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Abstract

Objective Training a convolutional neural network (CNN) to detect the most common causes of shoulder pain on plain radio-
graphs and to assess its potential value in serving as an assistive device to physicians.

Materials and methods We used a CNN of the ResNet-50 architecture which was trained on 2700 shoulder radiographs from
clinical practice of multiple institutions. All radiographs were reviewed and labeled for six findings: proximal humeral fractures,
joint dislocation, periarticular calcification, osteoarthritis, osteosynthesis, and joint endoprosthesis. The trained model was then
evaluated on a separate test dataset, which was previously annotated by three independent expert radiologists. Both the training
and the test datasets included radiographs of highly variable image quality to reflect the clinical situation and to foster robustness
of the CNN. Performance of the model was evaluated using receiver operating characteristic (ROC) curves, the thereof derived
AUC as well as sensitivity and specificity.

Results The developed CNN demonstrated a high accuracy with an area under the curve (AUC) of 0.871 for detecting fractures,
0.896 for joint dislocation, 0.945 for osteoarthritis, and 0.800 for periarticular calcifications. It also detected osteosynthesis and
endoprosthesis with near perfect accuracy (AUC 0.998 and 1.0, respectively). Sensitivity and specificity were 0.75 and 0.86 for
fractures, 0.95 and 0.65 for joint dislocation, 0.90 and 0.86 for osteoarthrosis, and 0.60 and 0.89 for calcification.

Conclusion CNNs have the potential to serve as an assistive device by providing clinicians a means to prioritize worklists or
providing additional safety in situations of increased workload.

Keywords Convolutional neural network - Deep learning - Orthopedics - Shoulder

Introduction the proximal humerus and joint dislocation are the most fre-
quent traumatic causes of shoulder pain [3, 4], calcific tendi-

Functional limitations of the shoulder due to pain are one of  nitis, characterized by calcium depots in the rotator cuffs, is

the most common reasons patients seek medical attention and ~ among the most common atraumatic causes [5, 6].

present to the emergency department [1, 2]. While fractures of In addition to clinical examination, conventional radio-

graphs of the shoulder are often obtained to identify the

underlying causes of shoulder pain, especially in an emer-
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Convolutional neural networks (CNNs) have achieved im-
pressive performances for computer vision tasks on both non-
medical and medical image data, even surpassing human ex-
perts [9—11]. The advantages of CNNs are that, once trained,
they allow almost instantaneous image interpretation without
being susceptible to fatigue or exhaustion. As such, they have
great potential in a wide range of applications in the fields of
musculoskeletal radiology [12].

The aim of the current study was therefore to train a CNN
to detect the most common causes of shoulder pain in plain
radiographs, taken in clinical routine, which we defined as
fracture, dislocation, calcification, and osteoarthritis
(Table 1). Since the presence of osteosynthesis material or
an endoprosthesis could affect the accuracy of a CNN, as they
are cooccurring, e.g., with fractures, we also aimed for the
model to reliably identify them.

Methods
Data preparation

A total of 3682 plain radiographs were extracted from multi-
ple institutions serving PACS (Picture Achieving and
Communication System), then transferred to a separate server
and converted from DICOM format (Digital Imaging and
Communications in Medicine) to Tagged Image File Format
(TIFF). Images not containing the shoulder were manually
excluded (n =38); otherwise, no further preselection of the
images was done. The resulting dataset included 3644 radio-
graphs acquired from different views such as anterior-
posterior view, Y-view, or outlet view but also non-
standardized images taken during surgical procedures or in
the emergency room.

Distribution of findings

A total of 3644 radiographs from 2442 patients were included
in this analysis. The distribution of findings in the whole
dataset was strongly skewed. The most common finding was
fracture in 27.1% of cases (n = 989), followed by osteoarthritis
(13.1% of cases, n = 479), osteosynthesis (13.1% of cases, n =

477), endoprosthesis (12.7% of cases, n =463), calcification
(7.7% of cases, n=279), and dislocation (4.0% of cases, n=

147). 26.8% of all radiographs (n = 978) showed no patholog-
ical finding. An overview of label distribution and the data
selection process is provided in Fig. 1. The distribution of
findings is summarized in Table 2.

Data labeling and splitting

From this extracted collection of images, three datasets were
generated for training, validation, and testing of the model.

First, all images were labeled by a radiologist. This allowed
us to group the images by label and randomly draw from
different groups of images when curating the test dataset.
We chose this method to easily correct for rare labels in the
test dataset, as very low prevalence may negatively affect the
calculation of accuracy. The test dataset was curated and
consisted of n =269 radiographs, and we took care to include
only one radiograph per patient. All 269 images were again
labeled by a single radiologist who was blinded to the previ-
ous labels. In cases where the first and second radiologists
disagreed, a third radiologist served as a reviewer.

Then, the remaining 3375 radiographs were used to create
the training and validation dataset. We used a random split of
80-20, resulting in a training dataset with n=2700 radio-
graphs and a validation dataset with n =675 images.
Figure 1 shows a flowchart of the data extraction process.

All annotations were performed using the open source pro-
gram labellmg (https://pypi.org/project/labellmg/).
Annotation included the following labels: fracture,
dislocation, calcification, osteoarthritis, osteosynthesis, and
total endoprosthesis. Multiple tags to one image were
allowed. Annotations were then exported into the XML
format (Extensible Markup Language) and converted to one-
hot encoded annotations in tabular format using the “R” pro-
gramming language and the “tidyverse” library [13].

Model training

We employed a convolutional neural network of the Resnet
architecture with 50 layers, pretrained on the ImageNet dataset
[14]. For implementation, the Python programming language

Table 1  Sensitivity, specificity, and accuracy (with bootstrapped 95% confidence intervals) as well as AUC for detection of the respective findings in
the shoulder radiograph after a given threshold was applied to the raw predictions obtained from the model

Type Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI) AUC
Osteoarthritis 0.90 (0.79-0.96) 0.86 (0.80-0.90) 0.87(0.82-0.90) 0.945
Calcification 0.60 (0.43-0.74) 0.89 (0.84-0.92) 0.84(0.79-0.88) 0.80
Dislocation 0.95 (0.76-1.00) 0.65 (0.59-0.71) 0.67 (0.61-0.73) 0.896
Fracture 0.75 (0.61-0.85) 0.86 (0.81-0.91) 0.84(0.79-0.88) 0.871
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Fig. 1 Flowchart of the data
selection process and the
composition of the final datasets
as well as an overview of the
frequencies of different findings

Total dataset
2442 patients (3644 radiographs)

:

:

Annotated by a single radiologist
2173 patients (3375 radiographs)
11.8 % (n = 398) Endoprosthesis
12.5 % (n = 421) Osteoarthritis
12.7 % (n = 430) Osteosynthesis

Annotated by two radiologists with
adjudicator (269 patients/radiographs)
24.2 % (n = 65) Endoprosthesis

21.6 % (n = 58) Osteoarthritis

17.5 % (n = 47) Osteosynthesis

7.0 % (n = 237) Calcification
3.7 % (n = 126) Dislocation
27.7 % (n = 934) Fracture

15.6 % (n = 42) Calcification
7.8 % (n = 21) Dislocation
20.4 % (n = 55) Fracture

r

Random split

—

Training data

radiographs)

1738 patients (2700

Validation data Test data
435 patients (675 269 patients (269
radiographs) radiographs)

(https://www.python.org, version 3.8) with the PyTorch
(https://pytorch.org) and FastAl (https://fast.ai) libraries was
used on a workstation running on Ubuntu 18.04 with two
Nvidia GeForce RTX 2080ti graphic cards (11 GB of RAM
each).

Prior to any training, the images were scaled down to a
width of 1024 pixel (px), maintaining aspect ratio. Pixel
values of the images were normalized, and the data were aug-
mented through random rotations, mirroring, and distortion of
the images. We used a progressive resizing approach, starting
at an image size of 64 X 64 px and a batch size of 256 images
for a total of ten epochs with discriminative learning rates
(meaning the learning rate was lower for the first layers of
the network than for the last layers). For the first five epochs,

only the classification head of the model was trained with the
remaining weights remaining unchanged, while for the last 5
epochs, all weights of the model were updated. After each
training session, image resolution was successively increased
to 128 x 128, 256 x 256, 512 x 512, and finally 768 x 768 px.
Used batch sizes were 256 for 64px, 128 for 128 px, 64 for
256px, 32 for 512 px, and 16 for 768 px.

For the last ten epochs of training at 768 px image size,
checkpoints were saved after each epoch. Finally, each check-
point was evaluated on the test dataset, and the predictions of
the ten checkpoints were pooled to calculate accuracy.

For the purpose of illustrating predictions from the model,
exemplary Gradient-based Class Activation Mappings (Grad-
CAM, [15]) were calculated. Example code for model training

Table 2 Summary of the

distribution of findings in Training dataset Validation dataset Test dataset Whole data

training, validation, and test

dataset as well as in the whole No finding 799 (29.6%) 172 (25.5%) 7 2.7%) 978 (26.8%)

datgset. The numbers betyveen the Fracture 771 (28.6%) 163 (24.1%) 55 (20.4%) 989 (27.1%)

radiographs and the captions are ;1 aion 109 (4.4%) 17 (2.5%) 21 (7.8%) 147 (4%)

different because multiple ] ]

captions were allowed to a single Calcification 152 (5.6%) 85 (12.6%) 42 (15.6%) 279 (7.7%)

image Endoprosthesis 302 (11.1%) 96 (14.2%) 65 (24.2%) 463 (12.7%)
Osteosynthesis 354 (13.1%) 76 (11.3%) 47 (17.5%) 477 (13.1%)
Osteoarthritis 326 (12.1%) 95 (14.1%) 58 (21.6%) 479 (13.1%)
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is available at https://gist.github.com/kbressem/
7e6tbdec270cbacde07a379562a18a4b.

Statistical analysis

Predictions on the test dataset were exported as comma-
separated values (CSV) and then further analyzed using
the “R” statistical language and the “tidyverse,” “irr,” and
“ROCR? libraries [16—19]. Model performance was eval-
uated using receiver operating characteristic (ROC)
curves and calculating the area under the curve (AUC).
Interrater agreement was evaluated using Cohen’s kappa.
95% confidence intervals (95% CI) were calculated

through bootstrapping with 1000 iterations.

Results
Model accuracy

The model showed the highest accuracy for the detection of
osteoarthritis with an area under the receiver operating char-
acteristics curve (AUC) of 0.945 (95% CI1 0.917-0.972). For
dislocation, fracture, and calcification, accuracies were lower
with AUCs of 0.896 (95% CI 0.836-0.956), 0.871 (95% CI
0.817-0.926), and 0.80 (95% CI 0.717-0.883), respectively.
Receiver operating characteristics curves and AUCs are pre-
sented in Fig. 2. The presence of a shoulder endoprosthesis
and osteosynthesis material were detected with near perfect
accuracy (AUC of 1.00 (95% CI 0.99-1.00) and 0.998 (95%
CI 0.993-1.00)).
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Fig. 2 Receiver operating characteristics curves with the respective areas
under the curve (AUCs) for the detection of the six different findings. For
osteoarthritis, the model achieved the best performance with an AUC of
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Sensitivity, specificity, and accuracy were calculated
choosing a threshold for predictions so that the sum of sensi-
tivity and specificity was highest. Sensitivity/specificity/accu-
racy were 0.90/0.86/0.87 for osteoarthritis, 0.75/0.86/0.84 for
fractures, 0.95/0.65/0.67 for joint dislocation, and 0.60/0.89/
0.84 for periarticular calcification. Sensitivity, specificity, ac-
curacy, and AUC results are also compiled in Table 1.
Examples of Grad-CAMs are shown in Figs. 3 and 4.

Interrater reliability

Interrater reliability between the two radiologists on the test
dataset was moderate and 78 of 269 radiographs needed ad-
judication by a third reader. For fracture, a kappa value of 0.61
(95% CI 0.50-0.73) was achieved, which was the second
highest agreement. For calcification, dislocation, and

Fig. 3 Examples of correct predictions highlighted by Gradient-weighted
Class Activation Mappings (Grad-CAM:s) for radiographs with only one
finding. Images A, C, E, G, I, and L are the original images showing a
fracture (A), osteoarthritis (C), an endoprosthesis (E), dislocation (G),
osteosynthesis material (I), and calcification (L). Images B, D, F, H, K,
and M are the corresponding Grad-CAMs. Grad-CAMs highlight image

osteoarthritis, agreement was even lower with kappa values
of k=0.59 (95% CI 0.45-0.74) for calcification, k=0.53
(95% CI 0.32-0.74) for dislocation, and k=0.47 (95% CI
0.33-0.60) for osteoarthritis.

Discussion

The aim of the present study was to train a CNN to detect the
most common causes of acute or chronic shoulder pain in
plain radiographs. The proposed CNN shows good overall
accuracy, suggesting that such networks have the potential
to provide additional help and security for the physician on
duty.

Despite a rapid increase in published studies on medical
image classification, so far only a few investigators have

areas that were important to the model’s decision. They can be used to
verify that a pathology was correctly identified and that the decision was
not based on image noise (e.g., due to overfitting) or a different finding
(e.g., a model that should detect a fracture but instead detects only
osteosynthesis)

@ Springer
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im Liegen

Fig.4 Examples of correct predictions highlighted by Gradient-weighted
Class Activation Mappings (Grad-CAMs) for multilabel classifications.
A and D are the original images, showing a fracture at the humeral head
and the humeral shaft with osteosynthesis material (A) and a dislocated
shoulder endoprosthesis (D). In B, the model showed a strong activation

focused on shoulder radiographs and causes of shoulder pain.
To the best of our knowledge, there is only one comparable
study by Chung et al., in which the authors proposed a CNN
explicitly for the detection of proximal humeral fractures [20].
In their approach, Chung et al. focused on the classification of
different fracture types, achieving high accuracies, as mea-
sured by the AUC. However, they only included shoulder
radiographs acquired in strict anterior-posterior patient posi-
tion and thus did not cover the full range of variability encoun-
tered in clinical practice. We are convinced that the inclusion
of'images acquired under various non-standardized conditions
results in a more robust method that is less susceptible to
errors in everyday use (Fig. 5).

Recently, two separate studies have demonstrated the
efficiency of CNNs in detecting and even differentiating
shoulder implants by the manufacturer [21, 22]. However,
these studies relied on frontal view radiographs, whereas
our data included a broad variety of views to allow detec-
tion of surgical implants independent of image settings
used for acquisition. Therefore, our model may prove to

@ Springer

in image regions of the fracture and in C a strong activation for image
regions depicting osteosynthesis material, which lead to the models final
classification result. E shows activation of the model in the area where the
humeral head should be, leading to the recognition of the dislocation, and
F shows the activation for detection of the endoprosthesis

be more robust on clinical data, which include radio-
graphs of suboptimal image quality, as pain may preclude
optimal patient positioning.

Dislocated shoulder joints were reliably detected by the
model. From our point of view, this is essential for a real-life
approach since shoulder joint dislocation is the most common
type of dislocation in humans [4].

Although still detected with high accuracy, it was
periarticular calcifications that posed the greatest challenge
for our model. Intuitively, this is not surprising, especially
since small calcium deposits can be partially obscured by bone
spurs in osteoarthritis or are difficult to distinguish from small
fragments. To our knowledge, this is the first study that also
focuses on periarticular calcifications.

There are several studies in the literature that have
trained neural networks to recognize hip and knee joint
osteoarthritis [23—25]. None of these studies included the
shoulder joint. Although osteoarthritis of the shoulder
joint is less common in the general population, it is a
frequent and therefore relevant trauma sequel in the
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Fig. 5 Examples of incorrect predictions. The left images are falsely
labeled as calcification. The middle image shows an incorrectly labeled
osteoarthritis and the right image shows an incorrectly predicted fracture.
All of the images are atypical images, which may have been one of the
causes of the incorrect predictions. For example, in the right image, there

post-injury patient population [4, 26]. Therefore, detecting
this finding with high accuracy, as our model does, is
important for any future clinical implementation.

We used a multiclass classification model that could pre-
dict all classes for each image instead of using multiple binary
classifiers. This is similar to the approach used by von
Schacky et al. [27], who developed a multiclass classification
model for osteoarthritis detection. Other studies used network
architectures originally developed for object detection. Here,
classification is combined with highlighting of relevant areas
using bounding boxes. This approach was successfully ap-
plied by Krogue et al. [28], who used a DenseNet to identify
and subclassify hip fractures.

Overall, there are many practical reasons to continu-
ously improve neural networks, which have the potential
to become valuable supportive devices for medical staff
in the future. The most important help these networks
can provide could be error reduction, especially in situ-
ations of increased workload, and worklist optimization,
prioritizing critical findings or serving as a second read-
er. A different, and basically simplified, approach in or-
der to achieve this goal was used in the work by
Rajpurkar et al. [29]. In their study, the authors trained
a neural network for the simple binary classification task
of differentiating between normal and abnormal images
from the publicly available MURA dataset (a collection
of conventional images of the upper extremity).
Interestingly, they found that their model performed
worse than its human counterparts on shoulder images,
while it achieved comparable results on images of the
wrist, hand, and fingers. We conclude that plain radio-
graphs of the shoulder may pose a considerable chal-
lenge to CNNs, especially when they are expected to
detect more subtle findings such as periarticular

is some activation at the sharp edges of the image, which may have led the
algorithm to predict a fracture. In the middle image, larger portions of the
joint plane are not visible, which was a possible cause of the incorrectly
predicted osteoarthritis

calcification. Overall, however, our results are promising
and strongly encourage further trials ultimately leading to
clinical implementation.

Limitations

Our study has several limitations: No additional clinical infor-
mation about the population included in the study was retrieved,
posing a risk of bias through possible imbalance in patient char-
acteristics (e.g., age, sex, medical preconditions). Additionally,
only a limited number of labels were assessed and did not
include any form of grading pathological findings such as the
severity of osteoarthritis or the specific type of a fracture. In its
current state, this would likely hinder clinical implementation.
Furthermore, the ground truth was solely based on reading ra-
diographs (instead of using more robust resources such as
follow-up cross-sectional imaging) and labeling training and
validation data were performed by a single radiologist. Both
measures carry the risk of bias and mislabeling. Also, compu-
tational capacity put a limit on the applied image resolution,
potentially impairing model performance when faced with sub-
tle findings such as small calcifications or bone fragments.

Conclusion

The rapid evolution of CNNs in medical imaging is paving the
way for the development of assistive devices that may even-
tually help medical personnel by providing a second reading
instance. We present a robust CNN with the ability to detect
common causes of shoulder pain on plain radiographs, even
when faced with impaired image quality as often seen in clin-
ical practice, especially in emergency settings.
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