10) with the coefficients

c1(t) = ∂1f(x
∗(t), x∗(t− 1)), c2(t) = ∂2f(x

∗(t), x∗(t− 1)).(2.12)

Furthermore, the difference x∗(t)− x†(t) also solves (2.10) by choosing

c1(t) =

∫ 1

0

∂1f(θx
∗(t) + (1− θ)x†(t), x∗(t− 1)) dθ,

c2(t) =

∫ 1

0

∂2f(x
†(t), θx∗(t− 1) + (1− θ)x†(t− 1)) dθ.

(2.13)
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In either (2.12) or (2.13), the inequality (2.11) is induced by the negative feed-
back assumption (2.1). The method of steps used in solving (2.4) allows us to
produce an evolution Sc(t, s) : H → H via the relation Sc(t, s)ys = yt, that
is, a two-parameter family of linear operators solving the nonautonomous
DDE (2.10) for all t ≥ s.

We show the regularity properties of Sc(t, s) in Proposition A.2. The most
relevant is the continuity with respect to perturbations of the coefficients cj(t)
and the initial condition ψ ∈ H.

The negative feedback (2.11) becomes particularly important after we de-
fine the sign changes of of a function ψ ∈ H \ {0}. In other words, the
possibly infinite quantity

sc(ψ) := sup {k ∈ N : ψ(θi)ψ(θi+1) < 0, −1 < θ1 < · · · < θk+1 < 0} .(2.14)

For all ψ ∈ H \ {0}, the zero number is the value

z(ψ) :=


sc(ψ) if sc(ψ) <∞ is odd,
sc(ψ) + 1 if sc(ψ) <∞ is even,
∞ otherwise.

(2.15)

The zero number is, by construction, lower semicontinuous. However,
it is continuous at C1-functions ψ∗ ∈ H possessing solely simple interior
zeros, provided that the convergence occurs in the uniform C1-norm. In
turn, C1-convergence can be enforced by solving the DDE (2.10) for a small
amount of time. The following lemma covers a common situation throughout
our work.

Lemma 2.1. The zero number (2.15) is lower semicontinuous, i.e., given a
sequence ψ(n) n→∞−−−→ ψ∗ in the H-norm, then

z(ψ∗) ≤ lim inf
n→∞

z
(
ψ(n)

)
.(2.16)

Moreover, let Sc(t, 0) be the solution operator of the linear equation (2.10).
We denote by S(n)

c (t, 0) the solution operator of

ẏ(n)(t) = c
(n)
1 (t)y(n)(t) + c

(n)
2 (t)y(n)(t− 1),

with scalar coefficients in BC1(R+,R) satisfying the pointwise limit

c
(n)
j (t)

n→∞−−−→ cj(t), j = 1, 2.
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If there exists a t∗ > 1 such that all the zeros of ψ̃∗ := Sc(t
∗, 0)ψ∗ are simple

and are contained in the open interval (−1, 0), then there exists an n0 ∈ N
such that

z
(
S(n)
c (t∗, 0)ψ

(n)
0

)
= z

(
ψ̃∗
)
<∞, for all n > n0.(2.17)

Proof. The lower semicontinuity (2.16) follows by definition; see [MPS96a].
The continuity (2.17) is a corollary to [MPS96a, Theorem 4.4]. Indeed, by
continuous dependence on the linear coefficients c(n)j , j = 1, 2, we have the
pointwise limit

|ẏ(n)(t∗ + θ)− ẏ(t∗ + θ)| for all θ ∈ [−1, 0].

Thus the limit

S(n)
c (t∗, 0)ψ(n) n→∞−−−→ ψ̃∗,

happens in the uniform C1-norm ∥ · ∥C1 . Following [MPS96a, Theorem 4.4],
the implicit function theorem shows that the set of C1-functions with simple
zeros inside (−1, 0) is open in the C1-topology. Thus there exists a δ > 0 such
that z(ψ̃) = z(ψ̃∗) <∞ for all ψ̃ ∈ C1([−1, 0],R) satisfying ∥ψ̃ − ψ̃∗∥C1 < δ.
In particular z(Sc(t∗, 0)ψ(n)) = z(ψ̃∗) < ∞ for all n ∈ N sufficiently large,
which shows (2.17) and completes the proof.

Provided that it is finite, the zero number (2.15) acts as a discrete valued
entropy or discrete Lyapunov function for the linear DDE (2.10). More pre-
cisely, the zero number evaluated along solutions yt := Sc(t, s)ys of (2.10) is a
monotonically nonincreasing function, dropping strictly near multiple zeros
y(t∗) = ẏ(t∗) = 0, as shown in the following proposition.

Proposition 2.2 ([MPS96b, Theorems 2.1–2.2]). Let y(t), t ∈ [s − 1,∞)
solve the linear nonautonomous equation (2.10) for t ≥ s. Then

z(yt2) ≤ z(yt1) for all s ≤ t1 ≤ t2.

Moreover, if y(t∗) = ẏ(t∗) = 0 for some t∗ ∈ [s+3,∞), then the zero number
must have dropped strictly, i.e.,

either z(yt∗) < z(yt∗−3) or z(yt∗) =∞.
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Proposition 2.2 only provides valuable information if the zero number is
finite. Nevertheless, this is always the case for solutions of the original DDE
(1.1) lying on the global attractor.

Lemma 2.3. Let f ∈ X−. If ϕ, ϕ̃ ∈ A(f) and ϕ ̸= ϕ̃, then

z(ϕ− ϕ̃) <∞.

Furthermore, if ϕ is nonconstant, then we also have

z(ϕ̇) <∞.

Proof. Indeed, since we chose different solutions, z(Sf (t)ϕ−Sf (t)ϕ̃) is defined
for all t ∈ R. Denoting by x∗(t) and x†(t) the solutions with initial condition
ϕ and ϕ̃, respectively, the difference x∗(t) − x†(t) is uniformly bounded for
t ∈ R and solves (2.10) with the choice of uniformly bounded coefficients
(2.13). Applying [MPS96b, Theorem 2.4] we obtain z(Sf (t)ϕ−Sf (t)ϕ̃) <∞
for all t ∈ R. The proof is completely analogous for ϕ̇ if we consider the
coefficients (2.12) instead.

A significant consequence is that the planar projection

P : H → R2

ϕ 7→ (ϕ(0), ϕ(−1)),
(2.18)

defines a homeomorphism ω(ϕ) ∼= Pω(ϕ) ⊂ R2 for all ϕ ∈ H; see [MPS96a,
Theorem 2.1]. In particular, this planar homeomorphism property yields a
Poincaré–Bendixson theorem.

Proposition 2.4. If f ∈ X−, then for all ϕ ∈ H either ω(ϕ) = γ0 or ω(ϕ)
is a single periodic orbit.

Proof. By the even-odd symmetry of f ∈ X−, the zero function 0 is the
only equilibrium in Crit(f). Thus the result follows from [MPS96a, Theorem
2.1].

The Poincaré–Bendixson theorem 2.4 highlights the importance of
the set Crit(f) as it contains the orbits to which trajectories of the semiflow
Sf (t) can accumulate in the forward time direction. Moreover, an analog of
Proposition 2.4 holds replacing ω-limit sets by α-limit sets [KW01, Proposi-
tion 4.2]. Thus we obtain a finer decomposition of the attractor.
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Proposition 2.5. If f ∈ X−, then A(f) admits the decomposition

A(f) = Per(f) ∪ Conn(f).

Proof. All that is needed is an analog of Proposition 2.4 in the backward time
direction. For positive delayed feedback systems satisfying ∂2f(ξ, η) > 0 for
all (ξ, η) ∈ R2, this is true by [KW01, Proposition 4.2]. However, the main
argument is that the methods used to prove the original Poincaré–Bendixson
theorem [MPS96a, Theorem 2.1] can be used after reversing time on the
global attractor A(f). This procedure can also be performed in our setting.

The main implication of Proposition 2.5 is that the hub of recurrent dy-
namics in the attractor A(f) consists solely of periodic orbits and equilibria,
and the rest of the dynamics are transient connections between critical ele-
ments.

Provided that Crit(f) contains N + 1 elements, Proposition 2.5 allows
us to define the phase diagram Γ(f), that is, a directed graph describ-
ing the global attractor. The vertices of Γ(f) are the critical elements
{γ0, γ1, . . . , γN} = Crit(f) and the ordered pair (γ†, γ∗) is an edge of Γ(f) if
and only if there exists a ϕ ∈ Conn(f) such that α(ϕ) = γ† and ω(ϕ) = γ∗.

More importantly, the projection (2.18) also endows all periodic solutions
with unique properties that we summarize as follows.

Lemma 2.6. Let x∗(t) and x†(t) be two periodic solutions of the DDE (1.1)
with f ∈ X− and let us denote their orbits by γ∗ and γ† and their minimal
periods by p and p†, respectively. Then, the following statements hold:

(i) The planar projection Pγ∗ is an embedding of γ∗. In particular, Pγ∗
is a simple closed C1-curve in R2.

(ii) The planar projections of two different orbits γ∗ and γ† do not intersect,
i.e.,

Pγ∗ ∩ Pγ† ̸= ∅ if and only if γ∗ = γ†.

(iii) x∗(t) is sinusoidal, i.e., it moves monotonically in between its positive
maximum and negative minimum values, and it reaches them exactly
once over every minimal period.
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(iv) x∗(t) has the odd symmetry

x∗(t) = −x∗
(
t− p

2

)
.(2.19)

(v) Pγ∗ contains Pγ0 = (0, 0) in its interior region.

(vi) z(x∗t ) = z(ẋ∗t ) and z(x∗t −x
†
t+t∗) are independent of t, t∗ ∈ R. Moreover,

if x∗t ̸= x∗t+t∗, then z(ẋ∗t ) = z(x∗t − x∗t+t∗).

Proof. Part (i) follows from [MPS96a, Theorem 2.1]. Part (ii) is [MPS96a,
Lemma 5.7] and (iii) is [MPS96a, Theorem 7.1]. Part (iv) follows from
[MPS96a, Theorem 7.2] and Part (v) is [MPS96a, Corollary 7.4] for the spe-
cial case in which x ≡ 0 is the only equilibrium of the DDE (1.1). To show
Part (vi), z(ẋ∗t ) is constant in t by [MPS96a, Lemma 5.1], since ẋ∗(t) solves
(2.21) with coefficients (2.12). Likewise, z(x∗t ), z(x∗t−x

†
t+t∗), and z(x∗t−x∗t+t∗)

are constant because of [MPS96a, Lemma 5.1]. The equality, z(x∗t ) = z(ẋ∗t )
follows from Part (iii) above. Finally, to see z(ẋ∗t ) = z(x∗t − x∗t+t∗), notice
that

z(x∗t − x∗t+t∗) = z

(
x∗t − x∗t+t∗

t∗

)
(2.20)

is independent of the choice of an arbitrarily small t∗ > 0 and the right-hand
side of (2.20) approximates ẋ∗t as t∗ → 0. Shifting t, if necessary, so that all
the sign changes of ẋ∗t take place in the interior of [−1, 0], the continuity of
the zero number (2.17) in Lemma 2.1 guarantees that for t∗ small enough

z

(
x∗t − x∗t+t∗

t∗

)
= z(ẋ∗t ),

thereby completing the proof.

2.4 Sturm–Liouville eigenvalue structure

We now focus our attention on the behavior of the solutions of the DDE
(1.1), close to a critical element γ∗. We denote S := Sf (p) where p > 0
is the minimal period of γ∗ ∈ Crit(f) in case γ∗ is a periodic orbit, and
p = 1, in case γ∗ = γ0. The standard Floquet theory [HVL93] ensures
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Figure 2.1: (Left) Schematic picture for a sinusoidal periodic solution of the DDE
(1.1). (Right) Disjoint planar projections of two different periodic orbits.

that the spectrum of the Fréchet derivative in H of S at any point x∗0 ∈ γ∗
characterizes the local orbital stability of γ∗. We call monodromy operator
to such derivative and denote it by M := DS(x∗0). Here we omit x∗0 in the
notation of the monodromy operator because it is known that the spectrum
Spec(M) is independent of the choice of x∗0.

We denote by x∗(t) the solution of (1.1) with the initial condition x∗0 ∈ γ∗.
By Proposition A.2, M coincides with the time-p evolution Sc(p, 0) of the
initial value problem (2.10) with the linear coefficients given by (2.12). Since
it plays a special role throughout the rest of the work, we denote the linearized
equation at a critical element via

ẏ(t) = A(t)y(t) +B(t)y(t− 1)(2.21)

with the linear coefficients

A(t) := ∂1f(x
∗(t), x∗(t− 1)) and B(t) := ∂2f(x

∗(t), x∗(t− 1)).

Additionally, the even-odd symmetry of the nonlinearity (2.2), together with
the odd symmetry of the solutions (2.19) imply that the coefficients in (2.10)
have period p/2, i.e., A(t + p/2) = A(t) and B(t + p/2) = B(t). Because of
this p/2-periodicity, we consider N given by the time-p/2 solution operator of
(2.10). Due to the trivial relation M = N2, we call N the half-monodromy
operator of γ∗.

Moreover, by Proposition A.3, there exists an integer n ≥ 1 such that
N2n is a compact operator on H. Hence the spectrum Spec(N) consists of
0 and countably many eigenvalues accumulating to 0. Since the spectrum of
N is independent of the choice of a base point x∗0 ∈ γ∗, we call the eigen-

29



values of N half-multipliers of the critical element γ∗. In analogy, we call
characteristic multipliers of γ∗ to the eigenvalues of M .

A remarkable consequence of the negative delayed feedback assumption
(2.2) is that the eigenfunctions of N associated with eigenvalues of smaller
size have a larger zero number (2.15).

Proposition 2.7 ([MPN13, Theorem 5.1]). Consider f ∈ X− and let N
(resp., M) be the half-monodromy operator (resp., monodromy operator) of
γ∗ ∈ Crit(f). Then the spectrum of N (resp., M) consists of countably many
pairs of eigenvalues {µ2j−1, µ2j}. The eigenvalues admit the ordering

|µ1| ≥ |µ2| > |µ3| ≥ |µ4| > · · · > |µ2j−1| ≥ |µ2j| > . . .
j→∞−−−→ 0,

counting algebraic multiplicities. For each j ∈ N, the corresponding pair
of eigenvalues satisfies µ2j−1µ2j > 0 and is associated to a real generalized
eigenspace

Ej := Re

(
∞⋃
k=1

ker(µ2j−1 Id−N)k ⊕
∞⋃
k=1

ker(µ2j Id−N)k

)
,(2.22)

such that dim(Ej) = 2. Furthermore, all the generalized eigenfunctions ψj ∈
Ej satisfy

z(ψj) = 2j − 1.

We refer to Proposition 2.7 as the Sturm–Liouville eigenvalue struc-
ture to highlight the qualitative resemblance to the well-known boundary
value problem in linear second-order ODEs; see [CL55]. We also point out
that originally Mallet-Paret and Nussbaum [MPN13, Theorem 5.1] showed
their results for the analog of N (resp., M) defined on the larger space C
of continuous functions. However, Proposition 2.7 holds on H because all the
eigenfunctions of the operatorN (resp.,M) belong at least to C1([−1, 0],R) ⊂
H.

Notice that, since M = N2, Spec(M) consists of the squares of the eigen-
values Spec(N). Moereover, M andN share the same generalized eigenspaces
Ej in (2.22).

The quantity i(γ∗) is called the Morse index or unstable dimension
of the periodic orbit γ∗. By i(γ∗), we denote the number of characteristic
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multipliers of γ∗ with an absolute value bigger than 1, counting algebraic
multiplicities. We say that a critical element γ∗ is hyperbolic if γ∗ has at
most one characteristic multiplier on the unit circle, counting multiplicities.

If γ∗ is a periodic orbit, differentiating the original DDE (1.1) shows
that ẋ∗(t) is a periodic solution of the linearized equation (2.21). Further-
more, the odd symmetry in Lemma 2.6 (iv) yields that ẋ∗0 is an eigenvec-
tor of the half-monodromy operator N , associated with the half-multiplier
−1 ∈ Spec(N). Within our setting, we can distinguish the following three
situations for a periodic orbit γ∗.

Corollary 2.8. In the setting of Proposition 2.7, let γ∗ be a periodic orbit.
Then there exists a real half-multiplier µc < 0 of γ∗ associated with Ψ ∈
ker(µcI − N)2, a real generalized eigenfunction satisfying z(Ψ) = z(ẋ∗0) and
Ψ ̸∈ SpanR{ẋ∗0}. Moreover, exactly one of the following statements holds:

(i) µc < −1, γ∗ is hyperbolic, dimRe(ker(µcI−N)) = 1, and i(γ∗) = z(ẋ∗0).

(ii) µc > −1, γ∗ is hyperbolic, dimRe(ker(µcI − N)) = 1, and i(γ∗) =
z(ẋ∗0)− 1.

(iii) µc = −1, γ∗ is not hyperbolic, dimRe(ker(−I−N)2) = 2, and i(γ∗) =
z(ẋ∗0)− 1.

In either case, the estimate z(ẋ∗0) ≥ i(γ∗) holds.

Proof. Let z(ẋ∗0) = 2k−1 for some k ∈ N. Recall that for a periodic orbit we
always have −1 ∈ Spec(N). Via Proposition 2.7 we have that µ2k−1µ2k > 0
and (i)–(iii) in Corollary 2.8 correspond to the cases (i) µc = µ2k−1 < −1 and
µ2k = −1, (ii) µ2k−1 = −1 and µc = µ2k > −1, and (iii) µc = µ2k−1 = µ2k =
−1. In either of the three cases, µc is real. Thus we can pick a real generalized
eigenfunction Ψ ∈

⋃∞
k=1 ker(µc Id−N)k so that Ek = SpanR{ẋ∗0,Ψ}, which

completes the proof.

Since µc is the real pair of the trivial half-multiplier −1, in the sense of
Proposition 2.7, it completely characterizes the unstable dimension and the
hyperbolicity of the periodic orbit γ∗. Thus we say that µc is the critical
half-multiplier of γ∗ with critical eigenfunction Ψ. However, the critical
half-multiplier is ill-defined when linearizing at the origin γ0. At γ0, the
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pairs of eigenvalues in Proposition 2.2 are complex conjugates. As a result,
we obtain a finer description of the characteristic multipliers that we show
in the next lemma.

Lemma 2.9. Let f ∈ X− and denote B := ∂2f(0, 0). Then

i(γ0) =

{
0 if B ∈

[
−π

2
, 0
)
,

2n if B ∈
[
− (4n+1)π

2
,− (4n−3)π

2

)
.

(2.23)

In other words, Bn = (4n − 3)π/2 are Hopf points at which M possesses
a simple pair of complex conjugate eigenvalues {µi(γ0), µi(γ0)+1} such that
|µi(γ0)| = |µi(γ0)+1| = 1.

Proof. Since the nonlinearity f ∈ X− in (1.1) is even in the first component,
we have that ∂1f(0, 0) = 0. Therefore, N is the time-1/2 evolution Sc(1/2, 0)
solving the autonomous equation

ẏ = By(t− 1), t ≥ 0.(2.24)

Following [HVL93], it is known that the relation µk = eνk/2 connects the
half-multipliers µk of γ0 with the roots νk of the characteristic equation

ν = Be−ν .(2.25)

Notice that (2.25) possesses purely imaginary roots if and only if

0 = B cos(ν),

ν = −B sin(ν).

Thus (2.25) has imaginary solutions at B = −(4n − 3)π/2, n ∈ N, only.
These values correspond to Hopf bifurcation points at which sin(−Bt) and
cos(−Bt) solve (2.24). Choosing eigenfunctions ψn(θ) := sin((4n− 3)πθ/2),
θ ∈ [−1, 0], we have that z(ψn) = 2n − 1. Hence Proposition 2.7 yields the
values (2.23) for the Morse index, completing the proof.
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Chapter 3

Invariant manifolds

Given a critical element γ∗ ∈ Crit(f), the neighboring initial conditions
ϕ ∈ H that converge towards γ∗ in the backward time direction lie on the
local unstable manifold W u

loc(γ
∗). Likewise, in the forward time direction,

we obtain the so-called local stable manifold denoted W s
loc(γ

∗). Although
the manifold structure ofW u

loc(γ
∗) andW s

loc(γ
∗) is well known for a hyperbolic

critical element γ∗ [HVL93, Chapter 10], this chapter settles three aspects:

1. We construct global versions of W u
loc(γ

∗) and W s
loc(γ

∗). Indeed, the
initial conditions ϕ ∈ Conn(f) are those such that Sf (t)ϕ belongs to a
local invariant manifold for large |t|. However, ϕ itself need not belong
to any local invariant manifold. To circumvent this issue, we study the
global sets

W u(γ∗) :=

{
ϕ ∈ H : lim

t→−∞
dist(Sf (t)ϕ, γ

∗) = 0

}
,(3.1)

W s(γ∗) :=
{
ϕ ∈ H : lim

t→∞
dist(Sf (t)ϕ, γ

∗) = 0
}
.(3.2)

2. We need an accurate description of the tangent spaces of the invari-
ant manifolds above. This level of detail will be fundamental in the
upcoming discussion of transverse intersections in Chapter 4.

3. If γ∗ is nonhyperbolic, the invariant manifolds above may develop
boundaries. We discuss the center manifold dynamics in case the equi-
librium at the origin γ∗ = γ0 is nonhyperbolic and show that the sets
(3.1)–(3.2) are indeed differentiable manifolds.
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Notice that the sets (3.1)–(3.2) are Sf (t)-invariant by construction. More-
over, they satisfy

W u(γ∗) := {ϕ ∈ H : α(ϕ) = γ∗} ,
W s(γ∗) := {ϕ ∈ H : ω(ϕ) = γ∗} .

Thus the connecting points Conn(f) correspond to intersections

W u(γ†) ∩W s(γ∗),

for γ†, γ∗ ∈ Crit(f). Nevertheless, it is not apparent that (3.1)–(3.2) should
carry a manifold structure. We prove this by subscribing to the viewpoint of
Hale et al. [CCH92], who regard γ∗ as a set consisting of fixed points under a
time map S := Sf (p), where p is the minimal period if γ∗ is a periodic orbit
and p = 1 if γ∗ = γ0. Thus, our approach to invariant manifold theory follows
the perspective of discrete map iterations going back to the work of Perron
and Hadamard; see [HPS77] and the references therein. This viewpoint uses
smooth cutoff functions extensively, however, the problem of finding smooth
cutoff functions is rooted in functional analysis and they do not exist in C.
It is for this reason that we chose H as a history space. Our method of proof
relies on three steps that we exemplify using (3.2):

Step 1: Construction of a local manifold W s
loc(γ

∗) for the discrete map S
near a S-fixed point x∗0 ∈ γ∗. In particular, we choose a local
manifold consisting of a single chart (W s

loc(γ
∗), P s), where P s is the

canonical projection onto a suitable subspace of H. We summa-
rize the mathematical framework required for this construction in
Appendix C.

Step 2: Showing that there exists t∗ > 0 such that

W s(γ∗) =
⋃
m≥0

Sf (mt
∗)−1 (W s

loc(γ
∗)) ,(3.3)

holds for the global stable set in (3.2). We emphasize that (3.3) does
not imply that all initial conditions on the local stable manifold
produce eternal solutions. Rather, it shows that W s(γ∗) is the
maximal backward extension of W s

loc(γ
∗), as a set.

Step 3: Definition of an atlas on the global extension (3.3) by using Sf (t∗)
to build new charts (Sf (t

∗)−1W s
loc(γ

∗), P s ◦ Sf (t∗)) via translation
of the local chart (W s

loc(γ
∗), P s). The union of manifolds obtained
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in this way remains a manifold because Sf (t∗) is injective and the
Fréchet derivative D(Sf (t

∗))(ϕ) has a dense range, by Lemmata A.4
and A.5.

We highlight that Step 2 produces injectively immersed manifolds rather than
embedded ones. In particular, W s(γ∗) constructed in this way is allowed to
self-intersect and accumulate to itself. Hence W s(γ∗) is not a manifold in the
relative subset topology of the history space H, but rather when equipped
with the base inherited from translating the relative subset topology of the
fundamental domain W s

loc(γ
∗).

The remaining sections of the chapter are dedicated to the study of a hy-
perbolic equilibrium, a nonhyperbolic equilibrium and a hyperbolic periodic
orbit, respectively. We use the notation that S−1ϕ represents the unique
preimage of ϕ under S and extend it to the Fréchet derivative. Thus, from
this point, DS−1(ϕ)ψ represents the unique preimage of ψ under DS(S−1ϕ),
provided that it exists.

3.1 Hyperbolic equilibrium

Recall from Proposition 2.7 and Lemma 2.9 that the characteristic multipliers
at the equilibrium γ0 are the eigenvalues µj of the monodromy operator
M := DS(0) and can be ordered with repetitions so that

|µ1| ≥ |µ2| > · · · ≥ |µi(γ0)| > 1 ≥ |µi(γ0)+1| ≥ · · · → 0.

This way, we obtain an M -invariant splitting denoted by

H = Hu ⊕Hs,

into an unstable eigenspace Hu and a stable eigenspace Hs. Recall that
i(γ0) is always even by Lemma 2.9, thus we choose

Hu :=
⊕

j≤i(γ0)/2

Ej and Hs := (Hu)⊥ .

Here Ej denotes the real generalized eigenspaces as in Proposition 2.7 and
⊥ denotes the closed complement in H. In particular, dimHu = i(γ0) =
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codim Hs is the Morse index of the origin. Moreover, since γ0 is hyperbolic,
we have that

inf {|µ| : µ ∈ Spec(M |Hu)} > 1

sup {|µ| : µ ∈ Spec(M |Hs)} < 1,
(3.4)

thus meeting the conditions of Theorem C.3.

Theorem 3.1. Let γ0 be a hyperbolic equilibrium of the DDE (1.1) with
f ∈ X−. Then the Sf (t)-invariant sets (3.1)–(3.2) are injectively immersed
C2-manifolds. Moreover, dimW u(γ0) = codim W s(γ0) = i(γ0) and W u(γ0)
satisfies

W u(γ0) =

{
ϕ ∈ H : lim

n→−∞
Snϕ = 0

}
,

TϕW
u(γ0) =

{
ψ ∈ H : lim

n→−∞
DSn(ϕ)ψ = 0

}
.

(3.5)

Likewise, for W s(γ0) we have the characterization

W s(γ0) =
{
ϕ ∈ H : lim

n→∞
Snϕ = 0

}
,

TϕW
s(γ0) =

{
ψ ∈ H : lim

n→∞
DSn(ϕ)ψ = 0

}
.

(3.6)

Proof. We show (3.6) and (3.5) follow along the same steps in the backward
time direction. We use κ = 1 in the splitting of Theorem C.3 and construct
a local 1-stable manifold W 1,s

loc (γ0) close to γ0. Moreover, since 1 ̸∈ Spec(M),
Corollary C.2 shows that W ss

loc(γ0) = W 1s
loc(γ0) and by Theorem C.6 W 1,s

loc (γ0)
is locally unique. In particular, we can choose a neighborhood U of γ0 such
that

W 1s
loc(γ0) =

{
ϕ ∈ U :

{Snϕ}n≥0 ⊂ U and
lim
n→∞

Snϕ = 0

}
,(3.7)

TϕW
1s
loc(γ0) =

{
ψ ∈ H : lim

n→∞
DSn(ϕ)ψ = 0

}
.

Furthermore, W s
loc(γ0) := W 1s

loc(γ0) is C2-diffeomorphic to an open subset
of Hs via the canonical projection P s : H → Hs. Notice that for all t ∈
[n, n + 1] we can write Sf (t)ϕ = Sf (t − n)Snϕ, where t − n ∈ [0, 1]. For
every ϕ ∈ W s

loc(γ0), we have Snϕ → 0 and t − n is contained in a compact
set. Hence we conclude that limt→∞ Sf (t)ϕ = 0 and obtain the inclusion
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W s
loc(γ0) ⊂ W s(γ0), by definition (3.2). Conversely for all ϕ ∈ W s(γ0) we can

find an n0 ∈ N such that Snϕ ∈ W s
loc(γ0) for all n ≥ n0. This is immediate

since (3.2) implies limn→∞ Snϕ = 0 and W s
loc(γ0) is locally uniquely defined

as we discussed above. Thus we just showed that

W s(γ0) =
⋃
m≤0

SmW s
loc(γ0),(3.8)

which in turn implies

W s(γ0) =
{
ϕ ∈ H : lim

n→∞
Snϕ = 0

}
.

It is left to show that the representation (3.8) admits a manifold structure.
We know from Lemmata A.4 and A.5 that S is injective and DS(ϕ) has a
dense range for all ϕ ∈ H. Thus we proceed as in Step 3 above and use
[Hen81, Theorem 6.1.9] to construct charts near all ϕ ∈ W s(γ0) via transla-
tion of the local chart (W s

loc(γ0), P
s). The stable manifold equipped with this

atlas is an injectively immersed C2-manifold of codimension codim W s(γ0) =
codim Hs = i(γ0). To characterize the tangent spaces, we plug the trans-
lation by S into the characterization (3.7). In particular, by (3.8), given
ϕ̃ ∈ W s(γ0) we choose an m ≥ 0 such that Smϕ̃ ∈ W s

loc(γ0) and, by the chain
rule, the tangent space satisfies

Tϕ̃W
s(γ0) =

{
ψ ∈ H : DSm(ϕ̃)ψ ∈ TSmϕ̃W

s
loc(γ0)

}
=
{
ψ ∈ H : lim

n→∞
DSn(Smϕ̃)DSm(ϕ̃)ψ = 0

}
=
{
ψ ∈ H : lim

n→∞
DSn(ϕ̃)ψ = 0

}
.

(3.9)

3.2 Nonhyperbolic equilibrium

In the setting of Section 3.1 let us assume that γ0 is nonhyperbolic. Taking
into account Lemma 2.9, the ordered sequence of eigenvalues of M is now

|µ1| ≥ |µ2| > · · · > |µi(γ0)+1| = |µi(γ0)+2| = 1 > |µi(γ0)+3| ≥ · · · → 0.

Therefore, we obtain an M -invariant splitting of H possessing a center
eigenspace Hc, that is,

H = Hu ⊕Hc ⊕Hs,
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with

Hu :=
⊕

j≤i(γ0)/2

Ej, Hc := Ei(γ0)/2+1, and Hs := (Hu ⊕Hc)⊥ .

Notice that this splitting satisfies |µ| = 1 for all µ ∈ Spec(M |Hc) in addition
to (3.4). Recall that, by Lemma 2.9, the origin is nonhyperbolic, exactly,
at the Hopf points, i.e., the values ∂2f(0, 0) = −(4n − 3)π/2 for some n ∈
N. Furthermore, the center dimension always satisfies dimHc = 2, which
guarantees codim Hs = i(γ0) + 2. We also consider the further splitting into
the center-unstable, and center-stable eigenspaces of the form

H := Hcu ⊕Hs and Hu ⊕Hcs.

If γ0 is an isolated critical element, a center manifold reduction as in Ap-
pendix C produces the following dichotomy.

Theorem 3.2. Let γ0 be an isolated nonhyperbolic critical element of (1.1).
The Sf (t)-invariant sets (3.1)–(3.2) are injectively immersed C2-manifolds.
Moreover, exactly one of the two following situations occurs:

Case 1: The dynamics near γ0 are repelling in the center direction, more-
over, dimW u(γ0) = codim W s(γ0) = i(γ0)+2, and W u(γ0) in (3.1)
satisfies

W u(γ0) =

{
ϕ ∈ H : lim

n→−∞

Snϕ
κn

= 0 for all κ < 1

}
,

TϕW
u(γ0) =

{
ψ ∈ H : lim

n→−∞

DSn(ϕ)ψ
κn

= 0 for all κ < 1

}
.

(3.10)

In contrast, the convergence to γ0 along the stable set W s(γ0) in
(3.2) happens exponentially fast and satisfies

W s(γ0) =

ϕ ∈ H :
there exists κ < 1

such that lim
n→∞

Snϕ
κn

= 0

 ,

TϕW
s(γ0) =

ψ ∈ H :
there exists κ < 1

such that lim
n→∞

DSn(ϕ)ψ
κn

= 0

 .

(3.11)

Additionally, the global fast unstable manifold W uu(γ0) con-
taining all the solutions repelled by γ0 at an exponential rate is
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an injectively immersed C2-manifold of dimension dimW uu(γ0) =
i(γ0) characterized by

W uu(γ0) :=

ϕ ∈ H :
there exists κ > 1

such that lim
n→−∞

Snϕ
κn

= 0

 ,

TϕW
uu(γ0) =

ψ ∈ H :
there exists κ > 1

such that lim
n→−∞

DSn(ϕ)ψ
κn

= 0

 .

(3.12)

Case 2: γ0 is attracting in the center dimension, furthermore dimW u(γ0) =
codim W s(γ0) = i(γ0) and W u(γ0) in (3.1) satisfies

W u(γ0) =

ϕ ∈ H :
there exists κ > 1

such that lim
n→−∞

Snϕ
κn

= 0

 ,

TϕW
u(γ0) =

ψ ∈ H :
there exists κ > 1

such that lim
n→−∞

DSn(ϕ)ψ
κn

= 0

 .

Analogously to W u(γ0) in (3.10) above, the convergence to γ0 along
W s(γ0) may only happen at an algebraic rate. Thus, W s(γ0) satis-
fies

W s(γ0) =

{
ϕ ∈ H : lim

n→∞

Snϕ
κn

= 0 for all κ > 1

}
,

TϕW
s(γ0) =

{
ψ ∈ H : lim

n→∞

DSn(ϕ)ψ
κn

= 0 for all κ > 1

}
.

Additionally, the global fast stable manifold W ss(γ0) is the in-
jectively immersed C2-manifold of codimension codim W ss(γ0) =
i(γ0) + 2 satisfying

W ss(γ0) :=

ϕ ∈ H :
there exists κ < 1

such that lim
n→∞

Snϕ
κn

= 0

 ,

TϕW
ss(γ0) =

ψ ∈ H :
there exists κ < 1

such that lim
n→∞

DSn(ϕ)ψ
κn

= 0

 .

Proof. First, we use Theorem C.11 to see that Cases 1 and 2 are the only
possibilities. Hence we construct a nonunique local center manifold W c

loc(γ0)

39



meeting the assumptions of Corollary C.10. We must however be careful
to obtain a reduced two-dimensional ODE on W c

loc(γ0) from the DDE (1.1).
Indeed, the S-invariant center manifold produced by Theorem C.9 may not
be invariant under the semiflow Sf (t); see [Kri05]. To bypass this issue we
apply Theorem C.1 to a modified map Sδ which coincides with S within a
δ-ball Uδ around γ0. We ensure that Sδ is compatible with Sf (t) at the DDE
level by choosing Sδ := Sf̄ (1), solving the modified DDE

˙̄x = f̄(x̄t)

:= B x̄(t− 1) + σ

(
∥ x̄t ∥
δ

)
(f(x̄(t), x̄(t− 1))−B x̄(t− 1)) .

Here, σ is a smooth cutoff function that equals 1 within the unit ball in
H and has bounded support. Indeed, Sδ agrees with S within Uδ by con-
struction and, by the variation-of-constants formula; see [HVL93]. More-
over, we can choose δ > 0 so small that supϕ∈H ∥DSδ(ϕ) −M∥ is arbitrar-
ily small. Performing the flattening trick (C.7) in (C.8)–(C.9), we obtain
that Sδ admits a global center manifold W

c
(γ0). Moreover, Sδ commutes

with the semiflow Sf̄ (t) and agrees with Sf (t) sufficiently close to γ0. As a
result, the characterization in terms of asymptotics in Theorem C.1 guar-
antees that the Sδ-invariant center manifold W

c
(γ0) is also Sf̄ (t)-invariant,

i.e., Sf̄ (t)W
c
(γ0) = W

c
(γ0) for all t ∈ R. This in turn implies that for all

ϕ ∈ W c
loc(γ0) := W

c
(γ0)∩Uδ we can find t∗ > 0 such that for all t ∈ (−t∗, t∗)

we have Sf (t)ϕ ∈ W c
loc(γ0).

Let us denote xt := Sf (t)ϕ and choose coordinates so that

x(t+ θ) = ξ(t)Ψ(1)(θ) + η(t)Ψ(2)(θ) + hc
(
ξ(t)Ψ(1) + η(t)Ψ(2)

)
(θ),

where Hc = SpanR{Ψ(1),Ψ(2)} and hc : Hc → Hu ⊕ Hs is the C2-graph
representing the center manifold as in Lemma C.7. Recall from the proof of
Lemma 2.9 that, if B := ∂2f(0, 0) < 0, then we can choose Ψ(1)(θ) = cos(Bθ)
and Ψ(2)(θ) = − sin(Bθ), thereby obtaining

∂θΨ
(1) = −BΨ(2) and ∂θΨ

(2) = BΨ(1).

Differentiating x(t+ θ), we obtain that

∂tx(t+ θ) = ∂θx(t+ θ),

and projecting onto the eigenfunctions Ψ(1) and Ψ(2), we obtain ODEs in R2

of the form (
ξ̇

η̇

)
=

(
0 −B
B 0

)(
ξ

η

)
+ o(∥(ξ, η)∥2).(3.13)
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Here we used the Landau little-o notation. Therefore, the linearization at the
origin of the ODE (3.13) corresponds to a center in the traditional classifica-
tion of planar equilibria. Thus, following [CL55, Chapter 15, Theorem 4.1],
we face three possible scenarios for the reduced flow on the center manifold:

Case 1: The origin is unstable.

Case 2: The origin is asymptotically stable.

Case 3: The origin is an accumulation point of periodic initial conditions.

Since we prevented Case 3 by assuming that γ0 is an isolated critical element,
we find ourselves in either Case 1 or 2. In particular, for all δ > 0 we can
find a neighborhood U c of γ0 in W c

loc(γ0) such that clos(S−1U c) ⊂ Ů c in Case
1 and clos(SU c) ⊂ Ů c in Case 2.

From this point, we shall discuss Case 1 only and point out how to adapt
the proof to Case 2 towards the end. Using Theorem C.1 with κ = 1 + ε
and 0 < ε ≪ 1, by Theorem C.11, there exists δ > 0 and an open δ-ball
Uδ ⊂ H containing an open neighborhood U of γ0 such that we can construct
a center-unstable manifold that satisfies

W cu
loc(γ0) =

{
ϕ ∈ U :

{Snϕ}n≤0 ⊂ U and
lim

n→−∞
Snϕ = 0

}
.

Furthermore, the tangent space satisfies

TϕW
cu
loc(γ0) =

{
ψ ∈ H : lim

n→−∞

DSn(ϕ)ψ
κn

= 0 for all κ < 1

}
,

and W cu
loc(γ0) is C2-diffeomorphic to an open ball in Hcu via the canonical

projection P cu : H → Hcu. In addition, choosing κ = 1 + ε and κ = 1− ε in
Theorem C.1, we obtain a local fast unstable manifold W uu

loc(γ0) and a local
fast stable manifold W ss

loc(γ0), respectively. Choosing possibly different open
neighborhoods U of γ0, we may define them so that

W uu
loc(γ0) =

ϕ ∈ U :
{Snϕ}n≤0 ⊂ U and there exists κ > 1

such that lim
n→−∞

Snϕ
κn

= 0

 ,

TϕW
uu
loc(γ0) =

ψ ∈ H :
there exists κ > 1

such that lim
n→−∞

DSn(ϕ)ψ
κn

= 0

 ,
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and

W ss
loc(γ0) =

ϕ ∈ U :
{Snϕ}n≥0 ⊂ U and there exists κ < 1

such that lim
n→∞

Snϕ
κn

= 0

 ,

TϕW
ss
loc(γ0) =

ψ ∈ H :
there exists κ < 1

such that lim
n→∞

DSn(ϕ)ψ
κn

= 0


Moreover, W uu

loc(γ0) and W ss
loc(γ0) are C2-diffeomorphic to Hu and Hs via the

canonical projections P u and P s, respectively. Hence, at this point, we want
to show

W u(γ0) =
⋃
m≥0

SmW cu
loc(γ0),

W uu(γ0) =
⋃
m≥0

SmW uu
loc(γ0),

W s(γ0) =
⋃
m≤0

SmW ss
loc(γ0),

(3.14)

for the invariant sets (3.1)–(3.2). Once we have proved (3.14), the character-
izations (3.10), (3.11), and (3.12) follow immediately.

First, notice that (3.14) follows for W uu(γ0) because of the definition
(3.12).

Second, consider W u(γ0) in (3.14) and notice that W cu
loc(γ0) ⊂ W u(γ0)

follows automatically by the same argument as in Theorem 3.1, using the
semigroup property Sf (t)ϕ = Sf (t− n)Snϕ. Conversely, for all ϕ ∈ W u(γ0),
the definition (3.1) ensures that there exists an n0 ≤ 0 such that Snϕ ∈ U for
all n ≤ n0. This shows that Snϕ ∈ W cu

loc(γ0) and proves (3.14) for W u(γ0).

Third, we show (3.14) for W s(γ0). As above, the arguments used in The-
orem 3.1 to show W s

loc(γ0) ⊂ W s(γ0) also prove W ss
loc(γ0) ⊂ W s(γ0). To

see the reverse inclusion, consider ϕ ∈ W s(γ0), by the characterization (3.2)
there exists an n0 ≥ 0 such that Snϕ ∈ U for all n ≥ n0. Hence, the ex-
ponential attractivity in Lemma C.8 for the local center manifold W c

loc(γ0)
constructed above guarantees that Snϕ approaches W c

loc(γ0) at an exponen-
tial rate. However, since we are in Case 1 above, the only orbit in W c

loc(γ0)
that converges to γ0 under the forward iteration of S is γ0 itself. Therefore,
we can find a κ < 1 such that Snϕ ∈ W κs

loc(γ0) ⊂ W ss
loc(γ0), where W κs

loc(γ0) is a
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local κ-stable manifold as obtained by Theorem C.3. As a result, we obtain
W s(γ0) =

⋃
m≤0 SmW ss

loc(γ0).

Finally, from Lemmata A.4 and A.5, recall that S is injective and DS(ϕ) is
injective and has a dense range for all ϕ ∈ H. Since we have the S-invariance
properties

W cu
loc(γ0) ∩ SUδ ⊂ SW cu

loc(γ0),

W uu
loc(γ0) ∩ SUδ ⊂ SW uu

loc(γ0),

SW s
loc(γ0) ∩ Uδ ⊂ W s

loc(γ0),

we apply [Hen81, Theorem 6.1.9] and obtain that the invariant sets in (3.14)
are indeed injectively immersed C2-manifolds of the claimed dimensionality.
After applying the chain rule like in (3.9), we have characterized the tangent
spaces and concluded the proof for Case 1.

The method to show Case 2 is completely analogous except that we con-
struct a local center-stable manifoldW cs

loc(γ0) instead. As a result, the identity
(3.14) transforms into

W s(γ0) =
⋃
m≤0

SmW cs
loc(γ0),

W ss(γ0) =
⋃
m≤0

SmW ss
loc(γ0),

W uu(γ0) =
⋃
m≥0

SmW uu
loc(γ0).

Then we carry out the arguments above in the opposite time direction, com-
pleting the proof.

3.3 Hyperbolic periodic orbits

Let us now discuss the case in which γ∗ is a hyperbolic periodic orbit with
minimal period p. Analogously to the case of the equilibrium at the origin
discussed in Sections 3.1 and 3.2, we aim to discuss the geometric structure
of the sets (3.1)–(3.2). We denote by x∗(t) the periodic solution of (1.1) gen-
erating the orbit γ∗ and, denoting S := Sf (p), we consider the monodromy
operator M = DS(x∗0). By the discussion in Section 2.4, M always pos-
sesses a trivial eigenvalue 1 associated with the derivative ẋ∗0. Thus, with the
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ordering of Proposition 2.7, the characteristic multipliers satisfy

|µ1| ≥ |µ2| > · · · ≥ |µi(γ∗)| > 1 > |µi(γ∗)+2| ≥ · · · → 0.

Here, the parity of the unstable dimension i(γ∗) depends on the size of
the critical half-multiplier µc in Corollary 2.8. In particular, we have an
M -invariant splitting of H possessing a trivial center direction, that is,

H = Hu ⊕Hc ⊕Hs.

Denoting by Ψ the critical eigenfunction in Corollary 2.8 we have two different
configurations depending on µc:

(C1) If µc < −1, then i(γ∗) is odd and SpanR{Ψ} ≤ Hu.

(C2) If µc > −1, then i(γ∗) is even and SpanR{Ψ} ≤ Hs.

We start by constructing our manifold structure with respect to a Poincaré
first return map. Consider first the affine section H̄ := x∗0 + SpanR{ẋ∗0}⊥.
Here, ⊥ stands for the closed complement in H. Hence, by the Hahn–Banach
theorem, there exists a linear functional ℓ : H → R satisfying ℓ(ẋ∗0) = 1 and
SpanR{ẋ∗0}⊥ := ker(ℓ) ≤ H. Since ẋ∗0 ̸= 0, the section H̄ is transverse to the
semiflow Sf (t) at x∗0 by construction, i.e., Tx∗0H̄ + SpanR{ẋ∗0} = H. Recall
that

ℓ(Sx∗0 − x∗0) = 0,

and ∂tℓ(Sf (t)x
∗
0)|t=p = ℓ(ẋ∗0) = 1. Therefore, there exists an open neighbor-

hood x∗0 ∈ U ⊂ H on which we can define a C2-map T̄ : U → R solving

T̄ (x∗0) = p and ℓ(Sf (T̄ (ϕ))ϕ− x∗0) = 0 for all ϕ ∈ U .(3.15)

The map T̄ is the first return map giving the time it takes the semiflow
Sf (t) to return an initial condition ϕ ∈ U to the section H̄. Furthermore,
by Lemmata A.4 and A.5, the solution semiflow Sf (t) is injective and the
Fréchet derivative D(Sf (t))(ϕ) possesses a dense range for all t ≥ 0 and
ϕ ∈ H. Thus, the level sets Uτ := T̄ −1(τ) ∩ U yield a foliation of U by
codimension one manifolds. In particular, we can consider the first return
time from the leaf Uτ to itself by using the implicit function theorem to solve

T (x∗0) = p and T̄ (Sf (T (ϕ))ϕ)− T̄ (ϕ) = 0 for all ϕ ∈ U .(3.16)
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Indeed, denoting by M := DS(x∗0) the monodromy operator of γ∗, we obtain
by differentiating (3.15) that ℓ(ẋ∗0DT̄ (x∗0)ψ+Mψ) = 0 for all ψ ∈ H. Hence,
by the hyperbolicity of γ∗, DT̄ (x∗0)ψ = −ℓ(Mψ) and DT̄ (x∗0)ẋ∗0 = −1, which
allows us to obtain the C2-Poincaré time T : U → R. The composition

P : U → H

ϕ 7→ Sf (T (ϕ))ϕ,
(3.17)

is called the Poincaré map at x∗0. We summarize the main properties of
the Poincaré map and the T̄ -foliation of U as follows.

Lemma 3.3. In the notation above, both the Poincaré map P and the semi-
flow Sf (t) preserve the leaves Uτ of the foliation U =

⋃
τ∈(−ε,ε) Uτ , i.e.,

P(Uτ ) ∩ U ⊂ Uτ , Uτ ∩ P(U) ⊂ P(Uτ ), and Sf (t)Uτ ∩ U ⊂ Ut+τ for all
τ, t + τ ∈ (−ε, ε). Moreover, we have that DP(x∗0) = M and the Poincaré
time satisfies DT (x∗0) = 0.

Proof. Indeed, the invariance properties follow immediately from the con-
struction. To see DT (x∗0) = 0 and DP(x∗0) = M , we differentiate (3.16) at
x∗0 obtaining

DT̄ (x∗0) (ẋ∗0DT (x∗0)ψ +Mψ)−DT̄ (x∗0)ψ = 0 for all ψ ∈ H.

We showed above that DT̄ (x∗0)ψ = −ℓ(Mψ); thus we obtain DT (x∗0) = 0
and differentiating (3.17) we get

DP(x∗0)ψ = ẋ∗0DT (x∗0)ψ +Mψ

=Mψ,

which completes the proof.

After these preliminaries, we prove the section’s main theorem by charac-
terizing the manifolds (3.1)–(3.2) via exponential in-phase convergence. More
precisely, the stable and unstable manifolds of a hyperbolic periodic orbit ad-
mit a foliation by a one-parameter family of fast S-invariant manifolds along
which the convergence rate is exponential.

Theorem 3.4. Let γ∗ be a hyperbolic periodic orbit of the DDE (1.1). Then
the sets (3.1)–(3.2) are injectively immersed C2-manifolds whose dimensions
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satisfy dimW u(γ∗) = i(γ∗) + 1 and codim W s(γ∗) = i(γ∗). Moreover, the
unstable manifold (3.1) satisfies

W u(γ∗) =
⋃

τ∈[0,p)

ϕ ∈ H :
there exists κ > 1

such that lim
n→−∞

Snϕ− x∗τ
κn

= 0

 ,

TϕW
u(γ∗) =

{
ψ ∈ H : lim

n→∞

DSn(ϕ)ψ
κn

= 0 for all κ < 1

}
.

(3.18)

Likewise, the stable manifold (3.2) is given by

W s(γ∗) =
⋃

τ∈[0,p)

ϕ ∈ H :
there exists κ < 1

such that lim
n→∞

Snϕ− x∗τ
κn

= 0

 ,

TϕW
s(γ∗) =

{
ψ ∈ H : lim

n→∞

DSn(ϕ)ψ
κn

= 0 for all κ > 1

}
.

(3.19)

Proof. We show (3.19) and (3.18) is completely symmetric with respect to a
change in the time direction. First, consider the Poincaré map P defined in
(3.17) in a neighborhood U of x∗0 ∈ γ∗. We prove the identity

W s(γ∗) =
⋃
m≤0

Sf (mt
∗)W cs

loc(x
∗
0).(3.20)

where t∗ > 0 is chosen so that γ∗ ⊂
⋃
m≤0 Sf (mt

∗)U and W cs
loc(γ

∗) denotes
a local center-stable manifold built using Theorem C.11 for P in a δ-ball
∈ Uδ ⊂ H around x∗0. Choosing U small enough, we have that

W cs
loc(x

∗
0) =

ϕ ∈ U :
{Pn(ϕ)}n≥0 ⊂ U and

lim
n→∞

Pn(ϕ)
κn

= 0 for all κ > 1

 .

Consider first ϕ ∈ W s(γ∗), by construction of the Poincaré map P , we
can find an n0 ≥ 0 such for all n ≥ 0 we have Pn(Sf (n0t

∗)ϕ) ∈ U and
Pn(Sf (n0t

∗)ϕ) → γ∗. Hence Sf (n0t
∗)ϕ ∈ W cs

loc(x
∗
0) and we have proved

W s(γ∗) ⊂
⋃
m≤0 Sf (mt

∗)W cs
loc(x

∗
0).

To see the reverse inclusion, let ϕ ∈ W cs
loc(x

∗
0). By Lemma 3.3, if ϕ ∈ Uτ ,

then P(ϕ) ∈ Uτ stays on the same leaf as long as ϕ is chosen sufficiently close
to γ∗. In particular, it follows that Uτ ∩W cs

loc(x
∗
0) coincides with a local fast
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stable manifold for the hyperbolic map resulting from restricting P to the
invariant leaf Uτ . Therefore, by Theorem C.6, we may assume without loss
of generality that Pn(ϕ) ∈ Uτ for all n ≥ 0 and limn→∞Pn(ϕ) = x∗−τ ∈ γ∗.

Recall that T , the Poincaré time defined via (3.16), satisfies T (x∗0) = p.
Thus, for any sequence tk

k→∞−−−→ ∞ we can find sequences nk
k→∞−−−→ ∞ and

τk ∈ [0, 2p] such that

Sf (tk)x0 = Sf (τk)Pnk(x0).

Choosing a convergent subsequence, if needed, and denoting the limit τk →
τ ∗ ∈ [0, 2p], we conclude that

lim
k→∞

Sf (tk)ϕ = lim
k→∞

Sf (τk)Pnk(ϕ)

= Sf (τ
∗)x∗τ ∈ γ∗.

Hence, limt→∞ dist(Sf (t)ϕ, γ
∗) = 0, which shows W cs(x∗0) ⊂ W s(γ∗) and

proves the identity (3.20) by Sf (t)-invariance of W s(γ∗).

In order to see that W s(γ∗) is indeed a differentiable manifold of the
claimed codimension, notice that W cs

loc(x
∗
0) is C2-diffeomorphic to an open

ball in the center-stable eigenspace Hcs = (Hu)⊥ with the diffeomorphism
given by the canonical projection P cs onto Hcs. Recall that Sf (τ) is injective,
the derivative D(Sf (τ))(ϕ) has a dense range, and the local invariance

Sf (t
∗)W cs

loc(x
∗
0) ∩ Uδ ⊂ W cs

loc(x
∗
0)

holds by Lemma 3.3. Thus [Hen81, Theorem 6.1.9] allows us to extend the
local chart (W cs

loc(x
∗
0), P

cs) to an atlas on all of W s(γ∗) via the translation by
the map Sf (t∗).

In particular, we have shown that γ∗ is a hyperbolic periodic orbit with
unstable dimension equal to zero for the reduced semiflow resulting from
restricting Sf (t) to W s(γ∗). Under these conditions, the standard ODE proof
for in-phase convergence to the periodic orbit γ∗ holds; see [Ama83, Theorem
23.10]. This guarantees that for all ϕ ∈ W s(γ∗) there exist x∗r ∈ γ∗ and κ < 1
such that

lim
n→∞

Snϕ− x∗r
κn

= 0.(3.21)

Thus showing the first line in (3.19). To see the second line of (3.19), notice
that by (3.21) we can find a neighborhood U ⊂ H of x∗0 such that W s(γ∗) ∩
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U ⊂ W̃ cs
loc(x

∗
0) for a local center-stable manifold W̃ cs

loc(x
∗
0) built with respect to

S rather than P . In particular, by Theorem C.3, the tangent space satisfies

TϕW̃
cs
loc(γ

∗) =

{
ψ ∈ H : lim

n→∞

DSn(ϕ)ψ
κn

= 0 for all κ > 1

}
.

Furthermore, locally near x∗0, both W s(γ∗) and W̃ cs
loc(x

∗
0) are graphs over Hcs.

Hence, the description (3.19) holds for all ϕ ∈ W s(γ∗) sufficiently close to x∗0,
using the chain rule shows (3.19) and completes the proof.
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Chapter 4

Morse–Smale property

In this chapter, we develop sufficient conditions to characterize the structural
stability of a global attractor A(f) in terms of the local stability properties
of the individual critical elements γ∗ ∈ Crit(f). More precisely, the solution
semiflow Sf (t) solving the DDE (1.1) with f ∈ X− is called Morse–Smale,
if and only if:

(MS1) Crit(f) consists of finitely many hyperbolic orbits.

(MS2) The nonwandering set coincides with the set of periodic points.

(MS3) For all γ∗, γ† ∈ Crit(f), the invariant manifolds W u(γ†) and W s(γ∗)
defined in Chapter 3 intersect transversely, that is,

TϕW
u(γ†) + TϕW

s(γ∗) = H for all ϕ ∈ W u(γ†) ∩W s(γ∗).

If an intersection is transverse, we denote it by

W u(γ†)−⋔ W s(γ∗).

We generalize and call the attractor A(f) Morse–Smale if the semiflow
Sf (t) is Morse–Smale. Morse–Smale attractors have the quality that regular
perturbations of f ∈ X− leave the global attractor A(f) orbitally topologi-
cally unchanged.

Theorem 4.1 ( [Oli00, Theorem 3.2]). Let f ∈ X−. If A(f) is Morse–Smale,
then there exists δ > 0 such that for all f̃ ∈ X− satisfying ∥f − f̃∥BC2 < δ
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there is a homeomorphism Ξ : A(f)→ A(f̃) mapping orbits of Sf (t) to orbits
of Sf̃ (t) and preserving the time direction.

Those A(f) satisfying the conclusions of Theorem 4.1 are called A-stable.
Furthermore, we call any two attractors A(f) and A(f̃) related by a homeo-
morphism Ξ as above orbit equivalent. In particular, the phase diagrams
Γ(f) and Γ(f̃) of two orbit equivalent attractors are isomorphic as graphs.
Indeed, the orbit homeomorphism Ξ maps Crit(f) to Crit(f̃) while preserv-
ing the connections, thereby mapping the vertex set of Γ(f) to the vertex set
of Γ(f̃) and keeping the edges. Hence Ξ induces a trivial graph isomorphism
via vertex identification.

The main goal of this section is to characterize the Morse–Smale attrac-
tors A(f) with f ∈ X−. Within this setting, our method of proof of the
Morse–Smale property for two hyperbolic γ†, γ∗ ∈ Crit(f) is as follows:

Step 1: We relate the zero number evaluated on the invariant manifolds
W u(γ†) and W s(γ∗) to the unstable dimension i(γ∗). This allows us
to derive a gradient structure whereby (W s(γ†)\γ†)∩(W s(γ∗)\γ∗) ̸=
∅ implies i(γ†) > i(γ∗).

Step 2: As a consequence of Step 1, we show that if all the critical elements
γ∗ ∈ Crit(f) are hyperbolic, then the set of nonwandering points
Nw(f) consists of periodic points, only.

Step 3: For all ϕ ∈ W u(γ†) ∩ W s(γ∗), we follow [CCH92] and construct
Oseledets subspacesHu

j (ϕ) ≤ TϕW
u(γ†) andHs

j(ϕ) ≤ TϕW
s(γ∗).

Thanks to Step 1, the choice can be made so that dimHu
j (ϕ) =

codim Hs
j(ϕ) = 2j. Furthermore, the subspaces satisfy z(ψ) ≥

2j+1 for all ψ ∈ Hs
j(ϕ) and z(ψ) ≤ 2j−1 for all ψ ∈ Hu

j (ϕ), which
ensures

Hu
j (ϕ)⊕Hs

j(ϕ) = H.

Thus, in practice, checking (MS1) ensures that (MS2)–(MS3) hold automat-
ically. Nevertheless, requiring hyperbolicity is not essential for the existence
of transverse intersections. The fast invariant manifolds of a nonhyperbolic
equilibrium γ0 seen in Theorem 3.2 also possess transversality properties that
play a vital role in the future discussion of Hopf bifurcations.
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In Section 4.1 we introduce the Lyapunov numbers. Specialized technical
tools that we use to prove the results in the remainder of the section.

Section 4.2 uses the Lyapunov numbers to establish a relation between
the unstable dimension of a critical element and the zero number of the
initial conditions lying on its invariant manifolds. In particular, this induces
a gradient structure on the global attractor that Mallet-Paret used to define
Morse decompositions [MP88].

In Section 4.3, we used ideas inherited from the Morse decomposition
in [MP88] and show that if (MS1) holds then (MS2) follows automatically.

In parallel to Section 4.3, Section 4.4 uses the gradient structure above to
recover transversality results from [LN17]. Following [CCH92], we extend the
ideas in [LN17] and apply them to the case of a nonhyperbolic equilibrium
γ0.

Finally, in Section 4.5, we combine the results above to obtain the chapter’s
main result: that in our scenario (MS1) is a sufficient condition for checking
A-stability.

4.1 Lyapunov numbers

Given a critical element γ∗ ∈ Crit(f), we define the map S := Sf (p) with
p = 1 if γ∗ = γ0 and, if γ∗ is a periodic orbit, we choose p to be the minimal
period. For x∗0 ∈ γ∗, recall that the monodromy operator is the Fréchet
derivative M = DS(x∗0) in H-direction. We consider linear iterations of the
form

ψ(n+1) =Mnψ
(n), ψ(0) = ψ ∈ H,(4.1)

where Mn are a family of compact, bounded linear operators on H that
converge to M in the operator norm.

Recalling (2.10)–(2.13), the recursion (4.1) enters the DDE (1.1) naturally
when considering initial conditions ϕ ∈ H such that Snϕ→ x∗0 ∈ γ∗. Indeed,
denoting by x(t) the solution of (1.1) through ϕ ∈ H, we set Mn := S

(n)
c (p, 0)
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to be the time-p solution operator of the initial value problems

ẏ(n)(t) = c
(n)
1 (t)y(n)(t) + c

(n)
2 (t)y(n)(t− 1), t ≥ 0

y
(n)
0 = ψ(n).

(4.2)

If we choose the coefficients c(n)j (t), j = 1, 2 to be given by the linearization
along x(t), i.e.,

c
(n)
j (t) := ∂jf(x(t+ np), x(t+ np− 1)), j = 1, 2,(4.3)

then ψ(n) = ẋn satisfy (4.1). Moreover, if instead we choose the coefficients

c
(n)
1 (t) =

∫ 1

0

∂1f(θx(t+ np) + (1− θ)x∗(t), x(t+ np− 1))dθ,

c
(n)
2 (t) =

∫ 1

0

∂2f(x
∗(t), θx(t+ np− 1) + (1− θ)x∗(t− 1))dθ,

(4.4)

the difference of solutions ψ(n) = xn − x∗0 solves (4.1). In (4.3)–(4.4) the
pointwise limit c(n)j (t) −→ ∂jf(x

∗(t), x∗(t − 1)) for j = 1, 2 implies the limit
Mn

n→∞−−−→ M in operator norm by the continuity of the evolution in Propo-
sition A.2.

Our main tool for the rest of the chapter will be the asymptotic growth
and contraction rates of the sequence {ψ(n)} as n → ±∞. This can be
regarded as a generalization for the characteristic multipliers at a critical
element presented in Section 2.4.

Lemma 4.2. Let Mn
n→∞−−−→ M (resp., Mn

n→−∞−−−−→ M) be as above and as-
sume that the sequence {ψ(n)}n≥0 (resp., {ψ(n)}n≤0) satisfies (4.1). Then the
quantity

Λ+(ψ) := inf

{
κ > 0 : lim

n→∞

ψ(n)

κn
= 0

}
(resp., Λ−(ψ) := sup

{
κ > 0 : lim

n→−∞

ψ(n)

κn
= 0

}
)

is well-defined and there exists µ ∈ Spec(M) such that Λ+(ψ) = |µ| (resp.,
Λ−(ψ) = |µ|).

Proof. Indeed, by Proposition 2.7, the iteration (4.1) and the monodromy
operator M satisfy the assumptions of [CCH92, Corollary B.3 and Theorem
B.9].

52



Under the assumptions of Lemma (4.2), the quantity Λ+(ψ) is called Lya-
punov number of ψ with respect to (4.1). If we consider the limit n→ −∞
instead, we call Λ−(ψ) the backward Lyapunov number of ψ with respect
to (4.1). If the iteration (4.1) is generated by solving (4.2)–(4.3), the Lya-
punov numbers give a measure of the asymptotic distortion rate of the unit
sphere in H under the action of the linearized semiflow D(Sf (t))(ϕ). More-
over, typically the sequences {ψ(n)} define by the iteration (4.1) align with
the eigenfunctions of M in the following sense.

Lemma 4.3. Under the assumptions of Lemma 4.2, let µj denote the eigen-
values of M with the ordering in Proposition 2.7. If Λ+(ψ) ∈ {|µ2j−1|, |µ2j|}
(resp., Λ−(ψ) ∈ {|µ2j−1|, |µ2j|}), then there exists ψ∗ ∈ Ej and a subsequence
ψ(nk) such that

ψ(nk) :=
ψ(nk)

∥ψ(nk)∥
nk→∞−−−−→ ψ∗

(
resp., ψ(nk) nk→−∞−−−−−→ ψ∗

)
.

Here Ej denotes the two-dimensional real generalized eigenspace associated
with the pair of characteristic multipliers {µ2j−1, µ2j}, as defined in Proposi-
tion 2.7.

Proof. Indeed, by [CCH92, Theorem B.4], we have that {ψ(n)}n≥0 is precom-
pact and the compact ω-limit set of the sequence given by

ω

({
ψ(n)

}
n≥0

)
:=
⋂
n≥0

clos
({
ψ(m) : m ≥ n

})
,

is contained in the unit ball of Ej. Since dimEj = 2 by Proposition 2.7,
the closed unit ball is compact, and the existence of the accumulation point
ψ∗ ∈ Ej is guaranteed.

For the case n→ −∞, we apply [CCH92, Theorem B.9], hence the α-limit
set of the sequence

α

({
ψ(n)

}
n≤0

)
:=
⋂
n≤0

clos
({
ψ(m) : m ≤ n

})
is contained in Ej, which is two-dimensional. In particular, the accumulation
point ψ∗ exists.
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4.2 Invariant manifolds and the zero number

A posteriori, Lemma 4.2 allows us to reformulate the invariant manifold
theory in Chapter 3 in the language of Lyapunov numbers. In particular,
Lemma 4.3 and the Sturm–Liouville eigenvalue structure in Proposition 2.7
relate the zero number to the unstable dimension i(γ∗) of a critical element
γ∗ ∈ Crit(f). To be precise, we have the following.

Lemma 4.4. Let γ∗ ∈ Crit(f) with f ∈ X− be hyperbolic. For all ϕ ∈
W u(γ∗)\γ∗ (resp., ϕ ∈ W s(γ∗)\γ∗) there exists x∗0 ∈ γ∗ such that z(ϕ−x∗0) ≤
i(γ∗) (resp., z(ϕ− x∗0) > i(γ∗)).

Proof. We give the proof for ϕ ∈ W s(γ∗) \ γ∗, the case ϕ ∈ W u(γ∗) \ γ∗
follows along the same arguments after exchanging time directions and is
slightly simpler due to the finite dimensionality of W u(γ∗) and the fact that
the inequality is not strict. First, we consider a hyperbolic periodic orbit
γ∗ with minimal period p > 0 and later give the details for the hyperbolic
equilibrium γ0.

Given any ϕ ∈ W s(γ∗) \ γ∗ and denoting the solution through ϕ by x(t),
we know from Theorem 3.4 that there exists x∗0 ∈ γ∗ such that xnp

n→∞−−−→ x∗0.
Moreover, we have discussed in Section 4.1 that ψ(n) := (xnp−x∗0) satisfy the
iteration (4.1) for the choice Mn = S

(n)
c (p, 0). Here S(n)

c (p, 0) is the time-p
evolution solving (4.2) with the coefficients (4.4). Applying Lemma 4.2, there
exist a Lyapunov number Λ+(ψ) with respect to the sequence {ψ(n)}n≥0 and
µ ∈ Spec(M) such that Λ+(ψ) = |µ|. We distinguish two situations.

First, if Λ+(ψ) = 0, then the difference of solutions (x(t)−x∗(t)) converges
to zero at a superexponential rate, i.e.,

lim
t→∞

eβt|x(t)− x∗(t)| = 0 for all β ∈ R.

Applying [Cao90, Theorem 2.8], we conclude that z(ϕ − x∗0) = ∞ and our
claims hold.

Second, if Λ+(ψ) > 0, notice that the exponential convergence rate (3.19)
in Theorem 3.4 guarantees that Λ+(ψ) < 1. Denoting by µk the eigenvalues
of M ordered as in Proposition 2.7, there exists an eigenvalue pair such that
Λ+(ψ) ∈ {|µ2j−1|, |µ2j|}. Therefore, Lemma 4.3 shows that the normalized
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sequence

ψ(n) :=
ψ(n)

∥ψ(n)∥
,

accumulates to an eigenfunction ψ∗ ∈ Ej. Recalling from Proposition 2.7
that z(ψj) = 2j − 1 for all ψj ∈ Ej, we show that limn→∞ z(ψ(n)) = z(ψ∗).
To this end, we consider a small modification and shift the iteration by
defining

ψ̂
(n)

:=
Sf (np+ t∗)ϕ− x∗t∗
∥Sf (np+ t∗)ϕ− x∗t∗∥

n→∞−−−→ D(Sf (t
∗))(x∗0)ψ

∥D(Sf (t∗))(x∗0)ψ∥
=: ψ̂∗.(4.5)

Recalling that ψ∗ is an eigenfunction of M , Proposition 2.2 shows that ψ̂∗

possesses only simple zeros and satisfies z(ψ̂∗) = z(ψ∗). Furthermore, choos-
ing t∗ > 1 in such a way that (ψ̂∗(0), ψ̂∗(−1)) ̸= 0, we apply the continuity
of the zero number (2.17) in Lemma 2.1 to obtain z(ψ̂

(n)
) = z(ψ̂∗) = 2j − 1

for n ∈ N sufficiently large.

The monotonicity of the zero number in Proposition 2.2, ensures that
z(ϕ− x∗0) ≥ z(ψ̂

(n)
) ≥ 2j − 1. It is left to compare 2j − 1 to i(γ∗). For this,

recall that ẋ∗0 is an eigenfunction of M associated with the trivial multiplier
1. In particular, 1 > Λ+(ψ) guarantees that z(ψ∗) ≥ z(ẋ∗0) with the equality
happening only for the spectral configuration (C2) in Section 3.3. That is, if
1 = |µ2j−1|, Λ+(ψ) = |µ2j|, and 2j − 1 = i(γ∗) + 1. Since z(ẋ∗0) ≥ i(γ∗), by
Lemma 2.6 (vi), we have that z(ψ∗) > i(γ∗) in either case.

For a hyperbolic equilibrium γ∗ = γ0, a completely analogous study takes
p = 1 and x∗0 = 0. The main difference is that the eigenvalues of M come
in complex conjugate pairs; see Lemma 2.9. Hence we obtain that Λ+(ψ) =
|µ2j−1| = |µ2j| < 1. However, we still have the bound i(γ∗) > 2j−1, ensuring
the lemma holds.

Notice that the exponential in-phase convergence towards a hyperbolic pe-
riodic orbit in Theorem 3.4 is vital in showing the strict inequality z(ϕ−x∗0) >
i(γ∗) for ϕ ∈ W s(γ∗) \ γ∗ in Lemma 4.4. Nevertheless, if phase convergence
is removed, a weak version of Lemma 4.4 still holds by applying the same
methods.
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Lemma 4.5. Under the assumptions of Lemma 4.4, the zero number satisfies
z(ϕ − x∗0) ≤ i(γ∗) (resp., z(ϕ − x∗0) ≥ i(γ∗)) for all ϕ ∈ W u(γ∗) \ γ∗ (resp.,
ϕ ∈ W s(γ∗) \ γ∗) and x∗0 ∈ γ∗.

Proof. Indeed, Snϕ may converge to x∗t∗ ∈ γ∗ such that x∗t∗ ̸= x∗0. Taking
limits and applying Proposition 2.2 together with Lemma 2.6 (vi) we obtain
that

z(ϕ− x∗0) ≥ z(x∗t∗ − x∗0)
= z(ẋ∗0)

≥ i(γ∗).

Furthermore, the proof also applies if we consider an isolated nonhyper-
bolic equilibrium γ0 ∈ Crit(f).

Lemma 4.6. Let γ0 ∈ Crit(f) with f ∈ X− be isolated and nonhyperbolic.
If γ0 satisfies Theorem 3.2 Case 1 (resp., Case 2 ), then z(ϕ) < i(γ0) (resp.,
z(ϕ) > i(γ0)) for all ϕ ∈ W uu(γ0) \ γ0 (resp., ϕ ∈ W ss(γ0) \ γ0).

Proof. Indeed, the proof of Lemma 4.4 relies upon showing the strict inequal-
ities Λ+(ψ) < 1 and Λ−(ψ) < 1 for the Lyapunov numbers with respect to
the iteration (4.1) obtained by choosing ψ := ϕ − 0 and ψ(n) := Sf (n)ϕ. In
this case, the Lyapunov number inequalities are enforced by considering ini-
tial conditions on the fast invariant manifolds. The proof is then completed
by mimicking Lemma 4.4. We point out that, unlike in Lemma 4.7, in this
case the inequality is strict on the fast unstable dimension.

As a result, Lemma 4.4 induces a gradient structure on the set Crit(f).
More precisely, following an argument of Czaja and Rocha [CR08], we show
that the orbits connecting critical elements are only allowed to go in the
direction decreasing the Morse index.

Corollary 4.7. Let γ†, γ∗ ∈ Crit(f) with f ∈ X− be hyperbolic and assume
(W u(γ†) \ γ†) ∩ (W s(γ∗) \ γ∗) ̸= ∅. Then i(γ†) > i(γ∗). In particular, there
exists no homoclinic connection to γ∗, i.e., (W u(γ∗)\γ∗)∩(W s(γ∗)\γ∗) = ∅.
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Proof. Indeed, take ϕ ∈ (W u(γ†)\γ†)∩ (W s(γ∗)\γ∗) and let x(t) with t ∈ R
solve (1.1) with initial condition x0 = ϕ. Choosing x†0 and x∗0 as in Lemma
4.4, recall that the difference of solutions (x(t) − xι(t)) solves (2.10) with
the coefficients given by (2.13) for ι = †, ∗. Hence, by Proposition 2.2 and
Lemma 4.4, we have that

z(x0 − x†0) ≤ z(xt − x†t)
≤ i(γ†) for all t ≤ 0,

and

z(x0 − x∗0) ≥ z(xt − x∗t )
> i(γ∗) for all t ≥ 0.

By Lemma 2.6 (vi) and Proposition 2.2, all the zeros of (x†t − x∗t ) are simple,
moreover, shifting t if necessary, we may assume that (x†t(0) − x∗t (0)) ̸= 0
and (x†t(−1)− x∗t (−1)) ̸= 0. By the continuity of the zero number (2.17) in
Lemma 2.1, there exists δ > 0 such that if ∥xt−1 − x†t−1∥ < δ, then we have
that z(xt − x†t + x†t − x∗t ) = z(x†t − x∗t ). Since ϕ ∈ W u(γ†), we may always
choose t† < 0 so small that

i(γ∗) < z(x0 − x∗0)
≤ z(xt† − x†t† + x†

t†
− x∗t†)

= z(x†
t†
− x∗t†).

(4.6)

Furthermore, since ϕ ∈ W s(γ∗) \ γ∗, we may argue similarly for a sufficiently
large t∗ > 0 to obtain that

z(x†t∗ − x∗t∗) = z(x†t∗ + x∗t∗ − xt∗ − x∗t∗)
= z(x†t∗ − xt∗)
≤ z(x0 − x†0) ≤ i(γ†).

(4.7)

Finally, by Lemma 2.6 (vi) we have that z(x†
t†
− x∗

t†) = z(x†t∗ − x∗t∗), hence
we combine (4.6)–(4.7) to obtain i(γ∗) < i(γ†), as claimed.

4.3 Nonwandering set

In this section, we characterize the nonwandering set Nw(f), provided all
γ∗ ∈ Crit(f) are hyperbolic. To this end, notice that there is a minimal
distance between any two hyperbolic critical elements.
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Lemma 4.8. Let γ∗ be a hyperbolic critical element of the DDE (1.1), then
γ∗ is isolated in Crit(f), i.e., there exists δ > 0 such that dist(γ∗, γ†) > δ for
all γ∗ ̸= γ† ∈ Crit(f). In particular, if all γ∗ ∈ Crit(f) are hyperbolic, then
Crit(f) is finite.

Proof. Recall from Chapter 3 that any point x∗0 ∈ γ∗ is fixed under a C1-map,
given by

• the time-1 map S := Sf (1) acting on H, if γ∗ is an equilibrium;

• the Poincaré map P defined in (3.17) and acting on a section U0 trans-
verse to γ∗ at x∗0.

Thus, by Lemma 3.3, assuming that γ∗ is hyperbolic is sufficient to guarantee
that S(ϕ)−ϕ and P(ϕ)−ϕ are invertible close to x∗0. In particular, x∗0 is the
only fixed point in a δ-ball around x∗0. Recalling that Crit(f) ⊂ A(f) and
A(f) is compact we obtain that the cardinality of Crit(f) is finite.

Combining Lemma 4.8 with the gradient structure in Corollary 4.7, we
obtain that hyperbolic critical elements are not only isolated within Crit(f),
but also as Sf (t)-invariant sets.

Corollary 4.9. Condider f ∈ X− and let γ∗ ∈ Crit(f) be hyperbolic. Then
there exists δ > 0 such that γ∗ is the maximal Sf (t)-invariant set contained
in

Uδ(γ
∗) := {ϕ ∈ H : dist(ϕ, γ∗) < δ}.

That is, γ∗ is an isolated Sf (t)-invariant set.

Proof. Indeed, suppose that for all n ∈ N there exists a Sf (t)-invariant set
Vn ⊂ U1/n(γ

∗) \ γ∗. Lemma 4.8 together with the Poincaré–Bendixson theo-
rem in Proposition 2.4 guarantees that for n sufficiently large ω(ϕ) = γ∗ for
all ϕ ∈ Vn. Furthermore, applying Proposition 2.4 to α(ϕ), we obtain that
γ∗ ⊂ α(ϕ) for all ϕ ∈ Vn. It follows that, (W u(γ∗) \ γ∗) ∩ (W s(γ∗) \ γ∗) ̸= ∅,
in contradiction to Corollary 4.7.

Next, we introduce a general auxiliary lemma that captures the ideas that
Mallet-Paret used to show a Morse decomposition for A(f); see [MP88].
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More recently, Sheng et al. have used a similar approach to characterize the
nonwandering set in reaction-diffusion PDEs (1.6); see [SWZ21].

Lemma 4.10. Consider ϕ ∈ Nw(f) with f ∈ X− and assume that ϕ ̸∈
ω(ϕ) and ω(ϕ) is an isolated Sf (t)-invariant set. Then there exist sequences
{ϕ̃(n)}n≥0 ⊂ H, τn → ∞ and a point ϕ̃ ∈ H \ ω(ϕ) such that α(ϕ̃) ⊂ ω(ϕ),
ϕ̃(n) → ϕ̃, and Sf (τn)ϕ̃(n) → ϕ.

Proof. Consider an open U ⊂ H such that ϕ ̸∈ U and ω(ϕ) is the only
Sf (t)-invariant in U . By definition, we can find a sequence tn → ∞ such
that for all n ∈ N we have dist(Sf (tn)ϕ, ω(ϕ)) < 1/n. Moreover, since
ϕ ∈ Nw(f), we can also find sequences ϕ(n) → ϕ and t∗n → ∞ such that
t∗n > tn, Sf (t∗n)ϕ(n) → ϕ and dist(Sf (tn)ϕ

(n), ω(ϕ)) < 1/n. Recalling that
ϕ ̸∈ U , for n large enough, there exists a sequence of first exit times from U
after tn, i.e., tn < t̃n < t∗n such that Sf (t̃n)ϕ(n) ∈ ∂U .

The sequence {Sf (t̃n)ϕ(n)}n≥0 is precompact and possesses an accumula-
tion point because the semiflow Sf (t) is compact by Proposition A.2. Taking
a subsequence if needed, we denote ϕ̃ := Sf (t̃n)ϕ

(n) ∈ ∂U . Furthermore, since
t̃n − tn → ∞, a diagonal argument allows us to choose nested subsequences
so that the prehistories Sf (−m)ϕ̃ := limn→∞ Sf (t̃n −m)ϕ(n) are defined and
satisfy Sf (−m)ϕ̃ ∈ Ů for all m ∈ N. Since ω(ϕ) is the only compact invariant
set inside Ů , we conclude that the sequence {Sf (−m)ϕ̃}m≥0 ⊂ Ů accumu-
lates to ω(ϕ), which guarantees α(ϕ̃) ⊂ ω(ϕ). Setting τn := t∗n − t̃n and
ϕ̃(n) := Sf (t̃n)ϕ

(n) concludes the proof.

We have formulated Lemma 4.10 with f ∈ X− for convenience. However,
the key ingredient is that the semiflow Sf (t) acts compactly on a metric
space. Thus Lemma 4.10 admits more general reformulations and does not
require the even-odd symmetry (2.2). Under these conditions, we can com-
bine the zero number estimates in Lemma 4.4 with Lemma 4.10 to obtain
the following.

Proposition 4.11. Consider an initial condition ϕ ∈ Nw(f) with f ∈ X−.
If ω(ϕ) ∈ Crit(f) is hyperbolic, then ϕ ∈ ω(ϕ). In other words, ϕ ∈ Per(f).

Proof. By Corollary 4.9, γ∗ := ω(ϕ) is an isolated invariant set. We proceed
by contradiction and suppose that ϕ ̸∈ ω(ϕ). By Lemma 4.10, there exists
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an element ϕ̃ ∈ H such that α(ϕ̃) ⊂ ω(ϕ) together sequences {ϕ̃(n)}n≥0 ⊂ H
and τn →∞ such that ϕ̃(n) → ϕ̃ and Sf (τn)ϕ̃(n) → ϕ.

Thus, we have that ϕ ∈ W s(γ∗)\γ∗ and ϕ̃ ∈ W u(γ∗)\γ∗. Furthermore, by
Lemma 4.4, we can find x∗0 ∈ γ∗ such that z(ϕ̃−x∗0) < i(γ∗). In particular, we
choose t∗ > 0 such that Sf (t∗)ϕ̃−x∗t∗ possesses solely simple zeros, all of which
are contained in the open interval (−1, 0). By the continuity (2.17) in Lemma
2.1, for n sufficiently large we have that z(Sf (t∗)ϕ̃(n)−x∗t∗) = z(Sf (t

∗)ϕ̃−x∗t∗).
Furthermore, using the lower semicontinuity (2.16) of the zero number in
Lemma 2.1, we can choose subsequences such that z(Sf (τn)ϕ̃(n) − x∗τn) ≥
z(ϕ−x∗τn). Since ϕ ∈ W u(γ∗)\γ∗, Lemma 4.5 guarantees z(ϕ−x∗τn) ≥ i(γ∗).
Thus the monotonicity in Proposition 2.2 ensures

i(γ∗) > z(Sf (t
∗)ϕ̃− x∗t∗)

= z(Sf (t
∗)ϕ̃(n) − x∗t∗)

≥ z(Sf (τn)ϕ̃
(n) − x∗τn)

≥ z(ϕ− x∗τn)
≥ i(γ∗).

Hence we reached a contradiction and ϕ ∈ ω(ϕ).

4.4 Transversality

The goal of this section is to prove the transversality results announced Chap-
ter 1. A key element of the proof are the so-called Oseledets subspaces
associated with the asymptotic expansion and contraction rates for the vari-
ational semiflow D(Sf (t))(ϕ) for ϕ ∈ H.

Lemma 4.12. Let γ∗ ∈ Crit(f) with f ∈ X− be either a hyperbolic periodic
orbit or, in case γ∗ = γ0, assume it is isolated. We denote by µk the char-
acteristic multipliers of γ∗ ordered with repetitions as in Proposition 2.2 and
consider κ > 0 so that

|µ2j| > κ > |µ2j+1|.

Then for all ϕ ∈ W u(γ∗), the set

Hu
j (ϕ) :=

{
ψ ∈ H : lim

n→−∞

DSn(ϕ)ψ
κn

= 0

}
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is a closed 2j-dimensional subspace of H and z(ψ) ≤ 2j−1 for all ψ ∈ Hu
j (ϕ).

Analogously, for all ϕ ∈ W s(γ∗), the set

Hs
j(ϕ) :=

{
ψ ∈ H : lim

n→∞

DSn(ϕ)ψ
κn

= 0

}
is a closed codimension-2j subspace of H and z(ψ) ≥ 2j+1 for all ψ ∈ Hs

j(ϕ).

Proof. We show the claims forHs
j(ϕ), and the proof is analogous forHu

j (ϕ) by
exchanging the time direction and considering backward Lyapunov exponents
instead. Since Snϕ n→∞−−−→ γ∗, we prove the lemma for Hs

j(Snϕ) with large n ≥
0 first and then show that we can recover our conclusions for the preimage
Hs
j(ϕ) = (DSn(ϕ))−1(Hs

j(Snϕ)).

Recall from Theorems 3.1–3.4 that there exists x∗0 ∈ γ∗ acting as the
limit Snϕ n→∞−−−→ x∗0. Thus, denoting by x(t) the solution through ϕ ∈ H,
the remarks in Section 4.1 show that Mn := S

(n)
c (p, 0) generated by (4.2)

with coefficients (4.4) yields an iteration of the type (4.1). Moreover, from
Proposition A.2, we have that Mn = DS(Snϕ) and the chain rule yields that
DSn(ϕ) =Mn ◦ · · · ◦M0.

Since Mn
n→∞−−−→ M , we use a Lipschitz invariant manifold theorem for

uniformly bounded sequences {ψ(n)}n≥0 satisfying (4.1). More precisely, us-
ing [CCH92, Proposition B.8], there exists n0 ≥ 0 such that for all n ≥ n0

the set Hs
j(Snϕ) is isomorphic via the canonical projection to (⊕k≥jEj)⊥.

Here Ej are the real generalized eigenspaces defined in Proposition 2.2, and
⊥ denotes the closed complement in H. In particular, Hs

j(Snϕ) ≤ H is a
closed subspace of the claimed codimension.

To see the bound on the zero number, consider ψ ∈ Hs
j(ϕ). The Lyapunov

number lemma 4.2 with respect to the iteration (4.1) with Mn as above shows
that there exists µ ∈ Spec(M) such that Λ+(ψ) = |µ|. If Λ+(ψ) = 0, then
ψ(n) approach 0 superexponentially and, using [Cao90, Theorem 2.8] and
the monotonicity of the zero number in Proposition 2.2, we obtain z(ψ) ≥
z(ψ(n)) =∞. Otherwise, Λ+(ψ) > 0 and, by assumption, Λ+(ψ) ≤ κ < |µ2j|.
Therefore, by Lemma 4.3, there exists an eigenfunction ψ∗ ∈ El, l > j such
that z(ψ∗) = 2l − 1 ≥ 2j + 1 and

ψ(n) :=
ψ(n)

∥ψ(n)∥
→ ψ∗.
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In analogy to (4.5), consider the shifted sequence

ψ̂
(n)

:=
D(Sf (t

∗))(Snϕ)ψ(n)

∥D(Sf (t∗))(Snϕ)ψ(n)∥
n→∞−−−→ D(Sf (t

∗))(x∗0)ψ
∗

∥D(Sf (t∗))(x∗0)ψ
∗∥

=: ψ̂∗.

Recall that ψ∗ is an eigenfunction of the monodromy operator M , therefore,
by the strict zero dropping in Proposition 2.2, ψ̂∗ possesses finitely many
simple zeros and we can always choose t∗ ≥ 1 so that ψ̂∗(0)ψ̂∗(−1) ̸= 0.
Using Lemma 2.1, there exists a n0 > 0 sufficiently large so that

z
(
ψ(n)

)
= z(ψ∗)

≥ 2j + 1
(4.8)

for all n ≥ n0 and the proof of Lemma 4.12 is complete for Hs
j(Snϕ).

To show the claims for Hs
j(ϕ), notice that Hs

j(Snϕ) = ker(ℓ) for a bounded
linear operator ℓ : H → R2j with total range. Recalling that DSn(ϕ) has
dense range by Lemma A.5, we obtain that ℓ ◦DSn(ϕ) has total range and
Hs
j(ϕ) = ker(ℓ ◦DSn(ϕ)) is a codimension-2j closed subspace of H. Further-

more, for all ψ ∈ Hs
j(ϕ) Proposition 2.2 and (4.8) yield z(ψ) ≥ z(ψ(n)) ≥

2j + 1 for all ψ(n) ∈ Hs
j(Snϕ), which completes the proof.

We highlight that the subspaces produced in Lemma 4.12 depend on j,
only, rather than depending on the choice of κ. The underlying reason is
that the Lyapunov numbers in Lemma 4.2 only take a discrete set of values
determined by the characteristic multipliers Spec(M). Choosing 1 > |µ2j+1|,
the subspaces Hs

j(ϕ) yield the Oseledets filtration

TϕW
s(γ∗) ≥ Hs

j(ϕ) ≥ Hs
j+1(ϕ) ≥ . . . ,

where Hs
j(ϕ) ≤ TϕW

s(γ∗) follows from the characterization of the tangent
spaces that we gave in Theorems 3.1 and 3.4. This insight is the main tool
used in proving the following result, which can also be found in [LN17].

Theorem 4.13. Let γ†, γ∗ ∈ Crit(f) with f ∈ X− be hyperbolic. Then

W u(γ†)−⋔ W s(γ∗).

Proof. In case W u(γ†) ∩W s(γ∗) = ∅, the proof is finished. Otherwise, we
consider an initial condition ϕ ∈ W u(γ†) ∩W s(γ∗) and, by Corollary 4.7, we
have that i(γ†) > i(γ∗). We denote the characteristic multipliers of γ† and
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γ∗ by µ†
k and µ∗

k, respectively, and adopt the ordering with repetitions from
Proposition 2.7. Let us define

j :=

{
i(γ∗)/2, if i(γ∗) is even,
(i(γ∗) + 1)/2, otherwise,

and emphasize that, by assumption, we have i(γ†) ≥ 2j ≥ i(γ∗). Therefore,
we always have that

|µ†
2j| ≥ 1 and 1 ≥ |µ∗

2j+1|,(4.9)

moreover, by the choice of j, one of the two inequalities in (4.9) is al-
ways strict. Hence we choose an arbitrary κ such that |µ†

2j| > κ > |µ∗
2j+1|

and apply Lemma 4.12. In this way, we obtain closed subspaces such that
dimHu

j (ϕ) = codim Hs
j(ϕ) = 2j, also for all ψ ∈ Hu

j (ϕ)∩Hs
j(ϕ) we have that

2j + 1 ≤ z(ψ) ≤ 2j − 1. In particular, we have Hu
j (ϕ) ∩Hs

j(ϕ) = ∅, thereby
yielding that Hu

j (ϕ) + Hs
j(ϕ) = H. Furthermore, by the characterization of

the tangent spaces in Theorems 3.1 and 3.4, we have that Hu
j (ϕ) ≤ TϕW

u(γ†)
and Hs

j(ϕ) ≤ TϕW
s(γ∗), obtaining W u(γ†)−⋔ W s(γ∗).

Theorem 4.13 showcases that the most important aspect of our transverse
intersections is the existence of a sufficiently large difference in unstable di-
mensions between γ† and γ∗. Indeed, transverse intersections still happen
for invariant manifolds involving nonhyperbolic equilibria.

Theorem 4.14. Consider γ0, γ∗ ∈ Crit(f) with f ∈ X−. We assume that γ0
is isolated and nonhyperbolic and γ∗ is a hyperbolic periodic orbit. Then

W u(γ0)
−⋔ W s(γ∗) and W u(γ∗)−⋔ W s(γ0),(4.10)

furthermore, we distinguish the following two situations:

Case 1: If γ0 satisfies Theorem 3.2 Case 1, then W uu(γ0)
−⋔ W s(γ∗).

Case 2: If γ0 satisfies Theorem 3.2 Case 2, then W u(γ∗)−⋔ W ss(γ0).

Proof. The proof is the same as in Theorem (4.13). We show (4.10), and
Cases 1 and 2 follow as a consequence.
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Let first ϕ ∈ W u(γ0) ∩W s(γ∗) ̸= ∅, then Lemma 4.5 and the arguments
in Corollary 4.7 show that i(γ0) ≥ i(γ∗). Moreover, by Lemma 2.9, i(γ0) is
even and we choose

j := i(γ0)/2

which yields i(γ0) = 2j ≥ i(γ∗). We use the order from Proposition 2.2 for
the characteristic multipliers µ0

k and µ∗
k of γ0 and γ∗, respectively. Thus we

have that |µ0
2j| > 1 ≥ |µ∗

2j+1| and, by Theorems 3.2 and 3.4, the subspaces
Hu
j (ϕ) and Hs

j(ϕ) obtained by Lemma 4.12 satisfy Hu
j (ϕ) ≤ TϕW

u(γ0) and
Hs
j(ϕ) ≤ TϕW

s(γ∗). Furthermore, dimHu
j (ϕ) = codim Hs

j(ϕ) = 2j and for all
ψ ∈ Hu

j (ϕ)∩Hs
j(ϕ) we have 2j+1 ≤ z(ψ) ≤ 2j−1. Thus H = Hu

j (ϕ)⊕Hs
j(ϕ)

and, as we claimed, W u(γ0)
−⋔ W s(γ∗). Notice that if we are in Case 1 above,

we can take ϕ ∈ W uu(γ0)∩W s(γ∗) and the same choice of subspaces satisfies
Hu
j (ϕ) ≤ TϕW

uu(γ0) and Hs
j(ϕ) ≤ TϕW

s(γ∗). Hence we actually showed
W uu(γ0)

−⋔ W s(γ∗) and proved Case 1.

Assume next that ϕ ∈ W u(γ∗) ∩W s(γ0) ̸= ∅, then we prove (4.10). As
above, we have that i(γ∗) ≥ i(γ0). However, since i(γ0) is even, the inequality
along W s(γ0) \ γ0 in Lemma 2.9 is strict, and yields the strict inequality
i(γ∗) = i(γ0). Denoting j = i(γ0)/2, then i(γ∗) ≥ 2j + 1. Using the same
convention as above for the characteristic multipliers, we obtain the spectral
splitting |µ∗

2j+2| ≥ 1 > |µ0
2j+3|. Thus Theorems 3.2 and 3.4 ensure that the

subspaces Hu
j+1(ϕ) and Hs

j+1(ϕ) in Lemma 4.12 satisfy Hu
j+1(ϕ) ≤ TϕW

u(γ∗)
and Hs

j+1(ϕ) ≤ TϕW
s(γ0). Arguing as above, we obtain that H = Hu

j+1(ϕ)⊕
Hs
j+1(ϕ) and W u(γ∗) −⋔ W s(γ0). Finally, notice that if we are in Case 2,

then for any ϕ ∈ W u(γ∗) ∩W ss(γ0) the choice of subspaces above satisfies
Hu(ϕ) ≤ TϕW

u(γ∗) and Hs
j+1(ϕ) ≤ TϕW

ss(γ0). This proves Case 2.

4.5 Structural stability

Combining the results of Section 4.3 and Section 4.4, we conclude that all
we have to do to show that a global attractor A(f) is A-stable is to check
that all critical elements Crit(f) are hyperbolic, i.e., condition (MS1) above.
As a result, the global structural stability of A(f) follows from the local
linearization at an equilibrium or periodic orbit.

Theorem 4.15. Given the DDE (1.1) with f ∈ X−. If all critical ele-
ments γ∗ ∈ Crit(f) are hyperbolic, then A(f) is Morse–Smale and therefore
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A-stable. In other words (MS1) implies (MS2)–(MS3).

Proof. Indeed, by Proposition 4.11, we obtain that Nw(f) = Per(f) and
Theorem 4.13 shows that the invariant manifolds of the critical elements
intersect transversely.

Abstract Morse–Smale systems possess several well-known properties. One
of them is the Morse–Smale order on Crit(f), that is, the partial order on
Crit(f) defined by

γ† ≻ γ∗ if and only if W u(γ†) ∩W s(γ∗) ̸= ∅.(4.11)

Proposition 4.16 ( [Oli00, Proposition 3.4]). Let A(f) be Morse–Smale.
Then the relation (4.11) is a partial order on Crit(f). In particular, given
γ†, γ⋄, γ∗ ∈ Crit(f) such that γ† ≻ γ⋄ and γ⋄ ≻ γ∗, we have that γ† ≻ γ∗.

As a consequence, the phase diagram Γ(f) of any Morse–Smale attractor
A(f) is a directed acyclic graph, that is, a digraph with no directed cycles.
Indeed, we have that (γ†, γ∗) is an edge of a Morse–Smale phase diagram Γ(f)
if and only if γ† ≻ γ∗. Hence the transitivity in Proposition 4.16 shows that
Γ(f) coincides with its transitive closure via the partial order ≻, i.e., all edges
in Γ(f) are transitive.
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Chapter 5

Critical elements

This chapter introduces the period map, a real function connected to a
two-dimensional boundary value problem that we use to control the for-
mation process of periodic orbits in the global attractor A(f). We pointed
out in Chapter 1 that our method for constructing global attractors of the
DDE (1.1) requires all periodic orbits to appear by a sequence of Hopf bifur-
cations. The problem of controlling the periodic orbits is also central in the
description of spindles by Krisztin et al. [KW01,KWW99b,KWW99a] and
in the Vas attractor [Vas11,KV11] presented in Chapter 1.

Our results follow an idea of Kaplan and Yorke [KY74,KY75] that uses
spatiotemporal symmetry in a two-dimensional ODE to construct periodic
solutions of the DDE (1.1). They study the periodic solutions with period p
of the Hamiltonian ODE

ξ̇ = g(η),

η̇ = −g(ξ).
(5.1)

Here g is an odd real function satisfying g(η)η < 0. Thus, for η ̸= 0, they
obtain the spatiotemporal relation η(t) = ξ(t − p/4) and ξ(t) is a periodic
solution of the DDE

ẋ(t) = g(x(t− p/4)).

In this thesis, the main difference with (5.1) is that we consider nonlin-
earities f ∈ X−. Thus our case becomes slightly more general because f

67



possesses a ξ-component, but also more limited because we require the neg-
ative delayed feedback (2.1). We use (2.1) to prove a converse to the results
in [KY74,KY75]. More precisely, we give sufficient conditions such that all
the periodic solutions of the DDE (1.1) appear as solutions of a so-called
reference ODE

ξ̇ = f(ξ, η),

η̇ = −f(η, ξ).
(5.2)

We will see that the dynamics in (5.2) consist of a single equilibrium (0, 0) sur-
rounded by a continuum of periodic orbits. We call amplitude to the max-
imum in the ξ-component of (ξ(t), η(t)) solving (5.2). Thus we parametrize
the periodic solutions of (5.2) in amplitude and define the period map pf
to be the function taking the amplitude of a periodic solution to its minimal
period.

Garab and Krisztin [GK11] took a similar approach to ours and described
the branches γ∗(λ) of periodic orbits in a one-parameter family of DDEs

ẋ(t) = −λf(x(t), x(t− 1)), λ > 0,

with f satisfying the delayed feedback assumption (2.1). Although their
approach does not require the symmetric feedback (2.2), it has the disad-
vantage that their period map singularizes at saddle-node bifurcations
with respect to the parameter λ. In particular, an unexpected consequence
of our analysis is that if f ∈ X−, then the branches of periodic orbits in (1.1)
possess no turns when parametrized in amplitude.

Section 5.1 shows how the reference ODE (5.2) produces DDE solutions
via spatiotemporal symmetry. Our analysis is entirely analogous to [KY74]
except that a global reversible Hopf bifurcation at the origin replaces the
Hamiltonian of the ξ-independent setting. We define the period map and
derive its most relevant properties.

In Section 5.2, we find conditions such that all the periodic solutions of
the DDE (1.1) solve the reference ODE (5.2). First, we consider the planar
projection Pγ∗ defined via (2.18) of a DDE periodic orbit γ∗. We show that
the set Pγ∗ is an orbit of (5.2) if and only if Pγ∗ intersects both vertical and
horizontal axes orthogonally. After characterizing the shape of the projection
Pγ∗ we assume that the period map pf possesses no plateaus and show that
all projections Pγ∗ have the desired shape, thanks to Lemma 2.6 (ii).
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In Section 5.3, we discuss the local stability properties of the DDE periodic
solutions obtained by the reduction process in Sections 5.1 and 5.2. Our main
argument is that the two-dimensional nature of the periodic solutions ob-
tained in this way produces a one-parameter family of linear two-dimensional
ODEs. Here the parameter corresponds to the half-multipliers seen in Chap-
ter 2. We fully characterize the unstable dimension of the periodic orbits by
comparing the winding velocities of the solutions of the linear system above.

Finally, Section 5.4 gives a visualization of our results.

5.1 From ODE to DDE

In this section, we define the period map pf for the reference ODE (5.2) with
the nonlinearity f ∈ X−. We also show how pf yields periodic solutions of
the DDE (1.1).

We denote the planar vector field in (5.2) by F (ξ, η) := (f(ξ, η),−f(η, ξ))
and point out two symmetries:

• A reversibility under reflections

ϱ1(ξ, η) := (η, ξ) such that ϱ1 ◦ F ◦ ϱ1 = −F.(5.3)

• An equivariance under ninety-degree rotations

ϱ2(ξ, η) = (η,−ξ) such that ϱ2 ◦ F ◦ ϱ−1
2 = F.(5.4)

By composition, the linear maps ϱ1 and ϱ2 generate a representation of the
symmetry group of the square Dih4 in R2. We denote by (ξ(a, t), η(a, t))
the solution of (5.2) with initial condition (ξ(a, 0), η(a, 0)) = (a, 0). A char-
acteristic property of (5.2) is that it possesses a single equilibrium at (0, 0)
and that, thanks to the reversibility (5.3), the solutions (ξ(a, t), η(a, t)) with
initial condition (ξ(a, 0), η(a, 0)) := (a, 0) are periodic in t for all a > 0. We
summarize this in the following lemma.

Lemma 5.1. If f ∈ X−, then the solutions (ξ(a, t), η(a, t)) of the refer-
ence ODE (5.2) are periodic for all a > 0 with minimal period pf (a) < ∞.
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Moreover, the map pf (a) is C2 at any a > 0 and admits a C1-extension
pf : [0,∞)→ (0,∞) satisfying

pf (0) =
−2π

∂2f(0, 0)
and p′f (0) = 0.

Proof. Indeed, linearize (5.2) at (0, 0) we observe that

Spec(DF (0, 0)) = {Bi,−Bi} with B := ∂2f(0, 0).

Next, recalling the reversibility (5.3), we apply a reversible Hopf bifurcation
theorem at (0, 0); see [Van82, Theorem 7.5.4.]. This shows that there exists
an ε > 0 such that for all a ∈ (0, ε) the solutions (ξ(a, t), η(a, t)) are periodic.
Denoting

ε̄ := sup {a > 0 : (ξ(a, t), η(a, t)) is periodic} ,

we prove by contradiction that ε̄ =∞. Suppose that ε̄ <∞, hence the orbit
Oε̄ := {(ξ(ε̄, t), η(ε̄, t)) : t ∈ R} belongs to the nonwandering set of the ODE
(5.2). However, since we are considering planar ODEs and (0, 0) is the only
equilibrium of (5.2), the standard Poincaré–Bendixson theorem in R2 shows
that Oε̄ is periodic. Moreover, Oε̄ must either attract or repel the initial
conditions in a small neighborhood of its exterior region, in contradiction to
the reversibility (5.3), thus ε̄ =∞.

In particular, the map pf that assigns the minimal period pf (a) to the
periodic solution (ξ(a, t), η(a, t)) is well defined for all a > 0 and solves the
equation

η(a, pf (a))− η(a, 0) = 0.

Since η̇(a, pf (a)) = −f(0, a) ̸= 0 for a > 0, the implicit function theorem
ensures that pf inherits its regularity from f on the open interval (0,∞).

It is only left to show pf (0) = −2π/B and p′f (0). To this end, recall that
near the origin pf comes from a Hopf bifurcation in the ODE (5.2). In partic-
ular, pf arises via bifurcation from simple eigenvalues in an O(2)-symmetric
problem, see [Van82, Theorem 7.2.7.]. Thus pf is differentiable at 0 with
derivative p′f (0) = 0.

The C1-map pf : [0,∞)→ (0,∞) in Lemma 5.1 is called the period map
of f . As seen above, the existence of pf is, at least locally, a consequence of
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the reversibility (5.3). On the other hand, the equivariance (5.4) allows us
to connect solutions of the ODE (5.2) to solutions of the DDE (1.1) using
spatiotemporal symmetries.

Lemma 5.2. In the setting of Lemma 5.1, the periodic solutions for a > 0
satisfy

(ξ(a, t), η(a, t)) =

(
−η
(
a, t− pf (a)

4

)
, ξ

(
a, t− pf (a)

4

))
.(5.5)

In particular, the components go into antiphase after a half-period, i.e.,

ξ

(
a, t− pf (a)

2

)
= −ξ(a, t) and η

(
a, t− pf (a)

2

)
= −η(a, t).(5.6)

Proof. By Lemma 5.1 the orbits Oa := {(ξ(a, t), η(a, t)) : t ∈ R} ⊂ R2 are
simple curves surrounding (0, 0). Moreover, the symmetry under the rotation
ϱ2 in (5.4) ensures that Oa are ϱ2-invariant, i.e., ϱ2Oa = Oa.

Since ϱ2(ξ(a, t), η(a, t)) = (η(a, t),−ξ(a, t)) solves (5.2) and shares or-
bits with (ξ(a, t), η(a, t)), we have that η(a, t) = ξ(a, t − τ) for a suitable
τ ∈ [0, pf (a)]. Recalling that ϱ42 = Id, we obtain that 4τ is a multiple of the
period. Therefore, τ can only take the values pf (a)/4 and 3pf (a)/4. Direct
examination of (5.2) shows that (ξ(a, t), η(a, t)) winds in counterclockwise
direction around the origin (0, 0) as t grows. Thus η(a, t) increases monoton-
ically until it reaches its maximum at a and then decreases until it reaches
its minimum −a. From this we conclude that ξ(a, 0) = η(a, pf (a)/4) = a and
τ = pf (a)/4. This proves (5.5), applying (5.5) twice we obtain (5.6).

5.2 From DDE to ODE

In this section, we give sufficient conditions such that the periodic solutions
of the DDE (1.1) with f ∈ X− solve the reference ODE (5.2).

We establish a relation between the period p of a periodic solution x∗(t)
solving (1.1) and the shape of the planar projection (2.18) of the correspond-
ing orbit γ∗. First, we point out that p = 2 is never a period of γ∗.

Lemma 5.3 ( [CMP78, Lemma 4.1]). Let x∗(t) be a periodic solution of the
DDE (1.1), then x∗(t+ 2) ̸= x∗(t).
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Proof. Indeed, otherwise, the ODE

ξ̇ = f(ξ, η),

η̇ = f(η, ξ),
(5.7)

would possess a periodic solution (x∗(t), x∗(t−1)). However, this is impossible
since (0, 0) is the only equilibrium and the diagonal {(ξ, ξ) : ξ ∈ R} is
invariant under the dynamics of (5.7).

In particular, no number of the form 2/(2m− 1) for m ∈ N is a period of
γ∗. However, because of Lemma (5.3), the periodic orbits γ∗ with period 4
possess a distinctive planar projection Pγ∗.

Lemma 5.4. Let x∗(t) be a periodic solution of the DDE (1.1) with f ∈ X−.
We denote the orbit of x∗(t) by γ∗. Then x∗(t) has period 4 if and only if the
planar projection Pγ∗ given by (2.18) intersects the vertical axis orthogonally.

Proof. Suppose that x∗(t) has minimal period p and x∗(t + 4) = x(t) for
all t ∈ R. Since 2 is not a period of x∗(t) by Lemma 5.3, we have that
(2m−1)p = 4 for some m ∈ N. Then x∗(t−2) = x∗(t−mp+mp/2) = −x∗(t)
by the odd symmetry (2.19) and (x∗(t), x∗(t− 1)) is a solution of the planar
ODE (5.2). In particular, Pγ∗ is an orbit of (5.2). Since f ∈ X−, we have that
f(ξ, 0) = 0 for all ξ ∈ R and the intersections of Pγ∗ with the horizontal axis
happen orthogonally at the maximum and minimum in the first component,
denoted (x̄, 0) and (

¯
x, 0), respectively. By the equivariance of (5.2) under the

rotation ϱ2 defined in (5.4), we have that Pγ∗ = ϱ2(Pγ
∗) and Pγ∗ intersects

the vertical axis orthogonally.

To see the converse implication, assume that the simple curve Pγ∗ in-
tersects the vertical axis orthogonally. We set without loss of generality
x∗(0) = x̄ := maxt∈R x

∗(t) and claim that x∗(−2) = −x∗(0) = −x̄. Indeed,
x∗(0) = x̄ is a maximum, and thus

ẋ∗(0) = f(x∗(0), x∗(−1)) = 0.(5.8)

For f ∈ X−, (5.8) implies that x∗(−1) = 0. Lemma 2.6 (iii) states that x∗(t)
moves monotonically between extrema. Therefore, the point

(x∗(−1), x∗(−2)) = (0, x∗(−2)),
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corresponds to one of the two intersections that Pγ∗ has with the vertical
axis. As a result,

ẋ∗(−2) = f(x∗(−2), x∗(−3)) = 0,

and f ∈ X− yields x∗(−3) = 0. By Lemma 2.6 (iii) and the odd symmetry
(2.19), Pγ∗ intersects the horizontal axis at (x̄, 0) and (−x̄, 0), only. Since 2 is
not a period for x∗(t) by Lemma 5.3, the only possibility is x∗(−2) = −x̄ =
−x∗(0), as claimed. Repeating the procedure shows that x∗(−4) = x∗(0).
Moreover, since x∗(t) is sinusoidal, it only attains the maximum x∗(0) =
x∗(−4) = x̄ once over a minimal period. Hence x∗(t) = x∗(t−4) for all t ∈ R
and x∗(t) has period 4.

In particular, Lemma 5.4 indicates that if a periodic solution x∗(t) of (1.1)
satisfies x∗(t) ̸= x∗(t + 4), then the planar projection Pγ∗ must intersect
the vertical axis at a slanted angle. Together with the foliation of R2 by
periodic solutions with spatiotemporal symmetry of the reference ODE (5.2),
this imposes heavy restrictions on the regions of the plane R2 where the
projections Pγ∗ such that x∗(t) ̸= x∗(t+ 4) can lie.

Proposition 5.5. In the setting of Lemma 5.4, assume that the periodic
solution x∗(t) satisfies x∗(t+ 4) ̸= x∗(t) and denote x̄ := maxt∈R x

∗(t). Con-
sider the orbit Oa := {(ξ(a, t), η(a, t)) : t ∈ R} associated to the solution of
the ODE (5.2) with initial condition (a, 0), a > 0, and define

ā := inf{a ≥ x̄ > 0 : Oa ∩ Pγ∗ = ∅},

¯
a := sup{x̄ ≥ a > 0 : Oa ∩ Pγ∗ = ∅}.

(5.9)

Then the period map pf satisfies p′f (a) = 0 for all a ∈ (
¯
a, ā).

Proof. Let x∗(t) have period p. Notice that x∗(t) solves the family of DDEs
ẋ∗(t) = f(x∗(t), x∗(t − 1 − np)) for all n ∈ N. Rescaling time, we have that
x(n)(t) := x∗((1 + np)t) solves the DDE

ẋ(t) = (1 + np)f(x(t), x(t− 1)).

Denoting the DDE orbit of x(n)0 (t) by γ(n), for all n ∈ N the planar projections
Pγ(n), given by (2.18), satisfy

Pγ(n) = {(x(n)(t), x(n)(t− 1)) : t ∈ R}
= {(x∗(t), x∗(t− 1− np)) : t ∈ R}
= {(x∗(t), x∗(t− 1) : t ∈ R}
= Pγ∗.

(5.10)
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By Lemma 5.4, x∗(t + 4) ̸= x∗(t) implies that any intersection of Pγ∗ with
the vertical axis is not orthogonal. We denote the top intersection point by

(0, x̂) := Pγ∗ ∩ {(0, η) : η ∈ R+}.

Since f ∈ X−, the ODE orbit Oa, a > 0, intersects both the horizontal and
the vertical axes orthogonally, thus ā−

¯
a defined via (5.9) is strictly positive.

Furthermore, by Lemma 5.2 we know that ξ(a, t) satisfies the DDE

ξ̇(a, t) = f

(
ξ(a, t), ξ

(
a, t− pf (a)

4

))
,

and, therefore, the functions

ξ(a,m)(t) := ξ

(
a,

(
pf (a)

4
+mpf (a)

)
t

)
,

have period 4 for all m ∈ N and solve the DDEs

ẋ(t) = λf(x, x(t− 1)),(5.11)

for parameter value choices

λ =
pf (a)

4
+mpf (a).

Denoting by γ(a,m) the DDE orbit of ξ(a,m)(t), we proceed as in (5.10) to show
that

Pγ(a,m) = {(ξ(a,m)(t), ξ(a,m)(t− 1)) : t ∈ R}

=

{(
ξ (a, t) , ξ

(
a, t− pf (a)

4
−mpf (a)

))
: t ∈ R

}
= Oa,

(5.12)

for all m ∈ N.

By contradiction, suppose that there exists â ∈ (
¯
a, ā) such that p′f (â) ̸= 0.

Hence we can assume without loss of generality, by making a new choice of

¯
a and ā if necessary, that pf (ā) ̸= pf (â) and pf (

¯
a) ̸= pf (â). Therefore, for all

ε > 0 we can find n∗,m∗ ∈ N such that(
m∗ +

1

4

)
(pf (â) + ε) = n∗p+ 1.
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Choosing ε < min{|pf (ā) − pf (â)|, |pf (â) − pf (
¯
a)|}, the intermediate value

theorem yields the existence of a∗ ∈ (
¯
a, ā) such that pf (a∗) = pf (â) + ε.

Rescaling time, we have that x(n∗)(t) and ξ(a
∗,m∗)(t) are both solutions of

(5.11) with parameter λ = 1 + n∗p. By the identities (5.10) and (5.12), we
have that Pγ(n∗) ∩ Pγ(a∗,m∗) = Pγ∗ ∩ Oa∗ ̸= ∅, in contradiction to Lemma
2.6 (ii). Therefore,

x∗((1 + n∗p)t+ 4) = x(n
∗)(t+ 4)

= ξ(a
∗,m∗)(t+ 4)

= ξ(a
∗,m∗)(t)

= x∗((1 + n∗p)t),

which contradicts our assumptions.

Thus Proposition 5.5 shows that all the periodic orbits of the DDE (1.1)
have period 4, provided that we can prevent pf from having plateaus. We
say that pf is called locally nonconstant if it presents no plateaus at all,
i.e., if for all a ≥ 0 we can find a sequence an → a such that pf (an) ̸= pf (a)
for all n ∈ N.

Theorem 5.6. Let x∗(t) be a nontrivial periodic solution of the DDE (1.1)
with f ∈ X− and assume that the period map pf is locally nonconstant.
Denoting x̄ := maxt∈R x

∗(t), we have that

pf (x̄) =
4

4n− 3
for some n ∈ N.(5.13)

Moreover, the planar curve (x∗(t), x∗(t− 1)) solves the two-dimensional ref-
erence ODE (5.2).

Conversely, let (ξ(a, t), η(a, t)) be the solution of (5.2) with initial condi-
tion (a, 0), a > 0. If pf (a) = 4/(4n− 3) for some n ∈ N, then ξ(a, t) solves
the DDE (1.1).

Proof of Theorem 5.6. Indeed, let pf be locally nonconstant. Thus, by Propo-
sition 5.5, any periodic solution x∗(t) of the DDE (1.1) satisfies x∗(t) = x∗(t+
4). From Lemma 2.6 (ii) and Lemma 5.3, we know that x∗(t + 2) = −x∗(t)
and we obtain that (x∗(t), x∗(t − 1)) solves the ODE (5.2). The converse
follows immediately from Lemma 5.2.
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In virtue of Theorem 5.6, the periodic orbits of the DDE (1.1) with a
locally nonconstant period map are in one-to-one correspondence with the
periodic solutions of the reference ODE (5.2) such that the minimal period
takes the form (5.13). We rephrase this statement more concisely as follows.

Corollary 5.7. Under the assumptions of Theorem 5.6, a differentiable func-
tion x∗(t) is a periodic solution of the DDE (1.1) if and only if (x∗(t), x∗(t−1))
solves the ODE boundary value problem

ξ̇ = f(ξ, η),

η̇ = −f(η, ξ),
and (ξ(t+ 2), η(t+ 2)) = −(ξ(t), η(t)).(5.14)

Proof. In the setting of Theorem 5.6, let x∗(t) with x̄ = maxt∈R x
∗(t) be a

periodic solution of the DDE (1.1). By (5.13), we have that x∗(t + 2) =
x∗(t + (4n− 3)pf (x̄)/2) = x∗(t + pf (x̄)/2). Using the odd symmetry (2.19),
we have that x∗(t + 2) = −x∗(t) and (x∗(t), x∗(t − 1)) solves (5.14). The
converse follows analogously by Lemma 5.2.

5.3 Local stability

Finally, we show how the minimal period pf of the periodic solutions obtained
in Theorem 5.6 for the DDE (1.1) connects to the unstable dimension of their
orbits. To be precise, we consider a periodic solution x∗(t) with amplitude
x̄ := max{x∗(t) : t ∈ R} of (1.1). Our goal is to show that if x∗(t) has minimal
period pf (x̄) = 4/(4n−3) for some n ∈ N, then the unstable dimension, i(γ∗),
of the corresponding orbit is fully determined by the value of n and the sign
of the derivative p′f (x̄).

In particular, the results obtained throughout this chapter characterize all
the bifurcation phenomena near critical elements Crit(f), provided that pf is
locally nonconstant. We begin by proving a lemma that connects the minimal
period of the periodic solutions in Theorem 5.6 to their corresponding zero
number.

Lemma 5.8. Consider a periodic solution x∗(t) of the DDE (1.1) with f ∈
X−. If x∗(t) has minimal period p := 4/(4n − 3) for some n ∈ N, then
z(ẋ∗0) = 2n− 1.
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Proof. We know from Lemma 2.6 (iii) that x∗(t) acquires its maximum x̄
(resp., its minimum

¯
x) once over every minimal period and moves monotoni-

cally between the maximum and the minimum. By the odd symmetry (2.19),
half a minimal period separates any two neighboring sign changes of ẋ∗(t).
Therefore, due to p = 4/(4n− 3), we obtain the bounds

2n− 2 =

⌊
2

p

⌋
≤ z(ẋ∗0) ≤

⌈
2

p

⌉
= 2n− 1.

Here we used the usual notation ⌊·⌋ (resp., ⌈·⌉) for the standard floor (resp.,
ceiling) function. Since the zero number is always odd, we have that z(ẋ∗0) =
2n− 1.

When combined with the spectral characterization in Proposition 2.9,
Lemma 5.8 yields the following three situations only.

Corollary 5.9. In the setting of Lemma 5.8, let γ∗ be the orbit of x∗(t) and
denote by µc < 0 the critical half-multiplier of γ∗ defined in Corollary 2.8.
Then exactly one of the following statements holds:

(i) µc < −1, γ∗ is hyperbolic, and i(γ∗) = 2n− 1.

(ii) µc > −1, γ∗ is hyperbolic, and i(γ∗) = 2n− 2.

(iii) µc = −1, γ∗ is not hyperbolic, and i(γ∗) = 2n− 2.

Proof. The result follows immediately from plugging Lemma 5.8 into the
three cases we distinguished in Corollary 2.8.

Before we characterize the unstable dimension, we study Corollary 5.9
(iii) in detail. Our conclusion, summarized in the following lemma, is that
γ∗ loses its hyperbolicity at critical points x̄ such that p′f (x̄) = 0.

Lemma 5.10. In the setting of Lemma 5.8, let x̄ := maxt∈R x
∗(t) and denote

by γ∗ the orbit of x∗(t). Then γ∗ is hyperbolic if and only if p′f (x̄) ̸= 0.

Proof. Denoting p := pf (x̄) and p′ := p′f (x̄), we first suppose that p′ = 0.
Following Theorem 5.6, we let x∗(a, t) be the solution of the DDE

ẋ(t) = f

(
x(t), x

(
t− (4n− 3)pf (a)

4

))
,
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with minimal period pf (a) and amplitude a = maxt∈R x
∗(a, t). Where we

normalize the initial condition so that

x∗(a, 0) = a.(5.15)

We may assume, shifting time if necessary, that x∗(t) = x∗(x̄, t). Then, the
amplitude derivative y∗(a, t) := ∂ax

∗(a, t) solves the linear inhomogeneous
nonautonomous DDE

ẏ(t) = ∂1f

(
x∗(a, t), x∗

(
a, t− (4n− 3)pf (a)

4

))
y(t)

+ ∂2f

(
x∗(a, t), x∗

(
a, t− (4n− 3)pf (a)

4

))
y

(
t− (4n− 3)pf (a)

4

)
− ẋ∗

(
a, t− (4n− 3)pf (a)

4

)
(4n− 3)p′f (a)

4
.

Since p′ = 0, y∗(t) := y∗(x̄, t) satisfies the linearized equation (2.21) around
x∗(t). In addition, y∗(t) is periodic by

y∗(t+ p) = ∂ax
∗(x̄, t+ p) + p′∂tx

∗(x̄, t+ p)

= ∂ax
∗(x̄, t+ p)

= y∗(t).

Notice that y∗(t) satisfies y∗(0) = 1, in contrast to the trivial solution ẋ∗(t)
for which ẋ∗(0) = 0 due to the normalization (5.15). Therefore, ẋ∗0 and y∗0
are linearly independent. In other words, the characteristic multiplier 1 of
γ∗ has geometric multiplicity 2. Thus γ∗ is not hyperbolic.

We show the converse by supposing that γ∗ is not hyperbolic. By Propo-
sition 2.9, the half-multiplier −1 ∈ Spec(N) has algebraic multiplicity two.
Here N half-monodromy operator given by the time-p/2 evolution of the
linearized equation (2.21).

By the Floquet theory in [HVL93], (2.21) possesses a solution y∗(t) of the
form

y∗(t) = v∗(t) + βtẋ∗(t),

where v∗(t) has period p and satisfies v∗(t− p/2) = −v∗(t) for some β ∈ R.
Note that (4n− 3)p/2 = 2 and therefore v∗(t− 2) = −v∗(t). In the following
we denote

A(t) := ∂1f(x
∗(t), x∗(t− 1)) and B(t) := ∂2f(x

∗(t), x∗(t− 1)),(5.16)
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moreover, we set Ā(t) := A(t − 1) and B̄(t) := B(t − 1), we obtain that
(v∗(t), v∗(t− 1)) solves the inhomogeneous ODE

v̇(t) = A(t)v(t) +B(t)w(t)− βB(t)ẋ∗(t− 1)− βẋ∗(t),
ẇ(t) = −B̄(t)v(t) + Ā(t)w(t) + βB̄(t)ẋ∗(t)− βẋ∗(t− 1).

(5.17)

By a Fredholm alternative argument in [Hal69, Section IV.1, Lemma 1.1],
the inhomogeneous ODE (5.17) have solutions with period p if and only if

β

∫ p

0

(v̂∗(t), ŵ∗(t))

(
−B(t)ẋ∗(t− 1)− ẋ∗(t)
B̄(t)ẋ∗(t)− ẋ∗(t− 1)

)
dt = 0,(5.18)

for all (v̂∗(t), ŵ∗(t)) with period p solving the homogeneous adjoint equation

˙̂v(t) = −A(t)v̂(t) + B̄(t)ŵ(t),

˙̂w(t) = −B(t)v̂(t)− Ā(t)ŵ(t).
(5.19)

The choice

(v̂∗(t), ŵ∗(t)) := e−
∫ t
t−1 A(s)ds (−ẋ∗(t− 1), ẋ∗(t)) ,(5.20)

provides a p-periodic solution of (5.19). Plugging (5.20) into the condition
(5.18), we obtain that

β

∫ p

0

e−
∫ t
t−1 A(s)ds

(
B(t)|ẋ∗(t− 1)|2 + B̄(t)|ẋ∗(t)|2

)
dt = 0.

By the monotone feedback (2.1), we have that B(t) ̸= 0 for all t ∈ R. Thus
the integral term never vanishes and β = 0.

As a result, the generalized eigenfunction y∗(t) = v∗(t) is a periodic so-
lution of the linearized equation (2.21) and y∗0 is linearly independent of ẋ∗0,
by construction. Moreover, y∗(t− 2) = −y∗(t), which implies that the linear
ODE

v̇(t) = A(t)v(t) +B(t)w(t),

ẇ(t) = −B̄(t)v(t) + Ā(t)w(t),
(5.21)

has two linearly independent solutions, (ẋ∗(t), ẋ∗(t−1)) and (y∗(t), y∗(t−1)),
both with period 4.

For a ≥ 0, we denote by (ξ(a, t), η(a, t)) the solution of the reference ODE
(5.2) with the initial condition (a, 0), i.e.,

ξ̇(a, t) = f(ξ(a, t), η(a, t)),

η̇(a, t) = −f(η(a, t), ξ(a, t)),
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satisfying the boundary condition

(a, 0) = (ξ(a, 0), η(a, 0)) = (ξ(a, pf (a)), η(a, pf (a))).

By oddness of the periodic solution (2.19) and even-odd symmetry of f ∈ X−,
we have that the amplitude derivative (v̄(t), w̄(t)) := ∂a(ξ(x̄, t), η(x̄, t)) solves
the linear ODE (5.21). Moreover, it takes the boundary values

(1, 0) = (v̄(0), w̄(0))

= (v̄(4), w̄(4)) + (4n− 3)p′(ẋ∗(0), ẋ∗(−1)).
(5.22)

However, (v̄(t), w̄(t)) can be written as a linear combination of the eigen-
functions (ẋ∗(t), ẋ∗(t − 1)) and (y∗(t), y∗(t − 1)) of the linear ODE (5.21),
both of which are p-periodic and also 4-periodic. Since ẋ∗(−1) ̸= 0, by the
normalized form (5.15) it follows that p′ = 0 so that (5.22) is satisfied.

Theorem 5.11. In the setting of Lemma 5.10, the unstable dimension of the
periodic orbit γ∗ with minimal period pf (x̄) = 4/(4n− 3), n ∈ N comes given
by

i(γ∗) =

{
2n− 2, if p′f (x̄) ≥ 0, and
2n− 1, otherwise.

Proof. We use the notation p := pf (x̄) and p′ := p′f (x̄). We know from
Theorem 5.6 that (x∗(t), x∗(t − 1)) solves the ODE (5.2). Without loss of
generality we normalize x∗(t) so that x∗(0) = x̄.

By Lemma 5.10, if p′ = 0, then the critical half-multiplier µc of γ∗ satisfies
µc = −1 and the half-monodromy operator N solving the linearized equation
(2.21) has a geometrically double eigenvalue −1. By Corollary 5.9 (iii), the
Morse index of the periodic orbit γ∗ is

i(γ∗) = 2n− 2.

If p′ ̸= 0, we know by Lemma 5.10 that γ∗ is hyperbolic and Corollary 2.8
(i)–(ii) imply that µc < 0 has geometric multiplicity one. Furthermore, the
associated critical eigenfunction Ψ satisfies z(Ψ) = z(ẋ∗0).

In virtue of Corollary 5.9 we have that i(γ∗) = 2n−1 (resp., i(γ∗) = 2n−2)
if µc < −1 (resp., µc > −1). We now show by a comparison argument that
if p′ > 0, then µc > −1.
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Let y∗(t) denote the solution of the linearized equation (2.21) whose initial
condition satisfies y∗0 = Ψ. Thus it satisfies

y∗(t) = µcy
∗
(
t− p

2

)
,(5.23)

recalling that (4n − 3)p/2 = 2, we define µ̃ := µ4n−3
c . This choice yields

y∗(t) = µ̃y∗(t− 2) and

µc < −1 if and only if µ̃ < −1,
µc > −1 if and only if µ̃ > −1.

In particular, using the notation (5.16), (v(t), w(t)) = (y∗(t), y∗(t−1)) solves
the ODE

v̇(t) = A(t)v(t) +B(t)w(t),

ẇ(t) =
1

β̃
B̄(t)v(t) + Ā(t)w(t),

(5.24)

for the parameter value β̃ = µ̃.

For a ≥ 0, we denote by (ξ(a, t), η(a, t)) the solution of the ODE (5.2)
with the initial condition (a, 0). Let us consider the amplitude derivative

(v̄(t), w̄(t)) := ∂a(ξ(x̄, t), η(x̄, t)),

which solves the linear equation (5.24) with the parameter β̃ = −1 and takes
the boundary values

(1, 0) = (v̄(0), w̄(0))(5.25)
= (v̄(p), w̄(p)) + p′(0, ẋ∗(−1)).

Notice that y∗(t), ẋ∗(t), and v̄(t) are all solutions of the second-order ODE

v̈(t) =

(
A(t) +

Ḃ(t)

B(t)
+ Ā(t)

)
v̇(t)

+

(
Ȧ(t)−

(
Ḃ(t)

B(t)
+ Ā(t)

)
A(t) +

1

β̃
B(t)B̄(t)

)
v(t),

(5.26)

for parameter values β̃ = µ̃ in the case of y∗(t), and β̃ = −1 for ẋ∗(t) and
v̄(t). Let v1(t) and v2(t) be two nonzero solutions of (5.26) for parameter
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values β̃1 and β̃2, respectively. Since B(t) ̸= 0, the only stationary solution
of (5.26) is 0 and we can define the angle variables

φj(t) := arctan

(
vj(t)

v̇j(t)

)
for j = 1, 2.

A comparison theorem [CL55, Chapter 8, Theorem 1.2] guarantees that for
parameter values |β̃1| > |β̃2| and initial angles φ1(0) ≤ φ2(0), the angle
variables satisfy

φ1(t) < φ2(t) for all t > 0.(5.27)

We first prove that the initial condition (y∗(0), ẏ∗(0)) for the second-order
ODE (5.26) satisfies y∗(0) ̸= 0. By contradiction, suppose y∗(0) = 0 and
compare the angles

φΨ(t) := arctan

(
y∗(t)

ẏ∗(t)

)
and φ∗(t) := arctan

(
ẋ∗(t)

ẍ∗(t)

)
.

By assumption, we can set φΨ(0) = φ∗(0) = π/2. Since we are in the
hyperbolic setting, we have µ̃ ̸= −1 and the comparison principle (5.27)
yields

either φΨ(t) > φ∗(t) or φΨ(t) < φ∗(t) for all t > 0.(5.28)

Now we recall the property z(y∗) = z(ẋ∗0) from Lemma 5.8 and the identity
(5.23). As a result, the normalized curves

y∗(t) :=
(y∗(t), ẏ∗(t))

∥(y∗(t), ẏ∗(t))∥
and ẋ∗(t) :=

(ẋ∗(t), ẍ∗(t))

∥(ẋ∗(t), ẍ∗(t))∥
,

are both periodic with minimal period p. However, the comparison (5.28)
and the fact that y∗(t) and ẋ∗(t) wind counterclockwise, due to the negative
feedback (2.1), implies that 5π/2 = φ∗(p) ̸= φΨ(p) = 5π/2. Hence we have
reached a contradiction and y∗(0) ̸= 0.

Multiplying y∗(t) by a real scalar if necessary, we assume without loss of
generality (y∗(0), ẏ∗(0)) = (1, r). Now we compare the angle variable φΨ(t)
to φζ(t) given by

φζ(t) := arctan

(
ζ(t)

ζ̇(t)

)
,
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where ζ(t) := v̄(t)+rẋ∗(t)/ẍ∗(0) solves the second-order ODE (5.26) for β̃ =
−1 and has initial the condition (ζ(0), ζ̇(0)) = (y∗(0), r). By construction we
have φΨ(0) = φζ(0).

Again we proceed by contradiction. Let p′ > 0 and suppose that µc < −1.
Then by the inequality (5.27) it follows that

φζ(t) > φΨ(t) for all t > 0.

The normalized curve y∗(t) winds clockwise around (0, 0) once in time p. By
(5.25) we have that ζ(t) satisfies the boundary condition

(ζ(p), ζ̇(p)) = (ζ(0), ζ̇(0)) + p′(0,−B(0)ẋ∗(−1)).(5.29)

Now we assemble a series of facts. First, both normalized curves y∗(t)
and

ζ(t) :=
(ζ(t), ζ̇(t))

∥(ζ(t), ζ̇(t))∥
,

wind around zero counterclockwise. Therefore, the comparison principle
(5.27) implies that ζ(t) winds around zero faster than y∗(t). At the same
time, we compare ζ(p) and y∗(p) by (5.29). Since we have negative feedback
(2.1) and p′ > 0, it follows in (5.29) that −B(0)p′ẋ∗(−1) > 0. Therefore,
ζ(t) changes signs at least twice more than y∗(t) over the time interval [0, p].
However, y∗(t) changes signs exactly twice in that interval, and therefore
ζ(t) changes signs at least four times for t ∈ [0, p]. By a comparison argu-
ment [CL55, Chapter 8, Theorem 1.1], there is a sign change of ẋ∗(t) inserted
between every two zeros of ζ(t). Thus ẋ∗(t) changes signs at least four times
for t ∈ [0, p], which is a contradiction to p being the minimal period of ẋ∗(t),
by Lemma 2.6 (iii). In this way we have proved that if p′ > 0, then µc > −1
and thereby i(γ∗) = 2n− 2.

To prove that p′ < 0 implies µc < −1, we follow a completely analogous
argument by contradiction. However, ζ(t) has two fewer sign changes than y∗
over the time interval [0, p]. Again, this is a contradiction when we consider
the sign changes of the trivial eigenfunction ẋ∗(t). Therefore, p′ < 0 implies
that µc > −1 and the unstable dimension is i(γ∗) = 2n− 1, completing the
proof.
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Figure 5.1: Schematic plots of two different period maps producing periodic orbits
in the DDE (1.1). The unstable dimensions are indicated inside the circles. (Left)
The equilibrium at the origin (grey) is at a Hopf point. (Right) The periodic orbit
with amplitude a2 (grey) is nonhyperbolic and is at a saddle-node point.

5.4 Interpretation

Although Theorems 5.6 and 5.11 are cumbersome at first glance, they are
simple to represent graphically. On the one hand, Theorem 5.6 states that the
periodic orbits of the DDE (1.1) with f ∈ X− correspond to the intersections
of the period map pf with the level sets 4n − 3 for n ∈ N; see Figure 5.1.
On the other hand, Theorem 5.11 ensures that a periodic orbit γ∗ with
amplitude a∗ is hyperbolic if and only the graph of pf intersects the level
set pf (a∗) transversely. This is equivalent to requiring p′f (a∗) ̸= 0, moreover,
the direction in which pf intersects the level set pf (a∗) gives the unstable
dimension i(γ∗); see Figure 5.1.

The result is that there are two mechanisms behind the periodic solutions
in (1.1):

1. Hopf bifurcations happening when pf (0) = 4n − 3 for some n ∈ N.
Hence a periodic orbit is either emitted or absorbed by the equilibrium
γ0; see Figure 5.1 (Left).

2. Saddle-node bifurcations at which two hyperbolic periodic orbits
collide, forming a nonhyperbolic periodic orbit whose amplitude a∗ cor-
responds to a critical point p′f (a∗) = 0. Immediately after, the periodic
orbit vanishes; see Figure 5.1 (Right).

In particular, Theorems 5.6 and 5.11 complement the structural stability
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results in Chapter 4. The reason is that in Theorem 4.15 we saw that checking
the hyperbolicity condition (MS1) ensures that the global attractor A(f)
is Morse–Smale. Thus Theorem 5.11 provides a criterion for checking the
structural stability of A(f).
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Chapter 6

Connecting orbits

This chapter shows how the phase diagram Γ(f) changes as the global at-
tractor A(f) undergoes a Hopf bifurcation. Our analysis is a Hopf analog of
the study of pitchfork bifurcations carried out by Fusco and Rocha [FR91]
in scalar reaction-diffusion PDE (1.6) with Neumann boundary conditions.

We consider families of nonlinearities fλ ∈ X− with C1-dependence on a
parameter λ ∈ R. Under these conditions, the A-stability in Theorem 4.13
guarantees that the phase diagram Γ(fλ) remains unchanged as long as all
γ∗ ∈ Crit(fλ) stay hyperbolic. Our goal is to discuss the changes happening
at isolated Hopf points, i.e., parameter values λ∗ so that:

(H1) There exist ε > 0 and a neighborhood J := (λ∗ − ε, λ∗ + ε) such that
critical elements γ∗(λ) ∈ Crit(fλ) are hyperbolic for all λ ∈ J \ {λ∗}.

(H2) At λ = λ∗, the only equilibrium γ0 becomes nonhyperbolic, while all
other critical elements remain hyperbolic.

(H3) Denoting J− := (λ∗ − ε, λ∗) and J+ := (λ∗, λ∗ + ε), for λ ∈ J+, there
exists a single bifurcating branch of hyperbolic periodic orbits
γc(λ) such that, in the standard notation for one-sided limits we have

lim
λ→λ+∗

γc(λ) = 0.

Fully understanding the process of Hopf bifurcation is vital because it is the
keystone in our new constructive method to design an infinitely large class
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of Morse–Smale global attractors A(f). More precisely, it allows us to pro-
duce a complete classification of the Hopf–Smale attractors, that is, those
Morse–Smale attractors A(f) for which there exists a smooth deformation
fλ of nonlinearities such that fλ ∈ X− for all λ ∈ [0, 1] and:

• The attractor of f0 satisfies A(f0) = γ0. In other words, A(f0) consists
of a single equilibrium and f1 = f .

• The number of elements in Crit(fλ) changes solely at a finite number
of isolated Hopf bifurcation points in the sense of (H1)–(H3) above.

We describe the Hopf bifurcation process in three steps:

Step 1: Characterize the type of Hopf bifurcation, be it sub- or supercritical,
in terms of the period map pf in Theorem 5.6. In particular, each
bifurcation type will correspond to the center manifold dynamics
discussed in Theorem 3.2 Cases 1 and 2.

Step 2: Determine necessary conditions for the vanishing of connections
between γ†, γ∗ ∈ Crit(fλ). More precisely, thanks to a refinement
of the transitivity in Proposition 4.16, we show that if γ†(λ) ≻ γ∗(λ)
for all λ ∈ J− and γ†(λ∗) ̸≻ γ∗(λ∗) at a Hopf bifurcation point λ∗,
then γ†(λ) ≻ γ0(λ) and γ0(λ) ≻ γ∗(λ) for all λ ∈ J−.

Step 3: We show that the connections broken by the method in Step 2 are
inherited by the branch of bifurcating periodic solutions γc(λ) for
λ ∈ J+.

In Section 6.1, we show that the types of isolated Hopf points in the DDE
(1.1) are completely determined by the period map from Chapter 1.

Section 6.2 is an extension to Hopf bifurcation of the transitivity property
for Morse–Smale systems in Proposition 4.16.

Sections 6.2 to 6.4 introduce blocking, adjacency, and liberalism.
Three terms imported from the classification of reaction-diffusion PDE at-
tractors; see [FRW04]. Furthermore, we shall see that liberalism is an invari-
ant of the Hopf bifurcations in our system. Thus completely determining the
phase diagram of the Hopf–Smale attractors.
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Lastly, Sections 6.5 to 6.7 show how to decode the notions of blocking
and liberalism from the signature, a binary sequence encoding the shape
of pf . We present the first example of Hopf–Smale attractors with the
Chafee–Infante class and explore the realizability of the signatures by us-
ing the enharmonic oscillator (1.8) from Chapter (1).

6.1 Types of Hopf bifurcation

A key aspect in studying the connectivity changes in a Hopf bifurcation
is first to discuss what happens to the invariant manifolds involved in the
process. Indeed, proceeding as in Lemma 4.8, a hyperbolic periodic orbit
γ∗(λ∗) ∈ Crit(fλ∗) admits a unique local continuation γ∗(λ) for all λ ∈
J . Denoting by M(λ) the monodromy operator along the continuation, the
discussion in Chapter 3 shows that the history space H admits a continuous
M(λ)-invariant splitting into the unstable, center, and stable eigenspaces

H = Hu(λ)⊕Hc(λ)⊕Hs(λ).(6.1)

Furthermore, by hyperbolicity, they satisfy

|µ| > 1 for all µ ∈ Spec
(
M(λ)|Hu(λ)

)
,

|µ| = 1 for all µ ∈ Spec
(
M(λ)|Hc(λ)

)
,

|µ| < 1 for all µ ∈ Spec
(
M(λ)|Hs(λ)

)
.

Recall that the construction of the global stable manifolds W s(γ∗) was based
on Theorem C.3. We constructed a single local chart (W s

loc(x
∗
0), P

s) near
points x∗0 ∈ γ∗ in such a way that the fundamental domain W s

loc(x
∗
0) is

C1-uniformly continuous with respect to fλ. However, the global extension
W s(γ∗(λ)) required translations of the fundamental domain by the semiflow
Sf (t); see Theorems 3.1, 3.2, and 3.4, thereby we obtained an injectively
immersed manifold rather than an embedded one. In particular, we lost the
uniform continuity of the whole manifold in favor of uniform convergence on
individual charts. Therefore, the expression

lim
λ→λ∗

W s(γ∗(λ)) = W s(γ∗(λ∗)),(6.2)

means that the convergence is considered uniformly on the charts above. The
same argument holds for the unstable manifold W u(γ∗). Nevertheless, the
situation becomes more complicated when the splitting (6.1) experiences a
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discontinuity at an isolated Hopf point. By Theorem 5.11, the period map
pfλ∗ satisfies pfλ∗ (0) = 4/(4n − 3) for some n ∈ N, and we distinguish two
situations corresponding to Cases 1 and 2 in Theorem 3.2:

Case 1: pfλ∗ has a strict maximum at 0. Since we have standardized the
bifurcation branch to appear for λ ∈ J+, Lemma 2.9 and Theo-
rem 5.11 guarantee that i(γ0(λ∗)) = 2n − 2 and 2n = i(γc(λ)) >
i(γ0(λ)) = 2n− 2 for all λ ∈ J+. Thus, by Theorem 5.11, through
the bifurcation the origin becomes more stable and emanates an
unstable period orbit. Letting M(λ) denote the monodromy oper-
ator at γ0(λ), we obtain that the M(λ)-invariant splitting (6.1) for
λ ∈ J− satisfies

lim
λ→λ−∗

Hu(λ) = Hu(λ∗) +Hc(λ∗) and lim
λ→λ−∗

Hs(λ) = Hs(λ∗).

Case 2: pfλ∗ possesses a strict minimum at 0, i(γ0(λ∗)) = 2n − 2, and
2n = i(γ0(λ)) > i(γc(λ)) = 2n − 2 for all λ ∈ J+. In particular,
by Theorem 5.11 the origin destabilizes through the emission of a
more stable period orbit. In the notation above, the M(λ)-invariant
splitting at the origin (6.1) satisfies

lim
λ→λ−∗

Hu(λ) = Hu(λ∗) and lim
λ→λ−∗

Hs(λ) = Hs(λ∗) +Hc(λ∗).

The discussion above allows us to distinguish two types of Hopf bifurcations.

Proposition 6.1. Consider a smooth family of nonlinearities fλ ∈ X− and
let λ∗ be an isolated Hopf point. Then using the standard one-sided limit
convention, the following hold:

lim
λ→λ−∗

W u(γ0(λ)) = W u(γ0(λ∗)) = lim
λ→λ+∗

W u(γc(λ)),

lim
λ→λ−∗

W s(γ0(λ)) = W s(γ0(λ∗)) = lim
λ→λ+∗

W s(γc(λ)).
(6.3)

Furthermore, based on Cases 1 and 2 above, we can distinguish two scenarios:

Case 1: If pfλ∗ has a strict local maximum at 0, then i(γc(λ)) = i(γ0(λ)) +
1 = z(γc(λ)) and γc(λ) ≻ γ0(λ) for all λ ∈ J+. Additionally,

lim
λ→λ+∗

W u(γ0(λ)) = W uu(γ0(λ∗)).(6.4)
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Case 2: If pfλ∗ has a strict local minimum at 0, then i(γc(λ)) = i(γ0(λ))−
2 = z(γc)− 1 and γ0(λ) ≻ γc(λ) for all λ ∈ J+. Moreover,

lim
λ→λ+∗

W s(γ0(λ)) = W ss(γ0(λ∗)).

Proof. The proof essentially requires us to discuss the center manifold dy-
namics. We consider first Case 1 and Case 2 is completely analogous with
the dynamics on the center manifold reversed. Indeed, we have that i(0) >
i(γc(λ)) for all λ ∈ J+. Sufficiently close to λ∗, we use Theorem C.7 and
Lemma B.2 to construct a λ-continuation W c

loc(γ0(λ)) of the two-dimensional
local center manifoldW c

loc(γ0(λ∗)) for the time-1 map Sfλ(1) in an open neigh-
borhood around the origin. By construction, both γ0(λ) and γc(λ) belong to
W c

loc(γ0(λ)) for λ ∈ J+ sufficiently close to λ∗. Furthermore, W c
loc(γ0(λ)) is

Sfλ(1)-invariant, and γc(λ) defines a Sfλ(1)-invariant circle on W c
loc(γ0(λ)).

Since the restriction of Sfλ(1) to W c
loc(γ0(λ)) is orientation preserving, γ∗ is a

separatrix for the dynamics on W c
loc(γ0(λ)). As a result, all initial conditions

ϕ ∈ W c
loc(γ0(λ)) possess both α- and ω-limit sets contained in the closure of

the interior region determined by γc(λ). Recalling that i(γc(λ)) > i(γ0(λ)),
Proposition 2.5 and Corollary 4.7 show that γc(λ) ≻ γ0(λ) for all λ suffi-
ciently close to λ∗ and, by Theorem 4.13, also for all λ ∈ J+.

Moreover, recall that γc(λ) is hyperbolic for λ ∈ J+. Thus, by the discus-
sion above, any solutions in W c

loc(γ0(λ)) lying outside of γc(λ) are repelled by
γc(λ). Using continuity, we shrink γc(λ) to zero as λ→ λ∗; by Theorem C.7
and the instability of γc in W c

loc(γ0(λ)), we observe that γ0(λ∗) is unstable
within the center manifold W c

loc(γ0(λ∗)), as in Theorem 3.2 Case 1. There-
fore, we can use the same continuity argument for the local charts that we
used in the hyperbolic case (6.2) to conclude (6.3) and (6.4).

Proposition (6.1) finally connects Cases 1 and 2 in Theorem (3.2) with
the two bifurcation types described in Chapter 1. Furthermore, the char-
acterization can be made in terms of the period map pf . Thus, given an
isolated Hopf point λ∗, we say that the Hopf bifurcation is subcritical if the
assumptions of Case 1 in Proposition 6.1 are met. Likewise, we say that λ∗
is supercritical if the assumptions of Case 2 hold.
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6.2 Transitivity

In this section, we give a weak version of the transitivity property in Propo-
sition 4.16. This guaranteed that given three different hyperbolic critical
elements γ†, γ⋄, γ∗ ∈ Crit(f), the connections γ† ≻ γ⋄ and γ⋄ ≻ γ∗ can be
concatenated to obtain γ† ≻ γ∗. In the following, we show that only the
intermediate critical element γ⋄ has to remain hyperbolic for transitivity to
hold.

Lemma 6.2. Let γ†, γ∗ ∈ Crit(f) with f ∈ X− be isolated critical elements
such that if any of them is nonhyperbolic, then it is the equilibrium γ0. If
there exists a hyperbolic γ⋄ ∈ Crit(f) such that γ† ≻ γ⋄ and γ⋄ ≻ γ∗, then
γ† ≻ γ∗.

Proof. The result is a consequence of the λ-lemma [Pal69, Lemma 1.1], which
also possesses a version for compact injective semiflows Sf (t) with injective
Fréchet derivative; see [HMO02, Proposition 6.2.3]. The case γ⋄ = γ0 reduces
automatically to the standard transitivity [HMO02, Proposition 6.2.4] since
all the elements involved are hyperbolic.

Thus, we consider the case in which γ⋄ is a periodic orbit and Theorem
4.13 guarantees that

W u(γ†)−⋔ W s(γ⋄) and W u(γ⋄)−⋔ W s(γ∗).

Consider x⋄0 ∈ γ⋄ and the dynamical system induced by the Poincaré map
P defined in (3.17) for an invariant leaf x⋄0 ∈ U⋄

0 . Denoting the unstable
manifold of the Poincaré map by

W u
loc(x

⋄
0) := W u(γ⋄) ∩ U⋄

0 ,

we take an open disk U⋄ ⊂ W u(x⋄0) centered at x⋄0. The λ-lemma for
maps [HMO02, Proposition 6.1.12] shows that for all δ > 0, we can find
a submanifold U †

δ ⊂ W u(γ†) ∩ U0 of dimension dimU †
δ = dimW u

loc(x
⋄
0) such

that U †
δ and U⋄ are δ-close in the C1-uniform norm. In other words, we can

find C1-coordinate charts for U †
δ and U⋄ that are δ-close in the C1-topology.

Let us choose a point ϕ ∈ U⋄ −⋔ (W s(γ∗)∩U⋄
0 ) ⊂ W u

loc(x
⋄
0)
−⋔ (W s(γ∗)∩U⋄

0 ),
where transversality now takes place on the leaf U⋄

0 , which is a manifold of
codimension one in H. By Theorem 4.13, we can find an open disk U∗ ∈
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(W s(γ∗)∩U⋄
0 ), centered at x0, such that U∗ is transverse to U⋄ in U⋄

0 . Thus,
choosing δ sufficiently small, we guarantee that U †

δ ∩ U∗ ̸= ∅, which shows
W u(γ†) ∩W s(γ∗) ̸= ∅.

An immediate consequence is that to break a connection γ† ≻ γ∗ we need
it to proxy through a nonhyperbolic critical element γ⋄.

Lemma 6.3. Consider an isolated Hopf point λ∗ for a smooth family of
nonlinearities fλ ∈ X−. Let γ†(λ), γ∗(λ) ∈ Crit(fλ) denote two different
branches of critical elements that remain hyperbolic for all λ ∈ J . If γ†(λ) ≻
γ∗(λ) for all λ ∈ J− (resp., λ ∈ J+) and γ†(λ) ̸≻ γ∗(λ) for all λ ∈ J+ (resp.,
λ ∈ J−), then γ†(λ∗) ≻ γ0(λ∗) and γ0(λ∗) ≻ γ∗(λ∗).

Proof. Since the argument relies solely on the compactness of the solution
operator Sfλ(t), for t sufficiently large, the proof is the same as the one
of [Hen85, Theorem 9] for parabolic PDEs. We reproduce it for completeness.

The core idea is that, since γ†(λ) ≻ γ∗(λ) for λ < λ∗, in the limit λ→ λ∗
we can construct a finite chain of critical elements γ(j) ∈ Crit(fλ∗) such that

γ†(λ∗) ≻ γ(n) ≻ · · · ≻ γ(0) ≻ γ∗(λ∗).

At this point, by assumptions (H1)–(H3), we obtain a dichotomy:

(i) Either all γ(j) in the chain are hyperbolic periodic orbits, or

(ii) there exists some j∗ ∈ {0, . . . , n} for which γ(j∗) = 0.

In case (i), we apply the transitivity in Lemma 6.2 to obtain that γ†(λ∗) ≻
γ∗(λ∗), thus Theorem 4.13 guarantees that γ†(λ) ≻ γ∗(λ) for all λ ∈ {λ∗} ∪
J+.

In case (ii), however, there exist connections from γ†(λ∗) to γ∗(λ∗) that
proxy through the single nonhyperbolic critical element γ0. Therefore, we
have two chains such that

γ†(λ∗) ≻ γ(n) ≻ · · · ≻ γ(j
∗+1) ≻ γ0(λ∗),

γ0(λ∗) ≻ γ(j
∗−1) ≻ . . . γ(0) ≻ γ∗(λ∗).

Applying Lemma 6.2, we obtain that γ†(λ∗) ≻ γ0(λ∗) and γ0(λ∗) ≻ γ∗(λ∗).
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6.3 Blocking

In the following, we denote the existence of an undirected connection between
γ†, γ∗ ∈ Crit(f) by γ† ∼ γ∗, that is, if either γ† ≻ γ∗ or γ∗ ≻ γ†. Likewise,
we denote the absence of a connection by γ† ̸∼ γ∗.

Recall that, by Lemma 2.6 (vi), the relative zero number is well defined
for formal differences of different critical elements via

z(γ† − γ∗) := z(x†0 − x∗0), for any x†0 ∈ γ†, x∗0 ∈ γ∗.

We can show that the relative zero number is uniquely determined by the
relative amplitude a(γ∗) := maxϕ∈γ∗ ∥ϕ∥C0 .

Lemma 6.4. Consider two critical elements γ†, γ∗ ∈ Crit(f) with f ∈ X−

such that a(γ∗) > a(γ†). If the period map pf is locally nonconstant, then the
relative zero number satisfies z(γ∗ − γ†) = z(γ∗ − γ0) = z(γ∗).

Proof. Indeed, the result is equivalent to [BF88, Lemma 4.2] in the setting
of reaction-diffusion PDEs. The main reason is that, analogously to equi-
libria in reaction-diffusion, the periodic solutions of the DDE (1.1) solve a
second-order ODE. Still, we adapt the proof for completeness.

The result is immediate if γ† = γ0. Otherwise, we denote by x∗(t) and x†(t)
the solutions of the DDE (1.1) with orbits γ∗ and γ† respectively. We shall
compare the sign changes of x∗(t), ẋ∗(t), and x∗(t) − x†(t). Since all these
functions solve linear systems of the form (2.10), they meet the assumptions
of Proposition 2.2 and possess only simple zeros. Furthermore, by Lemma
2.6 (ii) and (iii), the projection Pγ∗ is nested inside Pγ†, implying that if
x∗(t) = x†(t), then we have the identity

sign(x∗(t− 1)− x†(t− 1)) = sign(x∗(t− 1)).

Thus we obtain that x∗(t)−x†(t) changes signs at most once in between any
two zeros of x∗(t). We will now show that

z(γ∗ − γ†) ≤ z(γ∗).(6.5)

Indeed, the remarks above show that for all t ∈ R we have

sc(x∗t − x
†
t) ≤ sc(x∗t ) + 1,
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where sc stands for the sign change function defined in (2.14). In particular, if
sc(x∗t ) is even, then (6.5) follows from the definition of the zero number (2.15).
If n := sc(x∗t ) is odd, however, we have to discard the case sc(x∗t −x

†
t) = n+1

since it does not satisfy (6.5). By contradiction, we denote the zeros of x∗t−x
†
t

by −1 < θ1 < θ2 < . . . θn+1 < 0, likewise, the zeros of x∗t are the θ∗j satisfying

−1 < θ1 < θ∗1 < θ2 < · · · < θ∗n < θn+1 < 0.

Next, we shift time forward by t∗ > 0 so that the zeros of x∗t+t∗ − x
†
t+t∗ and

x∗t+t∗ satisfy

θ1 − t∗ < −1 < θ∗1 − t∗ < θ2 − t∗ < · · · < θ∗n − t∗ < θn+1 − t∗ < 0.

Since n was assumed to be odd, we have that z(γ∗) = n. Thus x∗t+t∗ possesses
no sign changes in the interval (θ∗n+t∗, 0) and neither does x∗t+t∗−x

†
t+t∗ because

θn+1 − t∗ is its only zero in the interval (θ∗n + t∗, 0). Hence we have shown
that sc(x∗t+t∗ − x

†
t+t∗) = n, so that

z(x∗t − x
†
t) = n+ 2 and x∗t+t∗ − x

†
t+t∗ = n,

in contradiction to Lemma (2.10) (vi). This completes the proof of (6.5). To
see the reverse inequality, notice that the nestedness of the projections yields

sign(x∗(t)− x†(t)) = sign(x∗(t)),

at ẋ∗(t) = 0. Since x∗(t) is sinusoidal, this implies that x∗(t) − x†(t) has at
least one zero for every sign change of ẋ∗(t). Hence

z(x∗t − x
†
t) + 1 ≥ z(ẋ∗t )

for all t ∈ R. Notice that the argument used to prove (6.5) is still valid if we
replace x∗t − x

†
t by ẋt and x∗t by x∗t − x

†
t . Hence, we obtain

z(γ∗ − γ†) ≥ z(ẋ∗t ),

for all t ∈ R. Recalling from Lemma 2.1 (vi) that z(ẋ∗t ) = z(x∗t ) = z(γ∗), we
have that

z(γ∗ − γ†) ≥ z(γ∗),

which completes the proof.

Therefore, the relative zero number between two critical elements is fully
determined by the element that possesses the largest amplitude. In partic-
ular, following the same method as in parabolic PDEs [FRW04] allows us
to define a simple condition preventing the existence of connections between
two critical elements.
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Lemma 6.5. Consider three different critical elements γ†, γ⋄, γ∗ ∈ Crit(f)
with f ∈ X− such that pf is locally nonconstant. Let a(γ†) < a(γ⋄) < a(γ∗),
if z(γ⋄) = z(γ∗), then there exist no connections between γ† and γ∗. i.e.,
γ† ̸∼ γ∗.

Proof. We proceed by contradiction. Suppose that γ† ≻ γ∗, i.e., that there
exists an initial condition ϕ ∈ A(f) such that α(ϕ) = γ† and ω(ϕ) = γ∗. Let
us denote by x(t) the solution through ϕ. Using Lemma 6.4, for any x⋄0 ∈ γ⋄
we have that the zero number satisfies limt→∞ z(xt−x⋄t ) = z(γ∗−γ⋄) = z(γ∗)
and limt→−∞ z(xt − x⋄t ) = z(γ† − γ⋄) = z(γ⋄).

By Lemma 2.6 (ii), we have that the planar projections of the periodic
orbits are nested, i.e., Int

(
Pγ†

)
⊂ Int (Pγ⋄) ⊂ Int (Pγ∗) where Int refers

to the interior region defined by the corresponding Jordan curve. Moreover,
by continuity of the planar projection P , there exists a t∗ such that Pxt∗ ∈
Pγ⋄ ̸= ∅. Since (x(t) − x⋄(t)) solves the linear equation (2.10) with the
coefficients (2.13), by the monotonicity of the zero number in Proposition
2.2 we obtain

z(γ∗) = z (γ⋄)

= z
(
γ† − γ⋄

)
> z (xt∗ − x⋄t∗)
≥ z (γ∗ − γ⋄)
= z (γ∗) .

Thus, reaching a contradiction and obtaining γ† ̸≻ γ∗. The argument is
symmetric under the exchange of γ† and γ∗; thus, we have also proved γ∗ ̸≻
γ†, which yields γ† ̸∼ γ∗.

In the setting of Lemma 6.5, we say that γ⋄ blocks the connections
between γ† and γ∗. We say that γ† and γ∗ are adjacent if there is no critical
element γ⋄ blocking the connections between γ† and γ∗.

6.4 Liberalism

We say that a global attractorA(f) satisfies liberalism if all adjacent critical
elements are connected. The goal of this section is to determine that if A(f)
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is Hopf–Smale, then liberalism holds. To this end, we first show the following
proposition.

Proposition 6.6. Let λ = λ∗ be an isolated Hopf point for a smooth family
of nonlinearities fλ ∈ X− and let γ†(λ), γ∗(λ) ∈ Crit(fλ) be two branches of
periodic orbits that remain hyperbolic for all λ ∈ J . Denoting by γc(λ) the
branch of bifurcating periodic orbits, we have that:

(i) γ†(λ) ∼ γ∗(λ) for λ ∈ J− if and only if γ†(λ) ∼ γ∗(λ) for λ ∈ J+.

(ii) γ0(λ) ∼ γ∗(λ) for λ ∈ J− if and only if γc(λ) ∼ γ∗(λ) for λ ∈ J+.

(iii) γ0(λ) ∼ γ∗(λ) for λ ∈ J− and |i(γ0(λ∗)) + 1 − z(γ∗(λ∗))| ≥ 2 if and
only if γ0(λ) ∼ γ∗(λ) for λ ∈ J+.

Proof. To see (i), we proceed by contradiction. Indeed, let us suppose that
γ†(λ) ≻ γ∗(λ) for all λ ∈ J− and that connection between them vanishes
for λ ∈ J+. Thus, Lemma 6.3 shows that the only way the connection can
be broken for λ ∈ J+ is if we have γ†(λ∗) ≻ γ0(λ∗) and γ0(λ∗) ≻ γ∗(λ∗).
Furthermore, the C1-limits (6.3) ensure that

W u(γ†(λ∗)) ∩W s(γc(λ∗)) = W u(γ†(λ∗)) ∩W s(γ0(λ∗)) ̸= ∅

and

W u(γc(λ∗)) ∩W s(γ∗(λ∗)) = W u(γ0(λ∗)) ∩W s(γ∗(λ∗)) ̸= ∅.

Here W s(γc(λ∗)) and W u(γc(λ∗)) refer to the limits of the corresponding
invariant manifolds as λ→ λ∗. As a result, Theorem 4.14 shows that

W u(γ†(λ∗))
−⋔ W s(γc(λ∗)) ̸= ∅ and W u(γc(λ∗))

−⋔ W s(γ∗(λ∗)) ̸= ∅,

which allows us to use Corollary B.2 and continue the intersection to λ ∈ J+,
yielding γ†(λ) ≻ γc(λ) ≻ γ∗(λ) for all λ ∈ J+. Finally, by the transitivity
Lemma 6.2, we obtain that γ†(λ) ≻ γ∗(λ) for all λ ∈ J+, yielding a contradic-
tion. Reversing the direction of bifurcation shows the converse implication
by an analogous argument.

To see (ii), we consider the limits (6.3) together with Theorem 4.14. In-
deed, assume that γ∗(λ) ≻ γ0(λ) for all λ ∈ J−. Then we can continue the
nontrivial intersections

W u(γ∗(λ∗))
−⋔ W s(γ0(λ∗)) = W u(γ∗(λ∗))

−⋔ W s(γc(λ∗)) ̸= ∅
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so that W u(γ∗(λ)) −⋔ W s(γc(λ)) ̸= ∅ for all λ ∈ J+. The argument is com-
pletely symmetric under an exchange of the direction of bifurcation, proving
the converse. If we assume γ0(λ) ≻ γ∗(λ) instead, then the proof follows
analogously by swapping the roles of γ0 and γ∗.

To see (iii), we show first the only if part. Indeed, assume that γ0(λ) ∼
γ∗(λ) for all λ ∈ J+. In particular, γc(λ) does not block the connections
between γ0(λ) and γ∗(λ). Hence z(γc(λ∗)) ̸= z(γ∗(λ∗)) and, by Proposition
6.1, we have that z(γc(λ)) = i(γ0(λ∗))+ 1 and obtain the bound |i(γ0(λ∗))+
1 − z(γ∗(λ∗))| ≥ 2. By Lemma 6.3, a necessary condition for breaking the
connection γ0(λ∗) ∼ γ∗(λ∗) for λ ∈ J− is that γ0(λ∗) ∼ γ∗(λ∗). Hence the
connection γ0(λ∗) ∼ γ∗(λ∗) can be continued to λ ∈ J− thanks to Theorem
4.14.

Next we show the if part in (iii) at a subcritical Hopf point, i.e., Case 1 in
Proposition 6.1. The supercritical case is analogous. Assume that γ0(λ) ∼
γ∗(λ) for all λ ∈ J− and |i(γ0(λ∗)) + 1− z(γ∗(λ∗))| ≥ 2. If γ∗(λ) ≻ γ0(λ) for
all λ ∈ J−, then Proposition 6.1 and Part (ii) above show that γc(λ) ≻ γ0(λ)
and γ∗(λ) ≻ γc(λ) for all λ ∈ J+. Thus, by the transitivity in Lemma 6.2,
we obtain γ∗(λ) ≻ γ0(λ) for all λ ∈ J+.

Finally, we show what happens if the bifurcation is subcritical and γ0(λ) ≻
γ∗(λ) for all λ ∈ J−. By Lemma 6.3, the connection γ0(λ) ≻ γ∗(λ) for λ ∈ J+
is only broken if γ0(λ∗) ≻ γ∗(λ∗). Hence Theorem 4.14 and Lemma B.1 show
that

dim(W u(γ0(λ∗))
−⋔ W s(γ∗(λ∗))) = i(γ0(λ∗)) + 2− i(γ∗(λ∗)).

Moreover, the inequality |i(γ0(λ∗))+1−z(γ∗(λ∗))| ≥ 2 ensures that i(γ0(λ∗)) >
i(γ∗(λ∗)), obtainiting dim(W u(γ0(λ∗))

−⋔ W s(γ∗(λ∗))) ≥ 3. This proves
that W uu(γ0(λ∗))

−⋔ W s(γ∗(λ∗))) ̸= ∅ because otherwise all the connec-
tions from γ0(λ∗) to γ∗(λ∗) would lie on the two-dimensional center man-
ifold W c

loc(γ0(λ∗)). It follows from Theorem 4.14 and the limit (6.4) that the
connection γ0(λ) ≻ γ∗(λ) can be continued to all λ ∈ J+, completing the
proof.

The connectivity rules (i)–(iii) in Proposition 6.6 above can be summarized
in one by the following corollary.

Corollary 6.7. Under the assumptions of Proposition 6.6, the global attrac-
tor A(fλ) satisfies liberalism for all λ ∈ J− if and only if A(fλ) satisfies
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liberalism for all λ ∈ J+.

Proof. Indeed, if liberalism holds for all λ ∈ J−, then (i) preserves liberalism
between the orbits that are not directly involved in the Hopf bifurcation.
Furthermore, (ii) shows that γc inherits all the connections that γ0 had before
the bifurcation took place, and we know from Proposition 6.1 that γ0 ∼ γc

for all λ ∈ J+. Therefore, liberalism holds for the connections between γc

and any other critical element for λ ∈ J+. Finally, (iii) tells us that all the
connections with γ0 that are not blocked by γc survive for all λ ∈ J+. Thus,
liberalism holds for all the connections involving γ0, and we have that A(fλ)
satisfies liberalism for all λ ∈ J+.

Conversely, let liberalism hold for all λ ∈ J+. Liberalism for λ ∈ J−
holds between any two orbits that are not involved directly in the Hopf
bifurcation due to the symmetry of (i). However, (ii) shows that for λ ∈ J−,
γ0 absorbs any connections that were blocked by γc for λ ∈ J+. Furthermore,
any connections that were not blocked by γc, are preserved by (iii), which
completes the proof.

Ultimately, this leads to a law of connection for all possible Hopf–Smale
attractors.

Corollary 6.8. Let A(f) with f ∈ X− be a Hopf–Smale attractor. Then it
satisfies liberalism.

Proof. Trivially, the attractor A(f0) = γ0 at the beginning of the Hopf ho-
motopy satisfies liberalism. By Corollary 6.7, the result follows from the
definition of Hopf–Smale attractor.

6.5 Signatures

In particular, Corollary 6.8 reduces the description of the Hopf–Smale global
attractors A(f) to the study of the possible configurations of relative zero
numbers and unstable dimensions for the critical elements Crit(f). Given a
Hopf–Smale attractor A(f) with f ∈ X−, Lemma 4.8 ensures that Crit(f) =
{γ0, . . . , γN}. Here the critical elements are ordered by increasing amplitudes
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aj := a(γj) < a(γj+1) for j = 0, . . . , N−1. The binary {−1, 1}-sequence given
by

χ(f) :=
(
1, sign(p′f (a1)), . . . , sign(p

′
f (aN−1)), 1

)
,(6.6)

is called signature of f . In this section, we show that χ(f) contains enough
information to reconstruct the phase diagram Γ(f).

Lemma 6.9. Let f ∈ X− be such that A(f) is Morse–Smale and, as above,
let us denote the critical element with the largest amplitude by γN . Then
pf (a) > 4 for all a > a(γN), i(γN) = 0, and z(γN) = 1.

Proof. Indeed, by the compactness of the global attractor A(f), we can al-
ways find a K > 0 so large that the constant function ϕ ≡ K satisfies
z(ϕ − ϕ̃) = 1 for all ϕ̃ ∈ A(f). Denote by x(t) the solution with the initial
condition ϕ and let x∗(t) be a periodic solution with orbit γN . We recall that
(x(t) − x∗(t)) solves the linear DDE (2.10) with coefficients (2.13). Thus,
by Proposition 2.2, we have that z(xt − x∗t ) ≥ z(ϕ − x∗0) = 1 for all t ≥ 1.
Moreover, since the zero number can not take negative values, we have that
Pxt∩PγN = ∅ for all t ≥ 0, i.e., the planar projection {(x(t), x(t−1)) : t ≥ 0}
is confined to the exterior connected component of R2 defined by the Jor-
dan curve PγN . However, the global attractor being the maximal compact
invariant set implies ω(ϕ) ⊂ A(f). In particular, we obtain that ω(ϕ) = γN
and it follows from Theorem 3.4 that ϕ ∈ W s(γN); however, if K > 0 is
large enough, the same argument is valid for all ϕ̃ ∈ H sufficiently close
to ϕ. Thus W s(γN) contains an open ball in H, yielding i(γN) = 0. By
assumption γN is hyperbolic and Theorem 5.11 implies that pf (a(γN)) = 4
and sign(p′f (a(γN))) = 1. Since γN is the periodic solution with the largest
amplitude, the proof is complete by Theorem 5.6.

In particular, all the global attractors discussed in this work possess a sta-
ble outermost periodic solution. As a result of Lemma 6.9, the signature (6.6)
encodes the shape of the period map pf for any Morse–Smale nonlinearity
f ∈ X−. Thus our signature is just a special case of the Rocha signature
used by Rocha to describe the period maps of planar Hamiltonian ODEs
with Morse potentials; see [Roc07]. This property allows us to reconstruct
the relative zero numbers and Morse indices of all periodic orbits from the
signature.
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Lemma 6.10. In the setting of Lemma 6.9, let us denote

(s0, . . . , sN) := χ(f)

and construct the sequences (z0, . . . , zN) and (i0, . . . , iN) via

zj := zj+1 + sj+1 + sj, j = 0, . . . , N − 1, zN := 1,

ij := zj −
sj + 1

2
, j = 0, . . . , N.

(6.7)

Then zj = z(γj) for j = 1, . . . , N , and ij = i(γj) for j = 0, . . . , N .

Proof. The claims are immediate if aN = 0. Otherwise, Lemma 6.9 shows
that i(γ(N)) = 0 and z(γ(N)) = 1, as required. We now proceed by induction
and suppose that our claims hold for j + 1. Certainly, if sj = sj+1, we have
that pf (aj) and pf (aj+1) are consecutive realizable periods, i.e.,

pf (aj) =
4

4n− 3
and pf (aj+1) =

4

4m− 3
with |n−m| = 1.

By Lemma 5.8, we have that |z(γ(j)) − z(γ(j+1))| = 2 with the sign of the
difference being given by sj, hence z(γ(j)) = z(γ(j+1))+sj+sj+1. If sj ̸= sj+1,
the same argument yields pf (aj) = pf (aj+1) and z(γ(j)) = z(γ(j+1))+sj+sj+1,
this completes the proof for zj.

To prove the claims for ij, j = 1, . . . , N , recall from Theorem 5.11 that

i(γ(j)) =

{
z(γ(j))− 1, if sj = 1,

z(γ(j)), if sj = −1.

Then the result follows immediately. However, for i0 we proceed slightly
differently and notice that by Lemma 2.9 and Theorem 5.6 we have

i(γ0) = z1 +
s1 + 1

2

= z1 + s1 + s0 −
s0 + 1

2

= z0 −
s0 + 1

2
= i0.
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Combining Lemma 6.10 with Corollary 6.8, we conclude that the phase
diagram Γ(f) of any Hopf–Smale attractor A(f) can be decoded from the
signature χ(f) by using the sequences (6.7). Indeed, notice that (6.7) con-
tain all the information necessary to determine if two critical elements are
adjacent. Thus we obtain our main result.

Theorem 6.11. Let f ∈ X− be such that A(f) is Hopf–Smale and define the
sequences (z0, . . . , zN) and (i0, . . . , iN) as in Lemma 6.10. Then there exists
a connection γk ≻ γl if and only if

ik > il, and zj ̸= zmax{k,l} for all min{k, l} < j < max{k, l}.(6.8)

In particular, the condition (6.8) determines the phase diagram Γ(f) com-
pletely.

Proof. By Corollary 6.8, A(f) satisfies liberalism. In particular, by Lemma
6.10, the condition (6.8) is equivalent to preventing blocking in the sense of
Lemma 6.5, which is the same as guaranteeing liberalism.

Furthermore, χ(f) can be recovered if we know Γ(f) and the labels of the
vertices.

Lemma 6.12. In the setting of Theorem 6.11, the signature χ(f) is the
unique sequence (s0, . . . , sN) satisfying s0 = sN = 1 and

sj+1 =

{
1, if γj ≻ γj+1,

−1, if γj+1 ≻ γj,
j = 0, . . . , N − 1.(6.9)

Proof. Theorem 6.11 shows that γj ∼ γj+1 for j = 0, . . . , N − 1. Therefore,
the direction of the connection indicates the sign of i(γj+1)− i(γj). Further-
more, by (6.7), we have that

i(γj+1)− i(γj) =
−3sj+1 − sj

2
;

hence sign(i(γj+1)− i(γj)) = −sj+1, from which (6.9) follows.

In particular, we conclude that the method in Theorem 6.11 produces
unique phase diagrams.
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Proposition 6.13. In the setting of Theorem 6.11, the signature χ(f) de-
termines a unique phase diagram Γ(f) up to a graph isomorphism. That is,
if there exists a Hopf–Smale nonlinearity f̃ ∈ X− such that Γ(f) ∼= Γ(f̃),
then χ(f) = χ(f̃).

Proof. By contradiction, let Γ(f) ∼= Γ(f̃), that is, for Crit(f̃) := {γ̃0, . . . , γ̃N}
there exists a bijection Ξ : Crit(f)→ Crit(f̃) mapping edges of Γ(f) to edges
of Γ(f̃) and suppose that χ(f) ̸= χ(f̃).

By Theorem 6.11, the relabeling Ξ maps nearest neighbors γk, γk+1 ∈
Crit(f) to nearest neighbors γl, γl+1 ∈ Crit(f̃). Therefore, the only two pos-
sibilities are either Ξ(γj) = γ̃j, or Ξ(γj) = γ̃N−j for j = 0, . . . , N . Lemma 6.12
shows that χ(f) can be recovered from the connections between neighboring
equilibria, yielding χ(f) = χ(f̃) and completing the proof if the isomorphism
of graphs is of type Ξ(γj) = γ̃j.

Otherwise, the isomorphism is of type Ξ(γj) = γ̃N−j and it reverses the
partial order defined by ≻ on Γ(f). Lemma 6.12 together with Lemma 6.9
guarantee that the coefficients (s̃0, . . . , s̃N) := χ(f̃) satisfy s̃0 = s̃N = 1 and
s̃j = −sj−N for j = 1, . . . , N −1. Moreover, since γN−1 ≻ γN and γ̃N−1 ≻ γ̃N
always holds by Lemma 6.9, a necessary condition for Γ(f) ∼= Γ(f̃) is that
s1 = −1. Under these conditions, (6.7) applied to χ(f̃) yield the sequence

z̃j = zN−j − z0 + 1.(6.10)

We claim that if there exists k ≥ 1 such that sksk+1 = −1, then z(γk) =
z(γk+1) = 1. By contradiction suppose that z(γk) > 1, then Lemma 6.10
yields z(γk) = z(γk+1) > 1. In particular, since Lemma 6.9 shows z(γN) = 1
and the zero number leaps at most by two between neighboring periodic
orbits, there exists a γl with k + 1 < l ≤ N such that z(γl) < z(γk+1)
and γl is adjacent to γk. By Theorem 6.11, we conclude that γk ≻ γl and
γk+1 ≻ γl. However, after reversing the indices via Ξ(γj) = γ̃N−j, we obtain
from (6.10) that the relative zero numbers of the critical elements have only
been shifted by a constant. As a result, z(γ̃N−k−1) = z(γ̃N−k) > z(γ̃N−l),
but Lemma 6.5 shows that γ̃N−k−1 blocks the connections between γ̃N−k
and γ̃N−l contradicting that Γ(f) ∼= Γ(f̃). With this, we just showed that
maxj zj = 1 or, equivalently, that sjsj+1 = −1 for j = 1, . . . , N − 1 and
s1 = −1. Therefore, Γ(f) ∼= Γ(f̃) via a graph isomorphism reversing the
ordering of the labeling if and only if χ(f) = (1,−1, 1, . . . , 1,−1, 1), which
yields χ(f̃) = χ(f) and completes the proof.
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6.6 Example: The Chafee–Infante class

As an example, let us apply Theorem 6.11 to soft-spring nonlinearities,
i.e., those f(ξ, η) = g(η) ∈ X− that satisfy the sublinear growth condition

∂η

(
g(η)

η

)
< 0 for all η < 0.

Proposition 6.14. Let f ∈ X− be a soft-spring nonlinearity as above, and
assume that A(f) is Morse–Smale with N periodic orbits γ1, . . . , γN ordered
by amplitudes. Then the signature χ(f) = (s0, . . . , sN) satisfies sj = 1 for
j = 1, . . . , N , A(f) is Hopf–Smale, and γk ≻ γl if and only if k < l.

Proof. Indeed, [Nus79, Theorem 1.3] shows that the period map pf is strictly
increasing. Hence, the signature χ(f) consists of positive entries, only. Fur-
thermore, the parametric family λf for λ > 0 has period map pλf (a) =
pf (a)/λ. Thus, taking λ0 > 0 sufficiently small Theorem 5.6 ensures that
A(λ0f) = γ0. Furthermore, as λ increases to 1, the period map possesses no
critical points for a > 0. Therefore, A(λf) undergoes solely isolated super-
critical Hopf bifurcations for λ ∈ (λ0, 1). Using Lemma 6.10, we obtain the
sequences

zj = 1 + 2(N − j), and ij = 2(N − j),

for j = 0, . . . , N . Thus, by Theorem 6.11, we obtain γk ≻ γl if and only if
k < l, as claimed.

We call any Hopf–Smale attractors A(f) with the signature of Propo-
sition 6.14 Chafee–Infante because the formation process via a sequence
of supercritical Hopf bifurcations resembles that of Chafee–Infante attrac-
tors in the reaction-diffusion PDE (1.6); see [CI74, Hen81]. By Proposi-
tion 6.14, the only possible phase diagrams for soft-spring nonlinearities are
Chafee–Infante. However, since the set of soft-spring nonlinearities is convex,
we have the following stronger result.

Theorem 6.15. Let f, f̃ ∈ X− be soft-spring nonlinearities and assume that
there exists n ∈ N such that

∂2f(0, 0), ∂2f̃(0, 0) ∈
(
−(4n+ 1)π

2
,−(4n− 3)π

2

)
.(6.11)
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Then A(f) and A(f̃) are More–Smale and orbit equivalent.

Proof. Since the set of soft-spring nonlinearities is convex, the standard ho-
motopy fλ := (1− λ)f + λf̃ is soft-spring for all λ ∈ [0, 1]. Thus, by [Nus79,
Theorem 1.3], the period map pfλ is strictly increasing with a minimum at
0. Moreover, by (6.11), we have that ∂2fλ(0, 0) ∈

(
(4n+1)π

2
, (4n−3)π

2

)
and

Lemma 2.9 shows that there are no Hopf points along the homotopy. Thus
the critical elements γj(λ) remain hyperbolic through the whole process and
A(f) ∼= A(f̃) by Theorem 4.13.

In particular, this shows that the Chafee–Infante class is the only possi-
bility for soft-spring nonlinearities up to orbit equivalence.

6.7 Realizability: Enharmonic oscillators

We conclude the chapter by discussing the realizability of the Hopf–Smale
dynamics discussed in Section 6.2. Lemma 6.10 and Theorem 6.11 prompt
the question of finding all the {−1, 1}-sequences (s0, . . . , sN) such that there
exists a Hopf–Smale nonlinearity f ∈ X− whose signature satisfies χ(f) =
(s0, . . . , sN). We call a sequence (s0, . . . , sN) enharmonic if sN = 1 and it
satisfies

∑
j≥k sj ≥ 0 for all k = 1, . . . , N . We will show that all enharmonic

sequences are indeed realizable. To this end, we recover the enharmonic
oscillators introduced in Chapter 1, i.e., the DDEs

ẋ(t) = −π
2
Ω
(√

(x(t))2 + (x(t− 1))2
)
x(t− 1),(6.12)

where Ω : [0,∞)→ (0,∞) is a C2-frequency function such that

fΩ(ξ, η) := −
π

2
Ω
(√

ξ2 + η2
)
η ∈ X−.

Notice that fΩ is even-odd in the sense of (2.2), by construction. Further-
more, by direct differentiation, the negative delayed feedback assumption
(2.1) is equivalent to the lower growth bound

Ω′(a)

Ω(a)
> −1

a
for all a > 0.(6.13)
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By assumption, the left-hand side of (6.13) is negative. Furthermore, (6.13)
singularizes at amplitude a = 0, making the lower growth bound essentially
void sufficiently close to the origin. More generally, integrating both sides of
(6.13) shows that for all a∗ > 0 there exists a constant C > 0 such that

Ω(a) >
C

a
, for all a > a∗.

Hence (6.13) allows Ω to decay, but only at a sublinear rate.

The main advantage of considering the enharmonic (6.12) is that the pe-
riod map pfΩ is explicitly known. More precisely, notice that the associated
ODEs from Lemma 5.1 are

ξ̇ = −π
2
Ω
(√

ξ2 + η2
)
η,

η̇ =
π

2
Ω
(√

ξ2 + η2
)
ξ.

(6.14)

The quantity ξ2 + η2 is a first integral of motion of (6.14). Therefore, Ω acts
as a constant time rescaling on the orbits of a standard harmonic oscillator
(1.9), and all the solutions of (6.12) are harmonic, i.e., they take the form

(ξ(a, t), η(a, t)) = a
(
cos
(π
2
Ω(a)t+ t∗

)
, sin

(π
2
Ω(a)t+ t∗

))
,

for values a, t∗ ≥ 0. As a result, the period map is given by

pfΩ(a) =
4

Ω(a)
,

unlike in Theorem 5.6, the special form of the enharmonic oscillator (6.12)
allows us to remove the nondegeneracy assumption on the period map.

Proposition 6.16. A differentiable curve x∗(t) is a nontrivial periodic so-
lution of the enharmonic oscillator (6.12) if and only if x∗(t) is of the form

x∗(t) = a cos
(π
2
Ω(a)t+ t∗

)
for some a > 0 and t∗ ∈ R.(6.15)

Here Ω(a) = (4n − 3) for some n ∈ N. Moreover, the associated orbit γ∗ is
hyperbolic if and only if Ω′(a) ̸= 0.

Proof. At first sight, the proposition seems to be a combination of Theo-
rem 5.6, Lemma 5.8, and Theorem 5.11. Such is the case if pfΩ is locally
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nonconstant. However, we do not require this in general. We proceed by
contradiction and assume that x∗(t) is not of the form (6.15). Thus Propo-
sition 5.5 shows that the range of (x∗(t))2 + (x∗(t − 1))2 is contained in a
region where the period map pfΩ experiences a plateau pfΩ ≡ 2π/B. Hence
x∗(t) solves the linear autonomous DDE

ẋ(t) = −Bx(t− 1).(6.16)

Recalling the detailed description of the spectrum of the solution operator of
(6.16) given in Lemma 2.9, we conclude that x∗(t) is harmonic, independently
of the nondegeneracy of pfΩ . Finally, we apply Lemma 5.8 and Theorem 5.11
to complete the proof.

Combining Proposition 6.16 with Theorem 5.11 we obtain a complete
characterization of the Morse–Smale enharmonic oscillators as follows.

Corollary 6.17. The enharmonic oscillator (6.12) is Morse–Smale if and
only if there exist finitely many aj > 0, j = 1, . . . , N such that Ω(aj) = 4n−3
for some n ∈ N, Ω(0) ̸= 4n − 3 for all n ∈ N, and Ω′(aj) ̸= 0 for all
j = 1, . . . , N .

Proof. Recalling from Lemma 4.8 that Morse–Smale attractors possess only
finitely many critical elements, the result follows immediately from applying
Theorem 4.15 to Proposition 6.16.

However, Corollary 6.17 does not guarantee that the enharmonic nonlin-
earity fΩ can be obtained by a sequence of isolated Hopf points.

Proposition 6.18. Consider fΩ ∈ X−. If A(fΩ) is Morse–Smale, then it is
also Hopf–Smale.

Proof. Let Ω0 := Ω denote the frequency of fΩ. We show that we can remove
the periodic orbit γ1 ∈ Crit(fΩ) with the smallest amplitude a1 := a(γ1) via
an isolated Hopf point produced through a standard homotopy of frequencies

Ωλ := (1− λ)Ω0 + λΩ1.(6.17)

Then, an induction argument completes the proof.
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Indeed, notice that the lower growth bound (6.13) is preserved along the
homotopy (6.17) provided that the ends Ω0 and Ω1 satisfy it. In the following,
we describe the construction of the frequency Ω1.

For the sake of simplicity, let us assume that there exists a small ε > 0
such that Ω′

0(a) < 0 for all a ∈ (0, a1 + ε) and Ω0(a) > Ω0(a1) for all
a ∈ [0, a1). Later we shall prove that this can be assumed without loss of
generality provided that Ω0(0) > Ω0(a1). Next, we construct a new enhar-
monic C2-frequency function Ω1 such that Ω1(a) = Ω(a) for all a ≥ a1 + ε.
Close to the origin, we choose Ω1 so that Ω′

1(a) < 0 for all a ∈ (0, a1 + ε)
and Ω1(a) < Ω0(a1) for all a ∈ [0, a1+ ε). Notice that, since Ω0 was assumed
to be decreasing in (0, a1 + ε), we have that Ω0(a1 + ε) < Ω0(a1) for ε > 0
small enough. Thus to check if such an Ω1 is constructible, we only have
to check the inequality (6.13). For a ≥ a1 + ε, this is immediate because
Ω0 satisfies (6.13) by assumption. In case a ∈ [0, a1 + ε], the question is
equivalent to finding a smooth decreasing function Ω1 whose range satisfies
Ω1(a) ∈ [Ω0(a1),Ω0(a1 + ε)] for all a ∈ [0, a1 + ε). However, (6.13) is a con-
dition on the derivative Ω′

1(a), which can be taken arbitrarily close to zero,
but still negative, for a ∈ [0, a1 + ε). Hence if ε above is chosen so small
that a1 + ε < a(γ2) where γ2 is the second periodic orbit of A(fΩ0), we con-
clude from Corollary 6.17 that A(fΩ1) possesses exactly one fewer periodic
orbit. Furthermore, the homotoped frequency obtained via (6.17) satisfies
Ωλ(a) = Ω0(a) for all a ≥ a1 + ε and Ω′

λ(a) < 0 for all a ∈ (0, a1 + ε). This
ensures that the only nonhyperbolic critical element along the homotopy is
γ0 when a subcritical Hopf bifurcation occurs and removes the periodic orbit
γ1.

A completely analogous treatment can be given if Ω0(0) < Ω0(a1). In
this case, we can assume without loss of generality that there exists a small
ε > 0 such that Ω′

0(a) > 0 for all a ∈ (0, a1 + ε) and Ω0(a) < Ω0(a1) for all
a ∈ [0, a1). Then we construct a new frequency Ω1 such that Ω1(a) = Ω0(a)
for all a ≥ a1+ ε, Ω′

1(a) > 0 for all a ∈ (0, a1+ ε), and Ω1(a) > Ω0(a1) for all
a ∈ [0, a1 + ε). The construction is, however, simpler because (6.13) is not a
constraint when Ω′

1 is positive. The standard homotopy (6.17) is analogous
to the case above, with the difference that the Hopf bifurcation taking place
is supercritical.

We complete the proof by showing that if Ω0(0) > Ω0(a1), we can always
assume the existence of ε > 0 such that Ω′

0(a) < 0 for all a ∈ (0, a1 + ε) and
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Ω0(a) > Ω0(a1) for all a ∈ [0, a1). This is done via a preparation homotopy

Ω̂λ := (1− λ)Ω0 + λΩ̂1(6.18)

to a new C2-frequency Ω̂1 that satisfies the claims. Furthermore, we choose
Ω̂1 so that no bifurcations occur along (6.18). Indeed, Ω0(a) > Ω0(a1) for all
a ∈ [0, a1) follows immediately by Corollary 6.17 from the fact that γ1 is the
smallest amplitude periodic orbit of A(fΩ0). Furthermore, since A(fΩ0) is
Morse–Smale and Ω0(0) > Ω0(a1), Corollary 6.17 also ensures that Ω′

0(a1) <
0. Hence the existence of ε > 0 such that Ω′

0(a) < 0 for all a ∈ (a1−ε, a1+ε).
We shall choose the new frequency Ω̂1 in such a way that Ω̂1(a) = Ω0(a) for
all a ≥ a1− ε, Ω̂′

0(a) < 0 for all a ∈ (0, a1− ε], and so that the graph satisfies
Ω̂1(a) ∈ (Ω0(a1 − ε),Ω0(0)). For Ω̂1 to be a frequency, it must satisfy the
growth inequality (6.13). However, we can force Ω̂1 to become arbitrarily
flat near the origin by choosing the initial value Ω̂0(0) arbitrarily close to
Ω̂0(a1 − ε). For a ≥ a1 − ε (6.13) is automatically enforced since Ω0 satisfies
it. Finally, if ε > 0 is chosen so small that the global attractor of Ω̂1 possesses
the same number of periodic orbits as A(fΩ0), then the homotopy (6.18)
leaves the attractor unchanged. Indeed, the attractor for Ω̂1 is Morse–Smale
by construction and Corollary (6.17). Moreover, the homotoped frequency
(6.18) satisfies Ω̂λ = Ω0(a) for all a ≥ a1 − ε, Ω̂λ(a) ∈ (Ω0(a1),Ω0(0)) for
all a ∈ [0, a1). Thus the attractor associated to Ω̃λ stays Morse–Smale along
the homotopy and we may assume without loss of generality that Ω0 has the
claimed properties.

The case Ω0(0) < Ω0(a1) admits the construction of a completely analo-
gous preparation homotopy, which completes the proof.

The following is the section’s main result: all enharmonic sequences pro-
duce realizable phase diagrams in the class of Hopf–Smale attractors.

Theorem 6.19. Let (s0, . . . , sN) be an enharmonic sequence. Then there
exists a Hopf–Smale nonlinearity f ∈ X− such that χ(f) = (s0, . . . , sN).

Proof. Indeed, the lower growth condition (6.13) is essentially void for small
amplitudes a > 0. Thus ensuring that we can construct a frequency function
Ω satisfying the assumptions of Corollary 6.17 and such that (s0, s1, . . . , sN) =
χ(fΩ). Moreover, by Proposition 6.18, any such fΩ is Hopf–Smale, which
completes the proof.
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Moreover, within the class of enharmonic oscillators, we can improve on
Proposition 6.13 by showing that same signatures imply orbit equivalence in
the sense of Theorem 4.1.

Proposition 6.20. Consider two different Morse–Smale enharmonic oscil-
lators (6.12) with f, f̃ ∈ X−. Then the signatures satisfy χ(f) = χ(f̃) if and
only if A(f) and A(f̃) are orbit equivalent.

Proof. By Theorem 4.1, we have to show that there exists a smooth homotopy
of Morse–Smale enharmonic oscillators fλ ∈ X− such that f = f0 and f̃ = f1.
First, let a1 < · · · < aN be the sequence of amplitudes of the periodic orbits
in Crit(f). By Corollary 6.17 and the lower bound (6.13), given any a > a1,
we are always allowed to smoothly deform the frequency Ω of f to a new
frequency Ω̂ while preserving the Morse–Smale property along the homotopy
and so that the new amplitudes of the periodic solutions satisfy âk = a,
âj = aj for j < k, and âj ≥ aj for j > k. Moreover, by Theorem (4.1), the
attractors A(f) and A(f̂) are orbit equivalent in the sense above.

Suppose now that the smallest amplitude ã1 in Crit(f̃) satisfies ã1 > a1,
we can use the argument above to produce a new Morse–Smale enharmonic
oscillator such that the amplitudes â1 and ã1 line up. Iterating this process,
we may assume without loss of generality that the periodic orbits of f and
f̃ appear at the same amplitudes aj = ãj for j = 1, . . . , N . Hence we can
use the standard homotopy fλ := (1− λ)f + λf̃ which, by Corollary 6.17, is
guaranteed to produce a family of Morse–Smale enharmonic oscillators. As
a result, the signature determines the orbital equivalence class.

To see that the equivalence class determines the signature, recall that
the orbit homeomorphism Ξ : A(f) → A(f̃) induces a graph isomorphism
Γ(f) ∼= Γ(f̃) via its action on the vertices. Thus, we apply Proposition
6.13 to conclude that χ(f) = χ(f̃) for any two orbit equivalent Hopf–Smale
attractors A(f) and A(f̃).

In particular, the enharmonic sequences enumerate the orbit equivalence
classes of the enharmonic oscillators. The precise number is as follows.

Corollary 6.21. Up to orbit equivalence, there are exactly(
N

⌊N/2⌋

)
(6.19)
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different Morse–Smale enharmonic oscillators with N periodic orbits.

Proof. By Proposition 6.20 and Corollary 6.19, we have to count the number
of enharmonic sequences of length N + 1. Given that the signature (6.6)
encodes the intersections of a continuous curve with certain levels, the prob-
lem admits a restatement as an enumeration of lattice walks. In this case, a
closed formula is known and [BKK+19, Theorem 4.10] shows that the num-
ber of Morse–Smale enharmonic oscillators with N periodic orbits is given
by (6.19).
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Chapter 7

Conclusion and examples

This chapter concludes the lengthy method for designing global attractors de-
vised over Chapters 4 through 6. The main conclusion is a rule to recover the
phase diagram Γ(f) of a Hopf–Smale attractor A(f) from the signature χ(f),
a binary sequence that we introduced in Section 6.5. Two big drawbacks of
our analysis are that it is difficult to determine whether A(f) is Hopf–Smale
and that the signature χ(f) is in general not known. In Proposition 6.14
we solved the problem for soft-spring nonlinearities f(ξ, η) = g(η) ∈ X−

such that

∂η

(
g(η)

η

)
< 0 for all η < 0.

Moreover, in Theorem 6.15 we showed that if two Morse–Smale attractors
A(f) and A(f̃) with soft-spring nonlinearities f, f̃ ∈ X− possess the same
number of periodic orbits, then the global attractors A(f) and A(f̃) are orbit
equivalent in the sense of Theorem 4.1. In other words, there exists a homeo-
morphism of attractors mapping orbits to orbits and preserving the time di-
rection. All the soft-spring attractors arise via sequences of supercritical Hopf
bifurcations. Thus they resemble the sequence of supercritical pitchfork
bifurcations producing the Chafee–Infante attractors in reaction-diffusion
PDE with Neumann boundary conditions; see [CI74,Hen81].

The problem of characterizing the Hopf–Smale class within X− remains
open. Hence we have focused on solving an inverse problem. This thesis
characterizes the phase diagrams Γ(f) of the Hopf–Smale attractors
A(f) up to a graph isomorphism.

113



Our method is constructive. We summarize it as follows:

Step 1: Prescribe an enharmonic sequence, that is, a finite sequence
(s0, s1, . . . , sN) such that sj ∈ {−1, 1}, s0 = sN = 1, and∑

j≥k

sj ≥ 0 for all j = 1, . . . , N.

Step 2: Use Lemma 6.10 to derive the relative zero numbers (z0, . . . , zN)
and the Morse indices (i0, . . . , iN) via

zj := zj+1 + sj+1 + sj, j = 0, . . . , N − 1, zN := 1,

ij := zj −
sj + 1

2
, j = 0, . . . , N.

Step 3: By Corollary 6.19 and Theorem 6.11, there exists a Hopf–Smale
attractor A(f) whose signature satisfies χ(f) = (s0, . . . , sN). More-
over, the phase diagram Γ(f) has the vertex set {γ0, . . . , γN} and
contains the edge (γk, γl) if and only if ik > il and

zj ̸= zmax{k,l}, for all min{k, l} < j < max{k, l}.

Restricted to enharmonic oscillators (1.8), Proposition 6.20, shows that
each enharmonic sequence corresponds to a Morse–Smale enharmonic oscil-
lator up to topological orbit equivalence in the sense of Theorem 4.1. More-
over, by Corollary 6.21, the number of orbit equivalence classes of enharmonic
oscillators grows like (

N

⌊N/2⌋

)
∼
√

2

π

2N√
N
.

7.1 Examples

Next, we show some new examples from applying the algorithm in Steps 1
to 3 above to the first twenty-three enharmonic sequences. A general feature
of all phase diagrams is that they possess a single vertex γ0 representing the
equilibrium at the origin surrounded by N periodic orbits, the outermost
one of which, denoted γN , is always stable as seen in Lemma 6.9. Tables
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7.1 and 7.2 are the result of applying the connectivity rules above to all the
enharmonic sequences with up to six entries. In particular, they correspond
to the orbit equivalence classes of all possible enharmonic oscillators (1.8)
possessing up to five periodic orbits. We point out that, for the sake of
simplicity and thanks to the transitivity in Lemma 6.2, Tables 7.1 and 7.2
only represent the transitive reduction of the phase diagram Γ(f). Two
patterns stand out in Tables 7.1 and 7.2.

First, the attractors having signature sj = (−1)N for j = 1, . . . , N − 1
are the Hopf–Smale planar attractors described by Walther [Wal95]. They
appear by an alternating sequence of super- and subcritical Hopf bifurcations
in the sense of Proposition 6.1. By Lemma 6.10, they are two-dimensional
and the methods of [MPS96a] show that the planar projection

PA(f) := {(ϕ(0), ϕ(−1)) : ϕ ∈ A(f)} ⊂ R2

is homeomorphic to A(f). Moreover, all neighboring periodic orbits are
connected, and the unstable periodic orbits act as separatrices between the
basins of attraction of the stable critical elements. The simplest possible
example corresponds to the signature (s0, s1) = (1, 1) in Table 7.1. However,
our method spans an infinite family; the enharmonic sequences (1,−1, 1),
(1, 1,−1, 1), (1,−1, 1,−1, 1), and (1, 1,−1, 1,−1, 1) in Tables 7.1 and 7.2
yield planar attractors.

The attractors associated with the enharmonic sequence sj = 1 for j =
0, . . . , N are the Chafee–Infante attractors above. They arise via a sequence
of exclusively supercritical Hopf bifurcations that destabilize the origin, pro-
ducing N periodic orbits so that dimW u(γ0) = 2N .

7.2 Discussion: Positive delayed feedback

We highlight that the examples presented here can be extended to delayed
positive feedback systems. However, we must first apply a perturbation ar-
gument. Notice that, if we define the set of nonlinearities with symmetric
positive feedback to be X+ := −X−, then the dissipativity assumptions re-
quired for the existence of a global attractor A(f) are immediately violated.
Indeed, consider the equation

ẋ(t) = λ arctan(x(t− 1)), λ > 0,(7.1)

115



Γ(f) χ(f)

(1)

(1, 1)

(1, 1, 1)

(1,−1, 1)

(1, 1, 1, 1)

(1, 1,−1, 1)

(1,−1, 1, 1)

(1, 1, 1, 1, 1)

(1, 1, 1,−1, 1)

(1,−1, 1,−1, 1)

(1, 1,−1, 1, 1)

(1,−1, 1, 1, 1)

(1,−1,−1, 1, 1)

Table 7.1: Hopf–Smale phase diagrams containing up to four periodic orbits, all
edges are transitive.
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Γ(f) χ(f)

(1, 1, 1, 1, 1, 1)

(1, 1, 1, 1,−1, 1)

(1, 1,−1, 1,−1, 1)

(1, 1, 1,−1, 1, 1)

(1, 1,−1,−1, 1, 1)

(1,−1, 1, 1, 1, 1)

(1,−1, 1, 1,−1, 1)

(1, 1,−1, 1, 1, 1)

(1,−1, 1,−1, 1, 1)

(1,−1,−1, 1, 1, 1)

Table 7.2: Hopf–Smale phase diagrams containing exactly five periodic orbits, all
edges are transitive.

117



with an initial condition ϕ ∈ H such that ϕ(θ) ̸= 0 for all θ ∈ [−1, 0]. It is
known from [KWW99a] that such solutions drift to plus or minus infinity,
and there exists a codimension-one manifold acting as a separatrix or equator
of the dynamics. We claim that the methods used in this thesis can be used
in the description of the set of uniformly bounded solutions

B(f) :=
{
ϕ ∈ H : sup

t∈R
∥Sf (t)ϕ∥ <∞

}
.

More precisely, following [LN17], the transversality properties in Chapter
4 also hold in the positive feedback setting. Moreover, the extensions of
Chapter 5 in [LN20] show that the period map of the reference ODE (5.2) in
Chapter 5 also characterizes the critical elements in positive delayed feedback
systems f ∈ X+. The connection results in Chapter 6 admit an adaption,
verbatim, to the positive feedback setting, thus yielding a phase diagram for
the set B(f). In the special case (7.1), f(ξ, η) = arctan(η) is a soft-spring
nonlinearity. Therefore, adapting in Corollary 6.14 to positive feedback sys-
tems yields a connection graph for B(f) of Chafee–Infante type.

To produce a global attractor, we introduce a small friction coefficient and
consider the modified DDE

ẋ(t) = f̃(x(t), x(t− 1))

:= −εx(t) + λ arctan(x(t− 1)),

which is dissipative for all ε > 0; see [KWW99a]. However, this is done at
the cost of leaving the symmetry class, and f̃ ̸∈ X+. Even worse, f̃ is not
a uniformly small perturbation of f ∈ X+ and generates two new equilibria
γT and γB close to infinity. However, the global attractor A(f̃) consists of
the two new equilibria together with connections to an equatorial invariant
set B(f̃) whose dynamics are orbit equivalent to B(f). In this way, we can
produce new attractors for positive delayed feedback systems by designing
the equatorial dynamics on B(f̃) with the Steps 1 to 3 presented above and
then adding connections from B(f̃) to both top and bottom equilibria γT and
γB, respectively.

From this perspective, the spindle in Figure 1.1 (Left) is the unstable
suspension of a planar Chafee–Infante attractor in the equator with signa-
ture (1, 1). Furthermore, we can construct more complex three-dimensional
spindle attractors by prescribing any planar signature for the equatorial dy-
namics. Nevertheless, our perturbation argument does not reproduce the
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complexity of the Vas attractor in Figure 1.1 (Right), whose explanation re-
quires a better understanding of the critical elements in systems with delayed
monotone feedback.

7.3 Selection of open problems

As is often the case in mathematics, the work presented here poses more new
questions than it solves. For this reason, we have included a selection of open
problems into which the current work provides some insight. The order of
the problems is by what we consider increasing difficulty:

1. Our characterization in the periodic orbits in Theorem 5.6 includes a
nondegeneracy condition, requiring that the period map pf is locally
nonconstant. However, such a condition is merely a limitation of the
technique used throughout the proof, and it is safe to conjecture that it
is possible to remove it. Removing it, however, goes beyond the scope
of the current work.

2. Based on the techniques inherited from the study of reaction-diffusion
systems, it seems apparent that the main roadblock in developing a
similar program for equations with monotone delayed feedback is the
absence of a sufficiently precise method to describe the appearance of
periodic solutions. Although a first attempt at this problem has been
made by Vas [Vas17] by realizing orbit configurations, studying the
connecting orbits between them requires a higher degree of precision.
This thesis solves the issue by considering the additional symmetry
assumption (A3). However, the general case is understood poorly.

3. In the negative feedback regime f ∈ X−, the transversality property
W u(γ†)−⋔ W s(γ∗) holds for any two hyperbolic γ†, γ∗ ∈ Crit(f), unless
both γ† and γ∗ are so-called saddle equilibria, i.e., equilibria having
two real characteristic multipliers of different signs. The connections
between saddle equilibria often consist of homoclinic orbits and hete-
roclinic loops which usually sign the endpoints of branches of periodic
orbits. Thus, determining the possible configurations for saddle-saddle
connections is fundamental to understanding the branches of periodic
solutions.
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4. This work exploits Hopf bifurcations to analyze changes in the phase
diagram Γ(f). However, a description of the changes in connectivity
through saddle-node bifurcations of periodic orbits is unknown. The
main obstacle is that the branch of periodic solutions vanishes to one
side of the bifurcation diagram, complicating how connections are in-
herited. To our knowledge, the analogous version of this problem in
reaction-diffusion systems remains open.

5. We have discussed in Chapter 1 that DDEs with monotone delayed
feedback share multiple traits with reaction-diffusion PDEs and ODEs
possessing specific feedback structures. This degree of similarity has
been pushed in this work, showing that it is possible to use dynamical
systems techniques native to PDEs to describe the global structure of
DDEs. Thus, it is tempting to conjecture that a common framework
connects all the examples above. Efforts in this direction have already
been carried out by considering PDE discretizations [FR00], but the
connection to DDEs remains unexplored.
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Appendix A

Solution operator in Sobolev
space

In Chapter 2, we chose H, i.e., the compact embedding of the standard
Sobolev space H1([−1, 0],R) into the space of continuous functions C :=
(C0([−1, 0],R), ∥·∥C0), as a phase space for the DDE (1.1), thereby deviating
from the standard DDE literature; see [DvGVLW95, HVL93]. However, H
has the advantage of being a Hilbert space. This appendix shows that the
restriction of the standard solution semiflow of (1.1) defined on C to the
Sobolev-type space H preserves the regularity properties. We prove our
claims for the general setting of a nonautonomous DDE

ẋ(t) = g(t, xt), t ≥ s

xs(θ) = ϕ(θ), θ ∈ [−1, 0].
(A.1)

Here g ∈ C0(R × C,R) is bounded and globally Lipschitz, and we used the
notation xt(θ) = x(t + θ) for θ ∈ [−1, 0]. The assumption that g is globally
Lipschitz is sufficient for this work because, in the main body, we focus on
dissipative nonlinearities. Nevertheless, it is possible to produce a local more
general theory.

The classical DDE theory, e.g. [HVL93, Chapter 2, Theorem 2.1], ensures
the existence of a solution operator

S(g, t, s, ·) : C → C

xs 7→ xt
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for a small t ≥ s due to a fixed point theorem. However, under our Lipschitz
continuity assumption, S(g, t, s, ϕ) is defined for all t ≥ s and is continuous
in (g, ϕ); see [HVL93, Chapter 2, Theorem 2.2].

In addition, S(g, t, s, ϕ) is a Ck-map in (g, ϕ) for all k ≥ 1 provided that
g ∈ Ck(R×C,R); see [HVL93, Chapter 2, Theorem 4.1], and is compact for
all t ≥ 1. In other words, S(g, t, s, U) is a precompact set for all bounded
sets U ⊂ C and t ≥ s+ 1 [HVL93, Chapter 3, Corollary 6.2].

Next, we consider the restricted map S̄(g, t, s, ·) := S(g, t, s, ·)|H . Notice
that, since the solution x(t) of the DDE (A.1) is continuously differentiable for
all t > s, we have that S̄(g, t, s, ·) mapsH-functions back intoH. Our concern
is whether the restricted solution map S̄ inherits the regularity properties of
the original map S defined on all C. We claim that this is the case based on
two observations:

(i) The Sobolev H-norm defines a stronger topology on H than the supre-
mum norm does, i.e., there exists a constant K > 0 such that

∥ϕ∥C0 ≤ K∥ϕ∥H for all ϕ ∈ H.(A.2)

(ii) Given two solutions xt := S(g, t, s, xs) and x∗t := S(g∗, t, s, x∗s), the
derivatives satisfy

|ẋ(t)− ẋ∗(t)| = |g(t, x∗t )− g∗(t, x∗t )| for all t > s.(A.3)

Proposition A.1. The restricted solution operator S̄(g, t, s, ϕ), ϕ ∈ H de-
fined above is continuous in (g, s, ϕ).

Proof. Indeed, by (A.2), we have that S̄(g, t, s, ϕ) is continuous inH equipped
with the C0-norm. Thus we only need to prove that the weak derivative
S̄(g∗, t, s, ϕ∗)′ converges in L2-norm to the weak derivative S̄(g, t, s, ϕ)′ as
(g∗ϕ∗) → (g, ϕ) with the C-norm in ϕ. Recall that for t > s, we have the
pointwise limit (A.3). Denoting J := [−1, 0] ∩ (t − s,∞), by dominated
Lebesgue convergence we have that

lim
(g∗,ϕ∗)→(g,ϕ)

∫
J

|g(t+ θ, x∗t+θ)− g∗(t+ θ, x∗t+θ)|2 = 0,

which implies H-convergence on the interval J , i.e., ∥(x∗t − xt)|J∥H → 0.
Finally, we consider two cases if t ∈ [s, s+1]. For θ ∈ [−1, s− t], the solution
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operator corresponds to the translation

|S̄(g, t, s, ϕ)(θ)− S̄(g∗, t, s, ϕ∗)(θ)| = |ϕ(t+ θ)− ϕ∗(t+ θ)|

Therefore, we immediately obtain H-convergence ∥(x∗t − xt)|[−1,t−s]∥H → 0,
which completes the proof.

Proposition A.2. Let g as above be Ck, k ≥ 1. Then S̄(g, t, s, ϕ) is
C1-differentiable with respect to (g, ϕ). Moreover, denoting xt := S(g, t, s, ϕ),
we have that the H-derivative ∂4S̄(g, t, s, ϕ)ψ is yt such that

ẏ(t) = ∂2g(t, xt)yt,

ys(θ) = ψ(θ), θ ∈ [−1, 0].
(A.4)

Also, for all ḡ ∈ Ck(R× C,R), ∂1S̄(g, t, s, ϕ)ḡ is ȳt such that

˙̄y(t) = ∂2g(t, xt)ȳt + ḡ(t, xt),

ȳs(θ) = 0, θ ∈ [−1, 0].
(A.5)

Proof. By [HVL93, Chapter 2, Theorem 4.1], our claims are true if we equip
H with the supremum C-norm, we show (A.4) and (A.5) follows analogously.
To clear up the notation, we drop the dependence in (g, t, s) throughout the
proof. Indeed, we have that

lim
∥ψ∥C0→0

∥S̄(ϕ+ ψ)− S̄(ϕ)−DS̄(ϕ)ψ∥C0

∥ψ∥C0

= 0,

in particular, by (A.2), this implies that

lim
∥ψ∥H→0

∥S̄(ϕ+ ψ)− S̄(ϕ)−DS̄(ϕ)ψ∥L2

∥ψ∥H
= 0,(A.6)

Hence we only have to show (A.6) for the weak derivatives, i.e.,

lim
∥ψ∥H→0

∥S̄(ϕ+ ψ)′ − S̄(ϕ)′ −
(
DS̄(ϕ)ψ

)′ ∥L2

∥ψ∥H
= 0.(A.7)

To see that (A.7) holds, we proceed as in the proof of Proposition A.1. Indeed,
as long as t ∈ [s, s+1], the function S̄(ϕ+ψ)′(θ)− S̄(ϕ)′(θ)−

(
DS̄(ϕ)ψ

)′
(θ)

with θ ∈ [−1, s− t] is zero almost everywhere, therefore∫
[−1,s−t]

|S̄(ϕ+ ψ)′(θ)− S̄(ϕ)′(θ)−
(
DS̄(ϕ)ψ

)′
(θ)|2dθ = 0,
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and (A.7) holds restricted to [−1, s − t]. Given t > s + 1, we denote xψt :=
S(ϕ + ψ), hence the function inside the norm of the numerator in (A.7) is
given by

g(t+ θ, xψt+θ)− g(t+ θ, xt+θ)− ∂2g(t+ θ, xt+θ)yt+θ,

for all θ ∈ J := [−1, 0] ∩ (s− t,∞). Next, we apply Taylor expansion in the
C-norm to obtain the pointwise limit

lim
∥ψ∥C0→0

|g(t+ θ, xψt+θ)− g(t+ θ, xt+θ)− ∂2g(t+ θ, xt+θ)yt+θ|
∥ψ∥C0

= 0,

for all θ ∈ J . Hence dominated Lebesgue convergence guarantees

lim
∥ψ∥H→0

∫
J
|g(t+ θ, xψt+θ)− g(t+ θ, xt+θ)− ∂2g(t+ θ, xt+θ)yt+θ|2dθ

∥ψ∥H
= 0.

Thus showing

lim
∥ψ∥H→0

∥S̄(ϕ+ ψ)− S̄(ϕ)−DS̄(ϕ)ψ∥H
∥ψ∥H

= 0,

which completes the proof.

Nishiguchi [Nis19] has shown that the solution semiflow on H is even
differentiable in the time delay in (A.1), a regularity improvement compared
to the standard phase space C. This property suggests that H is a better
choice for analyzing DDEs that include state-dependent delays.

Proposition A.3. If t ≥ s + 2, then S̄(g, t, s, ·) is a compact map, i.e.,
S̄(g, t, s, U) is precompact in H for all bounded U ⊂ H.

Proof. It is enough to show that S̄(g, t, s, U) is sequentially compact for
any bounded U ⊂ H, i.e., that for any sequence {x(n)t }n∈N ⊂ S̄(g, t, s, U)

with initial conditions {x(n)s }n∈N ⊂ U , there exists a convergent subsequence
{x(nk)

t }k∈N. Recall that, by [HVL93, Chapter 3, Corollary 6.2], S̄(g, s+1, s, U)

is a precompact subset of C in the C-norm. In other words, {x(n)s+1}n∈N
possesses a subsequence {xnk

s+1}k∈N for which there exists a point ϕ∗ ∈ C
such that ∥xnk

s+1 − ψ∗∥C0 → 0. Since t ≥ s + 2, we can guarantee that
ϕ∗ := S(g, t, s+ 1, ψ∗) ∈ C1([−1, 0],R) ⊂ H. We claim that

∥xnk
t − ϕ∗∥H = 0.(A.8)
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First, by C-continuity of S̄(g, t, s + 1, ·), we have that ∥xnk
t − ϕ∗∥L2 → 0,

automatically. Second, from (A.3) recall the pointwise limit

lim
k→∞
|ẋnk
t (θ)− ϕ̇∗(θ)| = lim

k→∞
|g(t+ θ, xnk

t+θ)− g(t+ θ, S(g, t+ θ, s, ψ∗)|,

for all θ ∈ [−1, 0]. Thus, by dominated Lebesgue convergence, we obtain
that

lim
k→∞

∫
[−1,0]

|ẋnk
t (θ)− ϕ̇∗(θ)|2dθ = 0,

which shows (A.8) and completes the proof.

Finally, we restrict ourselves to the special nonlinearity considered through-
out the thesis, i.e., the DDE

ẋ(t) = f(x(t), x(t− 1)),(A.9)

where f ∈ BC2(R2,R) has negative delayed feedback, i.e., ∂2f(ξ, η) < 0 for
all (ξ, η) ∈ R2.

Lemma A.4. The solution operator S̄(f, t, s, ·) of (A.9) is injective.

Proof. Since there is no explicit t-dependence in (A.9), we adopt the notation
of the main sections Sf (t− s)ϕ := S̄(f, t, s, ϕ). Indeed, for all xt ∈ Sf (t) we
can reconstruct x(s) uniquely for all s ∈ [t− 1, t], via the formula

x(s) = f−1(x(s+ 1), ẋ(s+ 1)).

Here f−1 is the unique function solving f−1(ξ, f(ξ, η)) = η. Finally, the
evolution property

Sf (t2) = Sf (t2 − t1) ◦ Sf (t1),

for all t2 ≥ t1 ≥ 0 and an induction argument show that Sf (t) is injective for
all t ≥ 0.

Lemma A.5. The H-derivative of ∂4S̄(f, t, s, ϕ) solving (A.9) is injective
and its range is dense in H for all t ≥ s and ϕ ∈ H.
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Proof. Since we fixed f , we drop the f -dependence of the solution operator
for simplicity of notation. By Proposition A.2, denoting xt := S̄(t, s, ϕ) we
have that yt =: ∂3S̄(t, s, ψ) solves the initial value problem

ẏ(t) = ∂1f(x(t), x(t− 1))y(t) + ∂2f(x(t), x(t− 1))y(t− 1),

ys(θ) = ψ(θ), θ ∈ [−1, 0].

Denoting cj(t) := ∂jf(x(t), x(t − 1)), j = 1, 2, the injectivity of ∂3S̄(t, s, ϕ)
follows from the formula

y(s) =
ẏ(s+ 1)− c1(s+ 1)y(s)

c2(s+ 1)
,(A.10)

which recovers y(s), uniquely for all s ∈ [t−1, t]. We use induction to extend
the argument to all s < t− 1 by using the evolution property

∂3S̄(t, s, ϕ) = ∂3S̄(t, t− 1, xt−1)∂3S̄(t− 1, s, ϕ),(A.11)

for all t− 1 ≥ s.

To see that the range of ∂3S̄(t, s, ϕ) is dense in H, we assume first that
s ∈ [t−1, t]. Then, the prehistory formula (A.10) shows the characterization

∂3S̄(t, s, ϕ)H =

{
ψ ∈ H :

ψ|[s−t,0] ∈ C1([s− t, 0],R) and
ψ̇(0) = c1(t)ψ(0) + c2(t)ψ(−1)

}
,

which is a dense subset of H. Recall that ∂3S̄(t, s, ϕ) has a dense range if
and only if the adjoint operator ∂3S̄(t, s, ϕ)∗ is injective. Here ∂3S̄(t, s, ϕ)∗ is
defined on the dual space H∗ ∼= H via the pairing with the H-inner product

⟨∂3S̄(t, s, ϕ)∗ψ∗, ψ⟩ = ⟨ψ∗, ∂3S̄(t, s, ϕ)ψ⟩ for all ψ∗, ψ ∈ H.

Thus, to extend the result to s ∈ [t− 2, t− 1), we use the evolution property
(A.11) to split the interval [s, t]. Since (A.11) shows that ∂3S̄(t, s, ϕ)∗ is
the composition of the corresponding injective adjoint operators ∂3S̄(t, t −
1, xt−1)

∗ and ∂3S̄(t− 1, s, ϕ)∗, we conclude that ∂3S̄(t, s, ϕ)∗ is injective and
∂3S̄(t, s, ϕ) has dense range. Proceeding by induction, we obtain the result
for any t ≥ s and complete the proof.
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Appendix B

Transversality

In this appendix, we discuss extending the intuitive three-dimensional notion
of transversality to infinite dimensions. We do this by using the implicit func-
tion theorem. Given a Banach space (X, ∥ · ∥), we say that two C1-manifolds
W u of dimensionm ∈ N andW s if codimension n ∈ N intersect transversely
if

TϕW
u + TϕW

s = X for all ϕ ∈ W u ∩W s.

If two manifolds intersect transversely, we denote it by W u −⋔ W s. Notice
that, by definition, two manifolds intersect transversely if their intersection
is empty.

The main property of transverse intersections of manifolds is that W u −⋔
W s is again a manifold. We point out that the standard literature contains
the definition we use here. Abraham, Robins, and Zeidler [AR67, Zei85]
include topological splitting conditions on X. However, such splittings follow
immediately if W u has a finite dimension and W s has a finite codimension.

Lemma B.1. Let W u and W s be two C1-manifolds as above such that W u −⋔
W s ̸= ∅. Then W c = W u −⋔ W s is a C1-manifold of dimension

dimW c = m− n.

Moreover, in a neighborhood of W c is locally C1-diffeomorphic to TϕW
u ∩

TϕW
s. More precisely, locally W c − ϕ is the graph of a C1-function hc :

TϕW
u ∩ TϕW s → (TϕW

u ∩ TϕW s)⊥ satisfying hc(0) = 0, Dhc(0) = 0. Here
(TϕW

u ∩ TϕW s)⊥ denotes the closed complement of TϕW u ∩ TϕW s in X.
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Proof. Indeed, given ϕ ∈ W c, there exists δ > 0 such that W u is represented
locally as W u = {ϕ+ϕu+hu(ϕu) : ∥ϕu∥ < δ}. Where hu : TϕW

u → (TϕW
u)⊥

is a C1-function such that hu(0) = 0 and Dh(0) = 0. Likewise, W s is given
locally by the zero set of a C1-map h̄s : H → (TϕW

s)⊥ with h̄s(ϕ) = 0
and kerDh̄s(0) = TϕW

s. Thus, for any ψ ∈ W c we can write, near ϕ ψ =
ϕ + ψuu + ψc + hu(ψuu + ψc) for ψc ∈ TϕW u ∩ TϕW s and ψuu in the closed
complement of TϕW u∩TϕW s in TϕW u and, by the transversality assumption,
coincides with (TϕW

s)⊥. Hence, ψ ∈ W c if and only if ĥc(ψuu, ψc) := h̄s(ϕ+
ψuu + ψc + hu(ψuu + ψc)) = 0. However, we see by direct computation
that ∂1ĥc = Id |(TϕW s)⊥ , therefore, there exists h̃c such that ĥc(ϕ + ψc +

h̃c(ψc) + hu(ψc + h̃c(ψc))) = 0 for all ψc ∈ TϕW u ∩ TϕW s, sufficiently close
to 0. Finally, we obtain hc : TϕW

u ∩ TϕW s → (TϕW
u ∩ TϕW s)⊥ by setting

hc(ψc) := h̃c(ψc) + hu(ψc + h̃c(ψc)).

As a result, it follows that transverse intersections of manifolds resist small
perturbations, i.e., they are structurally stable.

Corollary B.2. Let W u
λ and W s

λ be two families of C1-manifolds in X of
dimension m and codimension n, respectively, and let the dependence of the
parameter λ ∈ R be C1. If W u

0 and W s
0 intersect transversely at ϕ ∈ X ,

then there exists ε > 0 such that W u
λ ∩W s

λ ̸= ∅ for all λ ∈ (−ε, ε).

Proof. Indeed, W u
λ and W s

λ are C1-manifolds over the extended space X :=
X × R. Moreover, by assumption, we have that TϕW u

0 + TϕW
s
0 = X for

all ϕ ∈ W u
λ ∩W s

λ. Thus, we obtain T(ϕ,0)W
u
λ + T(ϕ,0)W

s
λ = (TϕW

u
0 × R) +

(TϕW
s
0 ×R) = X and W u

λ
−⋔ W s

λ with the intersection being transverse in X .
In particular, Lemma B.1 yields that W u

λ ∩W s
λ is a C1-manifold of dimension

m + 1 − n in X and at (ϕ, 0) the tangent space is TϕW u ∩ TϕW s × R, this
completes the proof.
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Appendix C

Invariant manifolds for maps

C.1 Local invariant manifolds

Given a nonlinear map F ∈ C2(X,X) in a Hilbert space (X, ∥ · ∥) such that
F(0) = 0. We denote L := DF(0) and assume the existence of κ > 0 such
that X admits a L-invariant splitting into closed subspaces

X = X1 ⊕X2,(C.1)

where the restrictions Lj := L|Xj , j = 1, 2 satisfy

inf{|µ| : µ ∈ Spec(L1)} > κ, and sup{|µ| : µ ∈ Spec(L2)} < κ.

Moreover, we assume that F and DF(ϕ) are injective for all ϕ ∈ H. Thus,
in the following F−1(ϕ) is shorthand for there exists a ϕ̃ ∈ X such that
ϕ = F(ϕ̃). Analogously, DF−1(ϕ)ψ refers to the unique preimage of ψ by
DF(F−1(ϕ)). In this setting, we formulate the global κ-invariant mani-
fold theorem.

Theorem C.1. In the notation above, there exists ε > 0 such that if

max

{
sup
ϕ∈X
∥DF(ϕ)− L∥, sup

ϕ∈X
∥D2F(ϕ)∥

}
< ε,(C.2)
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the κ-unstable and κ-stable sets

W κu(0) =

{
ϕ ∈ X : lim

n→−∞

Fn(ϕ)
κn

= 0

}
,(C.3)

W κs(0) =

{
ϕ ∈ X : lim

n→∞

Fn(ϕ)
κn

= 0

}
,

are, respectively, the graphs of C2-functions

h1 : X
1 → X2 and h2 : X

2 → X1,

satisfying hj(0) = 0 and Dhj(0) = 0, j = 1, 2. Moreover, their tangent
spaces are given by

TϕW
κu(0) =

{
ψ ∈ X : lim

n→−∞

DFn(ϕ)ψ
κn

= 0

}
,(C.4)

TϕW
κs(0) =

{
ψ ∈ X : lim

n→∞

DFn(ϕ)ψ
κn

= 0

}
.(C.5)

The manifolds W κu(0) and W κs(0) depend C1-continuously on the map F .

Proof. [CCH92, Appendix C] provides local versions of the theorem for the
case κ = 1. All of our claims except for the results on differentiability
and the description of the tangent spaces (C.4)–(C.5) follow immediately
from [HPS77, Theorem 5.1]; we show (C.5) and (C.4) follows similarly.

Indeed, [HPS77, Theorem 5.1] constructs W κs(0) via a Banach contraction
argument as the maximal backward invariant set within the cone

K := {ϕ1 + ϕ2 ∈ X1 +X2 : ∥ϕ2∥ ≥ ∥ϕ1∥}.

In other words,

W κs(0) =
⋂
n≤0

Fn(K),

moreover, by construction W κs(0) is the graph of a C1-map h2 : X2 → X1

with global Lipschitz constant Lip(h2) < 1. Recall that F is C2, therefore
it induces a C1-map F on the Cartesian product X × X with the induced
Euclidean norm ∥ · ∥X×X via

F : X ×X → X ×X
(ϕ, ψ) 7→ (Fϕ,DF(ϕ)ψ).
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Here, the first derivative is given by

DF(ϕ, ψ)(u, v) = (DF(ϕ)u,DF(ϕ)v +D2F(ϕ)(u, v)).

Setting L(u, v) := DF(0, 0)(u, v) = (Lu, Lv), we obtain an L-invariant split-
ting X ×X = (X1 ×X1) ⊕ (X2 ×X2). Hence we apply [HPS77, Theorem
5.1] to F with the fixed point (0, 0) and obtain a C1-manifold W κs(0, 0) of
codimension 2 dimX1. Furthermore, W κs(0, 0) satisfies

W κs(0, 0) :=
⋂
n≤1

Fn(K),

where K denotes the cone in extended space

K :=
{
Φ1 + Φ2 ∈ (X1 ×X1) + (X2 ×X2) : ∥Φ2∥X×X ≥ ∥Φ1∥X×X

}
,

and we know that W κs(0, 0) is characterized by

W κu(0, 0) =

{
(ϕ, ψ) ∈ X ×X : lim

n→∞

Fn(ϕ, ψ)

κn
= 0

}
Recall that the tangent bundle TW κs(0) is the graph of a C0-map

h2 : X
2 ×X2 → X1 ×X1

(ϕ2, ψ2) 7→ (h2(ϕ
2), Dh2(ϕ

2)ψ2) .

Hence it is a C0-manifold of codimension

codim (TW κs(0)) = 2 dim
(
X1
)
= codim (W κs(0, 0)) .

Since the map h2 above satisfies Lip(h2) < 1, we have that TW κs(0) is a
F−1-invariant set satisfying TW κs(0) ⊂ K × K ⊂ K. In particular, it
follows that TW κs(0) ⊂W κs(0, 0). Since both sets are graphs over X2×X2,
we conclude that

W κs(0, 0) = TW κs(0),

which finishes the proof of (C.5) and yields the claimed differentiability of
h2.

We point out that, in general, we are interested in maps fixing any point
x∗ ∈ X. In such case, we will consider the iteration of the shifted map
F̃(ϕ) := F(ϕ+ x∗)− x∗ and define

W κu(x∗) := x∗ + W̃ κu(0) := x∗ +

ϕ ∈ X :
F̃n(ϕ) exists for all n ≤ 0,

and lim
n→−∞

F̃n(ϕ)
κn

= 0

 .
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Using an analogous definition for W κs(x∗) := x∗ + W̃ κs(0), we are free to
apply the results of this chapter to any fixed point. Moreover, the manifolds
obtained by Theorem C.1 are determined by gaps in the spectrum of L rather
than the specific choice of κ.

Corollary C.2. In the setting of Theorem C.1, if κ̃ > κ is chosen so that
[κ, κ̃] ∩ {|µ| : µ ∈ Spec(L)} = ∅, then we have that

W κu(0) = W κ̃u(0) and W κs(0) = W κ̃s(0).

Proof. By the construction in [HPS77, Theorem 5.1], the choice of ε > 0 in
(C.2) is the same for κ and κ̃. Thus, Theorem C.1 and the characterization
(C.3) yield W κs(0) ⊂ W κ̃s(0). Since both manifolds are graphs over X2, they
must be equal. The proof works analogously for the unstable manifold, since
W κ̃u(0) ⊂ W κu(0).

Verifying the vague smallness assumption (C.2) in Theorem C.1 is gen-
erally unrealistic. We need to ensure that the nonlinear map F is uni-
formly C2-close to the Fréchet derivative L. We achieve this by considering
a modified map Fδ satisfying the assumptions of Theorem C.1 and such that
Fδ(ϕ) = F(ϕ) for all ϕ within the open δ-ball around 0, which we denote
Uδ. Due to the differentiability of the inner product in X, we can introduce
a smooth cutoff function σ : X → X satisfying

σ(ϕ) =

{
1, if ∥ϕ∥ < 1,

0, if ∥ϕ∥ > 2,
(C.6)

and such that, for δ > 0 small enough, the modified map

Fδ(ϕ) := Lϕ+ (F(ϕ)− Lϕ)σ
(
ϕ

δ

)
satisfies that supϕ∈X ∥DFδ(ϕ) − L∥ in (C.2) is arbitrarily small. Moreover,
for all δ > 0, we have that supϕ∈X ∥D2

ϕFδ∥ < ∞. Rather than shrinking
supϕ∈X ∥D2

ϕFδ∥, we build the invariant manifolds for the flattened map

F̄δ(ϕ) := Fδ(δ̄ϕ)/δ̄,(C.7)

instead. For δ̄ > 0 small enough, F̄δ satisfies the assumptions of Theorem
C.1, fixes 0, and its derivative at 0 is L. Denoting the F̄δ-invariant manifolds
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obtained by these means by

W
κu
(0) :=

{
ϕ ∈ X : lim

n→−∞

F̄nδ (δ̄ϕ)
κn

= 0

}
,(C.8)

W
κs
(0) :=

{
ϕ ∈ X : lim

n→∞

F̄nδ (δ̄ϕ)
κn

= 0

}
,(C.9)

we call local κ-unstable manifold and κ-stable manifold to the sets

W κu
loc(0) :=

{
ϕ ∈ X :

ϕ

δ̄
∈ W κu

(0)

}
∩ Uδ,(C.10)

W κs
loc(0) :=

{
ϕ ∈ X :

ϕ

δ̄
∈ W κs

(0)

}
∩ Uδ,(C.11)

respectively. Both W κu
loc(0) and W κs

loc(0) preserve a certain degree of invariance
in the sense that they satisfy

W κu
loc(0) ∩ F(Uδ) ⊂ F(W κu

loc(0)),

F(W κs
loc(0)) ∩ Uδ ⊂ W κs

loc(0).
(C.12)

We summarize the comments above in the following theorem.

Theorem C.3. Let F satisfy the assumptions of Theorem C.1 except for the
smallness estimate (C.2). Then there exists δ > 0 such that for all open sets
U ⊂ Uδ there exists a subset W κu

loc(0) that is locally C1-diffeomorphic to X1

and contains all sequences {Fn(ϕ)}n≤0 ⊂ U such that

lim
n→−∞

Fn(ϕ)
κn

= 0.(C.13)

Furthermore, if {Fn(ϕ)}n≤0 ⊂ U and (C.13) holds, then

TϕW
κu
loc(0) =

{
ψ ∈ X : lim

n→−∞

DFn(ϕ)ψ
κn

= 0

}
.(C.14)

Analogously, we can find a subset W κs
loc(0) that is locally C1-diffeomorphic to

X2 and contains all sequences {Fn(ϕ)}n≤0 ⊂ U such that

lim
n→∞

Fn(ϕ)
κn

= 0.(C.15)

If {Fn(ϕ)}n≥0 ⊂ U and (C.13) holds, then

TϕW
κs
loc(0) =

{
ψ ∈ X lim

n→∞

DFn(ϕ)ψ
κn

= 0

}
.(C.16)

Moreover, the manifolds W κu
loc(0) and W κs

loc(0) depend C1-continuously on the
restriction F|U .
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Proof. Indeed, we proceed as above and choose a modified map Fδ that we
use to construct global κ-invariant manifolds. Then the convergence proper-
ties (C.13)–(C.16) follow by Theorem C.1.

In general, the local invariant manifolds in Theorem C.3 depend not only
on the choice of a neighborhood U but also on the choice of a cutoff function
(C.6) for their construction; see [Kel67]. In other words, two local invariant
manifolds may a priori differ in arbitrarily small neighborhoods of 0. We say
that an invariant manifold W κι

loc(0) is locally unique if given another local
invariant manifold W̃ κι

loc(0) there exists a neighborhood U of the origin on
which we have W κι

loc(0) ∩ U = W̃ κι
loc(0) ∩ U , ι = u, s. The characterizations in

terms of asymptotics (C.13) and (C.15) show that the existence of invariant
neighborhoods on the local invariant manifolds (C.8)–(C.9) plays a funda-
mental role in proving the uniqueness of their local structure. If κ > 1, then
we show that sufficiently close to 0, the map F expands any local unstable
manifold W κu

loc(0), uniformly. In particular, it follows that independently of
the chosen cutoff function (C.6), the fixed point 0 possesses arbitrarily small
backward F -invariant neighborhoods inW κu

loc(0). Conversely, if κ < 1, then F
contracts W κs

loc(0) and there exist arbitrarily small F -invariant neighborhoods
of 0 in W κs

loc(0).

Lemma C.4. Let κ > 1 (resp. κ < 1). Then there exist δ > 0, β < 1, and
an equivalent norm |||·||| in X such that if ϕ ∈ W κu

loc(0) (resp., ϕ ∈ W κs
loc(0))

and ∥ϕ∥ < δ, then

|||ϕ||| ≤ β|||F(ϕ)||| (resp., |||F(ϕ)||| ≤ β|||ϕ|||).

In particular, for all δ > 0 there exists a neighborhood of the origin Uu ⊂
W κu

loc(0) (resp. U s ⊂ W κs
loc(0)) such that Uu ⊂ Uδ and Uu ⊂ F(Uu) (resp.,

U s ⊂ Uδ and F(U s) ⊂ U s).

Proof. Indeed, we can always choose an equivalent norm |||·||| in X such that,
using the notation of (C.1), the restriction L1 satisfies infψ∈X1 |||L1ψ|||/|||ψ||| >
κ. Thus, the restricted map F1 := F|Wκu

loc(0)
has linearization DF1(0) = L1

and expanding at 0 we obtain

|||F(ϕ)||| = |||F1(ϕ)|||
= |||L1ϕ+ o(|||ϕ|||)|||
≥ (κ− ε)|||ϕ|||,
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for all ϕ ∈ W κu
loc(0). Here we used the Landau little-o notation, and ε > 0

is made arbitrarily small for a sufficiently small choice of δ > 0. The result
follows by taking 1/(κ − ε) < β < 1. The proof is completely analogous for
ϕ ∈ W κs

loc(0), where the restricted map F|Wκs
loc(0)

defines a uniform contraction
near 0.

Corollary C.5. Under the assumptions of Lemma C.4 the local invariant
manifold W κu

loc(0) (resp., W κs
loc(0)) is locally unique.

Proof. Indeed, let W̃ κu
loc(0) be a local invariant manifold constructed using

a different cutoff function (C.6) and choose δ > 0 so small that the maps
Fδ and F̃δ used to define W κu

loc(0) and W̃ κu
loc(0) coincide on Uδ. By Lemma

C.13, there exists a neighborhood of the origin Uu ⊂ Uδ ∩ W κu
loc(0) such

that Uu ⊂ F(Uu). It is then clear from the characterization (C.13) that
Uu ∩W κu

loc(0) ⊂ W̃ κu
loc(0). The implication for W κs

loc(0) follows analogously by
considering (C.15) instead.

C.2 Unstable, center, and stable dynamics

In the setting of Section C.1, let us assume that we can consider the special
L-invariant splitting

X = Xu ⊕Xc ⊕Xs(C.17)

where the restrictions Lι := L|Xι , ι = u, c, s, satisfy

• inf{|µ| : µ ∈ Spec(Lu)} > κ+ > 1,

• |µ| = 1, for all µ ∈ Spec(Lc), and

• sup{|µ| : µ ∈ Spec(Ls)} < κ− < 1.

Under these circumstances, the subspaces Xu, Xc, and Xs are called unsta-
ble, center and stable , respectively. Additionally, we consider two further
L-invariant splittings

X = Xcu ⊕Xs, and X = Xu ⊕Xcs,(C.18)
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where Xcu := Xu ⊕ Xc and Xcs := Xs ⊕ Xs are the center-unstable and
center-stable eigenspaces, respectively. We consider the local invariant
manifolds (C.10)–(C.11) obtained the cutoff method Section C.2 with respect
to a δ-ball Uδ ⊂ X:

W uu
loc(0) := W

κ+u
loc (0), W cu

loc(0) := W
κ−u
loc (0),

W ss
loc(0) := W

κ−s
loc (0), W cs

loc(0) := W
κ+s
loc (0).

(C.19)

We refer to them local fast unstable, center-unstable, fast stable, and
center-stable manifold, as indicated by the respective superscripts.

As discussed in Corollary C.5, the fast unstable and fast stable manifolds
play an essential role in studying the dynamics close to 0. In particular,
W uu

loc(0) and W ss
loc(0) are locally uniquely defined as the sets of initial condi-

tions that converge to 0 at an at least exponential rate under the iteration
of F . We have the following characterization.

Theorem C.6. There exists an open neighborhood U ⊂ Uδ and a locl fast
unstable manifold W uu

loc(0) that satisfies

W uu
loc(0) ∩ U =

ϕ ∈ U :
{Fn(ϕ)}n≤0 ⊂ U and there exists κ > 1

such that lim
n→−∞

Fn(ϕ)
κn

= 0

 .

Moreover, for all ϕ ∈ W uu
loc(0) ∩ U the tangent space satisfies

TϕW
uu
loc(0) =

ψ ∈ X :
there exists κ > 1

such that lim
n→−∞

DFn(ϕ)ψ
κn

= 0

 .

Likewise, there exists an open neighborhood U ⊂ Uδ and a fast stable manifold
W ss

loc(0) that satisfies

W ss
loc(0) ∩ U =

ϕ ∈ U :
{Fn(ϕ)}n≥0 ⊂ U and there exists κ < 1

such that lim
n→∞

Fn(ϕ)
κn

= 0

 ,

and for all ϕ ∈ W ss
loc(0) ∩ U we have

TϕW
ss
loc(0) =

ψ ∈ X :
there exists κ < 1

such that lim
n→∞

DFn(ϕ)ψ
κn

= 0

 .
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Proof. The inclusion

W uu
loc(0) ∩ U ⊃

ϕ ∈ U :
{Fn(ϕ)}n≤0 ⊂ U and there exists κ > 1

such that lim
n→−∞

Fn(ϕ)
κn

= 0

 ,

follows from Theorem C.3 and Corollary C.2. The converse inclusion fol-
lows by Lemma C.4, hence we can find and open U ⊂ Uδ such that Uu :=
W uu

loc(0)∩U satisfies Uu ⊂ F(Uu). The characterization of TϕW uu
loc(0) follows

immediately from (C.14). The implications for W ss
loc(0) follow analogously by

considering the characterizations (C.15)–(C.16) instead.

In contrast, the center manifolds W cu
loc(0) and W cs

loc(0) in (C.19) are not
uniquely defined in general; see [Kel67]. However, from this point on, we fix
a choice of local center-unstable and center-stable manifolds and define the
local center manifold to be the intersection

W c
loc(0) := W cu

loc(0) ∩W cs
loc(0).

If dimXcu <∞, then W c
loc(0) is indeed a manifold of dimension dimXc.

Theorem C.7. In the setting above, let dimXcu < ∞. Then there exists
δ > 0 such that for all open sets U ⊂ Uδ there exists a subset W c

loc(0) that
is locally C1-diffeomorphic to Xc. More precisely, W c

loc(0) is the graph of
a C1-function hc : Xc → Xu ⊕ Xs satisfying hc(0) = 0 and Dhc(0) = 0.
W c

loc(0) contains all sequences such taht {Fn(ϕ)}n∈Z ⊂ U .

Proof. The claims follow by Lemma B.1. Indeed, we have that T0W cu
loc(0) =

Xcu and T0W cs
loc(0) = Xcs. Hence 0 is a point of transverse intersection for the

manifolds W cu
loc(0) and W cs

loc(0), which yields a function hc as above. Indeed
W c

loc(0) contains all sequences {Fn(ϕ)}n∈Z ⊂ U by Theorem C.3.

By construction, W c
loc(0) inherits both the forward and backward invari-

ance properties (C.12) from W cu
loc(0) and W cs

loc(0). Moreover, by Theorem C.7,
W c

loc(0) contains any F -fixed or F -periodic points sufficiently close to 0.

Although the local center manifold is most often nonunique by construc-
tion, for diffeomorphisms F acting on finite-dimensional phase spaces X,
it is known that the dynamics within two different local center manifolds
are topologically conjugate; see [Tak71]. However, since we are in an a
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priori infinite-dimensional setting, we proceed differently. For κ = 1, the
uniform contraction rates towards the origin in Lemma C.4 survive in the
sense that W c

loc(0) attracts any iterations within W cu
loc(0) and W cs

loc(0), at a
uniform rate. Thereby, any sequence {Fn(ϕ)}n≥0 ⊂ W cs

loc(0) shall approach
the associated center manifold W c

loc(0) ⊂ W cs
loc(0) exponentially fast until

Fn(ϕ) becomes virtually indistinguishable from an orbit in W c
loc(0). This

phenomenon, which reduces the dynamics on both W cu
loc(0) and W cs

loc(0) to
studying the lower-dimensional center manifold is known as center mani-
fold reduction. The remainder of the section presents sufficient conditions
on the local center manifold dynamics to justify a center manifold reduction.
In the following, P ι denotes the canonical projections associated to the
corresponding splittings (C.17)–(C.18) for ι = u, cu, c, cs, s.

Lemma C.8. In the setting of Theorem C.7, there exist δ > 0, β < 1, and
an equivalent norm |||·||| on X, such that if ϕ ∈ W cu

loc(0) (resp., ϕ ∈ W cs
loc(0))

and ∥ϕ∥ < δ, then

|||ϕ− P cϕ− hc(P cϕ)||| ≤ β|||F(ϕ)− P cF(ϕ)− hc(P cF(ϕ))|||
(resp., |||F(ϕ)− P cF(ϕ)− hc(P cF(ϕ))||| ≤ β|||ϕ− P cϕ− hc(P cϕ)|||).

Proof. Indeed, choosing δ > 0 small enough, we can guarantee that F−1(ϕ) ∈
W cu

loc(0). Let W cu
loc(0) be the graph of hcu : Xcu → Xs, then F induces a

map on Xcu via F̃ cu(ϕcu) := P cuF(ϕcu + hcu(ϕcu)). Moreover, since F is
injective, the inverse is a well-defined C2-map. Thus, (F̃ cu)−1 fulfills the
assumptions of [MM76, Theorem 2.1 (b)], whose proof consists in showing
that ψ := P cF̃−1(ϕ) + hc(P c(F̃ cu)−1(ϕ)) satisfies∣∣∣∣∣∣F−1(ϕ)− ψ

∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣∣(F̃ cu)−1(ϕ)− ψ
∣∣∣∣∣∣∣∣∣

≤ β|||ϕ− P cϕ− hc(P cϕ)|||.

Here |||·||| is an equivalent norm such that the inverse of the unstable linear
part Lu is a uniform contraction. The proof of the first case is complete by
lifting the result to W cu

loc(0) and choosing a new β < 1, if necessary.

The result for ϕ ∈ W cs
loc(0) follows along the same lines, by considering

instead F̃ cs(ϕcs) := P csF(ϕcs + hcs(ϕcs)), the C2-map that F induces on
Xcs.

A consequence of this is that, provided that 0 possesses a F -invariant
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neighborhood withinW c
loc(0), we can construct invariant neighborhoods within

W cu
loc(0) and W cs

loc(0).

Corollary C.9. In the setting of Lemma C.8 assume that there exists U c ⊂
W c

loc(0)∩Uδ such that U c is open in the relative topology and clos(F−1(U c)) ⊂
int(U c) (resp., clos(F(U c)) ⊂ int(U c)). Then there exists U cu ⊂ W cu

loc(0)
(resp., U cs ⊂ W cs

loc(0)) open in the relative topology such that U cu ⊂ F(U cu)
(resp., F(U cs) ⊂ U cs).

Proof. Let us choose a F−1-invariant neighborhood 0 ∈ U c ⊂ W c
loc(0) as

above. We claim that for ε > 0 sufficiently small, the set

U cu
ε := {ϕ ∈ W cu

loc(0) : ∥ϕ− P cϕ− hc(P cϕ)∥ < ε}

is F−1-invariant. We proceed by contradiction, suppose that this is not the
case. Thus we can always find a sequence of points ϕ(n) ̸∈ U cu

1/n and such
that F(ϕ(n)) ∈ U cu

1/n. By the attractivity of W c
loc(0) in Lemma C.8, this is

only possible if P cϕ(n) + hc(P cϕ(n)) ̸∈ U c. By construction, we have that
F(ϕ(n))→ clos(U c) and, recalling that clos(F−1(U c)) ⊂ int(U c), there exists
ε > 0 such that dist(ϕ(n),F−1(U c)) > ε. Thus, we reached a contradiction
to the continuity of F and completed the proof for W cu

loc(0). The result for
W cs

loc(0) follows analogously by exchanging directions of iteration.

Finally, if the trajectories within W c
loc(0) drift away from the origin un-

der the iteration of F , the same will hold for the center-unstable manifold.
Likewise, if the F -iterates in W c

loc(0) decay to 0, the same holds on the
center-stable manifold.

Corollary C.10. Assume that for all δ > 0 we can find U c and U cu (resp.,
U cs) as in Corollary C.9. If limn→−∞Fn(ϕ) = 0 for all ϕ ∈ U c with (resp.,
limn→∞Fn(ϕ) = 0 for all ϕ ∈ U c), then limn→−∞Fn(ψ) = 0 for all ψ ∈ U cu

(resp., limn→∞Fn(ψ) = 0 for all ψ ∈ U cs).

Proof. By Lemma C.8, every sequence {Fn(ψ)}n≤0 within the backward in-
variant set U cu approaches U c at an exponential rate. We claim that, for
n ≤ 0 sufficiently small, the iteration becomes indistinguishable from a tra-
jectory on W c

loc(0), which converges to 0. Indeed, suppose otherwise, then
we can find ψ ∈ U cu and a subsequence nk → −∞ such that Fnk(ψ) →
ψ∗ ∈ U c \ {0}. However, this implies the existence of a compact α-limit set
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α(ψ) ⊂ U c \ {0} containing ψ∗ ̸= 0 and such that F(α(ψ)) = α(ψ), which
is a clear contradiction to limn→−∞Fn(ϕ) = 0 for all ϕ ∈ U c. The claim for
W cs

loc(0) is analogous, iterating in the opposite direction.

Corollary C.10 allows us to produce locally unique center manifolds via
the methods used in Theorem C.6. More precisely, we have the following.

Theorem C.11. In the setting of Corollary C.9, if limn→−∞Fn(ϕ) = 0 for
all ϕ ∈ U c, then there exists an open subset U ⊂ Uδ such that

W cu
loc(0) ∩ U =

{
ϕ ∈ U :

{Fn(ϕ)}n≤0 ⊂ U and
such that lim

n→−∞
Fn(ϕ) = 0

}
.

Moreover, for all ϕ ∈ W cu
loc(0) ∩ U we have that

TϕW
cu
loc(0) =

{
ψ ∈ X : lim

n→−∞

DFn(ϕ)ψ
κn

= 0 for all κ < 1

}
.

Analogously, if limn→−∞Fn(ϕ) = 0 for all ϕ ∈ U c, then we can find an open
subset U ⊂ Uδ such that

W cs
loc(0) ∩ U =

{
ϕ ∈ U :

{Fn(ϕ)}n≥0 ⊂ U and
such that lim

n→∞
Fn(ϕ) = 0

}
.

For all ϕ ∈ W cs
loc(0) ∩ U we have

TϕW
cs
loc(0) =

{
ψ ∈ X : lim

n→∞

DFn(ϕ)ψ
κn

= 0 for all κ > 1

}
.

Proof. The proof is analogous to that of Theorem C.6. Thus it follows from
Theorem C.3 and the existence of invariant neighborhood in Corollary C.10.

140



Bibliography

[Ama83] H. Amann. Gewöhnliche Differentialgleichungen. de Gruyter,
1983.

[Ang86] S. B. Angenent. The Morse-Smale property for a semi-linear
parabolic equation. J. Differ. Equ., 62(3):427–442, 1986.

[Ang88] S. B. Angenent. The zero set of a solution of a parabolic equa-
tion. J. für die Reine und Angew. Math., 1988(390):79–96,
1988.

[AR67] R. Abraham and J. Robbins. Transversal Mappings and
Flows. W.A. Benjamin Inc., 1967.

[BEW04] P. Brunovský, A. Erdélyi, and H.-O. Walther. On a model of a
currency exchange rate – local stability and periodic solutions.
J. Dyn. Differ. Equ., 16(2):393–432, 2004.

[BF88] P. Brunovský and B. Fiedler. Connecting orbits in scalar reac-
tion diffusion equations. In U. Kirchgraber and H.-O. Walther,
editors, Dynamics Reported, pages 57–89. Vieweg+Teubner
Verlag, 1988.

[BKK+19] C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin,
V. Kruchinin, D. Nguyen, and M. Wallner. Explicit formulas
for enumeration of lattice paths: Basketball and the kernel
method. In G. E. Andrews, C. Krattenthaler, and A. Krinik,
editors, Lattice Path Combinatorics and Applications, pages
78–118. Springer, 2019.

[Cao90] Y. Cao. The discrete Lyapunov function for scalar differential
delay equations. J. Differ. Equ., 87(2):365–390, 1990.

141



[Cao96] Y. Cao. Uniqueness of periodic solution for differential delay
equations. J. Differ. Equ., 128(1):46–57, 1996.

[CCH92] M. Chen, X-Y Chen, and J. K. Hale. Structural stability for
time-periodic one-dimensional parabolic equations. J. Differ.
Equ., 96(2):355–418, 1992.

[CI74] N. Chafee and E. F. Infante. Bifurcation and stability for a
nonlinear parabolic partial differential equation. Bull. Am.
Math., 80(1):49–52, 1974.

[CL55] E. A. Coddington and N. Levinson. Theory of Ordinary Dif-
ferential Equations. McGraw-Hill, 1955.

[CMP78] S.-N. Chow and J. Mallet-Paret. The Fuller index and global
Hopf bifurcation. J. Differ. Equ., 29(1):66–85, 1978.

[CR08] R. Czaja and C. Rocha. Transversality in scalar re-
action–diffusion equations on a circle. J. Differ. Equ.,
245(3):692–721, 2008.

[Del20] L. Dell’Anna. Solvable delay model for epidemic spread-
ing: the case of covid-19 in italy. Scientific reports,
10(1):15763–15763, 2020.

[Dri65] R.D. Driver. Existence and continuous dependence of solu-
tions of a neutral functional-differential equation. Arch. Rat.
Mech. and Anal., 19(2):149–166, 1965.

[DvGVLW95] O. Diekmann, S. A. van Gils, S.M. Verduyn-Lunel, and H.-O.
Walther. Delay Equations Functional-, Complex-, and Non-
linear Analysis. Springer, 1995.

[FMP89] B. Fiedler and J. Mallet-Paret. A Poincaré-Bendixson theorem
for scalar reaction diffusion equations. Arch. Ration. Mech.
Anal., 107(4):325–345, 1989.

[FO87] G. Fusco and W. M. Oliva. Jacobi matrices and transversality.
In S.-N. Chow and J. K. Hale, editors, Dynamics of Infinite
Dimensional Systems, pages 249––255. Springer, 1987.

[FO90] G. Fusco and W. M. Oliva. Transversality between invariant
manifolds of periodic orbits for a class of monotone dynamical
systems. J. Dyn. Differ. Equ., 2(1):1–17, 1990.

142



[FO91] G. Fusco and W. M. Oliva. A Perron theorem for the existence
of invariant subspaces. Ann. Mat. Pura Appl., 160:63–76,
1991.

[FR91] G. Fusco and C. Rocha. A permutation related to the dynam-
ics of a scalar parabolic PDE. J. Differ. Equ., 91(1):111–137,
1991.

[FR96] B. Fiedler and C. Rocha. Heteroclinic orbits of semilinear
parabolic equations. J. Differ. Equ., 125(1):239–281, 1996.

[FR00] B. Fiedler and C. Rocha. Orbit equivalence of global attrac-
tors of semilinear parabolic differential equations. Trans. Am.
Math. Soc., 352(1):257–284, 2000.

[FR18a] B. Fiedler and C. Rocha. Sturm 3-ball global attractors 1:
Thom–Smale complexes and meanders. Sao Paulo J. Math.
Sci., 12(1):18–67, 2018.

[FR18b] B. Fiedler and C. Rocha. Sturm 3-ball global attractors 2:
Design of Thom–Smale complexes. J. Dyn. Differ. Equ.,
31(3):1549–1590, 2018.

[FR18c] B. Fiedler and C. Rocha. Sturm 3-ball global attractors 3:
Examples of Thom–Smale complexes. Discr. Cont. Dyn. Syst.
A, 38(7):3479–3545, 2018.

[FRW04] B. Fiedler, C. Rocha, and M. Wolfrum. Heteroclinic orbits
between rotating waves of semilinear parabolic equations on
the circle. J. Differ. Equ., 201(1):99–138, 2004.

[FRW12a] B. Fiedler, C. Rocha, and M. Wolfrum. A permutation char-
acterization of Sturm global attractors of Hamiltonian type.
J. Differ. Equ., 252(1):588–623, 2012.

[FRW12b] B. Fiedler, C. Rocha, and M. Wolfrum. Sturm global
attractors for S1-equivariant parabolic equations. NHM,
7(4):617–659, 2012.

[GK11] Á. Garab and T. Krisztin. The period function of a delay
differential equation and an application. Period. Math. Hung.,
63(2):173–190, 2011.

[Hal69] J. K. Hale. Ordinary Differential Equations. Krieger, 1969.

143



[Hen81] D. Henry. Geometric Theory of Semilinear Parabolic Equa-
tions. Springer, 1981.

[Hen85] D. Henry. Some infinite-dimensional Morse–Smale systems
defined by parabolic partial differential equations. J. Differ.
Equ., 59(2):165–205, 1985.

[HMO84] J. K. Hale, L. T. Magalhães, and W. M. Oliva. An Introduction
to Infinite Dimensional Dynamical Systems-Geometric The-
ory. Springer, 1984.

[HMO02] J. K. Hale, L. T. Magalhães, and W. M. Oliva. Dynamics in
Infinite Dimensions. Springer, 2002.

[HPS77] M.W. Hirsch, C.C. Pugh, and M. Shub. Invariant Manifolds.
Springer, 1977.

[Hut48] G. E. Hutchinson. Circular causal systems in ecology. Ann.
N. Y. Acad. Sci., 50(4):221–246, 1948.

[HVL93] J. K. Hale and S. M. Verduyn-Lunel. Introduction to Func-
tional Differential Equations. Springer, 1993.

[JR10a] R. Joly and G. Raugel. Generic hyperbolicity of equilibria and
periodic orbits of the parabolic equation on the circle. Trans.
Am. Math. Soc., 362(10):5189–5211, 2010.

[JR10b] R. Joly and G. Raugel. Generic Morse–Smale property for
the parabolic equation on the circle. Ann. I. Poincaré-An.,
27(6):1397–1440, 2010.

[Kel67] A. Kelley. The stable, center-stable, center, center-unstable,
unstable manifolds. J. Differ. Equ., 3(4):546–570, 1967.

[Kri05] T. Krisztin. Invariance and noninvariance of center mani-
folds of time-t maps with respect to the semiflow. SIMA,
36(3):717–739, 2005.

[KV11] T. Krisztin and G. Vas. Large-amplitude periodic solutions
for differential equations with delayed monotone positive feed-
back. J. Dyn. Differ. Equ., 23(4):727–790, 2011.

[KW01] T. Krisztin and H.-O. Walther. Unique periodic orbits for
delayed positive feedback and the global attractor. J. Dyn.
Differ. Equ., 13(1):1–57, 2001.

144



[KWW99a] T. Krisztin, H.-O. Walther, and J. Wu. Shape, Smoothness
and Invariant Stratification of an Attracting Set for Delayed
Monotone Positive Feedback. AMS, 1999.

[KWW99b] T. Krisztin, H.-O. Walther, and J. Wu. The structure of an
attracting set defined by delayed and monotone positive feed-
back. CWI Quarterly, 12(3&4):315–327, 1999.

[KY74] J. Kaplan and J. Yorke. Ordinary differential equations which
yield periodic solutions of differential delay equations. J.
Math. An. and App., 48(2):317–324, 1974.

[KY75] J. Kaplan and J. Yorke. On the stability of a periodic solution
of a differential delay equation. SIMA, 6(2):268–282, 1975.

[Lad91] O. Ladyzhenskaya. Attractors for Semigroups and Evolution
Equations. Cambridge University Press, 1991.

[Lap20] P. Lappicy. Sturm attractors for quasilinear parabolic
equations with singular coefficients. J. Dyn. Diff. Equ.,
32(1):359–390, 2020.

[Lap22] P. Lappicy. Sturm attractors for fully nonlinear parabolic
equations. Rev. Mat. Complut., 2022.

[Lew03] J. Lewis. Autoinhibition with transcriptional delay: A simple
mechanism for the zebrafish somitogenesis oscillator. Current
biology, 13(16):1398–1408, 2003.

[LF19] P. Lappicy and B. Fiedler. A Lyapunov function for fully non-
linear parabolic equations in one spatial variable. São Paulo
J. Math. Sci., 13(1):283–291, 2019.

[LHK21] S. A. M. Loos, S. Hermann, and S. H. L. Klapp. Medium
entropy reduction and instability in stochastic systems with
distributed delay. Entropy, 23(6):696–, 2021.

[LN17] A. López Nieto. Heteroclinic connections in delay equations.
Master’s thesis, Freie Universität Berlin, 2017.

[LN20] A. López Nieto. Periodic orbits of delay equations with mono-
tone feedback and even-odd symmetry. arXiv 2002.01313,
2020.

145



[LP18] P. Lappicy and J. Pimentel. Slowly non-dissipative equations
with oscillating growth. Port. Math., 75(3):313–327, 2018.

[LWS02] B. Lani-Wayda and R. Srzednicki. A generalized Lefschetz
fixed point theorem and symbolic dynamics in delay equations.
Ergod. Theory Dyn. Syst., 22(4):1215–1232, 2002.

[Mañ83] R. Mañé. Lyapounov exponents and stable manifolds for com-
pact transformations. In J. Palis, editor, Geometric Dynamics.
Springer, 1983.

[Mat82] H. Matano. Nonincrease of the lap-number of a solution for
a one-dimensional semilinear parabolic equation. J. Fac. Sci.
Univ. Tokyo, 29, 1982.

[Mat88] H. Matano. Asymptotic behavior of solutions of semilinear
heat equations on S1. In W.-M. Ni, L. A. Peletier, and Serrin,
editors, Nonlinear Diffusion Equations and Their Equilibrium
States II, pages 139–162. Springer, 1988.

[McR95] D. T. McRuer. Pilot-induced oscillations and human dynamic
behavior. Technical report, NASA, 1995.

[Mel72] W.R. Melvin. A class of neutral functional differential equa-
tions. J. Differ. Equ., 12(3):524–534, 1972.

[MG77] M. C. Mackey and L. Glass. Oscillation and chaos in physio-
logical control systems. Science, 197(4300):287–289, 1977.

[MM76] J. E. Marsden and M. McCracken. The Hopf Bifurcation and
its Applications. Springer, 1976.

[MP88] J. Mallet-Paret. Morse decompositions for delay-differential
equations. J. Differ. Equ., 72(2):270–315, 1988.

[MP99] J. Mallet-Paret. The global structure of traveling waves in
spatially discrete dynamical systems. J. Dyn. Differ. Equ.,
11, 1999.

[MPN13] J. Mallet-Paret and R. D. Nussbaum. Tensor products, posi-
tive linear operators, and delay-differential equations. J. Dyn.
Differ. Equ., 25(4):843–905, 2013.

146



[MPS90] J. Mallet-Paret and H. L. Smith. The Poincaré–Bendixson
theorem for monotone cyclic feedback systems. J. Dyn. Differ.
Equ., 2(4):367–421, 1990.

[MPS96a] J. Mallet-Paret and G. R. Sell. The Poincaré–Bendixson the-
orem for monotone cyclic feedback systems with delay. J.
Differ. Equ., 125(2):149–166, 1996.

[MPS96b] J. Mallet-Paret and G. R. Sell. Systems of differential delay
equations: Floquet multipliers and discrete Lyapunov func-
tions. J. Differ. Equ., 125(2):385–440, 1996.

[Mys55] A.D. Myshkis. Lineare Differentialgleichungen mit nacheilen-
dem Argument. Dt. Verl. der Wiss., 1955.

[Nis19] J. Nishiguchi. C1-smooth dependence on initial conditions and
delay: spaces of initial histories of Sobolev type, and differen-
tiability of translation in Lp. Electron. J. Qual. Theory Differ.
Equ., 2019(91), 2019.

[Nus79] R. Nussbaum. Uniqueness and nonuniqueness for periodic so-
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Deutsche Zusammenfassung

In dieser Arbeit wird eine neue Methode zur Beschreibung der qualitativen
Dynamik der sogenannten Hopf–Smale-Attraktoren in skalaren retardierten
Differentialgleichung mit symmetrischer negativer verzögerter Rückkopplung
entwickelt.

Die Dynamik von Hopf–Smale-Attraktoren ist robust gegenüber regelmä-
ßigen Störungen. Qualitativ besteht der Attraktor aus einem Gleichgewicht,
periodischen Orbits und Orbits zwischen diesen. Wir beschreiben den Me-
chanismus, der die periodischen Orbits erzeugt und zeigen, wie dieser neue
verbindende Orbits über Sequenzen von Hopf-Bifurkationen erzeugt. Als Er-
gebnis erhalten wir eine Aufzählung aller Phasendiagramme, d.h. der gerich-
teten Graphen, die die Gleichgewichts- und periodischen Bahnen als Knoten
und die Verbindungen als Kanten kodieren.

Insbesondere haben wir einen Prototyp, den sogenannten enharmonischen
Oszillator, gefunden, der alle Hopf–Smale-Phasendiagramme verwirklicht.
Neben der Beschreibung der Hopf–Smale-Attraktoren gibt unsere Methode
auch Aufschluss über den Entstehungsprozess bestimmter globaler Attrakto-
ren mit positiver verzögerter Rückkopplung.
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