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Kurzzusammenfassung 
Die Möglichkeit der medizinischen Intervention im zellulären Stoffwechsel ist von großem 

Interesse, da sich Krebszellen diesbezüglich von normalen Zellen unterscheiden. Zudem gibt es 

innerhalb eines Tumors und zwischen Tumoren eine höhere genetische Heterogenität als 

daraus resultierende metabolische Phänotypen. Um die funktionalen Zusammenhänge 

vollständig zu verstehen, müssen jedoch alle Ebenen der zellulären Regulation untersucht 

werden, zu denen die Untersuchung der metabolischen Flüsse (Fluxomics) eine ganzheitliche, 

dynamische Sichtweise beiträgt. Fluxomics eröffnet neue Möglichkeiten, Krankheiten zu 

verstehen und neue Biomarker und Therapieziele aufzuzeigen. Massenspektrometrie und 

stabile Isotopenmarkierungsexperimente sind weit verbreitete Methoden, um die Flüsse kleiner 

Moleküle durch das metabolische Netzwerk zu verfolgen. 

Hier präsentiere ich drei Software-Tools/Berechnungslösungen für einige der größten Engpässe 

in diesen umfassenden und datenintensiven Techniken. Das Tool CorrectOverloadedPeaks trägt 

dazu bei, die Gesamtzahl der erkannten Metaboliten pro Versuchslauf zu erhöhen, indem 

überladene Signale korrigiert und der dynamische Mess-Bereich erweitert wird. Metaboliten 

können durch Vergleich der experimentellen Daten mit Referenzspektren in Spezialbibliotheken 

identifiziert werden. Wenn Vergleichbarkeit und Abdeckung aufgrund technischer und 

biologischer Varianz gering sind, bleiben die Verbindungen "unbekannt", d. h. nicht identifiziert. 

Das Tool InterpretMSSpectrum ist in der Lage den mit verschiedenen hochauflösenden 

Technologien gewonnenen komplexen Massenspektren Summenformeln zuzuordnen, die auf 

maßgeschneiderten Regelsätzen zu chemischer Plausibilität, häufigen Addukten und neutralen 

Verlusten bei sanften Ionisierungstechniken beruhen. Mit HiResTEC steht eine empfindliche 

und robuste Anreicherungsberechnung für das Fluxomic-Datenhandling zur Verfügung, die wie 

die anderen Tools problemlos in vorhandene Datenverarbeitungs-Pipelines integriert werden 

kann. Es erkennt bereits Tracer-Anreicherungen von 1 % und entfernt 95 % der nicht-

informativen und falsch positiven Peaks, indem ein experimentübergreifender 

Dekonvolutionsalgorithmus und weitere Bewertungsheuristiken genutzt werden. Es wurde 

umfassend mit Daten aus Krebszellkulturproben getestet und systematisch anhand 

vorhandener Tools und Datensätze bewertet. Es übertrifft die bestehenden Lösungen und 

bietet eine plattformübergreifende Kompatibilität für verschiedene hochauflösende MS-

Technologien. 
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Alle drei Softwarepakete wurden in der Open-Source-Sprache R entwickelt und sind online frei 

verfügbar. 

 

Abstract 
Targeting the metabolism is of high interest as cancer cells differ in this regard from their 

normal counterparts. Also, there is a higher genetic heterogeneity within a tumor and in 

between tumors than in resulting metabolic phenotypes. However, to fully understand the 

functional links, it is necessary to examine all layers of cellular regulation, to which the 

investigation of the metabolic fluxes (fluxomics) contributes a holistic, dynamic view. Fluxomics 

open up new chances in understanding diseases and thus revealing new biomarkers and 

therapeutic targets. Mass spectrometry and stable isotope labeling experiments are widely 

used methods to track the fluxes of small molecules through the metabolic network. Here I 

present a set of three novel computational solutions to major bottlenecks in those 

comprehensive and data-intensive techniques. It is shown that the tool 

CorrectOverloadedPeaks helps to increase the total number of detected metabolites per 

experimental run by correcting overloaded signals and extending the dynamic measuring range. 

Metabolites can be identified by comparison of the experimental data to reference spectra in 

specialized libraries. When comparability and coverage are low due to technical and biological 

variance the compounds remain “unknown” i.e. unidentified. The tool InterpretMSSpectrum is 

able to assign sum formulas to complex mass spectra, acquired with different high-resolution 

technologies, based on tailored rule sets of chemical plausibility in metabolites and common 

adducts and neutral losses in soft ionization techniques. With HiResTEC a sensitive and robust 

tracer enrichment calculation for fluxomics data handling is at hand, which, like the other tools, 

can be easily integrated into existing data handling pipelines. It detects tracer enrichment 

already from 1 % and removes 95 % of uninformative and false positive peaks by exploiting an 

experiment-wide deconvolution algorithm and further evaluation heuristics. It was rigorously 

tested with data from cancer cell culture samples and systematically evaluated against existing 

tools and data sets. It outperforms the existing solutions and provides cross-platform 

compatibility for different high-resolution mass spectrometry technologies. All three software 

packages are developed in the open source language R and are freely available online. 
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Introduction 
 

Metabolic rewiring is one of the emerging hallmarks of cancer (Hanahan and Weinberg 2011). 

Cancer cells, compared to normal healthy cells, have alternate routes to meet their energy 

demands which is known since Warburg described the effect more than 90 years ago (Otto 

Warburg, Karl Posener, and Erwin Negelein 1924) and renders metabolism an attractive 

therapeutic target. This is of high relevance since genetic alterations and acquired mutations in 

cancer cells are highly diverse and often unique to each tumor while resulting in a limited 

number of metabolic phenotypes (Martinez-Outschoorn et al. 2017). Still, most current cancer 

therapeutics targeting the metabolism do so on gene or protein level. But the notion that, for 

example, elevated mRNA or protein levels directly imply an increased function of a pathway or 

the influence on a cellular process is too narrowly considered and neglects the role of 

regulatory mechanisms and the microenvironment (Moreno-Sánchez et al. 2016). In fact, it 

could be shown that for a number of transcripts there is no direct correlation to the functioning 

enzyme or activity in the cell (Moreno-Sánchez et al. 2016; Winter and Krömer 2013), also, the 

protein content does not necessarily reveal to what extent the protein/enzyme is active and 

affecting the pathway under investigation. Furthermore, some metabolites are able to induce 

epigenetic changes and thereby influencing gene expression (Nowicki and Gottlieb 2015; 

Wishart 2016). Thus, to fully understand the cellular functional outcome, it is necessary to take 

all layers of regulation into account. Different from the other ‘omics’-techniques metabolomics 

and fluxomics achieve this and open up a more holistic view on the cellular phenotype and 

diseases (Sauer 2006; Weindl, Cordes, et al. 2016). With 13C-based flux analysis, it is possible to 

quantify this integrated output of interactions and together with classical biochemistry and -

analytical methods, those holistic studies can lead to a paradigm shift in how diseases are seen 

and thus to new options in disease diagnosis and therapy, as well as in the discovery of new 

targets and new drugs (Wishart 2016). 

Metabolomic and fluxomic experiment generate big data sets which makes manual data 

evaluation no longer possible, however technical, instrumentational, and experimental set ups 

are diverse and existing data evaluation methods thus not necessarily cross comparable or 

applicable. In this study, I present a comprehensive set of computational tools to address major 

problems in metabolic and fluxomics experimental set-ups; namely detection limits and 
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dynamic range of measurements, de novo metabolite identification, and non-targeted, non-

redundant, sensitive, robust, cross-platform tracer incorporation detection. 

Together these tools can be integrated into any existing data handling pipeline and streamline 

the evaluation process and providing direct usability to flux modeling software. All are written 

in the open source language R www.r-project.org (R Core Team 2017) and freely available on 

The Comprehensive R Archive Network (CRAN, cran.r-project.org). 

Alongside, to showcase the abilities of the presented computational tools that were developed 

in the focus of this work, I will also present the analysis of 13C-Glucose labeling experiments of 

the two breast cancer cell lines (MCF-7 and MDA-MB-231). 

Theses cell lines are often used as models to characterize a less aggressive and transformed 

(MCF-7) and a more invasive and higher metastatic phenotype (MDA-MB-231). We expected 

that these characteristics would be detectable as differences in uptake of Glucose and Glucose 

metabolism and could be measured with the methods at hand and thus provide an ideal model 

to show the tracer incorporation over time in these cells. 

MCF-7 is a well-established breast cancer cell line, derived from a pleural effusion of a 

metastatic mammary carcinoma from a 69-year-old Caucasian, female cancer patient in 1970 

(COMŞA, CÎMPEAN, and RAICA 2015; DSMZ n.d.) 

It is characterized as a poorly aggressive and non-invasive cell line (Shirazi et al. 2011) with a 

low metabolic potential (Gest et al. 2013). Despite some heterogeneity in this cell line and 

clonal variants, the cells are overall considered Estrogen receptor (ER) and progesterone 

receptor (PR) positive and express epidermal growth factor receptor (EGFR) and the human 

epidermal growth factor receptor-2 (HER2) amplification, all of which are associated with a 

favorable clinical outcome of breast cancer as they are responsive to hormone treatment. 

In mice MCF-7 cells do not induce metastasis and show a low migratory and invasive 

phenotype. Together with a low angiogenic potential this cell line is described as lacking 

tumorigenicity (Aonuma et al. 1999)  

MDA-MB-231 cells were derived from a metastatic site of a breast adenocarcinoma of a 51-

year-old Caucasian female in 1973 (DSMZ n.d.). It is a highly invasive, aggressive and poorly 

differentiated cell line. As a triple negative breast cancer cell line, it lacks the expression of the 

afore mentioned receptors ER, PR and HER2 amplification. (Chavez, Garimella, and Lipkowitz 

2010; European Collection of Authenticated Cell Cultures 2017). Triple negative breast cancers 

are associated with a worse prognostics and limited therapeutic options, late and early stages 
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are treated commonly with chemotherapy as a receptor targeted therapy is not possible. MDA-

MB-231 is often used for a late state cancer model. In mice it forms spontaneous metastatic 

sides in lymph nodes (Welsh 2013). 

This study shows the qualitative differences in 13C-Glucose metabolism between MCF-7 and 

MDA-MB-231 by using the newly developed data evaluation pipeline and describes the 

potential and importance to further advance the field of metablomics and fluxomics. 

 

Metabolites are a very heterogenic group of compounds regarding physicochemical properties 

and concentration range in biological samples (ranging from picomolar to millimolar as 

annotated in the Human Metabolome Database (HMDB) (Wishart et al. 2013)). Mass 

spectrometry (MS) coupled separation methods are ideal technologic platforms to cope with 

this diversity. MS coupled to high-performance chromatographic separation systems (usually 

Liquid Chromatography (LC) or Gas Chromatography (GC)) is one of the most sensitive and 

selective tools available and is broadly applicable to many compound classes (Dunn 2008; Dunn 

et al. 2013; Strehmel et al. 2014). Atmospheric pressure chemical ionization (APCI) has been 

introduced more than 40 years ago (Horning et al. 1973, 1977) but only recently has found its 

way into routine use in Metabolomics. Availability and technological progress made APCI-MS 

one of the emerging analytical systems. Superior sensitivity, detection limits, dynamic ranges, 

and speed (Carrasco-Pancorbo et al. 2009; Dunn et al. 2013; Dunn, Bailey, and Johnson 2005; 

Wachsmuth et al. 2011, 2015) are the main improvements over other established mass 

spectrometric set-ups like electron impact (EI) and are of special interest in non-targeted 

metabolomics assays. 

Quantifying all the detected signals in a sample however remains challenging even with modern 

highly sensitive MS instruments. While on the one hand, the increased sensitivity of modern MS 

instruments enables the detection of low abundant molecules, and thereby the detection of 

possible new (bio-) markers, on the other hand, it leads to saturation of the mass detector for 

high abundant compounds. Classically, this can be resolved with dilution series of the sample 

and/or several measurements. In praxis, however, sample material is often sparse and 

analytical time costly, which renders an additional experiment inefficient or even impossible. 

It is shown that a computational approach can extend the dynamic range of GC-APCI-

measurements on average by one order of magnitude. This enables the detection and analysis 

of more metabolites in one experimental run. 
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In non-targeted metabolomics, especially, metabolite identification remains one of the major 

bottlenecks. When experimentally obtained spectra cannot be annotated with the help of 

libraries due to differences to or lack of reference, compounds remain unidentified or only 

roughly classified according to their chemical properties (Tsugawa et al. 2011). APCI as soft 

ionization technique opens new opportunities in de-novo annotation of “unknowns”. It offers 

advantages for the analysis of labile compounds or compounds difficult to ionize, as, compared 

to EI, no intense fragmentation takes place. Most importantly, the information of the 

protonated molecules ([M + H]+) is preserved and can be used for identification and sum 

formula elucidation (Jaeger et al. 2016). In Jaeger et al. 2016 a software tool that automates 

precursor and fragment detection with a GC-APCI tailored rule set is presented by relying on 

common neutral losses or adducts it assigns ranked plausible sum formulas, compares to 

metabolic databases, where possible, and generates informative graphical output. 

Fluxes cannot be measured directly but need to be calculated from changes in metabolite 

levels. Thus, it is necessary to quantify the conversion of metabolites in the network. Stable 

isotope labeled substrates are commonly used as tracers for these analyses.  

The 13C isotope is frequently used as a tracer since all biological compounds contain carbon in a 

significant amount; further 15N is commonly used to study the nitrogen metabolism. The tracer 

incorporation is monitored through changes in the mass isotopomer distribution (MID), as the 

heavier 13C Carbon isotope accumulates in the metabolite pool. The MID, also called mass 

distribution vector (MDV), describes the relative intensity of all measured isotopologues per 

metabolite [Figure 1]. Mass isotopomers or isotopologues are defined as compounds that only 

differ in their isotopic composition  
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Figure 1 Example plot of a base peak chromatogram and a MID of Glucose peak before and after 13C-labeling for 24 hours in 
the human breast cancer cell line MCF-7. The naturally occurring isotopes form a flute-like distribution (M+0 to M+6), after 24 
hours of labeling almost all un-labeled Glucose is metabolized and only the fully labeled molecules (M+6) remain. 

All compounds containing the tracer need to be detected in the experimental data set, to allow 

enrichment calculation in the following. Enrichments of the tracer in the compounds are 

calculated by the amount of 13C divided by total C in the MID (Fisher, Haines, and Volk 1979).  

The obtained enrichment data then can be mapped to a detailed mathematical model of the 

metabolic pathways accounting for the stoichiometry of the reactions, mass isotope 

distributions and carbon atom transitions (Sauer 2006; Wiechert 2001; Wiechert et al. 2001; 

Zamboni 2011; Zamboni et al. 2009). In classic flux balance analysis, a so-called solutions space 

for the metabolic fluxes (Buescher et al. 2015) is calculated. In 13C-fluxomics the models can be 

further constrained and algorithms start with arbitrary assumed flux values and fit the 

experimental data and the flux values to the least residual error (Winter and Krömer 2013). 

Derivatization is necessary before analyzing compounds with gas chromatography that are 

thermic unstable or not volatile. Here, polar groups are substituted by less polar groups to 

render the compounds more volatile and less labile. Often methoximating and silylating 

reagents are used, those introduce significant amounts of Silicon and Carbon atoms of non-
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biological origin to the analyte compound. At a resolution of about R~ 50.000 which is typical 

for current TOF instruments the fine structure of isotopologues containing different mixtures of 

Si and C isotopes with a similar nominal mass cannot be resolved. Instead, a mass shift occurs 

away from the expected mass of the isotopologue in question, which can render the detection 

of the correct peaks difficult when not allowing for the right mass window. Figure 1 shows an 

example, annotating those detected mass shifts as small numbers in the MID. The effects of 

mass shift and drift will be discussed in more detail in (Hoffmann et al. 2018) and the 

corresponding supplemental material. Software solutions for tracer enrichment detection and 

calculation have to take these specific features in GC-MS into account. As the published tools at 

time did not meet those requirements, especially for high-resolution GC-APCI-data, a solution 

in the open-source scripting language R was developed. The tool HiResTEC (high-resolution 

Tracer Enrichment Calculation) addresses major points in un-targeted GC-APCI fluxomic data 

evaluation: sensitive tracer incorporation detection (< 1%), GC and LC compatibility, non-

redundant candidate list by spectral correlation and providing a graphical output for quick and 

easy visual quality control. 
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Methods 
 

Cell culture Methods and Sample Preparation 

Cancer cell lines MDA-MB-231 was obtained from Charité - Universitätsmedizin Berlin Institute 

of Pathology, Lab for Molecular Tumor Pathology, MCF-7 from DSMZ, and grew under standard 

conditions: DMEM (GIBCO) supplemented with 10 % FBS (Sigma) and 1 % 

Penicillin/Streptomycin (Corning) in a humidified incubator at 37 °C and 5 % CO2.  

For 13C-labeling experiments, 24 hours before harvest/quenching cells were seeded in 6-well 

plates á 0,25x106 cells per well and medium was changed to DMEM with 4,5 g/L U-13C-Glucose 

(Sigma) according to the planed labeling duration (5 min, 15 min, 24 h, for the breast cancer 

examples). Prior to harvest cells were washed twice with 0,9 % NaCl and quenched and fixed 

with -80 °C Methanol (Biosolve Chemicals). Cells were scraped off, re-suspended and 

transferred to micro reaction vials, cell debris was pelleted by centrifugation, and aliquots of 

the supernatant were transferred to conical glass vials and vacuum dried in a freeze-dryer 

(Christ). 

Lymphoma cell culture samples were received as cell pellets and extracted as described above. 

GC-MS-Processing 

Dried methanolic extracts were derivatized online using 10 µl Methoxyamine (20 mg/mL in 

pyridine; Sigma), and 20 µl N-Methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA, Macherey-

Nagel) for 90 and 30 minutes, respectively, at 34 °C before injection of 1 µl with a split ratio of 

10 % by an RTC PAL System. Data was recorded at a scan rate of 10 Hz using a Bruker Impact II 

mass spectrometer (resolution: ~35,000). Detailed acquisition parameters can be found in SI 

Text Table S2 of (Hoffmann et al. 2018). 

Data Processing 

Raw data files from the MS measurements were exported to mzXML file format and further 

processed as described in detail in the enclosed publications (Hoffmann et al. 2018). 

In short, prior to peak picking, grouping and retention time alignment which was performed 

using the R package xcms (Smith et al. 2006) package sample files were corrected for 

overloaded peaks with CorrectOverloadedPeaks (Lisec et al. 2016).Parameter settings were as 

follows for xcms for evaluation of GC-APCI example data set: method="centWave", ppm=25, 

peakwidth=c(1,6), snthresh=1, prefilter=c(5,2000) and noise=1 for function xcmsSet and 
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minsamp=6, bw=0.5 and mzwid=0.25 for function group. And for CorrectOverloadedPeaks 

method= "Isoratio". 

The functionalities of the processing steps with in the HiResTEC package are described in detail 

in the corresponding publication and will thus be only highlighted briefly in the following. 

In EvaluatePairsFromXCMSset the from previous steps resulting xcmsSet object is scanned for 

peaks that differ in multiples of the mass difference of 13C and 12C Carbon (n*1.003355 Da, for 

Carbon labeling experiments) on the mass scale. EvaluateCandidateListAgainstRaw 

encompasses several functions, summarized in the following. RankCandidateList, which sorts 

the list of matching (mass-charge) m/z-pairs descending by the sum of their intensity over time, 

and thereby enable the evaluation of major peaks first. 

EvaluateCandidate extracts base peak chromatograms (BPCs) experiment wide for the peak and 

determines the enrichment and the enrichment change over the experimental time and using 

an ANOVA model to test the statistical significance. Along with other quality checks 

DeconvoluteSpectrum and EvaluateSpectrum detect spectral correlation over all samples and 

within a sample, thereby enabling the detection of peak fragments that have already been 

evaluated and thus, do not need further attention. The remaining candidates are summarized 

with the calculated enrichment and statistical values in an Excel spreadsheet and for visual 

monitoring the package provides a pdf-document, containing spectral information, BPCs, box 

and scatter plots on the enrichment information. The output list can be used to identify 

candidates and, if an unambiguous sum formula can be assigned or is available from a target 

library, for the correction of the MID for natural occurring isotopes, which makes the data 

directly usable for flux modelling attempts. 

 
Results 

 

In this study I present three software packages, freely available on CRAN repository, providing 

computational solutions for data handling, statistical evaluation and interpretation for 

metabolomics and fluxomics workflows. Together addressing major bottle necks in these kinds 

of experiments and providing a coherent, robust and sensitive data evaluation pipeline, 

especially suited for GC-APCI-MS based non-targeted fluxomics. 

CorrectOverloadedPeaks uses two different approaches to estimate the peak intensity of signals 

reaching the upper limit of detection: Gauss curve approximation (G) and isotopic ratio (IR). 
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The two systems perform differently and have different advantages for different applications. 

First, for signals approaching the detector saturation the software extracts all BPCs in narrow 

retention time frames. Then the overloaded data points are removed and corrected by the 

algorithm. 

Gauss approximation fits a Gauss curve based on the front and back of the peak signal with the 

least residual error. It could be shown that those data points maintain the geometric properties 

of the curve and thereby allow mathematical fitting. IR uses the first isotope not reaching the 

saturation and calculates the ratios of the isotopic traces in the front and tail of the peak and 

corrects the missing apex by using those stable ratios. 

The linear range (LR) was determined for the measurement of a standard mix of 62 

metabolites. All LRs were compared and statistically evaluated, before and after computational 

correction. Though IR results in a lower median LR gain of 0.6 orders of magnitude, where 

Gauss gains 1.4 orders of magnitude; IR handles skewed peak shape, fronting and tailing more 

stable than Gauss curve approximation, if enough data points in the front or back are available. 

Furthermore, preserving the precise isotopic ratio is crucial for tracer incorporation calculation 

in fluxomics experiments, thus for those data sets the IR methods has to be used. For two thirds 

of metabolites in the test mixture more than 50 % of the potential LR gain could be reported, 

independent of substance class. Plots of all analyzed and corrected metabolite peaks and data 

to the specific linear ranges and gains can be found online in the supplemental material of 

(Lisec et al. 2016). 

The peak correction resulted in low residual errors (< 20%) in over 90 % of the analyzed peaks, 

both in the dilution series of a metabolite mix and in an analysis of metabolites in a biological 

matrix, here blood serum. Using CorrectOverloadedPeaks the total number of detected 

metabolites can be time- and cost efficiently increased, without the need of additional (wet lab) 

experiments. 

The information of the molecular ion, frequently preserved in GC-APCI-MS, together with 

specific in-source fragments and typical adducts or neural losses, can be used to annotate the 

mass spectra and assign sum formulas to measured compounds. 

According to the mass of the peak and the chemical elements occurring in biological 

compounds, for each peak a set of possible chemical element combinations can be calculated. 

Not all of those mathematically correct combinations are meaningful in a biological or chemical 

sense. To reduce the list to more plausible suggestions, a rule set for typical elemental ratios 
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and combinations was derived from the entries in the Golm Metabolome Database (GMD) 

(Kopka et al. 2005). Further, a set of common losses specific for GC-APCI-MS was added to the 

filter rules. Filtering the primary suggestions by the elemental composition reduced the list by 

89 % on average. The most common neutral losses were CH4, TMS-OH and O-DMS, the 

implementation of this information reduced the list further by additional 98 % on average. 

Those rule sets can be modified according to the user’s requirements.  

Working on a standard mixture of 59 metabolites, InterpretMSSpectrum ranks correct sum 

formula on place one, for 84 % and on 2-3 in further 7 % of the cases. The full set of annotated 

compound spectra can be found online in the supporting information of (Jaeger et al. 2016). 

The comparison of different deconvolution tools, for data preprocessing, showed significant 

performance differences in spectral annotation, when using InterpretMSSpectrum. Here, the 

algorithm showed to be also a valuable quality check tool for data pre-processing.  

The objective for developing HiResTEC was the fast, sensitive, robust, and nonredundant 

detection of tracer enrichment in non-targeted fluxomics. 

The package provides potent filter heuristics, described in the following, resulting in a reliable 

enrichment detection down to 1 % 13C and removes over 95 % of false positive hits and 

redundant information from the candidates list. 

The data of 36 Lymphoma cell culture samples was exemplarily analyzed and is presented in the 

publication.  

Additionally, I conducted 13C -Glucose labeling experiments on two breast cancer cell lines, 

MCF-7 and MDA-MB-231, to characterize their metabolic (flux) differences and to illustrate the 

main steps of the data evaluation flow of the algorithms. A selection of this data of MCF-7 and 

MDA-MB-231 cell culture samples in triplicates during three labeling time points (5 min, 15 min, 

24 h) is shown in comparison below, analyzed step by step and discussed. 

Though many labeling experiments were conducted also with the aforementioned cell lines 

coverage and data quality to draw biological relevant conclusions was deemed insufficient thus 

those will not appear in the presented work. These data points are not discussed in detail, but 

contributed to the development, establishment and testing of the presented packages, 

especially determination of data quality, data quality check filters and pattern, determination of 

error rates and optimization of plotting layouts. 

Regardless of the small size of the remaining data set, which does not allow for in depth 

correlation and holistic fluxomic analysis, distinct patterns and trends of enrichment could be 
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found between the two cell lines, which support the overall strength and importance of 

metabolomic and fluxomic research in the medical field. 

 

The fundamental data pre-processing is described in the Methods section. The generic data files 

from the MS manufacturer (Bruker Daltonics) were converted to mzXML. In a table information 

on the sample ID, cell line, labeling duration (TP), replicate, raw data file path etc. is given. With 

this information a list of all raw data files is loaded into the working memory.  

Working on those raw data files, first, a plot of all chromatograms is generated before the data 

is subjected to any other processing steps. The output of the function 

VisualChromatogramInspection provides an overview on all files at once, and their quality and 

possible problems and gross differences can be assessed. Figure 2 shows the overview for the 

24 selected samples. 

 
Figure 2 Overview plot of BPCs of all samples in the set before overloading correction. Red plots are MCF-7 cell samples. Blue 
plots are MDA-MB-231 cell samples. Y-axis intensity. X-axis: RT (260-1260). The red dashed line marks the detector saturation 
(ds = 971775). 

In this example it is apparent that sample number 6 has less peaks and less intensity than the 

other files, and should be omitted from further evaluation, as it could add variance or 

unreliable data points to the peak set under evaluation. 

Next, the peaks in the data reaching the upper limit of detection are going to be corrected using 

CorrectOverloadedPeaks. After this the BPCs of the samples can be checked again in an 

overview plot, as in Figure 3.  
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Figure 3 Overview plot of BPCs of all samples in the set after overloading correction. Red plots are MCF-7 cell samples. Blue plots 
are MDA-MB-231 cell samples. Y-axis: intensity. X-axis: RT (260-1260). The red dashed line marks the detector saturation 
(ds = 971775). 

CorrectOverloadedPeaks provides a pdf file containing plots of all corrected peaks and saves a 

raw data file with the corrected peak intensity values. Figure 4 shows three examples of the 

result of the correction in three differently strong overloaded peaks. 

   
Figure 4 Plots of peaks that were corrected by the algorithm CorrectOverloadedPeaks in sample MDA-MB-231, TP=0, 
replicate 3 The gray dots mark the original data, while the black lines represent the result of correction. Different extents of 
overloading can be corrected, depending on that a heavier isotopologue has to be used which did not reached the detector 
saturation. Which iosotopologue was used for the correction is given in the top left corner of the plot along with the used 
method. In the top right corner, the corrected maximal intensity is given. 

 

After this the data can be evaluated targeted, using mass and RT information of known 

compounds, or non-targeted, without using a compound library. The targeted evaluation is 

faster, as only specific peaks must be processed by the algorithm. Also, the identity and sum 

formula are necessary information for the later MID correction and thus flux modelling 

attempts. The non-targeted search, however, is explorative and might result in the detection of 
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compounds, not present in target lists, that show significant patterns in tracer incorporation 

and the metabolic network. Those could be possible new biomarkers or therapy intervention 

points. 

The following intermediate steps of the targeted search do not generate graphical output until 

the end. The script extracts BPCs, plots them, determines the base formula from the 

information in the target compound library, extracts MIDs, corrects for natural occurring 

isotopes, calculates the tracer enrichment from those and last, generates a set of plots from 

this data for each metabolite and saves it as a pdf file. In Figure 5 the scatter plots of the tracer 

enrichment of each sample for some metabolite plots are shown. A tracer enrichment over 

time can be observed in both cell lines, but to a different extent and velocity. 

 

A 
Pyruvic acid 

B  
Lactic acid 
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C  
Malic acid 

D  
Citric acid 

  
Figure 5 Scatter plots of selected metabolites from the targeted search. Red for MCF-7 samples. Blue for MDA-MB-
231 samples, and symbols according to labeling duration. A Pyruvic acid (-CH4) (C3H2NO3). B Lactic acid (2 TMS) 
(C3H5O3). C Malic acid (3 TMS) (C4H5O5). D Citric acid (4 TMS) (C6H7O7) 

 

The Peak shape and data quality in the QC Plots of Asparagine (4TMS) BP1 and Uracil (2TMS) 

has led to the exclusion of these two compounds from further analyses. 

The complete data and print outs exceed the limit of the printed study and can be found in the 

electronic version.  

The output of the evaluation script provides a list of relative enrichments of each target 

compound. Additionally, the velocity (or kinetics) of the enrichment was calculated dividing the 

relative enrichment by the labeling time. The complete list including calculations of the 

following analyses can be found in the electronic version. 

Figures Figure 6 to Figure 9 show the median enrichment over time and the median enrichment 

velocities over time for both cell lines, respectively. While the speed of enrichment is rapidly 

decreasing after 15min and diverges towards a steady state (metabolic steady state), the level 

of enrichment reaches a saturation towards 24 h of labeling time, in both cell lines, reversely 

proportional to the velocity of enrichment, as expected. 
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In the targeted enrichment evaluation metabolites from glycolysis, citric acid cycle, amino acid 

metabolism, purine and pyrimidine metabolism and fatty acid metabolism are found enriched 

with 13C carbon. Enriched compounds belong to the substance classes sugar alcohols, organic 

acids, amino acids, phosphor esters, and nucleo bases, in short, frequently found metabolism 

intermediates stemming from glucose break down through glycolysis and adjacent metabolic 

pathways. The majority of enriched compounds is belonging to organic acids, sugar alcohols 

and amino acids [Table 1]. 

Through methionine salvage pathway even Methionine could be found enriched (62.7 % in 

MCF-7 and 45.0% in MDS-MB-231), though being an essential amino acid in mammals. 

Many sugar derivates can also be found enriched, despite not being classical members of 

Glycolysis or TCA cycle and similar. Molecular rearrangements in liquid environments and in the 

following chemical substitution with TMS groups the molecular structure is fixed and thus 

identified as such. 
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Figure 6 Relative median 13C enrichment over labeling time in minutes of all metabolites in the targeted analysis of MCF-7 
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Figure 7 Relative median 13C enrichment over labeling time in of all metabolites in the targeted analysis of MDA-MB-231 
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Figure 8 13C enrichment kinetics in delta E/min over labeling time for all metabolites in the targeted analysis of MCF-7 
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Figure 9 13C enrichment kinetics in delta E/min over labeling time for all metabolites in the targeted analysis of MDA-MB-231 
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Figure 10 Difference in median 13C enrichment between MCF-7 and MDA-MB-231 over labeling time in min. Difference dE = median dE(MCF-7) – median dE(MDA-MB-231) 
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Figure 11 Difference of median 13C enrichment kinetcis between MCF-7 and MDA-MB-231 over labeling time in min. Difference dE/min = median dE/min (MCF-7) – median  dE/min (MDA-MB-
231)  
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For an easy evaluation of the qualitative differences in enrichment and enrichment velocity the 

difference between the enrichment values and enrichment velocity values was calculated and 

plotted in Figures Figure 10 and Figure 11. Comparison of those between the cell lines and time 

points resulted in the following list of metabolites with major differences in DE (absolute 

difference DE > 10%) Table 1. 

Table 1 Summary of direct comparison of enriched compounds between MCF-7 and MDA-MB-231 

Compounds with at least 10% higher 

enrichment in MCF-7 after 24h labeling 

Compounds with at least 10% higher enrichment 

in MDA-MB-231 after 24h labeling 

 

Glyceric acid (3TMS) Citric acid (4TMS) 

Methionine (2TMS) Ribose (1MEOX) (4TMS) MP 

Alanine (2TMS) Ribose-5-phosphate (1 MEOX) (5TMS) MP 

 Fructose (1MEOX) (5TMS) MP 

 Proline (2TMS) 

 Fumaric acid (2TMS) 

 Malic acid (3TMS) 

 Threitol (4TMS) 

 Aspartic acid (3TMS) 

 Pyroglutamic acid (2TMS) 

 Glutaric acid, 2-hydroxy- (3TMS) 

 Xylitol (5TMS) 

 Glutamine (4TMS) 
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For comparing the velocity values of both cell lines, a cut-off of an absolute difference in 

DE/min > 1% was chosen to determine the list of metabolites with most noticeable different 

enrichment velocity. Results are summarized in Table 2. 
Table 2 Comparison of enrichment velocities between MCF-7 and MDA-MB-231 

Compounds with higher enrichment velocity 

(DE/min) in MCF-7 after 5 min labeling 

Compounds with higher enrichment velocity 

(DE/min) in MDA-MB-231 after 5 min labeling 

Pyruvic acid (-CH4) Lactic acid (2TMS) 

Proline (2TMS) Methionine (2TMS) 

Glyceric acid (3TMS) Phosphoenolpyruvic acid (3TMS) 

Ribose, 2-deoxy- (1MEOX) (3TMS) MP Dihydroxyacetone phosphate (1MEOX) 

(3TMS) 

Ribose (1MEOX) (4TMS) MP Glyceric acid-3-phosphate (4TMS) 

 Adenine (2TMS) 

 Ribose-5-phosphate (1 MEOX) (5TMS) MP 

 Glucose-6-phosphate (1MEOX) (6TMS) 

 

MCF-7 has in direct comparison fewer metabolites higher enriched than MDA-MB-231. MCF-7 

exceeds the enrichment level of metabolites only in three cases (Glyceric acid, Methionine, and 

Alanine) while MDA-MB-231 has 13 metabolites higher enriched than MCF-7 (Table 1). 

In case of enrichment speed MDA-MB-231 shows faster velocities in more metabolites (8) 

compared to MCF-7 (5). The metabolites where one cell line is faster in enrichment are not 

necessarily the metabolites which this cell line enriches to a higher level. 

In substance classes there is no distinct trends detectable which class would be enriched more 

by one of the cell lines or in general. To come to a reliable conclusion the sample size is too 

small in differentially enriched metabolites and differences in velocities. 

Overall, it can be determined that MDA-MB-231 metabolizes faster and enriches metabolites 

seemingly higher than MCF-7. The afore mentioned findings support the cytological description 

of both cell lines and general characteristics of more transformed cells having higher sugar and 

metabolite demands due to higher metabolic rates in the rapid cell cycle and proliferation 

rates. MCF-7 is compared to MDA-MB-231 less transformed and showed the expected cell 
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morphology and behavior in culture. Characteristics of slower metabolism of a less transformed 

cell line could also be shown in the presented results. In contrast MDA-MB-231 exceeds the 

levels of enrichment of MCF-7 in 14 of 36 individually evaluated metabolites and shows faster 

enrichment velocities in 9 cases. 

 

The non-targeted search follows the main steps of the targeted approach of data pre-

processing (export, overloading correction). As no target library is used peaks need to be 

detected, aligned and grouped over all sample files in a separate step, using the package xcms 

as described above. After this step, the functions of the package HiResTEC are used as 

described in the Methods section to detect peak pairs with a tracer enrichment over time. 

After peak picking, alignment and testing for peaks having the mass difference of multiples of 

heavy Carbon atoms (n*1.003355 Da), 7462 peak pairs (mz1/mz2) could be found in the 

Lymphoma example data set in (Hoffmann et al. 2018), named “preliminary candidate list” 

(preCL). Of those only 347 candidates, named “evaluated candidate list” (evaCL), passed all 

filter heuristics provided by the package. The files in supporting information found online for 

(Hoffmann et al. 2018) contain the peak lists, resulting candidate lists and QC-plots for both, 

the example data sat and the LC-ESI data set (see below). 

Different from other tools, HiResTEC does not only rely on the xcms generated peak intensity 

lists but performs all following calculations and statistical evaluation based on the original raw 

data. The peak information provided by xcms is used to extract BPCs for the detected m/z-pairs 

and all corresponding ion traces of the MID from the raw data files. This original spectral and 

intensity information is the basis of all following calculations of enrichment (changes) and 

statistical evaluation. Large differences were apparent when using the peak and intensity 

information from raw data files rather than from the generated xcmsSets. From the initial 7462 

peak pairs, 2208 were ranked significantly enriched but only 169 passed the QC filters working 

on preprocessed data.  

Eight such quality filters were implemented and fitted to the specific needs of either GC-APCI or 

LC-ESI-MS data sets. A specific mass drift filter indicates tracer incorporation, even before 

tracer enrichment is detectable as an intensity increase of the corresponding isotopologue. 

Also, it functions to exclude false positives, where the mass drift resulting from tracer 

accumulation, cannot be observed in the expected fashion. In GC-APCI data this effect was seen 

in 40 % of the candidates and in 11 % of the candidates in LC-ESI data. 
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ANOVA models substitute t-tests, which are frequently used in other tools, to evaluate tracer 

accumulation over time additionally allowing for more factors, like genotypes or treatments, 

and several experimental labeling time points, thereby increasing flexibility and statistical 

power. Experiment wide deconvolution extracts mass spectral information for each compound 

and allows for redundancy removal by detecting peaks and fragments from the same 

compound in the preCL. Removal of those peaks shortens the list, frees the evaCL from 

reporting the same compound multiple times, based on a different peak pair and thereby 

results in less overall computing time. The spectral information is also used for other QC filters 

that e.g., secure the testing of the base peak of the compound spectrum and general data 

quality, like existence of the candidate peak pair in raw data or securing that M+0 is being 

tested. 

In the breast cancer sample data set 8765 peak pairs (preCL) were found and were subject to 

the evaluation by the package HiResTEC. From those 431 were tested, the remaining pairs were 

removed from evalCL due to the described spectral overlap/correlation used as redundancy 

removal. 96 significantly enriched candidates passed all filters and remained in the evalCL; the 

top 10 lines of the candidate list are shown in Table 3. 
Table 3 Extract of the evaluated candidate table of accepted candidates of the non-targeted search. ID arbitrary number 
accounting for peak with highest summed intensity and significant enrichment. RT: Retention time of the peak. mz: m/z of peak. 
DE: delta enrichment over time (latest time point). P: time dependent p-value of ANOVA. Name: Name of the compound, 
assigned after using InterpretMSSpectrum and PubChem search. 

ID RT mz DE P Name 

1 762.333 319.1574 86.79 2.41E-13 C4 labeled Hexose 

2 770.2585 319.1575 86.97 5.56E-14 C4 labeled Hexose 

3 634.6575 364.1788 6.11 1.1E-10 Glutamic acid 

4 725.2805 465.1605 28.86 1.78E-21 Citric acid; Isocitric acid 

5 352.878 234.1341 9.03 1.79E-16 Alanine 

6 325.2505 191.0919 35.18 4.72E-12 Lactic acid 

7 588.3935 350.1632 5.98 1.74E-12 Aspartic acid 

8 806.113 329.2865 1.58 6.89E-05 Hexadecanoic acid 

9 591.2215 292.1394 5.11 1.89E-09 Serine, O-acetyl- 

10 590.5405 274.1289 1.89 3.22E-05 Pyroglutamic acid 
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As interpretation of spectra is computation time consuming it is not part of the evaluation 

procedure but performed after final selection of candidates. This is possible using 

InterpretMSSpectrum, the entries of the GMD and molecular formula search in PubChem for 

ambiguous sum formula results; the outcome shown here for the first candidates. The 

identified names of the compounds were added to Table 3. Example plots of the interpreted 

spectra are shown in Figure 12 A-C. Further plots of the first 10 Candidates are provided in the 

electronic version. 

 
A 
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B 
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C 

 

 
 

Figure 12 Selected plots of the non-targeted search, Upper: scatter and box plots with details on the enrichment, statistics and 
peak under evaluation. Lower: corresponding plots of interpreted spectra. x-axis Intensity; y-axis: m/z. peaks annotated with 
fragments chemical formula and grey dashed linesgiving information of fragment losses explaining mass differences. A: 
Candidate 3 (Glutamic acid). B: Candidate 4 (Citric acid). C: Candidate 5 (Lactic acid). 

 

 

The evaCL still contains a fraction of false positive hits, which cannot easily be excluded by 

automatic evaluation. In the Lymphoma test data set the overall FPR was 43 %, and FPR was 

correlated to peak intensity. In the top 50 candidates no false positive could be found, while in 

the Top 100 candidates FPR is 11 % and going up for the candidates on the lower end of the list.  
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Tools designed for LC-MS could not successfully process GC-MS data and resulted in high error 

rates of diverse origins (Hoffmann et al. 2018). To check the cross-platform functionality of 

HiResTEC a published high-resolution LC-ESI-MS data set was analyzed with two strategies 

applied. First, the provided raw data files were analyzed with the given data preprocessing 

parameters, second, the published hits “IncIDs” with their corresponding isotopologues were 

evaluated with HiResTEC. The first approach resulted in a preCL of 20 099 peak pairs to be 

tested. The reported 271 “IncIDs” resulted in 690 peak pairs to be evaluated. From those, 48 

non-redundant candidates could be extracted. The evaluation of the raw data resulted in 53 

additional, new candidates, previously not reported by geoRge (Capellades et al. 2016). 

The QC plots can be used for fast and easy manual curation and for the tracing of the 

algorithm’s evaluation performance. Thus, false positives rates (FPR) and false negative rates 

(FNR) were obtained from manual examining QC plots and found FPR=12,5% in 48 mutual 

candidates and FPR=39,5% in new 53 candidates, FNR was below 3% in both cases for the 

rejected candidates. This shows, that HiResTEC significantly outperforms the previously 

published fluxomics evaluation tool. 

The differences of the two MS-platforms required adapting of the filter heuristics to the 

individual requirements and features in this data sets. In consequence, different filter heuristics 

showed to be of different relevance between the data sets. For example, in LC the intensity cut 

off accounted for 58 % of the rejected candidates, where it has only a very minor relevance in 

GC-APCI data (0.8 %). The mass drift occurred to a much lesser extent in LC than in GC, 11 % 

and 40 %, respectively and indicated rather co-eluting compounds than changes due to Si-

isotopologues as no derivatization took place. The effect of each QC filter for both data sets and 

the corresponding cut-offs and assigned error messages are summarized in Table S1 in 

(Hoffmann et al. 2018). 

 

Discussion 
Metabolites occur in extremely variant concentration ranges in biological samples, which makes 

it challenging to measure all metabolites in a sample at once. The presented computational 

solution to correct overloaded signals and estimate their intensity, is a fast and inexpensive 

option to gain more information in one run.  

Signals reaching the detector saturation are flat-topped, i.e. lacking an apex. Those values are 

detected, removed, and corrected by the algorithm. The validity of the approach could be 
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shown by artificially cropping peaks and run the algorithms on them. A similar test has been 

published by (Kalambet et al. 2011), however only for a LC-MS data set and with less relative 

overloading (up to 5-times above detector saturation, CorrectOverloadedPeaks: up to 10-times 

detector saturation). That study used only one analyte and fewer data points but supports 

otherwise the main findings and statistical values of CorrectOverloadedPeaks.  

Besides classical dilution of all samples, or using different GC inlet split ratios, the use of 

fragments (Wang et al. 2016) or less abundant isotopologues (Trobbiani, Stockham, and Scott 

2017) for quantification has been under investigation and provide alternatives to the presented 

approach. While CorrectOverloadedPeaks can be integrated into existing data evaluation 

pipelines, those methods are more time-consuming and labor intensive, if at all possible, for 

example, due to limited sample material. 

An overloaded signal can occur because of chromatographic overloading, ion suppression in the 

ion source or due to saturation of the detector. While chromatographic overloading is a rare 

event in GC-MS measurements; ion suppression is frequent in soft ionization techniques (ESI, 

APCI), resulting from the limited ionizing capacity of the source. Modeling this process is 

complex and not subject of the presented R package. 

For correction of signals reaching the upper limit of detection due to detector saturation, a 

computational solution was presented with the stable isotope ratio or Gauss curve 

approximation in CorrectOverloadedPeaks. 

Though it is less suited for experiments where the signals have to be precisely quantified, it 

enables the detection of a larger total number of metabolites per experiment. 

Metabolite identification remains a bottleneck in Metabolomics. Especially in non-targeted 

assays unknown compounds remain largely unidentified. Soft ionization techniques like APCI 

provided new chances to address this. 

Comparison of measured data to reference libraries has been difficult for GC-APCI, as those 

were only emerging and the coverage was comparatively low (Jaeger et al. 2016).  

Spectral matching based annotation often remains inconclusive, even for other MS-based 

metabolomics set-ups, like LC-ESI. This is often due to technical and biological factors (e.g. 

instrumentation, biological matrix) causing variation in experimental mass spectra (Jaeger et al. 

2017). Thus, manual inspection and interpretation remain a frequent, but non-trivial task and 

the demand for automation is high. 

An open source software package using the information of the preserved molecular ion, typical 
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neutral losses and a rule-set based on chemical plausibility in metabolites, to assign sum 

formulas and annotate mass spectra is presented. With a standard mixture of metabolites, it 

could be shown that the algorithm ranks the correct sum formula on the first three positions in 

93 % of the cases. Together with the graphical output this helps the user to evaluate the 

identity of the compounds much faster. 

Exemplary shown on available deconvolution tools (Clasquin, Melamud, and Rabinowitz 2012; 

Kuhl et al. 2012; Zhang et al. 2014), InterpretMSSpectrum proved useful in examining the 

performance of data pre-processing steps. Differences in peak picking, alignment, and 

chromatographic deconvolution can lead to bias in large-scale and high-throughput assays. 

While tools evaluating the peak quality on a single peak basis exist- “zigzag-index”(Zhang and 

Zhao 2014), “IOP”(Libiseller et al. 2015) InterpretMSSpectrum evaluates the spectrum as a 

whole, and besides annotation can be used also to asses assay quality during analytical method 

development and optimization. 

It is a solution specifically optimized for high-resolution GC-APCI-MS data, taking the conditions 

of soft ionization and derivatizated analytes into account. 

To provide compatibility with LC-ESI methods InterpretMSSpectrum was refined and functions 

were added to determine the precursor in a LC mass spectrum. (Jaeger et al. 2017) This enabled 

the same functionalities for LC-ESI but taking into account the more complex spectra, different 

adducts, and neutral losses and the lack of derivatizing agents. 

Metabolomics and fluxomics experiments generate significant amounts of data. Exclusive 

manual examination is thus not feasible, yet the final quality assurance often needs the 

attention of trained experts in manual labor. HiResTEC is a tool that aids the user by reducing 

the data set to a manageable, assessable size and provides automated QC filters. 

To automatize quality checks, first, frequently occurring quality problems and criteria had to be 

defined. Many of those were found empirically by manual investigation of QC plots and 

retrospective implementation as a QC filter in the software. Criteria for a good peak are a 

smooth and Gaussian-like peak shape, a recognizable apex above the baseline, no co-eluting 

peaks, or if so then good distinguishable (by mass shift, or RT difference), further, for fluxomics, 

the stable and significant tracer incorporation over time (deltaE and p-values). Peaks were 

considered less relevant when the tracer enrichment did not surpass 30 % of the median 

standard deviation of tracer enrichment within replicates or when spectra were sparse and 

many other peaks from the spectrum were already tested and rejected. 
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Those criteria were, to a large extend, automatized in HiResTEC, thus providing a tool for fast, 

easy, sensitive, non-redundant, unbiased tracer enrichment calculation in non-targeted 

fluxomics experiments. The evaluation on the basis of raw data proved to be a very special and 

valuable tool. As shown above, it leads to the detection of more candidates in total. Also, it 

uncovers problems with peak picking algorithms (Myers et al. 2017); a higher candidate yield 

could be expected from peak pairs of the xcmsSet previously rated with a significant tracer 

enrichment, however, 92% of the candidates were rejected. This high rate could be in part 

explained by “sensitive peak picking setting, necessary for low abundant isotopologue 

intensities, [which] can result in peak artifacts in chromatographic noisy regions” (Hoffmann et 

al. 2018). The top of the list contains peaks with the highest summed intensity secured by the 

function RankCandidateList. Small or spurious peaks, often with lower effects, that are harder 

to evaluate, are found at the end of the list, explaining the increasing FPR to the lower end. The 

overall FPR of 43% seems high, however, the algorithm is able to reduce the complexity of the 

data sets tremendously from a size not manually manageable - several thousands of peaks - to 

a few hundreds of peaks. In un-targeted fluxomics, the aim is to find possibly all enriched 

compounds. To demonstrate the performance of the algorithm, cut off values were set rather 

permissive to report many significantly enriched signals, meeting quality standards, i.e. low 

false negative rates, on the cost of higher false positive rates. The workload of manual curation 

on the lower end of the list can be reduced if a fully comprehensive analysis down to the minor 

signals is not needed, as the most abundant candidates are found on the top of the list with low 

error rates. While a number of software tools to evaluate 13C-labeling experiments exist 

(summarized in Table S3 (Hoffmann et al. 2018)) none was capable to handle comprehensive, 

non-targeted, high-resolution GC data. Some of the tools were designed with other objectives 

(iMS2-Flux (Poskar et al. 2012), MetExtract I/II (Bueschl et al. 2012, 2017)), or were only 

specialized for one technological platform (geoRge (Capellades et al. 2016), x13cms (Huang et 

al. 2014)) or a lower mass resolution (MIA (Weindl, Wegner, and Hiller 2016) and NTFD (Hiller 

et al. 2010)). The direct and intensive comparison to one of those tools showed that HiResTEC is 

able to detect more tracer enriched candidates without reporting redundant information like 

different fragments of the same compound or different combinations of isotopologues of the 

same MID, and at the same time reporting less false positives due to raw data evaluation. 

The development of HiResTEC lead to the implementation of a set of functions enabling 

efficient, sensitive and non-redundant tracer detection and providing possibilities to directly 
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use the output for flux modeling approaches, by spectral deconvolution, annotation, and MID 

correction functions. The work of this project provides a coherent pipeline for metabolomic and 
13C-labeled fluxomics data handling, addressing crucial quality control, and (statistical) 

evaluation steps and methodical bottlenecks of the field. 

Streamlined and effective data treatment in metabolomics and fluxomics enhances the 

(potential) outcome of those experiments, leading to advances in all kinds of biological and 

medical questions and fields like disease understanding and treatment. 

Even though the interest in those fields has increased in the last decades, metabolomic and 

fluxomic studies remain still heavily underrepresented. Compared to ‘genomics’ and 

‘proteomics’ Web of Science (Clarivate Analytics 2018) recorded in the year 2017 250-times 

fewer publications in the field of ‘fluxomics’ and still two-times fewer publications for 

‘metabolomics’.  

Despite recent advances, fluxomics and metabolomics are still technical, instrumentational and 

computational demanding experiments, that require expert knowledge and training in diverse 

disciplines (Rowe, Palsson, and King 2018; Wishart 2016). 

The growing community of users and scientists working in the field is more and more equipped 

with bioinformatic solution and programming skills and provides further solutions for non-

expert users and beginners to the field. New tools, like Escher-FBA (Rowe et al. 2018),enable 

first analysis and even flux modeling steps in easy web applications. Facilitating the step into 

metabolomics and fluxomics data analysis will lead to more routine use of those technologies 

and thus adding knowledge to understand complex diseases, like cancer, where just one or two 

layers of ‘omics’ are not enough. 

Comparability between studies and research in (clinical) metabolomics is still limited. In (His et 

al. 2019) the common reasons are named: different measurement technologies were applied 

(e.g. NMR vs. MS, LC, GC, ESI, APCI, EI, TOF, QQQ, …), sample matrix differs, varying materials 

and experimental procedures have been used, or even in the experiments non-overlapping sets 

of (target) metabolites are discussed. In that example the researches examine the metabolite 

levels of blood serum samples to correlate them to breast cancer risk. They discuss openly the 

limitations of that approach but also point out the future value of such advances. 

Measuring metabolites from blood plasma can have a multitude of factors influencing 

metabolite levels, fasting and non-fasting and circadian rhythms are just the more outstanding 

variables (Brown 2016). Already at sample retrieval deviation may occur, but also sample 
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treatment, for example how fast were samples drawn and propagated further to stop 

enzymatic and chemical reactions to ensure metabolic quenching. Also, metabolite levels alone 

do not elucidate cellular function. Altered metabolite levels can have various under lying 

reasons. If it is e.g. higher uptake rate or slower break down rates that leads to elevated levels 

of a specific metabolite can only be determined by metabolic flux analysis (Martinez-

Outschoorn et al. 2017; Sullivan, Gui, and Van Der Heiden 2016). 

Despite the fact that the experimental part of this study, has neither the reach nor the coverage 

of His et al., it nevertheless, shows the potential of metabolomics and fluxomics technologies, 

already in a small sample set of breast cancer cell lines without any further interventions. The 

descriptive evaluation of 13C labeling experiment of the two breast cancer cell lines could show 

qualitatively different trends in enrichment and enrichment velocity. It could be observed in 

accordance with known characteristics of invasive cancer cells, that MDA-MB-231 being a 

model for such a phenotype, shows a higher enrichment velocity in more metabolites and 

enriches metabolites higher than the less invasive and transformed cell line MCF-7. 

As U-13C -Glucose was used as labeling agent in the experiments, mostly compounds within the 

sugar metabolizing pathways or in close proximity to these were found enriched in the tracer. 

An exhaustive analysis of the concerted metabolic interactions cannot be provided with the 

resources at hand. The untargeted approach is in principle suited to detect and define new 

target compounds for interventions in cancer therapy. However, a comprehensive testing of 

these exceeds the scope of this work, which was focused on the proof of concept of the 

performance of the developed computational solutions and the powerful potential of sensitive 

metabolic tracer enrichment detection and calculations. 

The necessity of such studies in unneglectable as described earlier and in His et al. Careful 

experimental design and high sample coverage could lead to major steps forward of new 

discoveries in the field of cancer that can be translated fast to clinical applications. 

The diagnostics, prognostics and therapeutics of cancer are in dare need of new pathways. 

Metabolomics and fluxomics can pave these and help deepen the current understanding of 

functional interconnections and to tackle the remaining obstacles to cure cancer and other 

complex diseases. 
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Abkürzungsverzeichnis 
 

ANOVA Analysis of variance 
APCI Atmospheric pressure chemical ionization 
BPC Base Peak Chromatogram 
CRAN The Comprehensive R Archive Network 
DMEM Dubleco´s Modified Essential Medium 
EI Electron impact (ionisation) 
ESI Electron spray ionisation 
evaCL Evaluated Candidate List 
EWD Experiment Wide Deconvolution 
FBS Fetal Bovine Serum 
FNR False Negative Rate 
FPR False Positive Rates 
G Gauss 
GC Gas Chromatography 
GMD  Golm Metabolomic Database 
HiResTec High-resolution Tracer Enrichment Calculation 
HMDB Human Metabolome Database 
IR Isotopic ratio 
LC Liquid Chromatography 
LR Linear range 
M+0 Molecular peak (mass +0 refers to no heavy isotopes are incorporated) 
MDV Mass distribution vector 
MID Mass Isotopomer Distribution 
MS Mass spectrometry 
MSTFA N-Methyl-N-(trimethylsilyl) trifluoroacetamide 
O-DMS O-Dimethylsulfide 
preCL Preliminary Candidate List 
QC Quality Control 
R Open source statistics scripting language  
RT Retention Time 
TMS-OH Trimethylsilyl-OH 
TOF Time of light 
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Publikation 1:  

 

Lisec, Jan, Friederike Hoffmann, Clemens Schmitt, and Carsten Jaeger,  

‘Extending the Dynamic Range in Metabolomics Experiments by Automatic Correction of Peaks 

Exceeding the Detection Limit’,  
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An der Erstellung des Manuskripts habe ich unterstützend mitgewirkt und meine kritische 

Begutachtung beigetragen. Die Literaturrecherche wurde von mir durchgeführt und 

vervollständigt, sowie die korrekten Zitiermethode und Verweise eingefügt. 

Die Datenauswertung und abschließende Test habe ich in Teilen durchgeführt. Dazu war die 

funktionelle Evaluation des Algorithmus und das Testen an verschiedene vorliegenden 

Datensätzen notwendig, sowie Installation auf verschieden Geräten und Plattformen (Windows 

und Linux). 

Im Verlauf habe ich dazu nach der Analyse und der Revision der Funktionen des Software- 

Pakets die Abbildung Figure 1 vollständig selbständig erstellt und mich bei Figure 2 zur 

Ausgestaltung der zugrundeliegenden Daten in graphischer Form eingesetzt und dem Layout 

mitgewirkt. Die übrigen Abbildungen im Manuscript sind aus vorangegangen Datenanalysen 

durch Dr. Jan Lisec und Dr. Carsten Jaeger entwickelt worden, beziehungsweise Figure 3 aus 

den durch den Algorithmus automatisch generieten Plots. 

Im Revisionsprozess des Manuskripts war ich vollständig eingebunden und habe einige 

Gutachterfragen adressiert und bei der Einarbeitung der Anmerkungen mitgewirkt. 
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Beitrag im Einzelnen: 

 

An der Erstellung des Manuskripts habe ich unterstützend mitgewirkt und meine kritische 

Begutachtung beigetragen. Die Literaturrecherche wurde von mir durchgeführt und 

vervollständigt, die korrekten Zitiermethode und Verweise eingefügt. 

Die im Manuskript beschriebenen Methoden wurden von mir etabliert. Namentlich, für die 

Massenspektrometrie geeignete Probenvorbereitung und die verschiedenen 

Extraktionsmethoden aus biologischer Matrix auf Perfomanzunterschiede hin untersucht und 

vollständig durchgeführt, und auf die erwähnten zellbiologischen Proben angewandt. 

Bei der programmatischen Erstellung der Scripte des Algorithmus habe ich in Teilen mitgewirkt. 

Die anschließende Datenauswertung konnte ich in Teilen mit durchführen und abschließende 

Test durchführen.  

Dazu war die funktionelle Evaluation des Algorithmus und das Testen an verschiedene 

vorliegenden Datensätzen notwendig, sowie Installation auf verschieden Geräten und 
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Beitrag im Einzelnen: 

 

Die funktionelle Entwicklung der Konzeption erfolgte vollständig und selbständig von mir und in 

Rücksprache mit Dr. Jan Lisec. Die Literaturrecherche und -auswertung wurde vollständig von 

mir durchgeführt. Die Methodenentwicklung gliederte sich in verschiedene Bereiche, ebenso 

das Versuchsdesign, die zum weitaus überwiegenden Anteil von mir selbst angefertigt wurden. 

Die praktischen Arbeiten und Planung für alle im biologischen Labor anfallenden Arbeiten habe 

ich selbst und vollständig übernommen. Namentlich, Ablaufpläne, Materialbestellung, und -
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wurden vollständig von mir selbst durchgeführt. Die Programmierung der Scripte des 

Algorithmus wurde von mir in Teilen selbst durchgeführt und zu Teilen durch Dr. Jan Lisec 

deutlich unterstützt. Da einige der Scripte erheblich in die Daten-Vorprozessierung eingreifen 

und ausgiebiges massenspektrometrisches Expertenwissen vorrausetzen wurden ich auch bei 

der Roh-Daten-Handhabung zum Teil von Dr. Jan Lisec unterstützt. Die Evaluierung und 

funktionelle Analyse aller Scripte, der kritische Vergleich und die Gegenüberstellung wurde 

vollständig von mit selbst durchgeführt. 

Die Datenauswertung der biologischen Daten mit den programmatisch entwickelten Scripten 

wurde vollständig von mir selbst durchgeführt. 

Nach Abschluss der Entwicklung aller Funktionen der Softwarepakets ist die Abbildung Figure 1 

selbstständig und vollständig von mir erstellt worden. 
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existierender Software und teils manueller Revision und Vergleich der Leistungsunterschiede 
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