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Abstract
Background Total body irradiation (TBI) is an established part of conditioning regimens prior to stem cell transplantation
in childhood leukemia but is associated with long-term toxicity. We retrospectively analyzed survival, long-term toxicity,
and secondary malignancies in a pooled cohort of pediatric patients (pts.) treated with the same TBI regimen.
Methods Analyzed were 109 pts. treated between September 1996 and November 2015. Conditioning treatment according
to EBMT guidelines and the ALL SCTped 2012 FORUM trial consisted of chemotherapy (CT) and TBI with 2Gy b.i.d.
on 3 consecutive days to a total dose of 12Gy. Median follow-up was 97.9 months (2–228 months).
Results Overall survival (OS) in our cohort at 2, 5, and 10 years was 86.1, 75.5, and 63.0%, respectively. Median survival
was not reached. Long-term toxicity developed in 47 pts. After chronically abnormal liver and kidney parameters in 31
and 7 pts., respectively, growth retardation was the most frequent finding as seen in 13 pts. Secondary malignancies were
rare (n= 3).
Conclusion TBI-containing conditioning regimens in pediatric stem cell transplantation (SCT) are highly effective. Efforts
to replace TBI- with CT-containing regimens have only been successful in subgroups of pts. Although we could show
long-term toxicity in 43% of pts., overall survival was 63% at 10 years. Still, long-term effects such as growth retardation
can permanently impact the pts.’ quality of life and functioning. Along with new substances, efforts should be undertaken
to optimize TBI techniques and accompany the treatment by systematic follow-up programs beyond 5 years to improve
detection of rare events.
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Introduction

TBI reduces the number of leukemic cells and prevents
graft rejection in SCT. A randomized study in pediatric pts.
showed that TBI-containing induction therapy yielded bet-
ter survival than CT induction alone [1]. This could be
corroborated in a 2011 meta-analysis [2]. Recently, the
experimental arm of the randomized ALL SCTped 2012
FORUM trial (NCT01949129) comparing TBI/VP16 con-
ditioning versus CTpoly-CT (either busulfan/fludarabine/
thiotepa or treosulfan/fludarabine/thiotepa) has been closed
prematurely due to a steep increase in events when omit-
ting TBI. However, TBI-containing regimens are associated
with long-term morbidity like infertility or growth retarda-
tion, although exact rates remain unclear [3]. To help better
understand the long-term effects of combined treatment ap-
proaches, we reviewed a large cohort of pediatric pts. who
received the same TBI regimen (from September 1996 to
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November 2015) with respect to survival, long-term toxic-
ity, and secondary malignancies.

Methods

A total of 201 TBI pts. were treated between September
1996 and November 2015at the Charité Department of Ra-
diation Oncology (median follow-up 97.9 months, range
2-228 months). After excluding adult pts. and pts. with dif-
ferent regimens, 109 pts. remained for analysis. Inclusion
criteria were age <19 years, primary or recurrent leukemia,
12Gy TBI with single doses of 2Gy. Conditioning was ac-
cording to EBMT guidelines [4] and the ALL SCTped 2012
FORUM trial (NCT01949129). Prior whole-brain irradia-
tion had been received by 45 pts. (WBRT; median 18.4Gy,
range 12–24Gy). TBI was initially applied on a cobalt-
60 machine (1996–2005) and subsequently (2006–2015) on
a linear accelerator (linac) with a translation couch and the
linac in 0° position. The patient is thus transported with con-
stant velocity through the beam, first in prone then in supine
position. This technique enlarges the field size, improves
the photon fluence uniformity, and reduces the depth-dose
inhomogeneity [5]. Very young pts. were treated under gen-
eral anesthesia (n= 5). Data were gathered from the internal
patient documentation system (SAP, SAP, Walldorf, Ger-
many), OPS and ICD codes and from pts.’ files or through
direct contact with either treating physicians, pts., or care-
givers, and eventually by contacting the residents’ regis-
tration office. The data were analyzed using IBM SPSS
version 22.0 (SPSS, IBM, Armonk, NY, USA). Graphical
representation of survival analyses was performed using the
Kaplan–Meier method. The Charité ethics board approved
this study (EA2/112/21). The informed consent requirement
was waived. The research complied with the Declaration of
Helsinki.

Results

For pts.’ characteristics see Table 1. OS in our cohort at 2, 5,
and 10 years was 86.1, 75.5, and 63.0%, respectively. Me-

Table 1 Patients’ characteristics. Our cohort comprises predominantly male pts. with acute lymphatic leukemia (ALL) in CR1 or 2

Cohort size n= 109

Age 2.4–18.9 years (median 11.2 years)

Sex ratio 34 female: 75 male

Diagnoses ALL (n= 101) other (AML= 5, CML= 2, NHL= 1; n= 8)

Initial study protocol 92% of pts. received initial therapy on or according to a current study protocol (ALL-BFM 90, ALL-BFM 95, ALL-
REZ BFM 96, ALCL 99, ALL-BFM 2000, COALL 06-97, GMALL 06-99, GMALL 08-03)

Conditioning protocol EBMT handbook and guidelines, ALL SCTped 2012 FORUM trial (TBI was 6× 2Gy b.i. d. q8h on 3 consecutive
days, mean lung dose ~ 10Gy)

Prior irradiation n= 45 (WBRT n= 22; gonadal boost n= 10; misc. n= 13)

dian survival was not reached (Fig. 1). Late effects occurred
in 47 (43%) pts. (Fig. 2). Cataracts were found in 3 pts.,
although the rate of visual impairment was higher. One pt.
who had prior 24Gy whole brain irradiation (WBRT) later
also developed bilateral sicca syndrome. Six pts. had bone/
cartilage damage. One patient (17.6 years) developed se-
vere osteoporosis 5 months after TBI, while two showed
femoral/femoral head osteonecrosis 4–5 years after TBI.
Two pts. had osteopenia-related fractured vertebral bod-
ies after 4 and 8 years. All pts. had ample exposure to
steroids. Growth deficiency (GD) was diagnosed in 13 pts.
(median age at treatment 9.4, range 3.4–18.7 years). Four
of these pts. had prior WBRT. Hypothyroidism occurred in
7 pts. (12.5%). Two of these had prior WBRT. Abnormal
liver function tests were seen in 31 pts. (40.3%; male-to-fe-
male ratio 6:25). Eight of them died within the FU period.
Dyslipidemia was seen in 4 pts. All of them had patho-
logic serum triglycerides. Secondary malignancies were di-
agnosed in 3 pts. (2.8%) after a median latency period of
75.6 months (range 26–120 months). One patient developed
Hodgkin’s disease (HD) 4 years after treatment on the GM-
ALL 96 protocol. The patient had cobalt-60 TBI and no
further irradiation treatments. He was diagnosed 4 years
after treatment and relapsed after another 2 years; the pa-
tient succumbed to the disease 16 months later. The second
patient developed HD 6 years after 12-Gy cobalt-60 TBI
on the ALL-BFM 2000 protocol. The patient also had no
further irradiation treatments. He was treated for HD and
is alive. The third patient developed rhabdomyosarcoma
6 years after 12-Gy photon TBI. The patient was treated
for rhabdomyosarcoma and is alive.

Discussion

In this cohort of 109 pts. treated with the same TBI regimen
as part of their conditioning prior to SCT, tumor control
is in keeping with published results, with OS at 5 years
of 75.5% and a low recurrence rate of 7.3% (Fig. 2). In
this multimodally treated cohort, late effects cannot be at-
tributed to a single therapy element but are a consequence of
combined effects. With complete organ-at-risk (OAR) ex-
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Fig. 2 Overall survival (OS) in our cohort at 2, 5, and 10 years was
86.1, 75.5, and 63.0%, respectively. Median survival was not reached.
Patients treated in CR2 (2nd complete remission) showed similar OS
data at 2, 5, and 10 years with 97.8, 88.0, and 65.7%, respectively

posure in TBI though, the estimation of radiation-induced
late effects is higher than in focal radiotherapy [6].

GD (24%) and hypothyroidism (21.2%) are the most
frequent late effects [7], with a median time to onset of hy-
pothyroidism of 50 months [8]. Compared to single-session
TBI, fractionated TBI reduces the rate of hypothyroidism
from 90 to 15% [9], which is reflected by the 12.5% in
our cohort. Young age is conversely associated with an in-
crease in GD rates. In a retrospective analysis of 81 very
young pts. (median age 1.4 years), 92% had growth hor-
mone (GH) deficiency with 71% falling under the 2.5%
growth percentile [3, 10], while 80% still show a growth
>3rd percentile [11–13]. In our cohort, 31% of pts. with GD
had prior WBRT, which increases the dose to the pituitary
[14].

Fractionated TBI decreases the cataract rate from >90%
to 30% at 3 years [15]. In our cohort we saw a cataract rate
of only 2.7%, which is probably due to fractionation and
the higher median age of 11.2 years.

Restrictive lung disease is seen in ~ 20% of pediatric
pts. and peaks 3–6 months after TBI/SCT. Restitution is
possible within 2 years [16–19]. Thirteen (12%) of our pts.
developed cryptogenic organizing pneumonia (COP) with
decreased FEV-1.

The main risk factor for glomerulopathy after TBI/SCT
in children is TBI [20]. Grönros et al. analyzed 187 pts. un-
dergoing SCT, 64 pts. had an additional TBI. Fifty healthy
children constituted the control group. GFR and effective
renal plasma flow were normal prior to therapy. After treat-

ment both values were significantly worse with TBI [21]. A
study on 1635 adult pts. (median age at SCT 38.5 years) on
the other hand could show that a reduction in GFR post TBI
and SCT was mainly associated with GVHD [22]. Seven
of our pts. developed renal insufficiency with chronically
elevated retention parameters ([3]; Fig. 2).

Rösler and co-workers presented a cohort of 216 pts.
with irradiation to the liver (70 pts. with TBI). With a mean
dose to the liver of 5Gy, 17% of pts. developed mild liver
dysfunction [23]. With a mean dose of 12Gy we saw 32 pts.
(28.4%) with pathologic serum liver parameters. There was
no case of VOD (veno-occlusive disease).

Four pts. in our cohort were diagnosed with dyslipi-
demia, which is in accordance with two studies showing
elevated triglycerides in children after TBI and SCT [24,
25]. Dyslipidemia might be associated with GH deficiency;
hence, early GH substitution might normalize serum lipids
and thus decrease cardiovascular risk [26, 27].

Secondary malignancies after TBI and SCT are mostly
lymphomas (often earlier after SCT) and hematologic ma-
lignancies. In most cases they are associated with immune
dysregulation and EBV reactivation/infection [28, 29]. Two
of our pts. (1.8%) developed Hodgkin lymphoma (HD) in
the FU period. Secondary solid tumors are rare but occur
with a two- to threefold risk compared to the normal popu-
lation. They occur after long latency periods. Young age is
an independent risk factor. There is a dose dependency, es-
pecially in secondary tumors of the thyroid, salivary glands,
bone, connective tissue, and brain [30–35]. One of our pts.
developed rhabdomyosarcoma 6 years after treatment. In
other publications rates of secondary solid tumors were
higher [36–38], especially in younger pts. [30].

There are critical issues and shortcomings concerning
this analysis. The retrospective nature of this work alone
is susceptible to fault. The pts. in this analysis were not
systematically screened, but rather we relied on the avail-
able FU data. On the other hand, one might argue that only
clinically apparent conditions impair a patient’s quality of
life and, hence, subclinical deviations could be neglected.
The strength and uniqueness of this work is obviously in
the large cohort size treated at one institution with the same
TBI regimen in combination with a very long FU period.
As all pts. were treated with CT and radiation, the adverse
events described here result from both modalities, without
a possible means of discrimination.

Conclusion

Tumoricidal effects and immune suppression of TBI facil-
itating donor cell engraftment are well established. Hence,
TBI remains a vital part of conditioning regimens in pts.
with risk factors or recurrences prior to SCT and its’ omis-
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sion can have detrimental outcome effects. Severe long-
term effects seem rare when looking at large cohorts with
long FU. But individually, they can pose life-altering events,
especially in very young pts. Hence, further optimization of
techniques and long-term FU programs for the detection of
rare events are warranted. We established helical tomother-
apy-based intensity-modulated conformal TBI in children
and young adults. With this technique we are able to reduce
the dose to critical organs such as the eyes [39], the thyroid,
the liver, and the lungs [40]. Losert et al. have proposed
a rotatable tabletop system to provide a similar treatment
on a regular linac [41]. Total marrow irradiation and total
marrow and lymphoid irradiation are targeted forms of ra-
diotherapy that have the potential to decrease toxicity [42].
In the murine model, ultra-high-dose-rate FLASH-TBI has
been shown to be beneficial with regard to hematopoiesis
preservation in leukemia treatment [43].
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