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An obstruction to lifting to characteristic 0

Hélène Esnault, Vasudevan Srinivas and Jakob Stix

Abstract

We introduce a new obstruction to lifting smooth proper varieties from characteristic
p > 0 to characteristic 0. It is based on Grothendieck’s specialization homomorphism
and the resulting discrete finiteness properties of étale fundamental groups.

1. Introduction

1.1 The first example and recent developments

Let A be a complete local noetherian domain with algebraically closed residue field k and field of
fractions A ⊂ K. In [Ser61], Serre considers for a smooth proper variety X over k the question of
whether X lifts to a smooth proper scheme XA over Spec (A) for some A as above. To construct
the first examples of varieties in characteristic p that do not lift to characteristic 0, he assumes
that X admits a finite Galois étale cover Y → X by a complete intersection Y ↪→ Pn of dimension
at least 3 such that the action of the Galois group G extends to a linear action on projective
space. It is then proven in [Ser61, Lemme] that a lift XA implies a lift of the linear G-action to
a representation ρA : G→ PGLn+1(A). This relies on Grothendieck’s isomorphism

π1(X)
∼=−−→ π1(XA) (1.1)

between étale fundamental groups as defined in [SGA1] and here denoted by π1. If k has charac-
teristic p > 0 and G has a ‘large’ p-Sylow subgroup, then the deformation ρA cannot exist and
the variety X does not lift.

Serre’s pioneer examples and methods have been largely amplified since then. For example,
Achinger and Zdanowicz construct in [AZ17] non-liftable varieties whose motive is of Tate type.
Moreover, Van Dobben de Bruyn proved in [vDdB21, Theorem 2] that ifX lifts to characteristic 0
and is endowed with a morphism X → C, where C is a smooth projective curve of genus ⩾ 2,
then the morphism itself lifts to characteristic 0 after an inseparable base change over C. This
enabled him to find examples of smooth projective varieties X such that no alteration of X lifts
to characteristic 0; see [vDdB21, Theorem 1].
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1.2 The new obstruction

In this note we construct a new obstruction to the existence of a lift to characteristic 0.

Let K be an algebraic closure of K, the field of fractions of A as above with residue field k
of characteristic p > 0, and let XK be the corresponding geometric generic fibre of the deforma-
tionXA. Recall that Grothendieck’s isomorphism (1.1) is the key point to defining Grothendieck’s
specialization homomorphism

sp: π1(XK) −→ π1(X) ,

which is surjective and an isomorphism on the pro-p′-completion; see [SGA1, Exposé XIII, § 2.10
and Corollaire 2.12]. Here the pro-p′-completion of a profinite group is the canonical continuous
quotient obtained by the projective limit of all finite continuous quotients of order not divisible
by p. On the other hand, if η̄ : Spec (C) → Spec (K) → Spec (A) is a complex generic point
and Xη̄ = XA ×Spec (A),η̄ Spec (C), then by the Riemann existence theorem [SGA1, Exposé XII,
Théorème 5.1], the étale fundamental group π1(Xη̄) is the profinite completion of the topological
fundamental group πtop1 (Xη̄(C)), and the base change homomorphism π1(Xη̄) → π1(XK) is an
isomorphism. As Xη̄(C) is homotopy equivalent to a finite CW -complex (by, for example, Morse
theory), the discrete group Γ = πtop1 (Xη̄(C)) is finitely presented as a discrete group. Thus those
data yield a finitely presented group Γ together with a group homomorphism

Γ −→ π1(X) ,

which is surjective on the profinite completion and an isomorphism on the pro-p′-completion. In
addition, those properties propagate naturally for any finite étale cover XU → X associated with
a finite-index open subgroup U ⊆ π1(X).

This suggests the following definition.

Definition A (Definition 2.4). A profinite group π is said to be p′-discretely finitely gener-
ated (respectively, p′-discretely finitely presented) if there exist a finitely generated (respectively,
finitely presented) discrete group Γ together with a group homomorphism γ : Γ→ π such that

(i) the profinite completion γ̂ : Γ̂→ π is surjective;

(ii) for any open subgroup U ⊂ π with ΓU := γ−1(U), the restriction γU : ΓU → U induces
a continuous group isomorphism on pro-p′-completions

γ
(p′)
U : Γ

(p′)
U −→ U (p′) .

We remark that, albeit named p′-discretely finitely generated/presented, such a profinite
group π is still only topologically (and not discretely) generated by the image of the map Γ→ π,
which is part of the structure. The main point here is that the claimed presentation requires finite
words in the generators only as opposed to properly speaking profinite words that are allowed
in the notion of topologically finitely presented profinite groups (or pro-p′ groups).

Thus Grothendieck’s theory of specialization for fundamental groups implies the following.

Proposition B (Proposition 2.7). Let X be a smooth proper scheme defined over an alge-
braically closed field k of characteristic p. If π1(X) is not p′-finitely presented, for example
if π1(X) is not even p′-finitely generated, then X is not liftable to characteristic 0.

This is the announced obstruction to lifting based on discrete finiteness properties of the étale
fundamental group. Proposition B shows a fundamental difference between the virtual prime-to-p
homotopy type of varieties in characteristic p > 0 (that is, the prime-to-p completion of the étale
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homotopy types of a finite étale cover) and that of varieties in characteristic 0. The full étale
homotopy type was already known to behave rather differently in positive characteristic because
all connected affine varieties are of type K(π, 1), as was shown in [Ach17].

As the properties of Grothendieck’s specialization homomorphism also hold for smooth quasi-
projective varieties over A with a good relative simple normal crossings compactification with
values in the tame étale fundamental group, we can apply the notion in this case as well; see
Example 2.8.

We prove that our definition indeed yields an obstruction to the lifting property.

Theorem C (Main result, see Theorem 5.1 and Corollary 5.2). Let k be an algebraically closed
field of characteristic p > 0. Then there are smooth projective varieties X over k such that π1(X)
is not even p′-discretely finitely generated. In particular, X does not lift to characteristic 0.

Let us remark at this point that Theorem 1.1 of [ESS22] asserts that π1(X) is a finitely
presented profinite group if X is smooth projective. More precisely, loc. cit. asserts that the
same holds, more generally, for πt1(X) when X is smooth quasi-projective and admits a good
relative simple normal crossings compactification. Thus Theorem C shows as well that, in general,
there is no finitely presented discrete group, which can explain the main result of [ESS22].

1.3 Outline

We now describe our method to prove Theorem C. Over k = F̄p, let C be a smooth projective
curve of genus g ⩾ 2 with G = Aut(C) its finite group of automorphisms. Let P be a simply
connected variety on which G acts freely. We define

X = (C ×k P )/G ,

where G acts diagonally. Then G is a finite quotient of π1(X), and the associated Galois cover
C ×k P has fundamental group equal to π1(C). If π1(X) were p′-discretely finitely generated by
some Γ→ π1(X), then for any prime number ℓ ̸= p, the action

ρℓ : G −→ GL
(
H1(C,Qℓ)

)
of G on ℓ-adic cohomology H1(C,Qℓ) would be defined over Q; see Proposition 3.7. We construct
a curve C for which this rationality property fails.

The representation ρℓ is faithful, see Proposition 4.1, and by Proposition 4.6, the character
of ρℓ is Z-valued for ℓ ̸= p. It turns out that the rationality property fails if for all ℓ ̸= p, the
representation ρℓ is absolutely irreducible; see Section 4.3. Indeed, the absolute irreducibility
implies that C is supersingular, see Proposition 4.4, but then the Schur index of ρℓ turns out to
be 2. This prevents ρℓ from being defined over Q. It then remains to construct such a curve. We
show that the Roquette curve

y2 = xp − x

discussed in Section 4.2 has the required property. For this we have to make explicit the structure
of its group of automorphisms; see the appendix.
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2. Profinite groups with p′-approximation

2.1 Finiteness properties

Let p be a prime number. For any group H, the pro-p′-completion of H is defined as

H(p′) := lim←−
H↠Q

Q ,

where H ↠ Q ranges through all finite quotients with order |Q| coprime to p. In case H is
already a profinite group, we only consider continuous quotients H ↠ Q, that is, with open
kernel. If α : H1 → H2 is a group homomorphism (continuous if the Hi are profinite), we denote
the induced continuous homomorphism between the pro-p′-completions by

α(p′) : H
(p′)
1 −→ H

(p′)
2 .

Remark 2.1. Let Γ be a discrete group. Recall that any presentation of Γ = ⟨S |R⟩ with set
of generators S and set of relations R gives rise to a presentation complex XS,R with a single
0-cell ∗, a 1-cell for each s ∈ S and a 2-cell for each relation in R; see, for example, [Hat02,
Corollary 1.28] for a description of the attaching maps. It follows from loc. cit. that, naturally,

πtop1 (XS,R, ∗) = Γ .

The proof shows in particular that the fundamental group of a CW-complex with finitely many
1-cells (respectively, finite 2-skeleton) is finitely generated (respectively, of finite presentation).

Recall the following well-known proposition; see, for example, [LS01, Proposition II.4.2] and
[MKS04, Corollaries 2.7.1 and 2.8] for the forward direction, or [Sch27, Introduction, p. 162] for
the claim on finite generation of subgroups (implicit by the formula for the number of generators
of a subgroup of the free group) and [Sch27, § 3], what became known as the Reidemeister–
Schreier rewriting process, for the claim on finite presentation of subgroups.

Proposition 2.2 (Reidemeister–Schreier). Let Γ be a discrete group, and let Γ◦ ⊆ Γ be a sub-
group of finite index.

(i) The group Γ is finitely generated if and only if Γ◦ is finitely generated.

(ii) The group Γ is finitely presented if and only if Γ◦ is finitely presented.

Proof. If Γ is finitely generated (respectively, finitely presented), then there is a presentation
complex X for Γ with finitely many 1-cells (respectively, finite 2-skeleton). The finite-index
subgroup Γ◦ agrees with the fundamental group of a finite covering space Y → X. The complex
Y then also has finitely many 1-cells (respectively, a finite 2-skeleton) as the number of cells
multiplies by the degree of the cover. Thus Γ◦ is also finitely generated (respectively, finitely
presented).

For the converse direction, we assume that Γ◦ is finitely generated by u1, . . . , un ∈ Γ◦. Then
Γ is finitely generated by the generators of Γ◦ and representatives xt for each coset t ∈ Γ/Γ◦.
Now let Γ◦ = ⟨u1, . . . , un | r1, . . . , rm⟩ be, moreover, finitely presented. We may assume that
Γ◦ is normal by first passing to

⋂
t∈Γ/Γ◦

xtΓ◦x
−1
t , which is also of finite index and thus finitely

presented by the first part of the proof. There are as,t ∈ Γ◦ for all s, t ∈ Γ/Γ◦ such that

xsxt = as,txst , (2.1)

and for all t ∈ Γ/Γ◦ and all 1 ⩽ i ⩽ n, there are bi,t ∈ Γ◦ such that

xtuix
−1
t = bi,t . (2.2)
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We write as,t and bi,t as words in the ui. In this sense, Γ is then finitely presented by

Γ = ⟨u1, . . . , un, xt; t ∈ Γ/Γ◦ | r1, . . . , rm, (2.1), (2.2)⟩ .

Indeed, if we denote the right-hand side by Γ̃, then there is a surjective group homomorphism
Γ̃ ↠ Γ because all relations of the presentation of Γ̃ hold in Γ. Let Γ̃◦ be the subgroup of Γ̃
generated by the ui. Then the natural map

Γ◦ −→→ Γ̃◦ ↪−−→ Γ̃ −→→ Γ

is the identity onto Γ◦ ⊆ Γ. We may thus identify Γ◦ with Γ̃◦. Moreover, by (2.1) and (2.2), any

element of Γ̃ can be put in a form uxt with u ∈ Γ◦ and t ∈ Γ/Γ◦. So the index of Γ◦ = Γ̃◦ in Γ̃
is less than or equal to the index (Γ : Γ◦). Therefore, Γ̃→ Γ is an isomorphism.

The profinite version of Proposition 2.2 holds as well.

Proposition 2.3. Let π be a profinite group, and let U ⊆ π be an open subgroup. Then the
following hold:

(i) The group π is topologically finitely generated if and only if U is topologically finitely
generated.

(ii) The group π is topologically finitely presented if and only if U is topologically finitely
presented.

Proof. If U is topologically finitely generated (respectively, finitely presented), then the same
holds for π with a proof analogous to that of Proposition 2.2. For the converse direction in
part (i), we refer to [Wil98, Proposition 4.3.1]. The converse direction in part (ii) follows from
the criterion in [Lub01, Theorem 0.3] thanks to Shapiro’s lemma.

Recall the central definition of this note from the introduction.

Definition 2.4. A profinite group π is said to be p′-discretely finitely generated (respectively,
p′-discretely finitely presented) if there is a finitely generated (respectively, presented) discrete
group Γ together with a group homomorphism γ : Γ→ π such that

(i) the profinite completion γ̂ : Γ̂→ π is surjective;

(ii) for any open subgroup U ⊂ π with ΓU := γ−1(U), the restriction γU : ΓU → U induces
a continuous group isomorphism on pro-p′-completions

γ
(p′)
U : Γ

(p′)
U −→ U (p′) .

Remark 2.5. We refer to [Lub01, § 1] for basic definitions of profinite presentations. A p′-discretely
finitely generated (respectively, finitely presented) profinite group π has, in particular, by defini-
tion the property that π is topologically finitely generated (respectively, π(p

′) is finitely presented
as a pro-p′ group; due to [Lub01, Corollary 1.4], the group π(p

′) is also finitely presented as a
profinite group).

Remark 2.6. Condition (i) in Definition 2.4 implies that for any U as in condition (ii), the map
γ̂U : Γ̂U → U is surjective as well. Indeed, we must show that for all open normal subgroups
V ⊆ U , the composition ΓU → U → U/V is surjective. Cofinally among these V are open
subgroups that are even normal in π. Now Γ ↠ π/V is surjective by assumption, and the
preimage of U/V is ΓU .
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2.2 Finiteness properties of fundamental groups

Of primary interest for us are the (tame) fundamental groups of smooth projective varieties
(respectively, smooth varieties with a good compactification).

Proposition 2.7. Let X be a connected smooth proper scheme defined over an algebraically
closed field k of characteristic p. If π1(X) is not p′-discretely finitely presented, for example
if π1(X) is not even p′-discretely finitely generated, then X is not liftable to characteristic 0.

Proof. We argue by contradiction. If X lifts to characteristic 0, then there is a smooth proper XV

over a complete discrete valuation ring V of mixed characteristic (0, p) with residue field k, such
that X = Xk is the special fibre.

Let Spec(K) → V be a geometric generic point and K0 ⊂ K be the algebraic closure of
a finitely generated algebraically closed field over which the geometric generic fibre XK is defined
as XK0 ⊗K0 K = XK . Let K0 ↪→ C be a complex embedding. Let Γ := πtop1 (XK0(C)) be
the topological fundamental group, which is finitely presented. We first compose the profinite
completion map for the topological fundamental group

Γ = πtop1 (XK0(C)) −→
̂πtop1 (XK0(C))

with the comparison isomorphism [SGA1, Exposé XII, Théorème 5.1] of the Riemann existence
theorem comparing the completion with the étale fundamental groups π1(XK0) and, using [SGA1,
Exposé X, Corollaire 1.8], also π1(XK)

̂πtop1 (XK0(C))
∼−−→ π1(XK0)

∼←−− π1(XK) .

We then compose with Grothendieck’s specialization homomorphism [SGA1, Exposé X, Corol-
laire 2.4]

sp: π1(XK) −→ π1(Xk̄)

to obtain a homomorphism

γ : Γ −→ π1(Xk̄) .

The specialization map sp is surjective, and its pro-p′ completion sp(p
′) is an isomorphism by

[SGA1, Exposé X, Théorème 3.8] or rather [SGA1, Exposé X, Corollaire 3.9].1 It follows that γ̂
is surjective and γ(p

′) is an isomorphism.

We now show that the pro-p′-isomorphism property also holds for finite-index open subgroups
U ⊂ π1(X). Associated with any such subgroup is a connected finite étale cover f : XU → X
with π1(XU ) = U . The surjectivity of the specialization map sp is essentially proven based on
[EGAIV4, Théorème 18.1.2] by providing a formal lift of the cover that algebraizes to a connected
étale cover fV : XU,V → XV . The base-changed cover fV ⊗V K is still defined over K0 and gives
rise to a complex connected finite étale cover

fK0 ⊗K0 C : XU,K0 ⊗K0 C −→ XK0 ⊗K0 C .

The restriction of γ : Γ→ π1(Xk̄) to γ
−1(U) = ΓU as a map γU : ΓU → U identifies with the top

1Beware that [SGA1, Exposé X, Corollaire 3.9] writes π(p) for the pro-p′ completion.
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arrow in the commutative diagram

πtop1 (XU,K0(C))

inj
��

// π1(XU,k̄)

inj

��

πtop1 (XK0(C)) // π1(Xk̄) .

Therefore, γU is the analogue of the map γ but constructed for XU , so it is an isomorphism for
pro-p′ completions, again by [SGA1, Exposé X, Théorème 3.8]. This finishes the proof.

Example 2.8. The criterion of Proposition 2.7 holds more generally for the tame fundamen-
tal group of a smooth connected variety with a normal crossing compactification. Let V be
a complete discrete valuation ring of mixed characteristic (0, p) with residue field k. Let XV be
a smooth scheme over V with geometrically connected fibres such that there is a compactification
XV ↪→ X̄V over V , where X̄V \XV is a relative normal crossing divisor. We prove in this example
that the tame fundamental group πt1(Xk̄) is p

′-discretely finitely presented.

We use the notation and construction of the proof of Proposition 2.7. Mutatis mutandis, we
find a finitely presented group Γ := πtop1 (XK0(C)) and a homomorphism

γ : Γ = πtop1 (XK0(C)) −→
̂πtop1 (XK0(C))

∼−−→ π1(XK0)
∼←−− π1(XK) = πt1(XK)

spt−−→ πt1(Xk̄) ,

where we replace sp with Grothendieck’s specialization homomorphism [SGA1, Exposé XIII,
§ 2.10]

spt : πt1(XK) −→ πt1(Xk̄)

of tame fundamental groups. The argument for curves given in [SGA1, Exposé XIII, Corol-
laire 2.12] extends mutatis mutandis2 to XV and shows that spt is surjective and the pro-p′

completion spt,(p
′) is an isomorphism. It follows that γ̂ is surjective and γ(p

′) is an isomorphism.

We now show the pro-p′-isomorphism property for the restriction γU : ΓU = γ−1(U)→ U for
any open subgroup U ⊆ πt1(Xk̄). As for all Galois categories, there is an associated connected
finite étale cover XU → Xk̄, which extends to a tamely ramified cover X̄U → X̄k̄, where X̄U is the
normalization of X̄k̄ in K(XU ). The surjectivity of spt is proven as for sp by the algebraization
of a formal deformation to yield a finite étale cover XU,V → XV which extends to a tamely
ramified cover X̄U,V → X̄V , where X̄U,V is the normalization of X̄V in K(XU,V ). If X̄U,V is
a relative normal crossing compactification of XU,V , then we can argue as for XV to finish the
proof. If not, we sketch two ways to overcome this issue. The first pedestrian approach works for
projective XV , while the second approach uses logarithmic geometry.

Sketch 1: We assume in addition that XV is projective. We may then reduce to dim(Xk̄) = 2,
by the usual generic hyperplane section argument in X̄V relative to V and transversal to the
boundary. See [EK16] for the tame Lefschetz argument saying that the tame fundamental group
of the special fibre does not change.

By [KS10, Theorem 4.4], tame covers of Xk̄ relative X̄k̄ in the sense of [SGA1, Exposé XIII]
agree with finite covers of Xk̄ that are curve tame [KS10, Definition, § 4, p. 653]. Curve tameness
also applies to finite étale covers XU , as associated above with an open subgroup U ⊆ πt1(Xk̄).
As remarked in [KS10, § 7], curve-tame covers form a Galois category. The Galois category of

2The key input is the more general [SGA1, Exposé XIII, Corollaire 2.8].
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curve-tame covers of U defines and determines the tame fundamental group πt1(XU ), which then
equals U as a subgroup of πt1(Xk̄).

By Abhyankar’s lemma [SGA1, Exposé XIII, § 5], the compactification XU,V ↪→ X̄U,V has a
tame cyclic quotient singularity locally in each of the double points of the boundary. That is, the
singularity is étale-locally isomorphic to Spec

(
V [ζn, x, y]

G
)
with G ≃ µn acting by scaling the

coordinates by powers of nth roots of unity. The analogues for complex surfaces are Hirzebruch–
Jung singularities with an explicit resolution by canonically subdividing dual cones; see for
example [Ful93, § 2.6], [BHP+04, § III.5], or [Alt98, § 2]. This toric resolution works equally well
relative to Spec (V ) and globally.

Thus XU,V ↪→ X̄U,V is still toroidal and admits a resolution as a relative normal crossing
compactification. The modification does not alter the (curve-)tame fundamental group, which for
the resolution with relative normal crossing is again defined in the sense of [SGA1, Exposé XIII].
We conclude by applying the original argument to this modification.

Sketch 2: Alternatively, we may consider X̄V as a log-regular fs-log-scheme with respect to
the log-structure induced by the normal crossing divisor X̄V \XV . The resulting log-scheme is
log-smooth over V endowed with the trivial log-structure. Then purity for the log-fundamental
group due to K. Fujiwara and K. Kato, as originally stated in unpublished work (1995) and
reiterated without proof in [Kat21, Remark 10.3], shows

πt1(Xk̄) = πlog1 (X̄k̄) and πt1(XV ) = πlog1 (X̄V ) .

(See, however, Hoshi [Hos09, Proposition B.7 and Remark B.2] for a proof of the statement
that we need based on an independent proof of the purity theorem due to Mochizuki [Moc99,
Theorem 3.3].)

This shows, in particular, that X̄U,V → X̄V can be enriched to a finite Kummer étale cover of

fs-log-schemes. Hence X̄U,V is also log-smooth over V with U = πlog1 (X̄U ). Now the claim follows
from the theory of the log-specialization map, a particular case of which (over the standard log-
structure on V ) was worked out by I. Vidal in her thesis (Université de Paris-Sud, 2001). The

essential ingredient is the topological invariance of πlog1 of [Vid01, Théorème 0.1] that implies the
log-analogue of [EGAIV4, Théorème 18.1.2]. We therefore have that

splog : πlog1 (XK) −→ πlog1 (Xk̄)

is surjective, and an isomorphism after pro-p′-completion. Moreover, the same applies to the
covering described by open subgroups U ⊆ πlog1 (Xk̄). This completes the discussion.

Recall from [ESS22] that, as a profinite group, πt1(X) is finitely presented. It is natural to ask
whether without the liftability assumption, πt1(Xk̄) is always p

′-discretely finitely presented. We
shall prove in Section 5 that it is even not necessarily p′-discretely finitely generated, producing
thereby a new liftability obstruction, notably for smooth proper varieties.

Remark 2.9. For a given profinite group π that is p′-discretely finitely presented, the dis-
crete group Γ that realizes the discrete finite presentation by Γ → π is not uniquely de-
termined by the group π. Serre constructs in [Ser64] an algebraic variety X over a number
field k that upon different complex embeddings σ, τ : k → C yields non-homeomorphic com-
plex manifolds Xσ(C), Xτ (C). Their algebraic origin shows that the étale fundamental groups
π1(X

σ
C) ≃ π1(Xτ

C) are isomorphic, but their topological fundamental groups are not.
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3. Independence of ℓ and rationality

3.1 Rationality of representations

Let G be a finite group. We recall how to decide if a complex linear representation of G is
defined over Q; see, for example, [Ser77, Chapter 12]. The ring of complex-valued characters RG

has subrings

RG(Q) ⊆ R̄G(Q) ⊆ RG ,

whereRG(Q) is the ring of characters defined overQ and R̄G(Q) is the ring ofQ-valued characters.
Wedderburn’s theorem decomposes the group ring Q[G] of G according to the distinct irreducible
representations Vi of G in Q-vector spaces as

Q[G] =

r∏
i=1

EndDi(Vi) (3.1)

with simple factors isomorphic to matrix rings Mdi(Di) over skew fields Di = EndG(Vi) with
centre Ki. Let χi : G → Q be the character of Vi as a G-representation over Q. These χi form
a basis of RG(Q).

Next, using the reduced trace EndDi(Vi) → Ki composed with an embedding σ : Ki ↪→ C
instead, we obtain a complex character ψi,σ : G → C. The ψi,σ for all i and all σ form a basis
of RG, and the ψi =

∑
σ ψi,σ form a basis of R̄G(Q) according to [Ser77, Proposition 35]. Now

dimKi(Di) = m2
i is the square of the index of Di as a skew field over Ki. The Schur index of the

representation Vi is this mi. By [Ser77, Chapter 12], we have χi = miψi and so

R̄G(Q)/RG(Q) =
r⊕

i=1

Z/miZ .

This means that a general complex-valued character χ =
∑

i,σ di,σψi,σ arises from a representation
defined over Q if and only if the following two conditions are satisfied:

(i) The character must be Galois invariant: the values lie in Q. That is, the coefficients di,σ are
independent of σ; say χ =

∑
i diψi.

(ii) The coefficients di must be divisible by the Schur index mi.

Remark 3.1. Since G is a finite group, any representation in a Q-vector space stabilizes a Z-
lattice (for example, the lattice Λ =

∑
s∈G sΛ0 generated by the G-translates of any lattice Λ0)

and hence is even definable over Z. So integrality is no further constraint for a representation of
a finite group G.

3.2 Independence of ℓ

Let π be a profinite group, and let φ : π ↠ G be a finite quotient with kernel Uφ = ker(φ). We
denote its abelianization by Uab

φ . Then conjugation induces a commutative diagram

π //

φ
����

Aut(Uφ)

����

// Aut
(
Uab
φ

)

G // Out(Uφ) .

99

(3.2)
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If π is finitely generated, then Uφ is finitely generated by Proposition 2.3. We deduce that Uab
φ is

a finitely generated Ẑ-module. The resulting G-representations with values in finite-dimensional
Qℓ-vector spaces are denoted by

ρφ,ℓ : G −→ GL
(
Uab
φ ⊗Qℓ

)
, (3.3)

with character

χφ,ℓ = tr(ρφ,ℓ) : G −→ Qℓ .

Definition 3.2. A profinite group π is said to satisfy independence of ℓ with the exception of
the prime number p if

(ip) as a profinite group, π is finitely generated, and

(iip) for all continuous finite quotients φ : π ↠ G, the following holds: for all prime numbers
ℓ ̸= p, the characters χφ,ℓ have values in Z and are independent of ℓ.

A profinite group π is said to satisfy independence of ℓ if

(i) as a profinite group π is finitely generated, and

(ii) for all continuous finite quotients φ : π ↠ G, the following holds: for all prime numbers ℓ,
the characters χφ,ℓ have values in Z and are independent of ℓ.

Remark 3.3. For a profinite group as in Definition 3.2, we define a variant (ii′p) of condition (iip).

(ii′p) For each ℓ ̸= p, fix an embedding Qℓ ⊂ C. Then the ρφ,ℓ, viewed by scalar extension as
representations of G in C vector spaces, are all isomorphic for all ℓ ̸= p.

Then condition (iip) is equivalent to condition (ii′p). As G is finite and C is of characteristic 0,
the representations are semisimple and thus determined by their characters. Consequently, con-
dition (iip) implies condition (ii′p).

Conversely, if condition (ii′p) is satisfied, then all characters χφ,ℓ : G → Qℓ agree after com-
position with the chosen embedding Qℓ ⊂ C with a complex-valued character χ : G → C. Let
F ⊆ C be the subfield generated by the values of χ. This is an abelian number field since all
eigenvalues are roots of unity. Moreover, the field F is contained in Qℓ ⊂ C for all ℓ ̸= p; that
is, F has a split place above ℓ. It follows that F/Q is completely split over all ℓ ̸= p, and thus
F = Q by Cebotarev’s theorem. Therefore, all χφ,ℓ take values in rational algebraic integers,
that is, in Z, and these values are independent of ℓ ̸= p.

We formulated condition (iip) rather than condition (ii′p) because it suggests a motivic flavour.

Proposition 3.4. Let p be a prime number. Let π be a profinite group which is p′-discretely
finitely generated via Γ→ π. Then π satisfies independence of ℓ with the exception of p.

Proof. Let φ : π ↠ G be a finite continuous quotient. The composite map f : Γ → G defines
similarly with Γφ = ker(f) and Γab

φ a representation

ρφ : G −→ GL
(
Γab
φ ⊗Q

)
(3.4)

in a finite-dimensional Q-vector space Γab
φ ⊗Q. The assumption on Γ→ π yields that Γφ → Uφ

is an isomorphism on pro-p′ completion. Hence, in particular, for all ℓ ̸= p, the homomorphism
Γϕ → Uϕ induces a G-equivariant isomorphism

Γab
φ ⊗Z Qℓ = Uab

φ ⊗Ẑ Qℓ .

Thus the ρφ,ℓ, for the various ℓ ̸= p, are compatible and even definable over Q.
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Proposition 3.5. Let k be an algebraically closed field of characteristic 0 (respectively, p > 0),
and let X/k be a smooth proper variety over k. Then π1(X) satisfies independence of ℓ (respec-
tively, independence of ℓ with the exception of the prime number p).

Proof. If X lifts to characteristic 0, then the combination of Propositions 2.7 and 3.4 shows the
claim.

Now let k be of positive characteristic p, and let X be arbitrary. Let φ : π1(X) ↠ G be a
finite continuous quotient, and let Y → X be the corresponding G-Galois étale cover. Then
the G-representation Uab

φ ⊗ Qℓ is dual to the natural G-representation on H1(Y,Qℓ). There is
a scheme S of finite type over Fp such that Y and the graphs graph(g) ⊂ Y ×k Y , for all g ∈ G,
have smooth proper models YS and graph(g)S with graph(g)S ⊂ YS×SYS . By proper base change
for étale cohomology [SGA4-3, Exposé XII, Théorème 5.1], we reduce to the case where k = F̄p.

Let α : Y → A be the Albanese morphism of Y . Then it follows from the comment after
[SGA1, Exposé XI, Corollaire 6.6] – for details, see, for example, [Sti13, Proposition 69] – that
the induced map

πab1 (Y ) −→→ π1(A)

is surjective with finite kernel. Thus α∗ : H1(A,Qℓ)→ H1(Y,Qℓ) is a G-equivariant isomorphism
(note that G does act on A by automorphisms that do not necessarily fix the origin). We may thus
replace Y with A and therefore, in particular, assume that Y is a smooth projective variety.3 As
any g ∈ G acts via correspondences, the characteristic polynomial of each g acting on H1(Y,Qℓ)
lies in Z[T ] and is independent of ℓ; see [KM74, Theorem 2(2)].

3.3 The obstruction imposed by the Schur index

Let π be a profinite group that satisfies independence of ℓ with the exception of the prime
number p. This means that for a finite quotient φ : π ↠ G, the character

χφ = χφ,ℓ = tr(ρφ,ℓ) : G −→ Qℓ .

has values in Z and is independent of ℓ ̸= p. This character χφ belongs to R̄G(Q), and the Schur
index obstruction in the proper sense is its class

[χφ] ∈ R̄G(Q)/RG(Q) .

This is the obstruction for the representation associated with χφ to actually be defined as a
linear representation of G in a Q-vector space.

Definition 3.6. We say that a profinite group π satisfying independence of ℓ with the exception
of the prime number p is (Schur) rational if for all finite continuous quotients φ : π ↠ G, the
Schur index obstruction class [χφ] is trivial; that is, there is an actual G-representation in a
Q-vector space Vφ that gives rise, for all ℓ ̸= p, to the ℓ-adic representations

Uab
φ ⊗Qℓ ≃ Vφ ⊗Q Qℓ .

The following proposition was actually proved within the given proof of Proposition 3.4.

Proposition 3.7. Let π be a profinite group which is p′-discretely finitely generated. Then π
satisfies independence of ℓ with the exception of p and moreover is rational.

3We reduce to the projective case in order to be able to cite Katz–Messing [KM74] directly. The argument of
[KM74] also applies to proper smooth varieties and étale cohomology in view of purity of weights.
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Not being Schur rational is inherited for fundamental groups in the following geometric con-
text. We may focus on positive characteristic because fundamental groups of smooth proper
varieties in characteristic 0 satisfy independence of ℓ and are rational due to Proposition 3.7.

Proposition 3.8. Let k be an algebraically closed field, and let X and Y be smooth proper
varieties over k. If π1(X) is not Schur rational, then π1(X×k Y ) is not Schur rational either, and
in particular X ×k Y does not lift to characteristic 0.

Proof. Let φ : π1(X) ↠ G be a finite quotient such that the corresponding character χφ has
non-trivial class in R̄G(Q)/RG(Q). As X (in fact even X and Y ) is proper, we have the Künneth
formula, see [SGA1, Exposé X, Corollaire 1.7],

π1(X ×k Y ) = π1(X)× π1(Y ) .

Composition with the first projection φ ◦ pr1 : π1(X ×k Y ) ↠ G leads to the character

χφ◦pr1 = χφ + dimQℓ
H1(Y,Qℓ) · 1G ,

where 1G is the trivial character of G. Because 1G is defined over Q, it follows that χφ◦pr1 has
the same class in R̄G(Q)/RG(Q) as χφ. This proves the claim.

4. Curves with many automorphisms

4.1 Action on H1

In this section, we consider a specific curve C defined over a finite field with a very large group G
of automorphisms, and we single out a property of the representation of G on its first ℓ-adic
cohomology H1(C,Qℓ) which prevents a variety X constructed in the style of Serre to lift to
characteristic 0.

We start with the well-known fact that this action is faithful.

Proposition 4.1. Let C be a smooth projective curve of genus g ⩾ 2 over an algebraically
closed field k. Then, for all ℓ different from the characteristic of k, the representation

ρℓ : Aut(C) ↪−−→ GL
(
H1(C,Qℓ)

)
is faithful.

Proof. Let s ∈ G be non-trivial and in the kernel. Then the graph of s in C×kC and the diagonal
intersect in a scheme of dimension 0, the degree of which we can compute cohomologically by
the Grothendieck–Lefschetz formula as

|degree of the fixed point scheme of s on C| = tr
(
s∗|H∗(C,Qℓ)

)
= 2− 2g < 0 .

This is absurd.

4.2 The Roquette curve

In [Roq70, § 4], Roquette defines the smooth projective curve CFp over Fp which is the smooth
projective compactification of the affine curve defined by

CFp : y
2 = xp − x ,

which we call the Roquette curve in this note. The map (x, y) 7→ x defines CFp as a double cover
CFp → P1. It follows that, for p = 2, the curve CFp is rational, and thus we shall consider only
the case p > 2 from now on. For p ̸= 2, the hyperelliptic cover CFp → P1 considered above is

338



An obstruction to lifting to characteristic 0

tame, and the Riemann–Hurwitz formula immediately yields the genus g = g(CFp) as 2g = p−1.
In particular, the Roquette curve has genus g ⩾ 2 if and only of p ⩾ 5.

We set C = CF̄p
:= CFp ⊗ F̄p. By [Roq70, § 4], the group of automorphisms Aut(C) over F̄p

is of cardinality equal to

|Aut(C)| = 2 · |PGL2(Fp)| = 2p
(
p2 − 1

)
.

For p ⩾ 5, the size of Aut(C) exceeds the Hurwitz bound 84(g−1), which bounds from above the
order of automorphism groups of curves of genus g ⩾ 2 in characteristic 0. Actually, Roquette
proved in [Roq70] that among curves of genus g with p > g + 1, the Roquette curve is the only
curve that fails the Hurwitz bound.

We shall use the precise group structure of Aut(C) as sketched in [Hor12, § 1.2] and also
that all automorphisms are defined over Fp2 on CFp2

:= CFp ⊗ Fp2 ; see Proposition A.3. As we
could not find in the existing literature proofs for the precise structure of this group and, more
importantly, the necessary representation theory, we refer to the appendix for this.

Proposition 4.2. For all ℓ ̸= p, the representation

ρℓ : Aut(C) −→ GL
(
H1(C,Qℓ)

)
is absolutely irreducible.

Proof. We denote by N a p-Sylow subgroup of Aut(C). The dimension of H1(C,Qℓ) is 2g =
(p−1), so that by Proposition A.7, it is enough to check that ρℓ|N contains a non-trivial character
or, equivalently, that ρℓ|N is not trivial. This follows immediately from Proposition 4.1.

It turns out that all we need from the Roquette curve is the absolute irreducibility proven in
Proposition 4.2.

4.3 Curves with Schur obstruction

Let C be a smooth projective curve over F̄p of genus g ⩾ 2 such that the following holds:

(⋆) for all ℓ ̸= p, the representation of G = Aut(C) on H1(C,Qℓ) is absolutely irreducible.

Let J = J(C) be the Jacobian of C, and let Vℓ(J) = Tℓ(J)⊗Zℓ
Qℓ be the rational Tate module

of J .

Lemma 4.3. Let C be a smooth projective curve with (⋆). For all ℓ ̸= p, the natural map
Qℓ[G]→ End(Vℓ(J)) is surjective.

Proof. Since H1(C,Qℓ) = Hom(Vℓ(J),Qℓ), the representation G → GL(Vℓ(J)) is dual to the
representation on H1(C,Qℓ), which we assume to be absolutely irreducible. The claim follows
from standard representation theory of finite groups.

The following result is well known for the Roquette curve ([Eke87, § 2, p. 172] using slopes
in crystalline cohomology) and in fact is a property shared by many curves with exceptionally
large automorphism group.

Proposition 4.4. Let C be a smooth projective curve with (⋆). Then C is supersingular.

Proof. Let C0/Fq be a model of C such that all automorphisms of C are defined as automorphisms
of C0 over Fq. Let J0 be the Jacobian of C0, so that J = J0 ⊗Fq F̄p. The geometric q-Frobenius
of C0 acts on Vℓ(J0) = Vℓ(J) commuting with G. The centralizer of the image of G in End(Vℓ(J))
consists only of scalars due to Lemma 4.3.
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It follows that the q-Weil numbers associated with J as the Jacobian of the curve C defined
over Fq are contained in a number field that admits an embedding to Qℓ for all ℓ ̸= p. This must
be Q. The only q-Weil numbers that are rational are ±√q, and q must be a square. Since the
Frobenius map acts as a scalar, only one of the possible Weil numbers occurs as eigenvalue of
the Frobenius map. By Honda–Tate theory, and because q is a square, there is a supersingular
elliptic curve E0 over Fq with the same Weil number. We set E = E0 ⊗Fq F̄p. It follows that

Vℓ(E
g) ≃ Vℓ(J)

as Galois representations. By the Tate conjecture [Tat66, Theorem 1], we find that J and Eg are
isogenous, and that proves the claim.

Remark 4.5. Our main example will be the Roquette curve, for which Proposition 4.4 has the
following elementary shortcut. The hyperelliptic double cover CFp → P1 allows one to count

#CFp(Fp) = p+ 1 .

Concerning rational points over Fp2 , we note that (1) they all lie over points in P1(Fp2) \ P1(Fp)
and (2) the action of G = Aut(C) on P1 by the group PGL2(Fp) of Möbius transformations (see
Lemma A.2) permutes all these possible images transitively. Since the hyperelliptic involution
acts transitively on all fibres, we find that CFp(Fp2) \ CFp(Fp) either is empty or consists of
2
(
p2 − p

)
points. A precise calculation (which we omit because the precise description of when

which case occurs is irrelevant to us) shows that

#CFp(Fp2) =

{
p+ 1 if p ≡ 1 (mod 4) ,

2p2 − p+ 1 if p ≡ 3 (mod 4) .

In any case, the Hasse–Weil bound for CFp and Fp2-rational points is sharp:∣∣#CFp(Fp2)−
(
1 + p2

)∣∣ = (p− 1) · p = 2g
√
p2 .

In other words, the Roquette curve is minimal/maximal over Fp2 , and this is only possible if the
Frobenius eigenvalues are all p or all −p. From here, we argue as in the proof of Proposition 4.4.

Proposition 4.6. Let C be a smooth projective curve with (⋆). For ℓ ̸= p, the representation

ρJ,ℓ : G −→ GL(Vℓ(J))

has character with values in Z that is independent of ℓ with the exception of the prime number p
but is not defined over Q. The Schur index over Q is equal to 2.

Proof. Since Vℓ(J) is dual to H1(C,Qℓ), the character has values in Z and is independent of ℓ,
for ℓ ̸= p, by the same argument as in the proof of Proposition 3.5.

Let E be a supersingular elliptic curve as in the proof of Proposition 4.4 such that J is
isogenous to Eg. We denote by D = End0(E) the endomorphisms of E over F̄p up to isogeny.
This is the unique quaternion algebra over Q ramified in p and ∞ only;4 see [Deu41, § 8].

Due to the Tate conjecture [Tat66, Theorem 1], under extension of scalars to Qℓ, the natural
representation

Q[G] −→ End0(J) ≃ Mg

(
End0(E)

)
= Mg(D)

4Indeed, the action on the 2-dimensional H1(EF̄p ,Qℓ) shows that D ⊗ Qℓ ≃ M2(Qℓ) for all ℓ ̸= p, and since D is

a skew field (E is simple) and not commutative (that is in fact one possible definition of a supersingular elliptic
curve, see [Deu41, § 7]), there is no other central simple algebra over Q of dimension 4 due to the local global
principle for central simple algebras; see Brauer–Hasse–Noether [BNH32, Hauptsatz, Reduction 1].

340



An obstruction to lifting to characteristic 0

becomes

Qℓ[G] −→ End0(J)⊗Qℓ = EndGal

(
Vℓ(J)

)
⊆ End

(
Vℓ(J)

)
.

Here Gal indicates Galois-invariant endomorphisms. We know from Lemma 4.3 that the compo-
sition is surjective. So the inclusion on the right is in fact an equality (which also follows because
the Frobenius map was identified with a scalar in the proof of Proposition 4.4). It follows that
Q[G] ↠ Mg(D) is surjective and identified with the component of the Wedderburn decomposi-
tion (3.1) of the group ring corresponding to the irreducible representation underlying the ρJ,ℓ.
Its Schur index is the Schur index of D, which indeed is 2.

5. A non-p′-discretely finitely generated fundamental group

The example presented in this section rests on Serre’s construction [Ser58, § 15] (which he at-
tributes to Weil [Wei38, Chapitre III]). Let C be a smooth projective curve of genus g ⩾ 2 over F̄p

that satisfies condition (⋆) of Section 4.3, and let G = Aut(C) be its group of automorphisms.
As a concrete example, we can use the Roquette curve as discussed in Section 4.2. Let P be a
smooth projective, connected and simply connected variety over F̄p such that G acts freely on P ;
see [Ser58, Proposition 15]. We define

X = (C ×k P )/G ,

where the action of G on C ×k P is the diagonal action.

Theorem 5.1. The fundamental group π1(X) is not p′-discretely finitely presented.

Applying Proposition 2.7, we obtain the following.

Corollary 5.2. The variety X does not lift to characteristic 0.

In particular, the condition for π1(X) to be p′-discretely finitely presented is a (new) ob-
struction for a characteristic p smooth proper geometrically irreducible variety defined over an
algebraically closed characteristic p > 0 field to be liftable to characteristic 0.

Proof of Theorem 5.1. As G acts freely on P , the finite morphism C ×k P → X is Galois étale
with Galois group G. Since π1(C ×k P ) = π1(C), due to the Künneth formula, Galois theory
induces an exact sequence

1 −→ π1(C) −→ π1(X)
φ−−→ G −→ 1 .

Conjugation defines the outer action ρ : G → Out
(
π1(C)

)
on Uφ := π1(C) considered in (3.2).

This outer action agrees with the natural action of G acting on C by applying the functor π1 as
follows. For s ∈ G, we can consider the covering transformation fs = (s, s) : C ×k P → C ×k P
and the automorphism s : C → C. With a lift γs ∈ φ−1(s), we obtain a diagram of isomorphisms
that commutes (and is only well defined) up to inner automorphisms:

π1(C ×k P )

γs(−)γ−1
s |...

��

π1(C ×k P )

π1(fs)

��

π1(C)

π1(s)

��

π1(C ×k P ) π1(C ×k P ) π1(C) .
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The associated ℓ-adic representations ρℓ : G → GL(Uab
φ ⊗ Qℓ) as considered in (3.3) therefore

agree with the natural representations on the rational Tate module of the Jacobian J of C

Vℓ(J) = π1(J)⊗Qℓ = πab1 (C)⊗Qℓ = Uab
φ ⊗Qℓ .

It follows from Proposition 4.6 that ρℓ is independent of ℓ with the exception of the prime
number p but is of Schur index 2. So π1(X) fails to be rational, and Proposition 3.7 shows
that π1(X) is not p′-discretely finitely generated.

Appendix. The automorphism group of the Roquette curves

Recall from Section 4 that the Roquette curve CFp over Fp is the smooth hyperelliptic curve
obtained as the compactification of the affine curve defined by the equation

y2 = xp − x .

The Roquette curve CFp has genus g = (p− 1)/2, so g ⩾ 2 if and only if p ⩾ 5. We are going to
construct a finite group G, define an action of G on CFp2

= CFp ⊗ Fp2 and show that G is the

full group of automorphisms of CF̄p
= CFp ⊗ F̄p.

A.1 The automorphisms

From now on we assume p ⩾ 5. The group of square roots

(F×
p )

1/2 :=
{
λ ∈ F̄×

p ; λ
2 ∈ F×

p

}
is a cyclic subgroup of F×

p2
of order 2(p− 1). We define the group G̃ as the fibre product5

G̃ :=
{
(A, λ) ∈ GL2(Fp)× (F×

p )
1/2; det(A) = λ2

}
.

The action of G̃ on CFp2
arises as follows. Let g = (A, λ) ∈ G̃ ⊆ GL2(Fp)× F×

p2
with matrix part

A =
(
a b
c d

)
. Then we denote by αg the map CFp2

→ CFp2
defined in coordinates by

α∗
g(x) := A(x) :=

ax+ b

cx+ d
, α∗

g(y) :=
λ · y

(cx+ d)(p+1)/2
.

Here A(x) is the usual Möbius action.

Proposition A.1. The map g 7→ αg defined above yields a group homomorphism

α : G̃ −→ AutFp2
(CFp2

) .

Proof. For g = (A, λ) ∈ G̃, with A =
(
a b
c d

)
, indeed αg defines a map CFp2

→ CFp2
:

α∗
g(y)

2 =
λ2 · y2

(cx+ d)p+1
=

det(A) · (xp − x)
(cx+ d)p+1

=
(axp + b)(cx+ d)− (ax+ b)(cxp + d)

(cxp + d)(cx+ d)

=
axp + b

cxp + d
− ax+ b

cx+ d
= α∗

g(x)
p − α∗

g(x) .

For another element h = (B,µ) ∈ G̃ with matrix part B =
(
a′ b′

c′ d′

)
, we compute

α∗
h(α

∗
g(x)) = α∗

h(A(x)) = A(α∗
h(x)) = A(B(x)) = (AB)(x) = α∗

gh(x)

5It has been brought to our attention by the referee that the construction of G̃ is contained in [Hor12, § 1.2].
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because GL2 acts by Möbius transformations on P1. Moreover,

α∗
h

(
α∗
g(y)

)
= α∗

h

(
λ · y

(cx+ d)(p+1)/2

)
=

λ · µ·y
(c′x+d′)(p+1)/2

(cα∗
h(x) + d)(p+1)/2

=
λµ · y(

(cα∗
h(x) + d)(c′x+ d′)

)(p+1)/2

=
λµ · y(

(c(a′x+ b′) + d(c′x+ d′)
)(p+1)/2

=
λµ · y(

(ca′ + dc′)x+ (cb′ + dd′)
)(p+1)/2

= α∗
gh(y) .

Since α(I,1) is the identity on CFp2
, where I is the unit matrix, the above shows simultaneously

that αg is an automorphism and that α is a homomorphism.

Let ι : CFp → CFp be the hyperelliptic involution (x, y) 7→ (x,−y). Since ι acts as −1 on the
Jacobian of CFp , it centralizes all automorphisms of Ck = CFp ⊗ k for any field k. In particular,
any automorphism f : Ck → Ck descends to a map f̄ : P1

k → P1
k. Since the ramification locus of

the hyperelliptic covering x : Ck → P1
k consists of all Fp-rational points, the induced map f̄ must

permute these. Therefore, the Möbius transformation describing f̄ has matrix entries in Fp due
to the following lemma.

Lemma A.2. Let k be a field of characteristic p. The group of automorphisms of P1
k that permutes

the subset P1(Fp) consists of the Möbius transformations from PGL2(Fp).

Proof. The group PGL2(k) acts sharply 3-transitively on P1(k) for all fields k.

Let k be a field containing Fp2 . Then we deduce from Proposition A.1 and Lemma A.2
a commutative diagram

1 // ⟨(I,−1)⟩ //

��

G̃

α

��

pr1 // GL2(Fp)

��

// 1

1 // ⟨ι⟩ // Autk(Ck)
f 7→f̄ // PGL2(Fp) // 1 .

(A.1)

Here pr1 is the projection (A, λ) 7→ A.

Proposition A.3. Both rows of (A.1) are exact, and the vertical maps are surjective. In par-
ticular, all the automorphisms of a Roquette curve are defined over Fp2 .

Proof. The top row is exact because squaring is surjective as a map (F×
p )

1/2 ↠ F×
p . The bottom

row is left exact by Galois theory of the hyperelliptic cover Ck → P1
k, and we are going to

show that the map f 7→ f̄ is also surjective. The left vertical map is an isomorphism because
of α((I,−1)) = ι. The right vertical map is the natural projection and thus also surjective. It
follows that the bottom row is also exact and that α is surjective.

Let
(
λ
p

)
= λ(p−1)/2 ∈ {±1} denote the Legendre quadratic residue symbol modulo p. Then

λ(p+1)/2 =

(
λ

p

)
λ ,

and we have an injective group homomorphism

F×
p −→ G̃ , λ 7−→

(
λI,

(
λ

p

)
λ

)
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because det(λI) = λ2 =
((

λ
p

)
λ
)2
. All

(
λI,

(
λ
p

)
λ
)
are contained in the kernel of α. So a diagram

chase with (A.1) shows the following.

Proposition A.4. Let k be a field containing Fp2 . The homomorphism α induces an isomorphism

G := G̃

/{(
λI,

(
λ

p

)
λ

)
; λ ∈ F×

p

}
∼−−→ Autk(Ck) .

It follows that the Roquette curve C has 2p
(
p2 − 1

)
automorphisms; see [Roq70, § 4]. The

main result of loc. cit. shows that among all curves with p > g + 1, the Roquette curve is the
only curve violating the Hurwitz bound 84(g − 1) for the order of the automorphism group.

A.2 Basic representation theory of G

We denote by N the image in G of the group of upper-triangular unipotent matrices

N = im

({(
1 u
0 1

)
; u ∈ Fp

}
↪−−→ SL2(Fp)

A 7→(A,1)
↪−−−−−→ G̃↠ G

)
.

The group N is cyclic of order p and thus a p-Sylow of G.

Lemma A.5. All elements of order p in G are conjugate to one another.

Proof. The computation in GL2(Fp)(
m 0
0 1

)(
1 1
0 1

)(
m−1 0
0 1

)
=

(
1 m
0 1

)
shows that in GL2(Fp), all elements of order p are conjugate to one another. Indeed, any element
of order p is conjugate to an element of the upper-triangular unipotent matrices by Sylow’s
theorems, and the computation explains the rest.

The same holds in G although GL2(Fp) is not a subgroup of G. Again by Sylow’s theorems,
we only have to prove the lemma for non-trivial (s, 1), (t, 1) ∈ N . Then, from the GL2-result,
we know that there is a matrix A ∈ GL2(Fp) with AsA−1 = t. Now we choose a square root λ

of det(A). The element g ∈ G which is the image of (A, λ) ∈ G̃ does the job:

g(s, 1)g−1 = (A, λ)(s, 1)
(
A−1, λ−1

)
=

(
AsA−1, 1

)
= (t, 1) .

Let K be a field of characteristic 0. We consider a representation ρ : G → GL(V ) with
a finite-dimensional K vector space V . For simplicity, we assume that K contains the pth roots
of unity. The restriction V |N to N decomposes into a direct sum of 1-dimensional representations,
according to the K-valued characters ψ : N → K× on N .

Proposition A.6. In the situation above, the multiplicity of ψ occurring in (V, ρ) is the same
for all non-trivial 1-dimensional representations ψ.

Proof. Let χ be the character of ρ as a representation of G. By Lemma A.5, the value of χ
on N \ {1} is constant, say χ(s) = nχ. The multiplicity of ψ in V |N is computed as

⟨resN (χ), ψ⟩N =
1

|N |
·
∑
s∈N

χ(s)ψ
(
s−1

)
=

1

|N |
(χ(1)− nχ) + nχ

1

|N |
·
∑
s∈N

ψ
(
s−1

)
=

1

|N |
(χ(1)− nχ) + nχ⟨1, ψ⟩N =

1

|N |
(χ(1)− nχ) .

Here 1 is the trivial representation, and the vanishing of ⟨1, ψ⟩N follows from the orthogonality
relations since ψ is non-trivial, or even from more elementary facts on characters.
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Proposition A.7. Let (V, ρ) be a representation of G such that the restriction V |N is not the
trivial representation. Then dimK(V ) ⩾ (p − 1), and if equality occurs, then ρ is an absolutely
irreducible representation.

Proof. The assumption V |N non-trivial means that there is a non-trivial character ψ of N that
occurs on V |N . There are (p − 1) non-trivial characters of N , and each occurs in V |N with the
same multiplicity according to Proposition A.6. The dimension estimate follows at once.

We can apply the same reasoning to an irreducible subrepresentation W ⊆ V , and we may
choose one which contains a non-trivial character ψ of N . The dimension estimate in case
dimK(V ) = p − 1 shows V = W ; hence V itself is irreducible. The same argument applies
after scalar extension to an algebraic closed field; hence the representation is even absolutely
irreducible.

Remark A.8. Proposition A.7 applies in particular to a faithful G-representation.
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