Reviews in Endocrine and Metabolic Disorders (2022) 23:773-805
https://doi.org/10.1007/5s11154-021-09701-w

=

Check for
updates

Computational approaches to predicting treatment response
to obesity using neuroimaging

Leonard Kozarzewski'? - Lukas Maurer'?3 . Anja Mahler*>® . Joachim Spranger'%3® . Martin Weygandt*¢

Accepted: 2 December 2021 / Published online: 23 December 2021
© The Author(s) 2021

Abstract

Obesity is a worldwide disease associated with multiple severe adverse consequences and comorbid conditions. While
an increased body weight is the defining feature in obesity, etiologies, clinical phenotypes and treatment responses vary
between patients. These variations can be observed within individual treatment options which comprise lifestyle interven-
tions, pharmacological treatment, and bariatric surgery. Bariatric surgery can be regarded as the most effective treatment
method. However, long-term weight regain is comparably frequent even for this treatment and its application is not without
risk. A prognostic tool that would help predict the effectivity of the individual treatment methods in the long term would be
essential in a personalized medicine approach. In line with this objective, an increasing number of studies have combined
neuroimaging and computational modeling to predict treatment outcome in obesity. In our review, we begin by outlining
the central nervous mechanisms measured with neuroimaging in these studies. The mechanisms are primarily related to
reward-processing and include “incentive salience” and psychobehavioral control. We then present the diverse neuroimaging
methods and computational prediction techniques applied. The studies included in this review provide consistent support for
the importance of incentive salience and psychobehavioral control for treatment outcome in obesity. Nevertheless, further
studies comprising larger sample sizes and rigorous validation processes are necessary to answer the question of whether or
not the approach is sufficiently accurate for clinical real-world application.
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Abbreviations DA Dopamine
ALFF Amplitude of low frequency fluctuations DD Delay discounting
BMI Body mass index dIPFC Dorsolateral prefrontal cortex
BS Bariatric surgery DTI Diffusion tensor imaging
CR Cue reactivity FC Functional connectivity
CrvR Craving regulation FCD Functional connectivity density
CSF Cerebrospinal fluid fMRI Functional magnetic resonance imaging
D2R Dopamine receptor subtype D2 GM Grey matter
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IC Independent component

LAGB Laparoscopic adjustable gastric banding
LI Lifestyle intervention

LMM Linear mixed model

LOO-CV Leave-one-out cross validation

MRI Magnetic resonance imaging

OLS Ordinary least squares

PE Physical exercise

PET Positron-Emission-Tomography

PI Pharmacological intervention

RS Resting-state

RYGB Roux-en-Y gastric bypass

SG Sleeve gastrectomy

sMRI Structural magnetic resonance imaging
SvC Support vector classification

VBM Voxel-based morphometry

vmPFC Ventromedial prefrontal cortex

WM White matter

1 Introduction

The global obesity epidemic is one of today’s major public
health concerns. According to the World Health Organiza-
tion, 650 million adults or 13% of the world’s adult popula-
tion were obese in 2016 and the worldwide prevalence in
adults nearly tripled between 1975 and 2016. In addition to
these concerning epidemiological characteristics, obesity is
associated with multiple adverse consequences, including
increased risk for cardiovascular disease, diabetes, cancer,
premature mortality as well as depression and anxiety [1-7].
Besides social [8], genetic [9], hormonal [10] and behavioral
[11-13] factors, central nervous factors promote the devel-
opment and maintenance of obesity. Neural mechanisms that
(1) underlie impaired food reward [14, 15], (ii) link food cues
to (anticipated) reward [16, 17] and (iii) underlie reduced
psychobehavioral control [16, 18, 19] are considered the
main central nervous contributors to obesity. In developed
countries these effects are increased by 24-h advertisement
and availability of low cost, calorie dense, and highly palat-
able food.

Compatible with this multi-factorial etiology, three
groups of treatments exist: lifestyle interventions (LIs),
bariatric surgery (BS) and pharmacological interventions
(PIs). LIs include caloric restriction, physical exercise, eat-
ing behavior modification and dietary counselling. Balanced
hypocaloric diets induce clinically meaningful weight loss
[20]. Optimal weight loss and maintenance are achieved
when caloric restriction and physical exercise are combined
[21, 22]. However, long-term weight regain is relatively
common [23].

BS is currently the most effective treatment with regard
to weight loss, attenuation of comorbidity (e.g., type 2
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diabetes) and mortality prevention [24, 25] and thus the
treatment of choice for severe obesity [26]. Sleeve gas-
trectomy (stomach volume reduction to 80 to 120 mL) is
the most frequently recommended BS technique. Never-
theless, there is considerable variability in weight loss.
Weight regain occurs in 20-30% of patients [27-34].
Long-term weight regain has been associated with a rever-
sal of surgery-induced hormonal variations (e.g., in ghre-
lin and GLP-1; [35]), post-bariatric hypoglycemia [36],
dietary non-adherence [37], and physical inactivity [38].
Problematic behavioral patterns are likely further aggra-
vated in psychiatric patients [39]. The safety of BS has
improved drastically in the last two decades, with periop-
erative mortality rates ranging from 0.03 to 0.2% [40-43].
However, complications can still occur and include early
complications such as bleeding, thromboembolism, bowel
obstruction and wound infection and as well as late com-
plications such as stricture, reflux disease, cholelithiasis,
hernia, nutritional and vitamin deficiencies, and dumping
syndrome [44, 45]. In the long term up to 22% of patients
require reoperation [46—49]. Due to the differences in effi-
ciency and risk between treatment options, a prognostic
tool which predicts treatment success and could thus guide
individual treatment choices in a personalized medicine
framework is highly desirable.

Only few drugs are used in clinical obesity management,
including Orlistat, a pancreatic lipase inhibitor, Phenter-
mine/topiramate, a sympathomimetic, appetite suppres-
sant, Lorcaserin, a 5-HT2C receptor activator, Naltrexone/
bupropion, a transmitter reuptake inhibitor and Liraglutide,
a glucagon-like peptide 1 (GLP-1) analogue. Especially
GLP1-analoge trials have produced promising results with
Liraglutide treatment usually resulting in a weight loss of
4 to 6 kg and Semaglutide treatment demonstrating even
greater weight loss [50, 51]. Side effects of liraglutide
include gastrointestinal symptoms, such as nausea, diarrhea,
constipation, and vomiting [52]. PI weight loss is partly or
completely reversed after treatment [53]. PIs are only recom-
mended as add-on to LIs [54]. See [54] for a more detailed
overview on LI, [55] for BS, and [52] for PI.

Currently, a variety of studies exist that use computa-
tional approaches and neuroimaging signals to predict treat-
ment outcome in obesity. In this review, we explain the key
central nervous mechanisms assessed in these studies, pre-
sent the different neuroimaging and computational predic-
tion techniques, and give a detailed overview of existing
studies. In the Discussion, we pay special attention to the
questions of (i) whether the results obtained are sufficient
to legitimate clinical real-world applications (which is pre-
sumably not yet the case), (ii) what could be done to meet
this requirement and (iii) how statistical analyses could be
improved to provide more detailed models for “treatment”
and “treatment outcome”.
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We included longitudinal LI, BS, and PI studies. We
required a period of at least one months between treatment
initiation and the latest follow-up. Compatible with the gen-
eral meaning of “prediction” as a forecast of future events
and of “prediction” as a statistical process modelling some
factor based on other factors, we included studies that prog-
nose future treatment outcome using neuroimaging biomark-
ers and studies that predict treatment-induced variations
in outcome markers based on variations in neuroimaging
parameters across treatment.

2 Central nervous mechanisms affecting
body weight

At least partially motivated by the discovery of overlap-
ping psychobehavioral symptoms in persons with obesity
and substance dependence such as loss of control over
consumption and craving [16, 56], neuroimaging research
on central nervous parameters impacting body weight has
focused on three major reward-related mechanisms: Reward
system hyposensitivity to food consumption, reward system
hyperresponsivity to stimuli predicting food consumption,
and dysfunctional psychobehavioral or goal-directed control
system respectively.

2.1 Reward system hyposensitivity to food
consumption

A reduced sensitivity of the brain reward system to food
consumption (including the actual pleasurable impact of
consumption) is regarded as a factor that triggers exces-
sive overeating as a method of compensation [14, 15, 57].
In accordance with addiction research, a reduced striatal
dopamine (DA) release after food consumption and reduced
availability of DA receptor subtype D2 (D2R) are discussed
as causes for said hyposensitivity.

Specifically, Small et al. found a food-intake induced
DA release after a 16 h fast that reflected the pleasantness
of food consumption in normal weight persons [58]. This
is compatible with findings showing that amphetamine-
induced DA release correlates with the experienced pleas-
antness of amphetamine consumption in healthy subjects
[59] and a reduced DA release in detoxified cocaine abus-
ers [60]. The pleasurable impact of consumption is fre-
quently referred to as “liking” [17]. Van de Giessen et al.
found reduced DA release in obese persons in the sense
that amphetamine induced a significant DA release in lean
but not obese persons [57]. Based on these findings, it was
concluded that blunted DA release after consumption is a
mechanism underlying compensatory overeating in obesity
(e.g., [57]). Moreover, in agreement with findings made for
addiction [61], obesity research found that the availability

of striatal D2R is significantly decreased in obese persons
[15, 62] and is negatively related to their BMI [15]. Con-
sistently, Johnson & Kenny found a progressive decrease
in D2R-availability accompanied by a progressive increase
in compulsion-like overeating in rats randomized into an
overeating condition compared to control animals [14] and
Geiger et al. found reduced extracellular dopamine in the
striatum in a comparable experimental setting [63]. Johnson
& Kenny concluded that the observed progressive dopamin-
ergic hyposensitivity reflects the transition from normal to
compulsive overconsumption [14].

However, some findings question the importance of (dopa-
minergic) reward system hyposensitivity as a risk factor for
weight gain. Hardman et al. found that suppressing DA sig-
nals leads to a reduced food intake in humans [64]. Tellez and
colleagues showed that down-regulation of DA release due
to a prolonged high-fat diet reduces caloric intake in rodents
[65]. Several studies on addiction research depleting/antago-
nizing DA functioning did not find an impact on drug or
food-liking. Only a reduction in motivational properties (i.e.,
of “drug-wanting”, see Sect. 2.2) was found [66, 67]. Impor-
tantly, Tellez and colleagues also showed that application of
oleoylethanolamine restores DA release [65]. Oleoylethan-
olamine is a lipid messenger whose synthesis is suppressed
due to the high-fat diet. Their study provides a mechanism
that explains reduced DA release as a consequence of a
prolonged high-fat diet. Consistent with this description of
reduced DA release as a consequence (and not a cause) of an
excessive calorie intake and given the experimental design
applied by Johnson & Kenny [14], one might assume that the
progressive decrease in D2R-availability observed in their
study reflects the end-point of rather than the transition to
compulsive overconsumption. See [68—70] for an overview.
Finally, the exact role of calorie-intake related DA receptor
alterations appears unclear due to findings of Dobbs et al.
showing that D2R downregulation can be associated with a
D1R hyper-reactivity, suggesting more heterogeneous DA
adaptations [71].

Therefore, a causative role of a DA-mediated reward sys-
tem hyposensitivity for weight gain remains debatable. Only
one of the two Positron-Emission-Tomography (PET) stud-
ies directly evaluating a link between DA functioning and
future weight loss [72, 73] found such a link [72]. Authors
elaborating on alternative neurotransmitters suggest endor-
phins or endocannabinoids as substrates of drug or food lik-
ing (see e.g., [17] for an overview). An important role of
endorphins would be consistent with findings of the PET
study not showing a link for DA [73] but showing negative
associations between body weight variations and p-opioid
receptor availability in amygdala, insula, ventral striatum,
and putamen. In conclusion, additional research on DA-
based reward hyposensitivity appears necessary given con-
tradictory findings.
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2.2 Reward system hyperresponsivity to stimuli
predicting food consumption

“Incentive salience” is a motivational mechanism consid-
ered to initiate compulsive food seeking and consumption
after food cue exposure because these cues were coupled
to reward (consumption) by Pavlovian conditioning in the
learning history of an individual. Consequently, food cues
are predictive of food intake and can acquire similar moti-
vational properties as food reward after repeated couplings
[74]. Incentive salience relies on a hypersensitivity of the
DA reward system to these cues [17] and corresponds to
a strong desire, a strong “I want to consume feeling” on a
psychological level. This desire has consistently been termed
as “wanting” [17] or “craving” [56].

Early work relating this cue-dependent motivational
mechanism to striatal DA was done by Schultz et al. who
showed in a pivotal animal study that the response of striatal
DA neurons varies across different stages of food exposure.
Animals respond to palatable food consumption during early
stages of exposure, but only to cues predicting consumption
after repeated exposure [75]. Hamid et al. linked striatal DA
to cue-sensitivity by showing that it reflects the willingness
to engage in effortful activities to obtain reward after cue
exposure in rats [76]. Furthermore, the role of striatal DA for
food wanting in humans was underlined by van de Giessen
et al. who found that DA release after amphetamine intake
in obese persons correlated with food craving on trait level
[57].

Although incentive salience is primarily a motivational
phenomenon, it also comprises attentional, affective, learning-
related, and behavioral facets. Consistently, functional
magnetic resonance imaging (fMRI) studies using cue reac-
tivity (CR) tasks did not only find striatal hyperresponsivity
to high-calorie food cues but also a hyperresponsivity in
anterior cingulate cortex and visual areas, amygdala, orbito-
frontal cortex, and hippocampus [77-80]. CR tasks represent
the key functional paradigms for studying incentive salience
which contrast neural signals emerging during perception
of food cues to those during control conditions (see 3.1.1).
In this framework, the anterior cingulate cortex / amygdala
/ visual areas are supposed to modulate the attentional [81]
/ emotional [82] / sensory salience of food cues (cf. [83]).
The orbitofrontal cortex might underlie stimulus — outcome
encoding in Pavlovian conditioning [84]. The hippocampus
plays an inhibitory role in appetitive Pavlovian condition-
ing [82]. Consistent with the concept of incentive salience,
a hyperresponsivity in these areas was found to predict
unfavorable treatment outcome in a variety of reviewed CR
studies.

However, some studies did not support a link between
incentive salience and treatment outcome. Specifically, nei-
ther the BS fMRI study of Bach et al. nor the PI fMRI study

@ Springer

of Ten Kulve et al. found significant associations between
brain activity evoked by food-cue presentation before the
treatment and treatment-induced weight loss [85, 86].

2.3 Dysfunctional goal-directed control system

A dysfunctional psychobehavioral or goal-directed control
system and reduced modulation of incentive salience by
this system is considered a further mechanism contributing
to overeating [19]. This can be understood when viewing
eating behavior from a decision-making perspective. The
Pavlovian incentive salience mechanism primarily mediated
by the striatal DA system can be seen as a decision-making
mechanism favoring choices that have previously been asso-
ciated with immediate and highly rewarding consequences.
In line with its subcortical location, this striatal mechanism
does not consider future consequences [19]. By contrast,
the goal-directed decision-making system is driving (food)
choices by comparing different options based on action plans
encoding their present and future consequences [19, 87].
Thus, this system could inhibit the impulse to eat a tasty but
unhealthy food (e.g., triggered by the striatal DA system)
because it predicts that the negative consequences of future
overweight outweigh (i.e., have a higher negative value) the
positive consequences of immediate reward (i.e., their posi-
tive value) [19].

Hare et al. identified value-based goal-directed decision-
making regions in the brain by having self-reported dieters
choose between two food items: a constant reference item
with average taste- and health related properties and another
that varied in these aspects [88]. Ventromedial prefrontal
cortex (vmPFC) activity predicted the food choice (i.e.,
its value) independent of the food’s tastiness or healthi-
ness. Activity in the dorsolateral prefrontal cortex (dIPFC)
reflected self-control (i.e., was higher when subjects chose
healthy). VmPFC and dIPFC activity correlated only dur-
ing successful self-control trials. The authors concluded that
the vmPFC computes a value-signal which determines food-
choice and relies on both factors, reward (taste) and control
(health) only when it reflects control-related dIPFC activity.
VmPFC activity alone only reflects reward (taste).

Another study employed a delay discounting (DD) para-
digm [87]. In DD tasks, participants have to decide repeat-
edly between rapidly available smaller rewards or larger
rewards available at a later time (see 3.1.2). A weaker pref-
erence for earlier smaller than for larger delayed rewards
is considered as a behavioral marker for goal-directed con-
trol. This study highlighted the importance of the interplay
between fronto-parietal control areas and striatal incentive
salience areas for goal-directed control. Stronger goal-
directed control depends on stronger lateral-prefrontal rela-
tive to striatal activity. Please see [89] for findings suggest-
ing an inhibitory impact of prefrontal on incentive salience
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regions including striatal ones (modulated by the specific
calorie-restriction type applied). A direct link between key
regions of goal-directed and striatal Pavlovian control is con-
sistent with the finding that DA depleted mice do not at all
initiate goal-directed behaviors including feeding [90]. In
addition, animal studies suggest that the insular cortex also
contributes to goal-directed decision-making as lesions to
this area impaired the ability of rats to devalue food after
satiety and to adjust their food choice accordingly [91].

The clinical importance of this factor has been demon-
strated on a behavioral level in DD studies showing reduced
goal-directed control in obese persons [92, 93]. These stud-
ies controlled for nuisance factors (e.g., age and income).
Studies not controlling for these variables failed to show
these effects (e.g., [94, 95]). Neuroimaging studies in obese
subjects revealed a link between reduced D2R availability
in the striatum and a reduced resting-state (RS) glucose
metabolism in regions involved in goal-directed decision-
making such as vmPFC and dIPFC [96]. In [97] we could
demonstrate the importance of behavioral and neural meas-
ures of goal-directed control and their interplay with striatal
Pavlovian regions for the dietary success of obese persons
in a 12-week LI. Higher behavioral goal-directed control
was coupled to better weight loss. Functional connectivity
(FC) between vmPFC and dIPFC was positively related to
behavioral control and weight loss and FC between vmPFC
and dorsal striatum was negatively linked with future weight
loss. We evaluated the role of the interplay between Pavlo-
vian and goal-directed neural systems in a LI study by test-
ing whether future dietary weight loss and long-term main-
tenance after treatment across 39 months could be predicted
based on activity assessed in a food CR paradigm, a food-
specific DD paradigm, and the interaction of these activities
[18]. This revealed a strong link between future long-term
weight loss and interactions between visual Pavlovian and
insular control areas.

3 Neuroimaging techniques and parameters
used for prediction

Task- and RS-fMRI as well as structural MRI (sMRI) are
the neuroimaging acquisition techniques predominantly
employed in the reviewed studies. fMRI provides indirect
markers of neural activity by measuring vascular responses
to heightened metabolic demands of active neurons [98]
while sMRI provides information on various brain tissue
characteristics. Neuroimaging parameters derived for pre-
diction from fMRI and sMRI can be subdivided in two
major groups: Parameters characterizing specific, local-
ized processing of individual brain regions (“functional
segregation”) and those reflecting the interplay or FC of
activity among different regions respectively (“functional

integration”). All methods described in this section are illus-
trated in Fig. 1.

3.1 Task-fMRI

Three task-based fMRI paradigms outlined below are cur-
rently used for treatment outcome prediction in obesity:
CR, DD, and food craving regulation (CrvR). [97, 99-101]
used them to derive measures of FC, the rest exclusively
computed markers of localized activity in individual brain
coordinates (i.e., voxels).

In these task-fMRI studies, markers of localized activ-
ity (referred to as “Voxel CR, DD, or CrvR activity” in
the following), are computed in a two-step process. First,
three-dimensional maps of neural activity reflecting the tar-
geted mechanism in individual voxels are determined for
each participant and time point. Second, these parameters
are entered into a predictive group-level analysis utilizing
methods described in Sect. 4.

Task-related FC markers are also computed in a two-step
procedure (“Seed-to-voxel CR FC” or “Seed-to-voxel DD
FC”) in the majority of studies evaluating task-related FC
[97, 99, 100]. First, a seed coordinate sensitive to the evalu-
ated factor is selected based on prior knowledge and the
association between its time series (potentially modulated
by the time course of a condition of interest [99, 100]; see
[102]) and all other voxels is computed. Second, the voxel-
wise correlation/regression coefficients are entered into a
group-level analysis.

3.1.1 Cuereactivity

The key experimental design to study incentive salience,
which is applied in the majority of all reviewed studies
(see Tables 1 - 3), is the food CR paradigm. Reflecting the
notion that exposure to food-cues (e.g., pictures, taste, odor,
or imagined food items) can trigger food-wanting/craving
and subsequently food-intake [74], CR tasks typically pre-
sent pictures of high-calorie food and control items such as
pictures of neutral objects or low-calorie foods. Participant-
specific voxel contrast maps reflecting activity related to
incentive salience are then computed by subtracting activ-
ity during the control condition from activity during pres-
entation of palatable foods to control for non-food related
activation.

3.1.2 Delay discounting

DD tasks are well established experimental designs for
the study of goal-directed control in obesity (e.g., [18, 97,
103-106]) in which participants have to decide multiple
times between immediately available smaller rewards and
larger delayed ones. Several methods exist for computing
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«Fig. 1 Neuroimaging techniques and parameters utilized in the
reviewed studies. (a)—(c) illustrate the basic layouts of the three fMRI
tasks, i.e., CR (a), DD (b), and food CrvR (c). The panels (d)-(i)
depict the different parameters derived from RS fMRI. In particu-
lar, 1d illustrates the ALFF method, (e¢) FCD mapping. (f) shows a
component loading map for a RS-network extracted by independ-
ent component analysis. Moreover, (g) illustrates the seed-to-voxel
FC approach. (h) shows a correlation (i.e., FC) matrix obtained for
temporal and deep GM regions for RS fMRI data of a single subject
and time point. FC depicted is thresholded at r=I0.51. (Only) temporal
and deep GM regions were selected to facilitate a better readability of
the panel. The network depicted in (i) corresponds to the areas / FC
depicted in the correlation matrix in (h). This network has a global
efficiency of 0.84. (j) illustrates a PET scan using the ['!C] raclopride
radio-tracer. Finally, (k)-(m) depict the structural MRI measures.
Specifically, (k) shows a brain voxel map of the GM (left) and WM
(right) volume of a participant determined with VBM. (1) illustrates
an approach to cortical thickness estimation that treats the distance
between two closest vertices on the opposing WM/GM surface and
the GM/pial surface as measure of cortical thickness for the corre-
sponding cortex segment. (m) illustrates the fractional anisotropy
determined with DTI for a single participant and time point on the
left. In order to illustrate the directional information contained in DTI
maps (and used for fiber tractography), the direction of the first ten-
sor for a given voxel is depicted with a red—green—blue coding on the
right. For further details, see text

participant-specific voxel contrast maps reflecting goal-
directed control in DD tasks such as contrasting more
immediate options to more delayed ones [87], or contrast-
ing difficult (similar attractiveness of immediate and delayed
choices) vs. easy trials (dissimilar attractiveness; e.g., [106]).
Another method is to first determine a behavioral measure
of goal-directed control that allows modelling the subject-
specific value of options (rewards) based on their reward
magnitude and delay and to then compute the voxel-wise
association between this model function and local activity
(e.g., [97, 107]).

3.1.3 Food craving regulation

Paradigms requiring their participants to actively regulate
affective states induced by generic emotional stimuli have
either been applied without changes in obesity research or
were slightly varied to study craving regulation induced by
food stimuli. For example, a study investigating emotion
regulation during presentation of generic affective stimuli
found that obese persons have more emotion regulation dif-
ficulties assessed via questionnaires than controls. In addi-
tion, higher vmPFC activity during regulation is associated
with less regulation difficulties [108]. Food CrvR paradigms
(used for treatment outcome prediction in [68]) evaluate the
effect of regulation strategies on food-cue elicited craving.
Trials typically start by presenting a strategy word (e.g.,
“permit” or “regulate” [69]), which is followed by a high-
or low-calorie food picture that should either be perceived
in a permissive fashion (i.e., allowing oneself to perceive

the potentially induced craving) or during application of
a regulation strategy. Finally, participants rate their desire
to consume the depicted food. Contrasting signals emerg-
ing during high-calorie food & permit (high-calorie food &
regulate) vs. low-calorie food & permit (high-calorie food
& permit) enables computing voxel activity maps for incen-
tive salience (goal-directed control). Thus, this paradigm
might be seen as a mixture of an incentive salience and goal-
directed control task.

3.2 Resting-state fMRI

RS fMRI measures spontaneous low-frequency brain activ-
ity under task-free conditions and has revealed fundamen-
tal aspects of how the brain is organized and works, i.e.,
its intrinsic organization in separate networks (i.e., the RS
networks [109]) or that RS network activity impacts task-
related activity of RS network [110].

3.2.1 Amplitude of low frequency fluctuations

The Amplitude of low frequency fluctuations (ALFF)
method is applied in three reviewed BS studies [111-113]
and characterizes spontaneous low-frequency brain activity
by estimating the magnitude of these fluctuations in a small
frequency band (e.g., from 0.01 to 0.08 Hertz [114]) for each
voxel coordinate. Initially, the average square root of the
power in this frequency band of a given voxel’s time series
divided (i.e., standardized) by the average of this parameter
across all voxels was used as voxel ALFF measure [115].
The improved fractional ALFF method uses the square root
averaged across the full power spectrum for a given voxel
as a standardization method [116]. It was suggested that fre-
quency sub-bands within 0.01 to 0.08 Hertz reflect spontane-
ous low-frequency activity of different neural tissue types
and that several diseases other than obesity induce altera-
tions in ALFF (see [117] for an overview).

3.2.2 Functional connectivity density mapping

Functional connectivity density (FCD) mapping (employed
in one reviewed study [118]), estimates the degree of FC
for each voxel, and primarily aims to reveal areas of dense
local FC (so-called “hubs”; [119]). Specifically, “local
FCD” reflects the number of voxels in a cluster surrounding
a center voxel having at least a predefined FC. “Global FCD”
corresponds to the number of voxels having a suprathresh-
old FC with the center voxel irrespective of neighborhood
minus its local FCD. The clinical relevance of FCD was e.g.
supported by findings of an altered local FCD in schizophre-
nia [120] and a relation of FCD and severity of subclinical
depressive symptoms in healthy elderly [121].
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3.2.3 Independent component analysis

Independent component analysis is a statistical method that
identifies RS networks by computing so-called independent
components (ICs). These are transformations of the multi-
variate voxel input data which are stochastically independent
(and not only mutually uncorrelated as in principal compo-
nent analysis) and can be understood as characteristic RS
voxel time series (e.g., [122]). One IC reflects the activity
time course of one RS network. After the ICs are identi-
fied, they can either be related to treatment outcome directly
as in [123] or relations between ICs/RS networks of inter-
est and voxel-wise RS fMRI time courses are determined
using participant-specific voxel-wise regression analysis.
The resulting correlation/regression coefficients are finally
handed over for a group analysis [124].

3.2.4 Seed-to-voxel functional connectivity

The seed-to-voxel FC for RS fMRI (“Seed-to-voxel RS FC”)
applied by [125-127] is technically identical to its task-
related counterpart described above.

3.2.5 Functional connectivity between anatomical atlas
regions

FC for prediction has also been computed based on time
series averaged across voxels located in anatomical atlas
regions [111, 128-132]. Using averaged regional time series
requires less priori knowledge as one can simply compute
the FC between all atlas regions. Another advantage might
be the method’s relative robustness to outlier voxels through
spatial averaging. However, the method does not make full
use of the spatial resolution fMRI is offering.

3.2.6 Functional connectivity network-analysis

This (group of) technique(s) aims at characterizing the struc-
ture of connected units interacting in complex social, eco-
nomic, genetic, or neural networks [133]. One major aim is
to assess the efficiency of network information flow [134].
Independent of the domain (e.g., social or biological) these
techniques have shown that networks with a “small-world”
structure (i.e., having a dense local and a sparse long-range
connectivity) are both globally and locally efficient with
regard to information flow because the average distance
between any pair of units (here: brain regions) in such a
network is small [135]. One of the reviewed studies [101]
utilized a network technique for treatment outcome predic-
tion. Specifically, these authors computed FC using the tech-
nique described in 3.2.5 for individual participants first and
then determined the global efficiency (see [134]) for each
participant-specific FC pattern for prediction.

3.3 Neurotransmission assessed
with Positron-Emission-Tomography

Positron-Emission-Tomography (PET) is a technique allow-
ing to measure biochemical and physiological activity across
biological tissues on a voxel-level by applying radio-tracers
(e.g., ['cy raclopride and [1'C] carfentanil) (employed in
two reviewed studies [72, 73]). This method can be used
in a task-related or RS fashion and has been applied exten-
sively in obesity research to measure transmission of DA
and other neurotransmitters (e.g., [15, 57-60]). Steele et al.
related Roux-en-Y gastric bypass (RYGB)-induced D2R
availability changes to weight loss in a 6-week period after
surgery and report a positive association [72]. Karlsson et al.
related presurgical p-opioid receptor and D2R availability to
post-BS weight [73]. While no associations were found for
D2R, especially amygdala p-opioid receptor availability was
negatively associated to future body weight.

3.4 Structural neuroimaging
3.4.1 Brain tissue volume

One of the most frequently evaluated tissue properties in
structural neuroimaging in general and in the reviewed struc-
tural studies specifically [136—143] is voxel-wise tissue vol-
ume. Except for Best et al. [138], Voxel-Based Morphometry
(VBM; [144]) was used in these studies for computation.
VBM is implemented in SPM12 (Wellcome Trust Centre
for Neuroimaging, Institute of Neurology, UCL, London UK
http://www.fil.ion.ucl.ac.uk/spm). In VBM, anatomical brain
images are spatially registered to an anatomical reference
space and segmented into the three tissue types grey matter
(GM), white matter (WM), and cerebrospinal fluid (CSF).
By additionally considering the amount of local deforma-
tion applied during spatial registration, the method produces
markers of the voxel-wise volume for each of the three tis-
sue types (referred to as “Voxel GM or WM volume” in
the following). Contrary to VBM, the method used by Best
et al. [138] computes volumes for larger regions included in
an anatomical atlas and is implemented in FreeSurfer [145,
146]. For a method comparison, see Guo et al. [147].

3.4.2 Cortical thickness

Another structural brain property evaluated frequently in
structural neuroimaging in general and in one reviewed
studies [148] is cortical thickness (implemented e.g., in
FreeSurfer [146]). In short, this parameter is computed by
determining the WM/GM transition surface and the GM/
pial transition surface in a first step and by determining the
distance between these two surfaces for small spatial units
(“vertices”) in a second.

@ Springer
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3.4.3 Brain diffusion

Diffusion MRI enables evaluating brain fiber characteristics
by assessing directions of water molecule diffusion and was
applied in two of the reviewed studies [99, 139]. Specifi-
cally, utilizing the fact that water can diffuse equally into
any direction in unstructured spaces such as CSF but only in
directions predetermined by biological structures and their
integrity in neural tissues, measurement and modelling of
water molecule diffusion allows evaluating axon bundle ori-
entation and integrity [149]. A method frequently used for
this purpose is Diffusion Tensor Imaging (DTI). In DTI,
water molecule diffusion is measured for a predefined num-
ber of diffusion orientations. Subsequently, participant- and
time point-specific voxel maps reflecting different diffusion
properties are determined by fitting an ellipsoid to the three-
dimensional diffusion information. The two most important
fiber characteristics derived thereof are Fractional Anisot-
ropy, which can be understood as the degree of diffusion
directedness, and Mean Diffusivity, a measure of overall
diffusivity. Finally, a method complementing DTI is fiber
tractography which aims at tracing WM tracts based on
the directional information provided by diffusion-weighted
MRI. One of the reviewed studies applied tractography [99].
Soares et al. provides an overview on DTI and tractography
including a list of available software packages [150], Maier-
Hein et al. highlights pitfalls in tractography [151].

4 Computational prediction approaches

This section describes the methods used for assessing treat-
ment outcome on the group level across the reviewed stud-
ies. Except for ordinary least squares (OLS) regression,
these methods are illustrated in Fig. 2.

4.1 Linear regression
4.1.1 Ordinary least square regression

The technique used for treatment outcome prediction on the
group level in the majority of reviewed studies is voxel-wise
OLS regression. This technique is implemented in a vari-
ety of software packages such as SPM, FMRIB Software
Library (FSL) [152], Analysis of Functional Neurolmages
(AFNI; http://afni.nimh.nih.gov/afni) [153], or BrainVoy-
ager (http://www.brainvoyager.com/) [154]. OLS regres-
sion identifies an optimal set of regression coefficients by
minimizing the sum of squared differences between true and
predicted values for the dependent variable (e.g., weight loss
obtained in a certain interval or brain activity in a certain
voxel). Given that multiple voxels are tested, methods cor-
recting for family-wise error (e.g., the Random Field Theory,

@ Springer

Fig. 2 illustrates computational approaches used for treatment out-»
come prediction on the group level. In particular, (a) illustrates the
LMM regression approach and is taken from [18]. (b) depicts an
application of support vector classification for a hypothetical classi-
fication task in which a classifier has to learn the differences between
voxel GM patterns belonging to very successful dieters and less suc-
cessful dieters in the training stage. In the next step, the classification
boundary estimated from the training data is used to predict the class
of an unknown test person based on their GM pattern. (b) is derived
from Weygandt et al. [172]. Finally, (c¢) shows a hypothetical struc-
tural equation model (in part derived from [169])

Bonferroni, or the maximum statistic method [155-157])
have to be applied to evaluate the significance of individual
voxels’ tests. A drawback in a longitudinal framework is the
method’s sensitivity to drop-out, as participants have to be
excluded completely once a single time point is missing (for
further points, see e.g. [158, 159]).

4.1.2 Linear mixed model regression

Linear mixed models (LMMs; implemented in Freesurfer
[160, 161] are a newer regression method [162] that has
been applied in four reviewed studies [18, 136, 138, 163].
LMM regression models the variation in the criterion (e.g.,
weight loss) as a linear combination of fixed and random
effects. The former correspond to parameters that can be
defined freely by the researcher (e.g. group membership),
the latter to parameters for which this is not possible because
they vary in an endogenous, participant-specific fashion
(e.g., participants’ signal means or trends). LMM regres-
sion has several properties that makes it a suitable candidate
for the analysis of longitudinal study designs. First, it can
model a signal sampled across an arbitrary number of time
points simultaneously. Second, it can handle designs which
are unbalanced due to participant drop out [162] and has
thus has higher statistical power than alternative methods
(e.g., repeated measures analysis of variance based on OLS
regression) because participants with partially missing data
need not to be excluded [161]. It has been shown that even
the inclusion of participants with only a single data point
can improve the accuracy of LMM regression [161]. Finally,
unlike repeated measures analysis of variance, LMM regres-
sion is able to cope flexibly with varying data covariation
across time.

4.2 Support vector classification

Support vector classification (SVC) is a supervised clas-
sification approach used in the majority of reviewed stud-
ies employing machine learning (i.e., [132, 141]). A third
study employed a combination of Twin networks and
k-nearest neighbor clustering [130]. Given the rare use
of this approach in neuroimaging, we would like to point


http://afni.nimh.nih.gov/afni
http://www.brainvoyager.com/

Reviews in Endocrine and Metabolic Disorders (2022) 23:773-805

789

a

Participant ID,
time point

ID1,T-3

ID1,T-3

ID2, T3

ID2,T-3

ID 30, T12

1D 30, T12

ID 30, T24

ID 30, T24

“Very successful”

“Less successful”

y =

¥;= b, + b,-Condition, + b,-Sex + b,-Age + b,-Group, +

1
(High-calorie
food picture)

0
(Neutral
control picture)

1
(High-calorie
food picture)

0
(Neutral
control picture)

1
(High-calorie
food picture)

o
(Neutral
control picture)

1
(High-calorie
food picture)

0
(Neutral
control picture)

Voxel activity

Training data

Striatal activity

1
(Male)

1
(Male)

0
(Female)

0
(Female)

0
(Female)

0
(Female)

0
(Female)

0
(Female)

X-

b

10950
(Days)

10950
(Days)

18250
(Days)

18250
(Days)

16425
(Days)

16425
(Days)

16425
(Days)

16425
(Days)

Program adherence

1
(Inter-
vention)

1
(Inter-
vention)

0
(Ad-libitum)

0
(Ad-libitum)

1
(Inter-
vention)

1
(Inter-
vention)

1
(Inter-
vention)

1
(Inter-
vention)

5
(Days)

-5
(Days)

13
(Days)

13
(Days)

368
(Days)

368
(Days)

728
(Days)

728
(Days)

0
(Days)

0
(Days)

0
(Days)

0
(Days)

284
(Days)

284
(Days)

644
(Days)

644
(Days)

+

| Steps | |Ergometer|

Physical
activity

dIPFC activity

GLP-1 level

Burger |

| Salad

Z-u

5
(Days)

(Days)

-13
(Days)

13
(Days)

368
(Days)

368
(Days)

728
(Days)

728
(Days)

Test data

Weight loss

by Time, + b, - (Time-84) + u, + u, Time, + u,-(Time-84) + e,

(Days)

(Days)

(Days)

(Days)

284
(Days)

284
(Days)

644
(Days)

644
(Days)

@ Springer



790

Reviews in Endocrine and Metabolic Disorders (2022) 23:773-805

the reader directly to this study for details. In supervised
classification, a machine learning algorithm tries to learn
characteristic properties from (e.g., brain activity) pat-
terns representative of different classes (e.g., successful
vs. non-successful dieters) in a training stage. In its basic
form, the SVC algorithm does so by identifying a linear
class boundary (“classification model”) that separates the
training patterns of two classes and which optimizes the
trade-off between the number of non-separable patterns
and classifier complexity [164]. In the test or model vali-
dation stage, the model is evaluated by computing a clas-
sification accuracy measure for unseen test data. Model
validation techniques range from leave-one-out cross
validation (LOO-CV) to out-of-sample validation. One
important aspect arising from this variety and other factors
such as a putative sensitivity of supervised classification to
sample size [165] is the use of resampling techniques for
inference. These consider the conditions under which the
empirical classification accuracy is obtained. Parametric
procedures do not possess this property (e.g., [166, 167]).

4.3 Structural equation modelling

Structural equation modelling [168] is a multivariate
analysis technique applied in one reviewed study [169]
evaluating whether/how well the relations among hypoth-
esized constructs fit to relations among (“latent” or unob-
servable) mathematical factors representing these con-
structs extracted from a set of (“manifest” or observable)
empirical data. In structural equation modelling, relations
between manifest variables and latent constructs (i.e.,
the “measurement model”) and among latent constructs
(“latent variable model”) have to be specified first. It is
possible to specify directed effects in the latent variables
model and thus to assume causal relations among variables
(see below). Although structural equation modelling is a
very flexible and powerful tool, several aspects have to be
taken into consideration. Structural equation modelling
cannot be used to test causal relations among constructs.
Instead, structural equation modelling tests whether asso-
ciations in a specific empirical data set fit to the causal
assumptions held by the researcher. Poor model fits will
strongly question the validity of these assumptions. How-
ever, good model fits will increase their plausibility, but
not prove them, and require replication on independent
data sets [170]. The sensitivity of structural equation mod-
elling to variations in sample size and to violations of dis-
tributional assumptions remains a limiting factor. Methods
to deal with these problems have e.g., been presented by
Kock & Hadaya [171] and Hox et al. [172]. See [172] for
an overview.

@ Springer

5 Study overview

Here we provide a tabular overview of the reviewed stud-
ies. Table 1 gives an overview on LI-based studies, Table 2
on BS-based studies and Table 3 on PI-based studies.

6 Discussion

In this study, we review current work on computational
approaches to predicting treatment response in obesity
using neuroimaging. We started by outlining key CNS
mechanisms thought to affect treatment outcome and then
described the neuroimaging techniques and parameters
as well as computational approaches used for prediction.
Lastly, we gave an overview on existing studies.

This overview provided a consistent picture on the role
of CNS mechanisms for treatment outcome in obesity. For
example, the importance of dopaminergic reward areas
was underlined by CR studies showing that cue-evoked
activity in these areas is negatively related to treatment
outcome [173—-177]. The relevance of goal-directed con-
trol regions comprising frontal and parietal areas as well
as insula was demonstrated in DD tasks directly designed
to study goal-directed control [18, 97, 104, 106] and in
CR tasks by showing that cue-related activity of these
areas has a positive effect on treatment outcome [86, 169,
178-180]. Task-derived FC and RS FC studies showed
that higher FC between fronto-parietal and insular goal-
directed control areas on one hand and incentive salience
areas on the other is accompanied by better treatment
outcomes [18, 97, 99, 100, 126]. Obesity-related regions
involved in incentive salience and goal-directed control
as identified by task fMRI strongly overlap with obesity-
related regions as identified via RS FC [181]. These results
were complemented by structural neuroimaging studies
[99, 137-140, 142, 143] showing that higher GM volume
of goal directed areas was associated with better treat-
ment outcome and higher GM volume of incentive sali-
ence regions with worse outcome.

Some studies did not support a link between incentive
salience or goal-directed control and treatment outcome.
The fMRI studies of Bach et al. and Ten Kulve et al. did
not show such a link [85, 86]. In addition, associations
between cortical thickness of the superior frontal gyrus
and weight loss reported by Liu et al. did not reach a mul-
tiple comparison corrected significance level [148]. Simi-
larly, a couple of behavioral studies (not properly control-
ling for well-known nuisance factors) failed to identify
reduced goal-directed control in obesity (e.g., [94, 95]).
Thus, due to these null results and the possibility of a
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gzl - g% e o publication bias [182], the large number of consistent
z 15 % g 558 % 5 findings mentioned have to be viewed in a critical light.
E CT> 2 % g g 1 g % ::j Nevertheless, given that the concepts of incentive salience
Slo9segsg2sg® and goal-directed control are derived from basic neurosci-
3 SI % JeFz a2 ence on reward and motivation (e.g., [75, 76]), it can be
g § %‘)E % “;E § E E E assumed that these two CNS mechanisms play an impor-
= § ES 2% 2 Ey tant role for treatment outcome in obesity.
_Eo E 287 E E = § % Do the presented findings also allow us to conclude
g > that the evaluated neuroimaging predictors yield suitable
é biomarkers for obesity treatment outcome in a real-world
< |wn precision medicine approach? Such a conclusion might be
e |2 . . .
£ |O premature. An important counter argument is that the major-
ity of studies applied correlational techniques evaluating all
available data in one step (instead of applying model vali-
dation techniques) to analyze many predictors for one cri-
% terion assessed in small to moderately sized samples. This
S approach is sensitive to over- (and under-) fitting [183].
5 % If the number of predictors is high (e.g., as in voxel-wise
2 3 analyses) and the number of participants small, a statistical
S model for a criterion can occasionally fit this criterion well
(poorly) because the predictor is not very reliable or varies
= substantially across different measurements. Thus, although
A= 20% such correlational ?nalyses yield valid statistical inference
_dg = ; = on the group lev§1 if the analyses ad.equately controlled fqr
3 ??o = é multiple comparisons and were not circular [184, 185], their
§|2€a 4 results might not be generalizable to unseen data and would
E|lo 5= 5 . . . . .
AR not yield suitable biomarkers. Consequently, suitable bio-
E é/ e 7 markers have to have a high retest-reliability.

How reliable are which neuroimaging parameters? What
can be done to improve data reliability? How can a high
generalizability of a prognostic model to unseen data be
ensured? Meta-analyses provide answers to the first question.
Studies assessing the reliability of task fMRI (typically via
the intraclass correlation (ICC; [186]) for which a poor reli-
ability was defined as ICC < 0.4, a fair as 0.4 <ICC <0.59, a
good one as 0.6 <ICC <0.75, and an excellent as [CC>0.75
[187]) reported an average ICC of 0.5 ([188]; N=15) or
0.397 ([189]; N=56). A meta-analysis assessing retest-
reliabilities for RS FC found an average ICC of 0.29 ([190];
N =25). Consistent with Han et al. [191], retest-reliabilities
computed for volume- and surface-based structural neuroim-
aging parameters by Elliott et al. showed primarily excellent
ICCs [189]. Thus, together with the fact that structural neu-
roimaging parameters were significantly related to treatment
outcome, these findings show that structural neuroimaging
parameters might provide the most suitable biomarkers.

However, it is unclear to which degree the reliabilities

#Participants (per group)
27 OB: RYGB

Associations: Bodyweight

Modelling: Outcome
OLS ordinary least square regression, OUT outcome marker, OW overweight, PET Positron-Emission-Tomography, PFC prefrontal cortex, Pred. meth Computational prediction method, RS

resting-state, RYGB Roux-en-Y gastric bypass, SG sleeve gastrectomy, sMRI structural magnetic resonance imaging, TWK twin networks and k-nearest neighbor clustering, VBM voxel based

morphometry, VIS visual interpretation, vmPFC ventromedial prefrontal cortex, WL weight loss, WM white matter

ACC anterior cingulate cortex, ALFF Amplitude of low frequency fluctuations, CrvR craving regulation, CT cortical thickness, CR cue reactivity, CV cross validation, dIPFC dorsolateral pre-
frontal cortex, dmPFC dorsomedial prefrontal cortex, FA fractional anisotropy, F'C functional connectivity, FCD functional connectivity density, fMRI — functional magnetic resonance imaging,
GM grey matter, IC independent components, LAGB laparoscopic adjustable gastric banding, LMM(r) (robust) linear mixed model regression, ncl nucleus, OB obese OFC orbitofrontal cortex,

S & reported for task fMRI and RS FC can be generalized. First,
é E clinical studies applying specific tasks due to disease-related
g g theoretical or empirical reasons were severely underrepresented
‘:’ g in these meta-analyses. Second, especially for Elliott et al., the
2 ,5» £ average retest interval was quite long (four months) given that
R I Bennett & Miller found that studies with three or more months
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Table 3 Overview on existing pharmacological intervention studies. For the interpretation of parameters reported in columns “Modelling: Out-

come”, “Predictor”, and “Significant prediction results”, please see Table 1

Study Modelling Outcome #Participants (per Experimental design Predictor Pred. meth Significant prediction
group) results
Task-fMRI
Ten Kulve et al. [86] Prognostic: 20 OW/OB: TO (before Voxel CR activity OLS CR_fMRI_
Bodyweight Liraglutide (vs. treatment), T0.3 T0.3_3—O0OUT_
Insulin; cross-over (after 10 days of TO_12: No
design) treatment), T3 association between
(after 12 weeks of WL and evaluated
treatment) neuroimaging
predictors was
found
Ten Kulve et al. Prognostic: 20 OW/OB: TO (before Voxel CR activity OLS CR_fMRI_
[199] Bodyweight Liraglutide (vs. treatment), T0.3 T0.3—OUT_

Insulin; cross-over
design)

(after 10 days of
treatment), T3
(after 12 weeks of
treatment)

TO_12: Positive
association between
WL and higher CR
activity in right
insula after
liraglutide vs. after
insulin

CR cue reactivity, fMRI functional magnetic resonance imaging, OB obese, OLS ordinary least square regression, OUT outcome marker, OW

overweight, Pred. meth computational prediction method, WL weight loss

had reduced retest-reliability [188, 189]. The latter finding is
consistent with the fact that retest-reliability is affected by a
biomarker’s noise as well as by noise-independent physiologi-
cal alterations occurring over time [192].

Irrespective of whether or not these meta-analyses pro-
vide extremely accurate estimates of retest-reliability for
fMRI-derived markers, there is space for improvement.
Consequently, one might ask what to do to improve reli-
ability? Circumstances enabling an accurate reliability
estimation are an important prerequisite. Given that retest-
reliability is negatively associated with the duration of the
retest-interval [192], an unbiased estimate requires a short
time interval. A cross-sectional estimation procedure with
zero interval length might be optimal in this regard which
computes reliability based on several data subsets of a sin-
gle scanning session [193]. Given that fMRI data reflect a
highly complex process and are sensitive to a broad range of
confounding factors, improvements should aim at adequately
reducing factors such as head motion, breathing, heart rate,
hydration, satiation, neuromodulators including caffeine or
nicotine (e.g., [183]). Specific improvements for FC com-
prise increasing the number of acquired fMRI scans [189,
190] and combining RS FC data acquired across extended
scan sessions with complementary task-fMRI data [189].
Additionally, FC computation based on a natural viewing
tasks yielded fair to excellent reliability in a study of Wang
et al. and was significantly higher than that derived from
RS [194].

@ Springer

Another step to optimize neuroimaging-based treatment
outcome prediction for clinical application would aim at
maximizing the generalizability of a prognostic model to
unseen data via application of model validation techniques.
In this approach, different models (e.g., derived from neural
networks, support vector classifiers, etc.) would be trained
on a set of training data. Selection of features yielding a
high prognostic accuracy could then be performed for each
model separately using independent evaluation data. The
prognostic performance is then tested once for each model
based on independent test data and the best is selected for
application (e.g., [183]).

Consequently, access to highly reliable biomarkers
derived from adequately powered studies using model
validation techniques is an important prerequisite for using
neuroimaging-derived biomarkers for applied treatment
outcome prediction in clinical practice — a prerequisite that
might not be met today. Besides these application-related
aspects, further improvements could entail a more elaborate
modelling of “treatment-outcome”. This would take multiple
neuroimaging, hormonal, and outcome markers (see e.g.,
[18, 163, 179]) into consideration. In this regard, the study
of Szabo-Reed and colleagues might be pioneering as com-
plex associations between brain activity, caloric restrictions,
program attendance, physical activity and weight loss were
modeled within a single structural equation model in this
work [169]. This approach does not only promise to reveal
a more fine-grained picture of contributing factors but also
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to facilitate a comparison of prediction accuracy obtained
by different biomarker compilations.

In conclusion, the reviewed studies provide consistent
support for the importance of incentive salience and goal-
directed control as central nervous mechanisms mediating
treatment outcome in obesity. Despite these findings, larger
studies using statistical methods optimized with regard to
real-world outcome prediction are needed to determine
whether the approach is sufficiently accurate for application
in a personalized medicine framework.
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