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Abstract
Purpose—In clinical practice, many patients with right heart
failure (RHF) have elevated pulmonary artery pressures and
increased afterload on the right ventricle (RV). In this study,
we evaluated the feasibility of RV augmentation using a soft
robotic right ventricular assist device (SRVAD), in cases of
increased RV afterload.
Methods—In nine Yorkshire swine of 65–80 kg, a pulmonary
artery band was placed to cause RHF and maintained in
place to simulate an ongoing elevated afterload on the RV.
The SRVAD was actuated in synchrony with the ventricle to
augment native RV output for up to one hour. Hemody-
namic parameters during SRVAD actuation were compared
to baseline and RHF levels.
Results—Median RV cardiac index (CI) was 1.43 (IQR,
1.37–1.80) L/min/m2 and 1.26 (IQR 1.05–1.57) L/min/m2 at
first and second baseline. Upon PA banding RV CI fell to a
median of 0.79 (IQR 0.63–1.04) L/min/m2. Device actuation
improved RV CI to a median of 0.87 (IQR 0.78–1.01), 0.85
(IQR 0.64–1.59) and 1.11 (IQR 0.67–1.48) L/min/m2 at 5 min
(p = 0.114), 30 min (p = 0.013) and 60 (p = 0.033) minutes
respectively. Statistical GEE analysis showed that lower
grade of tricuspid regurgitation at time of RHF (p = 0.046),
a lower diastolic pressure at RHF (p = 0.019) and lower
mean arterial pressure at RHF (p = 0.024) were significantly
associated with higher SRVAD effectiveness.
Conclusions—Short-term augmentation of RV function using
SRVAD is feasible even in cases of elevated RV afterload.

Moderate or severe tricuspid regurgitation were associated
with reduced device effectiveness.

Keywords—Soft robotic ventricular assist device, Right heart

failure, Elevated pulmonary artery pressure.

ABBREVIATIONS

CI Cardiac index
PA Pulmonary artery
RVAD Right ventricular assist device
RHF Right heart failure
SRVAD Soft robotic right ventricular assist device
SVI Stroke volume index

INTRODUCTION

In the majority of cases, right heart failure (RHF)
results from a progression of left heart failure, and is
associated with elevated pressures in the pulmonary
circulation.12 Further, acute RHF may occur following
LVAD Implantation.6 In both of the above scenarios
temporary mechanical circulatory support (MCS) for
the right ventricle (RV) may be considered, in cases of
inadequate circulatory function despite maximal
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medical therapy.7 The goal of MCS is to reduce RV
preload, while providing adequate input for the left
ventricle, in order to maintain effective biventricular
circulation. This may be accomplished by extra cor-
poreal membrane oxygenation (ECMO) in the short
term or implantation of a conventional right ventric-
ular assist device (RVAD) for longer support.2,5,9

In recent work, our group has suggested the concept
of soft robotic ventricular assist devices.1,10 Taking
advantage of recent advances in soft robotics, we have
shown that septally braced soft epicardial actuators
can be precisely actuated in synchrony with the failing
heart, to augment function.10 Light, compact, and with
minimal blood contact, these devices provide pulsatile
augmentation of the native ventricular ejection by
mechanically approximating the septum and ventricu-
lar free wall, making use of the native cardiovascular
chambers without the requirement to reroute blood
flow.

The advantage of this approach is the considerable
reduction of the surface area of foreign material that
comes into contact this blood, greatly reducing the risk
of thromboembolic complications. There may also be
reduced cytokine stimulation and reduced shear stress
on blood cells. Moreover, mimicking the native free-
wall and septal approximation during systole avoids
paradoxical septal motion and favors optimal hemo-
dynamics of both the right and left ventricle.

We have previously demonstrated the feasibility of
optimizing the actuation and placement of soft robotic
assist devices, such that secondary mitral valve insuf-
ficiency is minimized during systole.11 The RV however
offers a different and potentially more substantial
challenge. With a relatively thin wall and bellow-like
contraction, its ejection mechanics are more compli-
cated.4 Longitudinal shortening and not free wall to
septal approximation seems to account for the major-
ity of right ventricular contraction.3 In decompensated
RHF, both reduction in longitudinal contraction and
ventricle chamber dilatation contribute to the
derangement of ventricular hemodynamics.4 Further,
RHF is often accompanied both by functional tricus-
pid regurgitation8 and increased pulmonary artery
pressures.13

In this study, we describe the performance of a
septally braced SRVAD in in vivo conditions mimick-
ing RHF with elevated pulmonary artery pressures.

METHODS

Setup

Nine Yorkshire swine 65–80 kg were used for the
experiments. All animals received humane care

according to the 1996 NIH guidelines for the care and
use of laboratory animals. Boston Children Hospital’s
institutional animal care and use committee reviewed
and approved the study protocol.

The experiments were performed under monitored
general anesthesia. The animals were fully ventilated
typically in volume control mode with a positive end
expiratory pressure of 4 mmHg. A lidocaine continu-
ous infusion of 5–20 mcg/kg/minute was typically
started before manipulation of the heart and main-
tained as prophylaxis against arrhythmia. A baseline
Dopamine infusion of 2 mcg/kg/min was maintained.

Surface ECG electrodes were placed, a median
sternotomy performed, and fluid filled catheters for
pressure monitoring inserted into the right atrium,
distal pulmonary artery and distal ascending aorta. A
pressure volume catheter (Transonic AD500 PV Sys-
tem–Transonic Systems Inc. NY, USA) was inserted
into the RV via the ventricular apex and controlled for
correct placement and measurement. Ultrasonic
Transonic PS flow probes (Transonic Systems Inc, NY,
USA) were placed around the ascending aorta and the
pulmonary artery to record the outputs of the left and
right ventricles respectively. Baseline hemodynamics
were then recorded using the Labchart data recording
system (ADI Instruments, CO, USA). Baseline
echocardiography with focus upon ventricular and
valve function was performed.

SRVAD Placement

The SRVAD was placed under echocardiographic
guidance on the beating heart, as previously
described.10 Briefly, the device is composed of a septal
anchoring system, an arc profile mimicking the right
ventricular curvature, on which soft robotic actuators
are mounted, a semi-flexible rod linking the arc to the
anchoring system, and a blood isolation system to keep
the device from direct contact with blood and prevent
leaking of blood from the RV (Fig. 1). SRVAD is
implanted on the beating heart under 3D echocardio-
graphy guidance. An area of RV free wall at the level
of the papillary muscle is chosen and a purse-string is
placed. Within the purse-string suture, an introducer
needle is inserted through the RV and intraventricular
septum into the left ventricle. The ideal area of intra-
ventricular septum is the smooth area just inferior to
the septal band and just apical to the outflow septum.
This insertion point is well away from both the right
and left electrical conduction bundles and is also ideal
for engagement of the septum by the SRVAD. On the
left side the needle would typically end up adjacent to
the left ventricular outflow tract and avoid the mitral
valve chordae (Fig. 2). Once the needle position is
confirmed, the Seldinger technique is used to introduce
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the septal anchoring system which is then unfolded for
firmly sandwich both sides of the IVS (Figs. 1 and 2).
The RV seal system is then applied, and the anchor
connected to the actuator arc via the semi-flexible rod.
A second baseline of hemodynamic and echocardio-
graphic data were recorded prior to creation of RHF.

Right Heart Failure Model

Acute RHF was created by pulmonary artery
banding. A cotton umbilical tape 0.32 cm wide
(Ethicon-Johnson and Johnson, NJ, USA) was used
for umbilical banding. For the purposes of the
experiment, the tape was marked into 2 mm. lengths
to allow precise reduction of the pulmonary artery
circumference. The band was placed around the
proximal main pulmonary artery at least 2 cm distal
to the pulmonary valve and proximal to the flow and
pressure probes. The position was maintained by
fixing the band to the posterior pulmonary artery wall
using a 5/0 prolene stitch. Using a tourniquet system,
the main pulmonary artery lumen is gradually oc-
cluded by tightening the band in 2-mm increments.
RHF is achieved once the cardiac output falls below
60% of baseline. The band is left in place and after
allowing a period of stabilization, the RHF baseline
data is recorded.

SRVAD Actuation

SRVAD was then actuated in synchrony with the
heart rhythm based on detection of the RV pressure
signal. The supplementary video material shows a vi-
deo of the RVAD actuation. SRVAD triggers just as
the RV pressure begins to build at the beginning of
systole and remains actuated for 35% of the cardiac
cycle. SRVAD actuators relax in synchrony with the
heart. Hemodynamics were recorded at 5, 30 and
60 min of actuation.

Echocardiography

All echocardiograms were reviewed and scored by a
single observer experienced in cardiac imaging. Tri-
cuspid regurgitation grade was categorized as
0 = None or Trivial, 1 = Mild, 2 = Moderate and
3 = Severe TR. In-between grades were denoted by a
0.5 added to the lower grade. Video 2 demonstrates an
example of an animal with trivial tricuspid regurgita-
tion and another with severe tricuspid regurgitation
following RHF creation.

Statistical Analysis

Data from the periods; baseline, device implanted,
right heart failure, 5, 30 and 60 min actuation were

FIGURE 1. The concept of the soft-robotic right ventricular ejection device. (a). the device is made out of four Mckibben
pneumatic actuators that are supported on an arced frame and braced in the interventricular septum. Contraction of the actuators
approximates the septum and the free wall leading to blood ejection. (b) A prototype of the device in relaxed state. (c) the prototype
in actuated state showing the contraction force applied to the RV free wall. (Adopted with permission from Payne at al. Science
Robotics, 22 Nov 2017). (d) An illustration of the right heart failure model. We applied a pulmonary artery (PA) band to cause RHF
leaving the band in place during actuation.
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collected. In each period, representative data covering
at least 15 s duration was extracted from the contin-
uous hemodynamic traces, using the Labchart pro-
gram. Because of the variation in animal size, cardiac
output and stroke volume were adjusted to BSA to
generate a cardiac index (CI) and stroke volume index
(SVI). Continuous variables were summarized as
median and interquartile range and categorical vari-
ables as frequencies and percentages. Comparisons of
continuous data between specific time points were
done using the Wilcoxon signed ranks test. General-
ized estimating equation (GEE) was used to model the
change in each parameter over time while taking into
account repeated measurements within an animal and
adjusting for BSA, while implementing a Gaussian
family and identity link function for continuous out-
come data. All statistical analyses were performed
using Stata version 15.0 (StataCorp LLC., College
Station, Texas). A two-tailed significance threshold of
p < 0.05 was used to determine statistical significance.

RESULTS

Right Ventricle Augmentation

One-hour RV support was completed in four ani-
mals. In five animals 5–30 min support was completed.
The effect of SRVAD actuation on RV cardiac index
and RV stroke volume index are illustrated in Fig. 3.
Median RV cardiac index was 1.43 (IQR, 1.37–1.80) L/
min/m2 at the first baseline and 1.26 (IQR 1.05–1.57)
L/min/m2 at second baseline measurement. Upon PA
banding RV cardiac index fell to a median of 0.79
(IQR 0.63–1.04) L/min/m2. SRVAD actuation resulted
in an improvement of RV cardiac index to a median of

0.87 (IQR 0.78–1.01), 0.85 (IQR 0.64–1.59) and 1.11
(IQR 0.67–1.48) L/min/m2 at 5 min (p = 0.114),
30 min (p = 0.013) and 60 min (p = 0.014) respec-
tively. The median RV stroke volume index at first and
second baseline measurement were 18 (IQR 14–22)
mL/beat/m2 and 12 (IQR 10–15) mL/beat/m2 respec-
tively. RV stroke volume at the point of RHF was 8
(IQR 6–10) mL/beat/m2. After device actuation,
median stroke volume index was 9 (IQR 7–10) mL/
beat/m2 at 5 min (p = 0.198); 7 (IQR 5–16) mL/beat/
m2 at 30 min (p = 0.273); and 10 (IQR 6–14) mL/
beat/m2 at 60 min (p = 0.286) of actuation. There was
a positive correlation between the RV cardiac index
improvement at 5 min to subsequent timepoints at
30 min (r = 0.314, p = 0.544) and one hour (r = 0.8,
p = 0.2). Similarly, augmentation in RV stroke vol-
ume at 5 min was associated with the subsequent
augmentation at 30 min (r = 0.486 p = 0.329) and
1 h (r = 0.8, p = 0.2).

Left Ventricle Augmentation

The effect of the device on left ventricle function is
summarized in Fig. 4. The median LV cardiac index
was 1.31 (IQR 1.19–1.46) L/min/m2 first baseline and
was 1.23 (IQR 1.07–1.36) L/min/m2 at second baseline.
Median LV CI fell to 0.88 (IQR 0.69–0.92) L/min/m2

upon creation of RHF. LV cardiac index at was 1.01
(IQR 0.85–1.08), 0.96 (IQR 0.91–1.19) and 0.98 (IQR
0.89–0.98) L/min/m2 at 5 min (p = 0.132), 30 min
(p = 0.019) and 60 min (p = 0.033) of device actua-
tion respectively. LV stroke volume index was 14 (IQR
12–20) mL/beat m2 at first baseline and was 11 (IQR
9–13) mL/beat/m2 at second baseline measurement.
Stroke volume index reduced to 8 (IQR 6–9) mL/beat/

FIGURE 2. Examination of the explanted heart. (a) View from the right side of the intraventricular septum. (b) The view from the
left side of the intraventricular septum. There was no apparent damage to the septum or intracardiac structures after an hour of
device actuation.
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FIGURE 3. The overall effects of the device on RV function. (a) RV Cardiac Index at the different time points of the experiment.
There was a significant increase in cardiac index at 30 min and 60 min of actuation compared to the RHF baseline. (b) RV Stroke
Volume Index at the different time points during the experiment.

FIGURE 4. Effect of the device on the left ventricle. (a) LV cardiac index at the different experimental time-points. (b) LV stroke
volume index at the different time-points during the experiment. (c) Correlation between change in LV cardiac index and grade of
tricuspid regurgitation (d) Correlation between right ventricle and left ventricle cardiac index change at 5 min of device actuation.
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m2 upon RHF creation and was 10 (IQR 7–11) mL/
beat/m2, 8 (IQR 7–9) mL/beat/m2 and 9 (IQR 8–11)
mL/beat/m2 at 5, 30 and 60 min of device actuation.
Overall LV effective LV augmentation was achieved in
animals where effective RV augmentation was also
achieved (Fig. 4).

Pulmonary Artery Pressures

Mean PA pressure was 15 (IQR 14–16) mmHg at
first baseline, 21 (IQR 19–24) mmHg at second base-
line measurement. Mean PA pressure, measured distal
to the PA band, was 18 (IQR 14–22) mm Hg at RHF
and remained relatively unchanged during the device
actuation at 20 (IQR 16–21) mmHg, 21 (IQR 18–25)
mmHg and 19 (IQR 18–21) mmHg at 5, 30 and 60 min
respectively. Maximal PA pressure increased from a 23
(IQR 21–27) mmHg at RHF to 27 (IQR 23–32)
mmHg, 30 (IQR 27–32) mmHg and 28 (IQR 27–29)
mmHg, 5, 30 and 60 min of device actuation. The
change in maximal PA pressure was statistically sig-
nificantly different from the RHF reading within 5 min
of device actuation (p = 0.027) but was not significant
at 30 min (p = 0.09) and 60 min (p = 0.875).

Right Ventricle Pressures

RV end diastolic pressures were 4 (IQR 3–5) mmHg,
6 (IQR 6–8) mmHg, 7 (IQR 3–8) mmHg, 6 (IQR 2–8)
mmHg, 5 (IQR 4–7) mmHg and 3 (IQR 2–6) mmHg at
first baseline, second baseline, RHF, 5, 30 and 60 min
actuation respectively. Maximal RV pressure was 22
(IQR 19–27) mmHg at baseline and 28 (IQR 27–33)
mmHg firsts and second baseline measurement
respectively. Upon RHF creation maximal RV pres-
sure was 32 (27–35) mmHg. Maximal RV pressure
increased to 38 (IQR 35–43) mmHg at 5 min
(p = 0.012), 36 (IQR 32–43) mmHg at 30 min
(p = 0.063) and 34 (IQR 30–36) mmHg at 60 min
actuation (p = 0.875).

Systolic Pressure

Median systolic pressure was 82 (IQR 74–89) and 56
(IQR 51–62) mmHg at first and second baseline mea-
surement, and it was 43 (IQR 39–49) mmHg at RHF.
Systolic pressure was 49 (IQR 42–55) mmHg, 47 (IQR
46–49) mmHg and 47 (IQR 42–53) mmHg at 5 min
(p = 0.098), 30 min (p = 0.094) and 60 (p = 375)
min of device actuation.

Mean Arterial Pressures

Mean arterial pressure was 62 (IQR 57–62) mmHg
at first baseline and 46 (IQR 35–49) mmHg at second
baseline. The mean arterial pressure fell to 34 (IQR 29–
37) mmHg upon RHF creation and was 37 (IQR 34–

38) mmHg at 5 min (p = 0.496), 34 (IQR 33–36)
mmHg at 30 min (p = 0.438) and 34 (IQR 32–38)
mmHg at 60 min actuation (p = 0.375).

RV Pressure/Systemic Pressure

The fraction of RV/Systemic fraction was 0.26
(0.25–0.29) and 0.57(0.49–0.64) on first and second
baseline measurements and was 0.73 (0.7–0.77) at
RHF. The RV/Systemic fraction was 0.78 (0.76–0.82),
0.78 (0.68–0.91) and 0.65 (0.59–0.81) at 5 min
(p = 0.004), 30 min (p = 0.688) and 60 min respec-
tively (p = 0.875).

Tricuspid Regurgitation

At the time of RHF prior to device actuation, one
animal had trivial tricuspid regurgitation, two animals
had mild tricuspid regurgitation, 3 animals
mild + tricuspid regurgitation and the remaining
three animals had moderate or worse tricuspid regur-
gitation.

The relationship of RV cardiac output change to
tricuspid regurgitation is shown in Fig. 5. Improved
RV cardiac index at 5 min (p = 0.046), 30 min
(p = 0.197), and 60 min (p = 0.149) of device actua-
tion is associated with a lower grade of tricuspid
regurgitation (TR). Similarly stroke volume improve-
ment at 5 min (p = 0. 053), 30 min (p = 0.231), and
60 min (p = 0.123) of device actuation tended to be
better at low grades of TR. A lower systemic diastolic
pressure (p = 0.019) and lower mean arterial pressure
(p = 0.024) were associated with improved RV car-
diac index change (Fig. 5d).

DISCUSSION

For patients with persistent symptomatic RHF de-
spite maximal medical therapy, the main MCS options
in current practice are ECMO implantation for short-
term support, or a conventional RVAD Implantation,
often in BiVAD configuration with an LVAD, for
longer-term support. The concept of a SRVAD, with
septally braced cardiosychronic epicardial actuators,
has been suggested as an alternative therapy.10 By
making use of the native cardiovascular circuit and
mimicking native ventricular mechanics, these
SRVADs have a minimal surface area of foreign
material in contact with blood. They act primary by
increasing the contractile force during systole and
augmenting diastolic relaxation.

SRVADs necessitate two important shifts in the
clinical approach to VAD therapy. Unlike the current
MCS devices, SRVADs were conceived to augment
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and not completely replace function of a failing ven-
tricle. Secondly, making use of the native cardiovas-
cular circuit, SRVADs require competence of the
native one-way cardiac valves for efficient forward
ejection.

In our prior work, we have demonstrated that a
SRVAD not only augments left ventricular function
but also concurrently acts on the mitral valve to reduce
mitral valve insufficiency during actuation.11 In the
current experiments, the device itself did not increase
or reduce the tricuspid valve function. We observed
augmentation of RV output to the levels of the second
baseline prior to RHF or better, only in some animals,
despite evidence that the device was able to augment
RV contraction, as evidenced by the increase in RV
and maximal PA pressures. Efficient forward ejection
in the presence of a pulmonary band was associated
with the level of tricuspid valve competence at the time
of RHF. Further, we observed a difference in device

function at the 30 min and one-hour timepoints among
those animals with good initial improvement in cardiac
function which tended to maintain this improvement
compared to those without good initial improvement
whereby the cardiac output further worsened with
time, because of ongoing RHF without effective device
augmentation.

STUDY LIMITATIONS

Acute heart failure creation by pulmonary banding
in one stage does not precisely recreate the hypertro-
phy seen in RHF following chronically elevated pul-
monary pressures. Further, the mean arterial pressure
and diastolic pressure may have an influence on RV
filling although we did not directly measure this factor.

FIGURE 5. Correlation between changes in cardiac index and strove volume index to tricuspid function, RV and PA pressures. (a)
The correlation of RV cardiac index changes at 5, 30 and 60 min of device actuation with the grade of tricuspid regurgitation. (b)
Correlation between change in RV stroke volume index and tricuspid regurgitation grade (c) Correlation between change in RV
cardiac index at 5 min and RV and PA pressures. (d) Correlation between change in RV cardiac index at 5 min and systemic
pressures.
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CONCLUSIONS

This work is an early translational undertaking that
builds on our initial proof of concept studies, to eval-
uate the concept of a soft robotic right ventricular
assist device in a setting of right heart failure and ele-
vated pulmonary artery pressures. We demonstrate
that hemodynamically relevant right ventricular sup-
port for up to an hour is feasible. We find that sig-
nificant tricuspid regurgitation hinders effective
forward ejection. The next translational step would be
studies of 6 to 72 h support using these devices and in
animal models where right heart failure is induced over
weeks and not over minutes, in order to more closely
simulate the intended clinical use and to study the
physiological changes in detail. The data from this
study suggest that addressing tricuspid valve function,
either in the design of the devices or as a concomitant
procedure, will be a necessary step prior to further
clinical translation.
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