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Zusammenfassung

Ausgehend von den Hamiltonschen Bewegungsgleichungen eines beliebigen, moleku-

laren Mehrkörpersystems, leiten wir mithilfe von Projektionsoperatoren zunächst nicht-

Markovsche Modelle in Form von verschiedenen generalisierten Langevin Gleichungen,

im Englischen abgekürzt mit GLE, her. Die GLEs sind integro-Differentialgleichungen für

Observablen, die beliebige Funktionen von atomistischen Positionen sind. Die Projekti-

onsoperatoren sind so gewählt, dass sowohl nichtlineare Potenziale als auch nichtlineare

Reibungseffekte in den GLEs berücksichtigt werden.

Im darauffolgenden Kapitel stellen wir numerische Methoden vor, um nichtlineare Rei-

bungsfunktionen aus Zeitrehen zu bestimmen. Wir demonstrieren die numerische Extrakti-

onsmethode anhand einer Zeitreihe für den Dihedralwinkel eines Butanmoleküls im Wasser,

welche durch Molekulardynamik-Simulationen generiert wurde. Aus der Trajektorie be-

rechnen wir mithilfe unserer Methode alle zuvor hergeleiteten GLEs und vergleichen diese.

Wir finden für die untersuchte Dihedralwinkeldynamik des Butanmoleküls, dass eine positi-

onsabhängige Masse zu nichtlinearen Memoryeffekten führen kann. Diese Effekte können

beseitigt werden, indem man die Massenabhängigkeit des Potenzialterms berücksichtigt.

Im nächsten Teil konzentrieren wir uns auf die sogenannte approximative GLE, in der

nichtlineare Reibungseffekte vernachlässigt werden. Wir diskutieren unter welchen An-

nahmen die approximative GLE aus einer nichtlinearen GLE hervorgeht. Durch die ana-

lytische Berechnung der Kramers-Moyal Koeffizienten der approximativen GLE zeigen

wir, dass die Fokker-Planck Gleichung die Dynamik eines nicht-Markovschen Systems

nicht vollständig beschreibt. Wir extrahieren den Reibungskernel des Polypeptids Alanine9
aus Molekulardynamik-Simulationen, um die Wichtigkeit von Memoryeffekten bei Fal-

tungsprozessen von Proteinen zu quantifizieren. Wir stellen fest, dass unser GLE-Modell

die gemittelten Übergangszeiten solwohl der Faltungs-, als auch der Entfaltungsdynamik

sehr gut reproduziert. Auch die Kramers-Moyal Koeffizienten und die mittlere quadratische

Verschiebung, mit ausgeprägter anomaler Diffusion, werden durch die GLE sehr gut erfasst.

Markovsche Modelle hingegen, die auf Langevin Gleichungen mit nichtlinearer Reibung

basieren, sind nicht in der Lage, die Dynamik in beide Richtungen mit der gleichen Ge-

nauigkeit wiederzugeben. Hieraus schließen wir, dass eine konsistente Modellierung der

Faltungsdynamik von Proteinen Memoryeffekte mitberücksichtigen muss.

Im letzten Teil der Arbeit geht es um die Markovsche Einbettung von GLEs mit nichtlinearer

Reibung. Wir führen drei verschiedene Einbettungssysteme ein, die recheneffiziente Com-

putersimulationen nichtlinearer GLEs ermöglichen. Das erste Einbettungssystem erlaubt die

Simulation nichtlinearer Memoryeffekte bei konstanter effektiver Masse und, für den Fall,

dass die Reibungsfunktion eine nicht verschwindende Komponente bestehend aus einer

Deltafunktion der Zeit besitzt. Der Deltaanteil kann im zweiten Einbettungssystem vernach-

lässigt werden. Diese Einbettung leiten wir aus dem nichtlinearen Zwanzigmodell durch

eine Störungsentwicklung her. Das dritte Einbettungssystem erlaubt GLE-Simulationen

auch für den Fall, dass, zusätzlich zu einer nichtlinearen Reibungsfunktion, nun auch die

effektive Masse von der Reaktionskoordinate abhängt. Diese Einbettung basiert nicht auf ei-

ner Näherung des Zwanzigmodells und setzt, ähnlich wie das erste System, einen Deltaanteil

in der Reibungsfunktion voraus.



Abstract

Starting from the Hamiltonian equations of motion of an arbitrary molecular many-body

system, we first derive non-Markovian models in the form of various generalized Langevin

equations (GLEs) using projection operators. The derived GLEs are integro-differential

equations for observables that are arbitrary functions of atomistic positions. We construct

the projection operators to include nonlinear potentials and nonlinear memory functions

in the GLEs. The primary motivation to introduce nonlinear GLEs is to move as much

information as possible from the part of the GLE that ends up being modeled by a stochastic

process to the deterministic part of the GLE. In this way, we ensure that one loses less

information through the stochastic modeling of the exact GLE.

Following this chapter, we present numerical methods to determine nonlinear memory

functions from time series data. We demonstrate the numerical extraction method using

a trajectory for the dihedral angle of a butane molecule in water generated by molecular

dynamics simulations. From the trajectory, we calculate all previously derived GLEs using

our method and compare them. For the dihedral angle dynamics of the butane molecule, we

find that a position-dependent mass can lead to nonlinear memory effects. This effect can

be eliminated by adjusting the mass dependence of the potential term.

In the next part, we focus on the so-called approximate GLE, in which nonlinear memory

effects are neglected. We discuss under which assumptions the approximate GLE emerges

from a nonlinear GLE. By analytically computing the Kramers-Moyal coefficients of the

approximate GLE, we show that the Fokker-Planck equation does not describe the dynamics

of a non-Markovian system. We extract the friction kernel of the polypeptide Alanine9
from molecular dynamics simulations to quantify the importance of memory effects in

protein folding. After parameterizing our GLE, we use the Markovian embedding method

to simulate the GLE. Our GLE model very well reproduces the mean first passage times of

both the folding and unfolding dynamics. The Kramers-Moyal coefficients and the mean

square displacement, with pronounced anomalous diffusion, are also very well captured by

the GLE. On the other hand, Markovian models based on Langevin equations with nonlinear

friction cannot reproduce the dynamics in both directions with the same accuracy. From this,

we conclude that consistent modeling of protein folding dynamics must take into account

memory effects.

The last part of the thesis is on the Markovian embedding of nonlinear GLEs. We intro-

duce three different embedding systems that allow computationally efficient simulations of

nonlinear GLEs. The first embedding system allows the simulation of nonlinear memory

effects for a constant effective mass when the memory function has a nonvanishing com-

ponent consisting of a delta function in time. The delta component can is not necessary

for the second embedding system. We derive the second embedding from the nonlinear

Zwanzig model by a perturbation expansion. The third embedding system also allows GLE

simulations in the case that, in addition to a nonlinear memory function, the effective mass

depends on the reaction coordinate. This embedding is not based on an approximation of

the Zwanzig model and, like the first system, assumes a delta component in the memory

function.



Table of Contents

1 Introduction 11

2 Projection Operator Method 16

2.1 Hamiltonian and Liouville dynamics . . . . . . . . . . . . . . . . . . . . 16

2.2 Useful properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 The projection operator method . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 The Mori projection . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 The Zwanzig projection . . . . . . . . . . . . . . . . . . . . . . 21

3 GLEs with Nonlinear Friction Kernel 23

3.1 Hybrid GLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Properties of the hybrid projection . . . . . . . . . . . . . . . . . 24

3.1.2 Derivation of the hybrid GLE . . . . . . . . . . . . . . . . . . . 26

3.1.3 The position-dependent mass . . . . . . . . . . . . . . . . . . . . 27

3.1.4 The multi-dimensional hybrid GLE . . . . . . . . . . . . . . . . 28

3.2 Linear velocity GLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Modified linear velocity GLE . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 Derivation of the potential term . . . . . . . . . . . . . . . . . . 32

3.3.2 Final form of the GLE . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Numerical Estimation of GLE Parameters via Projected Correlation Functions 37

4.1 GLE parameters from projected correlation functions . . . . . . . . . . . 37

4.2 Numerical results for the dihedral angle in Butane . . . . . . . . . . . . . 40

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 The Approximate GLE 46

5.1 Approximate GLE as an approximation of the hybrid GLE . . . . . . . . 46

5.2 Numerical estimation of GLE parameters by inverting a Volterra equation 47

5.3 Simulating the approximate GLE . . . . . . . . . . . . . . . . . . . . . . 48

5.3.1 Mapping the nonlinear Zwanzig Hamiltonian system onto a stochas-

tic Langevin system . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3.2 Markovian embedding of the approximate GLE . . . . . . . . . . 51

5.4 Kramers-Moyal coeffiecients for the approximate GLE . . . . . . . . . . 52

5.4.1 The Kramers-Moyal Expansion . . . . . . . . . . . . . . . . . . 52

5.4.2 Pawula theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4.3 Kramers-Moyal coefficients of a stationary Gaussian process . . . 55



5.4.4 KMCs in the presence of a potential . . . . . . . . . . . . . . . . 56

5.4.5 Numerical computation of KMCs: Kernel density estimators . . . 59

5.5 Application to protein folding dynamics . . . . . . . . . . . . . . . . . . 60

5.5.1 MD simulations and GLE parameter extraction . . . . . . . . . . 62

5.5.2 Comparison of MD and GLE simulations . . . . . . . . . . . . . 64

5.5.3 Reaction-coordinate dependent friction . . . . . . . . . . . . . . 68

5.6 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Self-Consistent Markovian Embedding of Nonlinear Friction GLEs 73

6.1 Self-consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2 Embedding for constant mass . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2.1 Coupling via velocity . . . . . . . . . . . . . . . . . . . . . . . . 76

6.2.2 Fast auxiliary variable limit . . . . . . . . . . . . . . . . . . . . 83

6.3 Accounting for position-dependent mass . . . . . . . . . . . . . . . . . . 87

6.4 Modeling an arbitrary memory kernel . . . . . . . . . . . . . . . . . . . 94

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7 References 97



List of Tables

5.1 Fitted memory function parameters from eq. (5.75). . . . . . . . . . . . . 64

List of Figures

4.1 (a): The potential of mean force computed from 50 dihedral angle trajec-

tories of a single butane molecule in water. The trajectories are generated

from all-atom force field MD simulations. (b): The position-dependent

mass according to eq. (3.15) for the dihedral angle reaction coordinate (blue

solid line), computed using the same data as in (a). The broken black line

shows the constant mass that follows from the equipartition theorem, i.e.,

M = kBT/〈Ȧ2
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1 Introduction

1 Introduction

A central problem of modern-day physics is to predict the dynamics of many-body systems,

whether numerical or analytical. Many-body problems refer to the motion of a large number

of interacting particles. The interaction potentials of typical systems are of a form that

precludes an analytical solution to the problem, the prime example being the three-body

problem [6].

An important example incorporating many-body dynamics on the microscopic scale is the

kinetic theory of gases. In 1738, David Bernoulli introduced the kinetic theory of gases to

explain the pressure of a gas [84]. Here, the gas consists of many molecules with a size

much smaller than the distance between molecules. The gas represents a many-body system

in which the interaction is given by frequent, random collisions of the molecules with each

other and with the walls of any container.

In 1857, Rudolf Clausius published an improved kinetic theory of gases [25] from which,

two years later, James Clerk Maxwell formulated the first-ever statistical law in physics,

the Maxwell distribution of molecular velocities [79, 78].

In 1868, Ludwig Boltzmann obtained the same velocity distribution from a theory that

applies to a much broader class of systems than ideal gases, statistical mechanics [10].

Therefore, the molecular velocity distribution is referred to as the Maxwell-Boltzmann

distribution. One of the essential statements of the Maxwell-Boltzmann distribution is given

by

〈v2〉 = kBT/m. (1.1)

Equation (1.1) states that the second moment of the velocity v in a given direction is

determined by the thermal energy kBT divided by the mass of a gas molecule, which is

in line with experimental observations [85]. Although the kinetic theory of gases is able

to predict the thermodynamic behavior of gases, Brownian motion is considered the first

direct evidence of the microscopic nature of matter [95].

In 1827, Robert Brown discovered that the random motion of colloidal particles suspended

in a liquid medium is caused by thermal molecular motion, referred to as Brownian motion

[11]. Albert Einstein derived the diffusion coefficient of Brownian motion in 1905 using

a probabilistic Ansatz within the kinetic theory of gases model, i.e., the motion arises

from random collisions of particles [35]. The underlying assumption is that the mass of

the colloidal particle (Brownian particle) is much larger than that of the liquid particles.

As a consequence, the motion of the slow Brownian particle takes place on much larger

time scales than the motion of the fast liquid particles, which is referred to as time scale

separation.

Shortly after, in 1908, Paul Langevin developed what is known today as Langevin dynamics

[68]. Langevin dynamics represents the advent of Markovian stochastic dynamics in the

form of stochastic differential equations. Within Langevin dynamics, Brownian motion is

explained in the following way:

The liquid environment influences the effective motion of the suspended Brownian particle

Cihan Ayaz, Non-Markovian Modelling of Many-Body Dynamics, 2022 11



1 Introduction

in two ways. First, the random collisions with the liquid particles lead to thermal molecular

motion. Second, if one exerts a force on the Brownian particle, it experiences friction due to

the same random collisions. The friction force that a spherical particle experiences during

its motion through a viscous liquid was derived in 1851 by George Gabriel Stokes [105]

referred to as Stoke’s law which states that friction is proportional to the particle’s velocity.

The Langevin equation of Brownian motion can be written in the form

mv̇(t) = −γv(t) + η(t), (1.2)

E[ηi(t)ηj(t′)] = δij 2γkBT δ(t− t′), (1.3)

where m is the mass of the Brownian particle and γ is the friction that it experiences due

to the liquid environment. The random force η(t) is the stochastic representation of the
force due to the molecules of the liquid and E[ ] denotes an average over this noise. The
amplitude 2γkBT establishes a connection between friction and driving forces since both

are due to the same random collisions. Further, the factor 2γkBT ensures the validity of

equation (1.1) within the Langevin model.

The delta correlation is a direct consequence of the time scale separation assumption and

makes the random force η(t) a Markovian stochastic process [109]. The Markov hypothesis

fails when time scale separation does not hold, which, in the case of a colloid particle

suspended in a liquid medium, occurs when the mass of liquid particles is of the same order

as the mass of the colloid particle [107].

In the 1950s, when digital machines using transistors became commercially available,

numerical methods emerged as a way to solve many-body problems [37, 3]. In so-called

classical molecular dynamics (MD) computer simulations, the classical equation of motion

for each particle in the system is numerically integrated [41]. For this purpose, one models

the interactions by force fields containing effective interaction potentials [33, 40]. These

effective potentials are constructed to reproduce experimental measurements as accurately

as possible. A many-body Hamiltonian for N interacting particles of a typical MD force

field can be written as

H({rn, pn}N
n=1) =

N∑
n=1

p2
n

2mn

+ V ({rn}N
n=1), (1.4)

where V denotes a general interaction potential that depends on particle positions rn. With

the increase in computational power over the decades, even the folding dynamics of fast-

folding proteins has become accessible in MD simulations [76]. Nevertheless, generating

trajectories in MD simulations is computationally demanding and certain time scales are

practically out of reach.

A remedy is provided by stochastic models, such as Langevin dynamics, and coarse-graining

methods that can predict the dynamics beyond the time scale available in MD simulations

[64]. The aim is to accurately reproduce the statistics of the MD system with only a fraction

of the computational effort. In this context, the time scale separation assumption of Langevin

dynamics becomes a critical approximation [60].

Non-Markovian stochastic systems in the form of generalized Langevin equations (GLEs)

provide a solution to this problem. Different forms of GLEs were derived in the pioneering
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works by Nakajima [89], Mori [88] and Zwanzig [113]. The Mori GLE for a colloidal

particle suspended in a homogeneous liquid medium is given by

mv̇(t) = −
∫ t

0
ds Γ(t− s)v(s) + F(t), (1.5)

〈Fi(t), Fj(s)〉 = δij kBT Γ(t− s). (1.6)

In equation (1.5), the instateneous friction γ from the Langevin equation (1.2) is replaced

by a memory kernel Γ(t). As the name suggests, the memory kernel introduces a coupling
to past values v(s) at time s ≤ t. The function Γ(t − s) is usually maximal at s = t and
decreases as t − s rises. The force F(t) depends on the initial state of the entire system,
and 〈∗, ∗〉 denotes an ensemble average over initial conditions. Thus, in equilibrium, the
memory function only depends on the time difference. The GLE in equation (1.5) is an exact

result derived from the Hamiltonian in equation (1.4) using projection operators. Solving all

equations of motion in a many-body system reduces to solving the GLE for the coordinate

of interest. However, F(t) preserves the complexity of the problem since it is uniquely

determined by the initial conditions of the entire system. To circumvent the computation

of F(t), one maps the GLE onto a stochastic system by replacing F(t) with a random,

stochastic process.

To study barrier crossing kinetics in the presence of memory effects, Grote and Hynes

introduced an approximate GLE which is essentially the stochastic Mori GLE supplemented

by a general potential of mean force term [48, 47, 56] that ensures the correct stationary

behavior [21]. Non-Markovian models based on the approximate GLE have proven to be a

useful tool [26, 77, 82, 87, 74, 75, 32, 65, 12, 15]. Various data-based methods to compute

the memory function in the approximate GLE from time series data have been introduced

[51, 106, 16, 59, 26, 70, 5]. Once the memory function is known, Markovian embedding

techniques allow for efficient computer simulations of GLE systems [103, 58]. With this,

GLE predictions for the dynamics of a reaction coordinate can be obtained.

The validity of the approximate GLE has been the subject of recent discussions [67, 63,

43, 4, 110] leading to the advent of nonlinear friction GLEs. Nonlinear friction GLEs are

the central subject of this thesis. A nonlinear friction GLE for an observable A(t) can be
written in the form

Ä(t) = Feff [A(t)]−
∫ t

0
ds Γ

[
A(s), Ȧ(s), t− s

]
+ FR(t), (1.7)

where Feff is the effective force that typically contains the potential of mean force and FR
is the random force. The key quantity in a GLE is the memory kernel Γ. In the case of
nonlinear friction GLEs, the memory kernel is a general function of the reaction coordinate

A itself. Although the numerical estimation of nonlinear memory kernels is computationally

more demanding, nonlinear friction GLEs are preferable over the approximate GLE since the

deterministic part contains more information about the reference MD system. The determin-

istic part refers to everything but the random force FR(t) in equation (1.7). Therefore, one
loses less information once the exact GLE is mapped onto a stochastic integro-differential

equation.
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One of the main goals of the research performed in this thesis is to shift as much information

as possible from the random force into the deterministic part of the GLE. We accomplish

this not on heuristic grounds but by exact derivations. Approximations only enter when

simulating the GLE, not in the derivation and numerical extraction stage.

Furthermore, we want to study and quantify how accurately the approximate GLE is able

to reproduce statistical quantities of an extremely relevant process, namely the folding

dynamics of polypeptides.

Finally, we want to address the following problem: Once the parameters of a GLE with

nonlinear friction kernels are numerically estimated, how does one use it to obtain a com-

putationally efficient prediction of the reference dynamics, i.e., what kind of Markovian

systems allow for a Markovian embedding of GLEs with nonlinear friction kernel?

We start with an introduction to projection operator methods in chapter 2. In addition, this

chapter also introduces the notation used throughout the thesis, and important relations are

derived. The introduction to projection operators is concluded with two examples, the Mori

and Zwanzig projections.

In chapter 3, we apply projection operators to derive three different GLEs with nonlinear

friction kernels for observables that are functions of atomistic positions. The first one

is the hybrid GLE. Here, the memory function splits up into two terms. One memory

term is proportional to the velocity, and the memory kernel depends on time only. This

memory contribution resembles the form of the memory friction function in the approximate

GLE. The second memory function corresponds to a correction in the presence of nonlinear

memory effects. The mean force term in the first two GLEs is identical, but they differ in

the structure of the memory function. In the second GLE, the entire memory function is

proportional to the velocity and is nonlinear in the reaction coordinate itself. The memory

function of the third GLE has the same structure, but the mean force term is adjusted to

simulate a GLE with a position-dependent mass.

In chapter 4, we introduce a numerical extraction scheme based on projected correlation

functions [16, 4] to compute nonlinear friction kernels from time series data. The extraction

scheme is demonstrated by computing all memory functions for the three GLEs from

chapter 3. The underlying observable is the dihedral angle of a butane molecule in water.

The trajectory is generated by all-atom MD simulations.

The results for the hybrid GLE suggest that nonlinear memory effects are non-negligible.

This is confirmed by the second GLE. The results from the third GLE, however, suggest that

nonlinear memory effects become negligible, at least for the studied dihedral angle dynamics,

if the dependency of the mean force on the position-dependent mass is adjusted. Thus, by

comparing the results for different nonlinear GLEs, we conclude that position-dependent

mass can introduce nonlinear memory effects in certain GLEs.

In chapter 5, we discuss under which conditions the approximate GLE arises from the hybrid

GLE. Given the approximate GLE, we introduce a numerical extraction scheme based on

Volterra equations to compute the running integral of the memory function from time series

data. In order to perform GLE simulations, Markovian embedding of the approximate GLE

is presented. Following this, we derive exact formulas for the Kramers-Moyal coefficients

of the approximate GLE.
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In the main part of chapter 5, we focus on the folding dynamics of the polypeptide Alanine9.

For this, we compute the potential of mean force and the time-dependent friction function,

the two ingredients of the approximate GLE, from explicit-water MD simulations for a

one-dimensional reaction coordinate based on the native H-bond distances.

Folding and unfolding times from numerical integration of the GLE for the reaction coor-

dinate agree well with MD results, which demonstrates the robustness of our GLE-based

non-Markovian model. Memory effects in the friction significantly speed up peptide kinetics

and cause anomalous diffusion in configuration space.

In contrast, Markovian models do not accurately describe the peptide kinetics and, in partic-

ular, cannot reproduce the folding and unfolding kinetics simultaneously, even if a spatially

dependent friction profile is fitted to the data. Our methods are applicable to any reaction

coordinate and also to experimental trajectories. Our results demonstrate that a consistent

description of protein folding dynamics must account for memory friction effects.

In the final chapter, we present three systems of coupled Markovian Langevin equations

which allow us to perform efficient computer simulations of GLEs with nonlinear friction

kernels. By making use of the projection operators with which the nonlinear friction GLEs

are derived, we demonstrate that the mean dynamics of the Markovian embedding system

is equivalent to the dynamics of the GLE, generated by the projection operator. In this

way, we ensure that the numerical estimation of the GLE parameters and the Markovian

embedding of the GLE are self-consistent.

The first two embedding methods work for GLEs with a constant effective mass. One of the

two allows for the embedding of a memory function in which the time component contains a

delta contribution and is otherwise a sum of exponentials. In the second embedding system,

no delta contribution is needed in the time component which is now a sum of exponentially

decaying oscillations.

The third embedding system works for a GLE in which the mass and the friction kernel are

configuration-dependent, i.e., general nonlinear functions of the reaction coordinate.

The projection operators used to generate the nonlinear GLEs are incorporated into previ-

ously discussed numerical extraction schemes for the data-based reconstruction of GLE

parameteters to validate the Markovian embedding schemes.
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2 Projection Operator Method

The primary method in this thesis is the projection operator method (POM) [45]. We will

use projection operators to derive nonlinear friction generalized Langevin equations (GLEs)

and to numerically estimate GLE parameters. Projection operators will also be crucial when

introducing Markovian embedding techniques for nonlinear friction GLEs.

In this chapter, we give a concise introduction to projection operators. First, we lay the

foundation by introducing the type of many-body system we are considering, and we present

the notation used throughout this work with some useful properties.

We proceed with the introduction of projection operators and end the chapter with two

important examples, namely the Mori projection and the Zwanzig projection.

2.1 Hamiltonian and Liouville dynamics

We denote the phase space of a system of N interacting particles by Ω. One specific mi-
crostate, i.e., a point in Ω, is denoted by ω which is a 6N vector given by ω = (R, P) =
(r1, r2, . . . , rN , p1, p2, . . . , pN) with cartesian positions rn = (rx

n ry
n rz

n) and the corre-

sponding conjugate momenta pn = (px
n py

n pz
n) of all n = 1, 2, . . . , N particles in the

system. The Hamiltonian of the system is an invariant of motion and of the form

H(ω) =
N∑

n=1

p2
n

2mn

+ V (R). (2.1)

The potential V (R) contains all interactions between the particles and possible external
potentials. The only assumption on V is that it is a function of the positions R only. The

time evolution of a point ω in phase space is determined by Hamilton’s equation of motion

which can be written in the form

ω̇t = Lωt, (2.2)

where ωt is the location of the system in phase space at time t, given the system was initially

at ω0. For the sake of clarity, we denote time dependencies of phase space coordinates by a

subscript. In eq. (2.2), L is the Liouville operator given by

L =
N∑

n=1

( pn

mn

· ∇rn − (∇rnV ) · ∇pn

)
. (2.3)

All operators we consider in this work, including the Liouville operator L, act on the initial
phase space point ω0. From eq. (2.2), it follows that the system is propagated in time by the

operator etL, i.e., etLω0 = ωt. We consider observables that are real-valued functions of

phase space coordinates only and depend on time implicitly via the phase space coordinates.

In order to keep the equations as short as possible, we denote the time dependency of such

an observable by a subscript too, i.e., A(ωt) = A(ω0, t) ≡ At. Using the chain rule for
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differentiation, it follows that the time evolution of observable At is also governed by the

Liouville equation

Ȧt = LAt. (2.4)

Thus, the time propagation operator of an observable A(ω0) ≡ A0 is also given by etL.

From this it follows that

A(ωt+t′) = e(t+t′)LA(ω0) = etLA(ωt′) = A(ωt′ , t). (2.5)

Eq. (2.5) is a property of observables that are propagated in time by etL and will be used

when deriving the numerical scheme later. All observables of the system are elements of a

Hilbert space, i.e., a vector space equipped with an inner product. Let A and B denote two

observables of the system. For the inner product, we choose

〈At, Bt′〉 =
∫

Ω
dω0 ρeq(ω0)A(ω0, t)B(ω0, t′), (2.6)

where ρeq(ω0) = 1
Z

e−βH(ω0) is the canonical Boltzmann distribution with the inverse thermal

energy β = 1/kBT and the partition function Z =
∫

Ω dω0 e−βH(ω0). The inner product in

eq. (2.6) thus corresponds to an equilibrium time correlation function which establishes

the link to statistical mechanics. Because of the form of the Hamiltonian in eq. (2.1), the

Boltzmann distribution factorizes into a position and a momentum-dependent part

ρeq(ω0) = 1
Z

e−βH(ω0) = ρkin(P0) ρpot(R0), (2.7)

where ρkin(P0) ∝
∏N

i=1 exp
(
−β p2

i,0/2mi

)
is a Gaussian with zero mean. In addition to

averages over the entire phase space Ω, eq. (2.6), we will also use conditional averages, i.e.,
averages over a hyper surface in phase space on which an observable of choice, A0, takes a

constant value a. A conditional average of an observable Bt is defined by [46, 21]

〈Bt〉A0 = 〈Bt〉A(ω0) = 〈δ(A(ω̂0)− A(ω0)), B(ω̂0, t)〉
〈δ(A(ω̂0)− A(ω0))〉

. (2.8)

In eq. (2.8), phase space variables with a hat inside inner products, i.e. ω̂0, are integrated

out and the result depends on the initial condition ω0.

2.2 Useful properties

In the following, we give some relations which will be used later on. First, the conditional

average is a function of the initial value A0, therefore its time propagation is given by

etL〈Bt′〉A0 = 〈Bt′〉At . (2.9)

Further, with respect to the inner product in eq. (2.6), the Liouville operator as defined in

eq. (2.3) is anti self-adjoint [115]

〈LAt, Bt′〉 = −〈At,LBt′〉. (2.10)
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Acting with the Liouville operator on the delta function gives [53]

Lδ(A0 − a) = −Ȧ0
d
da

δ(A0 − a). (2.11)

The quantity P(a) = 〈δ(A0 − a)〉 gives the probability that the observable A0 has the value

a. It can be used to compute the potential of mean force (PMF) [29]

UPMF(a) = −kBT lnP(a). (2.12)

Using the definition in eq. (2.8) together with the relations in eq. (2.10), eq. (2.11) and the

PMF in eq. (2.12), one finds the important relation

〈LBt〉A0 = d
dA0
〈Ȧ0, Bt〉A0 − β〈Ȧ0, Bt〉A0

d
dA0

UPMF(A0). (2.13)

To obtain eq. (2.13), we start with

〈LBt〉A0 = 〈δ(A(ω̂0)− A(ω0)),LB(ω̂0, t)〉
〈δ(A(ω̂0)− A(ω0))〉

, (2.14)

where the average is over variables with a hat and consequently, the Liouville operator

L only acts on variables with a hat. To keep the equations as short as possible, we use

A(ω̂0) = A0 and A(ω0) = a and consider the r.h.s. in eq. (2.14)

〈δ(A0 − a),LBt〉
〈δ(A0 − a)〉 = −〈Lδ(A0 − a), Bt〉

〈δ(A0 − a)〉 (2.15a)

=
〈Ȧ0

d
da

[δ(A0 − a)] , Bt〉
〈δ(A0 − a)〉 , (2.15b)

where we used eq. (2.10) and eq. (2.11). We next pull out the derivative with respect to a in

eq. (2.15b) from the inner product and use the product rule of differentiation, which gives

〈δ(A0 − a),LBt〉
〈δ(A0 − a)〉 = d

da

〈δ(A0 − a)Ȧ0, Bt〉
〈δ(A0 − a)〉 + 〈δ(A0 − a)Ȧ0, Bt〉

〈δ(A0 − a)〉
d
da

ln〈δ(A0 − a)〉.

(2.16)

Finally, we use the definition of the PMF in eq. (2.12) and the definition of conditional

averages in eq. (2.8) to obtain eq. (2.13) from eq. (2.16).

2.3 The projection operator method

We now demonstrate how the equation of motion for an observable At can be reformulated

as a GLE. A projectionP is a linear, idempotent operator, i.e., for arbitrary scalars c1, c2 ∈ R
and for arbitrary observables At, Bt, it fulfills the properties

P(c1At + c2Bt) = c1PAt + c2PBt, (2.17a)

P2At = PAt. (2.17b)
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The projection

Q = 1− P (2.18)

is the projection onto the complementary subspace with 1 being the identity operator. From

the idempotency, it follows that

PQ = QP = 0. (2.19)

We will refer to the subspace onto which P projects as the relevant subspace. The operators

P and Q can be used to decompose the Liouville equation Ät = LȦt for the observable Ȧt

in the following way

Ät = etL(P +Q)LȦ0 = etLPLȦ0 + etLQLȦ0. (2.20)

To obtain an equation of motion for At from eq. (2.20), we introduce the operator

Φ(t) = etLQ. (2.21)

Φ(t) propagates in time the part of an observable that lies in the complementary subspace.
For Φ(t) we find

d
dt

etLQ = etLLQ = etLQLQ+ etLPLQ, (2.22a)

Φ̇(t) = Φ(t)LQ+ etLPLQ. (2.22b)

Eq. (2.22b) is an inhomogenous differential equation of first order. Using Φ(0) = Q, as
follows from eq. (2.21), the solution reads

Φ(t) = QetLQ +
∫ t

0
du euLPLQe(t−u)LQ. (2.23)

By using QetLQ = etQLQ and the substitution s = t− u in eq. (2.23), one finds

Φ(t) = etLQ = etQLQ+
∫ t

0
ds e(t−s)LPLesQLQ. (2.24)

The first term on the right-hand side of eq. (2.24) stays in the complementary subspace for

all times. The second term describes the coupling between the complementary subspace

and the relevant subspace. By factoring out the operator Q on the r.h.s. of eq. (2.24), one

obtains the Dyson decomposition [34, 38, 36] of the propagator etL

etL = etQL +
∫ t

0
ds e(t−s)LPLesQL. (2.25)

Note that, to obtain eq. (2.25), we assumed that Q−1 exists. However, by taking the time

derivative of eq. (2.25), one finds that the left-hand side and the right-hand side both fulfill

the differential equation Ȯ(t) = LO(t) with O(0) = 1 which establishes the equality in

eq. (2.25) also for non-invertible Q.

Cihan Ayaz, Non-Markovian Modelling of Many-Body Dynamics, 2022 19



2 Projection Operator Method

Replacing etLQ in eq. (2.20) by eq. (2.24) leads to a GLE-like equation for At in terms of a

general projection [113, 88, 115]

Ät = etLPLȦ0 +
∫ t

0
ds e(t−s)LPLFR(s) + FR(t), (2.26a)

FR(t) = etQLQLȦ0 = QetLQLȦ0. (2.26b)

The function FR(t) stays in the complementary subspace for all times. It is a function of the
initial state of the entire system, i.e., FR(t) = FR(ω0, t). Hence, for large systems, it is a
fluctuating function of time. For the sake of brevity, we will write the ω0 dependency of

FR(t) only when it improves clarity.

The second term in eq. (2.26a) is due to the coupling of the relevant part, i.e., the subspace

onto whichP projects, with the functionLFR(ω0, t). Clearly, the explicit form of eq. (2.26a)

depends on the specific form of the projection. Before we introduce projection operators

that lead to GLEs with a nonlinear friction kernel, we will shortly revisit the results of

Mori and Zwanzig. Hence, we will present two GLEs. One being generated by the Mori

projection PM and the other by the Zwanzig projection PZ .

2.3.1 The Mori projection

The Mori projection of an observable At is given by [88]

PMAt = 〈At, B0〉 · 〈B0, B0〉−1 ·B0, (2.27)

where 〈∗, ∗〉 denotes the inner product given in eq. (2.6). The observable one projects onto,
i.e., the vector B0 ∈ Rn in eq. (2.27), is referred to as the projection function, or the set of

projection functions. The inner product 〈B0, B0〉 denotes an n × n matrix [115]. If one

chooses the set of projection functions to be B0 ∈ R and its time derivative Ḃ0, the Mori

projection reads

PMAt = 〈At, B0〉
〈B2

0〉
B0 + 〈At, Ḃ0〉

〈Ḃ2
0〉

Ḃ0. (2.28)

The projection in eq. (2.28) maps any observable At onto the subspace of all functions linear

in the observables B0, Ḃ0. PM is self-adjoint with respect to the inner product in eq. (2.6),

i.e., for two arbitrary observables At, Ct, the relation

〈PMAt, Ct′〉 = 〈At,PMCt′〉 (2.29)

holds [115]. Thus, it is an orthogonal projection since all functions PMA and QMC are

orthogonal, i.e.,

〈PMBt,QMCt′〉 = 0, (2.30)
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as follows from eq. (2.29). With P ≡ PM being the Mori projection and choosing the

projection function to be Bt ≡ At, i.e., projecting onto the observable of interest itself,

eq. (2.26a) takes the form

Ät = −K At −
∫ t

0
ds ΓM(s)Ȧt−s + FR(t), (2.31a)

K = 〈Ȧ
2
0〉

〈A2
0〉

, ΓM(t) = 〈FR(t), FR(0)〉
〈Ȧ2

0〉
, (2.31b)

where ΓM(s) is the memory kernel obtained from the Mori projection. Eq. (2.31) is an exact

decomposition of the Liouville equation into three terms:

The first term on the r.h.s. of eq. (2.31a) is a force due to a potential of quadratic form,

the second term includes the memory kernel which is related to the fluctuating function

FR(t) via eq. (2.31b). The exact form of the memory kernel can only be computed for some

simple models. In general, it is infeasible to compute for practical applications since the

fluctuating term FR(t), given in eq. (2.26b), is a function of the entire system.

Instead, one models the function FR(t) as a stochastic process with zero mean and the second
moment given in eq. (2.31b). There is no further information on higher-order correlations

of FR(t) obtained from the formalism. Therefore, it is mostly assumed to be a Gaussian

process. In general, this assumption will not hold since FR(t) contains all nonlinearities in
At. Thus, imposing FR(t) to be a Gaussian process becomes a critical approximation for
nonlinear systems. For this reason, FR(t) should contain as little information as possible so
that its impact on the statistics is as little as possible.

This is the primary motivation to introduce a nonlinear potential term into the GLE that

accounts for nonlinearities in At and, further, ensures that the mean behavior of the reduced

dynamics, as described by the GLE, follows the mean dynamics of the complete system

[21].

Before we continue with the Zwanzig projection, it is worth mentioning that the Mori formal-

ism can be extended to systems far from equilibrium. By using a time-dependent distribution

instead of the Boltzmann distribution in eq. (2.6), one can obtain a non-equilibrium GLE

with a structure similar to equation (2.31) [83, 81].

2.3.2 The Zwanzig projection

Contrary to the Mori projection, the Zwanzig projection PZ of an observable At is nonlinear

in the projection function [113]. This is best explained by choosing the projection function

to be the position and linear momentum of a tagged particle, i.e., Bt → rt, Ḃt → pt. Then,

the Zwanzig projection reads [21]

PZAt = 〈δ(r̂0 − r0)δ(p̂0 − p0), At〉
〈δ(r̂0 − r0)δ(p̂0 − p0)〉

= 〈At〉r0,p0 , (2.32)

where variables with a hat inside inner products, e.g., r̂0, are integrated over. The Zwanzig

projection is a conditional average similar to eq. (2.8). The condition is now the position r0
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and momentum p0 of a tagged particle. With this choice of projection P ≡ PZ and setting

Ȧ0 = p0, eq. (2.26a) becomes [30]

ṗt = −∇rUPMF(rt) +
∫ t

0
ds

(∇p

β
− ps

m

)T

· ΓZ(t− s, rs, ps)
T

+ FR(ω0, t), (2.33a)

ΓZ
ij(t, r, p) = β〈F R

i (0), F R
j (t)〉r,p. (2.33b)

Here, UPMF(r) = −kBT ln〈δ(r̂0 − r)〉 denotes the potential of mean force (PMF) also

given in eq. (2.12). The PMF determines the mean force −∇UPMF that acts on the tagged

particle when it has the position r. ΓZ ∈ R3×3 denotes the memory matrix, it is the result

of a conditional correlation function for given values r, p. Thus, ΓZ has a position and

momentum dependency by construction.

Via the Zwanzig projection, the PMF is introduced into the equation of motion. This ensures

the correct mean behavior once we switch to a stochastic description by replacing the

fluctuating force FR(t) by a stochastic process with zero mean [21].

The drawback in eq. (2.33a) is that the memory kernel in general has a position and mo-

mentum dependency which is difficult to deal with in applications. Therefore, it is usually

neglected by an ad-hoc assumption and the memory kernel is assumed to be independent of

the particle position and momentum. This assumption leads to a GLE to which we refer to

as the approximate GLE, it reads

ṗt = −∇rUPMF(rt)−
∫ t

0
ds Γapp(s) · pt−s

m
+ FR(t), (2.34a)

〈F R
i (t)〉 = 0, (2.34b)

Γapp
ij (t) = β〈F R

i (0), F R
j (t)〉. (2.34c)
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3 GLEs with Nonlinear Friction Kernel

In this chapter, assuming a Hamiltonian of the form given in eq. (2.1) and making use of

the properties discussed in chapter 2.2, we derive three different GLEs containing nonlinear

memory functions, i.e., the memory functions not only depend on time but also on the value

of the observable At itself. For this, we introduce three projection operators that in general

lead to different nonlinear memory functions.

The first projection operator is a combination of the Mori and Zwanzig projection operators

presented in chapter 2.3.1 and chapter 2.3.2, respectively. We refer to the GLE generated

by the first projection operator as the hybrid GLE [4] which we derive in section 3.1. The

hybrid GLE is suited as an analytical tool to quantify how important nonlinear memory

effects are.

The second projection operator is introduced in section 3.2. It leads to a GLE in which

the memory term is linear in the velocity [110]. Therefore, we refer to this GLE as linear

velocity GLE. We will utilize the linear velocity GLE in the final chapter to perform GLE

simulations via Markovian embedding.

The third projection operator incorporates a term quadratic in the velocity into theMarkovian

part of the GLE. The quadratic velocity term turns out to be important when one performs

GLE simulations with position dependent mass, as we will show in the final chapter. The

memory term of the third GLE is also linear in the velocity, only the mass dependence of

the Markovian part changes. Thus, we refer to the third GLE, derived in section 3.3, as

modified linear velocity GLE.

3.1 Hybrid GLE

The hybrid projection PH is a combination of the Mori and Zwanzig projection. PH is of

the form PH = PH
M + PH

Z . For an observable At = A(ωt) and using a projection function
Bt = B(Rt), i.e., a function of atomistic positions only, it is defined as follows

PHAt = PH
Z At + PH

MAt, (3.1a)

PH
Z At = 〈At〉B0 , (3.1b)

PH
MAt = 〈Ḃ0, At〉

〈Ḃ2
0〉

Ḃ0. (3.1c)

The projection PH
Z is the conditional average given in eq. (2.8) with the difference that the

observable we project onto is a function of positions R only. This restriction is necessary

in order for PH to be idempotent.
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3.1.1 Properties of the hybrid projection

Clearly, we have (PH
M)2 = PH

M and (PH
Z )2 = PH

Z . Therefore, in order to confirm the

idempotency of the hybrid projection, one has to check that PH
MPH

Z At = PH
Z PH

M At = 0 for

an arbitrary observable At = A(ωt). This is true because we project onto observables of
positions only, i.e., onto B0 = B(R0). Thus, the velocity Ḃ0 is linearly proportional to the

particle momenta

Ḃ0 = LB0 =
N∑

n=1

pn

mn

· ∇rnB0. (3.2)

The operator PH
M maps any function onto the subspace of functions that are linear in the

observable velocity Ḃ0, which is linear in the particle momenta pn. From this we see that

PH
Z PH

M At ∝ PH
Z Ḃ0 = 0, (3.3)

since the operatorPH
Z involves an integral over the particle momenta but adds no momentum

dependence.

PH
Z maps any observable onto a function which depends on particle positions only. Since

Ḃ0 is linearly proportional to the particle momenta, PH
M applied on a function that depends

on particle positions only gives zero. Therefore, it follows that

PH
MPH

Z At = 0. (3.4)

Thus, we can use PH in eq. (2.26a) to derive a GLE for observables that are functions of

positions, such as, center of masses, distances and angles. In the remainder, we set the

projection function B(Rt) ≡ A(Rt), i.e., we choose the observable A in eq. (2.26a) to be

a function of positions only and we project onto A0 itself. From this, it follows that PH

projects out the observable A0 and its velocity Ȧ0

PHA0 = A0, PHȦ0 = Ȧ0. (3.5)

Furthermore, the projectionPH in eq. (3.1) is self-adjoint w.r.t. the inner product in eq. (2.6),

i.e., for any observablesAt = A(ωt) andCt′ = C(ωt′), we have 〈At,PHCt′〉 = 〈PHAt, Ct′〉.
To show this, we consider the projection operators PH

M and PH
Z separately. Using the

definition in eq. (3.1c), we find

〈
At,PH

MCt′

〉
=
〈

At,
〈Ḃ0, Ct′〉
〈Ḃ2

0〉
Ḃ0

〉
(3.6a)

= 〈At, Ḃ0〉
〈Ḃ0, Ct′〉
〈Ḃ2

0〉
(3.6b)

=
〈
〈At, Ḃ0〉
〈Ḃ2

0〉
Ḃ0, Ct′

〉
(3.6c)

= 〈PH
MAt, Ct′〉. (3.6d)
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Now, consider the projection PH
Z in eq. (3.1b) together with the conditional average defined

in eq. (2.8)

〈At,PH
Z Ct′〉 =

〈
A(ω′

0, t),
∫

da δ(B(R′
0)− a)〈δ(B(R̂0)− a), C(ω̂0, t′)〉

P(a)

〉
, (3.7)

where variables with a prime, i.e., ω′
0, are integrated over in the outer inner product and

variables with a hat, i.e., ω̂0, are integrated over in the projection PH
Z . From eq. (3.7), we

obtain

〈At,PH
Z Ct′〉 =

∫
da 〈A(ω′

0, t), δ(B(R′
0)− a)〉〈δ(B(R̂0)− a), C(ω̂0, t′)〉

P(a) (3.8a)

=
〈∫

da
〈A(ω′

0, t), δ(B(R′
0)− a)〉

P(a) δ(B(R̂0)− a), C(ω̂0, t′)
〉

(3.8b)

= 〈PH
Z At, Ct′〉. (3.8c)

This means that the hybrid projection PH in eq. (3.1) is self-adjoint and thus is an orthogonal

projection, i.e.,

〈PHAt,QHCt′〉 = 0, (3.9)

for arbitrary observables At and Ct′ .

Another very important property of the hybrid projection is the following: The equilibrium

average of any observable vanishes if it lies in the complementary subspace at all times. To

prove this, we must show that for an arbitrary observable A(ωt) = At that 〈PHAt〉 = 〈At〉
holds. First, from the definition of PH

M in eq. (3.1), it follows that

〈PH
MAt〉 ∝ 〈Ḃ0〉 = 0, (3.10)

since our projection function B0 = B(R0) is a function of positions only and therefore, its
velocity Ḃ0 = LB0 is linear in the momenta (see eq. (3.2)). For the PH

Z projection operator

we find

〈PH
Z At〉 = 〈〈At〉B0〉 = 〈At〉. (3.11a)

From this, it immediately follows that 〈PHAt〉 = 〈At〉 and thus all equilibrium averages in

the complementary subspace vanish, i.e.,

〈QHAt〉 = 〈(1− PH)At〉 = 〈At〉 − 〈PHAt〉 = 0. (3.12)

In particular, the equilibrium average of the random force vanishes at all times, i.e.,

〈F H
R (t)〉 = 〈QHF H

R (t)〉 = 0. (3.13)

F H
R (t) is the random force that follows from the hybrid projection, i.e, in eq. (2.26b) Q

is replaced by QH. It completely lies in the complementary subspace for all times and,

therefore, has by construction a vanishing equilibrium average.
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3.1.2 Derivation of the hybrid GLE

Using the specific form of the projection PH in eq. (3.1), we find for the first term on the

right-hand side of eq. (2.26a)

etLPHLȦ0 = etL
(
PH

Z LȦ0 + PH
MLȦ0

)
, (3.14a)

PH
MLȦ0 ∝ 〈Ȧ0,LȦ0〉 = −〈LȦ0, Ȧ0〉 = 0, (3.14b)

PH
Z LȦ0 = 〈LȦ0〉A0

= d
dA0
〈Ȧ2

0〉A0 − β〈Ȧ2
0〉A0

d
dA0

UPMF(A0), (3.14c)

where we used the relation in eq. (2.13) to obtain eq. (3.14c). The function 〈Ȧ2
0〉A0 is strictly

positive. We can use this to further simplify eq. (3.14c). We define

〈Ȧ2
0〉A0 ≡ kBT/M(A0), (3.15)

in which the function M(A0) has units of a generalized mass. Using M(A0), eq. (3.14c)
simplifies to

PH
Z LȦ0 = − 1

M(A0)
dUeff

dA0
, (3.16a)

Ueff(A0) = UPMF(A0) + kBT ln M(A0). (3.16b)

In eq. (3.16), UPMF is the potential of mean force introduced in eq. (2.12). Applying the

operator etL onto eq. (3.16) propagates all A0 to At, which represents the final form for the

first term on the right-hand side of eq. (2.26a).

The second term on the right-hand side of eq. (2.26a) couples the state at time t to all past
states via the integrand e(t−s)L(PH

Z + PH
M)LF H

R (s). The PH
M projection leads to a memory

function of the same form as in the Mori projection

PH
MLF H

R (s) = 〈Ȧ0,LF H
R (s)〉

〈Ȧ2
0〉

Ȧ0 (3.17a)

= −〈F
H
R (0), F H

R (s)〉
〈Ȧ2

0〉
Ȧ0 (3.17b)

= −ΓH
M(s)Ȧ0, (3.17c)

where we defined the memory function due to the PH
M projection by

ΓH
M(s) = 〈F

H
R (0), F H

R (s)〉
〈Ȧ2

0〉
. (3.18)

The memory function due to the PH
Z projection is directly obtained using the relation in

eq. (2.13)

PH
Z LF H

R (s) = 〈LF H
R (s)〉A0 ≡ ΓH

Z (A0, s), (3.19a)

ΓH
Z (A, s) = d

dA
DH(A, s)− βDH(A, s) d

dA
UPMF(A), (3.19b)

DH(A, s) = 〈Ȧ0, F H
R (s)〉A. (3.19c)
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With the results in eq. (3.16), eq. (3.17) and eq. (3.19), eq. (2.26a) becomes

Ät = −dUeff(At)/dAt

M(At)
−
∫ t

0
ds ΓH

M(s)Ȧt−s + F H
R (t) +

∫ t

0
ds ΓH

Z (At−s, s), (3.20)

where the following exact relations hold

ΓH
M(t) = 〈F

H
R (t), F H

R (0)〉
〈Ȧ2

0〉
, 〈F H

R (t)〉 = 0, 〈F H
R (t)〉A = 0, (3.21a)

〈Ȧ0, F H
R (t)〉 = 0, 〈f(A0), F H

R (t)〉 = 0, 〈f(A0), F H
R (t)〉A = 0, (3.21b)

Here, f(A0) is an arbitrary function of A0.

In the rightmost term of eq. (3.20), we introduce an additional term due to the memory

function ΓH
Z (A, t) which has an A dependency. This additional term therefore represents a

correction to the approximate GLE (eq. (2.34)) in the presence of nonlinear memory effects.

According to eq. (3.19), ΓH
Z (A, t) vanishes if the conditional correlation 〈Ȧ0, F H

R (t)〉A0

vanishes. Eq. (3.20) is our first result.

3.1.3 The position-dependent mass

If the generalized massM(A) in eq. (3.15) is constant, i.e., if the variance of the velocity Ȧ is

independent of the position A, one obtains dUeff/dA = dUPMF/dA and the first three terms

on the right-hand side of eq. (3.20) reduce to the approximate GLE in eq. (2.34). For some

observables, it can be shown analytically that the corresponding M(A) is constant. These
are, for example, the center of mass [43], which is a linear combination of positions, but also

for certain nonlinear observables, such as distances, it can be shown that the generalized

mass is constant, i.e., M(A) = M . In this case, the force term dUeff/dA in eq. (3.20)

reduces to dUPMF/dA.

Assuming a Hamiltonian of the form as given in eq. (2.1), we can write down a formula for

the position dependent mass in terms of the observable A. Noting that the velocity

Ȧ0 =
N∑

n=1

pn

mn

· ∇rnA0 (3.22)

is linear in the momenta pn, it follows that, in equilibrium, Ȧ0 is Gaussian distributed for

given positions R0, or fixed A0. According to eq. (3.15), the position dependent mass is

given by the variance of the velocity Ȧ0 for given A0. We can write down the variance

〈Ȧ2
0〉A0 by using relations for the sum of independent, identically distributed Gaussian

random variables.

Each pi
n for i = x, y, z is rescaled with the factor (1/mn)(∂A0/∂ri

n). From this, it follows

that the rescaled pi
n has zero mean and variance (kBT/mn)(∂A0/∂ri

n)2 [109]. Ȧ0 is the

sum of these rescaled pi
n. Thus, its variance is given by

〈Ȧ2
0〉A0 =

N∑
n=1

kBT

mn

(∇rnA0)2 . (3.23)
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And therefore, the mass is given by

M(A) =
(

N∑
n=1

1
mn

(∇rnA)2
)−1

. (3.24)

Note that, the same formula for the mass M(A) was obtained in ref. [29] by performing a
coordinate transformation in the Lagrangian and computing the generalized mass from the

conjugate momentum.

As an example, we consider the hydrogen-bond distance between a nitrogen atom (donor)

with initial position rN
0 and an oxygen atom (acceptor) with initial position rO

0 that are

located four residues apart on the backbone of a polypeptide. The observable is thus given

by

A0 = A(R0) =
√

(rN
0 − rO

0 )2. (3.25)

Using eq. (3.24), we find

M(A0) = M = mN mO

mN + mO

, (3.26)

which is the reduced mass of the nitrogen-oxygen distance coordinate. A similar derivation

can also be done for a linear combination of distances. For example, consider the mean

hydrogen-bond distance between NR donor nitrogen atoms and NR acceptor oxygen atoms

that are located four residues apart along the backbone of a polypeptide. We define the

observable as

A0 = 1
NR

NR∑
n=1

An,0, (3.27)

with An,0 being the initial value of the n-th distance. Eq. (3.24) becomes

〈Ȧ2
0〉A0 =

〈 1
NR

NR∑
n=1

Ȧn,0

2〉
A0

= 1
N2

R

NR∑
n=1
〈Ȧ2

n,0〉A0 . (3.28)

In analogy to eq. (3.26), the effective mass is constant also for a linear combination of

spatial distances.

3.1.4 The multi-dimensional hybrid GLE

We generalize eq. (3.20) for a multidimensional observable that is a function of particle

positions only, i.e., the case in which the reaction coordinate is a vector

A(Rt) = (A1(Rt), A2(Rt), . . . , An(Rt)), (3.29)

containing a set of observables. We assume that the observables Ai(Rt) are functions
of a disjoint set of positions. As before, all observables implicitly depend on time only
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via the positions Rt. We denote components as Ak(Rt) ≡ Ak,t and Ak(R0) ≡ Ak,0. In

the multi-dimensional case, the hybrid projection operator reads for a vectorial projection

function A0

PHBm,t = (PH
M + PH

Z )Bm,t =
n∑

k=1

〈Bm,t, Ȧk,0〉
〈Ȧ2

k,0〉
Ȧk,0 + 〈Bm,t〉A0 . (3.30)

Choosing B0 = A0, as before, the projection in eq. (3.30) leads to the following potential

term

etLPH
Z LȦ0 = kBT

(
∇T

A ·M−T (At)
)T
−M−1(At) · ∇AUPMF(At). (3.31)

where we introduced the inverse generalized mass matrix

M−1
kl (A) = β〈Ȧk,0, Ȧl,0〉A. (3.32)

The computation of the memory function proceeds similarly as in the main text and the

multi-dimensional hybrid GLE reads

Ät = kBT
(
∇T

A ·M−T (At)
)T
−M−1(At) · ∇AUPMF(At)

−
∫ t

0
ds ΓH

M(t− s) · Ȧs +
∫ t

0
ds ΓH

Z (At−s, s) + FH
R(t), (3.33)

where the following relations hold

〈(F H
R )k(t)〉 = 0, 〈(F H

R )k(t), (F H
R )l(0)〉 = 〈Ȧ2

0〉 (ΓH
M)kl(t),

〈(F H
R )k(t), Al,0〉 = 0, 〈(F H

R )k(t), Ȧl,0〉 = 0, (3.34)

for all k, l = 1, 2, . . . , n. The k-th component of the vectorial nonlinear memory friction
function ΓH

Z (A, s) is given by

(ΓH
Z )k(A, s) = PH

Z L(F H
R )k(s) = [∇A ·Dk(A, s)− β Dk(A, s) · ∇AUPMF(A)] , (3.35a)

Dk(A, s) = 〈Ȧ0, (F H
R )k(s)〉A. (3.35b)

3.2 Linear velocity GLE

The hybrid GLE from section 3.1 enables one to probe for nonlinear memory effects directly

by checking if the function DH(A, t) from eq. (3.19c) vanishes. At the time this thesis was

written, a computationally efficient method to perform simulations of the hybrid GLE was

still missing. Therefore, we derive in the following a second nonlinear GLE that can be

simulated using Markovian embedding techniques (cf. chapter 6).

The projection operator PL is a modification of the hybrid projection and is given by

PLBt = PH
Z Bt + PL

MBt, (3.36a)

PL
MBt = 〈Ȧ0, Bt〉A0

〈Ȧ2
0〉A0

Ȧ0. (3.36b)
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PL is also an orthogonal projection w.r.t. the inner product in eq. (2.6) and leads to a GLE

with a nonlinear friction kernel of the same form as discussed in ref. [110].

The first projection operator PH
Z on the r.h.s. of eq. (3.36a) was introduced in the hybrid

projection in eq. (3.1b). As demonstrated in the derivation of the hybrid GLE, PH
Z is

responsible for the potential of mean force term in the projected dynamics. However,

contrary to the hybrid GLE where PH
Z , when combined with PH

M, generates the nonlinear

kernel ΓH
Z , it has no contribution to the memory term when combined with PL

M in eq. (3.36b).

This is due to the fact that the random force F L
R(t) = etQLLQLLȦ0 is now orthogonal to all

functions of the form cf(A0) + g(A0)Ȧ0, where f and g are arbitrary functions of A0, and

therefore

PH
Z LF L

R(t) = 〈LF L
R〉A = −

〈Ȧ0
∂

∂A0
[δ(A0 − A)] , F L

R(t)〉
〈δ(A0 − A)〉 = 0. (3.37)

This means that the memory term is only due to the second projection PL
M which generates

functions linear in the velocity Ȧ0 and nonlinear in A0. The nonlinearity in A0 follows from

the fact that equilibrium averages are replaced by conditional averages, i.e.,

PL
MLF L

R(t) = 〈Ȧ0,LF L
R(t)〉A0

〈Ȧ2
0〉A0

Ȧ0. (3.38)

Using the relation in eq. (2.16) in combination with the product rule of differentiation, we

obtain the memory kernel

〈Ȧ0,LF L
R(t)〉A0

〈Ȧ2
0〉A0

Ȧ0 = −ΓL(A0, t)Ȧ0 (3.39a)

ΓL(A, t) = βDL(A, t)dUeff(A)
dA

− dDL(A, t)
dA

+ 〈Ä0, F L
R(t)〉A

〈Ȧ2
0〉A

, (3.39b)

DL(A, t) = 〈Ȧ
2
0, F L

R(t)〉A
〈Ȧ2

0〉A
. (3.39c)

Finally, we note that PL
M does not contribute to the potential term, i.e.,

PL
MLȦ0 = 〈Ȧ0,LȦ0〉A0

〈Ȧ2
0〉A0

Ȧ0 = 0. (3.40)

To show this, we consider the numerator in eq. (3.40)

〈Ȧ0,LȦ0〉A ∝ 〈δ(A0 − A)Ȧ0,LȦ0〉 = −〈Lδ(A0 − A)Ȧ0, Ȧ0〉 (3.41a)

= −〈L[δ(A0 − A)]Ȧ0, Ȧ0〉 − 〈δ(A0 − A)LȦ0, Ȧ0〉 (3.41b)

=
〈

∂

∂A
[δ(A0 − A)]Ȧ2

0, Ȧ0

〉
− 〈δ(A0 − A)LȦ0, Ȧ0〉 (3.41c)

=
〈

∂

∂A
[δ(A0 − A)]Ȧ3

0

〉
− 〈δ(A0 − A)LȦ0, Ȧ0.〉 (3.41d)
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The first term on the r.h.s. of eq. (3.41d) contains a sum of odd powers of momenta pn and

thus, vanishes. From this, it follows

〈δ(A0 − A)Ȧ0,LȦ0〉 = −〈δ(A0 − A)LȦ0, Ȧ0.〉, (3.42)

⇒〈δ(A0 − A)Ȧ0,LȦ0〉 = 0. (3.43)

And the GLE reads

Ät = − 1
M(At)

dUeff(At)
dAt

−
∫ t

0
ds ΓL(As, t− s)Ȧs + F L

R(t), (3.44)

where Ueff(A) and the position dependent mass M(A) were introduced in eq. (3.16) and
eq. (3.15), respectively.

Finally, since PL is an orthogonal projection, the following exact relations hold

〈F L
R(t)〉A = 0, 〈Ȧ0, F L

R(t)〉A = 0. (3.45a)

3.3 Modified linear velocity GLE

Our motivation to introduce the linear velocity GLE in section 3.2 was that we will present

a Markovian embedding for this GLE in chapter 6. We demonstrate now why the linear

velocity GLE in in eq. (3.44) must be adjusted when the position-dependency of the effective

mass cannot be neglected.

We consider a model Hamiltonian in which a generalized coordinate q has a configuration-

dependent mass M(q). We denote the conjugate momentum of q by p = M(q)v with v = q̇.
In the Hamiltonian, we also include a confining potential U(q), i.e,

H(q, p) = p2

2M(q) + U(q). (3.46)

Hamilton’s equation of motion for p read

ṗ = M ′(q)
2M2(q)p2 − U ′(q), (3.47a)

M ′(q)v2 + M(q)v̇ = M ′(q)
2 v2 − U ′(q). (3.47b)

Solving eq. (3.47b) for v̇, we find the equation of motion

v̇ = − 1
M(q)

(
U ′(q) + M ′(q)

2 v2
)

. (3.48)

From eq. (3.48), it follows that any Langevin equation with a position-dependent mass and

with a stationary Boltzmann distribution requires the presence of a quadratic velocity term.

In the following, we incorporate a term quadratic in the velocity into the linear velocity

GLE by introducing a new projection.
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To derive the hybrid GLE in eq. (3.20) and the linear velocity GLE in eq. (3.44), we started

with eq. (2.26a). To obtain eq. (2.26a), we first decomposed the Liouville equation and,

afterwards, the propagator etL using the Dyson operator identity in eq. (2.25). We used the

same projection operator for both decompisitions, i.e., in case of the hybrid GLE PH and in

case of the linear velocity GLE PL.

Here, we choose different projection operators to decompose the Liouville equation Ä0 =
LȦ0 and the propagator etL. To decompose the Liouville equation, we use the following

projection operator

PK = PL + PK
M, (3.49a)

PK
MBt =

〈(
Ȧ2

0 − 〈Ȧ2
0〉A0

)
, Bt

〉
A0〈(

Ȧ2
0 − 〈Ȧ2

0〉A0

)2
〉

A0

(
Ȧ2

0 − 〈Ȧ2
0〉A0

)
. (3.49b)

The projection operator PK is an extension of the projection PL given in eq. (3.36). PK is

an orthogonal projection w.r.t. the inner product in eq. (2.6). It includes the projection PK
M

onto functions quadratic in the velocity which will introduce a term quadratic in the velocity

into the GLE (similar to eq. (3.48)). We use PK to decompose the Liouville equation for

the velocity Ȧt, i.e.,

Ät = etL(PK +QK)LȦ0. (3.50)

In the Dyson decomposition, we use the projection operator PL in eq. (3.36) which we used

to derive the linear velocity GLE, i.e.,

etL = etQLL +
∫ t

0
ds e(t−s)LPLLesQLL. (3.51)

Inserting eq. (3.51) into eq. (3.50), we obtain

Ät = etLPKLȦ0 +
∫ t

0
ds e(t−s)LPLLF K

R (s) + F K
R (t), (3.52a)

F K
R (t) = etQLLQKLȦ0. (3.52b)

Note that the projection PK determines the functional form of the first term etLPKLȦ0 and

the initial value F K
R (0) = QKLB0, while the projection PL determines the functional form

of the integrand PLLF K
R (s) and the propagation of F K

R (0) in time via etQLL. Therefore, to

compute the memory term, we can make use of the derivation of the linear velocity GLE. By

noting that we haveQKBt = QLQKBt, it follows that the random force F K
R (t) = QLF K

R (t)
is orthogonal to the subspace PL projects onto. Meaning, the derivation of the memory

term is completely analogous to the previous section on the linear velocity GLE.

3.3.1 Derivation of the potential term

The derivation of the potential term is more elaborate and requires the computation of

etLPKLȦ0 = etL
(
PH

Z + PL
M + PK

M

)
LȦ0. (3.53)
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The contribution due to PH
Z LȦ0 was derived in eq. (3.16). Further, in eq. (3.40), eq. (3.41)

and eq. (3.42), we showed that PL
MLȦ0 = 0. Here, we derive the contribution due to

PK
MLȦ0 =

〈(
Ȧ2

0 − 〈Ȧ2
0〉A0

)
,LȦ0

〉
A〈(

Ȧ2
0 − 〈Ȧ2

0〉A0

)2
〉

A

(
Ȧ2

0 − 〈Ȧ2
0〉A0

)
(3.54a)

=

〈(
Ȧ2

0 − kBT
M(A0)

)
,LȦ0

〉
A〈(

Ȧ2
0 − kBT

M(A0)

)2
〉

A

(
Ȧ2

0 −
kBT

M(A0)

)
(3.54b)

=

〈
δ(A0 − A)

(
Ȧ2

0 − kBT
M(A0)

)
,LȦ0

〉
〈

δ(A0 − A)
(
Ȧ2

0 − kBT
M(A0)

)2
〉 (

Ȧ2
0 −

kBT

M(A0)

)
. (3.54c)

M(A) = kBT/〈Ȧ2
0〉A denotes the position dependent effective mass of the reaction coor-

dinate discussed in section 3.1.3. In section 3.1.3, we used the fact that the velocity Ȧ0 is

Gaussian distributed for given A0 to derive a formula for the mass M(A). We now further

exploit the Gaussian nature of the velocity to simplify the denominator in eq. (3.54c).

N (A) ≡
〈

δ(A0 − A)
(

Ȧ2
0 −

kBT

M(A0)

)2〉
(3.55a)

= 〈δ(A0 − A)Ȧ4
0〉 − 2 kBT

M(A)〈δ(A0 − A)Ȧ2
0〉+

(
kBT

M(A)

)2

〈δ(A0 − A)〉 (3.55b)

= 〈δ(A0 − A)〉
〈δ(A0 − A)Ȧ4

0〉
〈δ(A0 − A)〉 − 2 kBT

M(A)
〈δ(A0 − A)Ȧ2

0〉
〈δ(A0 − A)〉 +

(
kBT

M(A)

)2
 (3.55c)

= P(A)
〈Ȧ4

0〉A −
(

kBT

M(A)

)2
 , (3.55d)

where we used P(A) ≡ 〈δ(A0 − A)〉. The fourth moment of the velocity is given by

〈Ȧ4
0〉A = 3(kBT/M(A))2. Thus, we find

N (A) = 2
(

kBT

M(A)

)2

P(A). (3.56)

With the result of eq. (3.56), we go back to eq. (3.54c)

PK
MLȦ0 =

〈
δ(A0 − A)

(
Ȧ2

0 − kBT
M(A0)

)
,LȦ0

〉
2
(

kBT
M(A)

)2
P(A)

(
Ȧ2

0 −
kBT

M(A0)

)
, (3.57)

and we focus on the fraction on the r.h.s. of eq. (3.57)〈
δ(A0 − A)

(
Ȧ2

0 − kBT
M(A0)

)
,LȦ0

〉
2
(

kBT
M(A)

)2
P(A)

=

〈
Ȧ2

0,LȦ0
〉

A

2
(

kBT
M(A)

)2 −

〈
LȦ0

〉
A

2 kBT
M(A)

. (3.58)
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The term 〈LȦ0〉A was computed in eq. (3.14c) and defined as −(1/M(A))(dUeff/dA) in
eq. (3.16), i.e.,

−

〈
LȦ0

〉
A

2 kBT
M(A)

= 1
2kBT

dUeff(A)
dA

. (3.59)

The last term remaining is the first term on the r.h.s. of eq. (3.58). For this term, we find〈
Ȧ2

0,LȦ0
〉

A

2
(

kBT
M(A)

)2 =

〈
δ(A0 − A)Ȧ2

0,LȦ0
〉

2
(

kBT
M(A)

)2
P(A)

(3.60a)

=
d

dA

〈
δ(A0 − A)Ȧ4

0

〉
2
(

kBT
M(A)

)2
P(A)

− 2

〈
δ(A0 − A)Ȧ2

0,LȦ0
〉

2
(

kBT
M(A)

)2
P(A)

, (3.60b)

from which follows that〈
Ȧ2

0,LȦ0
〉

A

2
(

kBT
M(A)

)2 = 1
3

d
dA

〈
δ(A0 − A)Ȧ4

0

〉
2
(

kBT
M(A)

)2
P(A)

(3.61a)

= 1
3

d
dA

(
3 kBT

M(A)

)2
P(A)

2
(

kBT
M(A)

)2
P(A)

(3.61b)

= − d
dA

(
ln M(A)− 1

2 lnP(A)
)

(3.61c)

= − d
dA

(
ln M(A) + 1

2kBT
UPMF(A)

)
(3.61d)

= − 1
2kBT

dUeff(A)
dA

− 1
2

d
dA

ln M(A). (3.61e)

Inserting the result in eq. (3.59) and eq. (3.61e) into eq. (3.58), we get〈
δ(A0 − A)

(
Ȧ2

0 − kBT
M(A0)

)
,LȦ0

〉
2
(

kBT
M(A)

)2
P(A)

= −1
2

d
dA

ln M(A) (3.62)

This leads us to the following result for the potential term of the GLE

PKLȦ0 = PH
Z LȦ0 + PK

MLȦ0 (3.63a)

= − 1
M(A)

d
dA

(
UPMF(A) + kBT

2 ln M(A) + M(A)
2 Ȧ2

)
. (3.63b)

3.3.2 Final form of the GLE

With the result of eq. (3.63), the GLE reads

Ät = − 1
M(At)

dU(At, Ȧt)
dAt

−
∫ t

0
ds ΓK(As, t− s)Ȧs + F K

R (t), (3.64a)
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with

U(A, Ȧ) = UPMF(A) + kBT

2 ln M(A) + M(A)
2 Ȧ2, (3.64b)

ΓK(A, t) = βDK(A, t)dUeff(A)
dA

− dDK(A, t)
dA

+ 〈Ä0, F K
R (t)〉A

〈Ȧ2
0〉A

, (3.64c)

DK(A, t) = 〈Ȧ
2
0, F K

R (t)〉A
〈Ȧ2

0〉A
. (3.64d)

Again, M(A) = kBT/〈Ȧ2
0〉A denotes the position dependent effective mass and Ueff(A)

is given in eq. (3.16). Since the projection PK is an orthogonal projection, the following

relations hold

〈F K
R (t)〉A = 0, 〈Ȧ0, F K

R (t)〉A = 0. (3.65)

An algorithm to extract GLE parameters from time series data by explicitly computing the

random force FR(t) was introduced in refs. [16, 72] and extended to GLEs in the presence of
finite, in general nonlinear, potentials and nonlinear friction in ref. [4]. Numerical extraction

schemes will be the topic of the next chapter.

3.4 Conclusion

We introduce three projection operators and use them to incorporate nonlinear memory

effects into the generalized Langevin equation.

Using a hybrid-projection scheme that combines linear Mori projection on the reaction

coordinate velocities and nonlinear conditional Zwanzig projection on the reaction coordi-

nates themselves, we derive a GLE that contains the nonlinear potential of mean force and a

nonlinear memory friction contribution that is a function of the reaction coordinate At but

not of its velocity Ȧt. The complete memory friction splits into two parts. One part is linear

in the reaction coordinate velocity and reflects linear friction proportional to a memory

kernel ΓH
M(t). The memory kernel ΓH

M(t) is related to the fluctuating force F H
R (t), defined

in eq. (2.26b), by a relation that resembles a fluctuation-dissipation theorem, eq. (3.18).

The nonlinear memory friction function ΓH
Z (A, t) accounts for nonlinear dependencies of

friction on At and is connected to the fluctuating force F H
R (t) by a conditional correlation

function, given in eq. (3.19c). Thus, when modeling F H
R (t) as a stochastic variable, it

simultaneously has to fulfill both relations, eq. (3.18) and eq. (3.19c).

The approximate GLE in eq. (2.34) is obtained from our GLE in eq. (3.20) for the case

when the memory function ΓH
Z (A, t) vanishes. From eq. (3.19c), it follows that this happens

whenever the conditional correlation between the velocity and the random force in eq. (3.19c)

vanishes. Thus, eq. (3.19c) establishes a firm criterion for the validity of the approximate

GLE.
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The second projection operator generates a nonlinear friction kernel of the form

ΓL(A, t) = βDL(A, t)dUeff(A)
dA

− dDL(A, t)
dA

+ 〈Ä0, F L
R(t)〉A

〈Ȧ2
0〉A

. (3.66)

The first two terms on the r.h.s. of eq. (3.66) resemble the structure of ΓH
Z (A, t) in eq. (3.19b).

The rightmost term in eq. (3.66) can be written as

〈Ä0, F L
R(s)〉A

〈Ȧ2
0〉A

= 〈Q
LLȦ0, F L

R(s)〉A
〈Ȧ2

0〉A
= 〈F

L
R(0), F L

R(s)〉A
〈Ȧ2

0〉A
, (3.67)

i.e., it has the structure of a fluctuation-dissipation theorem and resembles the form of ΓH
M

in the hybrid GLE, but with conditional correlations.

In order to obtain the approximate GLE from the linear velocity GLE in eq. (3.44), not only

the function DL has to vanish, but one would also need to be able to replace the conditional

correlations by non-conditional correlations, i.e.,

〈F L
R(0), F L

R(s)〉A
〈Ȧ2

0〉A
= 〈F

L
R(0), F L

R(s)〉
〈Ȧ2

0〉
. (3.68)

The memory function of the third nonlinear friction GLE has the same form since it is also

generated by PL. But the potential term incorporates a kinetic term proportional to the

velocity squared. As pointed out in the discussion leading to eq. (3.48), the velocity squared

term is important when mapping the exact GLE onto a stochastic model (cf. chapter 6).
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4 Numerical Estimation of GLE Parameters via

Projected Correlation Functions

In this chapter, we discuss a numerical method to extract GLE parameters, e.g., nonlinear

memory functions, from time series data. The method is based on the idea of forward

orthogonal propagation to compute projected correlation functions [16, 72, 4].

The memory term in all GLEs presented in chapter 3 included a correlation function of the

form

〈 ∗ ,LFR(t)〉 = −〈L∗, FR(t)〉, (4.1)

where ∗ represents a placeholder for the projection function. Since the random force is

propagated by the projected propagator etQL, i.e., FR(t) = etQLFR(0), the correlation
function in eq. (4.1) is referred to as a projected correlation function [16].

In the first section, we discuss how to utilize projected correlation functions to compute

nonlinear friction kernels in GLEs.

In the second section, we validate our numerical extraction scheme by computing the

memory functions of all GLEs introduced in chapter 3. The underlying time series data is a

trajectory for the dihedral angle of a butane molecule in water, obtained from all-atom MD

simulations.

Interestingly, we find that the significance of nonlinear memory effects depends on how

one accounts for the position-dependent mass.

4.1 GLE parameters from projected correlation functions

In the absence of a potential and in the absence of nonlinear friction, Carof et al. presented

iterative algorithms to compute the random force trajectory and the linear friction kernel

from a trajectory of the reaction coordinate [16, 72]. Their derivations explicitly use theMori

projection, so, strictly speaking, the results are only valid for the Mori GLE in eq. (2.31).

Given a trajectory of an arbitrary observable, we now introduce a method to compute the

random force trajectory FR(ω0, t) and from that a memory function that may depend on

the value of the reaction coordinate itself. For this, let us consider the projected propagator

etQL introduced in eq. (2.25). From the Dyson decomposition in eq. (2.25), we obtain by

rearranging

etQL = etL −
∫ t

0
ds e(t−s)LPLesQL. (4.2)

Applying eq. (4.2) on the initial random force FR(ω0, 0) and using eq. (2.26b), we find

FR(ω0, t) = etLFR(ω0, 0)−
∫ t

0
ds e(t−s)LPLFR(ω0, s). (4.3)
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Now, we consider eq. (4.2) at time t + ∆t

e(t+∆t)QL = etLe∆tL −
∫ t+∆t

0
ds e(t−s)Le∆tLPLesQL. (4.4)

Splitting up the integral on the r.h.s. into two parts gives

e(t+∆t)QL = etLe∆tL −
∫ t

0
ds e(t−s)Le∆tLPLesQL −

∫ ∆t

0
ds e(∆t−s)LPLe(t+s)QL, (4.5)

where we used the substitution s→ s− t in the second integral. Acting with the operator
in eq. (4.5) on the initial random force FR(ω0, 0) leads to

FR(ω0, t + ∆t) = e∆tL
(

etLFR(ω0, 0)−
∫ t

0
ds e(t−s)LPLFR(ω0, s)

)
−
∫ ∆t

0
ds e(∆t−s)LPLFR(ω0, t + s). (4.6)

Comparing eq. (4.6) with eq. (4.3), we see that the first two terms on the r.h.s. of eq. (4.6)

are equal to e∆tLFR(ω0, t) = FR(ω∆t, t), where we used eq. (2.5). Hence, we find

FR(ω0, t + ∆t) = FR(ω∆t, t)−
∫ ∆t

0
ds Γ(A∆t−s, Ȧ∆t−s, t + s). (4.7)

Here, Γ(A∆t−s, Ȧ∆t−s, t + s) = e(∆t−s)LPLFR(ω0, t + s) denotes a general memory func-
tion.

For given trajectories At, Ȧt and given random force FR(ω∆t, t) as a function of the phase
space configuration ω∆t, eq. (4.7) gives the random force FR(ω0, t + ∆t) one time step ∆t
later as a function of the phase space configuration ω0 one time step ∆t before. To obtain
an iterative scheme for the random force, eq. (4.7) is discretized in time and A-space.

First, we consider the easiest discretization, namely, the left rectangular rule to discretize the

time integrals. The random force is discretized as FR(ωt′ , t) = FR(ωi∆t, j∆t) ≡ FR(i, j).
The bounded A-space, A ∈ [a, a + NA∆A], is divided into NA bins with width ∆A, the
bin intervals are labeled by Iα = [a + α∆A, a + (α + 1)∆A] with α = 0, 1, 2, . . . , NA− 1.
For the sake of clarity, we give the discretization explicitly for the hybrid GLE presented in

chapter 3.1, i.e., for the case

Γ(A∆t−s, Ȧ∆t−s, t + s) = −ΓH
M(t + s)Ȧ∆t−s + ΓH

Z (A∆t−s, t + s), (4.8)

The memory kernel ΓH
M, ΓH

Z are given in eq. (3.18) and eq. (3.19), respectively.

F H
R (i, j + 1) = F H

R (i + 1, j) + ∆t ΓH
M(j)Ȧi+1 −∆t ΓH

Z (Ai+1, j), (4.9a)

ΓH
M(j) =

∑Ntraj−j−1
i=0 F H

R (i, 0)F H
R (i, j)∑Ntraj−j−1

i=0 Ȧ2
i

, (4.9b)

ΓH
Z (Ai+1, j) =

[
∆̂αDH(α, j)− β DH(α, j) ∆̂αUPMF(α)

]
Ai+1∈Iα

, (4.9c)

DH(α, j) =

∑
i≤Ntraj−j−1

Ai∈Iα

ȦiF
H
R (i, j)∑

i≤Ntraj−j−1
Ai∈Iα

1 . (4.9d)
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In eq. (4.9c), ∆̂α denotes a numerical first derivative w.r.t. α. We use the central difference

derivative, i.e.,

∆̂αDH(α, j) = DH(α + 1, j)−DH(α− 1, j)
2∆A

. (4.10)

If the observable At has at time t = i∆t a value in the interval Iα, we write Ai ∈ Iα;∑
Ai∈Iα

denotes the sum over all times i for which Ai is in the interval Iα, which is used to

compute conditional averages in eq. (4.9). Ntraj denotes the total length of the At trajectory.

The sums run from i = 0 to Ntraj − j − 1, because for given j, the iterative scheme has
only determined the random force at times up to Ntraj − j − 1, as follows from eq. (4.9a).

The sums in the denominator extend over the same interval as in the numerator in order to

increase the numerical stability [16, 72].

The iterative scheme in eq. (4.9) works as follows: First, note from eq. (2.26a) that the

initial value of the random force is given by

FR(ω0, 0) = Ä(ω0)− PLȦ(ω0), (4.11)

where the rightmost term denotes the potential term, i.e., for the hybrid GLE the initial

random force is

F H
R (i, 0) = Äi + 1

M(Ai)
d

dAi

[UPMF(Ai) + kBT ln M(Ai)] . (4.12)

The random force at time t = 0 equals the acceleration plus the force from the effective

potential for all possible initial times i∆t for i = 0, 1, 2, . . . , Ntraj − 1. This, together with
Ȧi, can be obtained directly from a given trajectory of the observable A. Then, F H

R (i, 0), Ai,

and Ȧi are inserted into eq. (4.9) to compute F H
R (i, 1) for i = 0, 1, 2, . . . , Ntraj−2. F H

R (i, 1)
is then used to compute F H

R (i, 2) for i = 0, 1, 2, . . . , Ntraj−3 and so forth. While computing

F H
R (i, j), the memory friction functions ΓH

M(j) and ΓH
Z (A, j) are computed simultaneously.

If our only goal is to compute the memory friction functions, we can stop the computation

of F H
R (i, j) as soon as the memory functions have dropped to zero. As an example, if the

memory functions decay to zero after Nmem time steps, we can abort the computation of

the random force at F H
R (i, Nmem). At that point, we generated Ntraj −Nmem − 1 distinct

random-force trajectories of length Nmem each. Since the memory functions are computed

simultaneously, the generated random-force trajectories only need to be stored if one is

interested in the random-force statistics, in which case one could extend the length of the

random-force trajectories.

Stabilizing the numerical extraction scheme

The discretization in eq. (4.9a) is based on the left rectangular rule. The numerical accuracy

can be improved by using the trapezoidal rule to discretize the time integral in eq. (4.7).

This leads to

FR(ωi, j + 1) = FR(ωi+1, j)− ∆t

2 Γ(Ai+1, Ȧi+1, j)− ∆t

2 Γ(Ai, Ȧi, j + 1) . (4.13)
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The drawback of the trapezoidal rule is that the term Γ(Ai, Ȧi, j + 1) is unknown at iteration
step j. To estimate Γ(Ai, Ȧi, j + 1), we use the left-point derivative, i.e.,

Γ(Ai, Ȧi, j + 1) ≈ Γ(Ai, Ȧi, j) + ∆t
Γ(Ai, Ȧi, j)− Γ(Ai, Ȧi, j − 1)

∆t
= 2 Γ(Ai, Ȧi, j)− Γ(Ai, Ȧi, j − 1) . (4.14)

With this, the iterative scheme for the random force becomes

FR(ωi, j + 1) = FR(ωi+1, j)− ∆t

2 Γ(Ai+1, Ȧi+1, j)−∆tΓ(Ai, Ȧi, j)

+ ∆t

2 Γ(Ai, Ȧi, j − 1) . (4.15)

We set the derivative at j = 0 to be zero.

To stabilize the numerical estimation even further, we make use of the following relation

which holds for all discussed GLEs in chapter 3

〈FR(t)〉A = 0. (4.16)

For values A with a large number of occurences in the trajectory At, i.e., in bins with a high

frequency of occurence, the relation in eq. (4.16) holds sufficiently well. It gets problematic

at boundary regions that are rarely visited along the trajectory. To counteract instabilities

and in order to estimate averages better in those critical regions, we compute the conditional

mean of the random force, i.e., the mean in each bin Iα, at each step j. If the mean in a bin
is larger than a chosen threshold value ε, we subtract the mean from all values that lie in

this bin, i.e.,

〈FR(t)〉A > ε⇒ FR(ω, t) = FR(ω, t)− 〈FR(t)〉A, ∀ω with A(ω) = A. (4.17)

4.2 Numerical results for the dihedral angle in Butane

In this section, we analyze dihedral angle trajectories of a single butane molecule in water

generated from all-atom force field molecular dynamics (MD) simulations. We apply the

numerical extraction scheme based on projected correlation functions from section 4.1 on

these trajectories to compute the memory functions discussed in chapter 3.

MD simulations are performed using the Gromacs MD package (version 2020-Modified)

[97]. For the MD simulation of the butane molecule, we use the GROMOS53A6 force

field [94] with the TIP4P/2005 rigid water model [1]. The simulation box has side lengths

of 3.35 nm and contains 1250 water molecules and one butane molecule. We constrain

the butane bond lengths and angles using the SHAKE algorithm [99]. For long-range

electrostatic interactions, we use the particle-mesh Ewald [28], with a cut-off of 1 nm. The

simulation time step is 2 fs. We generate 50 trajectories, each of length 20 ns, i.e., the

total simulation time is 1µs. All simulations are performed in the NVT ensemble with a

temperature of 300K, controlled with a velocity rescaling thermostat [14]. Input files of
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Figure 4.1: (a): The potential of mean force computed from 50 dihedral angle trajectories of

a single butane molecule in water. The trajectories are generated from all-atom

force field MD simulations. (b): The position-dependent mass according to

eq. (3.15) for the dihedral angle reaction coordinate (blue solid line), computed

using the same data as in (a). The broken black line shows the constant mass

that follows from the equipartition theorem, i.e., M = kBT/〈Ȧ2
0〉.

the MD simulations are available upon request. Our Python codes for extracting the GLE

parameters and running Langevin simulations are also available upon request.

The dihedral angle of butane is a conceptually simple yet relevant observable and provides

a simple scenario to study conformational transitions in polymers and proteins that is both

theoretically [19] and experimentally [112] accessible.

In fig. 4.1(a), we show the potential of mean force UPMF(A) = −kBT lnP(A) for the
dihedral angle. The PMF does not equal the effective potential Ueff in eq. (3.16) since the

effective mass M(A) of the dihedral angle, as shown in fig. 4.1(b), depends on the value
of the dihedral angle. Between the values A ∈ [−140, 140] deg, the mass varies between
M(A) ∈ [1.61, 2.34] ·10−5 u nm2/deg2.

In fig. 4.2(a), we compare the memory kernel ΓH
M(t) from eq. (3.18) with the memory

kernel ΓA(t) from the approximate GLE in the presence of a position-dependent mass in

eq. (5.5). The approximate GLE with a position-dependent mass is introduced in chapter 5

and contains no nonlinear memory contributions. The memory function ΓA(t) is computed
using the extraction scheme in chapter 5.2 [26, 66, 5] by making use of the relation in

eq. (5.3). The deviations between the two memory functions are particularly well visible

in the running integrals shown in the inset of fig. 4.2(a). ΓH
M(t) is defined within the exact

GLE in eq. (3.20) and determined numerically from the MD trajectory via eq. (4.15). The

pronounced deviations already suggest that nonlinear friction effects, not captured by ΓA(t),
are present. This is confirmed in fig. 4.2(b) where we show that the correlation function

DH(A, t), defined in eq. (3.19c), does not vanish for all times t. In fig. 4.2(b), DH(A, t)
is shown for a few different fixed times. Thus, a nonlinear memory contribution due to

ΓH
Z (A, t), defined in eq. (3.19), is present in the hybrid GLE. As mentioned before, from

the definition of DH(A, t) in eq. (3.19c), it follows that DH(A, t) vanishes at time t = 0,
i.e., DH(A, 0) = 0, as confirmed by fig. 4.2(b). For finite time, DH(A, t) rises in amplitude
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Figure 4.2: (a): Comparison of the memory kernel ΓH
M(t) from the hybrid GLE in eq. (3.20)

with the kernel ΓA(t) from the approximate GLE given in eq. (5.5). ΓH
M(t) is

computed using the extraction scheme in eq. (4.15), ΓA(t) is computed using
the Volterra equation presented in chapter 5.2. The inset shows the respective

running integrals G(t) =
∫ t

0 ds Γ(s). In the running integrals, the deviations are
particularly visible. (b): The correlation function DH(A, t) from eq. (3.19c) as

a function of the dihedral angle A at fixed times t.

before decaying to zero after a time corresponding to the memory time of ΓH
M(t) in fig. 4.2(a),

which is about 1 ps [4].

In fig. 4.3, we compare the memory kernel ΓL(A, t), defined within the GLE in eq. (3.44),

with the memory kernel ΓK(A, t), defined within the GLE in eq. (3.64). As discussed in

chapter 3.3, the position dependent mass generates an additional term in eq. (3.64) that

is quadratic in the velocity, which is missing in eq. (3.44). Since both GLEs are exact

descriptions of the same dynamics, the quadratic velocity term must be accounted for by the

random force in eq. (3.44). Thus, the memory kernel ΓL(A, t) must depend on the mass in
order to account for its position-dependency. On the other hand, we expect that the position

dependency of the mass has a smaller impact on the random force in eq. (3.64), and with

that on the memory kernel ΓK(A, t), due to the presence of the quadratic velocity term in

eq. (3.64).

With that in mind, we consider the memory kernel ΓL(A, t) and ΓK(A, t) shown in fig. 4.3
for the dihedral angle in butane. The underlying trajectories are the same as in fig. 4.2 and

the numerical extraction is again performed using eq. (4.15). The memory kernel ΓL(A, t)
from eq. (3.44) is shown in fig. 4.3(a) as a function of time at fixed angles A and in fig. 4.3(c)

as a function of the dihedral angle at different times t, in both figures, ΓL(A, t) is depicted
by solid lines. In fig. 4.3(a) and (c), the position dependency of ΓL(A, t) is clearly visible.
In contrast, the position dependency of the memory kernel ΓK(A, t), shown in fig. 4.3(b) as
solid lines and in fig. 4.3(c) by connected markers, is less significant compared to ΓL(A, t).
This is rationalized by our discussion in the previous chapter leading to eq. (3.48). Since

the Markovian part in eq. (3.64) contains more information on the position dependent mass,

its impact on the memory term is less significant.

Nevertheless, the pronounced difference between the two memory kernels in fig. 4.3(c), in

42 Cihan Ayaz, Non-Markovian Modelling of Many-Body Dynamics, 2022



4 Numerical Estimation of GLE Parameters via Projected Correlation Functions

10−3 10−2 10−1 100

t [ps]

0.0

0.5

1.0

1.5

2.0

Γ
[p

s−
2 ]

×102

(a)ΓL

A = 111◦

A = 98◦

A = 65◦

A = 32◦

A = 0◦

10−3 10−2 10−1 100

t [ps]

(b)ΓK

−100 0 100
A [deg]

(c)

t = 0 ps
t = 0.05 ps

t = 0.2 ps
t = 5 ps

Figure 4.3: (a): The memory kernel ΓL(A, t) from the GLE in eq. (3.44) as a function of

time for different values of the dihedral angle A. (b): The same is shown for
the memory kernel ΓK(A, t) from the GLE in eq. (3.64). The colors correspond

to the same dihedral angle values as in (a). (c): Comparison of the two memory

functions shown in (a) and (b), both are plotted against the dihedral angle A at

fixed times t. Solid lines correspond to ΓL(A, t) and the connected markers to
ΓK(A, t).

particular for the data at t = 0.05 ps (red line and markers), is suprising since it can only
be due to the position dependent mass. This is a consequence of the fact that the random

forces in eq. (3.44) and eq. (3.64) are given by

F L
R(t) = etQLLQLLȦ0, F K

R (t) = etQLLQKLȦ0, (4.18)

i.e., both random forces are propagated in time by etQLL and they are in general different

functions because they differ at the initial time, F L
R(0) 6= F K

R (0). However, when the

mass is constant, it immediately follows from the GLEs in eq. (3.44) and eq. (3.64) that

F L
R(0) = F K

R (0) and, therefore, F L
R(t) = F K

R (t) for all times t. This suggests that the

deviations between ΓL(A, t) and ΓK(A, t) we observe in fig. 4.3 is mainly due to the

position dependent mass shown in fig. 4.1(b).

The numerical extraction scheme in section 4.1 allows us to compute random force trajecto-

ries FR(ω0, t) in ω0. Using these trajectories, we can estimate the distribution of the random

force in each time step. This is shown in fig 4.4(a) for the random force from the hybrid GLE

in eq. (3.20). The distribution of the random force is stationary. In fig. 4.4(b), we compare

the random force distributions at t = 1 ps for the three GLEs in eq. (3.20), eq. (3.44) and
eq. (3.64). No significant deviations between the distributions can be discerned.
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Figure 4.4: (a): It is shown the random force distribution P(F H
R (t)) at different times t for

the hybrid GLE in eq. (3.20), computed from the dihedral angle MD trajectories

of a single butane molecule in water. The distribution is stationary. (b): The

random force distribution at t = 1 ps for the three GLEs in eq. (3.20) (blue

solid line), eq. (3.44) (red solid line) and eq. (3.64) (green solid line). The

distributions are identical.

4.3 Conclusion

We introduce a numerical scheme to compute all parameters of nonlinear friction GLEs

from a given trajectory At and apply the numerical scheme on a dihedral angle trajectory of

butane in water, obtained from atomistic MD simulations.

We find that the effective mass of the dihedral angle depends on the value of the dihedral

angle and that the nonlinear memory friction contribution in the hybrid GLE is finite and

non-negligible. In order to estimate the importance of the nonlinear memory friction from

the hybrid GLE, we have to compare the linear memory kernel ΓH
M(t) and the nonlinear

memory function ΓH
Z (A, t). For this we multiply the linear-friction memory kernel at time

zero, ΓH
M(0), by the root mean square velocity and obtain ΓH

M(0)
√
〈Ȧ2〉 = 160 ps−3, which

can be directly compared with the maximal value of the nonlinear memory friction function

ΓH
Z (Ã, t̃) = 104 ps−3, which is obtained for Ã = 81◦ and t̃ = 0.043 ps. The value of

ΓH
Z (Ã, t̃) thus turns out to be roughly half the value of ΓH

M(0)
√
〈Ȧ2〉, which means that

nonlinear memory friction effects are not negligible in the hybrid GLE in eq. (3.20).

We obtain a similar result from the linear velocity GLE in eq. (3.44). The memory function

ΓL changes significantly with A, which also suggestes that nonlinear memory effects cannot

be neglected.

However, when we modify the mean force term by incorporating a term quadratic in the

velocity, which accounts for a position-dependent mass, the dependency of the memory

function ΓK within the GLE in eq. (3.64) onA is less significant. We show that the difference

between ΓL and ΓK can only be due to the presence of a position dependent mass and that

ΓL and ΓK must be equal if the mass is constant.
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Finally, we show that the equal-time random force distributions in all three GLEs exhibit

small but detectable deviations from a Gaussian distribution, but the different memory and

mean force terms seem to have no significant effect on this distribution.

All these results lead us to conclude that the nonlinear GLEs derived from projection schemes

are practically useful and allow to detect and model nonlinear friction effects that have been

neglected in previous applications of the approximate GLE with linear memory friction.
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5 The Approximate GLE

In this chapter, we focus on the approximate GLE given in eq. (2.34) for an observable

consisting of atomistic distances. First, we briefly dicuss under which conditions it arises

from the hybrid GLE.

Following this, we present methods to numerically extract its parameters from time series

data, and using the extracted parameters, perform computer simulations of the approximate

GLE to generate trajectories from the GLE itself. The numerical extraction scheme presented

in this chapter is different from the one discussed in chapter 4. We will use an extraction

scheme based on inverting Volterra equations [51, 106, 26] and derive from this approach

an iterative scheme to compute the running integral of the memory kernel [66, 5]. The GLE

simulations are performed using Markovian embedding techniques [103, 5].

In the subsequent section, we study the Kramers Moyal expansion of the approximate

GLE and show that all higher orders than first order Kramers Moyal coefficients of the

approximate GLE vanish [5].

Finally, we study how accurately the approximate GLE can reproduce the folding dynamics

of the polypeptide 9-alanine [5].

5.1 Approximate GLE as an approximation of the hybrid

GLE

We consider the hybrid GLE in eq. (3.20)

Ät = − 1
M(A)

dUeff

dAt

−
∫ t

0
ds ΓH

M(t− s)Ȧs + F H
R (t) +

∫ t

0
ds ΓH

Z (As, t− s), (5.1a)

Ueff(A) = UPMF(A) + kBT ln M(A). (5.1b)

The first three terms on the r.h.s. of eq. (5.1) correspond to the approximate GLE in eq. (2.34)

for a reaction coordinate A that has a position-dependent mass M(A).
The nonlinear memory term involving the kernel ΓH

Z represents a correction term in the

presence of nonlinear memory effects. The memory function ΓH
Z is given in eq. (3.19), it

vanishes if the following conditional correlation function vanishes

DH(A, t) = 〈Ȧ0, F H
R (t)〉A. (5.2)

Since the hybrid projection is an orthogonal projection (chapter 3.1.1), we know that

〈Ȧ0, F H
R (t)〉 = 0, (5.3)

and also that DH(A, 0) = 0. Further, for large many particle systems, we expect the random
force and the velocity to become uncorrelated at any given value A when t→∞, i.e.,

lim
t→∞

DH(A, t) = 〈Ȧ0〉A〈F H
R (t)〉A = 0. (5.4)
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In summary, DH is zero at time t = 0, then it increases in amplitude and decays to zero
when t becomes larger than the memory time of the dynamics (see chapter 4.2).

According to the hybrid GLE, the approximate GLE is obtained by neglecting conditional

correlations between the random force F H
R (t) and the velocity Ȧ0, i.e, by assuming that

eq. (5.3) holds at any given value A and DH(A, t) = 0 at all times t. Then the hybrid GLE
reads

Ät = − 1
M(A)

dUeff

dAt

−
∫ t

0
ds ΓA(t− s)Ȧs + F A

R (t), (5.5)

with Ueff(A) given in eq. (5.1). Eq. (5.5) together with the relation in eq. (5.3) is the

approximate GLE in the presence of a position-dependent mass. It is the approximate GLE

we used in chapter 4.2 when studying the dihedral dynamics in a butane molecule.

In the remainder of this chapter, we consider a reaction coordinate whose effective mass is

constant in the reaction coordinate, for example, the mean native distance for a polypeptide

(see chapter 3.1.3).

Given that DH(A, t) = 0, multiplying the hybrid GLE by the constant mass M , we recover

the approximate GLE in eq. (2.34) for the observable A

MÄt = −dUPMF(At)
dAt

−
∫ t

0
ds ΓA(t− s)Ȧs + F A

R (t), (5.6a)

〈F A
R (0), F A

R (t)〉 = kBT ΓA(t), (5.6b)

〈Ȧ0, F A
R (t)〉 = 0, (5.6c)

〈A0, F A
R (t)〉 = 0, (5.6d)

where we identified MΓH
M(t) = ΓA(t) and MF H

R (t) = F A
R (t).

5.2 Numerical estimation of GLE parameters by inverting

a Volterra equation

Given the structure of the approximate GLE together with the relations in eq. (5.6), we

derive an equation that allows us to compute the running integral of the memory kernel,

G(t) =
∫ t

0 ds ΓA(s), directly from time-series data. The final equation generalizes the

method to extract G(t) in a harmonic potential derived in [66] to an arbitrary potential

UPMF.

We multiply the GLE in eq. (5.6) by the initial velocity Ȧ0 and ensemble average the result.

Using the orthogonality in eq. (5.6b), this leads to

M
d
dt

Cvv(t) = CF v(t)−
∫ t

0
ds ΓA(s)Cvv(t− s), (5.7)

where Cvv(t) = 〈ȦtȦ0〉 denotes the velocity auto-correlation function and CF v(t) is the
correlation function of the mean force F (t) = −U ′

PMF(At) with the velocity Ȧ0. Time
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integration of (5.7) gives a continuous equation for the running integral G(t)

MCvv(t) = −CF A(t) + CF A(0) + MCvv(0)−
∫ t

0
ds Cvv(s)G(t− s). (5.8)

Multiplying the GLE in eq. (5.6a) by the initial position A0, ensemble averaging and using

the orthogonality relations in eq. (5.6d), we find

M
d
dt

CAA(t) = CF A(t)−
∫ t

0
dsΓA(s) CvA(t− s). (5.9)

Evaluating (5.9) at t = 0 and inserting d
dt

CAA(t) = −Cvv(t) gives

MCvv(0) = −CF A(0). (5.10)

Hence, (5.8) becomes

−Cvv(t)
Cvv(0)CF A(0) = −CF A(t)−

∫ t

0
ds′ Cvv(s′)G(t− s). (5.11)

Discretizing (5.11) by the use of the trapezoidal rule gives

Cvv
n

Cvv
0

CF A
0 = CF A

n + ∆t

2 GnCvv
0 + ∆t

n−1∑
i=1

Gn−iC
vv
i , (5.12)

where we used G(0) = 0. Solving (5.12) for Gn = G(t) leads to an iterative equation for
Gn

Gn = 2
∆t Cvv

0

(
−CF A

n + CF A
0

Cvv
0

Cvv
n −∆t

n−1∑
i=1

Gn−iC
vv
i

)
. (5.13)

We apply the Volterra scheme only on the approximate GLE in eq. (5.6). An application of

the Volterra scheme on GLEs with nonlinear friction kernel was discussed in ref. [110].

5.3 Simulating the approximate GLE

Since the approximate GLE does not contain memory functions nonlinear in A and Ȧ, it is,

from a numerical point of view, preferable over the nonlinear GLEs discussed in chapter 3.

In the following, we present a Markovian embedding that can be used to generate trajectories

from the approximate GLE in eq. (5.6).

For this, we first demonstrate how an Hamiltonian system can be mapped onto a stochastic

Langevin system. Then we show that this Langevin system corresponds to a GLE that has

the same structure as the approximate GLE in eq. (5.6), thus, we can use it to perform GLE

simulations.
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5.3.1 Mapping the nonlinear Zwanzig Hamiltonian system onto a

stochastic Langevin system

The Hamiltonian of the nonlinear Zwanzig model is given by [114, 5]

H(x, p, {qn, vn}N
n=1) = p2

2M
+ U(x) +

N∑
n=1

(
v2

n

2mn

+ kn

2 (g(x)− qn)2
)

, (5.14)

where we are only interested in the motion of the particle with position x and momentum

p. A Nonlinear function g(x) enters the coupling to other particles with positions qn and

momenta pn. This represents a symmetry breaking in the interactions since the interactions

do not depend on the distance |qn − x|, but rather on the explicit value of x. However, the
symmetrical case where the interactions only depend on the distance is easily recovered by

setting g(x) = x. As we will show here, a nonlinear g(x) induces nonlinear memory friction
in the corresponding GLE. The equations of motion for the Hamiltonian in eq. (5.14) read

Mẍt = −U ′(xt)−
∑

n

kng′(xt) (g(xt)− qn(t)) , (5.15a)

mnq̈n,t = −kn (qn(t)− g(xt)) , (5.15b)

where the prime superscript denotes a derivative w.r.t. the argument, i.e., U ′(x) = dU/dx.
Eq. (5.15b) can be solved to give

qn(t) = qn(0) cos(µnt) + vn(0)
mnµn

sin(µnt) + µn

∫ t

0
ds sin(µn(t− s)) g(xs), (5.16)

where µ2
n = kn/mn. By partial integration, the solution in eq. (5.16) can be written in the

form

qn(t) = (qn(0)− g(x0)) cos(µnt) + vn(0)
mnµn

sin(µnt)

−
∫ t

0
ds cos(µn(t− s)) g′(xs)ẋs + g(xt). (5.17)

Inserting eq. (5.17) into eq. (5.15a) leads to a GLE for x, i.e.,

Mẍt = −U ′(xt)−
∫ t

0
ds Γ [t− s, xt, xs] ẋs + FR(t, xt) (5.18a)

FR(t, xt) =
∑

n

g′(xt)
(

µnvn(0) sin(µnt) + kn (qn(0)− g(x0)) cos(µnt)
)

, (5.18b)

with the memory function

Γ(t− s, xt, xs) =
N∑

n=1
kng′(xt)g′(xs) cos(µn(t− s)). (5.18c)

We now show how to map the nonlinear Zwanzig Hamiltonian system defined in eq. (5.14)

onto a Markovian stochastic system of equations for which numerical simulations can be

Cihan Ayaz, Non-Markovian Modelling of Many-Body Dynamics, 2022 49



5 The Approximate GLE

efficiently performed. The results obtained here include the harmonic model by setting

g(x) = x.

Consider the memory function in eq. (5.18c). It contains a sum over cosines. For N →∞,

this represents a Fourier series of an even, periodic function in time with Fourier coefficients

kn. In the continuous limit, i.e., kn → k(µ)dµ/2π, this defines an arbitrary even function
f(t) which we can choose to be an oscillating-exponential

∞∑
n=1

kn cos(µnt)→
∫ ∞

−∞

dµ

2π
k(µ) cos(µt) = f(t) (5.19a)

= K e−|t|/τ
(

cos
(2π

T
t
)

+ c sin
(2π

T
|t|
))

, (5.19b)

with an exponential decay time τ and parameters T , K, c to be determined below. The

function k(µ) follows from the Fourier transform as

k(µ) =
∫ ∞

−∞
dt cos (µt) f(t). (5.20)

The memory function in eq. (5.18c) becomes

Γ(t− s, xt, xs) = g′(xt)g′(xs) K e−|t−s|/τ
(

cos
(2π

T
(t− s)

)
+ c sin

(2π

T
|t− s|

))
.

(5.21)

Now, consider the random force in eq. (5.18b). For N →∞, it can be rewritten as

FR(t, xt) = g′(xt)F̃R({qn(0), vn(0)}, t), (5.22)

in terms of the random function F̃R which depends on the initial conditions of all auxiliary

variables. In the stochastic interpretation of the GLE, it is sufficient to know the distribution

of the initial conditions of the complementary variables. For the Hamiltonian in eq. (5.14),

the distribution is given by the Boltzmann distribution. Thus, the initial values qn(0), vn(0)
are Gaussian distributed random variables with

〈(qn(0)− g(x0))〉 = 0, 〈vn(0)〉 = 0, (5.23a)

〈g(x0), vn(0)〉 = 0, 〈qn(0), vn(0)〉 = 0, (5.23b)

〈vn(0), vm,0〉 = δn,mmnkBT, (5.23c)

〈(qn(0)− g(x0)), (qm,0 − g(x0))〉 = δn,m
kBT

kn

. (5.23d)

From this, it follows that F̃R is a stationary Gaussian process fulfilling

〈F̃R(t)〉 = 0, (5.24a)

〈F̃R(t), F̃R(0)〉 = kBT
∑

n

kn cos(µnt)→ kBTf(t). (5.24b)

The equal sign in eq. (5.24b) follows from the explicit form given in eq. (5.18b) and from the

relation in eq. (5.23d) where the average is a Boltzmann average over the initial conditions
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{qn(0), vn(0)}. A Markovian stochastic system which leads to a memory function of the

form given in eq. (5.21) reads

Mẍt = −U ′(xt)− kg′(xt) (g(xt)− y(t)) , (5.25a)

myÿ(t) = −k (y(t)− g(xt))− γẏ(t) +
√

2kBTγη(t), (5.25b)

E[η(t)] = 0, E[η(t)η(s)] = δ(t− s), (5.25c)

with η being white noise and E[·] denotes an average over the noise. The relations between
the parameters in eq. (5.25) and the parameters in eq. (5.19) are given by

ν2 = 4τ 2
Γµ2 − 1, (5.26a)

T = 4π

ν
τΓ, τ = 2τΓ, K = k, (5.26b)

τΓ = my

γ
, µ2 = k

my

c = 1
ν

. (5.26c)

By solving eq. (5.25b) and inserting the result into eq. (5.25a), we find the random force

F̃ R(t) = ke−|t|/2τ
(

cos
(2π

T
t
)

+ 1
ν

sin
(2π

T
t
))

(y(0)− g(x0))

+ 2
γν

e−|t|/2τ sin
(2π

T
t
)

py(0)

+
√

2kBTγ
∫ t

0
ds 2e−(t−s)/2τ τ

ν
sin

(2π

T
(t− s)

)
η(s), (5.27)

where the variables y(0) and qn(0) are identically distributed, the same is true for py(0) =
myẏ(0) and vn(0). The stochastic equivalence of F̃ R in eq. (5.22) and F̃R in eq. (5.27)

follows from the fact that their first and second moments are the same when t� τ , i,e., for
sufficiently long trajectories.

5.3.2 Markovian embedding of the approximate GLE

We have mapped the nonlinear Hamiltonian Zwanzig model defined by eq. (5.14) onto the

set of coupled Markovian stochastic equations in eq. (5.25), which can be used to perform

numerical simulations.

Eq. (5.25) with N auxiliary variables {yn(t)}N
n=1 reads [103]

Mẍt = −U ′(xt)−
N∑

n=1
kng′

n(xt) (gn(xt)− yn(t)) , (5.28a)

mnÿn(t) = −kn (yn(t)− gn(xt))− γnẏn(t) +
√

2kBTγnηn(t), (5.28b)

E[ηn(t)] = 0, E[ηn(t)ηl(s)] = δnlδ(t− s). (5.28c)

The overdamped case of eq. (5.28) is obtained by considering the limit mn

γnτD
� 1, where

τD denotes the diffusive time scale. With the elimination of fast varibles method [108], one
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finds that in the overdamped limit the inertial term in eq. (5.28b) can be neglected, i.e.,

Mẍt = −U ′(xt)−
N∑

n=1
kng′

n(xt) (gn(xt)− yn(t)) , (5.29a)

ẏn(t) = −kn

γn

(yn(t)− gn(xt)) +
√

2kBT

γn

ηn(t), (5.29b)

E[ηn(t)] = 0, E[ηn(t)ηl(s)] = δnlδ(t− s). (5.29c)

In the same way we obtained the GLE in eq. (5.18a), a GLE is found that describes eq. (5.29)

by solving eq. (5.29b) for yn(t) and inserting the result into eq. (5.29a). The corresponding
memory kernel for eq. (5.29) is given by

Γ(t− s, xt, xs) =
N∑

n=1
g′

n(xt)g′
n(xs)

γn

τn

e− (t−s)
τn , (5.30)

with the memory time given by τn = γn/kn. Note that, when gn(x) = x, the memory kernel
in eq. (5.30) only depends on t− s. Thus, the Markovian system in eq. (5.29) can be used

to perform efficient simulations of the approximate GLE in eq. (5.6) with exponentially

decaying memory functions.

5.4 Kramers-Moyal coeffiecients for the approximate GLE

We consider a general multidimensional stochastic process described by the trajectory

q(t). For example, q(t) could denote the two-dimensional process given by q(t) =
(At, Ȧt) ≡ (q, v). The Kramers-Moyal coefficients are derived from the transition probabil-

ity W (q, t|q′, t′), which is the probability that q(t) = q given that q(t′) = q′, for t > t′.

The transition probability is a well-defined quantity for Markov and non-Markov processes.

However, in contrast to Markov processes, for non-Markov processesW (q, t|q′, t′) does not
contain the full information of the dynamics, i.e., we can not describe the stochastic process

completely based on the transition probabilities alone [98]. For non-Markov processes,

further information is required [60].

5.4.1 The Kramers-Moyal Expansion

To consider the multi-dimensional Kramers-Moyal expansion, it is useful to introduce the

multi-index notation [100] which employs the multi-index α = (α1, α2, . . . , αN) ∈ NN .

The convention is as follows: For some vector r ∈ RN , the product of coefficients is

defined as rα ≡ rα1
1 rα2

2 · · · rαN
N and we define α! ≡ α1!α2! . . . αN !. The absolute value of

the multi-index is defined as |α| = ∑N
i=1 αi ≡ n. Using the above described multi-index

notation, the n-th multi-dimensional Kramers-Moyal coefficient with a finite lag time ∆t
can be defined as

D(n)
α (q, t, ∆t) = 1

n!∆t
〈(q(t + ∆t)− q(t))α〉q(t)=q . (5.31)

52 Cihan Ayaz, Non-Markovian Modelling of Many-Body Dynamics, 2022



5 The Approximate GLE

In eq. (5.31), 〈 〉q(t)=q denotes the conditional expectation value that at time t, q(t) = q.
We start with the joint probability P2(q, t + ∆t; q′, t) of observing q at time t + ∆t and q′

at time t with ∆t > 0. For Markov and non-Markov processes, P2 can be written as [98]

P2(q, t + ∆t; q′, t) = W (q, t + ∆t|q′, t)P1(q′, t). (5.32)

By integrating over q′ we obtain

P1(q, t + ∆t) =
∫

dq′ W (q, t + ∆t|q′, t)P1(q′, t), (5.33)

where dq′ = dq′
1dq′

2 . . . dq′
N . Next we substitute ∆ = q − q′ ⇒ d∆ = −dq′ and obtain

P1(q, t + ∆t) =
∫

d∆ W (q, t + ∆t|q −∆, t)P1(q −∆, t). (5.34)

Now, we expand the integrand in eq. (5.34) in q around q + ∆

P1(q, t + ∆t) =
∫

d∆
∑

|α|≥0

∆α

α!

(
− ∂

∂q

)α

W (q + ∆, t + ∆t|q, t)P1(q, t), (5.35)

where the sum
∑

|α|≥0 goes over all possible permutations and |α| = 0, 1, 2, . . . ,∞. Rear-

ranging eq. (5.35) gives

P1(q, t + ∆t) =
∑

|α|≥0

n!
α!

(
− ∂

∂q

)α

P1(q, t)∆tD(n)
α (q, t, ∆t), (5.36)

where the equivalent definition of the finite-time Kramers-Moyal coefficients has been used

D(n)
α (q, t, ∆t) =

∫
d∆ 1

n!∆t
∆αW (q + ∆, t + ∆t|q, t). (5.37)

From eq. (5.37), it follows that ∆tD(0)
α (q, t, ∆t) = 1. Therefore, we can write

P1(q, t + ∆t) = P1(q, t) +
∑

|α|≥1

n!
α!

(
− ∂

∂q

)α

P1(q, t)∆tD(n)
α (q, t, ∆t). (5.38)

After rearranging we find

P1(q, t + ∆t)− P1(q, t)
∆t

=
∑

|α|≥1

n!
α!

(
− ∂

∂q

)α

D(n)
α (q, t, ∆t)P1(q, t), (5.39a)

=
∞∑

n=1

∑
|α|=n

n!
α!

(
− ∂

∂q

)α

D(n)
α (q, t, ∆t)P1(q, t), (5.39b)

where the sum
∑

|α|=n goes over all α with |α| = n. From eq. (5.37), it follows that

D(n)
α (q, t, 0) = 0 for n > 0. Therefore, taking the limit ∆t → 0 on both sides gives the

standard Kramers-Moyal expansion of the Fokker-Planck equation

∂P1(q, t)
∂t

=
∞∑

n=1

∑
|α|=n

n!
α!

(
− ∂

∂q

)α

lim
∆t→0

D(n)
α (q, t, ∆t)P1(q, t) = LKMP1(q, t), (5.40)

where LKM denotes the Kramers-Moyal operator.
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5.4.2 Pawula theorem

According to the Pawula Theorem, the expansion in eq. (5.40) either stops after the second

term or it contains an infinite number of terms. This can be derived by using the generalized

Schwartz inequality [98]. For a non-negative function P (q) ≥ 0 and arbitrary functions

f(q) and g(q), one finds(∫
dq P (q)f(q)g(q)

)2
≤
∫

dq P (q) f(q)2
∫

dq P (q) g(q)2. (5.41)

WhenP (q) is the transition probabilityW (q+∆, t+∆t|q, t), and f(q)→ ∆β , g(q)→ ∆γ ,

where the multi-indices β and γ are a partition of α, i.e., |α| = |β| + |γ| = n + (n + m)
and α! = β!γ!, the Schwartz inequality implies for the Kramers Moyal coefficients [98](

D(2n+m)
α

)2
≤ (2n)! (2(n + m))!

[(2n + m)!]2
D

(2n)
β D(2(n+m))

γ , for n, m ≥ 1. (5.42)

The factorial prefactors follow from the definition eq. (5.31). If D
(2n)
β = 0, we find from

eq. (5.42) that D(2n+1)
α = D(2n+2)

α = · · · = 0, i.e.,

D
(2n)
β = 0 ⇒ D(2n+m)

α = 0, for m ≥ 1. (5.43)

From eq. (5.42), it also follows that if D(2(n+m))
γ = D(2r)

γ = 0, the coefficients D(2n+m)
α =

D(2(n+m)−m)
α = D(2r−m)

α vanish for all combinations of n, m with n + m = r. Meaning

D(2r)
γ = 0 ⇒ D(2r−m)

α = 0 for m = 1, 2, . . . , r − 1. (5.44)

Combining eq. (5.43) with a repeated use of eq. (5.44) gives in summary the following

non-trivial properties:

1. The expansion stops after the first order, which means that there is no stochastic part in

the corresponding Langevin equation. This becomes clear by noting that, if all second

order KMCs vanish, the amplitude of the random forces in the Langevin equation also

vanish. The fact that the expansion may stop after the first order follows from eq. (5.43)

for n = 1. If the second order KMCs are zero, so are all higher orders.

2. The expansion stops after the second order, i.e, the Kramers Moyal expansion becomes

the ordinary Fokker Planck equation, which describes a diffusion process. This follows

from eq. (5.43) and eq. (5.44). If we consider the case n = 2 in eq. (5.43), it follows that,

if the fourth order KMCs are zero, then all orders higher than four are also zero. On the

other hand, eq. (5.44) says that, if the fourth order KMCs are zero, the third order KMCs

must also be zero. Hence, all orders larger than two must vanish if the fourth order KMCs

turn out to be zero.

3. The expansion contains an infinite number of terms. This can be seen by setting the

third order KMCs to be non-zero. Then, according to eq. (5.44), the fourth order KMCs

can not be zero. Furthermore, if the fourth order KMCs are non-zero, eq. (5.44) again

implies that the sixth order KMCs must also be non-zero. In this way, the repeated use

of eq. (5.44) implies that the Kramers Moyal expansion contains an infinite number of

terms.
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5.4.3 Kramers-Moyal coefficients of a stationary Gaussian process

Here, we derive the KMCs for a stationary Gaussian process, i.e. for the GLE in eq. (5.6) in

the absence of a potential U . The results of this subsection are used below to approximately

compute the KMCs of the approximate GLE. To proceed, we consider the velocity v(·) as
an N dimensional stationary Gaussian process,

v(·) → v = (v1, v2, . . . , vN)T , (5.45)

P (v) = 1√
(2π)N det σ

e− 1
2 vT ·σ−1·v, (5.46)

where σij = 〈vi, vj〉 = 〈v|i−j|, v0〉 denotes the covariance matrix of the N dimensional

stationary Gaussian distribution P (v). We can use eq. (5.46) to compute the conditional

probability distribution. For this, we partition P (v) using

vT · σ−1 · v = (vN−1 vN) ·
 M O

OT N

 ·
 vN−1

vN

 , (5.47)

wherewe introduce the vectorsO ∈ RN−1, vN−1 ∈ RN−1 and thematrixM ∈ R(N−1)×(N−1).

vN = v denotes the value of the velocity at time t. The partitioning in eq. (5.47) leads to

P (v) = P1(vN)PN−1(vN−1|vN). (5.48)

PN−1(vN−1|vN) is the conditional probability distribution we must use when computing
conditional averages. It has the form

PN−1(vN−1|vN) =
√

det M

(2π)N
e− 1

2

(
vN−1+M−1OvN

)T
·M ·
(

vN−1+M−1OvN

)
. (5.49)

As can be seen in eq. (5.49), the mean of the distribution is shifted. We find

〈vi〉vN =v = −(M−1OvN)i = 〈v|N−i|, v0〉
〈v2

0〉
v. (5.50)

In the continuous case, eq. (5.50) becomes

〈v(s)〉v(t)=v = Cvv(|t− s|)
Cvv(0) v, (5.51)

where Cvv denotes the velocity autocorrelation function. We use eq. (5.51) in the conditional

expectation 〈v(t + ∆t)− v(t)〉v = 〈v(t + ∆t)〉v − 〈v(t)〉v, and find

〈v(t + ∆t)− v(t)〉v = Cvv(∆t)− Cvv(0)
Cvv(0) v. (5.52)

Inserting the last result into eq. (5.31), we obtain the first order KMC for a stationary

Gaussian process

D̃v(v, ∆t) = Cvv(∆t)− Cvv(0)
∆t

v

Cvv(0) = ∆C(∆t) v, (5.53a)
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where D̃v(v, ∆t) denotes the KMC in the absence of a potential U and

∆C(∆t) ≡ (Cvv(∆t)− Cvv(0))/(∆t Cvv(0)). (5.53b)

To compute Dvv we start from〈
(v(t + ∆t)− v(t))2

〉
v

=
〈
v(t + ∆t)2

〉
v

+
〈
v(t)2

〉
v
− 2 〈v(t + ∆t)v(t)〉v . (5.54)

For the conditional velocity autocorrelation function, we obtain similar to the conditional

average velocity in eq. (5.51)

〈v(s), v(s′)〉v(t)=v = Cvv(s− s′)− Cvv(t− s)Cvv(t− s′)
Cvv(0) + Cvv(t− s)Cvv(t− s′)

Cvv(0)2 v2.

(5.55)

Inserting this into eq. (5.54) gives

〈
(v(t + ∆t)− v(t))2

〉
v

= − (Cvv(∆t) + Cvv(0)) Cvv(∆t)− Cvv(0)
Cvv(0)

+
(

Cvv(∆t)− Cvv(0)
Cvv(0) v

)2

. (5.56)

From this, the second order KMC immediately follows as

D̃vv(v, ∆t) = −(Cvv(∆t) + Cvv(0))
2

(Cvv(∆t)− Cvv(0))
∆t

1
Cvv(0)

+ ∆t

2

(
Cvv(∆t)− Cvv(0)

∆t

v

Cvv(0)

)2

(5.57a)

= −C̄(∆t) ∆C(∆t) + ∆t (∆C(∆t) v)2 /2, (5.57b)

where we defined

C̄(∆t) ≡ (Cvv(∆t) + Cvv(0)) /2, (5.57c)

and ∆C(∆t) is given in eq. (5.53b).

5.4.4 KMCs in the presence of a potential

To obtain analytical approximations for the KMCs from the GLE in eq. (5.6), we use the

general results for stationary Gaussian processes derived above in subsection 5.4.3. To

approximate Dq(q, v), we integrate the relation q̇(t) = v(t) from t to t + ∆t, which gives

q(t + ∆t)− q(t) =
∫ t+∆t

t
ds v(s). (5.58)
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For small ∆t, the integral on the r.h.s. can be approximated by the trapezoidal rule as

q(t + ∆t)− q(t) = v(t + ∆t) + v(t)
2 ∆t +O(∆t3)

= v(t)∆t + v(t + ∆t)− v(t)
2 ∆t +O(∆t3). (5.59)

By taking the conditional average on both sides and dividing by ∆t, we can make use of the
definition of Dq given by

Dq(q, v, ∆t) = 1
∆t
〈q(t + ∆t)− q(t)〉q(t)=q

v(t)=v

, (5.60)

which is a special case of eq. (5.31). In this way, we find Dq in terms of Dv for finite ∆t

Dq(q, v, ∆t) = v + ∆t

2 Dv(q, v, ∆t) +O(∆t2). (5.61)

To compute Dv in the presence of a potential, we integrate the GLE in eq. (5.6) from t to
t + ∆t, using v(t) = Ȧt, q(t) = At and UPMF(At) = U [q(t)], we obtain

v(t + ∆t)− v(t) =
∫ t+∆t

t
ds

(
−U ′[q(s)]

M
−
∫ s

0
ds′ Γ(s− s′)v(s′) + FR(s)

)
. (5.62)

The function U ′(q(s))/M is expanded around s = t, to leading order in ∆t, the expansion
yields

v(t + ∆t)− v(t) = −∆t
U ′[q(t)]

M
+O(∆t2)

+
∫ t+∆t

t
ds

(
−
∫ s

0
ds′ Γ(s− s′)v(s′) + FR(s)

)
. (5.63)

Again, we take the conditional average on both sides and divide by ∆t. The conditional
average of the integral part on the r.h.s. is approximated by eq. (5.53a), i.e., by the result

for Dv in the absence of a potential U . For this approximation to work, the velocity

distribution should be independent of the position q so that we can neglect the condition
on q in the conditional average of the velocity in eq. (5.63). From chapter 3.1.3, we know

that for an observable which is a linear combination of distances, the mass is constant and

P (v|q) ≈ P (v) is a Gaussian. Therefore, approximating conditional averages over q and
v by conditional averages over v alone is a valid approximation for such observables. By

further neglecting the impact of the potential U on the memory kernel, we find

Dv(q, v, ∆t) ≈ −U ′(q)
M

+ D̃v(v, ∆t) +O(∆t), (5.64)

where D̃v(v, ∆t) denotes the drift coefficient in the absence of a potential U and is given in

eq. (5.53a). To compute Dqq, we square eq. (5.59) and find

(q(t + ∆t)− q(t))2 = (v(t + ∆t)− v(t))2

4 ∆t2 + v(t)v(t + ∆t)∆t2 +O(∆t6). (5.65)
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Figure 5.1: The second-order KMCs Dqq(∆t) and Dvv(qmin, ∆t) as a function of the lag
time ∆t. Dvv is averaged over v and is evaluated at the PMF minimum at

qmin = 0.32 nm (cf. figure 5.2). Dqq is averaged over q and v. The data points
show the KMCs computed from the MD (circles) and GLE (crosses) trajectories

of Alanine9 (cf. section 5.5). The dashed lines show the analytic expressions in

eq. (5.70g) (blue) and eq. (5.70c) (red).

Taking the conditional average, dividing by 2∆t and using the definitions of Dqq and Dvv

gives

Dqq(q, v, ∆t) = ∆t2

4 Dvv(q, v, ∆t) + ∆t

2 〈v(t + ∆t)v(t)〉q,v +O(∆t5). (5.66)

The conditional autocorrelation function on the r.h.s. is approximated by eq. (5.55). This

is again motivated by assuming P (v) to be a Gaussian with vanishing mean and constant
variance, i.e., by the fact that P (v|q) ≈ P (v), which yields

Dqq(q, v, ∆t) = ∆t2

4 Dvv(q, v, ∆t) + ∆t

2
Cvv(∆t)
Cvv(0) v2 +O(∆t5). (5.67)

In an analogous manner, Dvv(q, v) is approximated by squaring eq. (5.63) and using

eq. (5.57b), which gives

Dvv(q, v, ∆t) = ∆t

2

(
U ′(q)

M

)2

+ D̃vv(v, ∆t) +O(∆t2). (5.68)

If we take the limit ∆t → 0, only the first order KMCs do not vanish, as follows from

eq. (5.61), eq. (5.64), eq. (5.67) and eq. (5.68), so that we obtain

lim
∆t→0

Dq(q, v, ∆t) = v, lim
∆t→0

Dv(q, v, ∆t) = −U ′(q)
M

, (5.69a)

lim
∆t→0

Dqq(q, v, ∆t) = 0, lim
∆t→0

Dvv(q, v, ∆t) = 0. (5.69b)

Hence, in the limit of ∆t going to zero, the KMCs of a GLE only reproduce the deterministic

part of the dynamics and contain no information on the stochastic part. By averaging over q
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with a weight function ∝ e−βU(q) or over v with a weight function ∝ e−βMv2/2, the results

for finite ∆t in eq. (5.61), eq. (5.64), eq. (5.67) and eq. (5.68) become to leading order

Dq(q, ∆t) = −∆t

2
U ′(q)

m
+O(∆t2) (5.70a)

Dq(v, ∆t) = v +O(∆t), (5.70b)

Dqq(q, ∆t) = ∆t

2 Cvv(∆t)− ∆t2

4 C̄(∆t)∆C(∆t) +O(∆t3), (5.70c)

Dqq(v, ∆t) = ∆t

2
Cvv(∆t)
Cvv(0) v2 − ∆t2

4 C̄(∆t)∆C(∆t) +O(∆t3), (5.70d)

Dv(q, ∆t) = −U ′(q)
m

+O(∆t), (5.70e)

Dv(v, ∆t) = v∆C(∆t) +O(∆t), (5.70f)

Dvv(q, ∆t) = −C̄(∆t)∆C(∆t) + ∆t

2

(
U ′(q)

m

)2

+O(∆t2), (5.70g)

Dvv(v, ∆t) = −C̄(∆t)∆C(∆t) + ∆t

2

〈(
U ′(q)

m

)2〉
+O(∆t2). (5.70h)

The quantities C̄(∆t) and∆C(∆t) are defined in eq. (5.57c) and in eq. (5.53b), respectively.

In fig. 5.1, we compare eq. (5.70c) and eq. (5.70g) with numerically computed KMCs as

a function of the lag time ∆t, obtained from MD and GLE simulations of Alanine9 (see

section 5.5). In order to compare Dqq and Dvv as a function of ∆t, we average the numerical
Dvv over v and evaluate it in the vicinity of the minimum at q = 0.32 nm of UPMF(q), i.e.,
where the mean force vanishes (see figure 5.2). The numerical Dqq is averaged over q and
v. As can be seen in fig. 5.1, the analytical approximations describe the KMCs very well

for small ∆t, as expected. This also confirms that the numerical computation of the KMCs

is accurate.

5.4.5 Numerical computation of KMCs: Kernel density estimators

To compute the KMCs numerically, we divide our parameter space (A, Ȧ) into a grid. In
each cell of the grid, we must find an estimate for the conditional probability distribution

P (A, Ȧ, t + ∆t|A′, Ȧ′, t), which is usually accomplished by histograms. When the statistics

in a cell are insufficient, i.e., when the number of data points in a cell is too small, the

estimate of the probability distribution via a histogram depends significantly on the choice

of the boundaries of the cell. To avoid such ambiguities, we use kernel density estimators

[44]. Kernel density estimators have the advantage that each point of occurrence within a

cell contributes to the estimate of the density at its point of occurrence and not in a range of

a bin. This means that, for a given data set q ∈ RN , a p.d.f. P (q) is estimated by P̂ (q) via

P̂ (q) = 1
Nh

N∑
i=1

K
(

q − qi

h

)
. (5.71)
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Here K denotes the kernel with bandwidth h. For example, one could use a Gaussian kernel

K
(

q − qi

h

)
∝ e− 1

2

(
q−qi

h

)2

. (5.72)

In the results shown in this PhD-thesis, we used an Epanechnikov kernel

K
(

q − qi

h

)
∝ max

(
1−

(
q − qi

h

)2
, 0
)

, (5.73)

where the optimal bandwidth h was estimated by the inverse of the grid size. For small time

steps ∆t = 0.001 ps, the grid size in q direction is 5000 and in v direction it is 300. Hence,
the respective bandwidths are 0.0002 and 0.003. For larger time steps ∆t ≥ 0.001 ps, the
grid size in q direction is decreased to 500 and therefore the bandwidth is 0.002.

5.5 Application to protein folding dynamics

Biological macromolecular function relies on coupled processes that take place on widely

different time scales, this fact makes the theoretical description of such systems challenging.

For proteins, the topic of this chapter, folding occurs in the range of microseconds to

many minutes or even hours and involves bond vibrations and hydration water motion

on sub-picosecond times [13, 73, 31]. In order to enable large-scale simulations as well

as meaningful theories, which should concentrate on the essential features of such slow

processes, several methods for the elimination of degrees of freedom have been introduced.

For the classical dynamics of an interacting many-body system, the approximate GLE in

eq. (5.6) has proven to be useful tool [26, 102, 70, 66]. Instead of 6N equations of motion

for all positions and momenta of an N -particle system, the dynamics is described by few

equations for the observables of interest. The potential of mean force UPMF(A) in eq. (5.6)
corresponds for proteins to the folding free-energy landscape. The elimination of degrees of

freedom introduces non-Markovian effects in terms of the memory function ΓA(t), which
describes time-dependent friction and thereby couples the present dynamics to the past

states, and stochastic effects in terms of the random force F A
R (t).

From the hybrid GLE, we obtained the approximate GLE together with the fluctuation

dissipation theorem which connects F A
R (t) and ΓA(t) by neglecting DH(A, t). Thus, for a

given reaction coordinate that is a nonlinear function in the microscopic coordinates, the

validity of eq. (5.6) rather has to be tested which is among the goals of this chapter.

Clearly, there is no guarantee that a given reaction coordinate, which could be an experimen-

tal observable such as the distance between two attached fluorophores, is a good reaction

coordinate, meaning that it leads to a Markovian description of the folding process. Different

reaction coordinates have been proposed for the efficient description of protein-folding

simulations [52]; schemes to construct reaction coordinates that optimally yield the transition

state, which separates unfolded and folded basins of attraction from each other, have been

developed [9].

As an alternative to continuous reaction coordinates, Markov models describe protein dy-

namics in terms of a set of metastable states [93, 20], for which full access to the underlying
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microscopic coordinates is typically needed.

These works have in common that descriptions are sought which minimize memory effects,

so that stochastic Markovian theory applies. In the opposite direction, various methods

were developed to extract the memory function ΓA(t) from time-series data for a given

reaction coordinate [51, 106, 55, 30, 59, 26], but the complexities of the GLE, in particular

for a nonlinear protein-folding free energy in combination with a numerically determined

memory function, prevented predictions of protein folding times from the GLE, with the

notable exception of di-alanine [70].

This is why, in protein folding theory, the Markovian Langevin equation, where the memory

integral is replaced by an instantaneous friction term, is predominantly used. Such a

Markovian theory yields many useful insights into protein folding dynamics and culminated

in the comparison of transition-path times and mean-folding times [23, 24]. However, the

success of free-energy folding theory on the Markovian level relies partly on the fact that

the friction, which determines the prefactor of the Kramers folding time, is normally used as

a fitting parameter. Even when the friction is allowed to vary with the reaction coordinate

and is extracted from simulations, it is typically computed from folding or reconfiguration

times, which by construction leads to self-consistent predictions of the kinetics [8, 54].

In fact, recent experiments revealed significant inconsistencies when comparing directly

measured free-energy barrier heights with those inferred from transition-path and folding

times [91] which were suggested to be due to memory effects [101, 102]. The same

inconsistencies are obtained when the friction of a reaction coordinate is not fitted to folding

times but rather extracted directly from simulation trajectories and used in the framework

of Markovian theory, as we demonstrate here.

In our approach, instead of searching for a good reaction coordinate, we employ a standard

one-dimensional coordinate in terms of the sum of the separations between native contacts.

We use the numerical method presented in chapter 5.2 for extracting all parameters of

the GLE from molecular dynamics (MD) simulations for the helix-forming polypeptide

Ala9 in water. The free energy UPMF(A) shows multiple minima separated by low barriers,

indicative of the sequential formation of the helix, while the decay time of the multi-

exponential memory function ΓA(t) is of the order of the unfolding time: These properties
render Ala9 as a very sensitive test of kinetic theory.

We simulate the resulting GLE by Markovian embedding technique discussed in chapter 5.3.

By comparison of the MD and GLE results for the mean folding and unfolding times,

we demonstrate that the one-dimensional GLE is an accurate and practical tool for the

description of protein folding dynamics described by distances between particles.

On the other hand, the Markovian version of the overdamped GLE cannot describe the

folding and unfolding kinetics of the peptide as long as the friction is not a fitting parameter

but rather taken as extracted from the MD simulations. This stays true even when the friction

coefficient is allowed to depend on the reaction coordinate.

In fact, memory typically accelerates barrier crossing, where the acceleration magnitude

depends primarily on the ratio of the memory time and the distance between the minimum

and the barrier in reaction coordinate space [61, 62, 69]. Since for Ala9 the barrier state is

closer to the folded state than to the unfolded state, a memory-induced asymmetry between

folding and unfolding kinetics results, which cannot be captured by a Markovian model and
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which is testable experimentally. Memory acceleration is confirmed by theoretical models

such as Grote-Hynes and Pollack-Grabert-Hänggi [48, 49, 96].

Our results are corroborated by a systematic Kramers-Moyal coefficient (KMC) analysis,

which shows that higher order quartic KMCs are non-negligible and that the linear and

quadratic KMCs vanish in the short-time limit, as expected in the presence of non-Markovian

effects.

5.5.1 MD simulations and GLE parameter extraction

The effective GLE is constructed from a 10µs long MD trajectory for Ala9 in water, which

is the simplest polypeptide that forms an α-helix [57]. We use the all-atom Amber03

force field field [33] with SPC/E water [7]. The cubic simulation box has side lengths of

4.95 nm and contains 4023 water molecules. The LJ interactions are cut-off after 1.0 nm.
For long-range electrostatic interactions, we use the Particle Mesh Ewald Method (PME)

[28]. The simulation time step is 1 fs and the total simulation time is 10 µs. All simulations
are performed in the NVT ensemble using the Gromacs 2019 MD package [2]. In the GLE

simulations, we use the same time step and simulation time as in the MD simulations.

The procedure in the MD simulations is as follows: We first minimize the energy of the

system using the steepest descent method. Then, we let the system equilibrate at 300K
in the NPT ensemble. During the equilibration, the polypeptide is positionally restrained

to ensure that no conformational transitions occur at this stage. We do this by applying

harmonic potentials with a force constant of k = 1000 kJ/mol/nm to all Ala9 atoms. The

equilibration time is 1 ns, i.e., 106 time steps. To speed up the equilibration process, we

assign to each particle an initial velocity drawn from a Maxwell-Boltzmann distribution at

the desired temperature. We perform production runs in the NVT ensemble using a modified

Berendsen thermostat with a time constant of 0.1 ps [14].
We constrain all bond lengths using the LINCS algorithm. The bond angles are uncon-

strained.

The Ala9 polypeptide was build using the open-source molecular builder software Avogadro

1.2.0. [50]. The N terminus is NH+
3 and the C terminus is CO−

2 .

As a reaction coordinate, we use the summed separations between the H-bond donor nitrogen

of residue n and the acceptor oxygen of residue n+4,

At = 1
3

4∑
i=2
‖rN

i (t)− rO
i+4(t)‖, (5.74)

which characterizes the left-handed α-helical conformation. The index i = 1 is the C-

terminus of the ploypeptide. In the α-helical state, A has a value around 0.3 nm, the mean
H-bond length between nitrogen and oxygen.

The free energies UPMF(q) in fig. 5.2(b) for different simulation lengths demonstrate that the
simulation is fully converged after about 6 µs. The free energy displays several metastable
states, which are also discernable in the trajectory in fig. 5.2(a) and make this simple

polypeptide challenging for theoretical description.

62 Cihan Ayaz, Non-Markovian Modelling of Many-Body Dynamics, 2022



5 The Approximate GLE

0 50 100 150 200
t [ns]

0.3

AB

1.0

A
[n

m
]

(a)
AL = 0.32 AB = 0.54 AR = 0.99

A [nm]

0

1

2

3

U
P

M
F

[k
B

T
]

(b)

2µs
4µs
6µs
8µs
10µs

Figure 5.2: (a): A 200 ns long segment of the trajectory is shown. (b): The potential of

mean force UPMF(A) for the hydrogen-bond-distance reaction coordinate of

Ala9 for different simulation lengths. The barrier used for the calculation of

unfolding and folding times is positioned at AB = 0.54 nm.

Using a generalization of earlier methods [66], we extract the running integral G(t) =∫ t
0 dsΓA(s) (see section 5.2 for details), from which the memory function ΓA(t) is obtained
via a numerical derivative and fitted using least-square methods to a multi-exponential of

the form

ΓA(t) =
5∑

n=1

γn

τn

e−t/τn . (5.75)

The extracted G(t) (gray line) is compared with the corresponding fit (red line) in fig. 5.3(a),
no significant deviations can be discerned. The comparison of the extracted and fitted

memory function ΓA(t) in Fig. 5.3(b) reveals oscillations below a picosecond, which are

not reproduced by the exponential fit function but also do not play a role for the kinetics, as

will be shown below.

The fitted memory times τn and friction coefficients γn are presented in table 5.1, the typical

reconfiguration time, which can be qualitatively inferred from the trajectory in fig. 5.2(a), is

of the order of the longest decay time τ5 ≈ 5 ns. This means that the reaction coordinate
is not particularly good, since it exhibits pronounced non-Markovian effects, and thus

constitutes a suitable test of our methods.

In chapter 3.1.3, the effective mass of the reaction coordinate in eq. (5.74) was found to be

configuration independent. Thus, we can compute the effective mass using the equipartition

theorem, i.e, M = kBT/〈Ȧ2
0〉 which turns out to be M = 31.3 u. This value deviates from

the expected value of M ≈ 22 u from eq. (3.24). This is due to the applied bond constraints

in the MD simulation. Bond constraints have the effect that the backbone of the polypeptide

becomes a rigid rotor.

The motion described by the GLE is expected to become diffusive after the inertial time

τm = M/γ̄, where the total friction coefficient is given by γ̄ = ∑
n γn = 3.5 · 105 u/ps, see

table 5.1. It follows that τm = 0.1 fs, even shorter than the MD integration time step, thus

inertial effects are completely negligible. Nevertheless, the acceleration term in eq. (5.6) is
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Figure 5.3: (a): Running integral G(t) over the memory function. The horizontal dashed
line denotes the total friction coefficient γ̄. (b): Memory function ΓA(t), the
inset includes short times. Gray lines correspond to the numerical data, red

lines correspond to the multi-exponential fit according to eq. (5.75) with the fit

parameters given in tab. 5.1.

kept in the GLE simulations, as it stabilizes the numerical integration.

In order to estimate the importance of memory effects, one compares the memory times τn

with the diffusion time scale τD = βγ̄L2/2 [61], which is the time it takes a free Brownian

particle to diffuse over a length L in reaction coordinate space, where β = 1/kBT is the

inverse thermal energy. For L = 0.22 nm, the distance between the folded minimum at

A = 0.32 nm and the barrier at A = 0.54 nm in one obtains τD = 6.8 ns, which is of the
order of the longest memory time τ5. This places the system in the so-called memory-

acceleration regime, where memory effects are relevant and significantly accelerate barrier

crossing [61, 62, 69].

5.5.2 Comparison of MD and GLE simulations

Numerical integration of the GLE is straightforwardly achieved by Markovian embedding,

i.e., by transforming the GLE into a system of linearly coupled Langevin equations (see

Table 5.1: Fitted memory function parameters from eq. (5.75).

n γn [u/ps] τn [ps]

1 2.2 · 103 0.007

2 1.2 · 104 4.6

3 4.2 · 104 40.3

4 2.4 · 105 399

5 5.7 · 104 4970

γ̄ = ∑
n γn 3.5 · 105
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Figure 5.4: (a): Comparison of unfolding and folding MFPTs from MD (blue) and GLE

(orange) simulations as a function of the final position AF for start positions

AS = AL = 0.32 nm (solid lines) and AS = AR = 0.99 nm (broken lines). The

gray curve shows the folding free energy UPMF(A). (b): Dependence of various
MFPTs from GLE simulations on the memory time rescaling factor α. The
corresponding transitions are illustrated in (d). Open/filled circles correspond

to open/filled arrows of the same color. The horizontal dotted lines denote the

overdamped Markov limit from eq. (5.82). (c): The ratios of the MFPTs shown

in (b) are computed. As expected from detailed balance, ratios of MFPTs of

the same color do not depend on the memory time. The ratio of the unfolding

and folding times, i.e., τMFPT(AR, AB)/τMFPT(AL, AB) (open green arrow and

filled red arrow), shows a clear dependency on the memory time (red green).

(d): Illustration of the transitions considered in (b).
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Figure 5.5: First-passage time distributions between the positions AL = 0.32 nm, AB =
0.54 nm and AR = 0.99 nm. We compare distributions computed from the MD

system (blue) and the corresponding GLE system (red). (a): For the transition

AL → AR. (b): For the transition AL → AB . (c): For the transition AR → AL.

(d): For the transition AR → AB.

chapter 5.3).

In fig. 5.4, we show profiles of the mean first-passage time (MFPT) τMFPT(AS, AF ) for
unfolding (start position AS = AL = 0.32 nm, represented by solid lines) and folding

kinetics (start position AS = AR = 0.99 nm, broken lines) as a function of the final position
AF .

Statistical errors are determined accounting for data correlations [39] and are shown as

shaded areas in the corresponding color. The errors computed are so small that they are

barely visible in fig. 5.4.

MD and GLE simulation results (blue and orange lines) agree nicely, this demonstrates that

GLE-based non-Markovian modeling of protein folding is feasible and accurate.

First passage time distributions for some selected start and end positions are shown in fig. 5.5.

No significant deviation can be discerned between the MD (blue circles) and the GLE system

(red circles) in the distributions shown in fig. 5.5(a), (b) and (d). In Fig. fig. 5.5(c), it can

be seen that the MD system has higher probabilities towards larger first-passage times

compared to the GLE system. The impact of this on the MFPT can be seen in fig. 5.4(a).

Beyond reproducing MD results, the GLE is a diagnostic tool that allows to quantify the

importance of memory effects. In order to modulate memory effects in the GLE, we rescale

the memory times according to τn → ατn for n = 2, 3, 4, 5 while keeping the memory time

τ1 of the fastest exponential contribution fixed. Since τ1 = 7 fs is above the simulation time
step of 1 fs, this ensures that in the limit α→ 0 we obtain a regularized model that, as we

will show below, corresponds to the Markovian limit.
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Figure 5.6: We show the mean transition path time (MTPT) between AS = 0.32, 0.99 nm
(blue, orange) and AF as a function of AF . We compute the MTPT from

the MD and GLE trajectories as well as trajectories generated using an under-

damped (ULE) and overdamped Langevin equation (OLE) with the friction

γ̄ =
∫∞

0 ΓA(s) and the PMF UPMF(A).

In fig. 5.4(b), we considerMFPTs between the three positionsAL = 0.32 nm,AB = 0.54 nm
and AR = 0.98 nm as a function of the rescaling factor α from GLE simulations of hb4.

The starting and end points of the MFPTs are illustrated in fig. 5.4(d). Filled/open circles

in (b) correspond to filled/open arrows of the same color in (d). We see that reducing the

memory time increases all MFPTs, in other words, memory accelerates barrier crossing

[61]. As expected, the GLE results approach the overdamped Markov limit, denoted by the

horizontal dotted lines in the corresponding color and calculated from the exact expression

in eq. (5.82) without adjustable parameters, as α tends to zero.

Interestingly, for folding (open green circles) the MFPT for α = 1 and the Markovian limit

for α → 0 differ only by a factor of around 2.5. On the other hand, for unfolding (filled

red circles), the α → 0 and α = 1 MFPTs differ by a factor of around 9. This means

that even when treating the total friction coefficient γ̄ as a free parameter, the Markovian

overdamped theory eq. (5.82), because it is linear in the friction, can reproduce either the

folding or unfolding MD times, but not both simultaneously. This is not due to inertial

effects, since the overdamped Markovian theory works perfectly for α → 0, as seen in

fig. 5.4(b). Rather, memory effects influence folding and unfolding times differently; this is

demonstrated by the plot of the MFPT ratios over α in fig. 5.4(c) (which furthermore implies

that the law-of-mass action has an apparent memory-dependence that depends subtly on the

definition of states and transition times). The reason is that the memory effect on barrier

crossing dynamics depends primarily on the ratio of the memory and diffusion times, τ/τD,

where τD ∼ L2 and L is the distance between free energy minimum and barrier [61]. Since

the folded state is closer to the barrier, memory effects are therefore expected to be more

pronounced for unfolding than for folding.

In fig. 5.6, we demonstrate that the memory-induced speedup is even more pronounced for

transition path times compared to folding and unfolding times, in agreement with previous

findings [91, 101, 102].

The high accuracy of GLE simulations is reflected by the good agreement of the mean-
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Figure 5.7: (a): Mean-square displacement of the reaction coordinate, MD (gray line)

and GLE (orange broken line) simulation results agree perfectly and exhibit

superdiffusion for times up to 0.1 ps and subdiffusion up to 1 ns. Overdamped

Markovian Langevin (red dashdotted line) simulations agree perfectly with

theoretical prediction (broken black line) but miss the anomalous diffusion. (b):

Friction coefficient profiles γ(A) from Kramers-Moyal coefficient analysis for

different lag times ∆t (different colors) for the underdamped Langevin model,
eq. (5.80), from MD (filled circles) and GLE simulations (open circles), and for

the overdamped Langevin model, eq. (5.81), from MD (solid lines) and GLE

simulations (broken lines). The gray horizontal line shows the total friction

coefficient γ̄ extracted from MD simulations given in tab. 5.1.

square displacement 〈∆A(t)2〉 = 〈(A(t′ + t) − A(t′))2〉 from MD and GLE simulations

in fig. 5.7(a), which exhibits pronounced sub-diffusive behavior with an exponent 0.4 for

times between 1 ps and 1 ns. Anomalous diffusion is often modeled by fractional theories

[80, 101], fig. 5.7(a) shows that it is accurately reproduced by multi-exponential memory

and that it disappears when memory effects are eliminated, in line with recent theoretical

analysis [86].

Furthermore, the good agreements between the MD system and the GLE model in terms of

mean first-passage times, transition path times and the MSD suggest that the assumptions

for the GLE in eq. (5.6) are sufficiently fulfilled; at least for a reaction coordinate that is a

linear combination of distances.

5.5.3 Reaction-coordinate dependent friction

So far, we demonstrated that the GLE in eq. (5.6) reproduces the MD simulation kinetics

and that memory effects are significant. We now investigate whether reaction-coordinate

dependent friction effects, which are not included in the approximate GLE, are relevant.

The Markovian Langevin equation (LE) that incorporates a friction function γ(A) has been
amply used to describe protein folding dynamics [18, 8, 54]. In the underdamped version it
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reads

MÄ(t) = −U ′(A)− γ(A)Ȧ(t) +
√

kBTγ(A) η(t), (5.76)

which for general U(A) unfortunately is analytically intractable. The overdamped version

0 = −U ′(A)− γ(A)Ȧ(t)− kBT

2
γ′(A)
γ(A) +

√
kBTγ(A) η(t) (5.77)

is much more useful, since the MFPTs can be calculated analytically. In these expressions,

the random force η(t) has vanishing mean and its correlator is given by E[η(t)η(t′)] =
2δ(t− t′). For constant friction, the underdamped LE ((5.76)) results from eq. (5.6) when

the memory kernel ΓA(t− s) is sharply peaked at s = t, i.e., only contributes to the integral
around s = t.
The overdamped LE ((5.77)) follows from eq. (5.76) by neglecting the inertia term [108],

the term proportional to the gradient γ′(A) cancels a spurious drift term and follows by

mapping on the Fokker-Planck equation [98].

Various methods to extract γ(A) from experimental or simulated trajectories have been

proposed, a systematic approach involves theKramersMoyal Coefficients (KMCs) discussed

in section 5.4, which for the overdamped case and for finite lag time ∆t read

Dk(A) = 1
k!

1
∆t

〈
(A(t + ∆t)− A(t))k

〉
A(t)=A

. (5.78)

The Fokker-Planck equation for the time-dependent probability distribution P (A, t) in terms
of the KMCs follows in the limit ∆t→ 0 as [98]

∂P (A, t)
∂t

=
∞∑

k=1

∂k

∂Ak
[Dk(A)P (A, t)] . (5.79)

According to the Pawula theorem (section 5.4.2), for a Markovian process, all KMCs with

k > 2 vanish for ∆t→ 0 and eq. (5.79) takes the standard form of a second-order partial

differential equation [98]. For a non-Markovian process, i.e. if the memory function ΓA(t)
in eq. (5.6) has a finite range, all KMCs with k > 1 vanish for ∆t → 0 and thus the

stochastic properties of the process cannot be described by a partial differential equation for

P (A, t) at all. We demonstrate this in chapter 5.4. For the underdamped LE, the relation

between the second-order velocity KMC Dvv and the friction profile γUD(A) reads [98]

Dvv(A) = 1
2∆t
〈(Ȧ(t + ∆t)− Ȧ(t))2〉A(t)=A = kBT

γUD(A)
m2 . (5.80)

For the overdamped LE, γOD(A) follows from the second-order position KMC Dqq as

Dqq(A) = 1
2∆t
〈(A(t + ∆t)− A(t))2〉A(t)=A = kBT

γOD(A) (5.81)

For the numerical computation of the KMCs, we use kernel density estimators [44]. In

fig. 5.7(b), we show the friction profiles γUD(A) (circles) and γOD(A) (lines) computed
from the KMCs for different lag times ∆t, a number of points are noteworthy:
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i) We find no significant deviations between the friction profiles extracted from MD

(solid lines and filled circles) and GLE (broken lines and open circles) trajectories, this

reverberates that the GLE describes the protein dynamics very faithfully.

ii) The underdamped and overdamped friction profiles γUD(A) and γOD(A) disagree for
all lag times ∆t, which very clearly demonstrates an inconsistency in the Markovian

description of protein folding. In fact, in the limit ∆t→ 0, both Dqq and Dvv vanish and

thus γOD(A) diverges while γUD(A) goes to zero (see section 5.4.)

iii) While the underdamped friction γUD(q) never reaches a realistic value close to γ̄, the
overdamped friction γOD(q) approaches γ̄ for ∆t ≈ 1 ns. This shows that lag times

of the order of the longest memory time have to be used in order to generate realistic

friction values.

iv) The friction profiles extracted from the GLE simulations are position dependent, seen

most clearly in γOD(q) for ∆t = 1 ns (purple broken line); this is clearly a spurious

effect since the GLE has no position-dependent friction. We conclude that the mapping

of a non-Markovian process onto a Markovian Langevin equation produces spurious

position-dependent friction effects. Presumably, the effective friction of proteins will in

general exhibit a dependence on the reaction coordinate, but the extraction of friction

profiles would have to account for memory effects in order to avoid spurious effects.

The capability of the GLE eq. (5.6) to very accurately reproduce the MD simulation

kinetics suggests that for the present case of Ala9, the spatial dependence of friction is

negligible.

An alternative way to determine a friction profile γ(A) in the overdamped limit uses the
one-to-one relation between the MFPT profiles in fig. 5.4(a) and γ(A). For the overdamped
LE given in eq. (5.77), the MFPT to reach from a start position AS the final position AF for

the first time reads for AS < AF [111]

τMFPT(AS, AF ) = β
∫ AF

AS

dA eβU(A)γ(A)
∫ A

Amin

dA′ e−βU(A′) (5.82a)

and for AS > AF

τMFPT(AS, AF ) = β
∫ AS

AF

dA eβU(A)γ(A)
∫ Amax

A
dA′ e−βU(A′). (5.82b)

Taking the derivative of eq. (5.82) w.r.t. AF gives the friction profile γ(AF ) as [54]

γunf(AF ) = kBT
e−βU(AF )

Z1

∂τMFPT

∂AF

for AS < AF , (5.83a)

γfol(AF ) = −kBT
e−βU(Af )

Z2

∂τMFPT

∂AF

for AS > AF , (5.83b)

where Z1 =
∫ AF

Amin
dA e−βU(A) and Z2 =

∫ Amax
AF

dA e−βU(A).

In fig. 5.8(a), we show γunf(AF ) and γfol(AF ) computed from unfolding and folding MFPTs

from MD simulations for start positions AS = AL and AS = AR, respectively. Not

suprisingly, the profiles γunf(AF ) and γfol(AF ) are rather close to γ̄ extracted from the MD
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Figure 5.8: (a): Friction profiles computed from the MD MFPT profiles in fig. 5.4(a) using

eq. (5.83). γunf(AF ) follows from the unfolding MFPTs for start position AS =
0.32 nm, γfol(AF ) follows from folding MFPTs for AS = 0.99 nm. The gray
horizontal line denotes the friction coefficient extracted from MD simulations.

The gray curve in the background shows the folding free energy UPMF(A).
(b): MFPTs from MD and GLE simulations are compared with overdamped

Markovian predictions according to eq. (5.82) using γunf(AF ) and γfol(Af ) from
(a).

simulations, which is shown as a gray horizontal line in fig. 5.8(a), but differ significantly

from each other. This suggests that a single friction profile cannot describe folding and

unfolding of Ala9 simultaneously. In fact, the values of γunf(AF ) and γfol(AF ) go down as
AF moves to the respective start positions, i.e., as the folding and unfolding times become

shorter. This reflects that memory effects particularly accelerate fast transitions, as discussed

above.

To demonstrate the limitations of the friction profiles in fig. 5.8(a), we show in fig. 5.8(b)

folding and unfolding MFPT profiles that are calculated according to eq. (5.82) from

γunf(A) (filled circles) and γfol(A) (open circles). By construction, the MFPTs using γunf(A)
reproduce the unfolding simulation data while theMFPTs using γfol(A) reproduce the folding
simulation data.

In contrast, the MFPTs using γunf(A) fail to reproduce the simulated folding times and the
MFPTs using γfol(A) fail to reproduce the simulated unfolding times, in particular when the
folding/unfolding times become smaller than about 10 ns.

The GLE model (broken lines) reproduces both folding and unfolding MD dynamics (solid

lines). This underlines that there is no consistent way of describing the complete folding/un-

folding dynamics with a Markovian model.
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5.6 Summary and conclusions

Using the hybrid GLE derived in chapter 3.1, we discuss under which conditions the

approximate GLE in eq. (5.6) arises from the hybrid GLE in eq. (3.20). Given this structure

of the approximate GLE, we introduce a numerical extraction scheme to compute the

running integral of the memory kernel from time series data and, once the memory kernel

is computed, we present how to perform efficient computer simulations of the GLE via

Markovian embedding.

We derive expressions for the Kramers Moyal coefficients of a non-Markovian process

described by the approximate GLE. In this way, we are able to show that all Kramers Moyal

coefficients of higher order than one vanish in the limit of ∆t going to zero.

By extracting the time-dependent friction for the polypeptide Ala9 from explicit-water MD

simulations, we demonstrate that the approximate GLE model reproduces the folding and

unfolding kinetics captured by the reaction coordinate hb4 very accurately.

Decreasing the memory time in the GLE while keeping the friction coefficient, i.e., the

integral over the memory function, constant, the folding kinetics changes significantly and

differently for folding and unfolding events. This shows that memory effects are important

even for the formation kinetics of a single α-helix and depend on the distance between the
folded and unfolded state to the barrier, as predicted by non-Markovian reaction rate theory

[61].

In contrast, the Markovian Langevin equation cannot reproduce the full Ala9 reconfiguration

dynamics, even with a fitted friction profile; this follows from the comparison of the folding

and unfolding kinetics, which would need to be modeled with different friction profiles in

order to reproduce the MD simulation kinetics.

In this chapter, we have mostly used the approximate GLE model as a diagnostic tool to

understand and quantify non-Markovian effects; since non-Markovian simulations are rather

inexpensive, they can also be used as an efficient tool to simulate the response of proteins to

environmental changes, e.g. externally applied forces. In fact, our extraction technique for

the memory function can also be applied to trajectories from single-molecule experiments

[91], which would enable to perform non-Markovian GLE simulations on experimental

systems directly, without the need of atomistic MD simulations. Because of the limited

time resolution of typical experimental data, suitable extraction techniques would have to

be used [59, 87].
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6 Self-Consistent Markovian Embedding of

Nonlinear Friction GLEs

In chapter 3 and chapter 4, we discussed the derivation of GLEs with nonlinear friction ker-

nels and the data-based numerical estimation of these kernels. For configuration-independent

memory functions, we demonstrated in chapter 5 how to extract the memory kernel from

time series data and perform GLE simulations via Markovian embedding.

In this chapter, we focus on performing efficient computer simulations of GLEs with given

configuration-dependent memory functions, i.e., generating data from the nonlinear GLE

itself. For this, we discuss three systems of coupled Markovian Langevin equations whose

mean dynamics are shown to be equivalent to the dynamics of corresponding GLEs with

nonlinear friction kernels generated by specified projection operators. Self-consistency is

accomplished by applying the projection operator formalism to the system of Markovian

stochastic equations and, by doing so, obtaining closed relations between the parameters in

the embedding system of Markovian Langevin equations and the parameters appearing in

the GLE. Self-consistency is further explained below.

The first Markovian embedding system allows for the simulation of a memory function in

which the time component contains a delta contribution and, else, is a sum of exponentials.

In the second system, no delta contribution is needed in the time component, which is now

a sum of exponentially decaying oscillations. In the first two embedding methods, the

effective mass of the reaction coordinate is assumed to be constant.

In the third system, we consider a nonlinear GLE where the mass and the friction kernel are

configuration-dependent, i.e., general nonlinear functions of the reaction coordinate.

To understand our approach, one needs to know what self-consistency means. Thus, before

continuing with Markovian embedding, we motivate our approach by discussing self-

consistency so that, in the following sections, it becomes clear how we ensure it.

6.1 Self-consistency

In a nutshell, self-consistency means that one gets out what one puts in. Here, we talk about

input parameters and output parameters.

Input parameters refer to the functions in a GLE, such as the position-dependent mass, the

potential of mean force (PMF), and the memory functions. These are computed from a

reference trajectory using a numerical extraction scheme like the one presented in chapter 4

and then used as input in theMarkovian embedding system to generate a predicted trajectory.

To obtain the output parameters, one now computes the mass, the PMF, and the memory

functions from the predicted trajectory using the same extraction scheme.

The embedding scheme is self-consistent if the output parameters, extracted from the

predicted trajectory, equal the input parameters, extracted from the reference trajectory.

Cihan Ayaz, Non-Markovian Modelling of Many-Body Dynamics, 2022 73



6 Self-Consistent Markovian Embedding of Nonlinear Friction GLEs

We exemplify self-consistency using a model given by a GLE with constant mass M and

single-exponential memory,

ẍt = − 1
M

U ′(xt)−
∫ t

0
ds Γ0e

−(t−s)/τ ẋs + FR(t), (6.1a)

〈FR(t)〉 = 0, 〈FR(t), FR(0)〉 = kBT

M
Γ0e

−t/τ , (6.1b)

where the brackets 〈 〉 in eq. (6.1b) are averages over initial conditions. Eq. (6.1) can be
generated from the following coupled system of Markovian Langevin equations

ẋt = vt, (6.2a)

v̇t = − 1
M

U ′(xt) + γ1 ut, (6.2b)

u̇t = −γ2 ut − γ1 vt +
√

2kBTγ2 η(t), (6.2c)

E[η(t)] = 0, E[η(t)η(t′)] = δ(t− t′), (6.2d)

if one chooses the input parameters γ1, γ2 to be

γ1 =
√

Γ0, γ2 = 1
τ

. (6.3)

In eq. (6.2), η(t) is white noise and E[ ] denotes an average over the noise. When it comes to

numerical simulations, eq. (6.2) is preferable over eq. (6.1) because eq. (6.1) is an integro-

differential equation and thus numerically much more demanding. Suppose the memory

kernel Γ(t) = Γ0e
−t/τ is known, e.g., the parameters Γ0 and τ have been estimated from

data. Then, eq. (6.3) determines how to choose the parameters of eq. (6.2) in order to

simulate the GLE in eq. (6.1). Self-consistency then means that, after performing computer

simulations of the system in eq. (6.2) and numerically extracting GLE parameters from the

simulated trajectory using the same method employed to estimate Γ0 and τ from data, one

obtains values of Γ0 and τ that are identical to the values used in the simulations. This

means that the numerical extraction of GLE parameters and the simulation procedure are

consistent.

6.2 Embedding for constant mass

For the Markovian embedding of nonlinear friction GLEs (nfGLEs) with constant mass,

we consider the nfGLE in chapter 3.2. In the following, we recapitulate the derivation of

the nfGLE from a general classical Hamiltonian system. For further details, we refer to

chapter 3. We consider the N particle Hamiltonian

H(ω) = 1
2PT M̂−1P + V (R), (6.4)

where ω = (R, P) is a 6N state vector in phase space Ω = R6N with positions R ∈ R3N ,

R = (r1, r2, . . . , rN), and momenta P ∈ R3N , P = (p1, p2, . . . , pN). The diagonal mass
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matrix M̂ contains the masses of all particles. The interaction potential V is a function of

positions only, meaning velocities and positions are decoupled. A point in phase space at

time t ≥ 0 is denoted by ωt, given the initial state ω0 at time t = 0. Observables of phase
space are denoted by Bt = B(ωt) = B(ω0, t). The inner product of two observables B and

C is the equilibrium average over the Boltzmann distribution ρeq(ω0) = exp(−βH(ω0))/Z,

i.e.,

〈Bt, Ct′〉 =
∫

Ω
dω0 ρeq(ω0)B(ω0, t)C(ω0, t′), (6.5)

with Z =
∫

Ω dω0 e−βH(ω0) being the partition function. The conditional correlation between

two observables B and C is defined by

〈Bt, Ct′〉A0 = 〈δ(A(ω̂0)− A(ω0)), B(ω̂0, t)C(ω̂0, t′)〉
〈δ(A(ω̂0)− A(ω0))〉

, (6.6)

In eq. (6.6), variables with a hat, i.e., ω̂0, are integrated over. The condition in eq. (6.6) is

that the observable A has initially the value A0 = A(ω0).
In the remainder, we choose the observable of interest, or reaction coordinate, to be A, and

we assume it to be a function of particle positions only, i.e., A(ωt) = A(Rt) = At. Remind

you that, with this choice, the Liouville equation for the velocity reads

Ȧt = (M̂−1Pt) · ∇RAt. (6.7)

Hence, the velocity Ȧt is linear in particle momenta. The projection operator is given by

[110, 4]

PBt = 〈Bt〉A0 + 〈Ȧ0, Bt〉A0

〈Ȧ2
0〉A0

Ȧ0 . (6.8)

The projection P in eq. (6.8) has two terms. The first term is independent of the velocity

Ȧ0 and is responsible for the potential of mean force term in the projected dynamics. The

second projection is linear in the velocity and generates the nonlinear friction kernel. Using

the Dyson operator identity [36], the Liouville equation

Ät = LȦt, (6.9a)

L =
N∑

n=1

(
∂H

∂pn

· ∂

∂rn

− ∂H

∂rn

· ∂

∂pn

)
, (6.9b)

where L denotes the Liouville operator, is decomposed into [88, 113]

Ät = etLPLȦ0 +
∫ t

0
ds e(t−s)LPLFR(s) + FR(t), (6.10a)

FR(t) = etQLQLȦ0. (6.10b)

Here, we introduced the projection Q = 1 − P onto the complementary subspace [115].

Inserting the projection in eq. (6.8) into eq. (6.10), one obtains the nfGLE [110, 4] (see
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chapter 3)

Ät = − 1
M(At)

dUeff(At)
dAt

−
∫ t

0
ds Γ(As, t− s)Ȧs + FR(t), (6.11a)

Ueff(A) = UPMF(A) + kBT ln M(A), (6.11b)

Γ(A, t) = βD(A, t)dUeff(A)
dA

− dD(A, t)
dA

+ 〈Ä0, FR(t)〉A
〈Ȧ2

0〉A
, (6.11c)

D(A, t) = 〈Ȧ
2
0, FR(t)〉A
〈Ȧ2

0〉A
, (6.11d)

with the position dependent mass

M(A) = kBT/〈Ȧ2
0〉A, (6.11e)

and the potential of mean force (PMF)

UPMF(A) = −kBT ln〈δ(A0 − A)〉. (6.11f)

An algorithm to extract GLE parameters from time series data by explicitly computing the

random force FR(t) was introduced in refs. [16, 72] for the Mori GLE and extended to

nfGLEs in the presence of a potential of mean force in chapter 4 (cf. ref. [4]). The random

force (and simultaneously the memory kernel) is computed by discretizing the iterative

equation

FR(ω0, t + ∆t) = FR(ω∆t, t) +
∫ ∆t

0
ds Γ(A∆t−s, t + s)Ȧ∆t−s, (6.12)

where ω∆t corresponds to the configuration obtained by propagating ω0 with the Liouville

propagator e∆tL, while FR(ω0, t + ∆t) follows from an orthogonal propagation with e∆tQL.

One can also use the Volterra scheme discussed in ref. [110].

6.2.1 Coupling via velocity

We now return to the main topic of this chapter. We present the first Markovian embedding

scheme for the nfGLE in eq. (6.11) where the effective mass M(A) ≡M is constant. As

discussed in chapter 3.1.3, for example, the effective mass is constant for linear combinations

of positions [43] and also for linear combinations of distances [4]. The case in which the

mass is also a function of the reaction coordinate is discussed in section 6.3.

The first embedding consists of a system of underdamped Langevin equations that are

coupled via their velocities [71]:

ẋt = vt, (6.13a)

M̂ · ν̇t = F(xt)− γ̂(xt) · νt + σ̂(xt) · η(t). (6.13b)

In eq. (6.13), the velocity vector is given by νt = (vt, u1(t), u2(t), . . . , uN(t)), meaning,
there are N auxiliary velocities {un}. The mass matrix M̂ ∈ R(N+1)×(N+1) is a diagonal
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matrix with entries M, m1, m2, . . . , mN . The friction matrix γ̂ ∈ R(N+1)×(N+1) is only

non-zero in the first row, the first column and in the diagonal entries, i.e., it is given by

γ̂(xt) =



γ11 γ12 γ13 γ14 · · ·
γ21(xt) γ22 0 0
γ31(xt) 0 γ33 0
γ41(xt) 0 0 γ44

...
. . .


. (6.14)

The multiplicative noise matrix σ(xt) ∈ R(N+1)×2N is given by

σ(xt) =



s11 0 s21 0 s31 0 · · ·
s12(xt) s13(xt) 0 0 0 0

0 0 s22(xt) s23(xt) 0 0
0 0 0 0 s32(xt) s33(xt)
...

. . .


. (6.15)

The noise vector is η(t) ∈ R2N and consists of independent white noises, i.e.,

E[ηi(t)] = 0, E[ηi(t), ηj(t′)] = δijδ(t− t′), (6.16)

for all i, j = 1, 2, . . . , 2N where E[·] denotes an average over the noise. The force vector
F(xt) ∈ RN+1 in eq. (6.13) is given by F(xt) = (−U ′(xt), 0, 0, . . . , 0)T containing an

arbitrary potential U .

In order for the system in eq. (6.13) to be in equilibrium, the fluctuation-dissipation theorem

(FDT) must hold [71] (
γ̂(xt) + γ̂T (xt)

)
/β = σ̂(xt) · σ̂T (xt), (6.17)

where β = 1/kBT is the inverse thermal energy. If the FDT in eq. (6.17) holds, it follows

from the Fokker-Planck equation that the system in eq. (6.13) is Boltzmann distributed, i.e.,

it has the stationary distribution function

ρst(x, v, u) = e−βU(x)e−βMv2/2e−β
∑

n
mnu2

n/2/N , (6.18)

where 1/N denotes the normalization factor.

To derive explicit expressions for the matrix components in eq. (6.15) using the FDT in

eq. (6.17), we write σ(xt) as a block matrix

σ(xt) =
(

Ŝ1(xt) Ŝ2(xt) Ŝ3(xt) · · · ŜN(xt)
)

, (6.19)

where the matrices Ŝn ∈ R(N+1)×2 have non-zero entries only in the first row and in the
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(n + 1)-th row, i.e., they are given by

Ŝn(xt) =



sn1 0
0 0
...

sn2(xt) sn3(xt)
0 0
...


← (n + 1)-th row,

(6.20)

where the sij(xt) are the matrix entries in eq. (6.15). With the block matrix notation, the

r.h.s. of the FDT in eq. (6.17) becomes

σ̂(xt) · σ̂T (xt) =
N∑

n=1
Ŝn(xt)ŜT

n (xt). (6.21)

We write the l.h.s. of eq. (6.17) also as a sum. For this, we set

γ11 =
N∑

n=1
gn, (6.22)

and write the friction matrix as a sum of matrices Ĝn(xt) ∈ R(N+1)×(N+1)

γ̂(xt) =
N∑

n=1
Ĝn(xt), (6.23)

where the matrices Ĝn(xt) have non-zero entries only in the first and (n + 1)-th row and in

the (n + 1)-th column, i.e.,

Ĝn(xt) =



gn 0 · · · γ1,n+1 0 · · ·
0 0 · · · 0 0 · · ·
...

...

γn+1,1(xt) 0 · · · γn+1,n+1 0 · · ·
0 0 · · · 0 0 · · ·
...

...


. (6.24)

With this, the FDT in eq. (6.17) becomes

N∑
n=1

(
Ĝn(xt) + ĜT

n (xt)
)

=
N∑

n=1
Ŝn(xt)ŜT

n (xt). (6.25)

Eq. (6.25) is fulfilled when (Ĝn(xt) + ĜT
n (xt)) = Sn(xt)ŜT

n (xt) holds, which leads to the
relations

2gn

β
= s2

n1, (6.26a)

γ1,n+1 + γn+1,1(xt)
β

= sn1(xt)sn2(xt), (6.26b)

2γn+1,n+1

β
= s2

n2(xt) + s2
n3(xt). (6.26c)
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From the equations in (6.26), we find the entries of σ̂(xt) in terms of the friction coefficients

sn1 =
√

2kBTgn, (6.27a)

sn2(xt) = kBT
γ1,n+1 + γn+1,1(xt)

sn1
, (6.27b)

sn3(xt) =
√

2kBTγn+1,n+1 − s2
n2(xt). (6.27c)

Inserting eq. (6.27b) into eq. (6.27c) leads to

√
2kBTγn+1,n+1 − s2

n2(xt) =

√√√√2kBTγn+1,n+1 −
(

kBT
γ1,n+1 + γn+1,1(xt)

sn1

)2

(6.28a)

=
√

kBT

2 gn

√
4γn+1,n+1gn − (γ1,n+1 + γn+1,1(xt))2. (6.28b)

Meaning, in order to obtain finite, real valued multiplicative noise factors, the following

inequalities

gn > 0, (6.29a)

4γn+1,n+1 gn ≥ (γ1,n+1 + γn+1,1(xt))2 , (6.29b)

must hold for all n = 1, 2, . . . , N and all values xt. For each auxiliary velocity un(t) and for
given γ1,n+1, γn+1,1(xt), γn+1,n+1, eq. (6.29) puts a lower bound on the friction coefficient

gn.

Assuming the validity of eq. (6.29), by solving the equation for the velocity un(t) in eq. (6.13)
and inserting the result into the equation for vt, one obtains the GLE

v̇t = −U ′(xt)
M

−
∫ t

0
ds Γ(xs, t− s)vs + ξ(t), (6.30a)

Γ(xs, t− s) = 1
M

N∑
n=1

(
gnδ(t− s)− γ1,n+1e

−
γn+1,n+1

mn
(t−s) γn+1,1(xs)

mn

)
, (6.30b)

ξ(t) = 1
M

− N∑
n=1

γ1,n+1

mn

e−
γn+1,n+1

mn
tun(0) +

2N∑
j=1

σ1,j(xt)ηj(t)

−
N∑

n=1

2N∑
j=1

∫ t

0
ds

γ1,n+1

mn

e−
γn+1,n+1

mn
(t−s)σn+1,j(xs) ηj(s)

 . (6.30c)

Eq. (6.30) has the structure of the GLE in eq. (6.11) for constant mass M . To show that

eq. (6.13) can be used as a Markovian embedding of the GLE in eq. (6.11), we apply

the projection in eq. (6.8) on the mean dynamics of eq. (6.13) and demonstrate that this

produces the GLE in eq. (6.30), when averaged over the white noise. For this, we need the

infinitesimal generator [71, 104] of the system in eq. (6.13).

To obtain the infinitesimal generator, we consider eq. (6.13) as an Ito diffussion process.

An Ito diffusion process can be written in the general form [42]

dζ(t) = a(ζ(t)) dt + B̂(ζ(t)) · dW(t). (6.31)
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In eq. (6.31), ζ(t) ∈ RN is the vector of state variables at time t. The vector valued function
a : RN → RN is an arbitrary, analytic function of the state variables, and the multiplicative

noise matrix B̂ : RN → RN×M is an analytic, matrix valued function of the state variables.

dW ∈ RM denotes a vector of M increments of a Wiener process with properties

E[dWi(t)] = 0, E[dWi(t) dWj(s)] = δijδt,s dt. (6.32)

Further, an Ito diffusion process is chractarized by the property [42]

E[dWi(t)ζj(t)] = E[dWi(t)]E[ζj(t)] = 0. (6.33)

We consider an observable F (ζ(t)) that is a function of the state variables ζ in eq. (6.31)

and write down its total differential up to second order in dζ

dF (ζ) = ∇ζF · dζ + 1
2 dζT · ĤF (ζ) · dζ +O(dζ3), (6.34)

where ĤF (ζ) is the hessian of the function F . Inserting eq. (6.31) into eq. (6.34) and

neglecting terms O(dt2), we find, using the Einstein summation convention,

dF = ∂F

∂ζi

ai dt + ∂F

∂ζi

Bij dWj(t) + 1
2 dWj(t)Bij

∂2F

∂ζi∂ζk

Bkl dWl(t). (6.35)

Eq. (6.35) is known as Ito’s formula [42], it is the chain rule of differentiation for Ito

diffusion processes. We average eq. (6.35) over the noise and make use of the properties

given in eq. (6.32) and eq. (6.33) to obtain

dF =
(

∂F

∂ζi

ai + 1
2 BijBkj

∂2F

∂ζi∂ζk

)
dt. (6.36)

This can be written as

dF

dt
=
(

ai
∂

∂ζi

+ 1
2 BijBkj

∂2

∂ζi∂ζk

)
F. (6.37)

Eq. (6.37) defines the infinitesimal generator of the mean dynamics since we performed an

average to derive it where the average is taken with respect to the Wiener measure associated

with the driving noise process [71], i.e., the white noise η(t) in the case of eq. (6.13). The
infinitesimal generator reads

L†
FP = ai

∂

∂ζi

+ 1
2 BijBkj

∂2

∂ζi∂ζk

. (6.38)

We choose to denote the infinitesimal generator by L†
FP because its adjoint w.r.t. the L2

inner product is the Fokker-Planck operator [71], i.e.,

〈ρ, L†
FPF 〉L2 =

∫
dNζ ρ(ζ)L†

FPF (ζ) =
∫

dNζ F (ζ)LFPρ(ζ)

= 〈LFPρ, F 〉L2 , (6.39)
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assuming that ρ vanishes at the integration boundaries and with

LFP = − ∂

∂ζi

ai + 1
2

∂2

∂ζi∂ζk

BijBkj. (6.40)

For the Markovian embedding system in eq.(6.13), the infinitesimal generator reads

L†
FP = v

∂

∂x
− 1

M

(
U ′(x) +

N∑
n=1

(gnv + γ1,n+1un)
)

∂

∂v

−
N∑

n=1

1
mn

(γn+1,1(x)v + γn+1,n+1un) ∂

∂un

+ 1
2

N+1∑
i,j=1

(
σ̂(x) · σ̂T (x)

)
ij

∂2

∂νi∂νj

. (6.41)

Applying the corresponding Fokker-Planck operator LFP on the distribution ρst(x, v, u) in
eq. (6.18), one finds

LFPρst(x, v, u) = 0, (6.42)

which proves that ρst in eq. (6.18) is indeed the stationary distribution of the system in

eq. (6.13).

On average, the time evolution of the velocity v in eq. (6.13) obeys the equation

v̇t = L†
FPvt. (6.43)

This is the stochastic equivalent of the Liouville equation for deterministic systems. To find

the GLE generated by the projection in eq. (6.8), we adjust the formalism to the system in

eq. (6.13). The inner product is now an average over the stationary distribution in eq. (6.18)

and the projection reads

Pφt = 〈φt〉x0 + 〈v0, φt〉x0

〈v2
0〉x0

v0. (6.44)

By applying the decomposition given in eq. (6.10) in combination with the projection above,

we can transform eq. (6.43) into the GLE in eq. (6.30), when the white noise terms in the

random force ξ(t) are averaged out.

According to eq. (6.10) and the adjoint Fokker-Planck operator L†
FP in eq. (6.41), the

Markovian contribution is given by

etL†
FPPL†

FPv = − 1
M

(
dU(xt)

dxt

+
N∑

n=1
gnvt

)
. (6.45)

Next, we compute the random force term using eq. (6.10)

FR(t) = etQL†
FPQL†

FPv =
∞∑

n=0

tn

n! (QL†
FP)nQL†

FPv

= − 1
M

N∑
n=1

γ1,n+1e
−

γn+1,n+1
mn

tun, (6.46)
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Figure 6.1: Comparison of the numerically extracted memory kernel in eq. (6.11c) (markers)

with the theoretical memory kernel in eq. (6.30b) (solid lines). In (a), as a func-

tion of time at different positions A, and in (b), as a function of the position A at

different times t. The underlying trajectory was generated via simulations of the
system in eq. (6.13) with U being a double well potential given in eq. (6.48) and

γ21(A) given in eq. (6.49). The numerical results are obtained using eq. (6.12)
(cf. ref. [4]).

from which we obtain

∫ t

0
ds e(t−s)L†

FPPL†
FPFR(s) = −

∫ t

0
ds

N∑
n=1

γ1,n+1

M
e−

γn+1,n+1
mn

t γn+1,1(xt−s)
mn

vt−s. (6.47)

The results in eq. (6.45) and eq. (6.47) coincide with the deterministic part of the GLE in

eq. (6.30). Note that eq. (6.46) reproduces the noise term in eq. (6.30) averaged over the

noises ηj . This means, we recover the GLE in eq. (6.30), when averaged over the white

noise η(t). Thus, the memory kernel Γ(x, t), obtained from the Markovian embedding in

eq. (6.13) by applying the projection operators in eq. (6.44), can be computed in a closed

form and is equal to the one in eq. (6.30b), which was obtained by solving the Langevin

equation in eq. (6.13).

The Markovian embedding is numerically demonstrated in fig. 6.1. Using eq. (6.13) and

eq. (6.27), we generate a trajectory xt in a double well potential

U(xt) = U0(x2
t − 1)2, (6.48)

with U0 = kBT where the thermal energy has the value kBT = 2.494 kJ/mol, which corre-
sponds to the thermal energy at room temperature in MD units. The remaining parameter

values are M = 4 u, m = 10 u, γ11 = 0.9 u/ps, γ12 = −6 u/ps, γ22 = 100 u/ps, and as the
friction profile, we use

γ21(xt) = π + 9 arctan(2πxt). (6.49)

As solid lines in fig. 6.1, we show Γ(x, t) given in eq. (6.30b). The markers in fig. 6.1

correspond to the numerically extracted Γ(x, t) in eq. (6.11c), using eq. (6.12) [4].
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The agreement between input functions and extracted output data is very good. Only for

small values of the memory kernel, we observe slight deviations which are due to numerical

errors. The presence of a delta peak in the memory kernel adds noise to the data which

makes the numerical estimation more challenging. This will become more clear in the next

section as we discuss the second embedding system where the delta peak in the memory

kernel is absent.

6.2.2 Fast auxiliary variable limit

A drawback of the method discussed in the previous section is the presence of an instanta-

neous friction that leads to a delta contribution in the memory kernel, i.e., gn in eq. (6.30b).

It has been shown that the system in eq. 6.13 becomes equivalent to the nonlinear Zwanzig

model (cf. chapter 5.3.1) with overdamped auxiliary variables [71, 114] when the instan-

taneous friction is set to zero, i.e., gn = 0 and γ1,n+1(x) = −γn+1,1(x). However, when
γ1,n+1(x) = −γn+1,1(x), one cannot derive a closed expression for the memory kernel of
the nfGLE using the projection operator in eq. (6.44). Thus, it remains unclear how to

choose the input functions in the embedding system in order to generate a GLE with the

same output functions.

Again, we refer to input functions as the functions that are used in eq. (6.13) and output

functions refer to the numerically extracted functions from simulations of the embedding

system using the extraction scheme in eq. (6.12).

In this section, we will show that, in a certain limit, the nonlinear Zwanzig model from

chapter 5.3.1 can be used as an alternative embedding for the nfGLE corresponding to the

projection in eq. (6.44): Consider the N body Hamiltonian given by

H(x, p, {xi, pi}N
i=1) = p2

2M
+

N∑
i=1

p2
i

m
+ U(x) +

N∑
i=1

κi

2 (αi(x)− xi)2, (6.50)

where xi, with i = 1, 2, . . . , N , denote the 1D positions of auxiliary particles with momenta

pi and equal mass m. The pair (x, p) denotes the relevant coordinates of a tagged particle.

The problem we want to solve is the following: From chapter 5.3.1, we know that the

nonlinear Zwanzig model generates a nfGLE with a memory kernel of the form Γ(xt, xs, t−
s). The memory kernel in eq. (6.11) is of a different structure than Γ(xt, xs, t− s). Using
the projection operator in eq. (6.44), we cannot obtain a closed relation between the memory

kernel Γ(x, t) in eq. (6.11) and the nonlinear functions αi(x) in eq. (6.50). We will resolve

this problem by considering the case

ε =
√

m/M � 1. (6.51)

Using the rescaled momentum p̃ = ε p, we can write the Liouville operator of the system in
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eq. (6.50) as [107]

L = L0 + εL1, (6.52a)

L0 =
N∑

i=1

(
pi

m

∂

∂xi

− ∂H

∂xi

∂

∂pi

)
, (6.52b)

L1 = p̃

m

∂

∂x
− ∂H

∂x

∂

∂p̃
. (6.52c)

Now, we consider the case in which there are Nα distinct nonlinear functions αn, n =
1, 2, . . . , Nα with Nα < N and

∑
α Nα = N . We divide the set of auxiliary variables into

Nα subsets with the index sets In that have the function αn(x) in common, i.e., if n, k ∈ Ij ,

then αn(x) = αk(x) ≡ αj(x), and we can write

N∑
i=1

κi

2 (αi(x)− xi)2 =
Nα∑
n=1

∑
i∈In

κi

2 (αn(x)− xi)2. (6.53)

To obtain a nfGLE for the nonlinear Zwanzig model using projection operators, we use the

projection

PBt = 〈Bt〉x + 〈p̃, Bt〉x
〈p̃2〉

p̃. (6.54)

Note that the projection operator in eq. (6.54) is independent of the masses m and M . First,

we compute the potential term in the GLE and find

etLPLp̃ = −ε
dU

dxt

. (6.55)

Next, we compute the random force to leading order in ε from

FR(t) = etQLQLp̃ (6.56a)

= etQLQ(L0 + εL1)p̃ (6.56b)

= ε etQLQL1p̃. (6.56c)

For this, we use

etQL = eQ(L0+εL1) (6.57a)

= etQL0 + ε
∫ t

0
ds e(t−s)QLQL1e

sQL0 . (6.57b)

Inserting eq. (6.57b) into eq. (6.56c), we find to leading order in ε

FR(t) = ε eQL0QL1p̃ +O(ε2) (6.58a)

= ε
N∑

i=1

(
κiα

′
i(x) (xi − α(x)) cos(ωit) + κiωipiα

′
i(x) sin(ωit)

)
, (6.58b)
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where ω2
i = κi/m. According to eq. (6.11), the memory kernel follows from eq. (6.58b) by

computing

PLFR(t) = εPL1FR(t) (6.59a)

= −ε2
N∑

i=1
(α′

i(x))2
ω2

i p̃ cos(ωit). (6.59b)

The GLE then reads to leading order in ε

˙̃p = −ε U ′(xt)− ε2
∫ t

0
ds

N∑
i=1

ω2
i cos(ωis) (α′

i(xt−s))2
p̃t−s + FR(t), (6.60)

with FR(t) given in eq. (6.58b). Rescaling back to p = p̃/ε and dividing by the mass M ,

we obtain

v̇t = −U ′(xt)
M

−
∫ t

0
ds

N∑
i=1

κi cos(ωis) (α′
i(xt−s))2

vt−s + 1
M

F̃R(t), (6.61)

where F̃R(t) = FR(t)/ε.

The memory kernel in eq. (6.60), which we obtained from ˙̃p = Lp̃ in combination with the

projection (6.54), can be written as

Γ(x, t) = ε2
Nα∑
n=1

α′
n(x)2

m

∑
i∈In

κi cos(ωit) +O(ε4). (6.62)

For small ε, eq. (6.62) gives a closed relation between the memory kernel Γ(x, t) and the
functions αn(x). In order to perform efficient computer simulations of the Hamiltonian

system in eq. (6.50) for N → ∞, we proceed analogously to chapter 5.3 (cf. ref. [4]).

We interpret the function of time
∑

i κi cos(ωit) as the inverse Fourier transform of an

exponentially decaying function, i.e.,

∑
i

κi cos(ωit) = kne−t/τn

(
cos

(
νn

τn

t
)

+ 1
νn

sin
(

νn

τn

t
))

. (6.63)

This means, we map the Hamiltonian system in eq. (6.50) for N →∞ onto the stochastic

nonlinear Zwanzig model given by [4]

ẋ = − p

M
, (6.64a)

ṗ = −U ′(x)−
∑

n

kn α′
n(x) (αn(x)− yn) , (6.64b)

ẏn = −wn

m
, (6.64c)

ẇn = −kn (yn − αn(x))− γnwn +
√

2kBTγn ηn(t), (6.64d)

with the pair (yn, wn) being the auxiliary variables and ηn(t) being white noise

E[ηn(t)] = 0, E[ηi(t)ηj(t′)] = δijδ(t− t′), (6.65)
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Figure 6.2: Comparison of the numerically extracted memory kernel in eq. (6.11c) (markers)

with the theoretical memory kernel in eq. (6.67) and eq. (6.68) (solid lines). In

(a), as a function of time at different positions A, and in (b), as a function of
the position A at different times t. The underlying trajectory was generated via
simulations of the system in eq. (6.64) in a double well potential (eq. (6.48)) and

with two auxiliary variables where αn(x) is given in eq. (6.69). The numerical
extraction is accomplished using eq. (6.12) (cf. ref. [4]).

where E[·] denotes an average taken over the noise. The relations between the parameters
appearing in eq. (6.63) and eq. (6.64) are (see chapter 5.3.1)

τn = 2 m

γn

, (6.66a)

ν2
n = 2knτn

γn

− 1, (6.66b)

and the position dependent friction kernel in the limit ε =
√

m/M � 1 reads

Γ(x, t) =
∑

n

kn α′
n(x)2

M
e−t/τn

(
cos

(
νn

τn

t
)

+ 1
νn

sin
(

νn

τn

t
))

. (6.67)

In fig. 6.2, we show results for a simulation of the system in eq. (6.64) with the double well

potential given in eq. (6.48) and a barrier height ofU0 = 2kBT . We set kBT = 2.494 kJ/mol,
i.e. we useMD units (length in nm, time in ps and mass in u). The friction kernel in eq. (6.67)

is shown in fig. 6.2 (a) as a function of time at different positions and, in fig. 6.2 (b), as a

function of position at different times. The friction kernel is composed of two contributions,

i.e., we use two auxiliary variables with

α′
n(x)2 =

(
αn,0

ln
l2
n + (x− xn)2

)2

, (6.68)

where xn = ±0.5 nm, αn,0 = 1 nm and ln = π nm for n = 1, 2.
In order to perform simulations of the friction kernel given in eq. (6.67) and eq. (6.68), one

has to compute the functions αn(x) from the extracted functions α′
n(x)2 and use them as
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input in eq. (6.64). While it might not be possible to computeαn(x) fromα′
n(x)2 analytically,

it is always possible numerically. For α′
n(x)2 in eq. (6.68), we know the analytical form of

αn(x). It reads

αn(x) = αn,0 arctan
(

x− xn

ln

)
. (6.69)

The shape of the time components of the memory kernel is determined by the parameters

in eq. (6.66). In fig. 6.2, we use the same values for the two components, the values are

τn = 0.04 ps and ν2
n = 0.84. The value of the effective mass is M = 2 u, the value of the

auxiliary variable masses is m = 0.02 u. The mass m is chosen such that ε =
√

m/M � 1,
i.e., in fig. 6.2 ε = 0.1. The value of the friction coefficient is γn = 1 u/ps and the value of
the coupling parameter is kn = 100 u/ps2. The amplitudes of the coupling functions αn(x)
are given by α0,n = 1.

We observe perfect agreement between the input functions (solid lines) and the output data,

numerically extracted from simulated trajectories (markers), shown in fig. 6.2. Compared to

the results in fig. 6.1, the perfect agreement in fig. 6.2 suggests that the numerical extraction

is more stable in the absence of instanteneous friction.

Validity of eq. (6.67)

The memory function Γ(A, t) in eq. (6.11) is invariant under a rescaling of the coordinate A.

This follows directly from dimensional analysis of the nfGLE in eq. (6.11). Any rescaling

in the reaction coordinate A leads to the same rescaling in the reaction coordinate velocity Ȧ
and acceleration Ä, thus, the memory kernel in eq. (6.11) must be invariant under a rescaling

of the reaction coordinate, to arbitrary order in ε. Meaning, the correction terms in the

expansion in eq. (6.62) must be invariant under a rescaling in A. This is also reflected in
the units of the memory kernel.

On the other hand, the effective mass M = kBT/〈Ȧ2〉 scales inversely quadratic in the

reaction coordinate velocity. Thus, without changing the memory function, we can rescale

A such that M � m is fulfilled.

However, the correction terms in the expansion in eq. (6.62) can become non-negligible

for certain combinations of parameters, e.g., when α0,n becomes too large. Therefore, one

needs to check that the approximation in eq. (6.67) holds numerically. For this, we propose

a simple test in the next section.

6.3 Accounting for position-dependent mass

In the previous section, we discussed GLE simulations via Markovian embedding for the

nfGLE in eq. (6.11), i.e., when Γ(As, Ȧs, t− s) = Γ(As, t− s)Ȧs, but in which the mass

M is assumed to be constant in At. In this section, we consider the more general case where

the effective mass may also depend on At.
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We proceed analogously to section 6.2.1, but now using the projection operator from

chapter 3.3 that generates a GLE in which the mean force, containing the PMF, is adjusted

for the purpose of simulating GLEs with a position dependent mass.

First, we briefly recapitulate the derivation of the nfGLE from chapter 3.3. Afterwards, we

present a system of coupled Markovian Langevin equations and use the projection operator

from chapter 3.3 to show that the presented Markovian Langevin system can be used to

simulate the nfGLE.

Similar to the previous section, we consider the many-body Hamiltonian of the form in

eq. (6.4). The interaction potential V is assumed to be a function of positions only such that

there is no coupling between atomistic velocities and positions.

Observables of phase space are denoted by Bt = B(ωt) = B(ω0, t). The inner product of
two observables B and C is given by the equilibrium average over the stationary Boltzmann

distribution ρeq(ω0) = exp(−βH(ω0))/Z in eq. (6.5), with Z =
∫

dω0 e−βH(ω0) being the

partition function. The Liouville equation determines the time evolution of an observable

Bt

Ḃt = LBt, (6.70a)

L =
N∑

n=1

(
∂H

∂pn

· ∂

∂rn

− ∂H

∂rn

· ∂

∂pn

)
, (6.70b)

whereL is the Liouville operator. The general solution of the Liouville equation in eq. (6.70)

is given by Bt = etLB0. Remind you that the Liouville operator L is anti self-adjoint with

respect to the inner product in eq. (6.5), i.e.,

〈LBt, Ct′〉 = −〈Bt,LCt′〉. (6.71)

Using projection operators, the Liouville equation eq. (6.70a) can be decomposed into two

terms. To derive the nfGLE in chapter 3.3, we used two projection operators. One of the

two projection operators is used to decompose the Liouville equation in the following way

Ḃt = LBt = etLLB0 = etL(PL +QL)LB0. (6.72)

We use the subscript L to highlight that the pair PL,QL is used to decompose the Liouville

equation.

Using the Dyson decomposition [34, 38] of the propagation operator etL, we can further

decompose eq. (6.72) with a second projection operator. The Dyson decomposition is given

by [36]

etL = etQDL +
∫ t

0
ds e(t−s)LPDLesQDL. (6.73)

The subscript D denotes that we use the pair PD,QD, which in general can be different

from PL,QL, in the Dyson decomposition. Inserting eq. (6.73) into eq. (6.72), we obtain

an equation with a similar structure to a GLE in terms of general projection operators

PL,QL,PD,QD:

Ḃt = etLPLLB0 +
∫ t

0
ds e(t−s)LPDLFR(s) + FR(t), (6.74a)

FR(t) = etQDLQLLB0. (6.74b)
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Again, note that the projectionPL determines the functional form of the first term etLPLLB0
and the initial value FR(0) = QLLB0, while the projection PD determines the functional

form of the integrand PDLFR(s) and the propagation of FR(0) in time via etQDL.

Next, we specify the projectionsPL andPD in order to obtain the explicit form of the nfGLE

in chapter 3.3. For this, we need the conditional correlation between two observables B and

C, which is defined by

〈Bt, Ct′〉A0 = 〈δ(A(ω̂0)− A(ω0)), B(ω̂0, t)C(ω̂0, t′)〉
〈δ(A(ω̂0)− A(ω0))〉

. (6.75)

In eq. (6.75), the phase space position with a hat, i.e., ω̂0, is integrated over. The condition

in eq. (6.75) is that the observable A has initially the value A0 = A(ω0). We refer to the

observableA, which we project onto, as the observable of interest, or reaction coordinate. As

before, we assume that A is a function of particle positions only, i.e., A(ω0) = A(R0) = A0.

For example, A could be the center of mass of a cluster of particles, the mean native distance

in a polymer or the dihedral angle. When A is a function of positions only, its velocity

Ȧ0 = (M−1P0) · ∇RA0 is linear in particle momenta, where M̂ is the diagonal mass matrix

Mij = miδij in eq. (6.4). From this, and from eq. (6.4) and eq. (6.5), it follows that, for a

given position R0, the velocity Ȧ0 is Gaussian distributed with zero mean.

Using conditional correlations, we define the first projection operator PD. It is a reformula-

tion of the projection operators discussed in ref. [4, 110] and given by

PDBt = 〈Bt〉A0 + 〈Ȧ0, Bt〉A0

〈Ȧ2
0〉A0

Ȧ0 . (6.76)

The projection operator PL is an extension of PD and reads

PL = PD + P2, (6.77a)

P2Bt =

〈(
Ȧ2

0 − 〈Ȧ2
0〉A0

)
, Bt

〉
A0〈(

Ȧ2
0 − 〈Ȧ2

0〉A0

)2
〉

A0

(
Ȧ2

0 − 〈Ȧ2
0〉A0

)
. (6.77b)

Both projections, PL and PD, are orthogonal projections w.r.t. the inner product in eq. (6.5).

Further, we have QLBt = QDQLBt. To obtain the final form of the GLE, we set Bt = Ȧt

in eq. (6.74) and use the projection operators defined in eq. (6.76) and eq. (6.77). This gives

the GLE (see chapter 3.3)

Ät = − 1
M(At)

dU(At, Ȧt)
dAt

−
∫ t

0
ds Γ(As, t− s)Ȧs + FR(t), (6.78a)

with

U(A, Ȧ) = UPMF(A) + M(A)
2 Ȧ2 + kBT ln

√
M(A), (6.78b)

Γ(A, t) = βU ′
eff(A)D(A, t)−D′(A, t) + 〈Ä0, FR(t)〉A

〈Ȧ2
0〉A

, (6.78c)

Ueff(A, t) = UPMF(A) + kBT ln M(A), (6.78d)

D(A, t) = 〈Ȧ
2
0, FR(t)〉A
〈Ȧ2

0〉A
. (6.78e)
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Figure 6.3: Comparison of the numerically extracted GLE parameters (markers) with the

input functions (solid lines). In (a), we show the position dependent mass

M(A), where we compare the numerically computed conditional average in

eq. (6.84b) (markers) with the input function in eq. (6.95) (solid line). In (b) and

(c), we compare the numerically extracted memory kernel defined in eq. (6.78c)

(markers) with the input memory kernel given in eq. (6.88c) and eq. (6.96) (solid

lines). In (b), Γ(A, t) is shown as a function of time at different positions A,
and in (c), as a function of the position A at different times t. We show the

shape of the PMF U(A) in the background as a thick gray line. The underlying
trajectory was generated via simulations of eq. (6.79) with U given in eq. (6.94)

and γ21(A) given by eq. (6.96). The memory function Γ(A, t) is extracted using
eq. (6.12) (cf. ref. [4]).

Here, M(A) = kBT/〈Ȧ2
0〉A denotes the position-dependent effective mass of the reaction

coordinate and UPMF(a) = −kBT lnP(a) is the potential of mean force (PMF) with P(a) =
〈δ(A(ω̂0)− a)〉 being the positional distribution.
The GLE parameters can be extracted from time series data by explicitly computing the

random force FR(t) using the numerical extraction discussed in chapter 4 and represented

by eq. (6.12) [4, 16].

In the following, we present a system of Markovian Langevin equations that allows for a

self-consistent Markovian embedding of a GLE with a configuration-dependent mass and

nonlinear friction. Self-consistency is discussed in section 6.1.

The Markovian Langevin equations are given by

ẋt = vt, (6.79a)

v̇t = − 1
M(xt)

(
U ′(xt) + kBT

2
M ′(xt)
M(xt)

+ M ′(xt)
2 v2

t −
N+1∑
n=1

γ1n νn(t)

+
2N∑
n=1

σ1n(xt) ηn(t)
)

, (6.79b)

u̇n(t) = 1
mn

−N+1∑
j=1

γn+1,j(xt) νj(t) +
2N∑
j=1

σn+1,j(xt) ηj(t)
 , (6.79c)

E[ηi(t)] = 0, E[ηi(t)ηj(t′)] = δijδ(t− t′), (6.79d)
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In eq. (6.79), we introduce a velocity vector ν(t) = (vt, u1(t), u2(t), . . . , uN(t))T ∈ RN+1

and the white noise vector η(t) ∈ R2N . The un(t) denote auxiliary velocity variables. The
friction matrix γ̂ ∈ R(N+1)×(N+1) is only non-zero in the first row, the first column and in

the diagonal, i.e., it is given by

γ̂(xt) =


γ11(xt) γ12(xt) γ13(xt) · · ·
γ21(xt) γ22 0
γ31(xt) 0 γ33

...
. . .

 (6.80)

=


M(xt)

∑N
n=1 gn M(xt)h1 M(xt)h2 · · ·

γ21(xt) γ22 0
γ31(xt) 0 γ33

...
. . .

 .

The multiplicative noise matrix σ̂(xt) ∈ R(N+1)×2N is given by

σ̂(xt) =



s11(xt) 0 s21(xt) 0 s31(xt) 0 · · ·
s12(xt) s13(xt) 0 0 0 0

0 0 s22(xt) s23(xt) 0 0
0 0 0 0 s32(xt) s33(xt) · · ·
...

...


. (6.81)

If the system in eq. (6.79) fulfills the following fluctuation-dissipation relation [71](
γ̂(xt) + γ̂T (xt)

)
/β = σ̂(xt) · σ̂T (xt), (6.82)

it has the stationary probability distribution

ρst(x, v, u) ∝
√

M(x)e−βU(x)e−β
M(x)

2 v2
e−β

∑
n

mn
2 (un)2

, (6.83)

with the desired properties

U(x) = −kBT ln ρst(x), (6.84a)

〈v2〉x = kBT

M(x) , (6.84b)

where ρst(x) =
∫

dv
∫

dNu ρst(x, v, u) is the marginal distribution in x. The fluctuation-
dissipation theorem in eq. (6.82) holds when

2gnM(xt)
β

= s2
n1(xt), (6.85a)

hnM(xt) + γn+1,1

β
= sn1(xt)sn2(xt), (6.85b)

2γn+1,n+1

β
= s2

n2(xt) + s2
n3(xt), (6.85c)
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and the entries sij of the multiplicative noise matrix σ̂(xt) are given by (see section 6.2.1)

sn1(xt) =
√

2kBTgnM(xt), (6.86a)

sn2(xt) = kBT
hnM(xt) + γn+1,1

sn1(xt)
, (6.86b)

sn3(xt) =
√

2kBTγn+1,n+1 − s2
n2(xt), (6.86c)

where gn and hn are defined in eq. (6.80). In order to obtain finite, real valued multiplicative

noise factors, eq. (6.86) requires the following inequalities to hold

gn > 0, (6.87a)

4γn+1,n+1 gnM(xt) ≥ (hnM(xt) + γn+1,1)2 , (6.87b)

for alln = 1, 2, . . . , N . Eq. (6.87) puts a lower bound on each gn for givenM(xt), hn, γn+1,1(xt)
and γn+1,n+1. Consequently, the presence of a delta contribution in the memory kernel is

required. Solving eq. (6.79c) for un(t) and inserting the result into eq. (6.79b) yields the
GLE

v̇t = − 1
M(xt)

dŨ(xt, vt)
dxt

−
∫ t

0
ds Γ(xs, t− s)vs + ξ(t), (6.88a)

with

Ũ(x, v) = U(x) + M(x)
2 v2 + kBT ln

√
M(x), (6.88b)

Γ(xs, t− s) =
N∑

n=1

(
gnδ(t− s)− hne−

γn+1,n+1
mn

(t−s) γn+1,1(xs)
mn

)
, (6.88c)

ξ(t) =
N∑

n=1

(
− hn

mn

e−
γn+1,n+1

mn
tun(0)

+
2N∑
j=1

[
σnj(xt)ηj(t)−

∫ t

0
ds

hn

mn

e−
γn+1,n+1

mn
(t−s)σn+1,j(xs)ηj(s)

] . (6.88d)

To show that the system of Markovian Langevin equations in eq. (6.79) can be used to

perform a self-consistent Markovian embdedding of the GLE in eq. (6.78) in combination

with the extraction scheme in eq. (6.12), we consider the mean dynamics of vt in eq. (6.79).

The mean dynamics is obtained from Ito’s lemma in eq. (6.35) which can be used to derive

an equation for the differential df(ζt) of a function f(ζt) of state variables ζt, e.g., the

chain rule for an Ito diffusion process [42]. Averaging the differential equation for df(ζt)
over the noise provides the mean dynamics. By setting f(ζt) = vt, one obtains the mean

dynamics of vt in eq. (6.79)

v̇t = L†
FPvt, (6.89)
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where L†
FP is the infinitesimal generator of the system of stochastic differential equations in

eq. (6.79) (cf. [71])

L†
FP = v

∂

∂x
−
(

1
M(x)

dŨ(x, v)
dx

+
N∑

n=1
(gnv + hnun)

)
∂

∂v

−
N∑

n=1

1
mn

(γn+1,1(x)v + γn+1,n+1un) ∂

∂un

+ 1
2

N+1∑
i,j=1

(
σ̂(x) · σ̂T (x)

)
ij

∂2

∂νi∂νj

. (6.90)

The L2-adjoint of L†
FP is the Fokker-Planck operator, i.e., LFPρst(x, v, u) = 0, where the

stationary distribution is given in eq. (6.83).

Starting from eq. (6.89), we can derive the GLE using the projection operators PD and

PL in eq. (6.76) and eq. (6.77), respectively. The inner product in eq. (6.5) is obtained by

replacing ρeq by the stationary distribution in eq. (6.83).

First, we calculate the Markovian contribution generated by the projection. According

to eq. (6.74) and the adjoint Fokker-Planck operator L†
FP in eq. (6.90), the Markovian

contribution is given by

etL†
FPPLL†

FPv = − 1
M(x)

dŨ(xt, vt)
dxt

−
N∑

n=1
gnvt. (6.91)

Next, we compute the random force term using eq. (6.74b)

FR(t) = etQDL†
FPQLL†

FPv =
∞∑

n=0

tn

n! (QDL†
FP)nQLL†

FPv

= −
N∑

n=1
hne−

γn+1,n+1
mn

tun(0), (6.92)

from which we obtain∫ t

0
ds e(t−s)L†

FPPDL†
FPFR(s) = −

∫ t

0
ds

N∑
n=1

hne−
γn+1,n+1

mn
t γn+1,1(xt−s)

mn

vt−s. (6.93)

The results in eq. (6.91) and eq. (6.93) coincide with the deterministic part of the GLE in

eq. (6.88). Note that eq. (6.92) reproduces the noise term in eq. (6.88d) averaged over the

noises ηj . This means that we recover the GLE in eq. (6.88), when averaged over the white

noise η(t). Thus, the memory kernel Γ(A, t), obtained from the Markovian embedding in

eq. (6.79) by applying the projection operators in eq. (6.8) and eq. (6.77), can be computed

in closed-form and is equal to the one in eq. (6.88c), which was obtained by solving the

Langevin equation in eq. (6.79c).

We numerically demonstrate the Markovian embedding of a nonlinear GLE with position

dependent mass in fig. 6.3. Here, we take kBT = 2.494 kJ/mol, i.e., we use molecular

Cihan Ayaz, Non-Markovian Modelling of Many-Body Dynamics, 2022 93



6 Self-Consistent Markovian Embedding of Nonlinear Friction GLEs

dynamics (MD) units. Based on eq. (6.79) and the relations in eq. (6.86), we generate a

trajectory xt in a double well potential

U(x) = U0(x2 − 1)2, (6.94)

with U0 = 2 kBT . The position dependent mass is taken to be

M(x) = M0(1 + e−5x2), (6.95)

with M0 = 1 u, which is shown as a solid line in fig. 6.3(a). We simulate N = 2 auxiliary

variables with equal masses mn = 1 u. The friction constants are set to gn = 1 ps−1,

hn = −5 ps−1 and γn+1,n+1 = 10 u/ps for n = 1, 2 and for the friction profile, we take

γn+1,1(x) = γ0

1 + (x−xn

ln
)2 , (6.96)

with γ0 = 3 u/ps, ln = 0.125 nm and the values xn = ±0.5 nm for the two auxiliary

variables. In other words, we simulate the case where the friction kernel increases at the

inflection points of the potential. Such a friction behavior is motivated by our numerical

results for the memory function of the dihedral angle in butane from fully atomistic MD

simulations [4].

In fig. 6.3, we compare the input functions given in eq. (6.95) and eq. (6.88c) (solid lines)

with the numerically extracted ones (markers). The position dependent mass is numerically

computed from the simulated trajectories using eq. (6.84b), the friction kernel is numerically

computed using the extraction scheme in eq. (6.12). In fig. 6.3, we observe perfect agreement

between the input and the extracted functions. This constitutes a numerical validation of the

embedding method and the extraction/simulation techniques used by us.

6.4 Modeling an arbitrary memory kernel

In applications, when a general Γ(A, t) is given, there are several ways to obtain the

parameter values for the embedding system, e.g., eq. (6.13). The most straightforward way

is to expand Γ(A, t) in a countable set of basis functions {fn(A)},.i.e.,

Γ(A, t) ≈
N∑

n=1
cn(t)fn(A). (6.97)

The coefficients are computed from the inner product cn(t) = (Γ(t), fn) which depends
on the choice of basis functions fn(A). Then, the coefficients, which are functions of time
only, are fitted by a sum of exponentials.

As an example, take the case in which it is possible to accurately capture Γ(A, t) with
10 functions fn(A). To fit each coefficient cn(t), one uses, let us say, a sum of three

exponentials. This means that one needs in total 30 auxiliary variables in the embedding

system.

A way to reduce the number of functions fn in the expansion is to look for dominating

shapes in Γ(A, t) when plotted as a function of A at different times. For example, if one
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observes a nearly constant A-profile with peaks only at certain positions, it makes more
sense to use fit functions fn(A) with this property, e.g., Gaussians. This way, the main

features of Γ(A, t) can be captured more efficiently, i.e., with a smaller number of auxiliary
variables in the embedding. To obtain the coefficients cn(t) for this case, one could do a
least-squares fit at each time step.

We turn to the perturbative embedding system in sec. 6.2.2. As can be seen from the

discussion above, the fitting procedure for a memory kernel of two variables A and t can
become time consuming. Since the embedding in section 6.2.2 is not exact and we do not

know how the correction terms scale in the parameters κn, γn and αn(x) in eq. (6.64), we
propose a simple numerical test to check if eq. (6.62) holds:

Approximate the memory kernel Γ(A, t) as a product of two functions, i.e.,

Γ(A, t) ≈ c(t)f(A), (6.98a)

f(A) = 1
τ

∫ τ

0
ds Γ(A, s), (6.98b)

c(t) = 〈Γ(A, t)〉. (6.98c)

Eq. (6.98b) is a time average of the memory kernel where τ denotes the largest memory

time in Γ, i.e., the time after which Γ has decayed to less than 36% (exponential decay) of its

initial amplitude at all positions A. Eq. (6.98c) is an ensemble average over all positions A.

If the embedding in eq. (6.64) with eq. (6.67) works for the single product approximation

c(t)f(A), then we expect it to work for the real Γ too. Once this is ensured, one can start

with a more involved fitting of Γ.

Another approach is to write

Γ(A, t) = Γ̄(t) +
(
Γ(A, t)− Γ̄(t)

)
(6.99a)

= Γ̄(t) + ∆Γ(A, t), (6.99b)

max
t

(Γ̄(t)) = Γ̄(0), (6.99c)

max
t

(∆Γ(A, t)) = ∆Γ(A, 0), (6.99d)

and determine Γ̄(t), if the data allows it, such that

Γ̄(0)� ∆Γ(A, 0) (6.100)

for all A. This is preferable since the memory kernel Γ̄(t) can be simulated with standard
Markovian embedding methods [103] and the nonlinear friction kernel ∆Γ(A, t) is treated
as a small correction term where the approximation in eq. (6.67) may hold.
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6.5 Conclusion

In this chapter, we presented three Markovian Langevin systems whose mean dynamics are

shown to be equivalent to nfGLEs generated by given projection operators.

The first and third systems are coupled via velocities, and the embedding works for any

combination of parameters, though only in the presence of a delta contribution in the

memory kernel. Here, the time component of the memory kernels consists of a sum of pure

exponentials. The second system also works without a delta contribution, but it is applicable

only for certain combinations of parameters since it is a perturbation expansion. The time

component of this system is a sum of exponentially decaying oscillations. We propose a

simple numerical test to check the validity of the approximations.

While the effective mass in the first two systems is assumed to be constant in the reaction

coordinate, in the third system, we allow a position-dependent mass. We introduce a method

to simulate a generalized Langevin equation with position-dependent mass and friction

functions by Markovian embedding. Such GLEs were numerically extracted in chapter 4.2

(cf. [4]) from molecular dynamics simulation trajectories of the dihedral angle of butane

in water. We introduce a projection operator for the Markovian embedding that allows for

a self-consistent extraction/simulation procedure. The methods presented in this chapter

will be useful for simulating general non-Markovian systems. In future work, it will be

interesting to study the relative effects of position-dependent mass and memory on the

kinetics of such systems.
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