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Kurzzusammenfassung
Die Moglichkeit der medizinischen Intervention im zelluldaren Stoffwechsel ist von groRem
Interesse, da sich Krebszellen diesbezliglich von normalen Zellen unterscheiden. Zudem gibt es
innerhalb eines Tumors und zwischen Tumoren eine hohere genetische Heterogenitat als
daraus resultierende metabolische Phanotypen. Um die funktionalen Zusammenhange
vollstandig zu verstehen, miissen jedoch alle Ebenen der zellularen Regulation untersucht
werden, zu denen die Untersuchung der metabolischen Fllisse (Fluxomics) eine ganzheitliche,
dynamische Sichtweise beitragt. Fluxomics eréffnet neue Maoglichkeiten, Krankheiten zu
verstehen und neue Biomarker und Therapieziele aufzuzeigen. Massenspektrometrie und
stabile Isotopenmarkierungsexperimente sind weit verbreitete Methoden, um die Flisse kleiner
Molekiile durch das metabolische Netzwerk zu verfolgen.
Hier prasentiere ich drei Software-Tools/Berechnungslésungen fiir einige der groRten Engpasse
in diesen umfassenden und datenintensiven Techniken. Das Tool CorrectOverloadedPeaks tragt
dazu bei, die Gesamtzahl der erkannten Metaboliten pro Versuchslauf zu erhéhen, indem
Uberladene Signale korrigiert und der dynamische Mess-Bereich erweitert wird. Metaboliten
kénnen durch Vergleich der experimentellen Daten mit Referenzspektren in Spezialbibliotheken
identifiziert werden. Wenn Vergleichbarkeit und Abdeckung aufgrund technischer und
biologischer Varianz gering sind, bleiben die Verbindungen "unbekannt", d. h. nicht identifiziert.
Das Tool InterpretMSSpectrum ist in der Lage den mit verschiedenen hochauflésenden
Technologien gewonnenen komplexen Massenspektren Summenformeln zuzuordnen, die auf
maRgeschneiderten Regelsatzen zu chemischer Plausibilitat, haufigen Addukten und neutralen
Verlusten bei sanften lonisierungstechniken beruhen. Mit HiResTEC steht eine empfindliche
und robuste Anreicherungsberechnung fiir das Fluxomic-Datenhandling zur Verfligung, die wie
die anderen Tools problemlos in vorhandene Datenverarbeitungs-Pipelines integriert werden
kann. Es erkennt bereits Tracer-Anreicherungen von 1 % und entfernt 95 % der nicht-
informativen und falsch positiven Peaks, indem ein experimentiibergreifender
Dekonvolutionsalgorithmus und weitere Bewertungsheuristiken genutzt werden. Es wurde
umfassend mit Daten aus Krebszellkulturproben getestet und systematisch anhand
vorhandener Tools und Datensatze bewertet. Es tUbertrifft die bestehenden Lésungen und
bietet eine plattformiibergreifende Kompatibilitat fiir verschiedene hochauflésende MS-

Technologien.



Alle drei Softwarepakete wurden in der Open-Source-Sprache R entwickelt und sind online frei

verflgbar.

Abstract

Targeting the metabolism is of high interest as cancer cells differ in this regard from their
normal counterparts. Also, there is a higher genetic heterogeneity within a tumor and in
between tumors than in resulting metabolic phenotypes. However, to fully understand the
functional links, it is necessary to examine all layers of cellular regulation, to which the
investigation of the metabolic fluxes (fluxomics) contributes a holistic, dynamic view. Fluxomics
open up new chances in understanding diseases and thus revealing new biomarkers and
therapeutic targets. Mass spectrometry and stable isotope labeling experiments are widely
used methods to track the fluxes of small molecules through the metabolic network. Here |
present a set of three novel computational solutions to major bottlenecks in those
comprehensive and data-intensive techniques. It is shown that the tool
CorrectOverloadedPeaks helps to increase the total number of detected metabolites per
experimental run by correcting overloaded signals and extending the dynamic measuring range.
Metabolites can be identified by comparison of the experimental data to reference spectra in
specialized libraries. When comparability and coverage are low due to technical and biological
variance the compounds remain “unknown” i.e. unidentified. The tool InterpretMSSpectrum is
able to assign sum formulas to complex mass spectra, acquired with different high-resolution
technologies, based on tailored rule sets of chemical plausibility in metabolites and common
adducts and neutral losses in soft ionization techniques. With HiResTEC a sensitive and robust
tracer enrichment calculation for fluxomics data handling is at hand, which, like the other tools,
can be easily integrated into existing data handling pipelines. It detects tracer enrichment
already from 1 % and removes 95 % of uninformative and false positive peaks by exploiting an
experiment-wide deconvolution algorithm and further evaluation heuristics. It was rigorously
tested with data from cancer cell culture samples and systematically evaluated against existing
tools and data sets. It outperforms the existing solutions and provides cross-platform
compatibility for different high-resolution mass spectrometry technologies. All three software

packages are developed in the open source language R and are freely available online.



Introduction

Metabolic rewiring is one of the emerging hallmarks of cancer (Hanahan and Weinberg 2011).
Cancer cells, compared to normal healthy cells, have alternate routes to meet their energy
demands which is known since Warburg described the effect more than 90 years ago (Otto
Warburg, Karl Posener, and Erwin Negelein 1924) and renders metabolism an attractive
therapeutic target. This is of high relevance since genetic alterations and acquired mutations in
cancer cells are highly diverse and often unique to each tumor while resulting in a limited
number of metabolic phenotypes (Martinez-Outschoorn et al. 2017). Still, most current cancer
therapeutics targeting the metabolism do so on gene or protein level. But the notion that, for
example, elevated mRNA or protein levels directly imply an increased function of a pathway or
the influence on a cellular process is too narrowly considered and neglects the role of
regulatory mechanisms and the microenvironment (Moreno-Sanchez et al. 2016). In fact, it
could be shown that for a number of transcripts there is no direct correlation to the functioning
enzyme or activity in the cell (Moreno-Sanchez et al. 2016; Winter and Kromer 2013), also, the
protein content does not necessarily reveal to what extent the protein/enzyme is active and
affecting the pathway under investigation. Furthermore, some metabolites are able to induce
epigenetic changes and thereby influencing gene expression (Nowicki and Gottlieb 2015;
Wishart 2016). Thus, to fully understand the cellular functional outcome, it is necessary to take
all layers of regulation into account. Different from the other ‘omics’-techniques metabolomics
and fluxomics achieve this and open up a more holistic view on the cellular phenotype and
diseases (Sauer 2006; Weindl, Cordes, et al. 2016). With '3C-based flux analysis, it is possible to
quantify this integrated output of interactions and together with classical biochemistry and -
analytical methods, those holistic studies can lead to a paradigm shift in how diseases are seen
and thus to new options in disease diagnosis and therapy, as well as in the discovery of new
targets and new drugs (Wishart 2016).

Metabolomic and fluxomic experiment generate big data sets which makes manual data
evaluation no longer possible, however technical, instrumentational, and experimental set ups
are diverse and existing data evaluation methods thus not necessarily cross comparable or
applicable. In this study, | present a comprehensive set of computational tools to address major

problems in metabolic and fluxomics experimental set-ups; namely detection limits and



dynamic range of measurements, de novo metabolite identification, and non-targeted, non-
redundant, sensitive, robust, cross-platform tracer incorporation detection.

Together these tools can be integrated into any existing data handling pipeline and streamline
the evaluation process and providing direct usability to flux modeling software. All are written
in the open source language R www.r-project.org (R Core Team 2017) and freely available on
The Comprehensive R Archive Network (CRAN, cran.r-project.org).

Alongside, to showcase the abilities of the presented computational tools that were developed
in the focus of this work, | will also present the analysis of 13C-Glucose labeling experiments of
the two breast cancer cell lines (MCF-7 and MDA-MB-231).

Theses cell lines are often used as models to characterize a less aggressive and transformed
(MCF-7) and a more invasive and higher metastatic phenotype (MDA-MB-231). We expected
that these characteristics would be detectable as differences in uptake of Glucose and Glucose
metabolism and could be measured with the methods at hand and thus provide an ideal model
to show the tracer incorporation over time in these cells.

MCF-7 is a well-established breast cancer cell line, derived from a pleural effusion of a
metastatic mammary carcinoma from a 69-year-old Caucasian, female cancer patient in 1970
(COMSA, CIMPEAN, and RAICA 2015; DSMZ n.d.)

It is characterized as a poorly aggressive and non-invasive cell line (Shirazi et al. 2011) with a
low metabolic potential (Gest et al. 2013). Despite some heterogeneity in this cell line and
clonal variants, the cells are overall considered Estrogen receptor (ER) and progesterone
receptor (PR) positive and express epidermal growth factor receptor (EGFR) and the human
epidermal growth factor receptor-2 (HER2) amplification, all of which are associated with a
favorable clinical outcome of breast cancer as they are responsive to hormone treatment.

In mice MCF-7 cells do not induce metastasis and show a low migratory and invasive
phenotype. Together with a low angiogenic potential this cell line is described as lacking
tumorigenicity (Aonuma et al. 1999)

MDA-MB-231 cells were derived from a metastatic site of a breast adenocarcinoma of a 51-
year-old Caucasian female in 1973 (DSMZ n.d.). It is a highly invasive, aggressive and poorly
differentiated cell line. As a triple negative breast cancer cell line, it lacks the expression of the
afore mentioned receptors ER, PR and HER2 amplification. (Chavez, Garimella, and Lipkowitz
2010; European Collection of Authenticated Cell Cultures 2017). Triple negative breast cancers

are associated with a worse prognostics and limited therapeutic options, late and early stages



are treated commonly with chemotherapy as a receptor targeted therapy is not possible. MDA-
MB-231 is often used for a late state cancer model. In mice it forms spontaneous metastatic
sides in lymph nodes (Welsh 2013).

This study shows the qualitative differences in 13C-Glucose metabolism between MCF-7 and
MDA-MB-231 by using the newly developed data evaluation pipeline and describes the

potential and importance to further advance the field of metablomics and fluxomics.

Metabolites are a very heterogenic group of compounds regarding physicochemical properties
and concentration range in biological samples (ranging from picomolar to millimolar as
annotated in the Human Metabolome Database (HMDB) (Wishart et al. 2013)). Mass
spectrometry (MS) coupled separation methods are ideal technologic platforms to cope with
this diversity. MS coupled to high-performance chromatographic separation systems (usually
Liquid Chromatography (LC) or Gas Chromatography (GC)) is one of the most sensitive and
selective tools available and is broadly applicable to many compound classes (Dunn 2008; Dunn
et al. 2013; Strehmel et al. 2014). Atmospheric pressure chemical ionization (APCI) has been
introduced more than 40 years ago (Horning et al. 1973, 1977) but only recently has found its
way into routine use in Metabolomics. Availability and technological progress made APCI-MS
one of the emerging analytical systems. Superior sensitivity, detection limits, dynamic ranges,
and speed (Carrasco-Pancorbo et al. 2009; Dunn et al. 2013; Dunn, Bailey, and Johnson 2005;
Wachsmuth et al. 2011, 2015) are the main improvements over other established mass
spectrometric set-ups like electron impact (El) and are of special interest in non-targeted
metabolomics assays.

Quantifying all the detected signals in a sample however remains challenging even with modern
highly sensitive MS instruments. While on the one hand, the increased sensitivity of modern MS
instruments enables the detection of low abundant molecules, and thereby the detection of
possible new (bio-) markers, on the other hand, it leads to saturation of the mass detector for
high abundant compounds. Classically, this can be resolved with dilution series of the sample
and/or several measurements. In praxis, however, sample material is often sparse and
analytical time costly, which renders an additional experiment inefficient or even impossible.

It is shown that a computational approach can extend the dynamic range of GC-APCI-
measurements on average by one order of magnitude. This enables the detection and analysis

of more metabolites in one experimental run.



In non-targeted metabolomics, especially, metabolite identification remains one of the major
bottlenecks. When experimentally obtained spectra cannot be annotated with the help of
libraries due to differences to or lack of reference, compounds remain unidentified or only
roughly classified according to their chemical properties (Tsugawa et al. 2011). APCI as soft
ionization technique opens new opportunities in de-novo annotation of “unknowns”. It offers
advantages for the analysis of labile compounds or compounds difficult to ionize, as, compared
to El, no intense fragmentation takes place. Most importantly, the information of the
protonated molecules ([M + H]*) is preserved and can be used for identification and sum
formula elucidation (Jaeger et al. 2016). In Jaeger et al. 2016 a software tool that automates
precursor and fragment detection with a GC-APCI tailored rule set is presented by relying on
common neutral losses or adducts it assigns ranked plausible sum formulas, compares to
metabolic databases, where possible, and generates informative graphical output.

Fluxes cannot be measured directly but need to be calculated from changes in metabolite
levels. Thus, it is necessary to quantify the conversion of metabolites in the network. Stable
isotope labeled substrates are commonly used as tracers for these analyses.

The 3C isotope is frequently used as a tracer since all biological compounds contain carbon in a
significant amount; further >N is commonly used to study the nitrogen metabolism. The tracer
incorporation is monitored through changes in the mass isotopomer distribution (MID), as the
heavier 13C Carbon isotope accumulates in the metabolite pool. The MID, also called mass
distribution vector (MDV), describes the relative intensity of all measured isotopologues per
metabolite [Figure 1]. Mass isotopomers or isotopologues are defined as compounds that only

differ in their isotopic composition
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Figure 1 Example plot of a base peak chromatogram and a MID of Glucose peak before and after 13C-labeling for 24 hours in
the human breast cancer cell line MICF-7. The naturally occurring isotopes form a flute-like distribution (M+0 to M+6), after 24
hours of labeling almost all un-labeled Glucose is metabolized and only the fully labeled molecules (M+6) remain.

All compounds containing the tracer need to be detected in the experimental data set, to allow
enrichment calculation in the following. Enrichments of the tracer in the compounds are
calculated by the amount of '3C divided by total C in the MID (Fisher, Haines, and Volk 1979).
The obtained enrichment data then can be mapped to a detailed mathematical model of the
metabolic pathways accounting for the stoichiometry of the reactions, mass isotope
distributions and carbon atom transitions (Sauer 2006; Wiechert 2001; Wiechert et al. 2001;
Zamboni 2011; Zamboni et al. 2009). In classic flux balance analysis, a so-called solutions space
for the metabolic fluxes (Buescher et al. 2015) is calculated. In *3C-fluxomics the models can be
further constrained and algorithms start with arbitrary assumed flux values and fit the
experimental data and the flux values to the least residual error (Winter and Kromer 2013).
Derivatization is necessary before analyzing compounds with gas chromatography that are
thermic unstable or not volatile. Here, polar groups are substituted by less polar groups to
render the compounds more volatile and less labile. Often methoximating and silylating

reagents are used, those introduce significant amounts of Silicon and Carbon atoms of non-



biological origin to the analyte compound. At a resolution of about R~ 50.000 which is typical
for current TOF instruments the fine structure of isotopologues containing different mixtures of
Si and C isotopes with a similar nominal mass cannot be resolved. Instead, a mass shift occurs
away from the expected mass of the isotopologue in question, which can render the detection
of the correct peaks difficult when not allowing for the right mass window. Figure 1 shows an
example, annotating those detected mass shifts as small numbers in the MID. The effects of
mass shift and drift will be discussed in more detail in (Hoffmann et al. 2018) and the
corresponding supplemental material. Software solutions for tracer enrichment detection and
calculation have to take these specific features in GC-MS into account. As the published tools at
time did not meet those requirements, especially for high-resolution GC-APCl-data, a solution
in the open-source scripting language R was developed. The tool HiResTEC (high-resolution
Tracer Enrichment Calculation) addresses major points in un-targeted GC-APCI fluxomic data
evaluation: sensitive tracer incorporation detection (< 1%), GC and LC compatibility, non-
redundant candidate list by spectral correlation and providing a graphical output for quick and

easy visual quality control.



Methods

Cell culture Methods and Sample Preparation

Cancer cell lines MDA-MB-231 was obtained from Charité - Universitatsmedizin Berlin Institute
of Pathology, Lab for Molecular Tumor Pathology, MCF-7 from DSMZ, and grew under standard
conditions: DMEM (GIBCO) supplemented with 10 % FBS (Sigma) and 1 %
Penicillin/Streptomycin (Corning) in a humidified incubator at 37 °C and 5 % CO..

For 13C-labeling experiments, 24 hours before harvest/quenching cells were seeded in 6-well
plates 4 0,25x10° cells per well and medium was changed to DMEM with 4,5 g/L U-*3C-Glucose
(Sigma) according to the planed labeling duration (5 min, 15 min, 24 h, for the breast cancer
examples). Prior to harvest cells were washed twice with 0,9 % NaCl and quenched and fixed
with -80 °C Methanol (Biosolve Chemicals). Cells were scraped off, re-suspended and
transferred to micro reaction vials, cell debris was pelleted by centrifugation, and aliquots of
the supernatant were transferred to conical glass vials and vacuum dried in a freeze-dryer
(Christ).

Lymphoma cell culture samples were received as cell pellets and extracted as described above.
GC-MS-Processing

Dried methanolic extracts were derivatized online using 10 pul Methoxyamine (20 mg/mL in
pyridine; Sigma), and 20 pl N-Methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA, Macherey-
Nagel) for 90 and 30 minutes, respectively, at 34 °C before injection of 1 pl with a split ratio of
10 % by an RTC PAL System. Data was recorded at a scan rate of 10 Hz using a Bruker Impact Il
mass spectrometer (resolution: ~35,000). Detailed acquisition parameters can be found in SI
Text Table S2 of (Hoffmann et al. 2018).

Data Processing

Raw data files from the MS measurements were exported to mzXML file format and further
processed as described in detail in the enclosed publications (Hoffmann et al. 2018).

In short, prior to peak picking, grouping and retention time alignment which was performed
using the R package xcms (Smith et al. 2006) package sample files were corrected for
overloaded peaks with CorrectOverloadedPeaks (Lisec et al. 2016).Parameter settings were as
follows for xcms for evaluation of GC-APCI example data set: method="centWave", ppm=25,

peakwidth=c(1,6), snthresh=1, prefilter=c(5,2000) and noise=1 for function xcmsSet and



minsamp=6, bw=0.5 and mzwid=0.25 for function group. And for CorrectOverloadedPeaks
method= "Isoratio".

The functionalities of the processing steps with in the HiResTEC package are described in detail
in the corresponding publication and will thus be only highlighted briefly in the following.

In EvaluatePairsFromXCMSset the from previous steps resulting xcmsSet object is scanned for
peaks that differ in multiples of the mass difference of 3C and ?C Carbon (n*1.003355 Da, for
Carbon labeling experiments) on the mass scale. EvaluateCandidatelListAgainstRaw
encompasses several functions, summarized in the following. RankCandidateList, which sorts
the list of matching (mass-charge) m/z-pairs descending by the sum of their intensity over time,
and thereby enable the evaluation of major peaks first.

EvaluateCandidate extracts base peak chromatograms (BPCs) experiment wide for the peak and
determines the enrichment and the enrichment change over the experimental time and using
an ANOVA model to test the statistical significance. Along with other quality checks
DeconvoluteSpectrum and EvaluateSpectrum detect spectral correlation over all samples and
within a sample, thereby enabling the detection of peak fragments that have already been
evaluated and thus, do not need further attention. The remaining candidates are summarized
with the calculated enrichment and statistical values in an Excel spreadsheet and for visual
monitoring the package provides a pdf-document, containing spectral information, BPCs, box
and scatter plots on the enrichment information. The output list can be used to identify
candidates and, if an unambiguous sum formula can be assigned or is available from a target
library, for the correction of the MID for natural occurring isotopes, which makes the data

directly usable for flux modelling attempts.

Results

In this study | present three software packages, freely available on CRAN repository, providing
computational solutions for data handling, statistical evaluation and interpretation for
metabolomics and fluxomics workflows. Together addressing major bottle necks in these kinds
of experiments and providing a coherent, robust and sensitive data evaluation pipeline,
especially suited for GC-APCI-MS based non-targeted fluxomics.

CorrectOverloadedPeaks uses two different approaches to estimate the peak intensity of signals

reaching the upper limit of detection: Gauss curve approximation (G) and isotopic ratio (IR).
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The two systems perform differently and have different advantages for different applications.
First, for signals approaching the detector saturation the software extracts all BPCs in narrow
retention time frames. Then the overloaded data points are removed and corrected by the
algorithm.

Gauss approximation fits a Gauss curve based on the front and back of the peak signal with the
least residual error. It could be shown that those data points maintain the geometric properties
of the curve and thereby allow mathematical fitting. IR uses the first isotope not reaching the
saturation and calculates the ratios of the isotopic traces in the front and tail of the peak and
corrects the missing apex by using those stable ratios.

The linear range (LR) was determined for the measurement of a standard mix of 62
metabolites. All LRs were compared and statistically evaluated, before and after computational
correction. Though IR results in a lower median LR gain of 0.6 orders of magnitude, where
Gauss gains 1.4 orders of magnitude; IR handles skewed peak shape, fronting and tailing more
stable than Gauss curve approximation, if enough data points in the front or back are available.
Furthermore, preserving the precise isotopic ratio is crucial for tracer incorporation calculation
in fluxomics experiments, thus for those data sets the IR methods has to be used. For two thirds
of metabolites in the test mixture more than 50 % of the potential LR gain could be reported,
independent of substance class. Plots of all analyzed and corrected metabolite peaks and data
to the specific linear ranges and gains can be found online in the supplemental material of
(Lisec et al. 2016).

The peak correction resulted in low residual errors (< 20%) in over 90 % of the analyzed peaks,
both in the dilution series of a metabolite mix and in an analysis of metabolites in a biological
matrix, here blood serum. Using CorrectOverloadedPeaks the total number of detected
metabolites can be time- and cost efficiently increased, without the need of additional (wet lab)
experiments.

The information of the molecular ion, frequently preserved in GC-APCI-MS, together with
specific in-source fragments and typical adducts or neural losses, can be used to annotate the
mass spectra and assign sum formulas to measured compounds.

According to the mass of the peak and the chemical elements occurring in biological
compounds, for each peak a set of possible chemical element combinations can be calculated.
Not all of those mathematically correct combinations are meaningful in a biological or chemical

sense. To reduce the list to more plausible suggestions, a rule set for typical elemental ratios
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and combinations was derived from the entries in the Golm Metabolome Database (GMD)
(Kopka et al. 2005). Further, a set of common losses specific for GC-APCI-MS was added to the
filter rules. Filtering the primary suggestions by the elemental composition reduced the list by
89 % on average. The most common neutral losses were CH4, TMS-OH and O-DMS, the
implementation of this information reduced the list further by additional 98 % on average.
Those rule sets can be modified according to the user’s requirements.

Working on a standard mixture of 59 metabolites, InterpretMSSpectrum ranks correct sum
formula on place one, for 84 % and on 2-3 in further 7 % of the cases. The full set of annotated
compound spectra can be found online in the supporting information of (Jaeger et al. 2016).
The comparison of different deconvolution tools, for data preprocessing, showed significant
performance differences in spectral annotation, when using InterpretMSSpectrum. Here, the
algorithm showed to be also a valuable quality check tool for data pre-processing.

The objective for developing HiResTEC was the fast, sensitive, robust, and nonredundant
detection of tracer enrichment in non-targeted fluxomics.

The package provides potent filter heuristics, described in the following, resulting in a reliable
enrichment detection down to 1 % *3C and removes over 95 % of false positive hits and
redundant information from the candidates list.

The data of 36 Lymphoma cell culture samples was exemplarily analyzed and is presented in the
publication.

Additionally, | conducted 3C -Glucose labeling experiments on two breast cancer cell lines,
MCF-7 and MDA-MB-231, to characterize their metabolic (flux) differences and to illustrate the
main steps of the data evaluation flow of the algorithms. A selection of this data of MCF-7 and
MDA-MB-231 cell culture samples in triplicates during three labeling time points (5 min, 15 min,
24 h) is shown in comparison below, analyzed step by step and discussed.

Though many labeling experiments were conducted also with the aforementioned cell lines
coverage and data quality to draw biological relevant conclusions was deemed insufficient thus
those will not appear in the presented work. These data points are not discussed in detail, but
contributed to the development, establishment and testing of the presented packages,
especially determination of data quality, data quality check filters and pattern, determination of
error rates and optimization of plotting layouts.

Regardless of the small size of the remaining data set, which does not allow for in depth

correlation and holistic fluxomic analysis, distinct patterns and trends of enrichment could be
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found between the two cell lines, which support the overall strength and importance of

metabolomic and fluxomic research in the medical field.

The fundamental data pre-processing is described in the Methods section. The generic data files
from the MS manufacturer (Bruker Daltonics) were converted to mzXML. In a table information
on the sample ID, cell line, labeling duration (TP), replicate, raw data file path etc. is given. With
this information a list of all raw data files is loaded into the working memory.

Working on those raw data files, first, a plot of all chromatograms is generated before the data
is subjected to any other processing steps. The output of the function
VisualChromatograminspection provides an overview on all files at once, and their quality and
possible problems and gross differences can be assessed. Figure 2 shows the overview for the

24 selected samples.
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Figure 2 Overview plot of BPCs of all samples in the set before overloading correction. Red plots are MCF-7 cell samples. Blue
plots are MDA-MB-231 cell samples. Y-axis intensity. X-axis: RT (260-1260). The red dashed line marks the detector saturation
(ds = 971775).

In this example it is apparent that sample number 6 has less peaks and less intensity than the
other files, and should be omitted from further evaluation, as it could add variance or
unreliable data points to the peak set under evaluation.

Next, the peaks in the data reaching the upper limit of detection are going to be corrected using
CorrectOverloadedPeaks. After this the BPCs of the samples can be checked again in an

overview plot, as in Figure 3.
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Figure 3 Overview plot of BPCs of all samples in the set after overloading correction. Red plots are MICF-7 cell samples. Blue plots
are MDA-MB-231 cell samples. Y-axis: intensity. X-axis: RT (260-1260). The red dashed line marks the detector saturation

(ds = 971775).

CorrectOverloadedPeaks provides a pdf file containing plots of all corrected peaks and saves a

raw data file with the corrected peak intensity values. Figure 4 shows three examples of the

result of the correction in three differently strong overloaded peaks.
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Figure 4 Plots of peaks that were corrected by the algorithm CorrectOverloadedPeaks in sample MDA-MB-231, TP=0,
replicate 3 The gray dots mark the original data, while the black lines represent the result of correction. Different extents of
overloading can be corrected, depending on that a heavier isotopologue has to be used which did not reached the detector
saturation. Which iosotopologue was used for the correction is given in the top left corner of the plot along with the used
method. In the top right corner, the corrected maximal intensity is given.

After this the data can be evaluated targeted, using mass and RT information of known
compounds, or non-targeted, without using a compound library. The targeted evaluation is
faster, as only specific peaks must be processed by the algorithm. Also, the identity and sum
formula are necessary information for the later MID correction and thus flux modelling

attempts. The non-targeted search, however, is explorative and might result in the detection of
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compounds, not present in target lists, that show significant patterns in tracer incorporation
and the metabolic network. Those could be possible new biomarkers or therapy intervention
points.

The following intermediate steps of the targeted search do not generate graphical output until
the end. The script extracts BPCs, plots them, determines the base formula from the
information in the target compound library, extracts MIDs, corrects for natural occurring
isotopes, calculates the tracer enrichment from those and last, generates a set of plots from
this data for each metabolite and saves it as a pdf file. In Figure 5 the scatter plots of the tracer
enrichment of each sample for some metabolite plots are shown. A tracer enrichment over

time can be observed in both cell lines, but to a different extent and velocity.
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Figure 5 Scatter plots of selected metabolites from the targeted search. Red for MICF-7 samples. Blue for MDA-MB-
231 samples, and symbols according to labeling duration. A Pyruvic acid (-CH4) (C3H2NQO3). B Lactic acid (2 TMS)
(C3H503). C Malic acid (3 TMS) (C4H505). D Citric acid (4 TMS) (C6H707)

The Peak shape and data quality in the QC Plots of Asparagine (4TMS) BP1 and Uracil (2TMS)
has led to the exclusion of these two compounds from further analyses.

The complete data and print outs exceed the limit of the printed study and can be found in the
electronic version.

The output of the evaluation script provides a list of relative enrichments of each target
compound. Additionally, the velocity (or kinetics) of the enrichment was calculated dividing the
relative enrichment by the labeling time. The complete list including calculations of the
following analyses can be found in the electronic version.

Figures Figure 6 to Figure 9 show the median enrichment over time and the median enrichment
velocities over time for both cell lines, respectively. While the speed of enrichment is rapidly
decreasing after 15min and diverges towards a steady state (metabolic steady state), the level
of enrichment reaches a saturation towards 24 h of labeling time, in both cell lines, reversely

proportional to the velocity of enrichment, as expected.



In the targeted enrichment evaluation metabolites from glycolysis, citric acid cycle, amino acid
metabolism, purine and pyrimidine metabolism and fatty acid metabolism are found enriched
with 3C carbon. Enriched compounds belong to the substance classes sugar alcohols, organic
acids, amino acids, phosphor esters, and nucleo bases, in short, frequently found metabolism
intermediates stemming from glucose break down through glycolysis and adjacent metabolic
pathways. The majority of enriched compounds is belonging to organic acids, sugar alcohols
and amino acids [Table 1].

Through methionine salvage pathway even Methionine could be found enriched (62.7 % in
MCF-7 and 45.0% in MDS-MB-231), though being an essential amino acid in mammals.

Many sugar derivates can also be found enriched, despite not being classical members of
Glycolysis or TCA cycle and similar. Molecular rearrangements in liquid environments and in the
following chemical substitution with TMS groups the molecular structure is fixed and thus

identified as such.
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Figure 6 Relative median 13C enrichment over labeling time in minutes of all metabolites in the targeted analysis of MCF-7
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Figure 7 Relative median 13C enrichment over labeling time in of all metabolites in the targeted analysis of MDA-MB-231
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Figure 8 13C enrichment kinetics in delta E/min over labeling time for all metabolites in the targeted analysis of MICF-7
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Figure 9 13C enrichment kinetics in delta E/min over labeling time for all metabolites in the targeted analysis of MDA-MB-231
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Figure 10 Difference in median 3C enrichment between MCF-7 and MDA-MB-231 over labeling time in min. Difference dE = median dE(MCF-7) — median dE(MDA-MB-231)
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For an easy evaluation of the qualitative differences in enrichment and enrichment velocity the

difference between the enrichment values and enrichment velocity values was calculated and

plotted in Figures Figure 10 and Figure 11. Comparison of those between the cell lines and time

points resulted in the following list of metabolites with major differences in AE (absolute

difference AE > 10%) Table 1.

Table 1 Summary of direct comparison of enriched compounds between MCF-7 and MDA-MB-231

Compounds with at least 10% higher
enrichment in MCF-7 after 24h labeling

Compounds with at least 10% higher enrichment

in MDA-MB-231 after 24h labeling

Glyceric acid (3TMS)

Citric acid (4TMS)

Methionine (2TMS)

Ribose (IMEOX) (4TMS) MP

Alanine (2TMS)

Ribose-5-phosphate (1 MEOX) (5TMS) MP

Fructose (1IMEOX) (5TMS) MP

Proline (2TMS)

Fumaric acid (2TMS)

Malic acid (3TMS)

Threitol (4TMS)

Aspartic acid (3TMS)

Pyroglutamic acid (2TMS)

Glutaric acid, 2-hydroxy- (3TMS)

Xylitol (5TMS)

Glutamine (4TMS)
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For comparing the velocity values of both cell lines, a cut-off of an absolute difference in

AE/min > 1% was chosen to determine the list of metabolites with most noticeable different

enrichment velocity. Results are summarized in Table 2.

Table 2 Comparison of enrichment velocities between MCF-7 and MDA-MB-231

Compounds with higher enrichment velocity

(AE/min) in MCF-7 after 5 min labeling

Compounds with higher enrichment velocity

(AE/min) in MDA-MB-231 after 5 min labeling

Pyruvic acid (-CH4)

Lactic acid (2TMS)

Proline (2TMS)

Methionine (2TMS)

Glyceric acid (3TMS)

Phosphoenolpyruvic acid (3TMS)

Ribose, 2-deoxy- (1IMEOX) (3TMS) MP

Dihydroxyacetone phosphate (1MEOX)
(3TMS)

Ribose (IMEOX) (4TMS) MP

Glyceric acid-3-phosphate (4TMS)

Adenine (2TMS)

Ribose-5-phosphate (1 MEOX) (5TMS) MP

Glucose-6-phosphate (1MEOX) (6TMS)

MCF-7 has in direct comparison fewer metabolites higher enriched than MDA-MB-231. MCF-7

exceeds the enrichment level of metabolites only in three cases (Glyceric acid, Methionine, and

Alanine) while MDA-MB-231 has 13 metabolites higher enriched than MCF-7 (Table 1).

In case of enrichment speed MDA-MB-231 shows faster velocities in more metabolites (8)

compared to MCF-7 (5). The metabolites where one cell line is faster in enrichment are not

necessarily the metabolites which this cell line enriches to a higher level.

In substance classes there is no distinct trends detectable which class would be enriched more

by one of the cell lines or in general. To come to a reliable conclusion the sample size is too

small in differentially enriched metabolites and differences in velocities.

Overall, it can be determined that MDA-MB-231 metabolizes faster and enriches metabolites

seemingly higher than MCF-7. The afore mentioned findings support the cytological description

of both cell lines and general characteristics of more transformed cells having higher sugar and

metabolite demands due to higher metabolic rates in the rapid cell cycle and proliferation

rates. MCF-7 is compared to MDA-MB-231 less transformed and showed the expected cell
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morphology and behavior in culture. Characteristics of slower metabolism of a less transformed
cell line could also be shown in the presented results. In contrast MDA-MB-231 exceeds the
levels of enrichment of MCF-7 in 14 of 36 individually evaluated metabolites and shows faster

enrichment velocities in 9 cases.

The non-targeted search follows the main steps of the targeted approach of data pre-
processing (export, overloading correction). As no target library is used peaks need to be
detected, aligned and grouped over all sample files in a separate step, using the package xcms
as described above. After this step, the functions of the package HiResTEC are used as
described in the Methods section to detect peak pairs with a tracer enrichment over time.
After peak picking, alignment and testing for peaks having the mass difference of multiples of
heavy Carbon atoms (n*1.003355 Da), 7462 peak pairs (mz1/mz2) could be found in the
Lymphoma example data set in (Hoffmann et al. 2018), named “preliminary candidate list”
(preCL). Of those only 347 candidates, named “evaluated candidate list” (evaCL), passed all
filter heuristics provided by the package. The files in supporting information found online for
(Hoffmann et al. 2018) contain the peak lists, resulting candidate lists and QC-plots for both,
the example data sat and the LC-ESI data set (see below).

Different from other tools, HiResTEC does not only rely on the xcms generated peak intensity
lists but performs all following calculations and statistical evaluation based on the original raw
data. The peak information provided by xcms is used to extract BPCs for the detected m/z-pairs
and all corresponding ion traces of the MID from the raw data files. This original spectral and
intensity information is the basis of all following calculations of enrichment (changes) and
statistical evaluation. Large differences were apparent when using the peak and intensity
information from raw data files rather than from the generated xcmsSets. From the initial 7462
peak pairs, 2208 were ranked significantly enriched but only 169 passed the QC filters working
on preprocessed data.

Eight such quality filters were implemented and fitted to the specific needs of either GC-APCI or
LC-ESI-MS data sets. A specific mass drift filter indicates tracer incorporation, even before
tracer enrichment is detectable as an intensity increase of the corresponding isotopologue.
Also, it functions to exclude false positives, where the mass drift resulting from tracer
accumulation, cannot be observed in the expected fashion. In GC-APCI data this effect was seen

in 40 % of the candidates and in 11 % of the candidates in LC-ESI data.
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ANOVA models substitute t-tests, which are frequently used in other tools, to evaluate tracer
accumulation over time additionally allowing for more factors, like genotypes or treatments,
and several experimental labeling time points, thereby increasing flexibility and statistical
power. Experiment wide deconvolution extracts mass spectral information for each compound
and allows for redundancy removal by detecting peaks and fragments from the same
compound in the preCL. Removal of those peaks shortens the list, frees the evaCL from
reporting the same compound multiple times, based on a different peak pair and thereby
results in less overall computing time. The spectral information is also used for other QC filters
that e.g., secure the testing of the base peak of the compound spectrum and general data
quality, like existence of the candidate peak pair in raw data or securing that M+0 is being
tested.

In the breast cancer sample data set 8765 peak pairs (preCL) were found and were subject to
the evaluation by the package HiResTEC. From those 431 were tested, the remaining pairs were
removed from evalCL due to the described spectral overlap/correlation used as redundancy
removal. 96 significantly enriched candidates passed all filters and remained in the evalCL; the

top 10 lines of the candidate list are shown in Table 3.

Table 3 Extract of the evaluated candidate table of accepted candidates of the non-targeted search. ID arbitrary number
accounting for peak with highest summed intensity and significant enrichment. RT: Retention time of the peak. mz: m/z of peak.
AE: delta enrichment over time (latest time point). P: time dependent p-value of ANOVA. Name: Name of the compound,
assigned after using InterpretMSSpectrum and PubChem search.

ID RT mz AE P Name

1 762.333 | 319.1574 | 86.79 2.41E-13 | C4 labeled Hexose
2 770.2585 | 319.1575 | 86.97 5.56E-14 | C4 labeled Hexose
3 634.6575 | 364.1788 | 6.11 1.1E-10 Glutamic acid

4 725.2805 | 465.1605 | 28.86 1.78E-21 | Citric acid; Isocitric acid
5 352.878 | 234.1341 | 9.03 1.79E-16 | Alanine

6 325.2505 | 191.0919 | 35.18 4.72E-12 | Lactic acid

7 588.3935 | 350.1632 | 5.98 1.74E-12 | Aspartic acid

8 806.113 | 329.2865 | 1.58 6.89E-05 | Hexadecanoic acid
9 591.2215 | 292.1394 | 5.11 1.89E-09 | Serine, O-acetyl-
10 590.5405 | 274.1289 | 1.89 3.22E-05 | Pyroglutamic acid
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As interpretation of spectra is computation time consuming it is not part of the evaluation
procedure but performed after final selection of candidates. This is possible using
InterpretMSSpectrum, the entries of the GMD and molecular formula search in PubChem for
ambiguous sum formula results; the outcome shown here for the first candidates. The
identified names of the compounds were added to Table 3. Example plots of the interpreted
spectra are shown in Figure 12 A-C. Further plots of the first 10 Candidates are provided in the

electronic version.
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Figure 12 Selected plots of the non-targeted search, Upper: scatter and box plots with details on the enrichment, statistics and
peak under evaluation. Lower: corresponding plots of interpreted spectra. x-axis Intensity; y-axis: m/z. peaks annotated with
fragments chemical formula and grey dashed linesgiving information of fragment losses explaining mass differences. A:
Candidate 3 (Glutamic acid). B: Candidate 4 (Citric acid). C: Candidate 5 (Lactic acid).

The evaCL still contains a fraction of false positive hits, which cannot easily be excluded by
automatic evaluation. In the Lymphoma test data set the overall FPR was 43 %, and FPR was
correlated to peak intensity. In the top 50 candidates no false positive could be found, while in

the Top 100 candidates FPR is 11 % and going up for the candidates on the lower end of the list.



Tools designed for LC-MS could not successfully process GC-MS data and resulted in high error
rates of diverse origins (Hoffmann et al. 2018). To check the cross-platform functionality of
HiResTEC a published high-resolution LC-ESI-MS data set was analyzed with two strategies
applied. First, the provided raw data files were analyzed with the given data preprocessing
parameters, second, the published hits “IncIDs” with their corresponding isotopologues were
evaluated with HiResTEC. The first approach resulted in a preCL of 20 099 peak pairs to be
tested. The reported 271 “IncIDs” resulted in 690 peak pairs to be evaluated. From those, 48
non-redundant candidates could be extracted. The evaluation of the raw data resulted in 53
additional, new candidates, previously not reported by geoRge (Capellades et al. 2016).

The QC plots can be used for fast and easy manual curation and for the tracing of the
algorithm’s evaluation performance. Thus, false positives rates (FPR) and false negative rates
(FNR) were obtained from manual examining QC plots and found FPR=12,5% in 48 mutual
candidates and FPR=39,5% in new 53 candidates, FNR was below 3% in both cases for the
rejected candidates. This shows, that HiResTEC significantly outperforms the previously
published fluxomics evaluation tool.

The differences of the two MS-platforms required adapting of the filter heuristics to the
individual requirements and features in this data sets. In consequence, different filter heuristics
showed to be of different relevance between the data sets. For example, in LC the intensity cut
off accounted for 58 % of the rejected candidates, where it has only a very minor relevance in
GC-APCI data (0.8 %). The mass drift occurred to a much lesser extent in LC than in GC, 11 %
and 40 %, respectively and indicated rather co-eluting compounds than changes due to Si-
isotopologues as no derivatization took place. The effect of each QC filter for both data sets and
the corresponding cut-offs and assigned error messages are summarized in Table S1 in

(Hoffmann et al. 2018).

Discussion
Metabolites occur in extremely variant concentration ranges in biological samples, which makes
it challenging to measure all metabolites in a sample at once. The presented computational
solution to correct overloaded signals and estimate their intensity, is a fast and inexpensive
option to gain more information in one run.
Signals reaching the detector saturation are flat-topped, i.e. lacking an apex. Those values are

detected, removed, and corrected by the algorithm. The validity of the approach could be
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shown by artificially cropping peaks and run the algorithms on them. A similar test has been
published by (Kalambet et al. 2011), however only for a LC-MS data set and with less relative
overloading (up to 5-times above detector saturation, CorrectOverloadedPeaks: up to 10-times
detector saturation). That study used only one analyte and fewer data points but supports
otherwise the main findings and statistical values of CorrectOverloadedPeaks.

Besides classical dilution of all samples, or using different GC inlet split ratios, the use of
fragments (Wang et al. 2016) or less abundant isotopologues (Trobbiani, Stockham, and Scott
2017) for quantification has been under investigation and provide alternatives to the presented
approach. While CorrectOverloadedPeaks can be integrated into existing data evaluation
pipelines, those methods are more time-consuming and labor intensive, if at all possible, for
example, due to limited sample material.

An overloaded signal can occur because of chromatographic overloading, ion suppression in the
ion source or due to saturation of the detector. While chromatographic overloading is a rare
event in GC-MS measurements; ion suppression is frequent in soft ionization techniques (ESI,
APCI), resulting from the limited ionizing capacity of the source. Modeling this process is
complex and not subject of the presented R package.

For correction of signals reaching the upper limit of detection due to detector saturation, a
computational solution was presented with the stable isotope ratio or Gauss curve
approximation in CorrectOverloadedPeaks.

Though it is less suited for experiments where the signals have to be precisely quantified, it
enables the detection of a larger total number of metabolites per experiment.

Metabolite identification remains a bottleneck in Metabolomics. Especially in non-targeted
assays unknown compounds remain largely unidentified. Soft ionization techniques like APCI
provided new chances to address this.

Comparison of measured data to reference libraries has been difficult for GC-APCI, as those
were only emerging and the coverage was comparatively low (Jaeger et al. 2016).

Spectral matching based annotation often remains inconclusive, even for other MS-based
metabolomics set-ups, like LC-ESI. This is often due to technical and biological factors (e.g.
instrumentation, biological matrix) causing variation in experimental mass spectra (Jaeger et al.
2017). Thus, manual inspection and interpretation remain a frequent, but non-trivial task and
the demand for automation is high.

An open source software package using the information of the preserved molecular ion, typical
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neutral losses and a rule-set based on chemical plausibility in metabolites, to assign sum
formulas and annotate mass spectra is presented. With a standard mixture of metabolites, it
could be shown that the algorithm ranks the correct sum formula on the first three positions in
93 % of the cases. Together with the graphical output this helps the user to evaluate the
identity of the compounds much faster.

Exemplary shown on available deconvolution tools (Clasquin, Melamud, and Rabinowitz 2012;
Kuhl et al. 2012; Zhang et al. 2014), InterpretMSSpectrum proved useful in examining the
performance of data pre-processing steps. Differences in peak picking, alignment, and
chromatographic deconvolution can lead to bias in large-scale and high-throughput assays.
While tools evaluating the peak quality on a single peak basis exist- “zigzag-index”(Zhang and
Zhao 2014), “IOP”(Libiseller et al. 2015) InterpretMSSpectrum evaluates the spectrum as a
whole, and besides annotation can be used also to asses assay quality during analytical method
development and optimization.

It is a solution specifically optimized for high-resolution GC-APCI-MS data, taking the conditions
of soft ionization and derivatizated analytes into account.

To provide compatibility with LC-ESI methods InterpretMSSpectrum was refined and functions
were added to determine the precursor in a LC mass spectrum. (Jaeger et al. 2017) This enabled
the same functionalities for LC-ESI but taking into account the more complex spectra, different
adducts, and neutral losses and the lack of derivatizing agents.

Metabolomics and fluxomics experiments generate significant amounts of data. Exclusive
manual examination is thus not feasible, yet the final quality assurance often needs the
attention of trained experts in manual labor. HiResTEC is a tool that aids the user by reducing
the data set to a manageable, assessable size and provides automated QC filters.

To automatize quality checks, first, frequently occurring quality problems and criteria had to be
defined. Many of those were found empirically by manual investigation of QC plots and
retrospective implementation as a QC filter in the software. Criteria for a good peak are a
smooth and Gaussian-like peak shape, a recognizable apex above the baseline, no co-eluting
peaks, or if so then good distinguishable (by mass shift, or RT difference), further, for fluxomics,
the stable and significant tracer incorporation over time (deltak and p-values). Peaks were
considered less relevant when the tracer enrichment did not surpass 30 % of the median
standard deviation of tracer enrichment within replicates or when spectra were sparse and

many other peaks from the spectrum were already tested and rejected.



Those criteria were, to a large extend, automatized in HiResTEC, thus providing a tool for fast,
easy, sensitive, non-redundant, unbiased tracer enrichment calculation in non-targeted
fluxomics experiments. The evaluation on the basis of raw data proved to be a very special and
valuable tool. As shown above, it leads to the detection of more candidates in total. Also, it
uncovers problems with peak picking algorithms (Myers et al. 2017); a higher candidate yield
could be expected from peak pairs of the xcmsSet previously rated with a significant tracer
enrichment, however, 92% of the candidates were rejected. This high rate could be in part
explained by “sensitive peak picking setting, necessary for low abundant isotopologue
intensities, [which] can result in peak artifacts in chromatographic noisy regions” (Hoffmann et
al. 2018). The top of the list contains peaks with the highest summed intensity secured by the
function RankCandidateList. Small or spurious peaks, often with lower effects, that are harder
to evaluate, are found at the end of the list, explaining the increasing FPR to the lower end. The
overall FPR of 43% seems high, however, the algorithm is able to reduce the complexity of the
data sets tremendously from a size not manually manageable - several thousands of peaks - to
a few hundreds of peaks. In un-targeted fluxomics, the aim is to find possibly all enriched
compounds. To demonstrate the performance of the algorithm, cut off values were set rather
permissive to report many significantly enriched signals, meeting quality standards, i.e. low
false negative rates, on the cost of higher false positive rates. The workload of manual curation
on the lower end of the list can be reduced if a fully comprehensive analysis down to the minor
signals is not needed, as the most abundant candidates are found on the top of the list with low
error rates. While a number of software tools to evaluate 3C-labeling experiments exist
(summarized in Table S3 (Hoffmann et al. 2018)) none was capable to handle comprehensive,
non-targeted, high-resolution GC data. Some of the tools were designed with other objectives
(iMS2-Flux (Poskar et al. 2012), MetExtract I/1l (Bueschl et al. 2012, 2017)), or were only
specialized for one technological platform (geoRge (Capellades et al. 2016), x13cms (Huang et
al. 2014)) or a lower mass resolution (MIA (Weindl, Wegner, and Hiller 2016) and NTFD (Hiller
et al. 2010)). The direct and intensive comparison to one of those tools showed that HiResTEC is
able to detect more tracer enriched candidates without reporting redundant information like
different fragments of the same compound or different combinations of isotopologues of the
same MID, and at the same time reporting less false positives due to raw data evaluation.

The development of HiResTEC lead to the implementation of a set of functions enabling

efficient, sensitive and non-redundant tracer detection and providing possibilities to directly
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use the output for flux modeling approaches, by spectral deconvolution, annotation, and MID
correction functions. The work of this project provides a coherent pipeline for metabolomic and
13C-labeled fluxomics data handling, addressing crucial quality control, and (statistical)
evaluation steps and methodical bottlenecks of the field.

Streamlined and effective data treatment in metabolomics and fluxomics enhances the
(potential) outcome of those experiments, leading to advances in all kinds of biological and
medical questions and fields like disease understanding and treatment.

Even though the interest in those fields has increased in the last decades, metabolomic and
fluxomic studies remain still heavily underrepresented. Compared to ‘genomics’ and
‘proteomics’ Web of Science (Clarivate Analytics 2018) recorded in the year 2017 250-times
fewer publications in the field of ‘fluxomics’ and still two-times fewer publications for
‘metabolomics’.

Despite recent advances, fluxomics and metabolomics are still technical, instrumentational and
computational demanding experiments, that require expert knowledge and training in diverse
disciplines (Rowe, Palsson, and King 2018; Wishart 2016).

The growing community of users and scientists working in the field is more and more equipped
with bioinformatic solution and programming skills and provides further solutions for non-
expert users and beginners to the field. New tools, like Escher-FBA (Rowe et al. 2018),enable
first analysis and even flux modeling steps in easy web applications. Facilitating the step into
metabolomics and fluxomics data analysis will lead to more routine use of those technologies
and thus adding knowledge to understand complex diseases, like cancer, where just one or two
layers of ‘omics’ are not enough.

Comparability between studies and research in (clinical) metabolomics is still limited. In (His et
al. 2019) the common reasons are named: different measurement technologies were applied
(e.e. NMR vs. MS, LC, GC, ESI, APCI, EI, TOF, QQQ, ...), sample matrix differs, varying materials
and experimental procedures have been used, or even in the experiments non-overlapping sets
of (target) metabolites are discussed. In that example the researches examine the metabolite
levels of blood serum samples to correlate them to breast cancer risk. They discuss openly the
limitations of that approach but also point out the future value of such advances.

Measuring metabolites from blood plasma can have a multitude of factors influencing
metabolite levels, fasting and non-fasting and circadian rhythms are just the more outstanding

variables (Brown 2016). Already at sample retrieval deviation may occur, but also sample



treatment, for example how fast were samples drawn and propagated further to stop
enzymatic and chemical reactions to ensure metabolic quenching. Also, metabolite levels alone
do not elucidate cellular function. Altered metabolite levels can have various under lying
reasons. If it is e.g. higher uptake rate or slower break down rates that leads to elevated levels
of a specific metabolite can only be determined by metabolic flux analysis (Martinez-
Outschoorn et al. 2017; Sullivan, Gui, and Van Der Heiden 2016).

Despite the fact that the experimental part of this study, has neither the reach nor the coverage
of His et al., it nevertheless, shows the potential of metabolomics and fluxomics technologies,
already in a small sample set of breast cancer cell lines without any further interventions. The
descriptive evaluation of 13C labeling experiment of the two breast cancer cell lines could show
qualitatively different trends in enrichment and enrichment velocity. It could be observed in
accordance with known characteristics of invasive cancer cells, that MDA-MB-231 being a
model for such a phenotype, shows a higher enrichment velocity in more metabolites and
enriches metabolites higher than the less invasive and transformed cell line MCF-7.

As U-13C -Glucose was used as labeling agent in the experiments, mostly compounds within the
sugar metabolizing pathways or in close proximity to these were found enriched in the tracer.
An exhaustive analysis of the concerted metabolic interactions cannot be provided with the
resources at hand. The untargeted approach is in principle suited to detect and define new
target compounds for interventions in cancer therapy. However, a comprehensive testing of
these exceeds the scope of this work, which was focused on the proof of concept of the
performance of the developed computational solutions and the powerful potential of sensitive
metabolic tracer enrichment detection and calculations.

The necessity of such studies in unneglectable as described earlier and in His et al. Careful
experimental design and high sample coverage could lead to major steps forward of new
discoveries in the field of cancer that can be translated fast to clinical applications.

The diagnostics, prognostics and therapeutics of cancer are in dare need of new pathways.
Metabolomics and fluxomics can pave these and help deepen the current understanding of
functional interconnections and to tackle the remaining obstacles to cure cancer and other

complex diseases.
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Abkurzungsverzeichnis

ANOVA Analysis of variance

APCI Atmospheric pressure chemical ionization
BPC Base Peak Chromatogram

CRAN The Comprehensive R Archive Network
DMEM Dubleco’s Modified Essential Medium

El Electron impact (ionisation)

ESI Electron spray ionisation

evaCL Evaluated Candidate List

EWD Experiment Wide Deconvolution

FBS Fetal Bovine Serum

FNR False Negative Rate

FPR False Positive Rates

G Gauss

GC Gas Chromatography

GMD Golm Metabolomic Database

HiResTec High-resolution Tracer Enrichment Calculation
HMDB Human Metabolome Database

IR Isotopic ratio

LC Liquid Chromatography

LR Linear range

M+0 Molecular peak (mass +0 refers to no heavy isotopes are incorporated)
MDV Mass distribution vector

MID Mass Isotopomer Distribution

MS Mass spectrometry

MSTFA N-Methyl-N-(trimethylsilyl) trifluoroacetamide
O-DMS O-Dimethylsulfide

preCL Preliminary Candidate List

QcC Quality Control

R Open source statistics scripting language
RT Retention Time

TMS-OH Trimethylsilyl-OH

TOF Time of light
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ABSTRACT: Metabolomics, the analysis of potentially all small
molecules within a biological system, has become a valuable tool for
biomarker identification and the elucidation of biological processes. While
metabolites are often present in complex mixtures at extremely different
concentrations, the dynamic range of available analytical methods to
capture this variance is generally limited. Here, we show that gas
chromatography coupled to atmospheric pressure chemical ionization
mass spectrometry (GC-APCI-MS), a state of the art analytical technology
applied in metabolomics analyses, shows an average linear range (LR) of
2.39 orders of magnitude for a set of 62 metabolites from a representative
compound mixture. We further developed a computational tool to extend
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this dynamic range on average by more than 1 order of magnitude, demonstrated with a dilution series of the compound mixture,
using robust and automatic reconstruction of intensity values exceeding the detection limit. The tool is freely available as an R
package (CorrectOverloadedPeaks) from CRAN (https://cran.r-project.org/) and can be incorporated in a metabolomics data

processing pipeline facilitating large screening assays.
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See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

capillary electrophoreses (CE), to facilitate detection.

While current analytical systems are capable of distinguishing
several thousand signals within a sample, quantifying these
metabolites is challenging due to their chemical complexity and
large dynamic concentration range. According to the Human
Metabolome Database,” metabolite concentrations in human
plasma and urine vary from the pico- up to the millimolar range
(Figure S1A). Within experiments, individual metabolites are
mostly reported to vary less than 2-fold (Figure S1B), but
experiments where metabolite levels vary more than 3 orders of
magnitude are reported as well. Large concentration ranges and
chemical complexity may be accounted for by parallel analysis
of samples in dilution series and on different analytical
platforms (GC/LC—MS, NMR). In practice, however, material,
originating from biopsies or primary cell culture assays, is often

limited and analysis time is costly.

A4 ACS Publications  © 2016 American Chemical Society

Metabolomics aims to detect, identify, and quantify all
small molecules present in a biological sample to
ultimately gain insight into the functionality of biological
processes or identify biomarkers, i.e., metabolites whose levels
are indicative of disease or some other status of the analyzed
biological system.' ™ Nuclear magnetic resonance (NMR) and
mass spectrometry (MS) are the two technologies most widely
used to detect and differentiate between metabolites, where the
latter is often coupled to a preceding separation step, mostly
gas chromatography (GC), liquid chromatography (LC), or

7487

Regarding mass spectrometry, detection limits of modern
time-of-flight (TOF) or Orbitrap instruments used in
metabolomics screening assays are specified at ~100 pM at
signal-to-noise ratios (S/N) of 100:1 at least for specific test
substances such as reserpine. Increasing sensitivity allows to
detect even minor compounds as potential biomarkers in small
sample amounts and to scale down processing volumes and,
therefore, decrease cost of chemicals which is of relevance in
large scale experiments.

As a drawback, decreasing the lower limit of detection in
sensitive assays usually leads to highly abundant signals in
complex mixtures exceeding the detection limit of the analytical
system. Often these compounds are simply removed from
downstream analysis, evaluated separately by measuring a
diluted sample series or approximated based on isotope/
fragment information if available. Alternatively, attempts have
been made to computationally reconstruct the signal.’

In GC-APCI-MS data intensity values exceeding digitizer
saturation (IVEDS) are common in analyses of complex
biological samples. Often these peaks are still symmetric. We
here implemented two algorithms, based on isotopic ratio and
Gaussian peak shape, to achieve a robust reconstruction of
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IVEDS. We show in dilution series of complex but defined
chemical mixtures that it is possible to correct peaks up to 10-
fold higher in concentration than the upper limit of detection of
the measurement system within the error of the linear range,
thereby increasing the dynamic range by 1 order of magnitude
or 50%, respectively, in an automatic fashion. We describe the
algorithm, which is provided as an R package working on
mzXML data files and hence can be incorporated into any
metabolomics processing pipeline as a preprocessing step. We
further discuss limitations of this approach using quality control
plots generated by the software.

B EXPERIMENTAL SECTION

Sample Preparation, Derivatization, and GC-APCI-MS
Analysis. A total of 62 metabolites were purchased as chemical
standards from Sigma-Aldrich (Germany) in reagent-grade
quality (see Table S1), combined in a master mix at 1.25 mM,
serially diluted in 24 steps to 12.8 pM and subjected to
derivatization and GC-APCI-MS measurement as described in
more detail in Methods S1.

Peak Correction Function “CorrectOverloadedPeaks”.
An algorithm for automated reconstruction of peaks exceeding
the detection limit in APCI-MS was implemented as an R
(https://www.r-project.org/) function and can be installed as a
package (CorrectOverloadedPeaks) from CRAN (https://cran.
r-project.org/). For convenience, the function accepts data
stored as an xcmsRaw object, which can be generated from
various file formats using the freely available xcms-package.” As
a result, peaks within this xcmsRaw object exceeding a certain
limit will be extrapolated using either of two methods (isotopic
ratio or Gaussian approach, see further below) and stored back
in the xcmsRaw object for further processing. As an alternative,
mzXML files can be processed directly.

The intensity limit i separating values to be corrected from
values used for this correction is calculated by i = n X DS,
where n is a weighting factor and DS is digitizer saturation. DS
is a discrete value which is dependent on the number of TOF
events per second (which itself is dependent on the mass range
covered, as larger masses require more time to flight and hence
decrease the number of TOF events) and the digitizer capacity
(here 10 bit or 1024 units). In our setup (10 Hz, mass range
50—1000) we can record 949 TOF events per scan which
translates to DS = 949 X 1024 — 1 = 971775 counts, ie.,
971 775 ions of a certain mass which can be counted at the max
within a single scan. Measured intensity values equal to DS
indicate that we reached or exceeded the upper detection limit
of our analytical system and all raw data values equivalent to DS
should hence be corrected. However, also values approaching
DS should potentially be corrected. We set n = 0.95 for this
purpose but would not recommend to specify values <0.85
because this will limit the amount of data points used to
reconstruct (as values equal to or larger i are considered wrong
and will be substituted based on values of smaller 7).

The algorithm (Figure 1) incorporates the following
processing steps. (1) If not specified explicitly by the user as
a parameter, DS is determined from the supplied data by a
heuristic analysis of the base peak chromatogram. (2) All
chromatographic areas containing IVEDS (peaks higher than i
=n X DS) are detected. We specified n = 0.95. (3) For all ion
traces with values larger than i base peak chromatograms
(BPCs) in narrow mass windows are extracted around the
respective region. (4) From these BPCs all scan values larger
than i will be modified using either (i) isotopic ratio (IR)
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mport of raw data (xcmsRaw, mzXML,...)
determination of detector/digitizer saturation intensity (DS)

for this experimental setup if not provided explicitly

o

detection of regions (R) with signals of intensity i>=n*DS
generation of narrow BPCs for all ion masses (IM, ,
within R ha ntensity s i>=n"DS
generation of additional narrow BPCs for all isotopic traces

of IM,_, up to the first isotope below n*DS

ction of data points in IM,_, being >=

using | peak shape approach
generation of quality control plots and

storage of corrected data (xcmsRaw, mzXML)

Figure 1. Individual processing steps of the CorrectOverloadedPeaks
function.

information or (ii) using an assumption of Gaussian peak shape
or exponentially modified Gaussian peak shape and modeling
IVEDS based on front and tail values of the peak. In both cases,
quality control plots will be generated for every modified ion
trace on demand. (5) The modified data are returned as
xcmsRaw or mzXML, depending on the input.

The IR approach, more specifically, works by finding the first
isotopic peak not higher than i itself, extracting its BPC, testing
for the stable ratio between the peak to correct and the isotopic
peak based on nonoverloaded values in the peak front/tail, and
modeling IVEDS by scaling with the observed isotopic ratio. In
example, if for an ion of m/z = 100 five scans with intensity = i
are detected at a retention time 300 s, than three narrow BPCs
are extracted for M (m/z = 100), M+1 (m/z = 101.003), and M
+2 (m/z = 102.006), all at 300 + 2 s. Values in similar scans
below i are used to estimate the stable ratios r; (M+1/M) and
r, (M+2/M), respectively. If all values of M+2 are below i, we
can transform all values of M larger than i using M’ = M+2/r,.

Fronting and/or tailing of a peak is determined empirically
by calculating the ratio between baseline levels before and after
the peak. If this ratio is found to be outside the range of 0.2—5
than either fronting or tailing are assumed and error terms
during gauss correction are neglected for the distorted side of
the peak.

Determination of Linear Ranges. Calculation of limits of
detection (LOD), quantification (LOQ), and linearity (LOL)
were adapted from Konieczka and Namiesnik.” Initial values for
LOD and LOQ (LOD,,;, LOQ,,) were estimated from six
blank measurements (LOD = 3 X median peak intensity, LOQ
= 6 X median peak intensity). Next, more precise estimates of
LOD and LOQ were obtained by fitting a linear model through
the peak intensities of low-concentration measurements
(intensity < LOQ;) using equations LOD = 3.3s/m and
LOQ = 10s/m where s is the standard deviation of the residuals
and m the slope of the linear fit. For LOL determination, all
points above LOQ were subjected to piecewise linear

DOI: 10.1021/acs.analchem.6b02515
Anal. Chem. 2016, 88, 74877492

| 51



Analytical Chemistry

Technical Note

regression analysis as implemented by R package SiZer, using
the statistical model:

Y=4+pX) +4X-CF +¢ (1)

where Y is the peak intensity, X is the concentration, C is the
changepoint (i.e., the LOL), and f, f3,, and f3, the intercept,
change in slope prior to the changepoint, and change in slope
after the changepoint to be estimated, respectively. Fitting this
model to the calibration curve resulted in identification of a first
and (possibly) second linear portion of the curve. The first
linear portion corresponded to the linear calibration range, with
its end, the changepoint, marking the LOL. The linear range
(LR) was finally calculated as log;o(LOL/LOQ).

B RESULTS AND DISCUSSION

Extreme dynamic concentration ranges of metabolites in
complex biologic matrixes are one of the major challenges in
achieving comprehensive metabolomics data sets.'”'" Usually
samples are analyzed in a way that the concentration of the
highest abundant analytes is adjusted to just reach the upper
detection limit of the analytical system. Consequently, many
low-abundance analytes do not reach the lower limit of
detection at this concentration. We here propose automatic
peak reconstruction of IVEDS from deliberately overloaded
samples as a possibility to measure low abundance compounds
without sacrificing the result of major analytes. To evaluate the
basic response parameters of our analytical system with respect
to metabolic signal quantification, we first prepared a complex
standard mixture of 62 analytes, measured a dilution series of
these samples and determined detection limit (LOD),
quantification limit (LOQ), limit of linearity (LOL), and linear
range (LR) for all metabolites (Table S1, Figure 2). The LOQ
varied between 1.4 nM and 9.7 uM, reflecting differences in
ionization efficiency of chemically diverse compounds.
Focusing on the dynamic range covered by our analytical
system, we found LR to comprise on average 2.4 orders of
magnitude, ranging from 02 (tetradecanoic acid) to 4.2
(lysine) in a metabolite specific manner (Figure 2).
We next aimed to increase the limit of linearity by automatic
correction of the raw data prior to peak identification and
quantification. To this end we developed a software package
reading individual data files, searching for IVEDS and
modifying putatively incorrect data values. Quality control
plots (QC plots) are generated for each modification and
stored conveniently in a single PDF per sample. As an example,
we show the main peak of Adenosine (4TMS) from the sixth
dilution step with the respective m/z of 556.263 Da for the
M-+H ion and eluting at approximately 1023 s (Figure 3). At
our given conditions (scan rate, mass range, digitizer
resolution) the maximum quantifiable intensity value (DS) is
971775 counts. The software identifies all chromatographic
regions in a sample where the base peak approaches this value
and in the following extracts individual base peak chromato-
grams (BPC) for all ions within this region approaching DS as
well as their first two isotopes (M+1 and M+2). In Figure 3A,
these intensity values are represented by black, red, and green
symbols for M, M+1, and M+2, respectively. To correct the
values approaching DS (gray circles), the software determines a
robust estimation of the isotopic ratios (IR) between the three
BPCs using the front of the peak (scans prior to DS) and
multiplies valid intensities (here the values of M+2, green
color) with this IR, thereby reconstructing a peak shape similar
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Figure 2. Metabolites in a complex artificial mix were quantified
according to peak intensity in dense dilution series covering a range
from 1.25 mM to 12.5 pM. The linear range (LR) for each metabolite,
defined as the concentration range from LOQ to LOL is depicted by a
black line. The LOD is indicated by a black circle. Red lines indicate an
observed increase in LR for Gauss corrected raw data.

to M+2 for the now corrected M and M+1. The result, which
would be exported back into the original data files, is shown by
colored lines, indicating that M+2 remains unmodified while
values of M and M+1, both approaching DS, are corrected. This
method works independent of the peak shape but is affected by
the quality of the IR determination and by ion suppression
effects on M+2. Using IR to estimate the true intensity for
adenosine (4TMS) results in a peak height of 3.88 X 10°.
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Figure 3. QC plots of a reconstructed peak (Adenosine 4TMS from dilution $6). Black, red, and green data points represent measurement values of
ion intensity for protonated M, M+1, and M+2, respectively, while gray values indicate data points modified by the correction approach. (A) IR
approach, multiplying the values of an isotopic peak (here M+2, green color) by a factor determined from the ratio of M+2 and M in the peak front
to reconstruct the M peak. (B) Gauss approach, fitting a Gaussian curve to reconstruct M by minimizing the mean error to the valid measurement

data points of M.

As an alternative, we utilized the fact that most IVEDS in
GC-APCI-MS are not yet chromatographically overloaded and
hence maintain a Gaussian peak shape at the peak basis. This
allows one to fit the parameters of a Gaussian curve (mean m,
standard deviation sd, and height 1) to the observed data, by
minimizing the residual error and starting from different initial
values. The result of such an automatic Gauss fit for adenosine
(4TMS) is shown in Figure 3B. Analogous to Figure 3A, the
measured raw data are depicted by black symbols, and the
identified IVEDS are emphasized in gray, while the
reconstructed peak shape is shown by a green dashed line.
Thin gray lines indicate alternative solutions of a Gaussian fit
with higher residual error. The two parameters of highest
importance annotating the plot are the mean error of the fit and
the maximum intensity (upper right corner). The mean error is
calculated from the deviations of the observed data points from
the values we assigned based on the optimal Gaussian curve,
excluding the ones approaching DS. Values in the range of 0.1
to 1% of DS (here around 10%) are usually very good. After
finding the optimal parameters by minimizing the mean error,
we substitute all values approaching DS with their calculated
values, respectively. In the example this leads to a reconstructed
peak maximum of 1.05 X 107, being about 3-fold higher as the
solution obtained by the IR based method and nearly 10 times
higher than DS. QC plot files for all samples are provided as
Supporting Information.

Crucial for a correct reconstruction of analytical signals are
sensible starting parameters including a sufficient number of
data points in peak front or tail as well as a good shape of the
measured peak basis. GC-APCI-MS is advantageous in that
respect, as detector saturation is usually reached much earlier
than chromatographic saturation. Thus, for most peaks, we
observed nearly Gaussian shape even when signals were
exceeding DS more than 10-fold. Only in cases of decreased
chromatographic performance, e.g. when using splitless
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injection of concentrated samples, we found more peaks
deviating from a standard Gaussian, which were better to
reconstruct using an exponentially modified Gaussian (EMG),
an option available in the software. However, in splitless
injection we observed several peaks with a delayed intensity
decrease in peak tail, leading to extreme parameters of the
EMG and larger reconstruction errors. Moderate examples of
distorted peak shapes are shown in Figure S2A,B. Especially in
metabolite dense chromatographic areas peak shapes can be
found distorted, due to interference of coeluting signals. The
software can partially cope with that issue by detecting skewed
front or tail values and limiting the Gaussian fit to one side of
the peak only (Figure S2C). A systematic evaluation of the
capabilities of Gauss based reconstruction indicates that the log-
ratio R between data at the peak basis used for reconstruction
and reconstructed data should not be lower than 2, i.e, a peak
with baseline at 10% in an analytical system where DS = 10° can
be reconstructed with moderate error if overloaded 50-fold (R
=6—3/7.5 —6=3/15=2) but not if overloaded 100-fold (R
= 3/2) or higher (Data S1).

Processing all metabolite peaks of the complete dilution
series in the above-described fashion allows one to compare
systematically LOD, LOQ, and LOL in originally measured
data as well as in data which was modified by the IR method or
the Gauss approach (Table S1). For adenosine (4TMS), the
result is shown in Figure 4, identifying a LOQ of 2.68 nM and a
LOL of 2.28 uM for the original data, leading to a linear range
(LR) of 2.93. IR or Gauss correction modifies IVEDS and,
thereby, extends the detectable LR to 3.65 and 4.51,
respectively, which is equivalent to an absolute and relative
increase of 1.58 orders of magnitude or 54% for Gauss
corrected data.

Detailed per metabolite evaluations are given in File S2. Over
all metabolites, we determine a median increase in LR of 1.4
orders of magnitude comparing Gauss corrected and raw data,
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Figure 4. Comparison of peak intensities for m/z = 556.2625 (which
represents the M+H peak of the 4TMS derivate of adenosine) from
samples of a dilution series with 24 steps. The linear range was
determined as the difference between LOQ and LOL in log-scale and
is indicated in color corresponding to the applied sample processing
(gray, raw data; green, IR approach; red, Gauss approach).

evaluating those peaks where the target ion approached DS in
at least one sample and therefore was subjected to the
algorithm (Figure SA). For the IR approach, the average gain
was more moderate (average LR increase of 0.6). Figure SB
shows the relation between the observed gain in LR and the
maximum gain which could have theoretically been achieved
within this experiment. For two-thirds of metabolites we realize
more than 50% of the potential gain, while 10 metabolites
perform poorly with less than 25% realized gain. The
performance is independent of chemical class (represented by
different symbols in the plot) and the absolute gain approaches
a limit at about 2 orders of magnitude.

To assess the performance of the algorithm systematically in
a more applied example, we prepared a dilution series of a
blood serum sample where we adjusted the processed volume
of the highest concentration to contain several metabolites with
IVEDS. We processed the raw data of all 7 samples of the
dilution series using CorrectOverloadedPeaks and standard
parameters. We next investigated all ion signals which were
modified (IVEDS) in the highest concentration sample, if they
were of biological origin, i.e., they showed lower intensity values
in lower concentrations in contrast to contaminating peaks
from chemical reagents which are present more or less constant
over all samples. After fitting robust linear models to these
calibration curves, we calculated the residual error for IVEDS of
in total 38 separate compounds which comprise 59 different
fragments and up to 2 additional isotopes per fragment (File
S$3). This approach is very close to the anticipated use of
CorrectOverloadedPeaks, where we allow a small number of
abundant compounds in a sample to exceed the analytical
detection limit to some extent (S0-fold) to ultimately gain more
information about numerous small abundant compounds. In
our example, we determined the residual error of reconstructed
peaks to be below 20% in more than 90% of all cases,
confirming the results from our defined chemical mixture
(Figure S4).

While the Gauss approach yielded better results in
successfully correcting IVEDS up to S50-fold above DS
compared to 10-fold for IR approach, using the signal intensity
of isotopes below DS to reconstruct a peak is a very robust
alternative to Gaussian or EMG reconstruction. Even highly
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Figure S. Absolute increase in LR after Gauss correction (LRW,V obs)
over all metabolites depicted as (A) a histogram with the median value
indicated by a gray line or (B) relative to the difference between the
maximum possible gain within this experiment (LRgﬂn’ ma)s i€, the
ratio between the maximum metabolite concentration of 1.25 mM and
the LOL detected in the control settings. Different symbols represent
chemical classes (OJ, sugar; A, organic acid; V, amino acid; O, others).
Gray lines indicate the relative amount of the maximum possible gain
which was achieved applying Gauss correction, ie., for the 14 data
points below the 75% line Gauss correction extended LR by more than
75% of what was theoretically possible, given that our maximum
concentration was limited at 1.25 mM.

skewed peak shapes can be reconstructed using this method,
rendering it preferable for chromatographically poor separa-
tions, e.g., as encountered in some LC—MS applications. The
IR approach should also be used in flux analysis, where it is
essential that isotope ratios are maintained during correction
because they are used to calculate enrichment. In TOF
analyzers, the isotopic ratio is considered stable'” with an
average error of less than 2%. However, we could show that
isotopic ratio has a negative bias in peak tails so scan rates
yielding at least three data points within the peak front (>5 Hz
in our case) are required to get a robust estimate of isotopic
ratio, and Orbitrap technology may not be suited to this
approach as isotopic stability is considered less good there.'
Kalambet et al. investigated peak reconstruction for LC—MS
using differently parametrized EMG function and observed for
a manually selected set of 44 peaks which were artificially
limited to 10% of their original size an average reconstruction
error of 20% for peak area, which is similar to our
observations.” However, they applied their results only to a
small dilution series of one individual analyte (Nipagin, highest
concentration S-fold above detector limit), showing that an a
priori known peak shape allows for lowest reconstruction errors
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in comparison to less constrained models, which is in
agreement with our findings regarding the quality of starting
parameters being crucial for the Gauss approach.

Alternative strategies to peak reconstruction comprise
dilution of each sample, either prior to derivatization or using
a split ratio in GC, and quantification on fragment or isotopic
masses,'* which are well below the detector limit for all samples
within the experiment. However, these methods are labor
intensive and time-consuming, while the solution presented
here can be included in an existent data analysis pipeline as an
automatic preprocessing step without additional manual work
or further modifications. Alternative strategies are not free of
error which we partially recapitulate with our IR approach and
investigated for the application of different split ratios (Figure
S3).

An overloaded signal may be the result of various steps
within the analytical chain and among others occur due to
problems in chromatography, ionization, and ion detection.'*
Chromatographic overloading, indicated by a steep linear peak
front, is expected to be a rare event in GC-APCI-MS as high
detector sensitivities will usually require only small on-column
amounts. Reconstruction of a peak from such a linear peak
front would be impaired and can only partly be encounted for
by removing information from the peak front. Ion suppression
occurs constantly in soft ionization techniques (APCI, ESI) as
the ion source has only a limited capacity to generate charged
molecules.”> In consequence, large numbers of molecules
eluting from the separation column will compete for the
available ionization energy and show reduced intensities. This
process is complex and modeling it is outside the scope of this
manuscript. While it hampers a quantitative peak reconstruc-
tion, its influence on individual samples can be expected to be
similar, thus, still allowing relative quantification after
reconstruction. Finally, electron multiplier and digitizer used
as detector and converter in TOF instruments have a limited
capacity to count and sum up individual TOF events, leading to
flat-topped peaks. Here, we showed that this limitation can be
well overcome computationally using stable isotopic ratios or
Gaussian modeling.

B CONCLUSIONS

Peak reconstruction will not be the method of choice in
experiments where absolute quantitative data are required.
However, for all metabolic screening experiments where
relative quantification is used to identify potential biomarkers,
peak reconstruction will allow one to drastically increase
throughput, dynamic concentration range covered and, thereby,
total number of metabolites analyzed without relevant addi-
tional costs, time, or complicated data integration steps at an
error rate well within the boundaries of machine performance.

B ASSOCIATED CONTENT

© Supporting Information

The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.anal-
chem.6b02515.

Figures S1—S4, overview Table S1 presenting LOD/
LOQ/LOL data for all metabolites in number as a
complementary information to Figure 2, additional
detailed methods regarding sample preparation and
GC/MS conditions, and a systematic evaluation of the
Gauss algorithm on artificial data (PDF)
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ABSTRACT: Gas chromatography using atmospheric pressure
chemical ionization coupled to mass spectrometry (GC/APCI-MS)
is an emerging metabolomics platform, providing much-enhanced
capabilities for structural mass spectrometry as compared to
traditional electron ionization (EI)-based techniques. To exploit
the potential of GC/APCI-MS for more comprehensive metabolite
annotation, a major bottleneck in metabolomics, we here present the
novel R-based tool InterpretMSSpectrum assisting in the common
task of annotating and evaluating in-source mass spectra as obtained
from typical full-scan experiments. After passing a list of mass-
intensity pairs, InterpretMSSpectrum locates the molecular ion (M,),
fragment, and adduct peaks, calculates their most likely sum formula
combination, and graphically summarizes results as an annotated
commonly used methoximated-trimethylsilylated (MeOx-TMS)
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mass spectrum. Using (modifiable) filter rules for the
derivatives, covering elemental composition, typical
substructures, neutral losses, and adducts, InterpretMSSpectrum significantly reduces the number of sum formula candidates,
minimizing manual effort for postprocessing candidate lists. We demonstrate the utility of InterpretMSSpectrum for 86 in-source
spectra of derivatized standard compounds, in which rank-1 sum formula assignments were achieved in 84% of the cases,
compared to only 63% when using mass and isotope information on the M, alone. We further use, for the first time, automated
annotation to evaluate the purity of pseudospectra generated by different metabolomics preprocessing tools, showing that
automated annotation can serve as an integrative quality measure for peak picking/deconvolution methods. As an R package,
InterpretMSSpectrum integrates flexibly into existing metabolomics pipelines and is freely available from CRAN (https: //cran.r-

G as chromatography coupled to mass spectrometry using
electron ionization (GC/EI-MS) is widely used in
metabolomics, as it combines efficient chromatographic
separation with straightforward metabolite annotation based
on comprehensive mass spectral libraries.' ™ Despite continu-
ous improvement of preprocessing tools and spectral libraries,
however, many analytes in nontargeted experiments remain
unidentified.” A new generation of recently introduced
atmospheric pressure chemical ionization (APCI) interfaces
promises significant advances for this problem of commonly
observed “unknown” peaks. GC/APCI mass spectra, in contrast
to EI spectra, contain dominating molecular ions ([M + H]*)
that often allow de novo identification of metabolites through
sum formula prediction and structural MS/MS experiments.”®
In terms of overall metabolite coverage, GC/APCI-MS proved
equivalent to GC/EI-MS and even largely surpassed the latter

A4 ACS Publications  © 2016 American Chemical Society
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in terms of sensitivity.7 Consequently, use of GC/APCI-MS in
metabolomics has increased strongly in recent years.”’
Metabolomics workflows usually comprise a number of
computational steps following data acquisition, including peak
picking, peak alignment, chromatographic deconvolution, and
compound annotation. The software tools used for these steps
have mostly been developed and optimized for either GC with
hard ionization (GC/EI-MS) or liquid chromatography—mass
spectrometry using soft ionization (LC/ESI-MS). Specific
solutions for GC/APCI-MS are just only becoming available.
A first MS/MS library for GC/APCI-MS, for example, has
recently been introduced.'” Such libraries allow annotation of
measured spectra based on precursor and qualifying ions
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information similar to commonly employed LC/ESI-MS
strategies, e.g.,, using Metlin. Currently, however, the Leiden
library contains only relatively few compounds (138 with MS',
106 with MS spectra as of February 2016). To circumvent the
issue of missing reference spectra, Ruttkies et al.'' presented a
workflow based on in silico derivatization and fragmentation of
all KEGG (or optionally Pubchem) compounds. This strategy
allowed correct assignment of metabolite structures for 57% of
the 104 tested metabolites. Still, manual inspection and
interpretation of GC/APCI-MS spectra remains a frequent
task for analytes without available information in databases or
where experimental spectra deviate from reference ones.
Software tools that automate the time-consuming tasks of
precursor/fragment assignment, sum formula prediction, and
similar annotation, however, are currently lacking for GC/
APCI-MS.

In the present paper, we introduce InterpretMSSpectrum, a
novel R package that automates spectral annotation for high-
resolution GC/APCI mass spectra. Within a mass-intensity list,
InterpretMSSpectrum locates the molecular and fragment peaks
and establishes likely neutral loss/adduct interrelationships
based on well-established chemical rules. These are further used
to limit the otherwise large number of sum formula suggestions,
and results are returned to the user in a concise graphical
summary. We demonstrate the utility of InterpretMSSpectrum
by annotating 86 in-source mass spectra of frequently
encountered primary metabolites, yielding correct (rank-1)
sum formula prediction in 84% of the cases. Furthermore, we
use InterpretMSSpectrum to evaluate the purity of pseudospectra
generated by four popular metabolomics preprocessing tools,
showing that automated annotation can serve as an integrative
quality measure for peak picking/deconvolution pipelines.

B EXPERIMENTAL SECTION

Sample Preparation, Derivatization, and GC/APCI-MS
Analysis. A standard mixture of 59 metabolites (see Table S-1)
was prepared at concentrations of 78, 19.5, 4.9, 1.2, and 0.3 uM,
respectively, derivatized by methoximation/trimethylsilylation
and analyzed by GC/APCI-MS as described in detail in
Methods S-1.

Data Analysis. Data files (Bruker .d) were recalibrated in
DataAnalysis 4.2 (Bruker Daltonik GmbH, Germany) against
siloxane background ions (m/z 207.0324, 223.0637, 347.0950,
445.1200, 519.1576, 593.1576) and exported as netCDF
exchange format. For peak detection and chromatographic
deconvolution, xcms/ CAMERA'*"® was applied as detailed in
Table S-2. Resulting pseudospectra were identified on the basis
of m/z (+4 ppm) and retention time (&5 s). Of the five
concentrations analyzed, the spectrum with maximum base
peak intensity within 1 X 10* to 8 X 10° counts, corresponding
to 1—80% detector saturation, was selected as a reference
spectrum for further analysis with InterpretMSSpectrum.

Automated Annotation Approach. An algorithm for
automated mass spectral annotation was implemented as an R
(https://www.r-project.org/) function, accepting an arbitrary
list of mass-intensity pairs (spectrum) as input. Possible sum
formulas for each informative peak (peaks above a certain
threshold) are calculated de novo, applying different elemental
filters empirically derived from all entries of the Golm
Metabolome Database (GMD).’ Remaining formulas are
filtered pairwise according to typical neutral losses of
methoximated/silylated compounds (or other user-supplied
rulesets), and final potential formula combinations are scored
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integratively based on mean mass deviation of potential [M +
H]* and fragments. Results for the highest scoring combination
are summarized graphically in the form of an annotated
spectrum. Details on the algorithm and use of the package are
described in Methods S-1.

Comparison of Different Deconvolution Algorithms.
To compare spectral deconvolution by different software tools,
the above standard mixture was spiked into a methanolic
extract of human plasma and analyzed as above. The resulting
netCDF file was processed with DataAnalysis 4.2 (Bruker
Daltonik GmbH, Germany) using the “Dissect” algorithm,
Maven (Build 682),"* MET-COFEA (Beta 2013-10-15)"° and
xems (1.46)/CAMERA (1.26),'”" and pseudospectra were
exported for further use. Processing parameters in each of these
packages were set according to official recommendations or
personal communication with the authors (Table S-2).

Bl RESULTS AND DISCUSSION

Automated Annotation of GC/APCI-MS Spectra. GC/
APCI-MS yields intense molecular jon peaks for most
compound classes including the commonly used trimethylsilyl
derivatives, improving structural elucidation of unknown
metabolites as compared to conventional GC/EI-MS analysis.
Typically, silylated compounds also exhibit moderate formation
of in-source fragments under APCI conditions® that can
contribute important structural clues for annotation. The
GC/APCI-MS spectrum of glucose (1MeOx) (STMS), for
example, contains 14 major ions including the molecular peak
at m/z 570.2949 and dominant fragments at m/z 554.2636,
m/z 480.2448, m/z 390.1949, m/z 319.1578, and m/z
307.1579 (Figure 1). Manual interpretation of the spectrum
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Figure 1. GC/APCI-MS spectrum of glucose 1MeOx STMS
(CyHssNOGSis, m/z 570.2949) annotated by InterpretMSSpectrum.
Highlighted features include major mass peaks (red), predicted sum
formulas (blue), and calculated neutral loss relationships (gray).
“Remaining combinations” designates the final number of possible
sum formula combinations of the major mass peaks after filtering for
elemental composition and assumed neutral loss relationships of the
fragments. The correct formula, passed as an optional argument to
InterpretMSSpectrum, was found on rank 1 among these candidates.

reveals some of these fragments as typical neutral losses for
silylated compounds under CI conditions,'® e.g, [M+H—
CH,]* (m/z 554.2636), [M+H—TMSOH]" (m/z 480.2448),
and [M+H—(TMSOH),]* (m/z 390.1949). InterpretMSSpec-
trum recapitulates such manual annotation in an automated way
and uses the detected peak relationships for sum formula
determination (for a scheme of the algorithm, see Figure S-1).
In addition to the losses mentioned, InterpretMSSpectrum
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annotated a characteristic methoxyamine (Meox) loss ([M+H—
CoH,sNO;Si,]*) resulting from the methoximated aldehyde
group of the sugar, as well as several secondary losses of CH,,
O—DMS, and TMS—OH groups. The more plausible chemical
relationships can be established, the more sum formula
candidates can be excluded on the basis of mutual comparisons:
from 288 candidate formulas before neutral loss filtering, only 4
suggestions were kept (1.3%). In case none of the defined rules
applies to a given pair of peaks, all calculated formulas will be
considered, avoiding discrimination of less common fragmen-
tation paths. InterpretMSSpectrum displays the final number of
candidates in the annotated spectrum together with the rank of
the correct sum formula among these suggestions. In the
example, the correct sum formula (Cp,HgsNO4Sis) was found
on rank 1, with an integrative score significantly higher than the
lower-ranked candidates (94.1 vs 87.5, 78.0, and 74.1,
respectively).

We tested automated annotation for 86 GC/APCI spectra of
59 primary metabolites acquired on a high-resolution quadru-
pole time-of-flight (HR-QTOF) system. Using moderate ion
source parameters, we obtained in-source spectra with 1-27
major (deisotoped) peaks (median: ), a majority of which
could be explained in terms of 22 predefined neutral losses
(Table S-3). For example, CH, losses occurred in 74% of the
spectra and TMS—OH and O—DMS losses in 52% and 45% of
the spectra, respectively (Figure 2A). As expected, the number
of initial sum formula suggestions for molecular ion (M,)
increased exponentially with the molecular mass, ranging
between 33 for m/z 188.1102 and 52870 for m/z 948.4643
(Figure 2B). Filtering by elemental composition reduced these
by 69% to 97% (median 89%), and additionally filtering by
neutral losses by 69% to 99% (median 98%). The number of
remaining candidates ranged between 1 for small metabolites
such as alanine (2TMS) and 884 for the relatively large
guanosine-S-monophosphate (6TMS) (M, = 795.2952), among
which the correct formula was found on rank 1 for 72 of the 86
spectra (84%) and on ranks 2—3 for another 7% (Figure 2C).
By comparison, when InterpretMSSpectrum was applied to the
molecular ion and its isotopes alone, only 63% and 19% of the
suggestions were found on ranks 1 and 2-3, respectively,
demonstrating the informative value of in-source fragments.
Established peak relationships for the full set of spectra are
provided in Data S-1.

A number of tools have implemented computational
annotation of mass spectra with different use cases in mind.
MSZAnalyzer,17 for example, searches many MS/MS spectra for
user-defined mass differences (neutral losses, precursor/
product ion transitions) to detect characteristic features of
particular compound classes. mzGroupAnalyzer'® detects
possible metabolic steps related to chemical and biochemical
transformations in the m/z features of an experiment and
annotates F)utative substructures in the respective mass spectra.
CAMERA '~ extracts pure compound spectra, annotates isotope
and adduct ions according to user-defined lists, and generates
mass hypotheses of the underlying compound. Despite some
overlap in functionalities with our approach, none of the
packages offers automated rule-constrained generation of sum
formula combinations for precursor and fragment ions and out-
of-the-box compatibility with methoximated-trimethylsilylated
(MeOx-TMS) derivatives. MS/MS filtered sum formula
generation is implemented in the SmartFormula3D algorithm
(Bruker Daltonik GmbH, Germany) as well as in MZmine 2."”
However, none of these use customizable mass difference lists
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Figure 2. Summary of annotation results for 86 GC/APCI-MS spectra
of standard compounds. (A) Frequency of neutral losses detected
within the spectra. (B) Number of sum formula candidates as a
function of mass-to-charge ratio, obtained before and after filtering.
Two filters were applied sequentially: (1) an elemental composition
filter and (2) a filter for typical neutral losses of silylated compounds.
(C) Rank distribution of the correct sum formulas within the
candidate lists of the respective compounds.

(neutral losses, adducts) to filter by chemically “plausible”
candidates. In addition, they lack the graphical summary
capabilities of InterpretMSSpectrum that facilitate interpretation
“at a glance” of results by the user. Being conceptually different,
we do not compare our tool to in silico fragmentation
algorithms such as SIRIUS™ or MetFre\g,ll which potentially
can also differentiate structural isomers, which none of the
other tools including ours is capable.

Comparison of Different Deconvolution Algorithms.
As automated annotation scores chemically plausible fragments,
we next investigated how contaminated spectra influence
results. Different sets of pseudospectra were obtained by
again analyzing a mixture of primary metabolite standards, but
this time spiked into a biological matrix (human blood plasma)
to increase chromatographic complexity. Three different open-
source (Maven, MET-COFEA, xcms/CAMERA) and one
commercial algorithm (Dissect) were used to detect features
and deconvolute compounds in this chromatogram. As shown
in Figure 3A, algorithms differed noticeably in the reduction of
sum formula candidates achieved by filtering, with xcms/
CAMERA spectra yielding on average the smallest number of
final sum formula candidates of all packages. This indicated that
spectra contained different numbers of structurally informative
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Figure 3. Evaluation of pseudospectra by automated annotation.
Metabolite standards were spiked into human plasma, and
pseudospectra resulting from the application of the tools indicated
were evaluated with InterpretMSSpectrum (n = 72; 100%). (A)
Remaining sum formulas after the filtering steps of InterpretMSSpec-
trum as a percentage of initial sum formulas. (B) Ranks of correct sum
formula within the compounds’ candidate lists. (C) Mean score of sum
formula combinations for correctly predicted (rank-1) spectra. Values
in (A) to (C) are represented as cumulative frequencies; broken lines
in (A) and (B) additionally indicate how much better the best
algorithm scored compared to the worst.

peaks, allowing one to exclude false sum formula hypotheses to
different degrees. The number of correct sum formula
annotations, i.e., the cases where the correct sum formula was
found on rank 1 within the candidate list, also reflected this
(Figure 3B), with xems/CAMERA yielding correct annotations
for 71% of the spectra, in contrast to only 40—65% for the
other algorithms. The score of these rank-1 spectra, indicating
the mean agreement of measured with hypothetical masses/
isotope patterns, was also highest for the xcms/CAMERA
pipeline (Figure 3C), suggesting that mass and isotope pattern
information were more precisely extracted than by the
remaining tools.

Our results suggest that automated annotation can serve as a
quality measure for metabolomic data preprocessing as it
integrates the quality of peak picking, chromatographic
deconvolution, and possibly other steps involved in preprocess-
ing. Such evaluation is a nontrivial but highly important task to
avoid bias in high-throughput data. Zhang and Zhao™*
compared different measures for peak quality and found that
their “zigzag index” performed best for discriminating good
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from bad peaks. Libiseller et al.”* developed the R package
“IPO” that evaluates peak picking results by the completeness
of the expected isotopic peaks. While these approaches focus on
individual mass peaks, InterpretMSSpectrum scores entire mass
spectra based on chemically plausible rules. Both missing (false
negative) and contaminating (false positive) mass peaks worsen
the score of a pseudospectrum. For Aspartic acid (3TMS), for
example, the absence of m/z 243.0961 in the spectrum from
Maven led to more remaining candidates and worse rank score
as compared to the spectra of the other tools (Figure S-2).
Similarly, contaminating peaks in the Ribose (1MeOx) (4TMS)
spectrum from Dissect resulted in inferior scores compared to
the other tools (Figure S-3). Such spectral comparisons can
likewise be carried out for different analytical conditions such as
chromatographic or ion source settings, making InterpretMSS-
pectrum useful for general method optimization.

Our results also demonstrate that peak detection and
deconvolution tools are differently suited for a novel analytical
technique such as GC/APCI-MS. An algorithm optimized for
LC/ESI-MS chromatograms might perform worse for GC/
APCI-MS, as peak widths fall into the lower, nonoptimized end
of the configurable range. While the typical Gaussian GC peak
should create little problems to peak finders, chromatographic
background, e.g, from column bleed might be an issue. Such
background is more pronounced in GC/APCI-MS than in GC/
ELI-MS due to higher overall sensitivity of the method.” We
consequently observed that some peak pickers, e.g, the
centWave algorithm™* used by xcms, had a high false positive
rate in the background-intense region during the column bake-
out (Figure S-4), which was likely due to the particular
combination of narrow peak widths and noise frequencies.
Other issues were related to the different isotope spacing (mass
distances <1 amu) of silylated compounds as compared to
nonderivatized metabolites containing only C, H, N, O, P, and
S, as deconvolution algorithms are frequently optimized for
mass distances >1 amu for better specificity. Some
pseudospectra, for example, often lacked the M + 1 or M + 2
peaks, suggesting partial discrimination of Si-containing
isotopologues. This further highlights the importance of
optimization studies prior to analyzing large-scale experiments.

B CONCLUSIONS

We here present the novel R package InterpretMSSpectrum that
aims to fill a gap in software tools supporting systematic
analysis of GC/APCI-MS metabolomics data sets. Inter-
pretMSSpectrum automates common manual steps in the
annotation of mass spectra: selection of relevant peaks,
establishment of structural relationships, and calculation of
sum formulas. We envisage several use cases for InterpretMSS-
pectrum. First, as demonstrated for a set of standard
compounds, it assists in structural annotation of fragments
and adducts, a recurring task in fragmentation studies or
buildup of annotated libraries. Second, it supports sum formula
calculation in consideration of elemental and structural
constraints, which facilitates reviewing candidate compounds,
e.g, from conventional EI libraries such as NIST or GMD.
Given the high true positive rate of 84% in correct sum formula
prediction, we are confident that a similar rate is achieved in
unknown analysis. Third, it allows comparing sets of spectra
acquired under different analytical conditions or, as demon-
strated here, obtained from different preprocessing tools, which
facilitates optimization of the analytical and data analysis parts
of metabolomics protocols. InterpretMSSpectrum is used here
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for TMS in-source spectra from a high-resolution QTOF mass
spectrometer, and we expect it to be likewise applicable to MS
or MS/MS spectra from other high-resolution instruments
(TOF, Orbitrap) and to spectra of different compound classes
(e.g, PAHs, PCBs) once appropriate neutral loss tables are
supplied. As an R package, it flexibly integrates into existing
analysis pipelines.
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ABSTRACT: “Fluxomics” refers to the systematic analysis of metabolic
fluxes in a biological system and may uncover novel dynamic properties of
metabolism that remain undetected in conventional metabolomic
approaches. In labeling experiments, tracer molecules are used to track
changes in the isotopologue distribution of metabolites, which allows one
to estimate fluxes in the metabolic network. Because unidentified
compounds cannot be mapped on pathways, they are often neglected
in labeling experiments. However, using recent developments in de novo i
annotation may allow to harvest the information present in these
compounds if they can be identified. Here, we present a novel tool
(HiResTEC) to detect tracer incorporation in high-resolution mass
spectrometry data sets. The software automatically extracts a 102¢ 1026 1028
comprehensive, nonredundant list of all compounds showing more than
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1% tracer incorporation in a nontargeted fashion. We explain and show in an example data set how mass precision and other filter
heuristics, calculated on the raw data, can efficiently be used to reduce redundancy and noninformative signals by 95%.
Ultimately, this allows to quickly investigate any labeling experiment for a complete set of labeled compounds (here 149) with
acceptable false positive rates. We further re-evaluate a published data set from liquid chromatography-electrospray ionization
(LC-ESI) to demonstrate broad applicability of our tool and emphasize importance of quality control (QC) tests. HiResTEC is
provided as a package in the open source software framework R and is freely available on CRAN.

In analogy to other -omics technologies, the terms
metabolomics and fluxomics are used to describe the
investigation of metabolic levels and metabolic fluxes.
Metabolite levels are usually measured in a static manner,
e.g, at a given time point in a cell. While observable differences
in metabolite levels are often highly informative, fluxes can be
considered a more comprehensive way to describe cellular
phenotypes as they represent a close functional link between all
layers of cellular regulation.'™

However, fluxes cannot be measured directly but must be
calculated from the conversion rate of metabolites. To track the
fate of metabolites and their dynamics in the metabolic
network, stable isotope labeling experiments are conducted as
the basis for fluxomics. The stable carbon isotope 3¢,
ubiquitously present in organic compounds, is most frequently
used as a tracer molecule, although BN, 80, and *H are
experimentally employed to a minor extent as well."

To measure the abundance of small molecules, mass
spectrometry (MS) and nuclear magnetic resonance (NMR)

- 4 ACS Publications  © 2018 American Chemical Society
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spectroscopy are most commonly used as analytical platforms.
Coupling of gas chromatography (GC) and high resolution MS
via soft ionization devices (GC-APCI-MS) not only increases
sensitivity compared to traditional electron ionization (EI) but
also facilitates elucidation of unknown compounds.’™®
However, the use of GC requires analyte derivatization prior
to measurement, which introduces significant amounts of
nonbiological atoms into compounds, e.g,, C, Si, O, and N in
the case of methoximation/silylation. At the resolution of
current high-resolution MS (R =& S50000) isotopologues
containing Si isotopes (**Si and *°Si) are not well separated
from isotopologues containing '*C on the mass scale but rather
cause a measurable mass shift in the observed mass isotopomer
distribution (MID). Data processing software needs to account
for this mass shift and also for the presence of atoms of
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loading raw data (all xcms supported formats, e.g. mzXML, mzData, ...)

N7
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Figure 1. Flowchart of processing steps and functions in HiResTEC.

nonbiological origin. Tools developed so far for LC experi-
ments generally do not meet these requirements, as
derivatization is less common in LC.

Metabolomics and flux assays result in significant amounts of
primary data rendering exclusive manual data curation barely
feasible and calls for specialized automated data handling and
evaluation tools. For evaluation of stable isotope labeling
experiments a variety of software solutions are already
published (geoRge,9 MIA,'® x13 cms,'' NTED,'? iMS2-
Flux,"? IsotopicLabelling,H mzMatch—ISO,"® MetExtract,'®
and MetExtract 1I'7), each addressing their own issues of
partly very specific workflows and data quality or structure
(ionization techniques (EI/ESI), LC/GC, targeted/nontar-
geted, nominal mass resolution, parallel labeling). However,
none of these solutions is designed to investigate high-
resolution GC-APCI data after derivatization in a nontargeted
approach.

Here we present, describe and evaluate a novel tool for
nontargeted, efficient, and reliable tracer incorporation
detection in high-resolution mass spectra (HiResTEC), which
is programmed in the open source language R and is freely
available on CRAN. HiResTEC provides (semi-) automated
quality check filters on sample raw data reducing the complexity
of data sets by >95%, which allowed one to detect 149 unique
labeled compounds in an example data set after visual
inspection of the provided intuitive graphical output. An
integrated novel experiment wide deconvolution algorithm is
exploited to minimize redundancies and allow compound
annotation. Testing for tracer incorporation builds internally on
ANOVA linear models, which increases the statistical power to
detect significant enrichments and allows one to analyze
complex experimental setups in a highly flexible way. While
developed for GC-APCI, HiResTEC also shows excellent
performance on publicly available LC-ESI data.

7254

B EXPERIMENTAL SECTION

Sample Preparation for GC-APCI-MS Analysis. All GC-
MS samples evaluated with HiResTEC were processed as
described in SI Text. In short, methanolic extracts were
vacuum-dried and online derivatized using methoxyamine and
N-methyl-N-(trimethylsilyl) trifluoroacetamide (MSFTA) be-
fore automatic injection by an RTC PAL system. In total >500
samples from 6 experiments investigating different cancer cell
lines with various layouts (2—6 time points up to 24 h, [U]"*C-
Glc and 1,2-3C-Glc as tracer, 1—10 biological replicates) have
been analyzed so far and allowed for heuristic evaluation of
software performance. As one example set, we provide raw data
for 36 samples originating from a lymphoma cell culture
experiment, comprising two biological groups (Gl and G2)
investigated at three time points (f = 0 min, 10 min, and 24 h)
and in 6 replicates per group and time point combination.

Data Handling and Evaluation/Functions of the
Package. Measurement raw data can be exported in any file
format supported by xcms. The algorithm is implemented as a
set of R functions and can be installed as a package from
CRAN. The principle workflow, and the function of the script
are depicted in Figure 1. Besides the raw data files, information
regarding sample time point (duration of labeling) and group
(i.e., treatment, genotype or combinations thereof) is required.
Example data were additionally preprocessed to correct for
overloading peaks using the R package CorrectOverloaded-
Peaks.'® The R package xcms is used to generate an xcmsSet
object containing putative peaks within all samples (peak
picking, grouping, and retention time alignment). Parameters
were used as described elsewhere’ (reanalysis of LC data) or
using the following parameters for evaluation of GC-APCI
example data set: method = “centWave”, ppm = 25, peakwidth
= ¢(1,6), snthresh = 1, prefilter = ¢(5,2000) and noise = 1 for
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Figure 2. Graphical output (QC) for one compound (candidate 4, confirmed to be adenosine which contains a fully labeled ribose group). The
subfigures focus on integrative data on enrichment (A, B), raw data information (D), and mass spectra (C, E, F). (A) Enrichment or relative '*C
amount per sample as calculated from MIDs depicted in part D. Plot symbols encode groups, e.g,, treatment/control, symbol colors encoded time
points and contain numbers to identify individual samples. Relevant information regarding masses and time are annotated at the top left together
with a robust estimate of median enrichment change (dE) and the row number of preCL used as an input. (B) Boxplot version of the data from A
amended by p-values of a linear model with factors time and group. (C) Spectrum as obtained by EWD for samples at f,,;;. The current mass pair is
highlighted (red) and annotated. Further masses present in the spectrum which are also found in preCL are highlighted in green. The spectrum can
be used as a basis for compound annotation as well as to check if the best representative peak of a compound was selected. (D) Extracted BPCs for
individual representatives of each group/time point-combination. The scan where the summed intensity over all investigated ions (from mz1 to mzl
+ n) is at maximum, indicated by a gray line, represents the spectrum/MID plotted next to the BPCs and is used to calculate the enrichment for A.
Numbers at each MID peak represent the mass shift, i.e,, the difference of the measured mass and the theoretical *C isotope mass mzl+n*iso. As
current time-of-flight-mass spectrometry (TOF-MS) with resolutions of about R = S0 000 cannot resolve Si and C isotopologues, this mass shift is
systematically negative for larger isotopologues at low labeling but will increase to zero in case of progressive "*C incorporation (cf. SI Text). (E,F)
Fraction of the spectra around the candidate peak pair deconvoluted from samples at t,;;, (E) and t5,,; (F). Mass differences are labeled relative to
mzl and mz2, respectively. This subplot allows one to quickly access if the best mass pair was selected for this compound.

function xcmsSet and minsamp = 6, bw = 0.5 and mzwid = 0.25
for function group.

EvaluatePairsFromXCMSSet. In the next step, all peaks of
the peak list will be combined pairwise depending on user

1.003355 Da for carbon labeling experiments. For all peak pairs,
(relative) tracer incorporations and corresponding time
dependent p-values are calculated based on group mean values
and results are combined in a preliminary candidate list
specified thresholds for n, the number of maximum expected (preCL). The two masses defining a putative isotopologue-pair
tracer atoms incorporated, drt, the maximum allowed retention
time difference between two peaks in seconds (e.g, <2 s for
well aligned GC-MS and higher for LC-MS data), and dmz, the
maximum allowed mass deviation in Da (e.g,, 0.004 Da for high zz-index'’ with a cutoff of 0.3 to verify peak shape of sufficient
precision instruments). The isotopic mass difference can be set quality in the base peak chromatograms (BPCs) of mzl and
as a parameter but has currently only been tested using mz2.

were arbitrary named as mz1 and mz2 for the smaller and larger
detected isotopologue, respectively. Please note, this generally
is not equivalent to M + 1 and M + 2 of the MID. We used the
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Table 1. Comparing Automatic Mass Pair Evaluation Using
Raw Data BPCs against Simple xcms Peak Ratio Evaluation

fraction HiResTEC ~ xcms description

all 7462 2208  number of mass pairs detected in
preCL (HiResTEC) and number of
significant results at p < 0.05
without raw data evaluation (xcms)
respectively

*tested 5947 1432 evaluated mass pairs from preCL:
evaCL

**candidates 347 169  positively evaluated mass pairs

*rejected 5600 1263 rejected mass pairs violating QC rule

*untested 151§ 776  untested mass pairs (redundant

information)

“Of all observed mass pairs (n = 7562), most will be subjected to
automatic evaluation against raw data (fested) while others remain
untested as they correlate with a positive candidate. Positively tested
pairs become candidates and negatively tested get rejected. If no raw
data evaluation is conducted, candidates could be obtained by
evaluating xcms reported intensities directly. Out of all 7462 peak
pairs, this would lead to 2208 candidates at P < 0.0S. However, these
contain redundancy (n = 776) and false positives (n = 1263). Column
xcms indicates the number of peak pairs from this approach without

QcC.

(correlated to an already positively evaluated pair, n = 1515) or
because they did not fulfill all of the QC (n = 5600).

The importance of the second step (evaluation against raw
data) becomes apparent when results are compared against
such obtained from peak intensity data evaluation alone (first
step). Out of the 2208 significant pairs, only 169 are found in
the candidate list after step two. The remaining 92% represent
either redundant information or were rejected during QC
testing. One reason for the large fraction of rejected pairs which
appeared significant in first analysis is that sensitive peak
detection settings, necessary to identify low abundant
isotopologue intensities, can result in peak artifacts in noisy
chromatographic regions.”’ QC plots of all accepted and
selected rejected candidates are provided in SI File 1 and SI File
2, respectively.

Automatic QC criteria do not exclude False Positive (FP)
candidates completely. Manual inspection, using automatic
produced QC plots, described in detail further below, allowed
to reject further 198 of the 347 positively evaluated candidates,
resulting in 149 TPs equivalent to an overall FPR of 43% (SI
Table 1). While this FPR may seem high, it has to be put into
perspective of the much higher number of automatically
rejected peaks (1 = $600) whose manual curation would have
been impossible. Further, FP occurrence is linked to peak
intensity, with smaller peaks more prone to be detected as FP.
As peak pairs are ranked according to intensity before QC
testing and hence large peaks are evaluated first (cf.
Experimental Section), this leads to smaller FPR among more
abundant peaks when considered separately (FPR = 0% in top
50 candidates, 11% in top 100, 26% in top 200..,, SI Table 1).
Thus, it remains the decision of the user to balance off work
load of manual curation against potentially overlooking minor
enriched peaks.

Mass Drift Is an Important Filtering Heuristic
Allowing for Excluding False Positives. Several quality
criteria were implemented as automatic tests to evaluate each
candidate. Results of these tests are summarized in SI Text and
examples regarding each error message can be found in SI File
2. As expected, many candidate peak pairs were rejected
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because of insignificant P-values (P > 0.01: 73%) and/or a
negligible change in enrichment (dE < 1: 62%). Mass shifts/
drifts outside of the expected range were observed in 40% of all
candidates, rendering it an important QC in the present
nontargeted approach. To further test this, we evaluated the
test data set without the mass drift filter being activated
(column “Test” in Table 1). This resulted in >120 additional
candidates which were almost exclusively False Positives.

Changes in mass between samples occur because sample
derivatization in GC-MS leads to defined chemical modifica-
tions of analytes and ultimately adds carbon and silicon atoms
of nonbiological origin to the molecules. In short, two effects
take place: (i) isotopologues of a compound in nonlabeled
samples are found at masses lower than expected from the
calculation of mz14+n*1.00335, ie., showing a detectable mass
shift and (ii) isotopologues of a compound in labeled samples
approach the expected value, i.e., do not show a mass shift. As a
consequence, for the same measured isotopologue, mass shift
values will differ between labeled and nonlabeled states. As
differences in labeling occur over time, we termed this effect
mass drift. We observed many false positive candidates due to
coeluting peaks being produced or consumed during the
experiment which can be detected by mass drift QC.
Additionally, we observed in QC plots that this effect is
sensitive enough to allow to detect tracer incorporation before
significant changes in intensity are apparent (cf. SI File 1, page
90 for an example where the M + 3 isotope is only minimal
increased in intensity but shows a strong mass drift of 5 mDa
comparing t = 0 and f = 24 h). A more detailed explanation off
mass shift and mass drift can be found in SI Text.

Use of ANOVA Models and Experiment Wide
Deconvolution Facilitates Nontargeted Analysis. Usually
flux experiments run nonlabeled control samples in parallel,
comparing changes in sample subsets on, e.g., a time point by
time point basis. In HiResTEC, we implemented an ANOVA
based approach which allows one to track changes in
enrichment using two or a variable higher number of time
points. If annotation of compounds is of lesser importance,
nonlabeled samples (e.g., control at t = 0) can be omitted
altogether. This approach allows one to incorporate any
grouping factor (e.g., genotype, treatment, or a combination
thereof) to be included in the analysis, thereby increasing the
statistical power, allowing for flexible experimental setups and
avoiding time extensive subgroup analysis.

We utilize mass spectra extracted from raw data by EWD for
three distinct purposes: redundancy removal, quality control
and annotation. Most compounds will be represented in preCL
multiple times due to in-source fragments and adducts as well
as various m/z-pair combinations within the same MID (e.g.,
we would find 3 independent pairs in cases of 3 measured
isotopologues: M + 0/M + I, M + 0/M + 2, and M + 1/M +
2). If a mass pair is processed and passed all QC, all further
pairs detected at this RT and including masses which are
present in the candidate’s spectrum can be removed without
further testing. This consequently saves processing time and
limits the final output to the relevant information. A
prerequisite for this approach is to test the best representative
candidate pair from a spectrum first (as it would be removed
and not tested if a less optimal pair is tested prior). This is
achieved by a sorting heuristic described in the Experimental
Section (RankCandidateList), which ensures that the base peak
of a spectrum together with the M + n showing the strongest
intensity increase over time are ranked highest.
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EvaluateCandidateListAgainstRawData. The candidate
pairs from preCL are tested against raw data. About 2000
candidate pairs can be processed in 15 min on a modern
desktop computer. The aim is to perform a number of tests on
raw data chromatogram traces as well as on putative spectra to
ultimately assign informative error messages and reject the
candidate or to include it in a nonredundant evaluated
candidate list (evaCL). Several steps proved valuable to achieve
this and are described in the following. An overview of all
criteria and default cutoff values are listed in SI Text.

RankCandidatelList. Every compound can be expected to
appear several times within preCL due to multiple isotopo-
logues, fragments, and adducts, which are all present in the
compound’s (pseudo) mass spectrum. Ideally, we only need to
test the best representative m/z-pair out of such a spectrum,
where best means to preferably include a high intensity peak
(e.g, base peak) and showing strong tracer incorporation.
RankCandidateList sorts preCL according to summed intensity
of the mz1/mz2 pairs over time, which allows to test the most
promising candidates first and speed up processing by stepwise
removal of all redundant pairs from preCL belonging to the
same pseudospectrum (cf. DeconvoluteSpectrum).

EvaluateCandidate. For all relevant ions at a specific
retention time (RT) and framed by a candidate peak pair mzl
and mz2, where mz2 = mzl+n*isotopic mass, BPCs are
extracted from all samples depending on user specified
parameters (drt, dmz, method). The relative 3C tracer
incorporation (enrichment E) is calculated by the amount of
13C divided by total C in the mass peak™ over all isotopologues
from mz1 to mz2.

E is further evaluated in a linear model incorporating time
(TP) and group (GR) information as well as the interaction
thereof. We expect TP as numeric with at least 2 unique values
(initial and final), but several TP and even the omission of TP
= 0 can be analyzed. We allow an additional grouping factor to
be included which may contain genotype, treatment, or other
information, possibly combined if more than 2 levels are given.
Time related ANOVA P-values from such a model together
with the change of enrichment over time (dE) are calculated
and used together with median peak intensity as QC filter
criteria applying user defined cut-offs.

DeconvoluteSpectrum and EvaluateSpectrum. An experi-
ment wide deconvolution (EWD) function is internally utilized
to extract the mass spectrum containing a specified target mass
(mz1) at a certain RT. To this end, for appropriate statistics a
minimum of 5 raw data files at f,;;, need to be provided
together with retention time information on a specific peak as
well as allowed deviation values for mz and RT. EWD will then
extract the maximum intensity (I) of BPCs for all candidate
masses coeluted with mz1 and their precise RTs for all provided
raw data files within the allowed deviations. In the next step,
each of these candidate masses will be tested for colocalization
of the apexes and Pearson correlation of intensities over all data
files. For GC-APCI data recorded at a scan rate of 10 Hz we
found dRT = 0.15 s and r = 0.7 to be suitable cut-offs to decide
which candidate masses are to be included in the final mass
spectrum. To finally reconstitute an average spectrum, intensity
ratios are determined in a robust manner by calculating the
median over all samples and scaled according to the intensity of
the data file where I,,; is at maximum.

Following EWD the data quality in the spectrum is rated by
several measures. Requirements are, for example, that the
candidate under evaluation is not below 10% intensity of the
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base peak in the spectrum to avoid spurious signals from minor
fragments. Further, suggested candidates have to include the
peak of highest intensity in the MID which helps to exclude
false positives due to [M'] ions or isotopologue pairs not
including the [M + H] and the strongest labeled fragment.

Various Output Functions. EvaluateCandidateListAgain-
stRawData produces a list of evaluation results (evaCL)
containing both, all nonredundant candidate pairs, and all
rejected candidates. The information from evaCL can be
written into graphical output, i.e,, QC-plots as a pdf file for the
visual examination (Figure 2), an xlsx spreadsheet listing all
compounds, or can be used to generate natural abundance
corrected MIDs.

Systematic Performance Evaluation against a Public Data
Set. To test the performance of HiResTEC on LC data, the
script was evaluated against and compared to the data set
provided as Supporting Information in Capellades et al.” We
followed two approaches to generate the preCL. First, we
converted “IncIDs” reported by Capellades into our preCL
format. Second, we reprocessed the provided mzData files using
the reported parameters to generate an xcmsSet and, in the
following, used our own function to generate a preCL from this
xcmsSet. Both preCL versions were then evaluated against raw
data before comparing the results.

B RESULTS AND DISCUSSION

The aim of this work was to provide a software solution to find
all compounds which had incorporated tracer molecules in a
nonredundant fashion to assist in data preparation for flux
modeling tools. None of the available tools (for a tabular
comparison see Table S3 in SI Text) provided satisfying results.
This is in part because appropriate treatment of mass shifts
(explained further below) was not implemented. We therefore
expanded the two stage strategy implemented, e.g., by
Capellades et al.” in the software geoRge, of first detecting all
peaks in each sample and second evaluating potential candidate
pairs by mass difference analysis statistically. It soon became
obvious that this approach did yield vast numbers of false
positives results, i.e,, due to the presence of noise peaks, which
were found by manual inspection. We, therefore, implemented
a series of heuristic tests to identify false positives automatically
and then developed an intuitive plot layout for manual quality
control both of which are explained in the following. For
demonstration purposes we analyzed a data set of 36 samples
evaluating 2 types of cells at 3 time points using 6 replicates per
cell type/time point combination.

Example Data Set Evaluation Reveals 149 Non-
redundant Compounds Showing Significant Tracer
Incorporation and Rejecting Automatically 95% of
Initial Candidates. Following the two step procedure
described in detail in the methods section, we evaluated all
36 samples combined for the presence of ion peaks and
combined these ions into pairs if they were colocated and their
mass difference was a multiple of 1.00335 Da, the mass
difference of *C and ">C. In total, 7462 of such pairs existed
after step one (Table 1, equivalent to preCL in Figure 1), 2208
of which showed significant changes in peak intensity ratio over
time, indicative of cumulative tracer incorporation. In step two,
we evaluated all 7462 pairs against raw data. This resulted in
347 nonredundant positively evaluated mass pairs, each
defining a MID and respective enrichment which significantly
changed over time. In total, automatic evaluation removed
>95% of all pairs either because they were redundant
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EWD spectra are an essential part of QC plots and can be
used to intuitively check if the candidate really represents the
base peak of the spectrum (Figure 2C) and if the selected M +
n is the optimal choice (Figure 2E). As spectra will change over
time (due to tracer incorporation), EWD is performed twice on
different subsets of raw data files which either contain only
samples of the initial time point (e.g, t = 0, all spectra similar
between different groups) or samples from the final time point
(spectra may show inter group variance). Further, spectra can
be evaluated for the mass pair intensity relative to the base peak
and if it includes the main peak of the MID, which are both
criteria used to reject potential candidates (SI Table 2). The
EWD spectra additionally serve as a basis for putative
identification. We have previously demonstrated that inter-
pretation of in-source fragments tremendously improves sum
formula prediction for GC-APCI spectra.””

Visual QC Output Allows for Fast Manual Curation of
Candidates and Confirms Manageable Amount of
Remaining False Positives. We implemented a rigorous
evaluation of raw data BPCs for all relevant ions to verify true
observations and exclude redundant or incorrect results. Ideally,
a true positive compound should present significant and
systematic tracer incorporation/enrichment increase (Figure
2A,B), chromatographically correlated isotopologue peaks with
predictable mass shifts (Figure 2D), and an interpretable
spectrum of fragments and adducts (Figure 2C).

These plots can be automatically generated for all or subsets
of evaluated peak pairs (evalCL) and serve as a basis to estimate
the false positive rate (FPR). We allow for relatively high FPRs
by choosing permissive cut-offs to avoid a larger number of
false negative results since high FPR in ~350 candidates is
possible to manually control by visual data inspection while
scanning >5000 rejected candidates for FNs is prohibitive.
Example files presenting all automatically evaluated positive and
selected negative candidates are provided as SI File 1 and SI
File 2 to give a broader overview of observed results. Selection
in SI File 2 was done randomly and limited to 100 candidates
to keep the file size small. The complete PDF (>100 MB) can
be generated from the example data or obtained from the
authors.

Manual data inspection is preferred over automatic filters in
evaluating properties of the extracted ion chromatograms (like
bad peak shape or coeluting compounds), which are often
easier identifiable by eye than algorithmically. To a minor
extent, unusual spectra properties or strong variance in
obtained enrichment values are a good guide to decide if the
compound at hand is a FP or not. In SI Table 1 rejected peaks
were roughly classified with a letter code indicating the reason
for rejection. The majority (101/149) are classified as
questionable or of neglectable effect. A good example here
would be candidate 325 (p.1297ff). BPCs indicate mz1 and
mz2 to be valid peaks with the average increase in enrichment
over time (dE) being positive (7.8%). However, the variance
within groups (~10%) is larger than the detected effect,
rendering it of less importance or potentially a FP. Besides, the
deconvoluted spectra is very sparse, which will hamper putative
annotation. Another example, fulfilling all automatic QC tests
but rejected for similar reasons would be candidate 344
(p.1373ff). Here, additionally not even a clear peak can be
detected by eye in the BPC plot. However, also large peaks with
complex spectra were rejected. Candidate 102 (p.405ff), for
example, shows only minor tracer enrichment (2.85%)
compared to the variance within sample groups. Further, in
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the mass spectrum, the green highlighted peaks, indicate that
many other peak pairs of higher intensity were already subject
to automatic evaluation and obviously rejected, because
otherwise this peak would have been removed from the
candidate list (preCL) due to spectral correlation. Candidate
190 (p.758ff) would be an example for suspicious results due to
a coeluting peak easily observable in the BPC plot.

Systematic Evaluation of HiResTEC on a Published LC
Data Set. Capellades et al. published a conceptually similar
software solution geoRge, analyzing LC-MS data nontargeted
for tracer incorporation by investigating intensity ratio changes
in xcms derived peak lists.” Applying geoRge on APCI data we
observed a huge number of false positive results when
compared against raw data. Causal were xcms peak detection
artifacts, strong redundancy, and large mass shifts in APCI
peaks between time points. In consequence, this unfortunately
prevented to successfully process APCI data sets with geoRge.
To test if HiResTEC is also capable to analyze LC-MS data we
re-evaluated the example data provided by Capellades system-
atically in an attempt to reproduce published results.

First, we used the provided raw data and xcms parameters to
calculate the xcms peak lists and the potential mass pairs de
novo (20099 peak pairs). Second, we reconstructed a mass pair
list from the reported 271 “IncIDs” found in Supporting
Information material with all corresponding isotopologues (690
peak pairs). Both lists were subjected to QC testing against raw
data in the following and results compared regarding their

overlap (Figure 3).

O novel compound
O different fragment
@ different isotope
B identical pair

n=53 n=1

n=40

de novo geoRge

Figure 3. Remaining compounds with significant tracer incorporation
in both data sets. Column de novo accounting for all hits from the
forward approach, reprocessing the raw data files and geoRge
accounting for all hits in the backward approach, re-evaluating the
reported hit list, and the corresponding sub classification.

From the reconstructed list, 48 nonredundant compounds
showing significant tracer incorporation were obtained. This
number is much lower than the IncIDs reported due to
removed redundancy and automatic rejection of some
candidates following raw data evaluation (cf. SI File 3 and SI
File 4 for accepted and rejected candidates, respectively). All
but one of these 48 compounds are also found when processing
a preCL de novo. However, in five cases a different isotope was
selected and in two cases a different fragment from the mass
spectrum of the compound (Figure 3). Strikingly, de novo
evaluation allowed one to detect 53 additional, previously
unreported compounds (SI File ). Manual inspection of QC
plots revealed a FPR of 12.5% in the 47 overlapping and 39.5%

DOI: 10.1021/acs.analchem.8b00356
Anal. Chem. 2018, 90, 7253-7260

| 66



Analytical Chemistry

in the novel compounds, respectively (SI Table 2). We also
determined the False Negative Rate in the rejected mass pairs
(SI File 4) to be <3%.

In LC-MS the above-described mass drift is not present, but
nevertheless mass shift, if present, often indicates coeluting
compounds and can be used for QC purposes. In total, 11% of
all rejected candidates show this error message. The intensity
threshold (parameter Icut = 2500) was found to be a useful
filter criterion to identify False Positives in LC-MS data. While
being of minor importance in the GC-APCI test data set it
allowed one to reject 58% of all peak pairs in LC-ESI. Peaks not
exceeding at least 2500 intensity counts in at least half of all
samples for mz1 at t = 0 or mz2 at t = 24 were often found to
not show satisfying peak shapes and give rise to spurious
results. In conclusion, reprocessing a publicly available LC-ESI
data set using additional raw data QC analyses allowed one to
remove a large amount of redundancy, reject several FPs, and
detect additional compounds showing tracer incorporation.

Analysis Results Can Be Used for Multiple Purposes.
The main function of HiResTEC returns a full list of all
evaluated peak pairs which may serve as a basis for further
analyses like evaluation of filter performance, annotation of
spectra, preparation of a reference list or library file and export
of MIDs for flux modeling software. Export functions are
provided for tabular output (Excel spreadsheet) and various
figure formats (PDF, similar to Figure 2). The corresponding
mass spectra are saved together with all extracted BPCs and
derived statistical data and can be subjected to tools like
InterpretMSSpectrum™ for sum formula assignment and
annotation. Following compound identification, MIDs can be
corrected for natural isotopic abundancies in all relevant
compounds as a preparation for flux modeling software tools.

B CONCLUSIONS

We developed a practical software solution for the sensitive and
nontargeted detection of tracer enrichment in respective high-
resolution GC- and LC-MS data sets. Applying a two-step
procedure of peak picking and evaluation against raw data
BPCs, we reduce, through a set of automatic QC filters,
redundancy and irrelevant data by about 95%. The results can
be efficiently inspected, exported, or further analyzed by
provided functions. The tool is freely available as an R package
(HiResTEC) from CRAN (https://cran.r-project.org/) and
can be incorporated in a fluxomics data processing pipeline.

B ASSOCIATED CONTENT

© Supporting Information

The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.anal-
chem.8b00356.

SI Table 1, evaluated candidate list of example data
including annotation of likely False Positives due to
inspection of QC plots from SI File 1 (XLSX)

SI Table 2, evaluated candidate list of reprocessed LC-
MS data including annotation of likely false positives due
to inspection of QC plots from SI File 3 (XLSX)

SI File 1, all QC plots for accepted candidates of
ExampleData (PDF)

SI File 2, 100 randomly selected QC plots for rejected
candidates of ExampleData (PDF)

SI File 3, all QC plots for accepted candidates of
reanalyzed LC-MS data (geoRge) (PDF)
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SI File 4, all QC plots for rejected candidates of
reanalyzed LC-MS data (geoRge) (PDF)
SI File 5, all QC plots for accepted candidates of
reanalyzed LC-MS data (de novo) (PDF)
SI Text, detailed information on QC filters and function
parameters, GC-APCI processing and the mass drift
phenomenon, and comparison of currently available tools
for tracer incorporation detection (PDF)
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