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1 Abstract 

English ‒ Cancer is one of the leading causes of death worldwide, within the molecular and 

structure complexity of tumors are causal factors for disease progression and treatment 

standards. With the development of molecular biological techniques, physicians could use 

genetic variation or protein and metabolic expression profile besides histo-morphologicial 

evaluation to classify more accurate risk assessment and to guide treatment decisions. The 

biomarker-driven personalized therapies might improve clinical care, avoid unnecessary 

treatments and reduce the duration and costs for hospital stay. Therefore, there is a strong 

demand for more reliable molecular biomarker profiles. In this dissertation, a novel technique 

called imaging mass spectrometry (MADLI-MSI) is used to investigate the potential of 

spatially resolved peptide signatures (directly from tumor tissue; in situ) for (i) discrimination 

of subtypes of serous ovarian cancer (HGSOC) and (ii) risk assessment of neuroblastoma. 

Univariate and multivariate static methods were used to determine associated peptide 

signatures. Using complementary methods, liquid chromatography-based mass 

spectrometry the corresponding proteins to the peptides were identified and verified by 

immunohistology. Consequently, peptide signatures were identified to predict disease 

recurrence in early-stage HGSOC patients and to distinguish high-risk neuroblastoma 

patients from other risk groups. These results suggest that the MALDI-MSI technique is a 

promising analytical method that facilitates diagnosis and treatment decision-making. It has 

also provided new biological insights into tumor heterogeneity, that could benefit the 

development of molecular biomarker profiles. The data of this dissertation have been really 

published in Journal “Cancers (MDPI)” 2020 and 2021.  

Deutsch ‒ Onkologische Erkrankungen (Krebs) sind weltweit eine der häufigsten 

Todesursachen. Die molekulare und strukturelle Komplexität von Tumoren sind ursächlich 

für die Krankheitsprogression und Therapieanspruch. Mit der Entwicklung von neuen 

molekularbiologischen Verfahren könnten Ärzte neben der histo-morphologischen 

Bewertung auch genetische Variationen oder Protein- und Metabolit-Expressionsprofile 

nutzen, um eine genauere Risikobewertung vorzunehmen und die 

Behandlungsentscheidung zu treffen. Die personalisierten Therapien können die klinische 
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Versorgung verbessern durch Vermeidung unnötiger Behandlungen und verringerte Dauer 

und Kosten des Krankenhausaufenthalts. Daher besteht ein starker Bedarf an 

zuverlässigeren molekularen Biomarker Profilen. In dieser Dissertation wird ein neuartiges 

Verfahren, die sogenannten bildgebenden Massenspektrometrie (MADLI-MSI) eingesetzte 

um das Potential von räumlich aufgelösten Peptide-Signaturen (direkt aus dem 

Tumorgewebe; in situ) für (i) die Diskriminierung von Subtypen des serösen Ovarialkarzinom 

(HGSOC) zu untersuchen und (ii) die Risikoabschätzung des Neuroblastomes. Dabei 

wurden univariate und multivariate statischer Verfahren eingesetzt, um assoziierten Peptide-

Signaturen zu bestimmen. Mittels komplementärer Verfahren, Flüssigkeitschromatographie 

basierte Massenspektrometrie wurden die korrespondierenden Proteine zu den Peptiden 

identifiziert und Immunhistologisch verifiziert. Folglich wurden Peptidsignaturen zur 

Vorhersage des Wiederauftretens der Krankheit bei HGSOC-Patienten im Frühstadium und 

zur Unterscheidung von Hochrisiko-Neuroblastom Patienten von anderen Risikogruppen 

identifiziert. Diese Ergebnisse deuten darauf hin, dass die MALDI-MSI-Technik eine 

vielversprechende Analysemethode ist, die die Diagnose und die Entscheidung über die 

Behandlung erleichtert. Außerdem hat sie neue biologische Erkenntnisse über die 

Heterogenität des Tumors geliefert, die der Entwicklung von molekularen Biomarker-Profilen 

zu Gute kommen könnten. Die Daten dieser Dissertation wurden in der Zeitschrift „Cancers 

(MDPI)" 2020 und 2021 veröffentlicht. 
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2 Introduction 

2.1 Frontiers in Cancer research 

The diagnosis and therapeutic strategy are always the core cancer care procedure. The 

treatment decision must base on a series of diagnostic findings, such as patient characters 

like age, BMI value, living style etc., histopathological observations, and biochemical 

indicators in urine and blood etc. Following these the patients are often stratified into different 

risk groups before treatment decision making. The more precise classification, patient could 

better benefit from appropriate therapeutic strategy. This is also the concept of personalized 

therapy for cancer patients. This dissertation focuses on risk group stratification of patients 

with epithelial ovarian cancer (EOC) and neuroblastoma. For both cancer types there are 

unmet medical need for more reliable prediction of disease progression.  

Epithelial ovarian cancer (EOC) is one of the most invasive gynecological cancers in the 

developed countries (reference statistically as http://seer.cancer.gov) and is commonly 

detected at an advanced stage due to a lack of specific symptoms (1). However, 25% of 

EOC patients may be diagnosed in the early stage, defined as FIGO stage I-II (International 

Federation of Gynecology and Obstetrics). The ICON1 (International Collaborative Ovarian 

Neoplasm 1) and ACTION (Adjuvant Chemotherapy In Ovarian Neoplasm) both trials 

showed that the efficiency of surgery alone or with platinum-based combinational 

chemotherapy was significant in the early stage (2, 3). The patients in the early stage have 

a better outcome after treatment, whose 5-year relative survival is between 80-90%. 

Nevertheless, a part of early-stage EOC could relapse and causes the death of about 20-

30% of patients (4-6). Chan et al. have confirmed that older age, higher stage and grade, 

and malignant cytology predict independently increased risk of recurrence for early-stage 

EOC patients (7). In addition, the prognosis is also affected by the histological subtypes with 

high-grade serous ovarian cancer (HGSOC) that is the most frequently occurring ovarian 

carcinomas (8). Because of limited data, different standards of risk assessment for treatment 

decision making and the debate over fertility-sparing surgery for HGSOC patients are still 

existing. A preoperative screening method and comprehensive surgical staging for proper 

risk assessment can meet this need (9, 10). In this context, one-third of presumed stage I 
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ovarian cancers were upstaged due to the findings of dissemination in the peritoneal cavity 

(11). These high-risk patients in the early stage, who are defined as FIGO stage I with grade 

3, FIGO stage IC, FIGO stage II or clear cell histological type, can benefit from adjuvant 

chemotherapy. After treatment, the relapse rate of EOC patients in FIGO stage IC decrease 

more than 60% (12). Thus, it is necessary at diagnosis to discriminate patients with high-risk 

disease from low-risk patients leading to further therapeutic strategy.  

EOC is not a homogeneous disease. Based on histopathology, immunohistochemistry (IHC) 

and molecular genetic analysis, five tumor types are identified (13), their outcome and 

survival rate vary widely. Consequently, there is a medical need for biomarkers with high 

predictive value for risk of progression and therapy response at individual level in order to 

achieve a better benefit/risk/cost ratio. We aimed to prove the putative value of the 

application of mass spectrometry-based technology to discover spatial peptide signatures in 

this cancer entity. 

Neuroblastoma is pediatric cancer with an overall incidence rate in Germany of 1 to 100,000 

children under 15 years old (14). It is the most common malignant solid tumor occurring in 

infants with a median diagnosed age of 17 months (15). The tumor originates from neural 

crest cells of sympathoadrenal lineage, within about 65% of primary tumors that arises in the 

adrenal medulla or lumbar sympathetic ganglia and can spread in the whole sympathetic 

nervous system (16). Clinical behavior and outcome of this disease are highly diverse: low-

risk tumors have a high possibility of spontaneous regression in all cancers, but high-risk 

tumors progress in treatment-refractory death or treatment-resistant recurrence despite 

aggressive multimodal therapies (17). Thus, treatment recommendations of neuroblastoma 

vary from simply mere observation or accompanying surgical resection alone to an 

elaborately therapeutic strategy such as high-dose chemotherapy, irradiation and 

immunotherapy (18). A common international staging and risk classification system 

(INSS/INRG) has been developed to stratify patients into different risk groups for treatment 

recommendation (19, 20). In Europe, patients have been stratified into three treatment risk 

groups according to GPOH (Gesellschaft für Pädiatrische Onkologie und Hämatologie) 
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guidelines described in Table 1 (18). The additional International Neuroblastoma Pathology 

Classification (INPC) criterion is exclusively used in the USA (21).  

Table 1. “Treatment classification of neuroblastoma patients. INSS: International Neuroblastoma Staging 
System; INRG: International Neuroblastoma Risk Group (INRG) Staging System.” (Adapted from publication 
Wu. et al. Cancers, 2021) (22) 

INSS / INRG 
Staging 

Age at 
Diagnosis 
(months) 

MYCN Status 
Chromosome 1p 

Status 
Treatment Risk 

Group 

1   not amplified normal Low 
    amplified   High 
2  

not amplified 
normal Low  

 deletion / imbalance intermediate 
    amplified   High 
3 < 24 not amplified normal Low 
  ≥ 24 not amplified normal 

intermediate   
  not amplified deletion / imbalance 

    amplified   High 
4s / MS < 18  not amplified normal Low 
    amplified  High 
4 / M < 18  not amplified   intermediate 
  ≥ 18  amplified   High 

 

The INSS/INRG stage, MYCN amplification, chromosome 1p abnormality and age paly an 

important role in current disease risk assessment for the ongoing clinical trials in Germany. 

MYCN amplification as first identified, clinically relevant molecular marker (23) predicts an 

unfavorable outcome. The patients with young age and low stage have mostly favorable 

prognosis. However, a recent report from INRG (International Neuroblastoma Risk Group) 

revealed that the prognostic strength of MYCN amplification is strongly dependent on the 

context of clinical and biological features (24). Except the loss of heterozygosity at 

chromosome 1p, 11q and 17q gain the more expression-based prognostic markers in tumor 

continue to be further improved at the transcriptomic and genomic levels (25, 26). However, 

tumor progression is mainly influenced by tumor cell interactions and the surrounding 

microenvironment (27). Knowledge about the impact of high intratumoral heterogeneity and 

proteomic features in neuroblastoma on disease progression and treatment response 

remains limited (28). Therefore, there is an unmet need for a reliable classification of 
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neuroblastoma risk regarding the tumor microenvironment and inter- and intratumor 

heterogeneity. 

Spatial molecular signatures based on protein expression could provide a new and helpful 

perspective to the current classification of treatment risk for neuroblastoma patients and 

potentially more reliably predict disease progression.   
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2.2 Mass Spectrometry-based Technique for Clinical Proteomics 
Profiling 

Understanding the pathogenesis and improving therapeutic outcomes are always the 

challenges of human medicine. Since the Human Genome Project was completed in 2003, 

scientists have entered a new era in understanding and treating diseases. Especially the 

development of next-generation sequencing technology enhances discovering genetic 

disorders, infectious diseases, and diagnostic markers for cancers. Physicians and 

researchers have launched worldwide collaborative efforts to investigate large-scale 

analyses of genes in neurological disorders such as the Alzheimer’s Disease Sequencing 

Project (ADSP), human autoimmune diseases (29) and tumors such as the Cancer Genome 

Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) (30). This 

cooperation correlated the genomic abnormalities with disease phenotypes and suggested 

potential therapeutic targets and novel diagnostic tests. However, genomic disorders often 

insufficient in accurately predict proteins alterations and dynamics, which is also regulated 

by e.g., alternative splicing and post-translational modifications (PTMs). In fact, these 

proteins are effectors involved in cellular processes and signaling and can act as biomarkers 

or potential drug targets. Thus, access to protein activities and their interactions in the 

context of cancer can provide new insights into tumorigenesis and reveal potential pathways 

related to cancer progression (31, 32).  

Recently, mass spectrometry (MS)-based proteomics approaches have become the favored 

tool for clinical proteomics application, it provides high-throughput, comprehensive and 

quantitative proteins inventories of tissue, serum, plasma, urine and cells etc. (33). Within 

Matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) are 

known for their soft ionization procedure of biomolecules such as peptides and proteins and 

mostly utilized for protein analysis. A special application technology is developed from 

MALDI-MS for direct tissue analysis, which demonstrates ion imaging of peptides and 

proteins with their spatial arrangement in tissue sections (34). Because a bottom-up 

proteomics approach is in the latter utilized to identify proteins and their PTMs, the sample 

is beforehand digested by endopeptidase trypsin. Then the tissue should be mounted on a 
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conductive glass slide and then fixed onto a MALDI target plate. This sample is mixed with 

an organic compound that acts as a matrix to facilitate ablation and ionization of analyte of 

interest, e.g. peptides in the sample. A UV laser in the mass spectrometer triggers ionization 

and desorption of molecules from the tissue section. To realize imaging a sample, the laser 

in this process performs a raster over the tissue surface in a pre-defined two-dimensional 

(2D) grid. The ionized analytes become protonated and give rise to [M+H]+ ions that are 

subsequently measured according to their mass-to-charge ratio (m/z). In this study, we use 

a time-of-flight analyzer to measure m/z values of ions and generate a complete mass 

spectrum at each grid coordinate. Finally, these 2D ion density images/maps present 

individual m/z values with their corresponding intensities (35).  

The other ESI technique is used in a (nano)LC-ESI-MS/MS system consisting of a nano high-

performance liquid chromatography (nHPLC) device, electrospray ionization (ESI) chamber 

and mass spectrometer. Here we use a bottom-up proteomics approach, also known as 

shotgun proteomics, which is currently the most popular approach to identify proteins and 

their PTMs through analysis of corresponding proteolytic peptides (36). The sample is initially 

digested into peptides using proteolytic enzymes, e.g. trypsin. The resulting peptide mixture 

follows a sample preparation with a pipette tip filled with C18 media and then is separated 

through nHPLC. Subsequently, the sample solution enters the electrospray chamber 

maintaining an electric field through a stainless-steel hypodermic needle. At the needle tip, 

the surface of the emerging liquid is ionized and dispersed into a fine spray of charged 

droplets. Driven by the electric field, the charged droplets flow into the mass spectrometer 

via a capillary inlet (37). ESI tends to give multiply charged ions such as [M + nH]n+ or [M − 

nH]n−. “The charged peptides are detected and separated in the first mass analyzer and then 

fragmented and measured in the second mass analyzer. Finally, two types of spectra are 

collected: MS spectra depict the intensity and m/z for intact peptides; MS/MS spectra shows 

that one of the ions detected in the MS spectra is isolated, fragmented and measured in a 

high-throughput manner.” (published by Kulyyassov et al., https://biotechlink.org, 3-2018) 

(38) “Using a database search engine, peptides are identified by searching their parent-ion 

masses and MS/MS spectra against a protein database, where each protein would perform 
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an in silico tryptic digest and generate a theoretical spectrum. The best match of 

experimental and theoretical spectra then identifies the protein.” (published by Griffiths and 

Wang, Chem Soc Rev 38(7): 1882-1896, 2009) (39)  

A tumor is formed by many distinct cellular populations rather than a homogeneous cluster 

of identical cells. It presents histological, cellular and molecular heterogeneity and these 

heterogeneities play an essential role in tumors progression and treatment response (40). 

MALDI-MSI technology can take advantage to meet the challenge of tumor heterogeneity 

and obtain meaningful data from tissue sections frozen or formalin-fixed paraffin-embedded 

(FFPE). The analyzed molecules vary from peptides to lipids, proteins, glycans and even 

metabolites. The proteomics profiling on tissue section MALDI-MSI as described before, 

generates a peptide intensity map displaying the spatial relative molecule abundance in a 

predefined area. The dataset of position-correlated spectra is aligned with an optical image 

of the same tissue section (31, 41). Superior to antibody-based and fluorescent protein 

fusions spatial proteomics analysis, the priory knowledge of target protein is necessary. 

Moreover, the enormous and high-dimensional data derived by MALDI-MSI make automated 

computational analysis indispensable. Recently, cancer researchers have used MALDI-MSI 

for tumor histotype classification (42) and have identified some proteomic signatures for 

diagnostics (43, 44) and prognostic response to treatment (45). Therefore, this technology 

can interpret molecular tumor composition while preserving spatial morphology and provide 

critical mechanistic insights into tumor heterogeneity and its impact on tumor biology.  

In the pilot studies presented in this dissertation, we aimed to investigate feasibility of MALDI-

MSI technology to determine peptide signatures of two different tumor types, high grade 

serous ovarian carcinoma (HGSOC) and neuroblastoma, for therapy risk group classification. 

These discriminative peptides were identified by nLC-ESI-MS/MS technology. A peptide 

signature in each case was identified for predicting disease recurrence of early-stage 

HGSOC or for discriminating high-risk neuroblastoma from other risk groups. This finding 

could eventually improve fine-tuned risk assessment of clinical management of these 

patients.   
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3 Methods 

3.1 Sample Collection 

3.1.1 Epithelial Ovarian Cancer Patient Cohort  

“All samples were collected at Charité, Department for Gynaecology at surgery after patients 

gave their informed consent and conserved in the local pathology departments as FFPE 

tissue blocks. Sample collection was permitted by the local ethics committee of the Charité 

Medical University Berlin (AVD-No. 2004-000034) and conducted according to the 

Declaration of Helsinki. All patients were of white Caucasian background and received an 

accurate staging via laparotomy, including lymph node sampling. An experienced 

gynaecological pathologist confirmed the diagnosis of the early stage of the high-grade 

serous subtype of EOC. Adjuvant chemotherapy regime was applied to all patients based 

on carboplatin in combination with paclitaxel. Detailed descriptions of clinicopathological 

parameters of patients are shown in Table 2. All samples were removed from FFPE tissue 

blocks using a 1.0-mm diameter hollow needle as tissue cores and arrayed in a recipient 

paraffin block forming tissue microarrays (TMAs).” (Published by Kulbe et al, Cancers, 2020) 

(46) 

Table 2. Clinicopathological characteristics of patients. All patients received adjuvant chemotherapy for 
numbers of cycles as indicated in the table. Follow-ups of patients were performed for at least 5 years, if no 
relapse occurred, or till development of recurrent disease. (Adapted from publication Kulbe et al., Cancers, 
2020) (46) 

ID Recurrent 
disease 

Age FIGO 
stage 

Grade Presence 
of ascites 

Number of 
cycles 

Recurrence 
(months) 

1 - 68 IA G3 <500 mL 6 NA 
2 - 60 IC G2 <500 mL 6 NA 
3 - 68 IA G3 <500 mL 4 NA 
4 - 67 IC G3 No 6 NA 
5 + 44 IIB G3 >500 mL 6 13 
6 + 52 IIA G3 No 9 12 
7 + 67 IA G3 No 6 54 
8 + 57 IIA G3 No 6 16 
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3.1.2 Neuroblastoma Patient Cohort  

“All samples were collected from primary neuroblastoma (localized in the adrenal gland) for 

diagnostic purposes and preserved as FFPE tissue blocks in the local pathology department. 

An experienced reference pathologist confirmed the diagnosis of neuroblastoma, and patient 

risk classification by the National Neuroblastoma Study Group was based on the definitions 

of the German BFM-NB2004 study and the recommendations of the German Society of 

Pediatric Oncology and Hematology (GPOH). The comprehensive patient data set included 

gender, age, INSS stage of the tumor at diagnosis, presence of MYCN amplification in the 

diagnosed tumor sample (detected by FISH), INRG risk classification and outcome, 

especially diagnosed disease recurrence and death (Table 3). Patients in this cohort were 

followed up for at least four years or until the death of the disease. Pathologists identified 

tissue areas with >80% tumor cell content for collecting tissuee cores to generate tissue 

microarrays analyzed by MALDI-MSI with section annotation.” (Published by Wu et al., 

Cancers, 2021) (22) Neuroblastoma samples from patients with low- and intermediate-risk 

groups were defined as other risk group (nHR group). High-risk groups were retained as 

high-risk group (HR group). Sample numbers 1-5 (high risk) and 10-13 (other risk groups, 

Table 3) were used for whole tissue section analysis (MALDI-MSI and 

immunohistochemistry). “Cores from samples numbers 4, 10, 12, and 13 were also used for 

tissue microarrays, together with tissue cores from six tumor samples from unrelated patients. 

Tumor cores were removed from the FFPE tissue blocks with a 1.0 mm diameter hollow 

needle and arranged a recipient paraffin block (Table 3)” (Published by Wu et al., Cancers, 

2021) (22). 

Table 3. Clinicopathological characteristics of patient cohort. (Adapted from publication Wu et al., Cancers, 
2021) (22) 

ID Sex 
Age 

[years] 
INSS 
Stage 

MYCN 

amplification 

Risk 
classification 

(at diagnosis) 

Disease 
recurrence 

Death Metastasis 

1 F 0.3 3 + high - - No 

2 M 0.6 2 + high - - No 

3 M 1 3 + high - + No† 

4 M 1.4 4 + high - - Yes 
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† Disease in this patient later metastasized and was upgraded to INSS stage 4. 
‡ This patient had multiple relapses after first-line therapy and was treated for high-risk disease in relapse therapy. 

3.2 Procedure of MALDI-MSI  

“All FFPE tissue sections (whole sections and tissue chips) were cut to a thickness of 6 μm 

using a slicer (HM325, Thermo Fisher Scientific, USA.) and mounted on conductive glass 

slides coated with indium tin oxide (Bruker Daltonik GmbH, Germany).” (Published by Wu et 

al., Cancers, 2021) (22) The sections were preheated to 80 °C for 15 min before 

deparaffinization and rehydration following Protocol 1. Thermally induced antigen re-

extraction was performed in MilliQ water in a steamer for 20 min. Slides were dried for 10 

min and then subjected to trypsin digestion. “16 layers of trypsin solution (Table 5) were 

applied onto the sections using an automated spraying device HTX TM-Sprayer (HTX 

Technologies LLC, ERC GmbH, Germany) at 30 °C. Tissue sections were incubated for 2 h 

at 50°C in a humidity chamber saturated with potassium sulfate solution, and then coated 

with 4 layers of matrix solution (Table 6) using a HTX TM sprayer at 75°C. MALDI imaging 

was performed on rapifleX® MALDI Tissuetyper® (Bruker Daltonik GmbH, Germany) in 

reflector mode with a detection range of 800-3200 m/z, 500 lasers per spot, 1.25 GS/s 

sampling rate, and a grating width of 50 μm. FlexImaging 3.0 (EOC) / FlexImaging 5.1 

(Neuroblastoma) and Flex-Control 3.0 software (Bruker Daltonik GmbH) coordinated MALDI 

imaging runs. External calibration was performed using peptide calibration standards. After 

MALDI imaging, the matrix was removed from the tissue sections with 70% ethanol and the 

sections were histologically stained with hematoxylin and eosin.” (Published by Wu et al., 

5 F 1.2 4 + high + + Yes 

6 M 2.8 4 + high + + Yes 

7 M 7.8 4 - high - - Yes 

8 F 8 4 + high - - Yes 

9‡ M 1.2 3 - high + - No‡ 

10 F 2.4 1 - low - - No 

11 F 0.8 4 - intermediate - - Yes 

12 M 0.1 4s - low - - Yes 

13 F 0.1 3 mosaic low - - No 

14 F 5.9 3 - intermediate - - No 

15 M 1.9 2 - low - - No 
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Cancers, 2021) (22)Tumor areas with >80% tumor cells were digitally annotated in SCiLS 

Cloud by a pathologist and transferred to SCiLS Lab software (EOC: Version 2015b Pro; 

Neuroblastoma: Version 2019c Pro, Bruker Daltonik GmbH). 

Protocol 1: Rehydrate Sections 

1. Immerse the slides in xylene 2 times for 5 minutes each. 

2. Immerse the slides in isopropanol for 5 minutes. 

3. Immerse the slides in 100% ethanol for 5 minutes. 

4. Immerse the slides in 96% ethanol for 5 minutes. 

5. Immerse the slides in 70% ethanol for 5 minutes. 

6. Immerse the slides in 50% ethanol for 5 minutes. 

7. Rinse the slides with Milli-Q pure water 

 

Table 4. Digestion buffer 

Reagent CONC Amount (µL) Final CONC Manufacturer 

NH₄HCO₃ 100 mM 200 20mM Sigma-Aldrich Co. 

C3H8O3 1% 10 0.01% Sigma-Aldrich Co. 

Milli-Q water   790   Merck KGaA 

 

Table 5. Trypsin solution 

Reagent Amount Manufacturer 

sequencing grade modified porcine trypsin 20 µg Promega Co. 

digestion buffer 800 µL  

 

Table 6. Matrix solution 

Reagent CONC Amount Final CONC Manufacturer 
HCCA  14 mg 7 mg/mL Bruker Daltonik GmbH 

C₂H₃N 100% 1.4 mL 70% Sigma-Aldrich Co. 

C2HF3O2 100% 20 µL 1% ThermoFisher Scientific Inc. 

Milli-Q water   580µL   Merck KGaA 

3.3 Protein identification by nano-Liquid Chromatography Electrospray 
Ionization Tandem Mass Spectrometry  

“Protein identification of m/z values was performed on sections of adjacent tissue (tumor cell-

rich areas) using a bottom-up nano-liquid chromatography electrospray tandem mass 
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spectrometry method as previously described (47). Similar to MALDI-MSI preparation, 

sections were pre-heated to 80°C for 15 min before deparaffinisation. Paraffin removal, 

antigen retrieval and tryptic digest were carried out as for MAL-DI-MSI. After incubation for 

2 hours at 50°C in a humidity chamber saturated with potassium sulphate solution, peptides 

were extracted from tumor cell-rich areas of each tissue section separately into 40 μL of 0.1% 

trifluoroacetic acid and incubated for 15 minutes at room temperature. The digests were 

filtered with ZipTip® C18 according to the manufacturer's instructions, the eluate was 

concentrated under vacuum (Eppendorf® Concentrator 5301, Eppendorf AG, Germany) and 

reconstituted in 20 μL of 0.1% trifluoroacetic acid, respectively, from which 2 μL were 

extracted into NanoHPLC (Dionex UltiMate 3000, Thermo Fisher Scientific) coupled to an 

ESI-QTOF ultra-high resolution mass spectrometer (Impact II™, Bruker Daltonic GmbH). 

The peptide mixture was loaded onto an Acclaim PepMap™ RSLC C18 column (100 µm × 

2 cm, PN 164564, Thermo Fisher Scientific), calibrated with 10 mM sodium hypofluorite (flow 

rate 20 µL/h), and then separated on an Acclaim PepMap™ RSLC C18 column (75 µm × 50 

cm, PN 164942, Thermo Fisher Scientific) with an increasing acetonitrile gradient of 2-35% 

in 0. 1% formic acid (400 nL/min flow rate, 10-800 bar pressure range) for 90 min while the 

column was maintained at 60 °C. The released charged peptides were detected by a tandem 

mass spectrometer using a full mass scan (150-2200 m/z) with a resolution of 50,000 FWHM. 

The autoMS/MS InsantExpertise was used to select peaks for fragmentation by collision-

induced dissociation. Raw MS/MS spectra obtained were converted to Mascot generic files 

(.mgf) for amino acid sequences using ProteoWizard software (48) and used to search the 

human Swiss-Prot database using the Mascot search engine (version 2.4, MatrixScience Inc. 

Boston, USA). The search parameters were set as following (I) A significance threshold of p 

< 0.05; (II) proteolytic enzyme is trypsin; (III) a maximum of 1 missed cleavage; (IV) 10 ppm 

peptide tolerance; (V) peptide charges of 2+, 3+ or 4+; (VI) oxidation allowed as variable 

modification; (VII) 0.8 Da MS/MS tolerance; (VIII) a MOWSE score >13. MOWSE (for 

MOlecular Weight SEarch) is a method for identifying proteins from the molecular weight of 

peptides created by proteolytic digestion and measured with mass spectrometry (49). The 

probability-based MOWSE score formed the basis for the development of Mascot, a 

proprietary software for identifying proteins from mass spectrometry data. the results of 



18 
 

 

 

Mascot were exported as .csv files (Table S2: LC-MS reference list of ovarian cancer tissue 

(46) and Table S4: Protein identification by LC-MS of neuroblastoma whole tissue section 

(22)). To match the m/z values of MALDI-MSI to the peptides identified by LC-MS/MS, an 

EXCEL macro was developed in-house (File S1 (22)). This macro was applied taking into 

account the parameters previously described (50). Briefly, comparison of m/z values 

between MALDI-MSI and LC-MS/MS required the identification of >1 peptide (mass 

differences < 0.3 Da). Only peptides with the smallest mass difference in the mass window 

and a correlation ratio ≥ 0.30 were counted as matches. Peptides with the highest MOWSE 

score and the smallest mass difference between MALDI-MSI and LC-MS data were accepted 

as correctly identified.” (Published by Wu et al., Cancers, 2021) (22) 

3.4 MALDI-MSI data processing for statistical analyses 

3.4.1 Data Processing of the Project Epithelial Ovarian Cancer (46) 

“The raw MALDI-MSI data were imported into the SCiLS Lab software version 2015b Pro 

(Bruker Daltonik GmbH) following settings preserving the total ion count (TIC) and 

convolution baseline removal with width of 20. All datasets were simultaneously pre-

processed to ensure better comparability between sample sets. An attribute table was built 

for sample number, patient age, tumor FIGO stage, tumor cell-rich regions and whether the 

patient experienced disease recurrence. Attribute were used to divide a dataset into 

independent datasets from different spatial spectral regions in tissue sections, or samples 

with different tumor or patient characteristics for analysis. A standard segmentation pipeline 

was performed for peak finding and alignment in maximal interval processing mode with TIC 

normalization, medium noise reduction and no smoothing (Sigma: 0.75).” (51, 52) (Published 

by Kulbe et al, Cancers, 2020) (46) 

3.4.2 Data Processing of the Project Neuroblastoma 

“The raw MALDI-MSI data were imported into SCiLS Lab software version 2019c Pro (Bruker 

Daltonik GmbH) using settings to retain total ion counts (TIC) and not remove baselines and 

converted into SCiLS base data .sbd files and .slx files. An Attribute table was built for sample 

number, tumor cell-rich area, tumor INSS stage, MYCN amplification status in diagnostic 
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tumor sample, or risk group definition, and patient age, sex and whether the patient 

experienced disease recurrence. Attributes were used to divide a dataset into separate 

datasets from different spatial spectral regions in tissue sections, or samples with different 

tumor or patient characteristics, for analysis. A standard segmentation pipeline using TIC 

normalization, moderate noise reduction and no smoothing (Sigma: 0.75) in maximum 

interval processing mode was performed for Peak finding and alignment with an interval 

width of 0.3 Da (51, 52).” (Published by Wu et al., Cancers, 2021) (22) 

3.5 Statistical Analysis 

3.5.1 Statistical Analysis of The Project Epithelial Ovarian Cancer (46) 

“Peaks were selected using the Orthogonal Matching Pursuit (OMP) algorithm (53). Top-

down segmentation was performed using K-means clustering, interval width of ±0.156 Da, 

mean interval processing and medium smoothing strength (51, 52).Two methods based on 

different principles were used: an unsupervised method, probabilistic latent semantic 

analysis (pLSA) to discriminate the two groups, and another supervised method, receiver 

operating characteristic (ROC) analysis, was used to detect characteristic peptide values.” 

(Published by Kulbe et al, Cancers, 2020) (46) The approach pLSA was applied to the whole 

MALDI-MSI dataset for definition of discriminative molecular features. The parameters were 

set such as interval width of 0.156 Da, single spectra and deterministic initialization (54). The 

approach ROC was used to assess all peaks (m/z values) within tumor cell-rich regions to 

discriminate recurrent and non-recurrent disease groups. 1500 spectra were randomly 

selected from each group, because the number of spectra from the participating group 

should be approximately same. “For those peaks with an AUC (the area under the ROC 

curve) >0.65 or <0.35, a univariate hypothesis test (Wilcoxon rank sum test) was used to test 

the statistical significance of m/z values. Here we considered the peaks with AUC >0.7 or 

<0.3 (p<0.001) as potential markers for predicting disease recurrence. All figures were 

created using SCiLS Lab software (Bruker Daltonik, Germany) and the R packages "ggplot2" 

and "ggbiplot".” (Published by Kulbe et al, Cancers, 2020) (46) 
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3.5.2 Statistical Analysis -Neuroblastoma 

“Top-down segmentation using k-means cluster analysis was performed on the selected 

MALDI-MSI datasets from tissue sections and additionally only from regions with >80% 

tumor cells, as previously described (53), to define peptide signatures. Both analyses used 

settings for interval width of 0.3 Da, including all individual spectra, medium noise reduction 

and correlation distance. Discriminating m/z values from tumor cell-rich regions were 

identified using supervised ROC analysis on the selected datasets from tissue regions 

with >80% tumor cells. The AUC values vary between 0 and 1, where values close to 0 and 

1 indicates peptides to be discriminatory and 0.5 indicates no discriminatory value. 35 000 

m/z values were randomly selected per group. For those peptides with an AUC >0.7 or <0.3, 

an univariate hypothesis test (Wilcoxon rank sum test) was used to test the statistical 

significance of the m/z values. Peptides with p-values < 0.001 and a peak correlation ratio 

≥0.30 were selected as candidate markers. Supervised principal component analysis (PCA) 

was performed to define characteristic peptide signatures differentiating tumor regions 

with >80% tumor cell content from high-risk or other risk groups. The data were scaled to 

PCA in a level scaling model. Only m/z values with AUC >0.8 or <0.2 and p <0.001 were 

used as peak intervals for PCA using settings: five components, interval width of ±0.3 Da 

maximum interval treatment mode, normalization to total ion number, and no noise reduction. 

ROC analysis was also used in validation experiments to identify discriminative m/z values 

(defined in data sets of whole-section) using MALDI-MSI data (2500 m/z values randomly 

selected per group) from arrayed tumor cores. The Wilcoxon rank sum test was used to test 

the statistical significance of the m/z values. Peptides with significant differences (p-value < 

0.001) in the Wilcoxon test with a peak correlation ratio ≥0.30 were selected as candidate 

markers (significant correlations p < 0.05; Pearson's correlation analysis (55). All figures 

were created using the SCiLS Lab software (Bruker Daltonik GmbH).” (Published by Wu et 

al., Cancers, 2021) (22) 

3.6 Tissue Immunohistochemistry  

“FFPE tissue sections of neuroblastoma (whole sections) were dewaxed and subjected to a 

heat-induced epitope retrieval step. Endogenous peroxidase was blocked by hydrogen 
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peroxide prior to incubation with a monoclonal antibody against human CRMP1 (EP14521, 

Abcam, UK), followed by incubation with EnVision+ HRP-labeled polymer (Agilent 

Technologies Inc., USA) and visualization using the OPAL system (Akoya Biosciences Inc., 

USA) according to manufacturer’s instructions. After protein inactivation, sections were 

incubated with a polyclonal antibody against human AHNAK (PA5-53890, Invitrogen, 

Thermo Fisher Scientific), followed by incubation with the EnVision+ polymer (Agilent 

Technologies Inc., USA) and visualization using the OPAL system. Nuclei were stained with 

4′,6-diamidine-2′-phenylindole dihydrochloride (DAPI; Merck KGaA, Germany) and slides 

were mounted in Fluoromount G (Southern Biotech, USA). Multispectral images were 

acquired using a Vectra® 3 imaging system (Akoya Biosciences Inc.).” (Published by Wu et 

al., Cancers, 2021) (22) 
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4 Results 

4.1 Results from MALDI-MSI Data of Epithelial Ovarian Cancer 

4.1.1 Discriminative Peptide Signatures for identification of different patient groups 

In this retrospective study, the primary tumor tissue cores of early-stage HGSOC patients 

were arrayed in a recipient FFPE block and categorized as a recurrent disease (RD) (n=4) 

or non-recurrent disease (non-RD) (n=6) groups. MALDI-MSI data yielded 506 aligned m/z 

values in a mass range between m/z 600 and 3000 (Table S1, (46)). The unsupervised data 

analysis approach probabilistic latent semantic analysis (pLSA) was applied in the whole 

dataset to discriminate different patient groups. However, a subclass from the non-RD group 

was detected, which presented an individual pLSA component (Figure 1-A). The tissue 

samples of the subclass group were verified by an experienced gynecological pathologist 

that both did not match the criteria of HGSOC: one showed a mutated pattern of p53 and 

high expression of CD56 and synaptophysin via previous immunohistological staining, unlike 

typical HGSOC characters. Additionally, its morphological features indicated most likely an 

undifferentiated non-small cell neuroendocrine carcinoma (NSCNEC) of the ovary. Another 

was re-classified as pT2cG3 instead of HGSOC at early-stage. Therefore, these two 

exceptional cases were excluded for further analysis. 

 

Figure 1: Discrimination of molecular signatures for the groups of HGSOC patients via probabilistic latent 
semantic analysis (pLSA). (A) Score plots of the first three components from MALDI-MSI spectra of primary 
tumors from patients without (- RD, in blue, n=4), recurrent disease (+ RD, in red, n=4) and a subclass (in 
yellow, n=2) are shown. (B) Score plots of the first three components from IMS spectra of primary tumors from 
patients without (- RD, in blue, n=4), and recurrent disease (+ RD, in red, n=4) are shown. (Adapted from 
publication Kulbe et al., Cancers, 2020) (46) 

 



23 
 

 

 

Furthermore, the tumor cell-rich region and microenvironment region of each tumor core 

tissue were separately evaluated using the software SCiLS Lab. Following an expertise 

annotation, MALDI-MSI of tumor cell-rich regions data yielded 612 m/z values in a mass 

range between m/z 800 and 3.500. To explore most discriminative peptide signatures to 

discriminate between RD and non-RD HGSOC patients, probabilistic latent semantic 

analysis (pLSA) was applied to the MALDI-MSI data of tumor cell-rich regions. The first three 

components show a clear difference between RD and non-RD groups in a score plots image. 

(Figure 1-B) This finding demonstrates that this unsupervised statistical approach is able to 

use MALDI-MSI data from tumor cell-rich regions to determine potentially peptide signatures 

for discriminating both distinct patient groups. 

4.1.2 Identification of Discriminative Proteins from MALDI-MSI primary data with 
complementary nano-liquid chromatography electrospray ionization tandem 
mass spectrometry 

A supervised statistical analysis, receiver operating characteristic (ROC) was applied to the 

612 aligned m/z values from tumor cell-rich regions from RD and non-RD patient groups. 

This approach follows a paired comparison strategy to find the most discriminative peptide 

values (m/z values) between two participant groups. The ROC analysis resulted in 151 

peptide values that were able to discriminate between patients with RD and non-RD (AUC > 

0.6 or < 0.4; p < 0.01; Table S1(46)). “From these, we depict three peptides with the strongest 

discriminatory values in Figure 2 (46). Two peptides (m/z values 840.6 Da, 1138.5 Da) 

demonstrate significantly higher intensity distributions and one peptide with m/z value 1631.8 

Da demonstrates significantly lower intensity distribution in tumor cores from RD patient 

group. To identify the proteins corresponding to the discriminative peptide values, we 

performed a bottom-up nano-liquid chromatography electrospray ionization tandem mass 

spectrometry (nLC-ESI-MS/MS) approach in an adjacent tissue section. The analysis 

assigned 49 of the 506 m/z values (Table S1 (46)), within 18 discriminative m/z values could 

be assigned to 13 proteins (AUC > 0.6 or AUC < 0.4, p < 0.001) (Table 7 (46)).” (Published 

by Kulbe et al, Cancers, 2020) (46) Two peptides at least from proteins, KRT9, COL1A2 and 

ACTB were significantly higher expressed in RD patient group, but other proteins, CALD1, 
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APOA1, TUBB, HIST1H2BK, HIST1H4A and LMA (only single peptide) were higher 

expressed in non-RD patient group. 

 
Figure 2: Exemplary representative cases for characteristic peptides for group of patients with disease 
recurrence and no recurrence discriminated via individual peak mass spectra intensity and spatial peak 
distribution. (A) The peptides 840.6 Da and 1138.5 Da show significantly higher spatial intensities (area under 
the curve (AUC) > 0.6; p < 0.001) in patients with recurrent disease (+RD) than patients without recurrence 
(−RD). (B) The peptide 1631.8 Da, as an example, exhibited significantly higher intensities (AUC < 0.4; p < 
0.001) in no recurrence group. (Adapted from publication Kulbe et al., Cancers, 2020) (46)  

Table 7: Receiver operating characteristic (ROC) curve analysis reveals a prognostic protein signature for 
early-stage HGSOC. Significantly differentially expressed proteins in primary tumors of patients with recurrent 
compared with no-recurrent disease are listed (overexpressed, AUC values > 0.6, and underrepresented < 0.4, 
p < 0.0001). (Adapted from publication Kulbe et al., Cancers, 2020) (46) 

Centroid 
[m/z] 

IMS Mr 
[m/z] 
[Da] 

Tumor+R
D 

VS -RD 
(AUC) 

LC-MS 
Mr [Da] ∆ [Da] Ascension Protein HGNC 

Symbol 

2705.026 2704.0181 0.7547 2704.1538 0.1358 K1C9_HUMAN Keratin, type I cytoskeletal 9 KRT9 

1791.698 1790.6901 0.6250 1790.7204 0.0304 K1C9_HUMAN Keratin, type I cytoskeletal 9 KRT9 

644.336 643.3281 0.7470 643.3653 0.0373 ACTB_HUMAN Actin, cytoplasmic 1 ACTB 

840.564 839.5561 0.7407 839.4613 0.0947 CO1A2_HUMAN Collagen alpha-2(I) chain COL1A2 

868.467 867.4591 0.7331 867.4563 0.0028 CO1A2_HUMAN Collagen alpha-2(I) chain COL1A2 

2027.831 2026.8231 0.7008 2026.0093 0.8138 CO1A2_HUMAN Collagen alpha-2(I) chain COL1A2 

1562.765 1561.7571 0.6930 1561.7849 0.0278 CO1A2_HUMAN Collagen alpha-2(I) chain COL1A2 

1223.417 1222.4091 0.6262 1222.6054 0.1964 CO1A2_HUMAN Collagen alpha-2(I) chain COL1A2 

700.444 699.4361 0.6388 699.4643 0.0282 RL37A_HUMAN 60S ribosomal protein L37a RPL37A 
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1790.797 1789.7891 0.6253 1789.8846 0.0956 ACTB_HUMAN Actin, cytoplasmic 1 ACTB 

1743.691 1742.6831 0.6055 1742.8120 0.1290 H2B1N_HUMAN Histone H2B type 1-N HIST1H2BN 

1550.764 1549.7561 0.6016 1549.8100 0.0540 ANXA1_HUMAN Annexin A1 ANXA1 

858.566 857.5581 0.3975 857.4607 0.0974 CALD1_HUMAN Caldesmon CALD1 

1157.708 1156.7001 0.3782 1156.6200 0.0800 APOA1_HUMAN Apolipoprotein A-I APOA1 

1631.775 1630.7671 0.3682 1630.8236 0.0566 TBB5_HUMAN Tubulin beta chain TUBB 

1751.792 1750.7841 0.3554 1750.0353 0.7488 H2B1K_HUMAN Histone H2B type 1-K HIST1H2BK 

1055.394 1054.3861 0.3460 1054.5196 0.1335 H4_HUMAN Histone H4 HIST1H4A 

1752.992 1751.9841 0.3159 1751.8551 0.1290 LMNA_HUMAN Prelamin-A/C LMNA 

 

4.1.3 Relevance between Patients with RD and between Patients without RD 

“The analysis was extended to apply the peptide signature (discriminant m/z values) to three 

additional patients with early-stage high-grade endometriosis ovarian cancer (HGEC), two 

of whom were RD; one was non-RD and showed similar peptide intensities in the sample of 

HGSOC patients. A principal component analysis (PCA) was performed to superimpose the 

effects of covariates onto the principal component space (Figure 3 (46)). PCA confirmed a 

closer relevance between RD patients and non-RD patients. The inclusion of three patients 

with early HGSC showed a similar relevance. Variable markers were clustered in two groups, 

indicating the variables of interest. The higher associated group peptides, 1223.4, 1790.8, 

1550.8 and 2705.0 Da, concentrate in the RD patient group, but another peptide, 1631.8 Da 

is partial to the non-RD patient group.” (Published by Kulbe et al, Cancers, 2020) (46) 
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Figure 3: A biplot showing included eight samples of early-stage HGSOC patients as points. Additionally, three 
patients with high-grade endometrioid ovarian cancer (HGEC) were included in the analysis and marked with 
diamonds. Biplot axes indicate the influence of each peptide in the principal component space. The principal 
component analysis (PCA) shows a discrimination of patients with (+RD) and without recurrent disease (-RD). 
(Adapted from publication Kulbe et al., Cancers, 2020) (46) 

4.2 Results from MALDI-MSI Data of Neuroblastoma 

4.2.1 Discriminative Peptide Signatures for identifying Different Tumor Features 

“Here, we assessed the technical feasibility of MALDI-MSI to identify potentially 

discriminatory protein signatures from formalin-fixed, paraffin-embedded (FFPE) tissue 

sections of more aggressive neuroblastomas (high risk). Tissue samples were diagnostic 

biopsies from primary neuroblastoma classified as high risk (n = 5) or other risk groups (low 

or moderate risk, n = 4). Peptide signatures extracted from the analyzed tissue samples 

yielded 501 aligned m/z values in the mass range m/z 800-3200. Neuroblastoma cell-rich 

tumor regions yielded 397 aligned m/z values (Table S1 (22)). The MALDI-MSI data from 

tissue sections were characterized using bisecting k-means clustering, an unsupervised 

multivariate segmentation analysis, to determine the peptide signature of different tissue 

regions. The segmentation analysis created two clusters, shown as segmentation maps 

(Figure 4), that corresponded well to tissue regions in the tumor that were either tumor cells 

rich (>80%) or poor (defined by a reference pathologist). Thus, peptide signatures obtained 
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from MALDI-MSI data can directly distinguish tumor regions with high tumor cell content from 

those with <80% tumor cell content from FFPE tissue sections. To determine whether 

signatures could be defined to distinguish high risk groups from other risk groups, we 

performed the same segmentation analysis across only those regions with >80% tumor cell 

content as defined by a pathologist. Unsupervised segmentation analysis of m/z values for 

these regions resulted in three segmentation groups with different peptide signatures in high-

risk tumors, (contribution percentage of each peptide signature to the tumor cell-rich regions 

in Table S2 (22)), but only one segmentation group was classified as low risk in 

neuroblastoma (Figure 4). These data illustrate for the first time at the protein level the 

molecular intratumoral heterogeneity of high-risk tumors. Unsupervised clustering allows the 

extraction of peptide signatures from MALDI-MSI data, which can correctly identify tumor 

cell-rich regions in neuroblastoma and distinguish high-risk neuroblastomas from other risk 

groups.” (Published by Wu et al., Cancers, 2021) (22) 

 
Figure 4: Exemplary cases for MALDI imaging identifying high-risk neuroblastomas by heterogeneous peptide 
signatures in tumor cell-rich regions. Sections from primary neuroblastomas with high or other risk 
classifications are shown with hematoxylin and eosin (H&E) staining for tissue section orientation in 
segmentation maps of MALDI-MSI analysis. Segments (indicated by different colors) represent different 
proteomic clusters generated by bisecting k-means clustering. Black lines surround tumor areas with >80% 
tumor cell content (annotated by the reference pathologist). Signatures derived from segmentation clustering 
across the whole tissue section are shown in the middle column and peptide signatures derived only across 
the tumor cell-rich areas in the sections shown on the right. Colors represent the same proteomic clusters in 
the 2 images in the middle column and the 2 images in the right column, but not between the middle and right 
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images. (22) Nine representative cases of nine total cases are shown. (Adapted from publication Wu et al., 
Cancers, 2021) (22) 

 

“Univariate analysis of MALDI-MSI data has the potential to determine which single peptides 

are most discriminatory for neuroblastoma tissues from different risk groups. We performed 

ROC analysis on a total of 397 aligned m/z peaks in tumor cell-rich regions from the HR and 

non-HR neuroblastoma groups. The different spatial peptide intensity distributions in tissue 

samples from the two risk groups determined the discriminatory power of individual peptides. 

The Wilcoxon rank sum test was applied to the 397 aligned m/z peaks, yielding 206 

statistically significant m/z values (AUC values >0.8 or <0.2; p<0.001). From these results, 

we show in Figure 5 the five peptides with the most potent discriminatory value. In the tumor 

cell-enriched region of high-risk neuroblastoma tissue sections, three peptides (m/z values: 

1707.68, 1775.79 and 1832.79 Da) had a significantly higher intensity distribution, and two 

peptides (m/z values: 766.48 and 1178.73 Da) had a significantly lower intensity distribution. 

To explore the potential of the most discriminatory peptides in the peptide signatures to 

distinguish HR groups from other risk groups, PCA was performed on 206 statistically 

significant m/z values (AUC values >0.8 or <0.2; p<0.001). Principle component 1 (PC-1) 

primarily captured differences within tumor cell-rich regions across risk groups and showed 

an increased intensity distribution of tumor cell-rich regions in HR neuroblastoma (Figure 5). 

As the first principal component explained 62% of the variance (Figure S2), these findings 

suggest that both unsupervised and supervised statistical methods using MAL-DI-MSI data 

from neuroblastoma tissue sections can provide a discriminatory peptide signature for the 

identification of HR or other risks neuroblastomas.” (Published by Wu et al., Cancers, 2021) 

(22) 
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Figure 5: Discriminative peptide signatures in tumor cell-rich regions for discrimination between high-risk (HR) 
and other risks (nHR) groups (n=9). Based on MALDI-MSI data, ROC analysis resulted in significantly 
discriminative m/z values, whose differential ion intensity distributions were depicted in tumor cell-rich regions 
of HR and nHR neuroblastoma tissue sections. Relative peptide expression was scaled in the colour bar. The 
m/z values with the highest area under the curve (AUC) values (AUC>0.85, p < 0.001) were shown in the top 
row and the m/z values with the lowest AUC values (AUC < 0.3, p < 0.001) were shown in the bottom row. 
Black lines surround tumor areas with >80% tumor cell content (annotated by the reference pathologist). 
Haematoxylin and eosin (H&E) staining in sections is shown for orientation. Based on MALDI-MSI data PCA 
analysis was applied to statistically significant m/z values obtained from ROC analysis to explore potential 
peptide signatures for discriminating HR and nHR neuroblastoma cell-rich regions. The ion intensity of the first 
principal component (PC-1) is scaled in HR and nHR neuroblastoma tissue sections. PCA variance plot 
indicates that 62% of variance is explained by PC-1. (Adapted from publication Wu et al., Cancers, 2021) (22) 

4.2.2 Discriminative Proteins were identified from Neuroblastoma Tissue Sections 
based on MALDI-MSI Data by using nLC-ESI-MS/MS  

"We performed an approach, nLC-ESI-MS/MS, in adjacent tissue sections to identify the 

proteins corresponding to the discriminatory peptide values. This analysis assigned 147 of 
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the 206 m/z values shown in the ROC analysis (Table S3 (Wu, Hundsdoerfer et al. 2021)) 

(AUC>0.7 or AUC<0.3, p<0.001). According to the guidelines, proteins corresponding to m/z 

values were correctly identified when the validation method (in this case nLC-ESI-MS/MS; 

Supplementary Table S4 (22)) identified at least two peptides that were detected by MALDI-

MSI from the same protein with similar intensity of spatial difference and correlated within 

the same tissue region that was evaluated by correlation coefficient (50). These criteria were 

met in eight proteins that corresponded to 18 MALDI-MSI m/z values (Table 8 (22)). The 

differential intensity distributions of m/z values for six of these eight proteins (14 m/z values) 

were validated using MALDI-MSI data from 10 array cores from neuroblastoma tissue 

regions with >80% tumor cell content. Two peptides (m/z values are shown in Table S3 (22)) 

from these proteins, COL1A2, COL6A3, HSPA5, HIST1H2BC, KRT9, AHNAK and NID2, 

expressed significantly higher in the tumor cell-rich region of high-risk neuroblastoma.” 

(Published by Wu et al., Cancers, 2021) (22) 

“This group was enriched for extracellular matrix components (COL1A2, COL6A3 and NID2) 

and proteins associated with or regulating cytoskeletal proteins (AHNAK) and a cytoskeletal 

protein (KRT9). The two peptides assigned to CRMP1 were significantly less expressed in 

tumor cell-rich regions of high-risk neuroblastoma than other risk group. We selected two 

representative proteins from the identified proteins and validated them in adjacent 

neuroblastoma tissue sections using immunohistochemistry. Expression of AHNAK was 

higher in the tumor cell-rich region of high-risk neuroblastoma. In contrast, CRMP1 

expression was higher in other risk neuroblastoma (Figure 6 (22)). Our data suggest that the 

1832.79 m/z peak obtained by MALDI-MSI in the tumor cell-enriched region of high-risk 

neuroblastoma is a tryptic peptide from AHNAK, an approximately 700 kD scaffolding protein 

that has not been previously published in the context of neuroblastoma. It was initially 

reported relating to neuroblast differentiation that was reviewed by Davis et al. in 2014 (56), 

but recent studies have also pointed to its important role in promoting cell proliferation, 

migration, and epithelial-mesenchymal transition (EMT), leading to short disease-free 

survival time and poor outcomes in aggressive cancers, including pancreatic ductal 

adenocarcinoma (57). Similarly, the relatively higher intensity of 922.50 m/z peak in MALDI-

MSI of other risk neuroblastoma is a tryptic peptide from CRMP1, a marker for neuronal 
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differentiation associated with neuronal growth and guidance. It has previously been used in 

mRNA panels for detecting minimal residual disease of neuroblastoma and tumor initiation 

cells (58-61). These findings confirmed the potential to correctly identify 18 tryptic peptides 

obtained by MALDI-MSI from FFPE neuroblastoma tissue sections corresponding to the 

eight proteins and validated AHNAK and CRMP1 as discriminatory protein markers with 

potentially interesting and plausible biological roles.” (Published by Wu et al., Cancers, 2021) 

(22) 

Table 8: Differential intensity distributions of peptides (MALDI-MSI) and their corresponding proteins in tissue 
sections from neuroblastomas in high or other risk groups. (Adapted from publication Wu et al., Cancers, 2021) 
(22) 

MALDI-
MSI m/z 

value 

ROC [AUC] 
for HR 
versus 
nHR* 

ROC 
[AUC] 

HR/nHR 
TMA † 

Significa
nce 

rating-
WRS 

LC-
MS/MS 

[Mr + H
+
 

cal.] 

MOWSE 
Scores§ 

Deviation  
[Da] 

Correlation 
Coefficient  

HGNC 
Symbol 

Protein 

868.49 0.85 0.73 <0.001 868.46 48.1 0.03 0.38 
COL1A2 Collagen type I alpha 2 chain 1562.77 0.91 0.74 <0.001 1562.79 127.0 0.02 0.64 

2026.91 0.86 0.73 <0.001 2027.02 65.8 0.11 0.36 
1459.85 0.72 0.66 <0.001 1459.86 40.5 0.01 0.38 

COL6A3 Collagen type VI alpha 3 chain 
2056.92 0.88 0.63 <0.001 2057.04 59.4 0.12 0.32 
766.48 0.08 0.28 <0.001 766.46 21.7 0.02 0.44 

CRMP1 Collapsin response mediator protein 1 
922.50 0.14 0.34 <0.001 922.51 22.3 0.01 0.40 
1833.99 0.87 0.67 <0.001 1833.91 65.1 0.08 0.40 

HSPA5 
Heat shock protein family A (Hsp70) 

member 5 2042.22 0.85 0.73 <0.001 2042.05 25.6 0.17 0.32 
1477.86 0.90 0.75 <0.001 1477.79 28.1 0.07 0.41 

HIST1H2BC H2B clustered histone 4 1743.68 0.82 0.58 <0.001 1743.82 96.2 0.14 0.58 
1775.79 0.90 0.70 <0.001 1775.81 123.0 0.02 0.55 
1586.77 0.90 0.74 <0.001 1586.77 89.4 0.00 0.47 KRT9 Keratin 9 
2705.28 0.86 0.78 <0.001 2705.16 67.9 0.12 0.44   

1267.50 0.87 0.74 <0.001 1267.65 63.9 0.15 0.38 
AHNAK AHNAK nucleoprotein 

1832.79 0.92 0.70 <0.001 1832.88 44.7 0.09 0.39 
1706.78 0.87 0.74 <0.001 1706.78 31.2 0.00 0.31 

NID2 Nidogen 2 
2455.36 0.79 0.72 <0.001 2455.17 34.9 0.19 0.33 

* Calculated from data obtained from regions in whole tissue sections with >80% tumor cell content.  

† TMA = tissue microarray (arrayed neuroblastoma tissue cores from areas with >80% cell content).  

§ MOlecular Weight Search score (49) 
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Figure 6: Validation of two discriminative protein markers for neuroblastoma risk in tissue sections. Two 
exemplary representative samples each from high-risk (HR) and other risk groups (nHR) neuroblastoma were 
shown. MALDI-MSI ion maps for one peptide (m/z 1832.79 Da) assigned to AHNAK and one peptide (m/z 
922.50 Da) assigned to CRMP1 are shown next to the corresponding sections stained with haematoxylin and 
eosin (H&E) for orientation. Black lines border areas included >80% tumor cell content. Immunohistochemical 
(IHC) detection of AHNAK and CRMP1 is shown for the regions surrounded by the yellow squares in the 
expanded image (400× magnification). (Adapted from publication Wu et al., Cancers, 2021) (22) 

“In summary, MALDI-MSI is feasible for investigating the molecular features in histologically 

homogenous areas of high-risk neuroblastoma. Our method exposed the existing intra-

heterogeneity of tumor cells and identified discriminative peptide signatures for high-risk and 

other risk neuroblastoma. Eighteen peptides of the discriminatory peptides could be 

assigned to eight proteins, and then the differential expression of AHNAK and CRMP1 was 

verified in tissue sections using immunohistochemistry. AHNAK showed intense staining in 

tumor cell-rich areas of high-risk neuroblastoma compared to other risk groups with slight 

staining. However, staining for CRMP1 shows mostly intense in tumor cell-rich regions of 

other risk-classified neuroblastomas and slight in the high-risk group. A further validation 

analysis for their biological roles in neuroblastoma is necessary.” (Published by Wu et al., 

Cancers, 2021) (22) 
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5 Discussion 

Tumors do not seem a simple mass of invasive cancer cells, and they are actually a mixture 

of different types and structures of cancer cells, including malignant cells, extracellular matrix, 

microenvironmental factors, blood vessels and cellular immune components. In addition, the 

distribution of these cells varies in density and protein expression within tumor tissue. (62) 

This diversity of cellular and molecular composition leads to intratumor heterogeneity and is 

an essential factor involved in treatment failure, drug resistance and recurrence (63). Many 

researchers have applied LC-MS based proteomics approach to tumor fluid and tissue 

homogenates to explore cancer biomarkers for diagnostic and therapeutic purposes. 

Previously, 51 proteins in ovarian tumor fluid have been identified by LC-MS/MS associated 

with the invasive state of malignant cells (64) and a large scale up-or down-regulated 

proteins of neuroblastomas defined by the same method relate in high-risk disease or tumor 

regression (65, 66). However, information about protein alterations cannot be correlated to 

the corresponding morphological structures through this method. In this dissertation, we 

have chosen another mass spectrometric technique, MALDI-MSI, to decipher 

comprehensive proteomic information of tumor tissue, including composition, location, and 

relative quantity. This procedure needs neither labels nor prior knowledge of molecular 

targets following relatively automated and straightforward sample preparation. The proteome 

screening analysis is performed in full equivalence covering high tumor cell-rich regions and 

stroma (microenvironment) on the surface of tumor tissue. A large number of investigations 

confirmed that neighboring cells and/or proteomic changes in the tumor stroma could affect 

tumor transformation, progress, and metastases (67). Therefore, deep proteomic profiling in 

tumor stroma is just as crucial to understanding tumorigenesis and growth as in cancer cells 

themselves. For example, other cancer researchers have reported that “AHNAK was also 

occasionally upregulated in tumor stroma. Because of the barriers posed by natural 

structures such as connective tissue, fibroblasts, immune cells and vasculature, the common 

mass spectrometry methods are limited in their ability to reveal the molecular composition of 

the stromal compartment. Nevertheless, MALDI-MSI can map protein changes in both 

regions, clearly demonstrating the intercellular interactions between malignant cancer cells 

and their environment. This ability provides new insights into understanding neuroblastoma 
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tumorigenesis and progression.” (Published by Wu et al., Cancers, 2021) (22) Another 

advantage of this technique is that the tissue under the MALDI-matrix layer (about 3-4 µm) 

is intact. After the removal, the same tissue section could be used for further studies, such 

as chemical staining for morphological assessment, immunochemical analysis, 

transcriptomics profiling and sequencing technology (68, 69). The evaluation of analysis 

combinations offers more precise and comprehensive molecular profiles. Additionally, some 

of them are already utilized as standard clinicopathological assessments. Integration of the 

MALDI-MSI technique could not only act as a method of cross-validation but also enhance 

precision cancer medicine learning. Just as our data identified a higher intensity distribution 

of CRMP1 in low- and intermediate-risk neuroblastomas. This same finding is well reported 

that CRMP1 has been used as a gene marker for prognosis and diagnosis in neuroblastoma 

gene expression panels (70).  

Due to cellular and molecular heterogeneous distribution across a tumor tissue section, the 

accuracy and reproducibility of TMAs application in cancer research should be questioned, 

although this technique has a tremendous advantage when applied to large amounts of 

samples within a short investigation time (42). We applied MALDI-MSI data derived from 

neuroblastoma TMA to validate discriminative peptide values obtained from whole tissue 

sections and found that “not all peptides detected by MALDI-MSI in whole sections could be 

detected in cores of TMA (Figure 7, (22))” (Published by Wu et al., Cancers, 2021) (22). This 

suggests that the detection of tumor heterogeneity using tissue microarrays has significant 

limitations compared to MALDI-MSI using whole tissue sections, “a more comprehensive 

and precise, new diagnostic method. The present study emphasizes that the investigation of 

whole tissue sections is a promising way to investigate the molecular heterogeneity of tumors 

directly.” (Published by Wu et al., Cancers, 2021) (22) Different regions of tumor tissue may 

be morphologically homogeneous but contain differences in molecular composition (71, 72).  
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Figure 7: Ion maps of m/z values for CRMP1 and AHNAK in whole neuroblastoma sections and their validation 
in selected cores from the tissue microarray. Intensity distributions of one peptide from CRMP1 (m/z value 766. 
48 Da) and one peptide from AHNAK (m/z value 1832.79 Da) are shown in selected tumor cores from the 
neuroblastoma tissue microarray (upper images) and whole tissue sections (lower images) from 
neuroblastomas designated high-risk (HR) or in other risk groups (nHR). White arrows point out areas of 
heterogenic ion distribution in the whole tumor sections. (Adapted from publication Wu et al., Cancers, 2021) 
(22) 

corresponding to proteins rather than applied MALDI tandem mass spectrometry (MALDI-

MS/MS) for direct identification of protein markers. Firstly, the approach MALDI-MS/MS 

cannot select and fragment all the precursor peaks because of signal depletion in a single 

pixel. Secondly, the major peaks belong to the most abundant proteins, and many peaks 

corresponding to less abundant proteins are not detected due to the ion suppression and the 

complexity of the samples. Moreover, the whole tumor tissue section is too complex, the 

searching database scores would not be sufficient to confirm the protein IDs when 

performing directly region-specific targeted MS/MS (50). Indeed, there are other mass 

spectrometry imaging approaches, such as nano desorption electrospray ionization (DESI) 

mass spectrometry and secondary ion mass spectrometry (SIMS), that offer higher spatial 

resolution and better MS/MS opportunities than MALDI-TOF. However, both methods are 

not well suitable for high-throughput and large cohort clinical investigation due to more lowly 

limited mass range and extreme high time-consuming. Time is an essential factor in the 

methodology proposed for potential clinical use since this must be applied in real-time for 
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disease decisions. Therefore, high-resolution mass spectrometry technologies were not 

considered for the POC study design and would be unsuitable for large-scale imaging 

analysis studies using whole tissue sections or clinical application. Undeniably, the 

presented MALDI-TOF instrument suffers from a mass accuracy that makes it more 

susceptible to false protein assignments. Thus, we have examined the matching between 

“selected m/z values and their source proteins, whether the differential peptide signature 

from biologically feasible proteins in neuroblastoma and validated their differential 

expression in tumor sections using immunohistochemistry.” (Published by Wu et al., Cancers, 

2021) (22) The intensive IHC staining of AHNAK in tumor cell-rich regions of high-risk 

neuroblastoma conforms to disease-related biological plausibility. 

Using MALDI-MSI, we have observed high expression of tryptic peptides from cytoskeleton, 

cytoplasm, cytosol, and extracellular matrix proteins invasive and malignant tumor regions. 

For instance, the primary tumors from early-stage HGSOC patients with recurrence disease 

presented the intense distribution of particular peptides corresponding to Keratin type 1, 

Actin, Cytoplasmic 1 and Collagen alpha-2(I) in tumor cell-rich regions. These peptide values 

indicated strong prognostic potential (AUC > 0.7). “A published reference database of 

MALDI-IMS-derived peptide and protein values (73) can support our findings. The 

expression of collagen production by ovarian cancer cells, including Collagen alpha-2(I), 

Actin and Cytoplasmic 1, could increase drug resistance by inhibiting the penetration of the 

drug into the cancer tissue as well as increase resistance to apoptosis (74)” (Published by 

Kulbe et al, Cancers, 2020) (46) that was also confirmed in MALDI-MSI studies of lung tumor 

biopsies (75). Keratins, the epithelial-predominant members of the intermediate filament 

superfamily, regulates various signaling pathways in cancer cells to influence a series of 

processes in tumor progression (76). Similarly, we identified AHNAK as a marker protein 

highly expressed in tumor cell-rich regions of high-risk neuroblastoma tissue sections. 

AHNAK has not previously been linked to neuroblastoma but is involved in several cancer-

related cellular functions and is listed as “one of six putative cancer genes involved in the 

evolution of nine different cancers in 3000 cancer genomes (77). However, the role of 

AHNAK in cancer appears to be tissue-specific, with other reports pointing to a possible role 

as a tumor suppressor in gliomas (78) and breast cancer (79).” (Published by Wu et al., 
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Cancers, 2021) (22) The reason is maybe that AHNAK is a large protein, which mitigates the 

function of multiprotein complexes by acting as a scaffold to link activities either in the 

nucleus or at the plasma membrane and alters interactivity and intracellular localization 

through its own phosphorylation sites (56).  

A profound understanding of the biological roles of identified discriminative proteins in early-

stage HGSOC and neuroblastomas might improve risk assessment at diagnostics and 

eventually develop new therapeutic strategies, but for it more comprehensive molecular 

characterization supported by transcriptome and DNA analysis and more precise proteomics 

data from micro-dissected malignant tumor areas and adjacent stroma compartments are 

required in future. Furthermore, the identified peptides signature should be validated in a 

larger cohort of patient samples. Generally, this dissertation has confirmed the technical 

feasibility of MALDI-MSI to explore molecular changes on tumor tissues on the protein level, 

to identify new spatially characteristic peptides signature for tumor diagnosing and prognosis 

through the combination with the nLC-ESI-MS/MS.  
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6 Abbreviations 

 

2D two-dimensional 
AUC the area under the curve 
CONC concentration 
DESI nano desorption electrospray ionisation 
EMT epithelial-mesenchymal transition 
EOC epithelial ovarian cancer 
ESI-LC-MS electrospray ionization liquid chromatography mass spectrometry 
FFPE formalin-fixed paraffin embedded 
FIGO international federation of gynaecology and obstetrics 
HCCA α-cyano-4-hydroxycinnamic acid 
HGEC high-grade endometriosis ovarian cancer 
HGSOC high-grade serous ovarian cancer 
HR high-risk 
IHC immunohistochemistry 
LC-MS/MS liquid chromatography tandem mass spectrometry 
MALDI matrix-assisted laser desorption/ionization 
MALDI-MS/MS MALDI tandem mass spectrometry 
MS mass spectrometry 
MSI mass spectrometry imaging 
nHPLC nano high-performance liquid chromatography 
nHR other risk group 

nLC-ESI-MS/MS 
nano-liquid chromatography electrospray ionization tandem mass 
spectrometry 

NSCNEC non-small cell neuroendocrine carcinoma 
PCA principal component analysis 
pLSA probabilistic latent semantic analysis 
POC principal-of-concept 
PTMs post-translational modifications 
ROC receiver operating characteristic analysis 
SIMS secondary ion mass spectrometry 
TIC total ion count 
TMA tissue microarrays 
TOF time of flight 
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