
Chapter 9

The A-MEDIAS System

One must learn by doing the thing,

for though you think you know it,

you have no certainty until you try.

Sophocles

In this chapter, we present ourA-MEDIAS system – an adaptive integrating event notification system that

realizes the theoretical design concepts introduced throughout this thesis. We illustrate howA-MEDIAS1

implements our concepts for adaptive integrating event notification services.

Section 9.1 gives an overview of theA-MEDIAS system architecture. Successively, we present a more

detailed view on the system. We start with the distributedA-MEDIAS system that consists of a network

of servers. Within each server, the main component is the event notification component. Additionally,

components for distributed access on events and profiles are provided. Here, We concentrate on specific

implementation aspects of the event notification component.

In Section 9.2, we briefly describe the important classes of ourA-MEDIAS implementation. The

classes are presented as diagrams using the Unified Modelling Language (UML). Sections of selected

class definitions are given in Appendix A.

Section 9.3 introduces the profile definition language ofA-MEDIAS. In Chapter 5, we proposed our

parameterized event algebra that allows for adaptation of filter and profile semantics. The implementa-

tion of this algebra as a profile definition language is presented here. A basic form of the adaptation of

profiles as envisioned in Chapter 8 is implemented inA-MEDIAS. We abstain from the extended times-

tamping and event ordering method proposed in Chapter 6. Only a basic timestamping algorithm has

been implemented, which may be extended later.

1The acronym A-MEDIAS is historically determined and contains a reference to our project named MediAS [Med03]. The
system’s name resolves toAdaptablemediating Alerting Service.

130 Chapter 9. The A-MEDIAS System

Section 9.4 presents the structure for the filter components inA-MEDIAS. The algorithms proposed

in Chapter 7 are implemented inA-MEDIAS. We briefly describe their adaptability to different profile

distributions as discussed in Chapter 8. Experimental efficiency tests for our filter implementation have

been performed; their results are presented in Chapter 10.

9.1 A-MEDIAS Architecture

This section introduces theA-MEDIAS architecture. TheA-MEDIAS system is a prototypical event noti-

fication system implemented in Java. The system realizes the event filtering methods introduced in this

thesis and additionally contains components to load, store, and index profiles, to accept event messages,

and to create and send notifications to clients.

Providers Clients

A−mediAS Event Notification System

A−mediAS Servers

Figure 9.1: Architecture of theA-MEDIAS system

Figure 9.1 shows the architecture of the distributedA-MEDIAS event notification system. The sys-

tem is formed by a number of servers that are connected by an acyclic overlay network. Each server

implements an event notification system as discussed in this thesis. Additional components control the

distribution of event and profile data over the network. In this thesis, we focus on the functionality

within eachENS server. However, for the implementation of our distributedA-MEDIAS system, we

make use of findings developed for distributed service: For the distribution of profiles and events, we

implemented and tested three distribution methods. For a detailed analysis of the distribution aspect of

A-MEDIAS see [Bit03].

The structure of eachA-MEDIAS server, i.e., each node within theA-MEDIAS system, is depicted in

Figure 9.2. The figure shows the components within the server and the data-flow between the compo-

nents. A server node is contacted via a listener. Within a server node, each directly connected neighbor

server within the network is represented by aneighbor representation object. The provider and client

components are not shown here – they are handled similarly to neighbor objects. The neighbor object

accepts event messages and profiles submitted from the respective neighbor node. The incoming profiles

are redirected to thedistribution component, which handles the profiles according to the selected distri-

bution method. Based on these methods, the profiles are submitted to theevent notification component

or redirected to otherA-MEDIAS servers (i.e., neighbors) in the network.

Incoming event messages are translated into event objects and redirected to the event notification

9.1. A-MEDIAS Architecture 131

Listener

create

event object

notification object

event message

Representation
NeighborReceiver

Sender

profile object

event / profile object

event / profile object

Event

Component

(System)
Component

Distribution

Notification

Listener Process

NeighborHandler

Distribution Module

Figure 9.2:A-MEDIAS event notification server: Event notification component with distribution-related
components

component. The event notification component observes and filters the events and sends notifications to

the interested neighbors. Additionally, the distribution component may distribute event messages within

the network. For detailed information about distribution methods see [Bit03].

The architecture of the event notification component is shown in Figure 9.3. The component can

be used as a stand-alone centralized event notification service. Then, profiles and events are submitted

as messages to the profile parser and event observer, respectively. If used as a component within a

distributed system ofA-MEDIAS servers, profiles and events are submitted as objects. Within the event

notification component, the profile pool acts as filter engine.

Primitive profiles are inserted into theprimitive profile pool: Each profile query in the profile tree

references to the respective profiles. Composite profiles are inserted into thecomposite profile pool. The

primitive profile parts of composite profiles are inserted into the primitive profile pool: either at once

(when following a two-step filter method) or successively (when following our single-step method). The

profile references of those contributing profiles are linked to the respective composite profile.

The filter engine follows the single-step method, the profile manager controls the alternative two-

step filter method. Time events regarding composite events are managed in thetime profile pool. The

translation of client profiles according to application profiles is triggered by the evaluation of a compos-

ite profile. Application profiles are created by the application administrator based on source profiles.

Profiles regarding time events are inserted into the time profile pool. The pool is implemented as a

heap, where the upmost element refers to the (temporally) next profile, i.e., to the next time event to be

announced.

Qualitative adaptation is supported by client profiles, source profiles, and application profiles. The

source profiles are not shown in the figure. Severalapplication profiles may be defined, one of them is

selected as the current application. Each application profile defines basic transformation rules for profile

parameters for each of the different source profiles. Currently, adaptation of the event instance selec-

tion parameter EIS for each source profile is supported. Adaptation of the event instance consumption

parameter EIC currently only supports a logging mode that results in notifications about all event pairs.

Incoming events are evaluated against the primitive profile pool. If the event matches a primitive

132 Chapter 9. The A-MEDIAS System

t1

t2

E2E1

E3

1appl first all

Event

Notification
Notifier

Object
Profile

Observer
Event

Object

Object

Notification

Event Notification Component Stand−alone Centralized Event Notification Service

Profile Message

Profile
Parser

Event Message

;

;

Profile References

. .
 .

. .
Time References

Primitive Profile Pool

Composite Profile Pool

Time Profile Pool

Profile Pool

2

i

appl

appl

...
.

...
.

......

Application Profiles

ProfileManager

2E

1E

Figure 9.3:A-MEDIAS event notification component

profile, the notifier is triggered. If the event matches a contributing part of a composite profile, the

next step in the filtering of the composite profile is triggered. A detailed description of the filtering of

primitive and composite events is given in Section 9.4. The notifications are either sent to the neighbor

component in the network component (for the distributed service) or directly to the client via email (for

the centralized system).

9.2 Reference of Essential A-MEDIAS Classes

This section briefly describes the important classes and their interactions in form of an enumerative

reference usingUML (Unified Modelling Language) diagrams [Fow97]. Fragments of selected class

definitions are given in Appendix A. Only the relevant attributes and methods are shown in theUML

diagrams. Parameters in methods are omitted.

Providers and Source Profiles. Figure 9.4 shows theA-MEDIAS classes for event providers (Pub-

lisher) and their event sources. The sources are described by source profiles (Advertisement). The

provider objects are controlled by a structure (PublisherPool) that references the provider objects. Pub-

lishers submit event messages that are transformed into event objects (Event). The events follow the

event type referenced in the advertisement. The structure of a publisher object is shown in Code Frag-

ment A.1 on Page 185. A section of the class definition for advertisement objects (implementing source

profiles) is depicted in Code Fragment A.2. A section of the class definition for an event object is shown

in Code Fragment A.3.

9.2. Reference of Essential A-MEDIAS Classes 133

updateTime
updateValues

EventType

addAttribute(): void
 getAttributes(): AttributeType[]

1..* 1

1

AttributeValuePair

value

AttributeType

name

1

1..*

Publisher

publishEvents(): void

1

1

PublisherPool

addPublisher(): Publisher
remPublisher(): Publisher

1..*

Event

getAttributeValuePair(): AttributeValuePair

0..*

1

0..*

1

0..*

Singleton

1..*

Factory

Advertisment

Figure 9.4: UML representation of providers (Publisher) in A-MEDIAS

Clients and Client Profiles. Figure 9.5 shows theA-MEDIAS classes for clients (Subscriber) and their

profiles (Profile). The clients are controlled by a structure (SubscriberPool) that references the client

objects. Clients may define one or more profiles. A section of the class definition for client objects is

shown in Code Fragment A.4.

Factory

 addSubscriber(): Subscriber

1

1
unsubscribeAll(): void
getProfile(): Profile

1..*

1..*

Profile

subscribe(): Boolean

getRepresentation(): String

SubscriberPool

Subscriber

unsubscribe(): Boolean

remSubscriber(): Subscriber
Singleton

Figure 9.5: UML representation of clients (Subscriber) in A-MEDIAS

Primitive and Composite Profiles. A-MEDIAS distinguishes primitive and composite profiles. In

A-MEDIAS, primitive profiles consist of predicates on attributes (see Figure 9.6(a)). Each profile may

have several notifications, e.g., for different notification types (via email and via SMS). The structure of

a profile follows the structure of the respective event message type (EventType). Currently,A-MEDIAS

supports attribute value types (AttributeType) for integer (IntDomain), float numbers (FloatDomain), and

an enumeration type (EnumerationDomain). A section of the class definition for primitive profile objects

is shown in Code Fragment A.7. InA-MEDIAS, composite profiles may be unary or binary profiles refer-

ring to unary or binary event operators, respectively (see Figure 9.6(b)). A section of the class definition

for composite profile objects is shown in Code Fragment A.8.

134 Chapter 9. The A-MEDIAS System

subscribe(): boolean
unsubscribe(): boolean

IntDomain

to
from

FloatDomain
from
to
precision

EnumerationDomain

RangeValue

fromValue
toValue

EnumerationItem

1..*

1

Operator

compare(): boolean

name

Domain

1

1

1..*

AttributeType

name1..*

Notification

1..*

0..1 0..1

Predicate

value

SetValue

values[]

0..*

0..* 1

1

0..*

0..*

0..*

1

previousItemnextItem

0..1 0..10..10..1

1 1
1

EventType

addAttribute(): void
 getAttributes(): AttributeType[]

PrimitiveProfile

Profile

getRepresentation(): String

(a) Primitive Profiles

ConjunctionProfile SequenceProfile SimultanProfile

UnaryProfile BinaryProfile

timeInterval
statTime
endTime

1

Profile

getRepresentation(): String

subscribe(): boolean
unsubscribe(): boolean

1..*

1

21

Parameter

event_selection
event_consumption
evaluation_time

CompositeProfile

Notification

NegationProfile

0..10..1

0..1

PrimitiveProfile TimeProfile

SelectionProfile DisjunctionProfile

(b) Composite Profiles

Figure 9.6: UML representation of profiles inA-MEDIAS

9.3. A-MEDIAS Profile Definition Language 135

Applications. Figure 9.7 shows theA-MEDIAS classes for applications and their transformations (Trans-

formationSet). Each application holds a set of transformations. This transformation set depends on the

available event sources: Transformations may be defined for each source profile. Source profiles are

defined in advertisements (Advertisement). A section of the class definition for an application is shown

in Code Fragment A.9.

Singleton
Factory

ApplicationPool

addApplication(): Application
remApplication(): Application

TransformationSet

createTansformation(): void

Advertisement

updateTime
updateValues

1 1..*

1..*

Transformation

1

0..*

Application

createTansformationSet(): void
1

1..*

1..* 1

1

Profile

subscribe(): Boolean

getRepresentation(): String
unsubscribe(): Boolean

Figure 9.7: UML representation of applications inA-MEDIAS

9.3 A-MEDIAS Profile Definition Language

In this section, we introduce the grammar of the profile definition language for client profiles that is

employed in theA-MEDIAS system. The language is shown in two parts: Figure 9.8 presents the main

concepts, while Figure 9.9 gives auxiliary definitions.

For the specification of syntax and grammar, we use the Extended Backus-Naur Form (EBNF) pro-

posed by Wirth [Wir77]. In EBNF, square brackets[.] indicate zero or single occurrences of the enclosed

expression and parentheses(.) can be used to group expressions. The signs enclosed by quotation marks

and the capitalized words are the terminals of the grammar. ASTRING is a character sequence that may

contain letters and digits. The structures ofREAL andINTEGER follow the common rules for real and

integer numbers, respectively. AnENUMERATION structure refers to strings or numbers with a pre-

defined order. The language’s grammar is a direct translation from our parameterized algebra (cf.

Chapter 5, Page 63). As introduced there, the exact semantics of each composite operator is controlled

by parameters. We included the additional parameter of event evaluation time in our profile definition

language. This parameter has first been discussed in Chapter 5, Page 70.

A definition of a new operator for each different parameter setting would not be sufficient: The

size of the profile language would increase significantly. Additionally, adapting the profiles would be

a complex task due to the fixed semantics of these operators. Our approach follows the concept of

polymorphism: The semantics of the basic operator is determined by the parameter setting, which may

change during the system’s runtime.

Profiles on primitive events are described using attribute-operator-value triples. The structure of

profiles follows predefined event types that are advertised in source profiles. Aprofile type defines the

attributes and their domains. The available attribute domains are numbers and enumerations of numbers

or strings. The available operators support equality tests (=) and inequality tests (< and>). Additionally,

the language supports the operator ’between’ (<> a and b) and the set operator ’in’->(a,b) that

refers to enumerations. Each predicate (PrimExp) refers to a single attribute. The attribute predicates

are implicitly combined by conjunctions. For disjunctive predicates, a new profile has to be defined.

136 Chapter 9. The A-MEDIAS System

Profile ::= ’PROFILE(’ ProfContent ’)’

ProfContent ::= PrimProf | CompProf | SelectProf | NegProf

PrimProf ::= ’PRI(’ PrimExp [’, TYPE=’ EventType] ’)’

CompProf ::= ’COMP(’ ProfContent [’,’ EisParameter]

CompOperator ProfContent [’,’ EisParameter]

[, MULTI =’ EicParameter] [’,’ TimeExp]

[, EVAL =’ EetParameter] ’)’

PrimExp ::= AttributeName AVtripleOperator Value

| AttributeName AVquadruple

TimeExp ::= ’ EVALTIME = ’ TimeFrame

[’, STARTTIME = TimeStamp]

[’, MAXTIME = TimeFrame]

CompOperator ::= ’OR’ | ’AND’ | ’BEFORE’ | ’WITH’

SelectProf ::= ’SELECT(’ ProfContent ’, NUMBER=’ INTEGER

[’,’ EicParameter] [TimeExpresssion] ’)’

NegProf ::= ’NOT(’ ProfContent

[’,’ EicParameter] TimeExp ’)’

AVtripleOperator ::= ’=’ | ’>’ | ’<’ | ’>=’ | ’<=’

AVquadruple ::= ’<>’ Value ’and’ Value

| ’->’ ’(’ Value ’,’ Value ’)’

TimeUnit ::= ’ms’ | ’s’ | ’min’ | ’h’ | ’day’ | ’week’

EicParameter ::= ’All-PAIRS’ | ’UNIQUE-PAIRS’

EisParameter ::= ’FIRST’ | ’LAST’ | ’ALL’ | INTEGER

EetParameter ::= ’CONTINUOUS’ | ’FINAL’

Figure 9.8: Profile Definition Grammar inA-MEDIAS. (Part 1/2)

The binary operators for composite events implement disjunction (OR), conjunction (AND), and se-

quence (BEFORE). Additionally, profiles for simultaneous events may be defined (WITH). Simultaneous

events occur with a temporal difference below a certain epsilon. The unary operators implement selec-

tion (SELECT(.)) and negation (NOT(.)). Composite events may be nested.

The temporal restrictions of event compositions are defined as relative time references (EVALTIME).

The evaluation of profiles starts either directly after the definition of a profile or at aSTARTTIME

defined within the profile. The profile is evaluated until the time spanMAXTIME is elapsed. Time

references are given in real time with reference to Greenwich Mean Time (see Figure 9.9). A timestamp

referenced by’0’ refers to the time of profile definition. The adaptive control of the accuracy in

composite event detection and composition as proposed in chapters 6 and 8 has not been implemented

in A-MEDIAS.

9.4. A-MEDIAS Filter Engine 137

EventType ::= STRING | ’TIMEPROFILE’ [’, TIMEZONE =’

(’+’ | ’-’) Hours ’.’ Minutes]

AttributeName ::= STRING

Value ::= AlphaNum | TimeStamp

AlphaNum ::= ENUMERATION | REAL

TimeStamp ::= (Hours ’:’ Minutes ’:’ Seconds)| ’0’

TimeFrame ::= ’"’ Integer timeUnit ’"’

TimeUnit ::= ’hours’ | ’minutes’ | ’seconds’

Hours ::= 0 | 1 | ... | 23

Minutes ::= 0 | 1 | ... | 59

Seconds ::= 0 | 1 | ... | 59

Figure 9.9: Profile Definition Grammar inA-MEDIAS. (Part 2/2)

9.4 A-MEDIAS Filter Engine

This section describes the filter engine of theA-MEDIAS system in detail. Figure 9.10 shows the inner

structure of the primitive profile pool. For each available profile type, a separate typed profile tree is

built. The dispatcher redirects the incoming events to the respective profile tree. Due to the working-

memory demands of the original profile tree structure as proposed by Gough [GS95], we implemented

a modified version of a profile tree. Our typed tree version is a combination of the original profile tree

with the counting algorithm [FLPS00]: For each attribute, a single node is built (as opposed to the

attribute level with multiple nodes in the original tree). The attribute values of the events are evaluated;

the intersection of then results refers to the matching profiles. For each attribute, an array refers to the

values of the respective profile predicates.

. .
 .

. .

Dispatcher

Typed Tree

a1
a

a

2

n

...
.

. .
 .

. .
 .

. .

Typed Tree

Primitive Profile Pool

Figure 9.10: Primitive-event filters inA-MEDIAS

138 Chapter 9. The A-MEDIAS System

Each predicate value, in turn, refers to a list of profile references, i.e., to the profiles that contain the

predicate. The profile reference list has been implemented in two version: as bit-list and as array. The

array is used for a small number of profile references, whereas the bit-list is used for a higher number

of references. The system changes automatically between the two reference systems if necessary.

For the reordering of the tree according to event and profile distributions, we implemented the se-

lectivity measures A1 and A2: The ratio of the probability of the zero-subdomain and the probability

of the domain-size under consideration of (A1) the profile distribution or (A2) the event and profile

distribution (cf. Chapter 7, Page 105).

AttributeType

name

Singleton
Factory

1..*10..* 1

PrimitiveProfile

1
1

ordered

1..*

 0..*

TreeNode

values[]
profileList[]
staredge

removeProfile()
buildNode()
postEvent()

postEvents(): int
addProfiles(): void
removeProfiles(): void
optimizeByProfiles(): void
optimizeByProfilesEvents(Event[]): void

1 0..*1

1 11

0..*

1

UniversalTree

removeProfiles(): void
addProfiles(): void
postEvents(): int

optimizeByProfiles(): void
optimizeByProfilesEvents(Event[]): void

TypedTree

EventType

addAttribute(): void
 getAttributes(): AttributeType[]

Figure 9.11: UML representation of the filter component for primitive events inA-MEDIAS

Figure 9.11 presents a simplified UML diagram for ourA-MEDIAS event notification component.

The dispatcher is implemented as a singleton (UniversalTree). The trees for each event type are objects of

classTypedTree. Each attribute (AttributeType) in this tree is represented by aTreeNode. The reordering

is a method of the universal tree and of the typed tree object (see Figure 9.11. The reordering of

the tree according to measure A1 is implemented by methodoptimizeByProfiles, the reordering based

on measure A2 (event and profile distribution) is implemented in methodoptimizeByProfilesEvents.

Both optimizations consider the current profile set in the tree,optimizeByProfilesEvents additionally

analyzes a given event set. The profile distribution is obtained based on the given profile set. The event

distribution is derived from the representative set of events (parameterEvent[]).

Quantitative adaptation is supported by optimization strategies for primitive-event and composite-

event filtering. Currently, the tree-reordering has to be triggered by the system administrator. We plan

to extend the current implementation to support auto-adaptation.

9.5 Summary

This section introduced our prototypical implementationA-MEDIAS of an adaptive integrating event

notification service. We presented the general system architecture as well as details of the filter imple-

mentation. Additionally, we described the profile language ofA-MEDIAS, which implements the event

algebra introduced in Chapter 5. Results of efficiency tests for our algorithm implementations within a

singleA-MEDIAS server are presented in the next chapter. The performance of a network ofA-MEDIAS

servers has been analyzed in [Bit03].

