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Abstract

Artificial intelligence developments are essential to the successful deployment of community-wide, MRI-driven pros-
tate cancer diagnosis. Al systems should ensure that the main benefits of biopsy avoidance are delivered while
maintaining consistent high specificities, at a range of disease prevalences. Since all current artificial intelligence /
computer-aided detection systems for prostate cancer detection are experimental, multiple developmental efforts are
still needed to bring the vision to fruition. Initial work needs to focus on developing systems as diagnostic supporting
aids so their results can be integrated into the radiologists’ workflow including gland and target outlining tasks for
fusion biopsies. Developing Al systems as clinical decision-making tools will require greater efforts. The latter
encompass larger multicentric, multivendor datasets where the different needs of patients stratified by diagnostic
settings, disease prevalence, patient preference, and clinical setting are considered. Al-based, robust, standard operating
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procedures will increase the confidence of patients and payers, thus enabling the wider adoption of the MRI-directed

approach for prostate cancer diagnosis.

Key Points

* Al systems need to ensure that the benefits of biopsy avoidance are delivered with consistent high specificities, at a range of
disease prevalence.

* Initial work has focused on developing systems as diagnostic supporting aids for outlining tasks, so they can be integrated into
the radiologists’ workflow to support MRI-directed biopsies.

* Decision support tools require a larger body of work including multicentric, multivendor studies where the clinical needs,
disease prevalence, patient preferences, and clinical setting are additionally defined.

Keywords Artificial intelligence - Deep learning - Prostate cancer - Multiparametric magnetic resonance imaging - Image-guided

biopsy

Abbreviations

ADC Apparent diffusion coefficient

Al Artificial intelligence

bpMRI Biparametric MRI

csPCA Clinically significant prostate cancer
DCE-MRI Dynamic contrast-enhanced MRI

mpMRI Multiparametric MRI

MRI Magnetic resonance imaging

PI-RADS  Prostate Imaging — Reporting and Data System
Introduction

In recent years, high-level evidence has emerged to support
the use of MRI for prostate cancer detection in both biopsy-
naive patients, and for men at persistent suspicion despite
negative results on prior biopsies. In the Oxford Cochrane
review [1], the MRI pathway (MRI + MRI-directed biopsy)
was found to have more favourable diagnostic properties com-
pared to systematic biopsy approaches.

The MRI-directed pathway has been accepted by multiple
national and international guidelines for prostate cancer diag-
noses. The Prostate Imaging Reporting and Data System (PI-
RADS) standard for multiparametric MRI (mpMRI) evalua-
tion and reporting [2] has also been adopted into multiple
guidelines to action the use of biopsies [3—5]. As a result, there
is a worldwide increase in the demand for MRI for diagnosis
and MRI-influenced guided biopsies.

The major benefits of the MRI-pathway in biopsy-naive
men are reductions in the number of men needing biopsies,
reducing the number of biopsy cores used to make diagnoses
[6], and in decreased detection rates of indolent cancers. In
patients with negative results from prior biopsies, increased
diagnoses of clinically significant cancer is an added benefit
[7]. Additionally, there is accumulating data from randomized
studies showing improved diagnoses of clinically significant
cancer in biopsy-naive men [8, 9]. Improved diagnoses of
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clinically significant cancer in men with positive MRI results
are subject to higher variability, with high false-positive rates
[10].

The delivery of diagnostic benefits is very dependent on
high reader expertise [11]. Expert readers with good im-
ages make more accurate diagnoses with less uncertainty.
High levels of expertise also enable the adoption of MRI
approaches that avoid contrast medium injections
(biparametric MRI; bpMRI) [12—14], which can help to
increase patient throughput at a lower cost. High reader
expertise also minimizes variations [15] in clinically sig-
nificant cancer yields within the MRI suspicion categories,
thus improving the uniformity and reliability of MRI find-
ings for clinical decision-making. Also, expert readers
have a lower percentage of uncertain diagnoses.
However, there is a recognized steep learning curve for
radiologists in prostate MRI interpretations also.

There are growing calls for high end-to-end quality of
the MRI-directed diagnostic chain, through the effective
working of the multidisciplinary teams. Delivering high-
quality patient care by utilizing the MRI-directed path-
way is challenging due to increasing demands on radi-
ologists’ time and a workforce that is not fully trained
to interpret prostate MRI to a high standard. High-
quality delineation of target lesions is essential to guide
MRI-directed biopsies and for subsequent therapy plan-
ning. However, both the detection of biopsy targets and
the delineations needed in preparation for biopsy are
time-consuming tasks, which are not reimbursed in
many practices.

In order to deliver the benefits of the MRI-pathway, there is
an important need to work efficiently while minimizing varia-
tions in MRI data acquisitions, image quality, image interpre-
tations, and to decrease the number of diagnostic steps needed
to identify men who are likely or unlikely to have clinically
significant cancers [7]. There is also a corresponding need to
control the quality of MRI-directed biopsy procedures by iden-
tifying the most suspicious areas to sample [16, 17]. Artificial
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intelligence approaches have the potential to increase work ef-
ficiency and minimize the variability of the results obtained.

Arttificial intelligence (Al) systems can potentially be help-
ful by automating multiple steps in the MRI pathway [18-20],
not only by alleviating the aforementioned demands on radio-
logic tasks but also by diminishing variability in diagnostic
performance. Several groups have set out to explore Al tech-
nologies for the diagnosis of prostate cancer on MRI, but thus
far, there has been limited adoption into clinical practice. The
reasons for this are multiple and include the fact that most Al
systems are at a very early stage of development in single-
centre settings, with limited user interfaces, lack integration
into the clinical workflow, and importantly have not been
validated for clinical use. Recently, an Al-based system
gained CE-compliance in the European Union as a medical
device, indicating a positive development [21-23].

Two recent articles analyzed the state-of-the-art and quality
of radiomics and Al-based approaches (deep and non-deep
learning) in prostate MRI [24, 25]. The studies found that
while the results are promising in terms of reported perfor-
mance, with good accuracy, there was a need for broader
comparability for systems against a common gold standard,
and improved quality in the range of studies conducted that
controlled biases with systematic validation strategies before
broader clinical adoption could be undertaken.

Thus, multiple important steps for the establishment of Al
in prostate MRI diagnosis have not yet been taken. This
whitepaper aims to outline the necessary prerequisites and
building blocks for the successful implementation of a clini-
cally relevant Al for the diagnostic use of prostate MRI,
reflecting the views of the Prostate MRI Working Group of
the European Society of Urogenital Radiology (ESUR),
European Association of Urology (EAU) Section of
Urological Imaging (ESUI).

Characteristics of artificial intelligence
systems for prostate MRI in cancer diagnosis

Definition of terms

Arttificial intelligence (Al is a broad field encompassing sev-
eral technologies which deduce (“learn”) decision-making
rules (“model”) directly from representative data (“dataset’)
to achieve prespecified goals [26, 27]. That is, most Al sys-
tems create a “model” based on a training dataset which is
then used to “infer” the properties of never-seen data for a
specific purpose. The dataset used is divided into different
parts during the process: beforehand, a representative part of
the data is set away to later determine the performance of the
model (“test dataset”). The remaining data is used to create the
model (“training dataset”). For some methods, especially
those with iterative rounds of parameter optimization, it is

further necessary to split the training data: one dataset to de-
duce the model parameters (again referred to as “training
dataset”) while another part is used to determine improve-
ments between the iterations of the model creation process
(“validation dataset™). It is important to note that the split
between the training and validation dataset can be dynamic
during the training, while the test dataset should always be
separate from the training data and only be used to ascertain
the performance of the model.

This learning process can be supervised, semi-supervised,
or unsupervised. The process is supervised when the outcome
or class of each case is available during the training process.
The process is unsupervised when the predictions are struc-
tured autonomously, and classes are derived from the input
data. Al systems are hereby classified through the structure of
the used models: Classic machine learning models employ
non-neural network techniques like support vector machines
(SVM), random forests, linear discriminant analysis (LDA),
naive Bayes classifiers, or k-nearest neighbour or neural net-
works with models with few or no layers (shallow neural
networks); deep learning refers to models with many
concatenated layers of artificial neurons to achieve the classi-
fication goal. In many instances, the feature extraction process
will be separated for classic machine learning and integrated
for deep learning, although this can vary from implementation
to implementation (Fig. 1).

Many methods are used for model creation including arti-
ficial neural networks, statistical or logical analyses, and fre-
quent combinations of methods are used [28].

Al for image analysis has recently experienced several
technological advances fuelled by the growth in computing
power, availability of annotated digital imaging datasets, and
the development of new algorithms. Most Al applications for
radiology apply some form of convolutional neural network
which belongs to the family of “deep learning” techniques
[29]. These networks can create models for segmentation,
detection, or classification within the imaging data. When oth-
er patients’ relevant meta-data (e.g. laboratory values or text
reports) are incorporated into the Al reasoning process, other
network structures become relevant, enabling eventually the
transformation from radiological decision support tools to
clinical decision-making aids [28].

General considerations for Al developments for
prostate MRI diagnosis

Data science prerequisites

Several issues should be critically assessed for Al and deep
learning developments in prostate cancer diagnosis. It is im-

portant to check that there are clear technical, radiologic, and/
or clinical focuses for Al developments.

@ Springer
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Fig. 1 Comparative workflows for classic radiology, radiomics, and deep
learning approaches to medical diagnosis: Workflows for the “classic”
radiology process (top), the radiomics approach (middle), and the deep
learning process (bottom). Only a few quantitative features are used in the
radiological assessments, which are mostly based on subjective, visually
assessed features incorporating few quantitative measurements such as
size, ADC value, Hounsfield unit (HU), or relaxation rates/times.
Radiomics, in contrast, systematically assesses a broad set of predefined
features (e.g. shape, size, first-order texture features) which can

Scientific rigour Scientific rigour is necessary for clinical ap-
plicability, meaning that descriptions of Al algorithms should
be provided to enable judgements on the contextual correct-
ness of the application, supported by appropriate experimental
set-ups and analyses. The biases of performance should be
rigorously evaluated on training and validation data, but more
importantly on independent test data during Al development
representative for the target population. The test dataset
should exclusively contain unseen data and should ideally
include data from other sites/sources to minimise such biases.

Ground truth Experience shows that object detection and clas-
sification need plentiful well-annotated data provided by ex-
perts, to train CAD and Al systems and validate their perfor-
mance. High-quality datasets are characterized by combina-
tions of imaging, clinical data, and histopathological data and
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additionally be filtered and searched for, to define patterns relevant to
pathology using statistical methods. Deep learning (and other Al-based
techniques) do not rely on predefined features but instead create indepen-
dent features (where complex features are a composition of simpler ones)
within artificial neural networks to distinguish between the desired target
classes. All methods of analysis ultimately aim to guide clinical manage-
ment of future patients with similar characteristics to the learning and
validation datasets

ideally follow-up to document the ground truth of the
presence/absence of significant cancer within the prostate
gland. Disease-specific metrics for the quality of ground truth
data (e.g. target Gleason score, growth patterns, surface area,
volume) need to be accurately established to correctly rate a
given algorithm's underlying dataset relative to the natural
history of the targeted prostate cancer. These ground truth data
are difficult to compile, as digital annotations of prostate MRI
scans are rarely performed in clinical practice, and histopath-
ologic correlation with whole gland sampling [30] for MRI
verification does not happen in the clinical routine. For exam-
ple, men with negative scans may not undergo biopsy and
men with positive scans may only undergo targeted biopsies.

Large datasets A single deep learning model directly classi-
fying images typically requires a large amount of data for
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training. For example, over 100,000 expertly annotated retinal
images were needed to train a deep learning model that pre-
dicted the presence and type of diabetic retinopathy at or
above the performance level of clinical experts [31]. The same
deep learning algorithm would not achieve the same perfor-
mance with fewer training cases. Similarly, the performance
of deep learning systems for prostate cancer diagnosis is ex-
pected to improve when larger datasets are used for training. It
is possible that transfer learning methods (e.g. using
pretrained models from other image recognition tasks and
train them for the task at hand) could improve performance
on smaller datasets; however, the total volume of data needed
will remain substantial. Similarly, data augmentation, that is
the addition of systematically modified (e.g. rotated/skewed/
noisy) versions of the images to the training dataset, improves
the training process at a technical level. However, data aug-
mentation does not introduce a broader clinical variability
which is essential to fully represent the imaging quality char-
acteristics of the data obtained in practise. Al systems will also
need to have adaptive properties and be able to use images
from a variety of MRI machines, with the wide breadth of
pulse sequences and protocol variations often seen in the clin-
ical routine. Demonstration of robustness to such variations or
procedures and to retain Al algorithm accuracy will be impor-
tant for clinical adoption. While many current approaches use
deep learning approaches, it is important to note that non-deep
learning models (random forests, SVMs, XGBoost) are used
in research and commercial applications and can achieve com-
parable or better performance compared to deep learning until
very large datasets are available [32, 33].

Study design

Segmentation When evaluating the performance of Al sys-
tems, it is paramount to benchmark against the collective per-
formance of general and specialized radiologists as far as pos-
sible. These evaluations should be performed at an anatomical
level by assessing the quality of prostate gland segmentations
at all prostatic levels because radiologists have greater vari-
ability when delineating the gland at the prostate apex and
base when only axial images are used [34].

Outlining Similarity scores for detected lesions within the
prostate gland by Al systems against radiologists tend to be
low and dependence of lesion similarity scores with tumour
size or aggressiveness measurements needs to be investigated.
When considering this, we must acknowledge that the “truth”
of lesion outlining by radiologists may also not be accurate as
there are no recognized operating procedures on how lesion
outlining should be done. Radiologist outlining is often erro-
neous when verified against whole-mount histopathology [35]
but is better for index prostatic lesions when verified against
step-section mapping biopsies [1]. Bringing objectivity to the

lesion outlining process for Al training would require imaging
data with histopathologic correlations from either prostatecto-
my specimens or transperineal template mapping biopsies.
Ideally, the under-sampling and sampling errors of targeted
biopsy alone or in combination with systematic biopsy should
be taken into account for Al detection and lesion outlining
tasks.

bpMRI To date, most Al developments have utilized bpMRI for
system development, often using axial plane imaging only for
training and validation. bpMRI could help to more efficiently
manage scarce MRI resources for broader availability of prostate
MRI where needed [36]. However, both dynamic contrast en-
hancement (DCE) and multiplane imaging assessments are part
of the PI-RADS standard and are mandatory for other systems
that evaluate prostate MRI for the presence of significant cancers
[37, 38]. It is also important to remember that while
multiparametric, multiplane MRI has been extensively clinically
validated, bpMRI with single axial imaging plane imaging has
not undergone such rigorous evaluations for being able to direct
prostate biopsies [14]. With promising studies underway to as-
certain the value of bpMRI alone [39], this might change in the
future. Readers should note that in the sub-analysis of the 4M
data there was a 70% increase in the uncertain category when
single plane bpMRI was evaluated [12]. Although the overall
radiologic diagnostic performance differs between bpMRI and
mpMRI is likely to be small for experienced readers working in
multiple imaging planes [12], we need to be cognizant of the
potential for error propagation introduced by axial plane bpMRI
evaluations which could mean that the desired biopsy impacts
may not be realized because of more uncertain cases.
Nevertheless, the way DCE imaging is performed across institu-
tions also varies considerably in terms of sequence/acquisition
parameters and bolus timing, thus adding another challenge to
the standardization task for tools based on image analysis and
their reproducibility [40-42].

Radiological decision support tool Remembering that the PI-
RADS score has been validated for clinical biopsy deci-
sion-making, we would caution deep learning develop-
ments that predict PI-RADS category scores based on
bpMRI sequences. Thus, any deep learning tool that ac-
tively promotes axial-only bpMRI approaches, seeking in-
direct validation via the use of mpMRI PI-RADS scoring
system, needs further validation.

These considerations point to the important need for Al
systems to be developed initially as radiological decision
support tools rather than clinical decision-making aids. A
change in indication from a “radiological diagnosis support
tool” to “clinical decision-making tool” would need to un-
dergo rigorous testing against clinically valid endpoints,
such as the presence of clinically significant lesions in
positive and negative cases.

@ Springer
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Data variability and validation Each Al system developed for
prostate cancer diagnosis will require testing in prospective,
multivendor, multi-institutional studies to assess system per-
formance, from which robust measurements of clinical im-
pacts can be derived in different use case scenarios as
discussed in more detail below. Currently, very few studies
involving Al in medical imaging are conducted in a standard-
ized and comparable way. A recent analysis of over 31,000
studies carried out from 2012 to 2019 could only identify 82
studies which allowed a meaningful comparison and had end-
to-end validation with medical professionals [43]. Therefore,
in the phases of optimization of Al systems, larger, well-cu-
rated, diverse (potentially from multiple vendors, multiple
centres) training and validation datasets must be developed,
with spatially correlated histopathology validation, and all
studies need to be rigorously tested against human perfor-
mance by multiple readers. The single institution/single ven-
dor ProstateX dataset is an important step in this direction
[44], and the concept of hidden test data could be used to
provide means for objectively estimating a network’s perfor-
mance against an alternate algorithm.

Advanced assessments of the performance of Al systems
should seek to go beyond technical evaluations of similarity
coefficients, receiver operator curve, and precision-recall
curves assessments which may be enough for “radiological
diagnosis support tool” developments. However, “clinical
decision-making tool” developments will require additional
assessments of potential clinical impacts which should be in-
corporated into assessments of performance as early as possi-
ble, including net-benefit analyses, thus accelerating general
clinical acceptance.

Patient selection

Cancer prevalence—pre-test probability It is important to re-
member that the documented benefits of MRI only emanate
from western populations presenting for secondary screening,
where the prevalence of the International Society of
Urological Pathology (ISUP) prostate cancer grades 2—5 can-
cer is about 30-50% in routine clinical practise. Since most Al
systems are trained on these datasets, their performance is
“tuned” for this prevalence of the disease. We cannot therefore
directly extrapolate Al performance to men with a much
higher or much lower prevalence of significant cancers or
for other histologic csPCa definitions. Al systems will need
to adapt to the disease prevalence of the local population and
to have performance characteristics (acceptable false-positive
and false-negative rates) that enable the delivery of diagnostic
benefits according to clinical priorities at differing disease
prevalence (see below).
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Patient selection

In this regard, it is especially important to note that currently
available MRI dataset developments exclude multiple patient
groups. However, the entire population presenting for diagno-
sis must be represented in the training/validation datasets for
general prostate cancer diagnosis Al developments.
Differences between populations need to be recognized, such
as the prevalence for reasons discussed above and due to dif-
ferent anatomical locations of significant cancers within pop-
ulation groups [34]. Therefore, in addition to Al algorithms
for biopsy-naive and prior negative biopsy men, other patient
groups should also be included, such as men with prior neg-
ative or equivocal MRI scans who do not undergo an imme-
diate biopsy on safety net follow-up regimens and patients
under active surveillance for known low-risk prostate cancer.
MRI datasets may be expanded to patients with treated dis-
eases in due course. Patient groups excluded in Al develop-
ments should be “black-boxed” for the indication (carry seri-
ous safety risks).

Al developments as radiological diagnosis support tools

Differences in tolerance to false results As deep learning—
based MRI interpretations will assist in determining the need
for a biopsy after radiological interpretations, the clinical set-
ting will determine the appropriate level of tolerance to false-
positive or false-negative results. Clinical tolerance to false-
positive results differs between patient groups [7]. In biopsy-
naive men, there is a need to minimize over-testing and detec-
tion of indolent cancers and to detect significant cancers likely
to cause harms; the former consideration, therefore, reduces
the acceptability of false-positive results. In the same vein,
men undergoing primary screening for prostate cancer at a
low background risk of significant cancer have general intol-
erance to false-positive results because of the harms related to
over-testing. However, there also needs to be a low false-
negative rate to aggressive disease. On the other hand, in
men with persistent suspicion after negative findings on a
previous biopsy, it is essential not to miss potentially aggres-
sive cancers; therefore, the tolerance to false-positive results is
higher. These tolerances need to be factored into Al design
parameters.

High false positives A high false-positive rate of Al systems
has been noted by multiple investigators [18, 19, 45, 46]. For
example, Schelb et al [45] noted that the success of their Al
system developed on bpMRI came at the cost of a high false-
positive rate of around 50%. The Al system’s sensitivity rap-
idly declined when attempting to lower the false-positive rate.
That is, to maintain high sensitivity for the detection of
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clinically significant cancer, the Al system overcalled multiple
lesions that did not represent significant cancers (false-posi-
tive findings).

Performance measures Discrimination and calibration are im-
portant indicators for evaluating the performance of risk pre-
diction or decision tools [47]. While discrimination focuses on
separating people with disease from people without disease,
calibration focuses on the agreement between observed out-
come and predicted risk.

Discrimination is important for Al developments in the
prostate cancer diagnostic settings, because we want to
separate men with from men without clinically significant
prostate cancer. Good discrimination means that men with
significant cancer will consistently have higher predicted
risks than those men without significant disease. To indi-
cate the discriminative ability of risk prediction models
for a binary outcome, the area under the receiver operat-
ing characteristic (ROC) curve is commonly used, which
plots the sensitivity (true-positive rate) against 1 specific-
ity (false-positive rate) for consecutive cut-offs for the
probability of significant disease. In general, discrimina-
tion is not dependent on disease prevalence.

Calibration refers to the agreement between observed
outcomes and predictions. Calibration is more important
in prognostic settings, because we would like to more pre-
cisely predict the risk of clinically significant prostate can-
cer. Calibration concerns itself directly with the estimated
probabilities or predictive values. The positive predictive
value is defined as the probability of clinically significant
disease given a positive test result, and the negative pre-
dictive value is the probability of no significant disease
given a negative test result. When a risk score is used,
the continuous analog is the probability of disease (i.e.
prevalence) given the value or range of the score. An as-
sessment of calibration directly compares the observed and
predicted probabilities, for which the disease prevalence is
very important.

Al developments for clinical decision-making

Multiple tasks can be envisioned for Al developments to
meet clinical needs. These tasks should not be considered
as distinct Al developments but rather as desired integra-
tions that will enable the successful clinical development
as “clinical decision-making tools” helping to deliver clin-
ically meaningful benefits in men with suspected prostate
cancer.

Al in low-risk men For biopsy-naive men, Al systems should
initially focus on identifying men with normal/non-suspicious

findings with low false-negative detection rates (high sensitiv-
ity) at a certain level of specificity, so that further testing can
be avoided. If we accept that the false-negative rate of nega-
tive MRI is < 10% [48], it is estimated that about 1 in 3
biopsy-naive men and 2 in 3—5 men after prior negative biop-
sy [1, 49] can avoid biopsies after a negative MRI with a low
clinical suspicion when evaluated by expert human readers.
The performance level for Al in this regard will need to be
firmly established.

Al in high-risk men Men with a higher level of suspicion
will have a higher prevalence of clinically significant cases
and will require accurate lesion identification and outlining
according to patient clinical care priorities (Fig. 2). The
results from the detection workflows will need to be direct-
ly relevant to the subsequent planning of biopsy and treat-
ment tasks.

Al as a triage tool In the short term, the disadvantage of high
false-positive rates can be addressed by using Al systems
as triage tools that detect and present suspicious lesions,
along with their delineations to radiologists. In a second
step, radiologists can either accept or reject proposed le-
sions, by considering clinical risk factors and patient pri-
orities and improve delineations of cancer-suspicious tar-
gets before proceeding to reporting and communication
tasks. The latter activities are radiological diagnosis sup-
port tool developments. Schelb et al [45] noted that when
radiologists and machine learning agree on the likely pres-
ence of clinically significant lesions, the positive predictive
value increased without affecting the negative predictive
value. However, it should be noted that the lesions brought
into the attention of radiologists will still need to be eval-
uated by radiologists and the characteristics of the learning
curve for an ideal interaction between the Al and radiolo-
gists remains unknown. Naturally, it would be important to
understand why there are higher false-positive results with
Al systems compared to experienced radiologists.

User interface considerations
Al and radiologist interactivity

Using interactivity, suspicious lesions should be detected,
delineated, graded for the likelihood of malignancy, and if
possible given probabilities of aggressiveness. Detected
lesions could be classified according to their PI-RADS
category scores thus enabling image-based risk-stratifica-
tion when presented with PI-RADS compliant multiplane
mpMRI scans. Delineation of cancer-suspicious lesions
with high similarity to actual tumour locations/sextants/

@ Springer
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Fig. 2 Developing Al systems as clinical decision-making tools:
Stepwise application of Al according to population characteristics can
help deliver clinically appropriate benefits by considering clinical risk

delineations will assist in planning biopsy and focal thera-
pies and boost radiation therapy indications. The additional
information from the interaction of the radiologist with the
Al results—i.e. accepting and rejecting lesions suggested
by deployed algorithms—could then be used to further
improve the Al networks and/or be used to give feedback
to the readers.

Al supporting radiologist's workflow

Furthermore, Al-based reading systems should be incorporat-
ed into user interfaces for the general reading of prostate MRI
and not—as previously seen in many CAD systems—offer
static captures of image analyses. User interfaces should be
tailored to the radiologists’ workflow allowing for the com-
prehensive evaluation of MRI along with the results of the Al
subsystem. Additional capabilities should include automatic
structured reporting according to and in addition to the PI-
RADS standard as appropriate.

An immediate use case of Al and computer-aided detection
systems derives from the high performance of Al algorithms
in segmenting the entire gland and prostate zonal anatomy
comparable to manual segmentations. This opens the possibil-
ity for segmentation of the prostate gland to be used for cog-
nitive and fusion-biopsy as well as for radiation therapy plan-
ning. In the first instance, Al systems should detect normality
with high confidence. This triage role would have an imme-
diate benefit for radiological workload and help build the con-
fidence of Al capabilities.

@ Springer

profiles and clinical priorities. Multiple tasks can be envisioned that are
directly relevant to the planning of biopsy and treatment tasks

Image acquisition

Multiple additional applications of Al systems in MRI pros-
tate cancer diagnosis can be envisioned. These include real-
time monitoring of MRI data acquisitions and the interactive
deployment of remedial actions while scanning is ongoing, in
order to deliver optimized diagnostic images for every exam-
ination. This would enable consistency in the planning and
acquisition of MRI exams and improve the comparability of
subsequent scans. It is important to remember that Al algo-
rithms work best when data acquisitions are consistent.
Another in-scanner application could be for deciding which
patients need contrast medium injection where bpMRI is per-
formed initially, which would help increase efficiency and
reduce costs if contrast medium is not deployed, or to reduce
indeterminate cases when contrast medium is used in appro-
priate bpMRI cases.

Image quality

A helpful Al system should be able to evaluate the prostate
gland even when MR images are not ideal but should also
indicate when quality is insufficient for the specific Al algo-
rithm to work effectively. As already noted, the focus of Al
should initially be on the detection of men with a low likeli-
hood of having clinically significant cancers and thereafter the
detection, classification, and delineation of suspected cancer
locations in men not deemed to be negative at high negative
predictive value. This will help in optimizing reading
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workflows of increasingly complex mpMRI data and help
ameliorate radiological demands.

Follow-up imaging or second reading

Another aspect, currently omitted from Al developments,
should be the consideration of multiple imaging time points
when training Al systems, as temporal changes provide valu-
able information for analyses. The latter is especially impor-
tant for men on PSA surveillance who have avoided immedi-
ate biopsy after negative MRI as part of a safety-net regimen
of follow-up. Similar capabilities would also be of value for
men undergoing active surveillance. A role as a second reader
for indeterminate MRI cases that includes integrations with
clinical history, biochemistry, and genomic profiles can also
be envisioned.

Personalized diagnosis

Al systems can enable the combination of MRI and multivar-
iate risk prediction tools to personalized prostate cancer diag-
noses. For example, while multivariate risk-based models can
be used to decide on the need for MRI, Al enables the com-
bination of MRI results and risk-based models for biopsy de-
cisions, and in so doing it helps to tailor biopsy strategies in

order to deliver desired personalized patient care benefits (Fig.
3). This is because each biopsy approach will have trade-offs
of benefits and harms, based on the desired benefits of im-
proved diagnostic yields, reduced biopsy testing, or reduced
detection of indolent prostate cancer. Al tools can, therefore,
support physicians and patients in increasingly complex biop-
sy decisions with the advent of serum, urinary, and imaging
biomarkers.

Conclusion

The ESUR Prostate MRI Working Group and the ESUI rec-
ognise that further developments in artificial intelligence (AI)
are essential to successfully deploy community-wide MRI-
driven prostate cancer diagnosis. Al system developments
should ensure that the main benefits of biopsy avoidance are
delivered while decreasing the variations in biopsy yields ac-
cording to MRI suspicion levels. This white paper identified
several domains in Al developments and pointed out an
envisioned direction of travel. Since all current Al systems
for prostate cancer detection are experimental, multiple devel-
opmental efforts are still needed to bring the vision to fruition
for all men with suspected prostate cancer. Initial work should
focus on Al developments to support radiologists’ workflow

Patient selection:
risk based - clinical
and validated
biomarkers

MRI findings

Negative/- No

v

— Indeterminate

Biopsy

by clinical care
priority.

recommendation

strategy
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. None
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Reduce indolent

Targeted

Small cancer

High risk
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Fig.3 Personalizing diagnosis of prostate cancer using validated decision
support tools: Reimagining prostate cancer diagnosis requires validated
Al decision support tools that integrate imaging and blood biomarkers to
delivery personalized diagnoses via patient selections and biopsy
management. The blue arrows point to a typical man with an elevated
risk of prostate cancer. In the first step, there needs to be a decision on the
need for a comprehensive multiparametric approach as opposed to a

Consider | cancer detection biopsy
_ Increase VS stematic ‘
| | nghly significant cancer ybio s
consider detection RSy
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simpler biparametric approach. If there is an indeterminate MRI result,
the need for biopsy will require integration with clinical risk factors and
his clinical care priorities. For a man seeking to minimise over-testing, a
targeted biopsy alone can be envisioned. Several other clinical scenarios
can be similarly thought of. High-quality, end-to-end multidisciplinary
working of the diagnostic chain supported by Al systems will be required
to deliver this personalized vision of prostate cancer diagnosis
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including gland and target outlining tasks for fusion biopsies.
Developing Al systems as clinical decision-making tools will
require greater efforts. The latter encompass larger
multicentric, multivendor datasets where the different needs
of patients stratified by diagnostic settings, disease prevalence,
patient preference, and clinical setting are considered.
Standard operating procedures will increase the confidence
of patients and payers, thus enabling the wider adoption of
the MRI-directed approach for prostate cancer diagnosis.
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