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1 Abstract

English — Cancer is one of the leading causes of death worldwide, within the molecular and
structure complexity of tumors are causal factors for disease progression and treatment
standards. With the development of molecular biological techniques, physicians could use
genetic variation or protein and metabolic expression profile besides histo-morphologicial
evaluation to classify more accurate risk assessment and to guide treatment decisions. The
biomarker-driven personalized therapies might improve clinical care, avoid unnecessary
treatments and reduce the duration and costs for hospital stay. Therefore, there is a strong
demand for more reliable molecular biomarker profiles. In this dissertation, a novel technique
called imaging mass spectrometry (MADLI-MSI) is used to investigate the potential of
spatially resolved peptide signatures (directly from tumor tissue; in situ) for (i) discrimination
of subtypes of serous ovarian cancer (HGSOC) and (ii) risk assessment of neuroblastoma.
Univariate and multivariate static methods were used to determine associated peptide
signatures. Using complementary methods, liquid chromatography-based mass
spectrometry the corresponding proteins to the peptides were identified and verified by
immunohistology. Consequently, peptide signatures were identified to predict disease
recurrence in early-stage HGSOC patients and to distinguish high-risk neuroblastoma
patients from other risk groups. These results suggest that the MALDI-MSI technique is a
promising analytical method that facilitates diagnosis and treatment decision-making. It has
also provided new biological insights into tumor heterogeneity, that could benefit the
development of molecular biomarker profiles. The data of this dissertation have been really
published in Journal “Cancers (MDPI)” 2020 and 2021.

Deutsch — Onkologische Erkrankungen (Krebs) sind weltweit eine der haufigsten
Todesursachen. Die molekulare und strukturelle Komplexitat von Tumoren sind ursachlich
fur die Krankheitsprogression und Therapieanspruch. Mit der Entwicklung von neuen
molekularbiologischen Verfahren konnten Arzte neben der histo-morphologischen
Bewertung auch genetische Variationen oder Protein- und Metabolit-Expressionsprofile
nutzen, um eine genauere Risikobewertung vorzunehmen und die

Behandlungsentscheidung zu treffen. Die personalisierten Therapien kénnen die klinische
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Versorgung verbessern durch Vermeidung unndtiger Behandlungen und verringerte Dauer
und Kosten des Krankenhausaufenthalts. Daher besteht ein starker Bedarf an
zuverlassigeren molekularen Biomarker Profilen. In dieser Dissertation wird ein neuartiges
Verfahren, die sogenannten bildgebenden Massenspektrometrie (MADLI-MSI) eingesetzte
um das Potential von raumlich aufgelosten Peptide-Signaturen (direkt aus dem
Tumorgewebe; in situ) fur (i) die Diskriminierung von Subtypen des serdsen Ovarialkarzinom
(HGSOC) zu untersuchen und (ii) die Risikoabschatzung des Neuroblastomes. Dabei
wurden univariate und multivariate statischer Verfahren eingesetzt, um assoziierten Peptide-
Signaturen zu bestimmen. Mittels komplementarer Verfahren, Flussigkeitschromatographie
basierte Massenspektrometrie wurden die korrespondierenden Proteine zu den Peptiden
identifiziert und Immunhistologisch verifiziert. Folglich wurden Peptidsignaturen zur
Vorhersage des Wiederauftretens der Krankheit bei HGSOC-Patienten im Frihstadium und
zur Unterscheidung von Hochrisiko-Neuroblastom Patienten von anderen Risikogruppen
identifiziert. Diese Ergebnisse deuten darauf hin, dass die MALDI-MSI-Technik eine
vielversprechende Analysemethode ist, die die Diagnose und die Entscheidung Uber die
Behandlung erleichtert. AuRerdem hat sie neue biologische Erkenntnisse Uber die
Heterogenitat des Tumors geliefert, die der Entwicklung von molekularen Biomarker-Profilen
zu Gute kommen kdnnten. Die Daten dieser Dissertation wurden in der Zeitschrift ,Cancers
(MDPI)" 2020 und 2021 veroffentlicht.



2 Introduction

2.1 Frontiers in Cancer research

The diagnosis and therapeutic strategy are always the core cancer care procedure. The
treatment decision must base on a series of diagnostic findings, such as patient characters
like age, BMI value, living style etc., histopathological observations, and biochemical
indicators in urine and blood etc. Following these the patients are often stratified into different
risk groups before treatment decision making. The more precise classification, patient could
better benefit from appropriate therapeutic strategy. This is also the concept of personalized
therapy for cancer patients. This dissertation focuses on risk group stratification of patients
with epithelial ovarian cancer (EOC) and neuroblastoma. For both cancer types there are

unmet medical need for more reliable prediction of disease progression.

Epithelial ovarian cancer (EOC) is one of the most invasive gynecological cancers in the
developed countries (reference statistically as http://seer.cancer.gov) and is commonly
detected at an advanced stage due to a lack of specific symptoms (1). However, 25% of
EOC patients may be diagnosed in the early stage, defined as FIGO stage |-l (International
Federation of Gynecology and Obstetrics). The ICON1 (International Collaborative Ovarian
Neoplasm 1) and ACTION (Adjuvant Chemotherapy In Ovarian Neoplasm) both trials
showed that the efficiency of surgery alone or with platinum-based combinational
chemotherapy was significant in the early stage (2, 3). The patients in the early stage have
a better outcome after treatment, whose 5-year relative survival is between 80-90%.
Nevertheless, a part of early-stage EOC could relapse and causes the death of about 20-
30% of patients (4-6). Chan et al. have confirmed that older age, higher stage and grade,
and malignant cytology predict independently increased risk of recurrence for early-stage
EOC patients (7). In addition, the prognosis is also affected by the histological subtypes with
high-grade serous ovarian cancer (HGSOC) that is the most frequently occurring ovarian
carcinomas (8). Because of limited data, different standards of risk assessment for treatment
decision making and the debate over fertility-sparing surgery for HGSOC patients are still
existing. A preoperative screening method and comprehensive surgical staging for proper
risk assessment can meet this need (9, 10). In this context, one-third of presumed stage |
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ovarian cancers were upstaged due to the findings of dissemination in the peritoneal cavity
(11). These high-risk patients in the early stage, who are defined as FIGO stage | with grade
3, FIGO stage IC, FIGO stage Il or clear cell histological type, can benefit from adjuvant
chemotherapy. After treatment, the relapse rate of EOC patients in FIGO stage IC decrease
more than 60% (12). Thus, it is necessary at diagnosis to discriminate patients with high-risk

disease from low-risk patients leading to further therapeutic strategy.

EOC is not a homogeneous disease. Based on histopathology, immunohistochemistry (IHC)
and molecular genetic analysis, five tumor types are identified (13), their outcome and
survival rate vary widely. Consequently, there is a medical need for biomarkers with high
predictive value for risk of progression and therapy response at individual level in order to
achieve a better benefit/risk/cost ratio. We aimed to prove the putative value of the
application of mass spectrometry-based technology to discover spatial peptide signatures in

this cancer entity.

Neuroblastoma is pediatric cancer with an overall incidence rate in Germany of 1 to 100,000
children under 15 years old (14). It is the most common malignant solid tumor occurring in
infants with a median diagnosed age of 17 months (15). The tumor originates from neural
crest cells of sympathoadrenal lineage, within about 65% of primary tumors that arises in the
adrenal medulla or lumbar sympathetic ganglia and can spread in the whole sympathetic
nervous system (16). Clinical behavior and outcome of this disease are highly diverse: low-
risk tumors have a high possibility of spontaneous regression in all cancers, but high-risk
tumors progress in treatment-refractory death or treatment-resistant recurrence despite
aggressive multimodal therapies (17). Thus, treatment recommendations of neuroblastoma
vary from simply mere observation or accompanying surgical resection alone to an
elaborately therapeutic strategy such as high-dose chemotherapy, irradiation and
immunotherapy (18). A common international staging and risk classification system
(INSS/INRG) has been developed to stratify patients into different risk groups for treatment
recommendation (19, 20). In Europe, patients have been stratified into three treatment risk

groups according to GPOH (Gesellschaft fir Padiatrische Onkologie und Hamatologie)



guidelines described in Table 1 (18). The additional International Neuroblastoma Pathology

Classification (INPC) criterion is exclusively used in the USA (21).

Table 1. “Treatment classification of neuroblastoma patients. INSS: International Neuroblastoma Staging
System; INRG: International Neuroblastoma Risk Group (INRG) Staging System.” (Adapted from publication

Wou. et al. Cancers, 2021) (22)

INgtS / !NRG D;:gﬁ:stis MYCN Status Chromosome 1p Treatment Risk
aging Status Group
(months)
1 not amplified normal Low
amplified High
2 normal Low
not amplified
deletion / imbalance intermediate
amplified High
3 <24 not amplified normal Low
=24 not amplified normal
intermediate
not amplified deletion / imbalance
amplified High
4s / MS <18 not amplified normal Low
amplified High
4/M <18 not amplified intermediate
=18 amplified High

The INSS/INRG stage, MYCN ampilification, chromosome 1p abnormality and age paly an
important role in current disease risk assessment for the ongoing clinical trials in Germany.
MYCN amplification as first identified, clinically relevant molecular marker (23) predicts an
unfavorable outcome. The patients with young age and low stage have mostly favorable
prognosis. However, a recent report from INRG (International Neuroblastoma Risk Group)
revealed that the prognostic strength of MYCN amplification is strongly dependent on the
context of clinical and biological features (24). Except the loss of heterozygosity at
chromosome 1p, 11q and 17q gain the more expression-based prognostic markers in tumor
continue to be further improved at the transcriptomic and genomic levels (25, 26). However,
tumor progression is mainly influenced by tumor cell interactions and the surrounding
microenvironment (27). Knowledge about the impact of high intratumoral heterogeneity and
proteomic features in neuroblastoma on disease progression and treatment response
remains limited (28). Therefore, there is an unmet need for a reliable classification of
8



neuroblastoma risk regarding the tumor microenvironment and inter- and intratumor

heterogeneity.

Spatial molecular signatures based on protein expression could provide a new and helpful
perspective to the current classification of treatment risk for neuroblastoma patients and

potentially more reliably predict disease progression.



2.2 Mass Spectrometry-based Technique for Clinical Proteomics
Profiling
Understanding the pathogenesis and improving therapeutic outcomes are always the
challenges of human medicine. Since the Human Genome Project was completed in 2003,
scientists have entered a new era in understanding and treating diseases. Especially the
development of next-generation sequencing technology enhances discovering genetic
disorders, infectious diseases, and diagnostic markers for cancers. Physicians and
researchers have launched worldwide collaborative efforts to investigate large-scale
analyses of genes in neurological disorders such as the Alzheimer's Disease Sequencing
Project (ADSP), human autoimmune diseases (29) and tumors such as the Cancer Genome
Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) (30). This
cooperation correlated the genomic abnormalities with disease phenotypes and suggested
potential therapeutic targets and novel diagnostic tests. However, genomic disorders often
insufficient in accurately predict proteins alterations and dynamics, which is also regulated
by e.g., alternative splicing and post-translational modifications (PTMs). In fact, these
proteins are effectors involved in cellular processes and signaling and can act as biomarkers
or potential drug targets. Thus, access to protein activities and their interactions in the
context of cancer can provide new insights into tumorigenesis and reveal potential pathways

related to cancer progression (31, 32).

Recently, mass spectrometry (MS)-based proteomics approaches have become the favored
tool for clinical proteomics application, it provides high-throughput, comprehensive and
quantitative proteins inventories of tissue, serum, plasma, urine and cells etc. (33). Within
Matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) are
known for their soft ionization procedure of biomolecules such as peptides and proteins and
mostly utilized for protein analysis. A special application technology is developed from
MALDI-MS for direct tissue analysis, which demonstrates ion imaging of peptides and
proteins with their spatial arrangement in tissue sections (34). Because a bottom-up
proteomics approach is in the latter utilized to identify proteins and their PTMs, the sample

is beforehand digested by endopeptidase trypsin. Then the tissue should be mounted on a
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conductive glass slide and then fixed onto a MALDI target plate. This sample is mixed with
an organic compound that acts as a matrix to facilitate ablation and ionization of analyte of
interest, e.g. peptides in the sample. A UV laser in the mass spectrometer triggers ionization
and desorption of molecules from the tissue section. To realize imaging a sample, the laser
in this process performs a raster over the tissue surface in a pre-defined two-dimensional
(2D) grid. The ionized analytes become protonated and give rise to [M+H]" ions that are
subsequently measured according to their mass-to-charge ratio (m/z). In this study, we use
a time-of-flight analyzer to measure m/z values of ions and generate a complete mass
spectrum at each grid coordinate. Finally, these 2D ion density images/maps present

individual m/z values with their corresponding intensities (35).

The other ESI technique is used in a (hano)LC-ESI-MS/MS system consisting of a nano high-
performance liquid chromatography (nHPLC) device, electrospray ionization (ESI) chamber
and mass spectrometer. Here we use a bottom-up proteomics approach, also known as
shotgun proteomics, which is currently the most popular approach to identify proteins and
their PTMs through analysis of corresponding proteolytic peptides (36). The sample is initially
digested into peptides using proteolytic enzymes, e.g. trypsin. The resulting peptide mixture
follows a sample preparation with a pipette tip filled with C18 media and then is separated
through nHPLC. Subsequently, the sample solution enters the electrospray chamber
maintaining an electric field through a stainless-steel hypodermic needle. At the needle tip,
the surface of the emerging liquid is ionized and dispersed into a fine spray of charged
droplets. Driven by the electric field, the charged droplets flow into the mass spectrometer
via a capillary inlet (37). ESI tends to give multiply charged ions such as [M + nH]"* or [M -
nH]"". “The charged peptides are detected and separated in the first mass analyzer and then
fragmented and measured in the second mass analyzer. Finally, two types of spectra are
collected: MS spectra depict the intensity and m/z for intact peptides; MS/MS spectra shows
that one of the ions detected in the MS spectra is isolated, fragmented and measured in a
high-throughput manner.” (published by Kulyyassov et al., https://biotechlink.org, 3-2018)
(38) “Using a database search engine, peptides are identified by searching their parent-ion

masses and MS/MS spectra against a protein database, where each protein would perform
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an in silico tryptic digest and generate a theoretical spectrum. The best match of
experimental and theoretical spectra then identifies the protein.” (published by Griffiths and
Wang, Chem Soc Rev 38(7): 1882-1896, 2009) (39)

A tumor is formed by many distinct cellular populations rather than a homogeneous cluster
of identical cells. It presents histological, cellular and molecular heterogeneity and these
heterogeneities play an essential role in tumors progression and treatment response (40).
MALDI-MSI technology can take advantage to meet the challenge of tumor heterogeneity
and obtain meaningful data from tissue sections frozen or formalin-fixed paraffin-embedded
(FFPE). The analyzed molecules vary from peptides to lipids, proteins, glycans and even
metabolites. The proteomics profiling on tissue section MALDI-MSI as described before,
generates a peptide intensity map displaying the spatial relative molecule abundance in a
predefined area. The dataset of position-correlated spectra is aligned with an optical image
of the same tissue section (31, 41). Superior to antibody-based and fluorescent protein
fusions spatial proteomics analysis, the priory knowledge of target protein is necessary.
Moreover, the enormous and high-dimensional data derived by MALDI-MSI make automated
computational analysis indispensable. Recently, cancer researchers have used MALDI-MSI
for tumor histotype classification (42) and have identified some proteomic signatures for
diagnostics (43, 44) and prognostic response to treatment (45). Therefore, this technology
can interpret molecular tumor composition while preserving spatial morphology and provide

critical mechanistic insights into tumor heterogeneity and its impact on tumor biology.

In the pilot studies presented in this dissertation, we aimed to investigate feasibility of MALDI-
MSI technology to determine peptide signatures of two different tumor types, high grade
serous ovarian carcinoma (HGSOC) and neuroblastoma, for therapy risk group classification.
These discriminative peptides were identified by nLC-ESI-MS/MS technology. A peptide
signature in each case was identified for predicting disease recurrence of early-stage
HGSOC or for discriminating high-risk neuroblastoma from other risk groups. This finding
could eventually improve fine-tuned risk assessment of clinical management of these

patients.
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3 Methods

3.1 Sample Collection
3.1.1 Epithelial Ovarian Cancer Patient Cohort

“All samples were collected at Charité, Department for Gynaecology at surgery after patients
gave their informed consent and conserved in the local pathology departments as FFPE
tissue blocks. Sample collection was permitted by the local ethics committee of the Charité
Medical University Berlin (AVD-No. 2004-000034) and conducted according to the
Declaration of Helsinki. All patients were of white Caucasian background and received an
accurate staging via laparotomy, including lymph node sampling. An experienced
gynaecological pathologist confirmed the diagnosis of the early stage of the high-grade
serous subtype of EOC. Adjuvant chemotherapy regime was applied to all patients based
on carboplatin in combination with paclitaxel. Detailed descriptions of clinicopathological
parameters of patients are shown in Table 2. All samples were removed from FFPE tissue
blocks using a 1.0-mm diameter hollow needle as tissue cores and arrayed in a recipient
paraffin block forming tissue microarrays (TMAs).” (Published by Kulbe et al, Cancers, 2020)
(46)

Table 2. Clinicopathological characteristics of patients. All patients received adjuvant chemotherapy for
numbers of cycles as indicated in the table. Follow-ups of patients were performed for at least 5 years, if no

relapse occurred, or till development of recurrent disease. (Adapted from publication Kulbe et al., Cancers,
2020) (46)

ID Recurrent Age FIGO Grade Presence Number of Recurrence

disease stage of ascites cycles (months)
1 - 68 1A G3 <500 mL 6 NA
2 - 60 IC G2 <500 mL 6 NA
3 - 68 1A G3 <500 mL 4 NA
4 - 67 IC G3 No 6 NA
5 + 44 1B G3 >500 mL 6 13
6 + 52 A G3 No 9 12
7 + 67 1A G3 No 6 54
8 + 57 A G3 No 6 16
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3.1.2 Neuroblastoma Patient Cohort

“All samples were collected from primary neuroblastoma (localized in the adrenal gland) for
diagnostic purposes and preserved as FFPE tissue blocks in the local pathology department.
An experienced reference pathologist confirmed the diagnosis of neuroblastoma, and patient
risk classification by the National Neuroblastoma Study Group was based on the definitions
of the German BFM-NB2004 study and the recommendations of the German Society of
Pediatric Oncology and Hematology (GPOH). The comprehensive patient data set included
gender, age, INSS stage of the tumor at diagnosis, presence of MYCN amplification in the
diagnosed tumor sample (detected by FISH), INRG risk classification and outcome,
especially diagnosed disease recurrence and death (Table 3). Patients in this cohort were
followed up for at least four years or until the death of the disease. Pathologists identified
tissue areas with >80% tumor cell content for collecting tissuee cores to generate tissue
microarrays analyzed by MALDI-MSI with section annotation.” (Published by Wu et al.,
Cancers, 2021) (22) Neuroblastoma samples from patients with low- and intermediate-risk
groups were defined as other risk group (nHR group). High-risk groups were retained as
high-risk group (HR group). Sample numbers 1-5 (high risk) and 10-13 (other risk groups,
Table 3) were wused for whole tissue section analysis (MALDI-MSI and
immunohistochemistry). “Cores from samples numbers 4, 10, 12, and 13 were also used for
tissue microarrays, together with tissue cores from six tumor samples from unrelated patients.
Tumor cores were removed from the FFPE tissue blocks with a 1.0 mm diameter hollow
needle and arranged a recipient paraffin block (Table 3)” (Published by Wu et al., Cancers,
2021) (22).

Table 3. Clinicopathological characteristics of patient cohort. (Adapted from publication Wu et al., Cancers,
2021) (22)

MYCN Risk .
D sex ,Age INSS classification Disease Death Metastasis
[years] Stage ampiification recurrence
(at diagnosis)

1 F 0.3 3 + high - - No

2 M 0.6 2 + high - - No

3 M 1 3 + high - + Not

4 M 14 4 + high - - Yes
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5 F 1.2 4 + high + + Yes
6 M 2.8 4 + high + + Yes
7 M 7.8 4 - high - - Yes
8 F 8 4 + high - - Yes
ot M 1.2 3 - high + - No#*
10 F 24 1 - low - - No
11 F 0.8 4 - intermediate - - Yes
12 M 0.1 4s - low - - Yes
13 F 0.1 3 mosaic low - - No
14 F 59 3 - intermediate - - No
15 M 1.9 2 - low - - No

1 Disease in this patient later metastasized and was upgraded to INSS stage 4.
I This patient had multiple relapses after first-line therapy and was treated for high-risk disease in relapse therapy.

3.2 Procedure of MALDI-MSI

“All FFPE tissue sections (whole sections and tissue chips) were cut to a thickness of 6 pm
using a slicer (HM325, Thermo Fisher Scientific, USA.) and mounted on conductive glass
slides coated with indium tin oxide (Bruker Daltonik GmbH, Germany).” (Published by Wu et
al., Cancers, 2021) (22) The sections were preheated to 80 °C for 15 min before
deparaffinization and rehydration following Protocol 1. Thermally induced antigen re-
extraction was performed in MilliQ water in a steamer for 20 min. Slides were dried for 10
min and then subjected to trypsin digestion. “16 layers of trypsin solution (Table 5) were
applied onto the sections using an automated spraying device HTX TM-Sprayer (HTX
Technologies LLC, ERC GmbH, Germany) at 30 °C. Tissue sections were incubated for 2 h
at 50°C in a humidity chamber saturated with potassium sulfate solution, and then coated
with 4 layers of matrix solution (Table 6) using a HTX TM sprayer at 75°C. MALDI imaging
was performed on rapifleX® MALDI Tissuetyper® (Bruker Daltonik GmbH, Germany) in
reflector mode with a detection range of 800-3200 m/z, 500 lasers per spot, 1.25 GS/s
sampling rate, and a grating width of 50 ym. Flexlmaging 3.0 (EOC) / Fleximaging 5.1
(Neuroblastoma) and Flex-Control 3.0 software (Bruker Daltonik GmbH) coordinated MALDI
imaging runs. External calibration was performed using peptide calibration standards. After
MALDI imaging, the matrix was removed from the tissue sections with 70% ethanol and the

sections were histologically stained with hematoxylin and eosin.” (Published by Wu et al.,
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Cancers, 2021) (22)Tumor areas with >80% tumor cells were digitally annotated in SCIiLS

Cloud by a pathologist and transferred to SCILS Lab software (EOC: Version 2015b Pro;

Neuroblastoma: Version 2019c Pro, Bruker Daltonik GmbH).

Protocol 1: Rehydrate Sections

1.  Immerse the slides in xylene 2 times for 5 minutes each.
2. Immerse the slides in isopropanol for 5 minutes.
3. Immerse the slides in 100% ethanol for 5 minutes.
4. Immerse the slides in 96% ethanol for 5 minutes.
5. Immerse the slides in 70% ethanol for 5 minutes.
6. Immerse the slides in 50% ethanol for 5 minutes.
7.  Rinse the slides with Milli-Q pure water
Table 4. Digestion buffer
Reagent CONC Amount (uL) Final CONC Manufacturer
NH.HCO: 100 mM 200 20mM Sigma-Aldrich Co.
Cs3HsOs 1% 10 0.01% Sigma-Aldrich Co.
Milli-Q water 790 Merck KGaA
Table 5. Trypsin solution
Reagent Amount Manufacturer
sequencing grade modified porcine trypsin 20 pg Promega Co.
digestion buffer 800 pL
Table 6. Matrix solution
Reagent CONC Amount Final CONC Manufacturer
HCCA 14 mg 7 mg/mL Bruker Daltonik GmbH
C:H:N 100% 1.4 mL 70% Sigma-Aldrich Co.
C2HF302 100% 20 yL 1% ThermoFisher Scientific Inc.
Milli-Q water 580uL Merck KGaA

3.3 Protein identification by nano-Liquid Chromatography Electrospray

lonization Tandem Mass Spectrometry

“Protein identification of m/z values was performed on sections of adjacent tissue (tumor cell-

rich areas) using a bottom-up nano-liquid chromatography electrospray tandem mass
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spectrometry method as previously described (47). Similar to MALDI-MSI preparation,
sections were pre-heated to 80°C for 15 min before deparaffinisation. Paraffin removal,
antigen retrieval and tryptic digest were carried out as for MAL-DI-MSI. After incubation for
2 hours at 50°C in a humidity chamber saturated with potassium sulphate solution, peptides
were extracted from tumor cell-rich areas of each tissue section separately into 40 uL of 0.1%
trifluoroacetic acid and incubated for 15 minutes at room temperature. The digests were
filtered with ZipTip® C18 according to the manufacturer's instructions, the eluate was
concentrated under vacuum (Eppendorf® Concentrator 5301, Eppendorf AG, Germany) and
reconstituted in 20 uL of 0.1% trifluoroacetic acid, respectively, from which 2 uL were
extracted into NanoHPLC (Dionex UltiMate 3000, Thermo Fisher Scientific) coupled to an
ESI-QTOF ultra-high resolution mass spectrometer (Impact [I™, Bruker Daltonic GmbH).
The peptide mixture was loaded onto an Acclaim PepMap™ RSLC C18 column (100 ym x
2 cm, PN 164564, Thermo Fisher Scientific), calibrated with 10 mM sodium hypofluorite (flow
rate 20 uL/h), and then separated on an Acclaim PepMap™ RSLC C18 column (75 um x 50
cm, PN 164942, Thermo Fisher Scientific) with an increasing acetonitrile gradient of 2-35%
in 0. 1% formic acid (400 nL/min flow rate, 10-800 bar pressure range) for 90 min while the
column was maintained at 60 °C. The released charged peptides were detected by a tandem
mass spectrometer using a full mass scan (150-2200 m/z) with a resolution of 50,000 FWHM.
The autoMS/MS InsantExpertise was used to select peaks for fragmentation by collision-
induced dissociation. Raw MS/MS spectra obtained were converted to Mascot generic files
(.mgf) for amino acid sequences using ProteoWizard software (48) and used to search the
human Swiss-Prot database using the Mascot search engine (version 2.4, MatrixScience Inc.
Boston, USA). The search parameters were set as following (l) A significance threshold of p
< 0.05; () proteolytic enzyme is trypsin; (llI) a maximum of 1 missed cleavage; (IV) 10 ppm
peptide tolerance; (V) peptide charges of 2+, 3+ or 4+; (VI) oxidation allowed as variable
modification; (VII) 0.8 Da MS/MS tolerance; (VIII) a MOWSE score >13. MOWSE (for
MOlecular Weight SEarch) is a method for identifying proteins from the molecular weight of
peptides created by proteolytic digestion and measured with mass spectrometry (49). The
probability-based MOWSE score formed the basis for the development of Mascot, a

proprietary software for identifying proteins from mass spectrometry data. the results of
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Mascot were exported as .csv files (Table S2: LC-MS reference list of ovarian cancer tissue
(46) and Table S4: Protein identification by LC-MS of neuroblastoma whole tissue section
(22)). To match the m/z values of MALDI-MSI to the peptides identified by LC-MS/MS, an
EXCEL macro was developed in-house (File S1 (22)). This macro was applied taking into
account the parameters previously described (50). Briefly, comparison of m/z values
between MALDI-MSI and LC-MS/MS required the identification of >1 peptide (mass
differences < 0.3 Da). Only peptides with the smallest mass difference in the mass window
and a correlation ratio =2 0.30 were counted as matches. Peptides with the highest MOWSE
score and the smallest mass difference between MALDI-MSI and LC-MS data were accepted
as correctly identified.” (Published by Wu et al., Cancers, 2021) (22)

3.4 MALDI-MSI data processing for statistical analyses
3.4.1 Data Processing of the Project Epithelial Ovarian Cancer (46)
“The raw MALDI-MSI data were imported into the SCILS Lab software version 2015b Pro

(Bruker Daltonik GmbH) following settings preserving the total ion count (TIC) and
convolution baseline removal with width of 20. All datasets were simultaneously pre-
processed to ensure better comparability between sample sets. An attribute table was built
for sample number, patient age, tumor FIGO stage, tumor cell-rich regions and whether the
patient experienced disease recurrence. Attribute were used to divide a dataset into
independent datasets from different spatial spectral regions in tissue sections, or samples
with different tumor or patient characteristics for analysis. A standard segmentation pipeline
was performed for peak finding and alignment in maximal interval processing mode with TIC
normalization, medium noise reduction and no smoothing (Sigma: 0.75).” (51, 52) (Published
by Kulbe et al, Cancers, 2020) (46)

3.4.2 Data Processing of the Project Neuroblastoma

“The raw MALDI-MSI data were imported into SCILS Lab software version 2019c¢ Pro (Bruker
Daltonik GmbH) using settings to retain total ion counts (TIC) and not remove baselines and
converted into SCILS base data .sbd files and .slx files. An Attribute table was built for sample

number, tumor cell-rich area, tumor INSS stage, MYCN amplification status in diagnostic
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tumor sample, or risk group definition, and patient age, sex and whether the patient
experienced disease recurrence. Attributes were used to divide a dataset into separate
datasets from different spatial spectral regions in tissue sections, or samples with different
tumor or patient characteristics, for analysis. A standard segmentation pipeline using TIC
normalization, moderate noise reduction and no smoothing (Sigma: 0.75) in maximum
interval processing mode was performed for Peak finding and alignment with an interval
width of 0.3 Da (51, 52).” (Published by Wu et al., Cancers, 2021) (22)

3.5 Statistical Analysis
3.5.1 Statistical Analysis of The Project Epithelial Ovarian Cancer (46)
“Peaks were selected using the Orthogonal Matching Pursuit (OMP) algorithm (53). Top-

down segmentation was performed using K-means clustering, interval width of +0.156 Da,
mean interval processing and medium smoothing strength (51, 52).Two methods based on
different principles were used: an unsupervised method, probabilistic latent semantic
analysis (pLSA) to discriminate the two groups, and another supervised method, receiver
operating characteristic (ROC) analysis, was used to detect characteristic peptide values.”
(Published by Kulbe et al, Cancers, 2020) (46) The approach pLSA was applied to the whole
MALDI-MSI dataset for definition of discriminative molecular features. The parameters were
set such as interval width of 0.156 Da, single spectra and deterministic initialization (54). The
approach ROC was used to assess all peaks (m/z values) within tumor cell-rich regions to
discriminate recurrent and non-recurrent disease groups. 1500 spectra were randomly
selected from each group, because the number of spectra from the participating group
should be approximately same. “For those peaks with an AUC (the area under the ROC
curve) >0.65 or <0.35, a univariate hypothesis test (Wilcoxon rank sum test) was used to test
the statistical significance of m/z values. Here we considered the peaks with AUC >0.7 or
<0.3 (p<0.001) as potential markers for predicting disease recurrence. All figures were
created using SCILS Lab software (Bruker Daltonik, Germany) and the R packages "ggplot2"
and "ggbiplot".” (Published by Kulbe et al, Cancers, 2020) (46)
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3.5.2 Statistical Analysis -Neuroblastoma

“Top-down segmentation using k-means cluster analysis was performed on the selected
MALDI-MSI datasets from tissue sections and additionally only from regions with >80%
tumor cells, as previously described (53), to define peptide signatures. Both analyses used
settings for interval width of 0.3 Da, including all individual spectra, medium noise reduction
and correlation distance. Discriminating m/z values from tumor cell-rich regions were
identified using supervised ROC analysis on the selected datasets from tissue regions
with >80% tumor cells. The AUC values vary between 0 and 1, where values close to 0 and
1 indicates peptides to be discriminatory and 0.5 indicates no discriminatory value. 35 000
m/z values were randomly selected per group. For those peptides with an AUC >0.7 or <0.3,
an univariate hypothesis test (Wilcoxon rank sum test) was used to test the statistical
significance of the m/z values. Peptides with p-values < 0.001 and a peak correlation ratio
20.30 were selected as candidate markers. Supervised principal component analysis (PCA)
was performed to define characteristic peptide signatures differentiating tumor regions
with >80% tumor cell content from high-risk or other risk groups. The data were scaled to
PCA in a level scaling model. Only m/z values with AUC >0.8 or <0.2 and p <0.001 were
used as peak intervals for PCA using settings: five components, interval width of +0.3 Da
maximum interval treatment mode, normalization to total ion number, and no noise reduction.
ROC analysis was also used in validation experiments to identify discriminative m/z values
(defined in data sets of whole-section) using MALDI-MSI data (2500 m/z values randomly
selected per group) from arrayed tumor cores. The Wilcoxon rank sum test was used to test
the statistical significance of the m/z values. Peptides with significant differences (p-value <
0.001) in the Wilcoxon test with a peak correlation ratio 20.30 were selected as candidate
markers (significant correlations p < 0.05; Pearson's correlation analysis (55). All figures
were created using the SCILS Lab software (Bruker Daltonik GmbH).” (Published by Wu et
al., Cancers, 2021) (22)

3.6 Tissue Immunohistochemistry

“FFPE tissue sections of neuroblastoma (whole sections) were dewaxed and subjected to a
heat-induced epitope retrieval step. Endogenous peroxidase was blocked by hydrogen
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peroxide prior to incubation with a monoclonal antibody against human CRMP1 (EP14521,
Abcam, UK), followed by incubation with EnVision+ HRP-labeled polymer (Agilent
Technologies Inc., USA) and visualization using the OPAL system (Akoya Biosciences Inc.,
USA) according to manufacturer’s instructions. After protein inactivation, sections were
incubated with a polyclonal antibody against human AHNAK (PAS5-53890, Invitrogen,
Thermo Fisher Scientific), followed by incubation with the EnVision+ polymer (Agilent
Technologies Inc., USA) and visualization using the OPAL system. Nuclei were stained with
4'.6-diamidine-2'-phenylindole dihydrochloride (DAPI; Merck KGaA, Germany) and slides
were mounted in Fluoromount G (Southern Biotech, USA). Multispectral images were
acquired using a Vectra® 3 imaging system (Akoya Biosciences Inc.).” (Published by Wu et
al., Cancers, 2021) (22)
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4 Results
4.1 Results from MALDI-MSI Data of Epithelial Ovarian Cancer

4.1.1 Discriminative Peptide Signatures for identification of different patient groups

In this retrospective study, the primary tumor tissue cores of early-stage HGSOC patients
were arrayed in a recipient FFPE block and categorized as a recurrent disease (RD) (n=4)
or non-recurrent disease (non-RD) (n=6) groups. MALDI-MSI data yielded 506 aligned m/z
values in a mass range between m/z 600 and 3000 (Table S1, (46)). The unsupervised data
analysis approach probabilistic latent semantic analysis (pLSA) was applied in the whole
dataset to discriminate different patient groups. However, a subclass from the non-RD group
was detected, which presented an individual pLSA component (Figure 1-A). The tissue
samples of the subclass group were verified by an experienced gynecological pathologist
that both did not match the criteria of HGSOC: one showed a mutated pattern of p53 and
high expression of CD56 and synaptophysin via previous immunohistological staining, unlike
typical HGSOC characters. Additionally, its morphological features indicated most likely an
undifferentiated non-small cell neuroendocrine carcinoma (NSCNEC) of the ovary. Another
was re-classified as pT2cG3 instead of HGSOC at early-stage. Therefore, these two

exceptional cases were excluded for further analysis.

A — B . o
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T Subclass t [

~_Component 2

Figure 1: Discrimination of molecular signatures for the groups of HGSOC patients via probabilistic latent
semantic analysis (pLSA). (A) Score plots of the first three components from MALDI-MSI spectra of primary
tumors from patients without (- RD, in blue, n=4), recurrent disease (+ RD, in red, n=4) and a subclass (in
yellow, n=2) are shown. (B) Score plots of the first three components from IMS spectra of primary tumors from
patients without (- RD, in blue, n=4), and recurrent disease (+ RD, in red, n=4) are shown. (Adapted from
publication Kulbe et al., Cancers, 2020) (46)
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Furthermore, the tumor cell-rich region and microenvironment region of each tumor core
tissue were separately evaluated using the software SCILS Lab. Following an expertise
annotation, MALDI-MSI of tumor cell-rich regions data yielded 612 m/z values in a mass
range between m/z 800 and 3.500. To explore most discriminative peptide signatures to
discriminate between RD and non-RD HGSOC patients, probabilistic latent semantic
analysis (pLSA) was applied to the MALDI-MSI data of tumor cell-rich regions. The first three
components show a clear difference between RD and non-RD groups in a score plots image.
(Figure 1-B) This finding demonstrates that this unsupervised statistical approach is able to
use MALDI-MSI data from tumor cell-rich regions to determine potentially peptide signatures

for discriminating both distinct patient groups.

4.1.2 Identification of Discriminative Proteins from MALDI-MSI primary data with
complementary nano-liquid chromatography electrospray ionization tandem
mass spectrometry

A supervised statistical analysis, receiver operating characteristic (ROC) was applied to the
612 aligned m/z values from tumor cell-rich regions from RD and non-RD patient groups.
This approach follows a paired comparison strategy to find the most discriminative peptide
values (m/z values) between two participant groups. The ROC analysis resulted in 151
peptide values that were able to discriminate between patients with RD and non-RD (AUC >
0.6 0or<0.4; p<0.01; Table S1(46)). “From these, we depict three peptides with the strongest
discriminatory values in Figure 2 (46). Two peptides (m/z values 840.6 Da, 1138.5 Da)
demonstrate significantly higher intensity distributions and one peptide with m/z value 1631.8
Da demonstrates significantly lower intensity distribution in tumor cores from RD patient
group. To identify the proteins corresponding to the discriminative peptide values, we
performed a bottom-up nano-liquid chromatography electrospray ionization tandem mass
spectrometry (nLC-ESI-MS/MS) approach in an adjacent tissue section. The analysis
assigned 49 of the 506 m/z values (Table S1 (46)), within 18 discriminative m/z values could
be assigned to 13 proteins (AUC > 0.6 or AUC < 0.4, p <0.001) (Table 7 (46)).” (Published
by Kulbe et al, Cancers, 2020) (46) Two peptides at least from proteins, KRT9, COL1A2 and
ACTB were significantly higher expressed in RD patient group, but other proteins, CALD1,
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APOA1, TUBB, HIST1H2BK, HIST1H4A and LMA (only single peptide) were higher

expressed in non-RD patient group.

Figure 2: Exemplary representative
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recurrence and no recurrence discriminated via individual peak mass spectra intensity and spatial peak
distribution. (A) The peptides 840.6 Da and 1138.5 Da show significantly higher spatial intensities (area under
the curve (AUC) > 0.6; p < 0.001) in patients with recurrent disease (+RD) than patients without recurrence
(-RD). (B) The peptide 1631.8 Da, as an example, exhibited significantly higher intensities (AUC < 0.4; p <
0.001) in no recurrence group. (Adapted from publication Kulbe et al., Cancers, 2020) (46)

Table 7: Receiver operating characteristic (ROC) curve analysis reveals a prognostic protein signature for
early-stage HGSOC. Significantly differentially expressed proteins in primary tumors of patients with recurrent
compared with no-recurrent disease are listed (overexpressed, AUC values > 0.6, and underrepresented < 0.4,
p < 0.0001). (Adapted from publication Kulbe et al., Cancers, 2020) (46)

iy Msmr  Tumor:R LC-MS HGNC

c?m/rz(ild [rglz] VS-RD  Mr[Da] A [Da] Ascension Protein Symbol
[Da] (AUC)

2705.026 2704.0181 0.7547 2704.1538 0.1358 K1C9_HUMAN  Keratin, type | cytoskeletal 9 KRT9
1791.698 1790.6901 0.6250 1790.7204 0.0304 K1C9_HUMAN Keratin, type | cytoskeletal 9 KRT9
644.336 643.3281 0.7470 643.3653 0.0373 ACTB_HUMAN Actin, cytoplasmic 1 ACTB
840564  839.5561  0.7407  839.4613  0.0947 CO1A2_HUMAN Collagen alpha-2(l) chain COL1A2
868.467  867.4591 07331  867.4563  0.0028 CO1A2 HUMAN Collagen alpha-2(l) chain COL1A2
2027.831 2026.8231 0.7008 2026.0093 0.8138 CO1A2_HUMAN Collagen alpha-2(1) chain COL1A2
1562.765 1561.7571 0.6930 1561.7849 0.0278 CO1A2_HUMAN Collagen alpha-2(l) chain COL1A2
1223.417 1222.4091 0.6262 1222.6054 0.1964 CO1A2_HUMAN Collagen alpha-2(l) chain COL1A2
700.444 699.4361 0.6388 699.4643 0.0282 RL37A_HUMAN 60S ribosomal protein L37a RPL37A
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1790.797
1743.691
1550.764
858.566

11567.708
1631.775
1751.792
1055.394
1752.992

1789.7891
1742.6831
1549.7561
857.5581
1156.7001
1630.7671
1750.7841
1054.3861
1751.9841

0.6253
0.6055
0.6016
0.3975
0.3782
0.3682
0.3554
0.3460
0.3159

1789.8846
1742.8120
1549.8100
857.4607
1156.6200
1630.8236
1750.0353
1054.5196
1751.8551

0.0956
0.1290
0.0540
0.0974
0.0800
0.0566
0.7488
0.1335
0.1290

ACTB_HUMAN
H2B1N_HUMAN
ANXA1_HUMAN
CALD1_HUMAN
APOA1_HUMAN
TBB5_HUMAN
H2B1K_HUMAN
H4_HUMAN

LMNA HUMAN

Actin, cytoplasmic 1
Histone H2B type 1-N
Annexin A1
Caldesmon
Apolipoprotein A-l
Tubulin beta chain
Histone H2B type 1-K
Histone H4
Prelamin-A/C

ACTB
HIST1H2BN
ANXA1
CALD1
APOA1
TUBB
HIST1H2BK
HIST1H4A

LMNA

4.1.3 Relevance between Patients with RD and between Patients without RD

“The analysis was extended to apply the peptide signature (discriminant m/z values) to three

additional patients with early-stage high-grade endometriosis ovarian cancer (HGEC), two

of whom were RD; one was non-RD and showed similar peptide intensities in the sample of

HGSOC patients. A principal component analysis (PCA) was performed to superimpose the

effects of covariates onto the principal component space (Figure 3 (46)). PCA confirmed a

closer relevance between RD patients and non-RD patients. The inclusion of three patients

with early HGSC showed a similar relevance. Variable markers were clustered in two groups,

indicating the variables of interest. The higher associated group peptides, 1223.4, 1790.8,
1550.8 and 2705.0 Da, concentrate in the RD patient group, but another peptide, 1631.8 Da
is partial to the non-RD patient group.” (Published by Kulbe et al, Cancers, 2020) (46)
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Figure 3: A biplot showing included eight samples of early-stage HGSOC patients as points. Additionally, three
patients with high-grade endometrioid ovarian cancer (HGEC) were included in the analysis and marked with
diamonds. Biplot axes indicate the influence of each peptide in the principal component space. The principal
component analysis (PCA) shows a discrimination of patients with (+RD) and without recurrent disease (-RD).
(Adapted from publication Kulbe et al., Cancers, 2020) (46)

4.2 Results from MALDI-MSI Data of Neuroblastoma
4.2.1 Discriminative Peptide Signatures for identifying Different Tumor Features

“‘Here, we assessed the technical feasibility of MALDI-MSI to identify potentially
discriminatory protein signatures from formalin-fixed, paraffin-embedded (FFPE) tissue
sections of more aggressive neuroblastomas (high risk). Tissue samples were diagnostic
biopsies from primary neuroblastoma classified as high risk (n = 5) or other risk groups (low
or moderate risk, n = 4). Peptide signatures extracted from the analyzed tissue samples
yielded 501 aligned m/z values in the mass range m/z 800-3200. Neuroblastoma cell-rich
tumor regions yielded 397 aligned m/z values (Table S1 (22)). The MALDI-MSI data from
tissue sections were characterized using bisecting k-means clustering, an unsupervised
multivariate segmentation analysis, to determine the peptide signature of different tissue
regions. The segmentation analysis created two clusters, shown as segmentation maps
(Figure 4), that corresponded well to tissue regions in the tumor that were either tumor cells

rich (>80%) or poor (defined by a reference pathologist). Thus, peptide signatures obtained
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from MALDI-MSI data can directly distinguish tumor regions with high tumor cell content from
those with <80% tumor cell content from FFPE tissue sections. To determine whether
signatures could be defined to distinguish high risk groups from other risk groups, we
performed the same segmentation analysis across only those regions with >80% tumor cell
content as defined by a pathologist. Unsupervised segmentation analysis of m/z values for
these regions resulted in three segmentation groups with different peptide signatures in high-
risk tumors, (contribution percentage of each peptide signature to the tumor cell-rich regions
in Table S2 (22)), but only one segmentation group was classified as low risk in
neuroblastoma (Figure 4). These data illustrate for the first time at the protein level the
molecular intratumoral heterogeneity of high-risk tumors. Unsupervised clustering allows the
extraction of peptide signatures from MALDI-MSI data, which can correctly identify tumor
cell-rich regions in neuroblastoma and distinguish high-risk neuroblastomas from other risk
groups.” (Published by Wu et al., Cancers, 2021) (22)

H&E Staining MALDI-MSI

Sections from
high-risk group
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Figure 4: Exemplary cases for MALDI imaging identifying high-risk neuroblastomas by heterogeneous peptide
signatures in tumor cell-rich regions. Sections from primary neuroblastomas with high or other risk
classifications are shown with hematoxylin and eosin (H&E) staining for tissue section orientation in
segmentation maps of MALDI-MSI analysis. Segments (indicated by different colors) represent different
proteomic clusters generated by bisecting k-means clustering. Black lines surround tumor areas with >80%
tumor cell content (annotated by the reference pathologist). Signatures derived from segmentation clustering
across the whole tissue section are shown in the middle column and peptide signatures derived only across
the tumor cell-rich areas in the sections shown on the right. Colors represent the same proteomic clusters in
the 2 images in the middle column and the 2 images in the right column, but not between the middle and right
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images. (22) Nine representative cases of nine total cases are shown. (Adapted from publication Wu et al.,
Cancers, 2021) (22)

“Univariate analysis of MALDI-MSI data has the potential to determine which single peptides
are most discriminatory for neuroblastoma tissues from different risk groups. We performed
ROC analysis on a total of 397 aligned m/z peaks in tumor cell-rich regions from the HR and
non-HR neuroblastoma groups. The different spatial peptide intensity distributions in tissue
samples from the two risk groups determined the discriminatory power of individual peptides.
The Wilcoxon rank sum test was applied to the 397 aligned m/z peaks, yielding 206
statistically significant m/z values (AUC values >0.8 or <0.2; p<0.001). From these results,
we show in Figure 5 the five peptides with the most potent discriminatory value. In the tumor
cell-enriched region of high-risk neuroblastoma tissue sections, three peptides (m/z values:
1707.68, 1775.79 and 1832.79 Da) had a significantly higher intensity distribution, and two
peptides (m/z values: 766.48 and 1178.73 Da) had a significantly lower intensity distribution.
To explore the potential of the most discriminatory peptides in the peptide signatures to
distinguish HR groups from other risk groups, PCA was performed on 206 statistically
significant m/z values (AUC values >0.8 or <0.2; p<0.001). Principle component 1 (PC-1)
primarily captured differences within tumor cell-rich regions across risk groups and showed
an increased intensity distribution of tumor cell-rich regions in HR neuroblastoma (Figure 5).
As the first principal component explained 62% of the variance (Figure S2), these findings
suggest that both unsupervised and supervised statistical methods using MAL-DI-MSI data
from neuroblastoma tissue sections can provide a discriminatory peptide signature for the
identification of HR or other risks neuroblastomas.” (Published by Wu et al., Cancers, 2021)
(22)
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Figure 5: Discriminative peptide signatures in tumor cell-rich regions for discrimination between high-risk (HR)
and other risks (nHR) groups (n=9). Based on MALDI-MSI data, ROC analysis resulted in significantly
discriminative m/z values, whose differential ion intensity distributions were depicted in tumor cell-rich regions
of HR and nHR neuroblastoma tissue sections. Relative peptide expression was scaled in the colour bar. The
m/z values with the highest area under the curve (AUC) values (AUC>0.85, p < 0.001) were shown in the top
row and the m/z values with the lowest AUC values (AUC < 0.3, p < 0.001) were shown in the bottom row.
Black lines surround tumor areas with >80% tumor cell content (annotated by the reference pathologist).
Haematoxylin and eosin (H&E) staining in sections is shown for orientation. Based on MALDI-MSI data PCA
analysis was applied to statistically significant m/z values obtained from ROC analysis to explore potential
peptide signatures for discriminating HR and nHR neuroblastoma cell-rich regions. The ion intensity of the first
principal component (PC-1) is scaled in HR and nHR neuroblastoma tissue sections. PCA variance plot
indicates that 62% of variance is explained by PC-1. (Adapted from publication Wu et al., Cancers, 2021) (22)

4.2.2 Discriminative Proteins were identified from Neuroblastoma Tissue Sections
based on MALDI-MSI Data by using nLC-ESI-MS/MS

"We performed an approach, nLC-ESI-MS/MS, in adjacent tissue sections to identify the

proteins corresponding to the discriminatory peptide values. This analysis assigned 147 of
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the 206 m/z values shown in the ROC analysis (Table S3 (Wu, Hundsdoerfer et al. 2021))
(AUC>0.7 or AUC<0.3, p<0.001). According to the guidelines, proteins corresponding to m/z
values were correctly identified when the validation method (in this case nLC-ESI-MS/MS;
Supplementary Table S4 (22)) identified at least two peptides that were detected by MALDI-
MSI from the same protein with similar intensity of spatial difference and correlated within
the same tissue region that was evaluated by correlation coefficient (50). These criteria were
met in eight proteins that corresponded to 18 MALDI-MSI m/z values (Table 8 (22)). The
differential intensity distributions of m/z values for six of these eight proteins (14 m/z values)
were validated using MALDI-MSI data from 10 array cores from neuroblastoma tissue
regions with >80% tumor cell content. Two peptides (m/z values are shown in Table S3 (22))
from these proteins, COL1A2, COL6A3, HSPA5, HIST1H2BC, KRT9, AHNAK and NID2,
expressed significantly higher in the tumor cell-rich region of high-risk neuroblastoma.”
(Published by Wu et al., Cancers, 2021) (22)

“This group was enriched for extracellular matrix components (COL1A2, COL6A3 and NID2)
and proteins associated with or regulating cytoskeletal proteins (AHNAK) and a cytoskeletal
protein (KRT9). The two peptides assigned to CRMP1 were significantly less expressed in
tumor cell-rich regions of high-risk neuroblastoma than other risk group. We selected two
representative proteins from the identified proteins and validated them in adjacent
neuroblastoma tissue sections using immunohistochemistry. Expression of AHNAK was
higher in the tumor cell-rich region of high-risk neuroblastoma. In contrast, CRMP1
expression was higher in other risk neuroblastoma (Figure 6 (22)). Our data suggest that the
1832.79 m/z peak obtained by MALDI-MSI in the tumor cell-enriched region of high-risk
neuroblastoma is a tryptic peptide from AHNAK, an approximately 700 kD scaffolding protein
that has not been previously published in the context of neuroblastoma. It was initially
reported relating to neuroblast differentiation that was reviewed by Davis et al. in 2014 (56),
but recent studies have also pointed to its important role in promoting cell proliferation,
migration, and epithelial-mesenchymal transition (EMT), leading to short disease-free
survival time and poor outcomes in aggressive cancers, including pancreatic ductal
adenocarcinoma (57). Similarly, the relatively higher intensity of 922.50 m/z peak in MALDI-

MSI of other risk neuroblastoma is a tryptic peptide from CRMP1, a marker for neuronal
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differentiation associated with neuronal growth and guidance. It has previously been used in

MRNA panels for detecting minimal residual disease of neuroblastoma and tumor initiation

cells (68-61). These findings confirmed the potential to correctly identify 18 tryptic peptides

obtained by MALDI-MSI from FFPE neuroblastoma tissue sections corresponding to the

eight proteins and validated AHNAK and CRMP1 as discriminatory protein markers with

potentially interesting and plausible biological roles.” (Published by Wu et al., Cancers, 2021)

(22)

Table 8: Differential intensity distributions of peptides (MALDI-MSI) and their corresponding proteins in tissue
sections from neuroblastomas in high or other risk groups. (Adapted from publication Wu et al., Cancers, 2021)

(22)
mALDl. ROCIAUCI ROC  Significa LC- __ _
MSI miz for HR [AUC] nce MS/MS+ MOWSE Deviation Correlation ~ HGNC Protein
o versus HR/MHR rating- [Mr+H  Scores® [Da] Coefficient Symbol
nHR* TMAT  WRS  cal]
868.49 0.85 073  <0.001 868.46  48.1 0.03 0.38
1562.77  0.91 074  <0.001 156279 127.0  0.02 0.64 COL1A2 Collagen type | alpha 2 chain
2026.91 0.86 073  <0.001 2027.02 658  0.11 0.36
145985  0.72 066  <0.001 1459.86 405  0.01 0.38 )
2056.92 0.88 063  <0.001 2057.04 594 012 0.32 GO celega oVl elgmms el
mm o dm o@D e A 02 M g camemme et
1833.99  0.87 067  <0.001 183391 65.1 0.08 0.40 HSPAS Heat shock protein family A (Hsp70)
204222 085 073  <0.001 2042.05 256 0.7 0.32 member 5
1477.86  0.90 075  <0.001 1477.79 281 0.07 0.41
174368  0.82 058  <0.001 174382 962  0.14 058  HIST1H2BC H2B clustered histone 4
177579  0.90 070  <0.001 177581 123.0  0.02 0.55
1586.77  0.90 074  <0.001 158677 894  0.00 0.47 KRT9 Keratin 9
270528  0.86 078  <0.001 270516 679  0.12 0.44
126750  0.87 074  <0.001 126765 639  0.15 0.38 .
1832.79  0.92 070  <0.001 1832.88 447  0.09 0.39 AHNAK AHNAK nucleoprotein
1706.78  0.87 074  <0.001 170678 312  0.00 0.31 NID2 —
245536 0.79 072  <0.001 245517 349  0.19 0.33

* Calculated from data obtained from regions in whole tissue sections with >80% tumor cell content.
1 TMA = tissue microarray (arrayed neuroblastoma tissue cores from areas with >80% cell content).

§ MOlecular Weight Search score (49)
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Figure 6: Validation of two discriminative protein markers for neuroblastoma risk in tissue sections. Two
exemplary representative samples each from high-risk (HR) and other risk groups (nHR) neuroblastoma were
shown. MALDI-MSI ion maps for one peptide (m/z 1832.79 Da) assigned to AHNAK and one peptide (m/z
922.50 Da) assigned to CRMP1 are shown next to the corresponding sections stained with haematoxylin and
eosin (H&E) for orientation. Black lines border areas included >80% tumor cell content. Immunohistochemical
(IHC) detection of AHNAK and CRMP1 is shown for the regions surrounded by the yellow squares in the
expanded image (400x magnification). (Adapted from publication Wu et al., Cancers, 2021) (22)

“In summary, MALDI-MSI is feasible for investigating the molecular features in histologically
homogenous areas of high-risk neuroblastoma. Our method exposed the existing intra-
heterogeneity of tumor cells and identified discriminative peptide signatures for high-risk and
other risk neuroblastoma. Eighteen peptides of the discriminatory peptides could be
assigned to eight proteins, and then the differential expression of AHNAK and CRMP1 was
verified in tissue sections using immunohistochemistry. AHNAK showed intense staining in
tumor cell-rich areas of high-risk neuroblastoma compared to other risk groups with slight
staining. However, staining for CRMP1 shows mostly intense in tumor cell-rich regions of
other risk-classified neuroblastomas and slight in the high-risk group. A further validation
analysis for their biological roles in neuroblastoma is necessary.” (Published by Wu et al.,
Cancers, 2021) (22)
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5 Discussion

Tumors do not seem a simple mass of invasive cancer cells, and they are actually a mixture
of different types and structures of cancer cells, including malignant cells, extracellular matrix,
microenvironmental factors, blood vessels and cellularimmune components. In addition, the
distribution of these cells varies in density and protein expression within tumor tissue. (62)
This diversity of cellular and molecular composition leads to intratumor heterogeneity and is
an essential factor involved in treatment failure, drug resistance and recurrence (63). Many
researchers have applied LC-MS based proteomics approach to tumor fluid and tissue
homogenates to explore cancer biomarkers for diagnostic and therapeutic purposes.
Previously, 51 proteins in ovarian tumor fluid have been identified by LC-MS/MS associated
with the invasive state of malignant cells (64) and a large scale up-or down-regulated
proteins of neuroblastomas defined by the same method relate in high-risk disease or tumor
regression (65, 66). However, information about protein alterations cannot be correlated to
the corresponding morphological structures through this method. In this dissertation, we
have chosen another mass spectrometric technique, MALDI-MSI, to decipher
comprehensive proteomic information of tumor tissue, including composition, location, and
relative quantity. This procedure needs neither labels nor prior knowledge of molecular
targets following relatively automated and straightforward sample preparation. The proteome
screening analysis is performed in full equivalence covering high tumor cell-rich regions and
stroma (microenvironment) on the surface of tumor tissue. A large number of investigations
confirmed that neighboring cells and/or proteomic changes in the tumor stroma could affect
tumor transformation, progress, and metastases (67). Therefore, deep proteomic profiling in
tumor stroma is just as crucial to understanding tumorigenesis and growth as in cancer cells
themselves. For example, other cancer researchers have reported that “AHNAK was also
occasionally upregulated in tumor stroma. Because of the barriers posed by natural
structures such as connective tissue, fibroblasts, immune cells and vasculature, the common
mass spectrometry methods are limited in their ability to reveal the molecular composition of
the stromal compartment. Nevertheless, MALDI-MSI can map protein changes in both
regions, clearly demonstrating the intercellular interactions between malignant cancer cells

and their environment. This ability provides new insights into understanding neuroblastoma
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tumorigenesis and progression.” (Published by Wu et al., Cancers, 2021) (22) Another
advantage of this technique is that the tissue under the MALDI-matrix layer (about 3-4 pym)
is intact. After the removal, the same tissue section could be used for further studies, such
as chemical staining for morphological assessment, immunochemical analysis,
transcriptomics profiling and sequencing technology (68, 69). The evaluation of analysis
combinations offers more precise and comprehensive molecular profiles. Additionally, some
of them are already utilized as standard clinicopathological assessments. Integration of the
MALDI-MSI technique could not only act as a method of cross-validation but also enhance
precision cancer medicine learning. Just as our data identified a higher intensity distribution
of CRMP1 in low- and intermediate-risk neuroblastomas. This same finding is well reported
that CRMP1 has been used as a gene marker for prognosis and diagnosis in neuroblastoma

gene expression panels (70).

Due to cellular and molecular heterogeneous distribution across a tumor tissue section, the
accuracy and reproducibility of TMAs application in cancer research should be questioned,
although this technique has a tremendous advantage when applied to large amounts of
samples within a short investigation time (42). We applied MALDI-MSI data derived from
neuroblastoma TMA to validate discriminative peptide values obtained from whole tissue
sections and found that “not all peptides detected by MALDI-MSI in whole sections could be
detected in cores of TMA (Figure 7, (22))” (Published by Wu et al., Cancers, 2021) (22). This
suggests that the detection of tumor heterogeneity using tissue microarrays has significant
limitations compared to MALDI-MSI using whole tissue sections, “a more comprehensive
and precise, new diagnostic method. The present study emphasizes that the investigation of
whole tissue sections is a promising way to investigate the molecular heterogeneity of tumors
directly.” (Published by Wu et al., Cancers, 2021) (22) Different regions of tumor tissue may

be morphologically homogeneous but contain differences in molecular composition (71, 72).
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Figure 7: lon maps of m/z values for CRMP1 and AHNAK in whole neuroblastoma sections and their validation
in selected cores from the tissue microarray. Intensity distributions of one peptide from CRMP1 (m/z value 766.
48 Da) and one peptide from AHNAK (m/z value 1832.79 Da) are shown in selected tumor cores from the
neuroblastoma tissue microarray (upper images) and whole tissue sections (lower images) from
neuroblastomas designated high-risk (HR) or in other risk groups (nHR). White arrows point out areas of
heterogenic ion distribution in the whole tumor sections. (Adapted from publication Wu et al., Cancers, 2021)
(22)

corresponding to proteins rather than applied MALDI tandem mass spectrometry (MALDI-
MS/MS) for direct identification of protein markers. Firstly, the approach MALDI-MS/MS
cannot select and fragment all the precursor peaks because of signal depletion in a single
pixel. Secondly, the major peaks belong to the most abundant proteins, and many peaks
corresponding to less abundant proteins are not detected due to the ion suppression and the
complexity of the samples. Moreover, the whole tumor tissue section is too complex, the
searching database scores would not be sufficient to confirm the protein IDs when
performing directly region-specific targeted MS/MS (50). Indeed, there are other mass
spectrometry imaging approaches, such as nano desorption electrospray ionization (DESI)
mass spectrometry and secondary ion mass spectrometry (SIMS), that offer higher spatial
resolution and better MS/MS opportunities than MALDI-TOF. However, both methods are
not well suitable for high-throughput and large cohort clinical investigation due to more lowly
limited mass range and extreme high time-consuming. Time is an essential factor in the

methodology proposed for potential clinical use since this must be applied in real-time for
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disease decisions. Therefore, high-resolution mass spectrometry technologies were not
considered for the POC study design and would be unsuitable for large-scale imaging
analysis studies using whole tissue sections or clinical application. Undeniably, the
presented MALDI-TOF instrument suffers from a mass accuracy that makes it more
susceptible to false protein assignments. Thus, we have examined the matching between
“selected m/z values and their source proteins, whether the differential peptide signature
from biologically feasible proteins in neuroblastoma and validated their differential
expression in tumor sections using immunohistochemistry.” (Published by Wu et al., Cancers,
2021) (22) The intensive IHC staining of AHNAK in tumor cell-rich regions of high-risk

neuroblastoma conforms to disease-related biological plausibility.

Using MALDI-MSI, we have observed high expression of tryptic peptides from cytoskeleton,
cytoplasm, cytosol, and extracellular matrix proteins invasive and malignant tumor regions.
For instance, the primary tumors from early-stage HGSOC patients with recurrence disease
presented the intense distribution of particular peptides corresponding to Keratin type 1,
Actin, Cytoplasmic 1 and Collagen alpha-2(1) in tumor cell-rich regions. These peptide values
indicated strong prognostic potential (AUC > 0.7). “A published reference database of
MALDI-IMS-derived peptide and protein values (73) can support our findings. The
expression of collagen production by ovarian cancer cells, including Collagen alpha-2(l),
Actin and Cytoplasmic 1, could increase drug resistance by inhibiting the penetration of the
drug into the cancer tissue as well as increase resistance to apoptosis (74)” (Published by
Kulbe et al, Cancers, 2020) (46) that was also confirmed in MALDI-MSI studies of lung tumor
biopsies (75). Keratins, the epithelial-predominant members of the intermediate filament
superfamily, regulates various signaling pathways in cancer cells to influence a series of
processes in tumor progression (76). Similarly, we identified AHNAK as a marker protein
highly expressed in tumor cell-rich regions of high-risk neuroblastoma tissue sections.
AHNAK has not previously been linked to neuroblastoma but is involved in several cancer-
related cellular functions and is listed as “one of six putative cancer genes involved in the
evolution of nine different cancers in 3000 cancer genomes (77). However, the role of
AHNAK in cancer appears to be tissue-specific, with other reports pointing to a possible role

as a tumor suppressor in gliomas (78) and breast cancer (79).” (Published by Wu et al.,
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Cancers, 2021) (22) The reason is maybe that AHNAK is a large protein, which mitigates the
function of multiprotein complexes by acting as a scaffold to link activities either in the
nucleus or at the plasma membrane and alters interactivity and intracellular localization

through its own phosphorylation sites (56).

A profound understanding of the biological roles of identified discriminative proteins in early-
stage HGSOC and neuroblastomas might improve risk assessment at diagnostics and
eventually develop new therapeutic strategies, but for it more comprehensive molecular
characterization supported by transcriptome and DNA analysis and more precise proteomics
data from micro-dissected malignant tumor areas and adjacent stroma compartments are
required in future. Furthermore, the identified peptides signature should be validated in a
larger cohort of patient samples. Generally, this dissertation has confirmed the technical
feasibility of MALDI-MSI to explore molecular changes on tumor tissues on the protein level,
to identify new spatially characteristic peptides signature for tumor diagnosing and prognosis
through the combination with the nLC-ESI-MS/MS.
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6 Abbreviations

2D

AUC
CONC
DESI

EMT

EOC
ESI-LC-MS
FFPE
FIGO
HCCA
HGEC
HGSOC
HR

IHC
LC-MS/MS
MALDI
MALDI-MS/MS
MS

MSI
nHPLC
nHR

nLC-ESI-MS/MS

NSCNEC
PCA
pLSA
POC
PTMs
ROC
SIMS
TIC
TMA
TOF

two-dimensional

the area under the curve

concentration

nano desorption electrospray ionisation
epithelial-mesenchymal transition

epithelial ovarian cancer

electrospray ionization liquid chromatography mass spectrometry
formalin-fixed paraffin embedded

international federation of gynaecology and obstetrics
a-cyano-4-hydroxycinnamic acid

high-grade endometriosis ovarian cancer
high-grade serous ovarian cancer

high-risk

immunohistochemistry

liquid chromatography tandem mass spectrometry
matrix-assisted laser desorption/ionization

MALDI tandem mass spectrometry

mass spectrometry

mass spectrometry imaging

nano high-performance liquid chromatography
other risk group

nano-liquid chromatography electrospray ionization tandem mass
spectrometry

non-small cell neuroendocrine carcinoma
principal component analysis

probabilistic latent semantic analysis
principal-of-concept

post-translational modifications

receiver operating characteristic analysis
secondary ion mass spectrometry

total ion count

tissue microarrays

time of flight
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Simple Summary: The childhood tumor, neuroblastoma, has a broad clinical presentation. Risk
assessment at diagnosis is particularly difficult in molecularly heterogeneous high-risk cases. Here we
investigate the potential of imaging mass spectrometry to directly detect intratumor heterogeneity on
the protein level in tissue sections. We show that this approach can produce discriminatory peptide
signatures separating high- from low- and intermediate-risk tumors, identify 8 proteins aassociated
with these signatures and validate two marker proteins using tissue immunostaining that have
promise for Further basic and translational research in neuroblastoma. We provide proof-of-concept
that mass spectrometry-based technology could assist carly risk assessment in neuroblastoma and

provide insights into peptide signature-based detection of intratumor heterogeneity.

Abstract: Risk classification plays a crucial role in clinical management and therapy decisions in chil-
dren with neuroblastoma. Risk assessment is currently based on patient criteria and molecular factors
in single tumor biopsies at diagnosis. Growing evidence of extensive neurcblastoma intratumor het-
crogencity drives the need for novel diagnostics to assess molecular profiles more comprehensively
in spatial resolution to better predict risk for tumor progression and therapy resistance. We present a
pilot study investigating the feasibility and potential of matrix-:

isted laser desorption /ionization
mass spectrometry imaging (MALDI-MSI) to identify spatial peptide heterogeneity in neuroblas-
toma tissues of divergent current risk classification: high versus low /intermediate risk. Univariate
(receiver operating characteristic analysis) and multivariate (segmentation, principal component anal-
ysis) statistical strategies identified spatially discriminative risk-associated MALDI-based peptide
signatures. The AIINAK nucleoprotein and collapsin response mediator protein 1 (CRMP1) were
identified as proteins associated with these peptide signatures, and their differential expression in
the neuroblastomas of divergent risk was immunohistochemically validated. This proof-of-concept
study demonstrates that MALDI-MSI combined with univariate and multivariate analysis strategies
can identify spatially discriminative risk-associated peptide signatures in neuroblastoma tissues.
These results suggest a promising new analytical strategy improving risk classification and providing

new biological insights into neuroblastoma intratumor heterogeneity.

Keywords: neuroblastomna; risk assessment; intratumor heterogeneity; peptide signatures; MALDI-MSI
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toma with distinct evolutionary patterns that impact clinical behavior [14]. Previous extensive
next-generation sequencing efforts by the global neuroblastoma community to catalog genetic
aberrations in neuroblastoma [12,14-21] used primarily single diagnostic biopsies, and iden-
tified a low number of recurrent point mutations and translocations even in high-risk and
relapsed neurcblastomas. One of these studies also included matched diagnostic and relapse
samples from five patients, corroborating evidence of the genetic evelution of disease [20].
The demonstration of intratumor genetic heterogeneity and its evolution over disease course
have assisted an expansion of tissue sample collection accompanying patient treatment and
trials worldwide. In-depth analysis and further interpretation with respect to potential clinical
implications will achieve a better grasp of the extent of intratumor heterogeneity in neurob-
lastoma to improve personalized patient treatment, Knowledge remains limited about the
influence of both high intratumor heterogeneity and peptide signatures in neuroblastomas on
disease progression and response to treatment. Tumor progression, in general, is known to
be affected by tumor cellular interplay and the surrounding microenvironment [22]. Taken
together, there is unmet need for reliable neuroblastoma risk classification that takes the tumor
microenvironment and spatial heterogeneity into account.

Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI)
innovative technology combines the comprehensive mass spectrometric technique with a
conventional histological evaluation. It allows unsupervised (unlabelled) analysis of molecules
(e.g., metabolites, proteins, peptide, lipids and glycans) directly on a single tissue section,
preserving their spatial coordinates and generating a molecular intensity map displaying
the spatial relative molecule abundance [23-26]. MALDI-MSI has several advantages over
other techniques, such as nano-desorption electrospray ionization (DESI), secondary ion
mass spectrometry (SIMS) and liquid extraction surface analysis. MALDI-MSI requires less
time to preform measurements, and provides better spatial resolution for a larger mass
range, which are all important prerequisites for potential clinical application. The mass range
of DESI and SIMS are limited to 2000 Da and 1000 Da, respectively. Spatial resolution of
DESI and LESA are much lower than MALDI-MSI. In the present study, tryptic peptides
ranging from 600 to 3500 Da were analyzed with 50 um reselution, which could not have
been achieved by the other techniques [27]. Direct identification of proteins, from which the
peptides (acquired by MALDI-MSI) stem, remains limited to only a few abundant proteins.
Several studies have recently demonstrated that high-resolution MSI data combined with
microproteomics (high-resolution mass spectrometry) from microdissected tissue sections
enables retention of an aspect of spatial specificity and accurate protein assignment (high mass
accuracy) [28-30]. This is a promising strategy to explore potential disease-relevant protein
markers in small patient collectives, but is not well suited for large-scale studies because of
the longer processing time both for microdissection and mass spectrometry and the higher
cost. In contrast, spatially distinct signatures of peptide spectra, such as those extracted from
MALDI tissue imaging data, can be obtained in high-throughput in a clinically feasible time
frame at a lower cost, and could provide a new dimension to the current classification of
distinct patient subgroups, and potentially assist prediction of disease progression and/or
resistance development [31-34]. Therefore, MALDI imaging is a promising technology to
aid histopathology tissue assessment in routinely used large-scale formats. MALDI-MSI has
been used to classify tumor types [35], to predict a therapeutic strategy [36,37] and to act
as a biomarker for indicating response to treatment [38,39]. This technology can interpret
molecular tumor composition while preserving spatial morphology, providing important
insights into tumor heterogeneity and its impact on tumor biology.

In this pilot study, we investigated the feasibility and potential of MALDI-MSI com-
bined with uni- and multivariate statistical strategies to (1) determine discriminative
peptide signatures for neuroblastomas designated as high or lower risk groups as a starting
point for subsequent more fine-tuned comparisons in the same patient subgroup and (2) to
explore neuroblastoma intratumor heterogeneity for the first time on the protein level. Qur
aim was to reach an initial proof-of-concept that peptide signatures are capable of adding
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1. Introduction

Neuroblastoma is a pediatric cancer arising in approximately 1 of 100,000 children
under 15 years of age in Germany [1]. It is the most common malignant solid tumor
diagnosed in infants with a median age at diagnosis of 17 months [2]. The tumor derives
from neural crest cells of sympathoadrenal lineage, and can develop anywhere in the
sympathetic nervous system. About 65% of primary tumors arise in the adrenal medulla
or lumbar sympathetic ganglia, while the rest arise in the neck, chest and pelvis. Clinical
behavior and outcome is highly diverse, ranging from low-risk disease with the highest rate
of spontaneous regression in all cancers to treatment-refractory lethal disease progression
or treatment-resistant relapse occurring in high-risk disease despite aggressive multimodal
treatment [3,4]. Consequentially, neuroblastoma treatment recommendations range from
mere observation or surgical resection alone to very aggressive therapy protocols including
high-dose chemotherapy, irradiation and immunotherapy [5].To address the issue of ap-
propriate therapy intensity, a common international staging and risk classification system
(INSS/INRG) has been developed [6,7]. In Europe, patients have been classified into three
risk groups following the criteria described in Table 1 [5]. The additional International
Neuroblastoma Pathology Classification (INPC) criterion is exclusively used in the USA [8].
Neuroblastoma samples from patients with low and intermediate risk (INSS/INRG) were
grouped together for this retrospective study and high-risk patients were defined as in
Table 1 (Stage 4 > 18 months plus all MYCN-amplified cases).

Table 1. Treatment classification of neuroblastoma patients.

Age at :
INSSS/I.NRG Diagrusis MYCN Status Chromosome 1p Treatment Risk
taging (Months) Status Group
1 not amplified normal Low
amplified High
- not amplified iR i
deletion/imbalance intermediate
amplified High
) <24 not amplified normal Low
>24 not amplified normal . ;
intermediate
not amplified deletion/imbalance
amplified High
4s/MS <18 not amplified normal Low
amplified High
4/M <18 not amplified intermediate
>18 amplified High

INSS = International Neuroblastoma Staging System. INRG = International Neutroblastoma Risk Group (INRG)
Staging System.

MYCN amplification was the first identified clinically relevant molecular biomarker for
neuroblastoma [9], and remains a strong single predictor for unfavorable cutcome. However,
a recent report from the INRG revealed that the prognostic impact of MYCN amplification is
greatly dependent on the context of clinical and biological features [10]. In Germany, current
risk stratification for the ongoing clinical trials is based on patient age, stage, MYCN amplifi-
cation and the result of an mRNA-based molecular classifier [11] that is continuously further
improved on transcriptomic and genomic levels [12]. We previously demonstrated spatial
intratumor genetic heterogeneity and first evidence of branched evolution in neuroblastoma
by bulk sequencing of paired diagnostic and relapse tumor samples [13]. A more recent
sequencing effort has demonstrated extensive genetic intratumour heterogeneity in neuroblas-
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toma with distinct evolutionary patterns that impact clinical behavior [14]. Previous extensive
next-generation sequencing efforts by the global neuroblastoma community to catalog genetic
aberrations in neuroblastoma [12,14-21] used primarily single diagnostic biopsies, and iden-
tified a low number of recurrent point mutations and translocations even in high-risk and
relapsed neuroblastomas. One of these studies also included matched diagnostic and relapse
samples from five patients, corroborating evidence of the genetic evolution of disease [20].
The demonstration of intratumor genetic heterogeneity and its evolution over disease course
have assisted an expansion of tissue sample collection accompanying patient treatment and
trials worldwide. In-depth analysis and further interpretation with respect to potential clinical
implications will achieve a better grasp of the extent of intratumor heterogeneity in neurob-
lastoma to improve personalized patient treatment. Knowledge remains limited about the
influence of both high intratumor heterogeneity and peptide signatures in neuroblastomas on
disease progressicn and response to treatment. Tumor progression, in general, is known to
be affected by tumor cellular interplay and the surrounding microenvironment [22]. Taken
together, there is unmet need for reliable neuroblastoma risk classification that takes the tumor
microenvironment and spatial heterogeneity into account.

Matrix-assisted laser desorption/icnization mass spectrometry imaging (MALDI-MSI)
innovative technology combines the comprehensive mass spectrometric technique with a
conventional histological evaluation. It allows unsupervised (unlabelled) analysis of molecules
(e.g., metabolites, proteins, peptide, lipids and glycans) directly on a single tissue section,
preserving their spatial coordinates and generating a molecular intensity map displaying
the spatial relative molecule abundance [23-26]. MALDI-MSI has several advantages over
other techniques, such as nano-desorption electrospray ionization {DESI), secondary ion
mass spectrometry (SIMS) and liquid extraction surface analysis. MALDI-MSI requires less
time to preform measurements, and provides better spatial resolution for a larger mass
range, which are all important prerequisites for potential clinical application. The mass range
of DESI and SIMS are limited to 2000 Da and 1000 Da, respectively. Spatial resolution of
DESI and LESA are much lower than MALDI-MSIL. In the present study, tryptic peptides
ranging from 600 to 3500 Da were analyzed with 50 um resolution, which could not have
been achieved by the other techniques [27]. Direct identification of proteins, from which the
peptides (acquired by MALDI-MSI) stem, remains limited to only a few abundant proteins.
Several studies have recently demonstrated that high-resolution MSI data combined with
microproteomics (high-resolution mass spectrometry) from microdissected tissue sections
enables retention of an aspect of spatial specificity and accurate protein assignment (high mass
accuracy) [28-30]. This is a promising strategy to explore potential disease-relevant protein
markers in small patient collectives, but is not well suited for large-scale studies because of
the longer processing time both for microdissection and mass spectrometry and the higher
cost. In contrast, spatially distinct signatures of peptide spectra, such as those extracted from
MALDI tissue imaging data, can be obtained in high-throughput in a clinically feasible time
frame at a lower cost, and could provide a new dimension to the current classification of
distinct patient subgroups, and potentially assist prediction of disease progression and/or
resistance development [31-34]. Therefore, MALDI imaging is a promising technology to
aid histopathology tissue assessment in routinely used large-scale formats. MALDI-MSI has
been used to classify tumor types [35], to predict a therapeutic strategy [36,37] and to act
as a biomarker for indicating response to treatment [38,39]. This technology can interpret
molecular tumor composition while preserving spatial morphology, providing important
insights into tumor heterogeneity and its impact on tumor bioclogy.

In this pilot study, we investigated the feasibility and potential of MALDI-MSI com-
bined with uni- and multivariate statistical strategies to (1) determine discriminative
peptide signatures for neurchlastomas designated as high or lower risk groups as a starting
point for subsequent more fine-tuned comparisons in the same patient subgroup and (2) to
explore neuroblastoma intratumor heterogeneity for the first time on the protein level. Our
aim was to reach an initial proof-of-concept that peptide signatures are capable of adding
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a new useful dimension of novel information to current clinical and transcriptomic risk
classification schemes for neuroblastoma.

2. Results
2.1. Discriminative Peptide Signatures Can Be Derived from MALDI-MSI Data to Identify
Different Tumor Features

Here we evaluated the technical feasibility of MALDI-MSI to identify potential discrim-
inative protein features of more aggressive neuroblastomas (high-risk) from formalin-fixed,
paraffin-embedded (FFPE) tissue sections. Tissue samples were diagnostic biopsies from
primary neuroblastomas categorized as high (1 = 5) or other risk groups (low or interme-
diate risk, 1 = 4). Peptide signatures extracted from the analyzed tissue samples yielded
501 aligned m/z values in a mass range for tryptic peptides (m/z value range: 800-3200).
Neuroblastoma cell-rich tumor regions yielded 397 aligned m/z values (Table 51), Repre-
sentative average spectra of whole sections are shown in Figure S1. Peptide signatures were
identified that characterized different tissue regions using bisecting k-means clustering, an
unsupervised multivariate segmentation analysis, conducted on MALDI-MSI data from
the tissue sections. Segmentation analysis produced two clusters shown as segmentation
maps (Figure 1) that corresponded well to tissue areas in the tumors that were either tumor
cell rich (>80%) or poor (defined by the reference pathologist). Consequently, peptide
signatures obtained from MALDI-MSI data can distinguish tumor regions with a high
tumor cell content from those with <80% tumor cell content directly from fixed tissue
sections. To determine whether signatures could be defined to discriminate high from
other risk groups, we performed a segmentation analysis (bisecting k-means) across only
the regions with >80% tumor cell content, as defined by the pathologist. Unsupervised
segmentation analysis of m/z values from these areas produced three segment clusters
with different peptide signatures in high-risk tumors, {(percentage of each peptide signature
contributing to the tumor cell-rich region in Table 52), but only a single segment cluster in
neuroblastomas were classified as lower risk (Figure 1). These data illustrate molecular
intratumor heterogeneity for the first time on the protein level in high-risk tumors. Pep-
tide signatures can be extracted from MALDI-MSI data by unsupervised clustering that
correctly identify tumor cell-rich regions in neuroblastomas and discriminate high-risk
neuroblastomas from lower risk groups.

Univariate analysis of MALDI-MSI data has the potential to determine which single
peptides are the most discriminative between neuroblastoma tissues from different risk
groups. We applied receiver operator characteristic (ROC) analysis to the total 397 aligned
m/z peaks from tumor cell-rich areas in paired comparisons of tissue sections from high
or other neuroblastoma risk groups. Differential spatial peptide intensity distributions
in tissue samples from the two risk groupings determined the discriminatory power of
individual peptides. Wilcoxon rank sum testing was applied to the total 397 aligned m/z
peaks, resulting in 206 statistically significant m/z values (AUC values of >0.8 or <0.2;
p < 0.001). From these, we show the five peptides with the strongest discriminatory values
in Figure 2. Three peptides (m/z values: 1707.68, 1775.79 and 1832.79 Da) had significantly
higher intensity distributions and two peptides (m/z values: 766.48 and 1178.73 Da)
had significantly lower intensity distributions in tumor cell-rich regions from high-risk
neuroblastoma tissue sections. To explore the potential of the most discriminatory peptides
in the peptide signatures to discriminate high from other risk groups, principle component
analysis was applied to the 206 statistically significant m/z values (AUC values of >0.8
or <0.2; p <0.001). Principal component 1 (PC-1) mainly captured the differences within
the tumor cell-rich regions in tumors from different risk groups and shows an increased
intensity distribution in cell-rich tumor regions in high-risk neuroblastomas (Figure 52).
Since 62% of the variance was explained by the first principal component (Figure 52), these
findings demonstrate that both unsupervised and supervised statistical approaches result
in discriminatory peptide signatures for high or other risk designations using MALDI-MSI
data from neuroblastoma tissue sections.
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H&E Staining MALDI-MSI

Sections from
high-risk group

.

Sections from
other risk groups

Figure 1. MALDI imaging identifies high-risk neuroblastomas by heterogeneous peptide signatures in tumor cell-rich
regions. Sections from primary neuroblastomas with high or other risk classifications are shown with hematoxylin and
eosin (H&F) staining for tissue section orientation in segmentation maps of MALDI-MSI analysis. Segments (indicated by
different colors) represent different proteomic clusters generated by bisecting k-means clustering. Black lines surround
tumor areas with >80% tumor cell content (annotated by the reference pathologist). Signatures derived from segmentation
clustering across the wheole tissue section are shown in the middle column and peptide signatures derived only across the
tumor cell-rich areas in the sections shown on the right. Colors represent the same proteomic clusters in the 2 images in the
middle column and the 2 images in the right column, but not between the middle and right images.

m/z 1707.68 m/z 1775.79 m/z 1832.79

m/z 1178.73

age ¥ @ 3?

Figure 2. Selected peptides have differential intensity distributions in neuroblastoma cell-rich tumor regions between
high and other risk groups. Relative peptide expression {color bar) is shown for MALDI m/z ion peaks with the highest
significant area under the curve (AUC) values (>0.85, p < 0.001, top row) in receiver operator characteristic (ROC) analysis
and the lowest AUC values (AUC < 0.3, p < 0.001, bottom MALDI images). MALDI-MSI ion images are shown for the same
set of neuroblastoma tissue sections categorized either as high (HR) or other risk groups (nHR) in each image. Black lines
surround tumor areas with >80% tumor cell content (annotated by the reference pathologist). Hematoxylin and eosin (H&F)
staining in sections is shown for orientation.
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2.2. Discriminative Proteins Were Identified from Neuroblastoma Tissue Sections Based on
MALDI-MSI Data

To identify the proteins corresponding to the discriminatory tryptic peptide fragments,
we used a bottom-up nanoliquid chromatography-tandem mass spectrometry (nanoL.C-
MS/MS) approach in adjacent tissue sections. This analysis assigned 147 of the 206 m/z
values (Table 53) shown to be discriminative in ROC analysis (AUC > 0.7 or AUC < 0.3,
p < 0.001) to peptides corresponding to proteins identified by nanoLC-MS/MS. According
to guidelines, corresponding proteins to m/z values are correctly identified when the
validating approach (nanoLC-MS/MS in this case; Table 54) identifies at least two peptides
{(detected in MALDI-MSI) from the same protein, whose spatial differential intensities
are similar and correlated in the same tissue region (correlation coefficients) [40]. These
guidelines were fulfilled for 8 proteins (Table 2) that corresponded to 18 MALDI-MSI
m/z values. Of these 8 proteins, differential intensity distributions for m/z values from 6
(14 m/z values) proteins were verified using MALDI-MSI data obtained from 10 arrayed
cores from neuroblastoma tissue areas having >80% tumor cell content (Table 2; selected
ion intensity maps from TMA shown in Figure S2). Two peptides (m/z values in Table
83) from the proteins, COL1A2, COL6A3, HSPAS5, HIST1H2BC, KRT9, AHNAK and
NID?2, were present at significantly higher intensities in tumor cell-rich areas in high-risk
neuroblastomas.

This group is enriched for extracellular matrix components (COL1A2, COL6A3 and
NID2) and proteins associating with or regulating cytoskeletal proteins (AHNAK) as well
as a cytoskeletal protein (KRT9). The two peptides assigned to CRMP1 had significantly
lower intensities in tumor cell-rich areas from high-risk neuroblastomas compared to lower
risk classifications. We selected two representative proteins from those identified for vali-
dation in adjacent neuroblastoma tissue sections using immunohistochemistry. AHNAK
expression was higher in tumor cell-rich areas in high-risk neuroblastomas than in the
lower risk groups (Figure 3). Reciprocally, CRMP1 expression was lower in high-risk
neuroblastomas compared with lower risk groups (Figure 3), validating our MALDI-MSI
profiling results. Our data strongly support that the 1832.79 m/z peak captured by MALDI-
MSI have a higher intensity in tumor cell-rich regions of high-risk neuroblastomas is a
tryptic peptide from AHNAK, an approximately 700 kD scaffold protein not previously
published in the context of neuroblastoma. It was initially reported to be associated with
neuroblast differentiation (reviewed in Davis2014) [41], but more recent studies have also
pointed to an important role in promoting cellular proliferation, migration and epithelial-
mesenchymal transition (EMT), processes leading to a short disease-free survival time
and poor outcome of aggressive cancers including pancreatic ductal adenocarcinoma [42].
Likewise, the relatively low intensity 922.50 m/z peak in MALDI-MSI of high-risk neu-
roblastomas is a tryptic peptide from CRMP1, a marker for neuronal differentiation that
is involved in neuronal outgrowth and guidance. It has been previously used in mRNA
panels for neuroblastoma MRD and tumor-initiating cells [43-46]. These findings strongly
support the correct identification of these 8 proteins as sources for 18 tryptic peptides
detected by MALDI-MSI in FFPE neuroblastoma tissue sections and validate AHINAK
and CRMP1 as discriminatory protein markers with potentially interesting and plausible
biological roles.

56



*[£7] 21028 YoIBIG WBBM FETNOITOIN
5 *{JUSIUIOD [[8D JOWIM] %,(Q< YILM SESIE WO 810D SNSST} WOISL[oINsu padesie) AeIeo DT anssn = WL 4 RISIIOD [[D T0WM} %,0@< YH.M SUOTIDS SNISSH I[0YM. UT SUOISSI WOJJ PSUTeIqO BIEp WO Pele[nd[e)) ,

2 uBopIN o £g0 610 67 LT'SSHT 100'0> 740 6£0 009€'S5FZ
: 160 000 z1E 82/904T 100'0> $40 80 0084 904T
6£0 600 ¥ 88781 100'0> 040 Z60 006472681
Ll ANEY 8€0 FARY 69 S9L9CT 1000> $40 80 0005 Z92T
6 unery 6L 770 Z10 649 9T S0C 1000> 820 980 0082 S0L%
70 000 768 LL/98ST 100'0> F40 060 00ZL985T
€50 700 ‘€Z1 186241 100°0> 040 060 006 °SLLT
¥ QuOIsIY paIvsnP qzH DEZHTLSIH 890 F10 29 28T 100'0> 850 780 0089'EFAT
170 200 187 6L LIFT 100'0> S20 060 0098 ZLFT
g soquiwt (0/dsE) SR 7€0 LT 96z S0TFOT 1000> €40 <80 0022 ZH0T
v Aqrurey upjord Yoous yeafy 070 200 159 166681 1000> 290 80 0066'€68T
1 upsord TS 0¥ 700 €T 15226 1000> $€0 $10 066726
Joyerpaur asuodsar usdefjo) 0 200 L1 9994 100'0> S0 800 0287992
7£0 710 768 04907 100'0> €90 880 0026'9507
ure ¢ eydre 4 adf walenin a0y $£0 100 0¥ 98 65H T 100°0> 990 220 0068 6S7T
9¢'0 110 299 202207 100'0> €20 980 00169202
ureyp z eydye | ad43 ueBeren V1100 $90 200 2zl 6£798T 100'0> $20 160 004472951
8€0 200 T'8F 97898 1000> €40 %80 026¥'998
Toquikg JUIDYII0D [eq] [Teo ,H+IAl  SUM-Suney VAL s PRI e nfeA Z
VR ur30I] vonv[aioy  uoneraeg SO mzmm W-D1 souedgrudry Hin Sns1oA YL S Eqﬂz

[DNVI D0Y 105 [DAV]I D0Y

'sdnor8 yst1 18130 10 YSBIy UI SEurojse[qoImsu wody suorpas anssy ur surejord Surpuodserion reyy pue ([SIN-IATVIN) sepnided jo suonnqrusip Ayisusiur [erjusisyic] -z sqeL,

o F8IE ‘£ 1 'T20T staour)

57



Cancers 2021, 13, 3184

§of17

High-risk
neuroblastoma

Other risk

groups

H&E MALDI-MSI lon Maps IHC
b :
k AHNAK
e 8
¥ :

Figure 3. Validation of two discriminative protein markers for neuroblastoma risk in tissue sections. Shown are representa-
tive tissue sections from neuroblastoma designated high-risk (HR) and as other risk groups (nHR). MALDI-MSI ion maps
for one peptide (n/z 1832.79 Da) assigned to AHNAK and one peptide (m/z 922.50 Da) assigned to CRMP1 are shown next
to the corresponding sections stained with hematoxylin and eosin (H&E) for orientation. Black lines border areas with >80%
tumor cell content. Immunohistochemical (IHC) detection of AHNAK and CRMP1 is shown for the regions surrounded by
the yellow squares in the expanded image (400 x magnification).

Taken together, MALDI-MSI is feasible for the investigation of molecular cell pheno-
types in histologically homogeneous appearing areas of high-risk neuroblastoma. Our data
show these cells to be molecularly heterogeneous, and we identified discriminatory peptide
signatures for high-risk neuroblastoma. From the discriminatory peptides, 18 could be
assigned to 8 proteins, and differential AHNAK and CRMP1 expression was immunohis-
tochemically validated in tissue sections. AHNAK shows intense and distinct staining
in the tumor cell-rich regions in high-risk neuroblastomas in comparison to other risk
groups (slight staining). In contrast, CRMP1 staining is intense in tumor cell-rich regions
of neuroblastomas with other risk designations and only exhibited slight staining in the
high-risk group. A detailed analysis of their biclogical roles in neuroblastoma is warranted.

3. Discussion

MALDI-MSI is a unique mass spectrometric technique that combines spatial molecular
analysis with conventional histological assessment. Neither labels nor prior knowledge
of molecular targets is necessary to simultaneously analyze the distribution of hundreds
of peptides within a tssue, and sample preparation is automated and relatively simple.
These advantages make MALDI-MSI an optimal tool to identify biomarkers and explore
tumor complexity. We have previously used MALDI-MSI on epithelial ovarian cancer
samples to discriminate ameng four different histotypes [48] and identify a proteomic
signature in early-stage disease that is a prognostic marker for recurrence [49]. Here, we
applied this technique to expose spatially resolved proteomic changes directly on intact
neuroblastoma FFPE tissue sections. The acquired spatial peptide signatures resulfed
in 11 identified proteins, most of which are associated with the extracellular matrix and
cvtoskeleton, which enabled us to distinguish high-risk neuroblastomas from the tissue
sections independently of conventional histology. Differential expression of the identified
discriminative proteins, AHNAK and CRMP1, was immunohistochemically confirmed in
sections, and discriminative spatial intensities of m/z peaks were validated in microar-
rayed tissue cores from tumor cell-rich regions in neuroblastomas. Importantly, we show
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that MALDI-MSI is capable of detecting molecular heterogeneity on the protein level in
neuroblastoma tissue sections.

Due to their heterogeneous distribution throughout the whole tissue sections, not
all peptides detected by MALDI-MSI in the whole sections were detected in cores in the
tissue microarray (Figure S3). Depending on the area of the entire tumor from which the
core is obtained, this information can be lost, pointing to significant limitations in the
use of tissue microarrays to detect tumor heterogeneity in comparison to MALDI-MSI on
whole tissue sections as a new, more comprehensive and precise diagnostic option. Several
studies demonstrate that MALDI-MSI in a powerful tool to aid pathology for different
cancer types [26,50,51]. Our study emphasizes that the investigation of whole tumor tissue
sections are promising to directly explore molecular tumor heterogeneity. Different areas
in a tumor section, while being homogeneous in morphological structure, can contain dif-
ferences in molecular composition [52,53]. Previous studies demonstrate that MALDI-MSI
is suitable to determine molecular subtypes in high-grade serous ovarian cancer [31,49] or
to perform tumor classification. MALDI-MSI is shown here to be suitable to acquire spatial
peptide signatures with potential as tools to directly examine molecular heterogeneity from
diagnostic neuroblastoma tissue sections and potentially assist discrimination of high- or
ultrahigh-risk disease after testing in a larger patient cohort.

International risk classification of neuroblastoma, based on clinical criteria plus MYCN
amplification and recently complemented by transcriptomic parameters, has proven its
usefulness for making therapy decisions and for disease management. Adding diagnostic
information on the protein level might have the potential to further improve fine-tuning
and the precision of current risk classification approaches. With this paper, we provide
the proof-of-concept for the technical feasibility of this approach. Even more important is
the consideration of tumor heterogeneity for the future selection of reliable prognostic or
predicative biomarkers and signatures.

Tumors are complex tissues interposing cancer cells with distinct cell types and
structures including extracellular matrix, stromal cells, blood vessels and cellular im-
mune components. Neighboring cells in the tumor stroma, best described by combining
proteomic profiling with histological evaluation, also influence tumor actions and phe-
notypes [54]. This diversity of cellular and molecular composition results in intratumor
heterogeneity as a key factor contributing to therapeutic failure, drug resistance and recur-
rence [55]. Neuroblastoma proteomes have been previously studied using tandem LC-MS
in bulk tissue homogenates from each tumor sample, and have defined large-scale, up-
or down-regulated proteins associated with high risk [56,57]. The most commonly used
(LC-MS, 2-dimensional electrophoresis) proteomic methods use tissue homogenates and
cannot assign protein alterations to morphological structures. Due to the high intratumor
heterogeneity, information about protein alterations may be lost.

In addition to providing proof-of-concept for the technical feasibility of MALDI-MSI,
the potential risk classification-relevant peptide signatures of neuroblastoma are described
to open new avenues to assess tumor heterogeneity. Our data also identified two specific
proteins with potentially important roles in neuroblastoma biology and disease course.
Our data showed a lower intensity distribution of CRMP1 in high-risk neuroblastomas
and reciprocally higher intensity distribution in low- and intermediate-risk neuroblas-
tomas. This is well in line with the reported role of CRMP1 in neuronal differentiation
and its previous use as a marker gene in neuroblatoma gene expression panels as well
as its usefulness as a prognostic and diagnostic marker in other cancers [58]. A detailed
functional assessment of the biological role of CRMP1 in neuroblastoma is warranted in
subsequent studies, but is beyond the scope of this paper. The lower mass accuracy of
the presented workflow makes it more susceptible to false-positive protein assignments.
Consequently, selected m/z values were matched to their source proteins to examine
whether the differential peptide signature includes peptides from biologically feasible pro-
teins in neuroblastoma, and subsequently validated their differential expression in tumor
sections using immunohistochemistry. High- or ultrahigh-resolution mass spectrometry
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combined with microproteomics from microdissected regions in consecutive tissue sections
is a promising technology for accurate extensive spatial proteomic characterization and
quantification [28,29]. However, its use in high-throughput workflows, such as for large
sample cohorts, is limited. This is an important prerequisite to explore potential clinical
applications for alternative or improved risk assessment in a large tumor sample cohort.

We identified AHNAK as a marker protein highly expressed in high-risk neurob-
lastoma, from which tryptic peptides have high intensity distributions in tumor cell-rich
regions of sections analyzed by MALDI-MSI. AHHNAK has not been previously associ-
ated with neuroblastoma, but has been implicated in several cellular functions associated
with cancer, including being listed one of six putative cancer genes involved in the evo-
lution of nine cancer types across 3000 cancer genomes [59]. Most interestingly, AHNAK
has been reported to be associated with enhanced proliferation and migration in rhab-
domyosarcoma [60] among other cancers as well as supporting EMT in hepatoblastoma [61],
endometrial [62] and lung [63] cancer cells as well as pancreatic ductal adenocarcinoma [42]
and gastric cancer [64]. A similar role in neuroblastoma would be well in line with our
previous observations that several signaling elements involved in EMT regulation are
mutated in relapsed neuroblastomas [13]. However, the role of AHNAK in cancer appears
to be tissue-specific, as other reports also point to a potential role as a tumor suppressor in
glioma [65] and breast cancer [66]. This may be due to the fact that AHNAK achieves its
breadth of activity by being a large protein that moderates multiprotein complex function
by acting as a scaffold to tether activity either in the nucleus or at the plasma membrane
and having its own phosphorylation sites that alters interactivity and intracellular local-
ization [41]. The neuroblastoma-specific biological role of AHHNAK has to be evaluated in
subsequent detailed studies beyond the scope of this paper. Interestingly, AHNAK peptide
intensity in MALDI imaging of low- and intermediate-risk neuroblastoma sections was
also occasionally high in areas with <80% tumor cell content. While we can only speculate
about the source of expression, these could represent subclones of molecularly evolving
neuroblastoma cells or groups of neuroblastoma cells that are held back from evolving by
influences of the surrounding stroma.

AHNAK was also occasionally upregulated in some area of the tumor stroma. Due
to the barrier of natural structure including connective tissues, fibroblasts, immune cells
and vasculature, common mass spectrometry methods are limited and cannot expose the
molecular composition of the stromal compartment. MALDI-MSI is able to map protein
changes in both areas that clearly exhibit the cellular interaction between malignant cancer
cells and their environment and provides new insights for understanding neuroblastoma
tumorigenesis and progression.

4. Materials and Methods
4.1. Patient and Sample Cohort

All samples were collected from primary neuroblastomas (located in the adrenal) for
diagnostic purposes and were conserved in the local pathology departments as FFPE tissue
Blocks. Diagnosis of neuroblastoma was confirmed by an experienced reference pathologist
and risk classification for patients, performed by the national neuroblastoma trial group, was
based on definitions of the German BEM-NB2004 Trial and recommendations by the German
Society for Pediatric Oncology and Hematology (GPOH). The comprehensive patient data set
included sex, age, tumor INSS stage at diagnosis, presence or absence of MYCN amplification
in the diagnostic tumor sample (detected by FISH), INRG risk classification and outcome, in
particular diagnosis of relapse and death of disease (Table 3). Follow-up time for patients
in this cohort was at least 4 years or until death of disease. Tissue areas with >80% tumor
cell content were identified by the pathologist for both stancing tissue cores to create the
tissue microarray and annotating sections analyzed by MALDI-MSI. Sample numbers 1-5
(high-risk) and 10-13 (other risk designations, Table 3) were used in an analyses of whole
tissue sections (MALDI-MSI and immunohistochemistry). Cores from sample numbers 4,
10, 12 and 13 were also stanced for the tissue microarray together with tissue cores from 6
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tumor samples from independent patients. Tumor cores were removed from FFPE tissue
blocks using a 1.0-mm diameter hollow needle as tissue cores, which were arrayed in a
recipient paraffin block (Table 3).

Table 3. Clinicopathological characteristics for our patient cohort.

Risk "
D Sex Age INSS MYCN . Classification Disease Death Metastasis
(Years) Stage Amplification . . Recurrence
(at Diagnosis)

1 F 03 3 + high - - No

2 M 0.6 2 # high - - No

3 M 1 3 + high - + Not

4 M 14 4 # high - - Yes

5 F 12 4 + high + + Yes

6 M 2.8 4 + high + + Yes

7 M 7.8 4 - high - - Yes

8 F 8 4 + high - - Yes
9t M 12 3 - high + - Not
10 F 24 1 - low - - No
11 F 08 4 - intermediate - - Yes
12 M 01 4s - low - - Yes
13 F 01 3 mosaic low - - No
14 F 5.9 3 - intermediate - - No
15 M 1.9 2 - low - - No

* Disease in this patient later metastasized and was upgraded to INSS stage 4. ¥ This patient had multiple relapses after first-line therapy
and was treated for high-risk disease in relapse therapy.

4.2. Tissue Immunohistochemistry

FEPE tissue sections (whole sections) were dewaxed and subjected to a heat-induced
epitope retrieval step. Endogenous peroxidase was blocked by hydrogen peroxide prior
to incubation with a monoclonal antibody against human CRMP1 (EP14521, Abcam,
Cambridge, UK), followed by incubation with EnVision+ HRP-labeled polymer (Agi-
lent Technologies Inc., Santa Clara, CA, USA) and visualization using the OPAL system
{Akoya Biosciences Inc., Marlborough, MA, USA) according to manufacturer’s instructions.
After protein inactivation, sections were incubated with a polyclonal antibody against
human AHNAK (PA5-53890, Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA),
followed by incubation with the EnVision+ polymer (Agilent Technologies Inc.) and visu-
alization using the OPAL system. Nuclei were stained with 4/,6-diamidine-2’-phenylindole
dihydrochloride (DAPT; Merck KGaA, Darmstadt, Germany) and slides were mounted in Flu-
cromount G (Southern Biotech, Birmingham, AL, USA). Multispectral images were acquired
using a Vectra® 3 imaging system (Akoya Biosciences Inc., Malborough, MA, USA).

4.3. MALDI-MSI

All FEPE tissue sections (whole sections and tissue microarrays) were cut to 6-um
thickness by microtome (HM325, Thermo Fisher Scientific, Waltham, MA, USA.) and
mounted onto conductive glass slides coated in indium tin oxide (Bruker Daltonik GmbH,
Bremen, Germany). Sections were preheated to 80 °C for 15 min before deparaffiniza-
tion. Paraffin was removed in xylene, and tissue sections were processed through 100%
isopropanol and successive hydration steps of 100% ethanol followed by 96%, 70%, and
50% ethanol, each for 5 min. Sections were fully rehydrated in Milli-Q-purified water
(Merck KGaA, Darmstadt, Germany). Heat-induced antigen retrieval was performed in
MilliQ-water for 20 min in a steamer. After drying slides for 10 min, tryptic digestion was
performed. An automated spraying device (HTX TM-Sprayer, HTX Technologies LLC,
ERC GmbH, Riemerling, Germany) was used to deliver, onto each section, 16 layers of
tryptic solution (20 ug Promega®Sequencing Grade Modified Porcine Trypsin in 800 pL
digestion buffer-20 mM ammonium bicarbonate with 0.01% glycerol) at 30 °C. Tissue
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sections were incubated for 2 h at 50 °C in a humidity chamber saturated with potassium
sulfate solution, then the HTX TM Sprayer applied 4 layers of the matrix solution (7 g/L
a-cyano-4-hydroxycinnamic acid in 70% acetonitrile and 1% trifluoroacetic acid) at 75 °C.
MALDI imaging was conducted on the rapiﬂeX® MALDI Tissuetyper® (Bruker Daltonik
GmbH, Bremen, Germany) in reflector mode with the detection range of 800-3200 m/z,
500 laser shots per spot, a 1.25 GS/s sampling rate and raster width of 50 um. FlexImaging
5.1 and flexControl 3.0 software (Bruker Daltonik GmbH) coordinated the MALDI imaging
run. External calibration was performed using a peptide calibration standard (Bruker
Daltonik GmbH). The matrix was removed from tissue sections with 70% ethanol after
MALDI imaging, and sections were stained with hematoxylin and eosin for histology.
Tumor regions with >80% tumor cells were digitally annotated by a pathologist in the
SCiLS cloud and transferred into SCilLS Lab software (Version 2019¢ Pro, Bruker Daltonik
GmbH).

4.4. Protein Identification by Electrospray Ionization Tandent Mass Spectrometry

Protein identification for m/z values was performed on adjacent tissue (tumor cell-rich
regions) sections using a bottom-up nano-liquid chromatography electrospray ionization
tandem mass spectrometry approach as previously described [67]. Similar to their prepara-
tion for MALDI-MSI, sections were preheated to 80 °C for 15 min before deparaffinization.
Paraffin removal, antigen retrieval and tryptic digest were carried out as for MALDI-MSL
After incubation at 50 °C in a humidity chamber saturated with potassium sulfate solution
for 2 h, peptides were extracted from tumor cell-rich regions separately from each tissue
section into 40 pL of 0.1% trifluoroacetic acid and incubated for 15 min at room temperature.
Digests were filtered using a ZipTip® C18 following the manufacturer’s instructions, and
the eluates were vacuum concentrated (Eppendorf® Concentrator 5301, Eppendorf AG,
Hamburg, Germany) and reconstituted separately in 20 uL 0.1% trifluoroacetic acid, from
which 2 uL. were injected into a NanoHPLC (Dionex UltiMate 3000, Thermo Fisher Scien-
tific) coupled to an ESI-QTOF ultrahigh-resolution mass spectrometer (Impact II™, Bruker
Daltonic GmbH, Bremen, Germany). The peptide mixture was loaded onto an Acclaim
PepMap™ 100 C18 trap column (100 um x 2 cm, PN 164564, Thermo Fisher Scientific)
and calibrated with 10 mM sodium hypofluorite (flowrate 20 uL/h) before separation in
an Acclaim PepMap™ RSLC C18 column (75 um x 50 cm, PN 164942, Thermo Fisher
Scientific) with an increasing acetonitrile gradient 2-35% in 0.1% formic acid (400 nL/min
flow rate, 10-800 bar pressure range) for 90 min while the column was kept at 60 °C.
Released charged peptides were detected by a tandem mass spectrometer using a full-mass
scan (150-2200 m/z) at a resolution of 50,000 FWHM. AutoMS/MS InsantExpertise was
used to select peaks for fragmentation by collision-induced dissociation. Acquired raw
MS/MS spectra were converted into mascot generic files (.mgf) for amino acid sequences
using ProteoWizard software [68] and were used to search the human Swiss-Prot database
using the Mascot search engine (version 2.4, MatrixScience Inc. Boston, MA, USA) with the
significance threshold of p < 0.05 and the settings for trypsin as the proteolytic enzyme; a
maximum of 1 missed cleavage; 10 ppm peptide tolerance; peptide charges of 2+, 3+ or
4+; oxidation allowed as variable modification; 0.8 Da MS/MS tolerance and a MOWSE
score >13 to identify the corresponding protein. MOWSE (for MOlecular Weight SEarch)
is a method for identifying proteins from the molecular weight of peptides created by
proteolytic digestion and measured with mass spectrometry [47]. The probability-based
MOWSE score formed the basis to develop Mascot, a proprietary software for protein
identification from mass spectrometry data Mascot results were exported as.csv files (Table
54). To match aligned m/z values from MALDI-MSI (Table S1) with the peptides identified
by nanoLC-MS/MS (Table S4), we developed an excel macro in-house (File 51). The macro
was applied with settings accommodating previously described parameters [40]. Briefly,
the comparison of MALDI-MSI and LC—~MS/MS m/z values required the identification
of >1 peptide (search mass window < 0.3 Da). Only peptides with the smallest mass
differences in the mass window and a correlation ratio >0.30 were counted as a match. The
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peptides with highest MOWSE peptide scores and the smallest mass differences between
MALDI-MSI and LC-MS/MS data were accepted as correctly identified.

4.5. MALDI-MSI Data Processing for Statistical Analyses

MALDI-MSI raw data were imported into the SCiLS Lab software version 2019c Pro
(Bruker Daltonik GmbI) using settings preserving the total ion count and without baseline
removal and converted into the SCiLS base data .shd file and .slx file. An attribute table was
built for sample number, tumor cell-rich regions, tumor INSS stage, MYCN amplification
status in diagnostic tumor sample, or whether the molecular risk designation was high
or other, and on patient age, sex and whether the patient experienced disease recurrence.
Attributes were used to divide a dataset into independent datasets from different spatial
spectral regions in tissue sections, or samples with different tumor or patient characteristics
for analysis. Peak finding and alignment were conducted across a dataset (interval width =
0.3 Da) using a standard segmentation pipeline (SciLS Lab software) in maximal interval
processing mode with TIC normalization, medium noise reduction and no smoothing
(Sigma: 0.75) [69,70].

4.6. Statistical Annlyses

The top-down segmentation using bisecting k-means clustering analysis was per-
formed on the partitioned datasets from tissue sections or from only the regions with >80%
tumor cells, as previously described [71], to defined peptide signatures. Both analyses used
settings for 0.3 Da interval width, including all individual spectra, medium noise reduction
and correlation distance. Discriminative MALDI-MSI m/z values from tumor cell-rich
regions were identified using supervised ROC analysis on the partitioned datasets from
tissue regions with >80% tumor cells. Area under the ROC curve (AUC) varies between
0 and 1, where values close to 0 and 1 indicates peptides to be discriminatory and 0.5
indicates no discriminatory value. Since the number of m/z values from the groups to be
compared must be similar for this analysis, 35,000 m/z values were randomly selected per
group. For those peptides with an AUC >0.7 or <0.3, a univariate hypothesis test (Wilcoxon
rank sum test) was used to test the statistical significance of m/z values. Peptides with
p-values < 0.001 and a peak correlation ratio >0.30 were selected as candidate markers.
Supervised principal component analysis (PCA) was conducted to define characteristic
peptide signatures differentiating between tumor regions with >80% tumor cell content
from high or other risk groups. The data were scaled for PCA in a level scaling model. Only
m/z values with AUC >0.8 or <0.2 and p < 0.001 were used as peak intervals for PCA using
settings to create five components and use settings to use an interval width of +0.3 Da,
maximal interval processing mode, normalization to total ion count, and no noise reduc-
tion. ROC analysis was also used in validation experiments to identify discriminative m/z
values (defined in data sets from whole sections) using MALDI-MSI data (2500 m/z values
randomly selected per group) from arrayed tumor cores. The Wilcoxon rank sum test was
used to test the statistical significance of m/z values. Peptides with significant differences
(p-value < 0.001) in the Wilcoxon test with a peak correlation ratio >0.30 were selected as
candidate markers (significant correlations p < 0.05; Pearson’s correlation analysis [72]. All
Figures were created using the SCiLS Lab software (Bruker, Bremen, Germany).

5. Conclusions

Molecular intratumor heterogeneity in high-risk neuroblastoma most likely con-
tributes to therapy response and the clinical disease course, and is a challenge for risk
assessment at initial tumor diagnosis. This pilot study demonstrates that (1) MALDI-MSI
can visualize molecular tumor characteristics on the protein level associated with current
risk classification directly in FFPE tumor tissue sections; (2) MALDI-MSI was able to ex-
plore spatial proteomic changes and directly identify molecular tumor heterogeneity in
tumor sections; and (3) combined with nanoLC-MS/MS, this approach can identify differ-
entially expressed new protein biomarkers in high-risk neuroblastomas (versus lower risk

63



Cancers 2021, 13,3184

140f17

References

groups), which might have an important role in neuroblastoma biology and /or progression.
We provide proof-of-concept for the usefulness of this innovative technology in assisting
risk classification and assessment of tumoer heterogeneity on the protein level, as well as
identification of new biomarkers with potential relevance for an increased understanding
of neuroblastoma biclogy.
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Abstract: Withregard torelapse and survival, early-stage high-grade serous ovarian (I IGSOC) patients
comprise a heterogeneous group and there is no clear consensus on first-line treatment. Currently,
no prognostic markers are available for risk assessment by standard targeted immunohistochemistry
and novel approaches are urgently required. Here, we applied MALDI-imaging mass spectrometry
(MALDI-IMS), a new method to identify distinct mass profiles including protein signatures on
paraffin-embedded tissue sections. In search of prognostic biomarker candidates, we compared
proteomic profiles of primary tumor sections from early-stage I1GSOC patients with either recurrent
(RD) or non-recurrent disease (N = 4; each group) as a proof of concept study. In total, MALDI-IMS
analysis resulted in 7537 spectra from the malignant tumor areas. Using receiver operating
characteristic (ROC) analysis, 151 peptides were able to discriminate between patients with RD
and non-RD (AUC > 0.6 or < 0.4; p < 0.01), and 13 of them could be annotated to proteins.
Strongest expression levels of specific peptides linked to Keratin typel and Collagen alpha-2(1) were
observed and associated with poor prognosis (AUC > 0.7). These results confirm that in using IMS,
we could identify new candidates to predict clinical outcome and treatment extent for patients with
early-stage HGSOC.

Keywords: ovarian cancer; early-stage HGSOC; prognostic markers; MALDI-IMS

Cancers 2020, 12, 2000; doi:10.3390/cancers12082000 www.mdpi.comfjournal/cancers

70



Cancers 2020, 12, 2000 20f 14

1. Introduction

Epithelial ovarian cancer (EOC) is the leading cause of death within gynecological cancers in
the developed countries (http://seer.cancer.gov). Due to the lack of specific symptoms, EOC is often
detected at an advanced stage with a five-year survival rate less than 40% [1]. However, 25% of EOC
patients are diagnosed in early stage (I-II) as defined by Fédération Internationale de Gynécologie
et d’Obstétrique (FIGO), where the disease is often cured by surgery alone, or in combination with
platinum-based chemotherapy [2,3]. Even though the prognosis of patients with FIGO stage I-1I
increases dramatically with treatment, with five-year survival rates between 80-90%, some subgroups
of early-stage EOC will relapse and 20-30% of these patients will finally succumb to the disease [4-6].
Older age, greater stage, higher grade and malignant cytology are independent prognostic factors for
recurrence [7]. Moreover, the prognosis differs between the histological subtypes with high-grade
serous ovarian cancer (HGSOC) being the most common one, accounting for 70-80% of ovarian
cancer-related deaths.

According to guidelines of the Huropean Society for Medical Oncology (ESMO),
bilateral salpingo-oophorectomy, hysterectomy, omentectomy, peritoneal stripping and lymph
node sampling are recommended procedures for stage [ and II HGSOC patients (https:
[fwww.esmo.org/guidelines/gynaecological-cancers/newly-diagnosed-and-relapsed-epithelial-
ovarian-carcinoma/esmo-esgo-consensus-conference-recommendations-on-ovarian-cancer) [8,9].
However, fertilization-sparing surgery (FS5) for women of childbearing age could be considered,
and be discussed individually [10]. Different criteria for selecting patients have been applied and
the debate over FSS in HGSOC is more than controversial as there are limited data on that issue.
Preoperative screening methods and comprehensive surgical staging for accurate disease classification
are mandatory [11,12]. In this context, one third of presumed stage I ovarian cancers were found to
be upstaged by the findings of dissemination in the peritoneal cavity [13]. Patients with high-risk
early-stage EOC, defined as stage I, grade 3, stage IC and II, as well as clear cell cancers, will require
adjuvant chemotherapy which has been shown to reduce the relapse rate by >60% in stage IC EOC
patients [14]. Hence, platinum-based chemotherapy is an important factor in treating these patients
with high-risk early-stage EOC with impact on both recurrence-free (RES) and overall survival (OS).
Prognostic markers are needed to stratify patients into low- and high-risk groups in order to select
patients who will benefit from chemotherapy. The term EOC refers to at least four different histological
subtypes which is an important issue to take into account in the risk assessment of clinical progression.
The most aggressive histotype is HGSOC. Nevertheless, the optimal clinical management is still a
controversial debate and patients with early-stage high-grade serous EOC might be over-treated which
could potentially result in complications after radical surgical management and an increase in toxicity
of chemotherapy [15,16]. Hence, it is of utmost importance to identify novel diagnostic markers for
this patient cohort in order to improve the risk assessment of tumor recurrence. An optimal evaluation
of risk for progression would have the benefit of personalized chemotherapy, and reduced costs
and treatment side effects in patients with little risk for progression. Commonly used tissue-based
techniques, such as liquid chromatography-based mass spectrometry or gene expression profiling,
require large amounts of tissue material. Moreover, these methods do not enable a direct correlation
between differentially expressed molecular profiles and the tissue histology [17]. Matrix-assisted laser
desorption/ionization (MALDI) imaging mass spectrometry (IMS) has the advantage of combining
morphological features with protein expression in tissue. This technique enables spatially resolved
tissue assessment via specific molecular signatures (e.g., proteins, peptides, lipids and molecules of
cell metabolites) and allows their correlation with alterations in tissue histology [18-20] as well as
stages of ovarian cancer [21].

This recently developed diagnostic method of imaging mass spectrometry (MALDI-imaging
MS) has also been used for the rapid diagnosis and prognosis of patients [22-24], and to identify
peptide profiles spatially resolved directly on the paraffin-embedded tissue to depict and assign to the
histological and clinical pathological subtypes of cancer.
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Here, we have applied the method to detecta molecular signature of 13 peptides that predicts tumor
recurrence in patients with early-stage HGSOC. According to their specific sequence, these peptides
were allocated to a signature of proteins for risk stratification in support of clinical management of
patients with early-stage HGSOC.

2. Results

2.1. Accumulation of Proteomics Data by MALDI-IMS

The initial proteomic measurements were simultaneously carried out on primary tumor tissue
sections of early-stage HGSOC patients (7 = 10) with either recurrent disease (RD) or non-recurrent
disease (non-RD), respectively. Mass spectra of primary tumor tissue sections of early-stage HGSOC
were extracted and statistical data analysis was performed by the SCiLS Lab software. In total,
506 aligned m/z values in a mass range between m/z 600 and 3.000 were extracted (Table 51). Average
spectra of primary tumor tissue sections of early-stage HGSOC are shown in Figure 1. The unsupervised
data analysis of the peptide signatures by probabilistic latent semantic analysis (pLSA) allowed the
discrimination of different patient groups via individual mass spectra compound intensity and spatial
distribution. Analysis of the peptide signatures by pLSA resulted in the discriminative compounds for
HGSOC patients with RD and non-RD. However, a third HGSOC patient group could be identified
which showed individual pLSA compounds which did not match to patients with RD nor patients
with non-RD (Figure S1).
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Figure 1. Average spectra of representative MALDI-imaging proteomic profiles of primary tumor
sections from either (A) patients without or (B) with recurrent disease. For each group, examples of H&E
images with indicated malighant areas measured are included. In total, 506 #7/z values in a mass range
between m/z 600 and 3000 (signal/noise > 1) were extracted by peak picking from high-grade serous
ovarian cancer (HGSOC) at early-stage human tissue. Analyses were performed with 20 biologically
independent spots (N = 10 each patient group).
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Reassessment of the two patients in that subclass group by an experienced gynecological
pathologist showed that the previous immunchistological expression pattern in one of the patient
biopsies was not conclusive. Asin high-grade serous ovarian carcinoma, p53 showed a mutated pattern,
but unlike typical high-grade serous carcinoma, CD56 and synaptophysin expressions were evenly
and strongly present. Moreover, the morphological picture indicates most likely an undifferentiated
non-small cell neuroendocrine carcinoma (NSCNEC) of the ovary. The second patient was re-classified
as pT2cG3 and hence not a HGSOC patient diagnosed at early stage. Therefore, samples of these two
outlier patients were not considered for further analysis.

Since considerable differences in stroma content occur within the sample cohort, malignant
compartments were evaluated in each core of early-stage HGSOC patients (N = 8). Mass spectra
of malignant areas from both annotated groups (N = 4, each group) were obtained and a statistical
comparison was performed using the SCiLS Lab software. In total, 612 m/z values from a mass range
between m/z 800 and 3.500 (threshold 31.42) were identified by peak-picking and used to compare
the tissue sections. Average exemplary spectra are shown for primary tumors of early-stage HGSOC
patients with RD and non-RD in Figure 1. In total, MALDI-IMS analysis resulted in 7537 spectra from
the entire patient cohort.

2.2. Discovery of Discriminative Peptide Signatures

In order to determine specific molecular signatures in HGSOC patients with RD and non-RD,
a pLSA based on the peptide signatures was performed and allowed the direct interpretation of score
images and loadings. Here, this unsupervised data analysis of the peptide signature enabled the
discrimination of both distinct patient groups (Figure 2).
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Figure 2. Discrimination of molecular signatures for the groups of HGSOC patients via probabilistic
latent semantic analysis (pLSA). Score plots of the first three components from imaging mass
spectrometry (IMS) spectra of primary tumors from patients without (-RD, in blue) and with recurrent
disease (+RD, in red) are shown.

2.3. Determination of Characteristic nifz Values of HGSOC Patients

The malignant compartments of the tumors were assigned and spectra were compared in a
pairwise manner to obtain discriminative peptide values (m/z) using receiver operating characteristic
(ROC) analysis. The ROC analysis resulted in 151 peptide values that were able to discriminate between
patients with RD and non-RD (AUC > 0.6 or < 0.4; p < 0.01; Table S1). A selection is shown in Figure 3.

For example, the peptide values 840.6 + 0.2 Da, 1138.5 + 0.2 Da and 1631.8 + 0.2 Da denote
high spatial intensity distribution in patients with recurrence of tumors, which can be visualized as a
heatmap distribution across the tissue section (Figure 3). The peptide value 1631.8 + 0.2 was associated

73



Cancers 2020, 12, 2000 50f14

with non-RD. The distribution of the most significantly expressed peptides within the groups is shown
in Figure 4.

2.4. Identification of Differentially Expressed Proteins

To improve the understanding of the disease progress and provide a method for personalized
pathology assessment of early-stage HGSOC, specific localized peptide values were investigated and
subsequently identified. Identification of these peptide markers provides important insights into the
disease mechanism as well as progression. Since a large number of isobaric ions and the presence of
so-called chimera spectra adversely affected the identification of m/z values by MS/MS (direct from
tissue section), we performed a corresponding “bottom-up” LC-MS/MS approach (Table 52) with
adjacent tissue sections, which enabled the identification of the obtained MALDI-IMS m/z values.

Out of the MADLI-IMS-derived discriminative m/z values between RD and non-RD HGSOC,
18 m/z values could be assigned to 13 proteins (Table 1).
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Figure 3. Characteristic peptides for group of patients with recurrence and no recurrence discrimination
via individual peak mass spectra intensity and spatial peak distribution. (A) The m/z values 840.6 + 0.2
and 1138.5 + 0.2 Da show significantly higher spatial intensities (area under the curve (AUC) > 0.6;
p < 0.001) in patients with recurrent disease (+RD) compared with without recurrence (-RD). (B) In
contrast, the 1631.8 + 0.2 Da peptide, as an example, exhibited significantly higher intensities (AUC < 0.4;
p < 0.001) in patients with no recurrence.
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Table 1. Receiver operating characteristic (ROC) curve analysis reveals a prognostic protein signature
for early-stage HGSOC. Significantly differentially expressed proteins in primary tumors of patients
with recurrent compared with no-recurrent disease are listed (overexpressed, AUC values > 0.6,
and underrepresented < 0.4, p < 0.0001).

cotroid it TOTET LSS 4y pceion prosn noxe
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2705.026 2704.0181 0.7547 2704.1538 0.1358 K1Co_HUMAN Keratin, type I cytoskeletal 9 KRT9
1791.698 1790.6901 0.6250 1790.7204 0.0304 K1Co_HUMAN Keratin, type I cytoskeletal 9 KRT9
644.336 643.3281 0.7470 643.3653 0.0373 ACTB_HUMAN Actin, cytoplasmic 1 ACTB
840.564 839.5561 0.7407 839.4613 0.0947 CO1A2_HUMAN Collagen alpha-2(I) chain COL1A2
868.467 867.4591 0.7331 867.4563 0.0028 CO1A2_HUMAN Collagen alpha-2(I) chain COL1A2
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1157.708 1156.7001 0.3782 1156.6200 0.0800 APOA1_HUMAN Apolipoprotein A-I APOAL1
1631.775 1630.7671 0.3682 1630.8236  0.0566 TBB5_HUMAN Tubulin beta chain TUBB
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More than one m/z value with similar discrimination characteristics was identified from Keratin
type 1 and Collagen alpha-2(I) and was assigned to the observed m/z values from the MALDI-IMS
experiment, hence correctly recognized (Table 1).

2.5. Relatedness between Patients with RD and between Patients without RD

The analysis was expanded and the peptide signature (discriminative m/z values) was applied to
three additional early-stage patients with high-grade endometrioid ovarian cancer (HGEC), two of
them with RD; one non-RD, and showed comparable peptide intensities in samples of HGSOC
patients. A principal component analysis (PCA) was performed overlaying covariate influences onto
the principal component space (Figure 5).

HGSOC @ -RD +RD
HGEC <@ -RD +RD

Standardized PC2 (18.8% explained var.)

\
\
\
\ ®
o 0%

i \® \
a0 \
\

e 0 .
Standardized PC1 (50.3% explained var.)

Figure 5. A biplot showing included samples of early-stage HGSOC patients as points. Additionally,
three patients with high-grade endometrioid ovarian cancer (HGEC) were included in the analysis and
marked with diamonds. Biplot axes indicate the influence of each peptide in the principal component
space. The principal component analysis (PCA) shows a discrimination of patients with (+RD) and

without recurrent disease (—RD).

PCA confirmed the closer relatedness between patients with RD and between patients without
RD. Inclusion of three early-stage HGEC patients showed similar relatedness. The variable markers
cluster in two groups indicating correlated variables. The higher correlated group A comprises 1157.7
+0.2,858.6 + 0.2,1751.8+0.2, 1753.0 + 0.2 and 1055.4 + 0.2 Da. The less correlated group B comprises
the remaining peptides with 1631.8 = 0.2 Da being negatively correlated (Figure 4A,B). The high
proportion of variability explained by the two-dimensional principal subspace provides solid grounds
for these correlations.
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3. Discussion

In general, HGSOC patients diagnosed at early-stage have an excellent prognosis and concern
arises that some of the early-stage HGSOCs are over-treated. Hence, there has been a debate about
the optimal duration and chemotherapy treatment strategy, e.g., Carboplatin only, or combination
regimens, four cycles vs. six cycles. However, a subgroup of patients will relapse and need therapies
thatare more intensive at titme of diagnosis. Itis therefore of greatimportance to identify these high-risk
patients in order to improve their clinical outcome.

Currently, there are no reliable markers at hand for standard immunohistochemical assessment of
this subpopulation. Here, we have used a novel approach using MALDI-IMS technology to screen
for a prognostic peptide signature to support the clinical management of these patients. For this
purpose, standardized protocols for MALDI-IMS sample preparation have been developed [25,26],
which are intended to enable reliable exploration of molecular signatures as biomarkers and has
been shown to provide valuable diagnostic and risk assessment capabilities for other diagnostically
challenging neoplasms [27]. QOur recently published data, showed that IMS can reliably detect the
histological subtypes of ovarian cancer [20]. In this presented study, proteomic analysis results 151
discriminative m/z values between early-stage HGSOC patients with either RD or non-RD. In order to
identify MALDI-IMS-derived m/z values, the “bottom-up”-nano liquid chromatography (nLC)-MS/MS
approach was performed on adjacent tissue sections. According to the IMS guidelines [28], the mass
difference between MALDI-IMS and LC-MS/MS m/z values should be less than 0.9 Da and requires the
identification of more than one peptide.

Specific peptides linked to Keratin typel, Actin, cytoplasmic 1 and Collagen alpha-2(I) were
observed to have the strongest expression levels in primary tumors from early-stage HGSOC patients
with RD and indicated greatest prognostic values (AUC > 0.7). A published reference database of
MALDI-IMS-derived peptide and protein values in various and in particular for ovarian cancer FFPE
tissue [29] was intended as support for the verification of protein identifications. The observed m/z
values 1562.8 + 0.2 from Collagen alpha-2(I) and 1790.9 + 0.2 Da from Actin, cytoplasmic 1 were also
determined and identified in MALDI-IMS studies of biopsies from lung tumor patients [30]. Through
regulation of various signaling pathways in cancer cells, Keratins, the epithelial-predominant members
of the intermediate filamentsuperfamily, are involved in a number of processes in tumor progression [31].
KRT?9 is one of the most common contaminants in proteomic mass spectrometry analyses, both in
ESI and MALDI mass spectrometry methods (see also reference [32]. These contaminations may
rarely have their source in the sample material (randomly distributed), but are more often introduced
during sample preparation (e.g., contamination from the environment like dust in solvents, buffers or
matrix) [32]. However, the difference with MALDI imaging experiments is that the m/z values can be
represented spatially in the tissue, such that contaminations would be evenly distributed over the whole
sample material. Therefore, the tissue microarrays (TMAs) are randomized and a control area outside
the tissue is measured as a control to exclude such contamination. No peptides (Isotopic pattern) and
salt adducts were detected in the control area. Only singles from alpha -Cyane-4-hydroxycinnamic
acid matrix clusters could be found with no influence on the data evaluation.

Moreover, both patient groups’ cores were included and randomly distributed on the same cover
slip. Therefore, it is unlikely to detect any significant differences. Furthermore, MALDI imaging
experiments predominantly address structural proteins, such as BECM molecules, since methodically an
enzymatic surface digestion of the tissue sections is performed. Excluding cytoskeleton proteins from
the analysis would be premature, especially since KRT9 is a cellular component of the cytoskeleton,
cytosol, extracellular region or membrane (see https://www.uniprot.org/uniprot/P35527---subcellular
location). Furthermore, a query of the kmplot.com (https://kmplot.com/analysis/) database showed a
significant decrease in overall survival (p < 0.0052) associated with high expression of KRT9 considering
only stage I EOC including HGSOC (p < 0.0028) patients (Figure S2). Therefore, our KRT9 MALDI-IMS
measurement is unlikely a result of contamination.
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The major sources of collagen expression are stromal cells with increased collagen production and
disposition in the stromal compartment has been shown to be associated with breast cancer development
and progression [33,34]. Nevertheless, it was also demonstrated that expression of collagen by ovarian
cancer cells, including Collagen alpha-2(I), could increase drug resistance by inhibiting the penetration
of the drug into the cancer tissue as well as increase resistance to apoptosis [35].

The analysis of three additional early-stage HGEC patients (two with RD; one without RD)
showed comparable measured peptide intensities to the HGSOC patients. A multivariate regression
was not feasible due to an insufficient number of observations [36]. However, reduction in covariates
(dimension reduction), such asin a PCA, showed the discriminative capacity of the proposed prognostic
marker candidates for patients with early-stage of either HGEC or HGSOC (Figure 5). Peptide markers
separated into two distinct groups based on the correlation between them.

Even though the utilized sample size of four patients for each group is not sufficient for clinical
validation, the purpose of this proof of concept study is to identify prognostic marker candidates.
Consequently, validation of applicability of the proposed prognostic marker candidates, including for
endometrioid carcinomas, necessitates subsequent high-sample size follow-up studies.

Moreover, changes in the tumor microenvironment in response to malignant transformation
have been neglected in the past and need to be considered as a suitable compartment for biomarker
discovery. So far, a major limitation of dissecting the stromal signature has been a lack of suitable
methods. IMS is able to provide spatial information of protein signatures in both compartments.
Unfortunately, the quality of the adjacent stroma in the majority of cores from the tumor tissue was not
suitable for further assessment but should be included and subject of future prognostic biomarker
research for early-stage HGSOC patients.

Eventually, a profound understanding of the biology in early-stage HGSOC might resultin a
redefinition of high-risk early-stage EOC to develop novel therapeutic approaches. However, this will
need molecular characterization supported by RNA-Seq and high-resolution proteomics data from
micro-dissected malignant and adjacent stroma compartments. Nevertheless, the identification of the
subpopulation of patients developing recurrent tumors is an unmet clinical need. Here, we show that
MALDI-IMS technology has the potential to make a meaningful impact for risk assessment and, hence,
patient outcome.

4. Materials and Methods

4.1. Clinicopathological Parameters of Patient Cohort

All samples were collected at Charité, Department for Gynecology at surgery after patients gave
their informed consent. Sample collection was permitted by the local ethics committee of the Charité
Medical University Berlin (AVD-No. 2004-000034) and conducted according to the Declaration of
Helsinki. All patients were of white caucasian background and received an accurate staging via
laparotomy, including lymph node sampling. Diagnosis of the early-stage of the high-grade serous
subtype of EOC was confirmed by an experienced gynecological pathologist. Adjuvant chemotherapy
regime was applied to all patients based on carboplatin in combination with paclitaxel. Detailed
descriptions of clinicopathological parameters of patients are shown in Table 2.

4.2. Procedure of MALDI-Imaging

Tissue microarrays (TMAs) of formalin-fixed paraffin-embedded tissue of patients diagnosed
at early-stage HGSOC were designed and prepared at the Institute of Pathology, Charité Medical
University Berlin. For MALDHimaging, a 6 um section was prepared from a paraffin block on
a microtome and transferred onto Indium-Tin-Oxide slides (Bruker Daltonik, Bremen, Germany)
through decreasing concentrations of ethanol (modified by Caprioli et al) [37] and antigen
retrieval was performed (modified by Gustafsson et al.) [38]. Trypsin and matrix sclutions
(o-Cyano-4-hydroxycinnamic acid) were deposited by an automated spraying device (HTX Sprayer).
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An amount of 550 uL trypsin solution (20ug, 20mM ammonium bicarbonate) was applied onto
the section. After tissue incubation (2 h at 50 °C; moist chamber), matrix solution (1 mL 7g/L
«-cyano-4-hydroxycinnamic acid in 50% acetonitrile and 1% trifluoroacetic acid) was applied using a
HTX Sprayer (75 °C, estimate cycle 1.80).

Table 2. Clinicopathological characteristics of patients. All patients received adjuvant chemotherapy
for numbers of cycles as indicated in the table. Follow-ups of patients were performed for at least
5 years, if no relapse occurred, or till development of recurrent disease (RD).

Patients (-RD)

Age 68 60 68 67

FGO stage 1A Ic IA i
Grade G3 G2 G3 G3
Presence of ascites <500 mL <500 mL <500 mL no

Number of cycles 6 6 4 6
Recurrence (months) NA NA NA NA

Patients (+RD)

Age 44 52 67 D7
FIGO stage 1IB TA IA 1A
Grade G3 G3 G3 G3
Presence of ascites >500 mL no No no

Number of cycles 6 9 6 6
Recurrence (months) 13 12 54 16

4.3. MALDI Imaging Analysis

Analyses were performed on 10 biologically independent cores of biopsies for each patient group.
MALDI-IMS data acquisition was executed in reflector mode, detection range of m/z 800-3200, 500 laser
shots per spot, sampling rate of 1.25 G5/s and raster width of 50 um on Rapiflex MALDI-TOF/ using
flexControl 3.0 and flexImaging 3.0 (Bruker Daltonik). External calibration was performed using
a peptide calibration standard (Bruker Daltonik) and spectra processed in flexAnalysis 3.0 (Bruker
Daltonik). In order to exclude potential contamination like sodium adducts or peptides, control areas
outside the tissue were also analyzed. After MALDI-imaging experiments, the matrix was removed
with 70% ethanol and the tissue sections were stained with hematoxylin and eosin (H&E) as histological
overview staining [37].

4.4. Data Processing

Statistical data analysis was performed using the SCiLS Lab software (Version2015b, SCiLS GmbH,
Bremen, Germany). MALDI-IMS raw data were imported into the SCiLS Lab software and converted to
the SCiLS Lab file format. Simultaneous preprocessing of all data sets was carried out to ensure better
comparability between the sample sets. Imported data were pre-processed by convolution baseline
removal (width: 20) and total ion count (TIC) normalization. Segmentation pipelines as published
previously were performed for peak-finding and alignment [19,39,40]. Peaks were selected using the
orthogonal matching pursuit (OMP) algorithm [41] and top down segmentations were performed
by bisecting k-means clustering, +0.156 Da interval width, mean interval processing and medium
smoothing strength [3941]. For convolutional neural networks evaluation, raw data from region spots
and m/z values were exported from SCiLS Lab SW as csv format. Two approaches based on different
principles were performed: first, an unsupervised approach, probabilistic latent semantic analysis
(pLSA), to discriminate both groups, and another supervised approach, receiver operating characteristic
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(ROC) analysis, to detect characteristic peptide values. To define common molecular features among
the sample sets, unsupervised multivariate classification methods for mass spectra were applied:
probabilistic latent semantic analysis (pLSA) was performed as previously described [42,43]. pLSA was
performed with five components and the following settings: (i) interval width of + 0.156 Da, and (ii)
individual spectra and deterministic initialization. Receiver operating characteristic analysis (ROC)
was used to assess the quality of all m/z values within specific ROIs to discriminate between recurrent
and non-recurrent HGSOC tumor tissue. For this method, the number of spectra in the ROIs of both
groups should be approximately the same. If that was not the case, 1500 randomly selected spectra per
ROI/group were used. To determine statistical significance, discriminating m/z values (peaks) with
an AUC < 0.35 or > 0.65 were subsequently analyzed using the Wilcoxon rank sum test. m/z values
with delta peak intensities of >0.7 and <0.3 (p < 0.001) were assumed as potential markers. Figures
were created using the SCiLS Lab software (Bruker, Bremen, Germany) and R packages “ggplot2”
and “ggbiplot”.”

4.5. Identification of Peptides by “Bottom-Up”-Nhplc Mass Spectrometry

To identify m/z values, complementary protein identification was performed on adjacent
tissue sections by a “bottom-up”-nano liquid chromatography (nLC)-MS/MS approach as published
previously [19]. Briefly, tissue digestion (20 ug trypsin, 20 mM ammonium bicarbonatefacetonitrile 9:1)
was performed via ImagePrep (Bruker Daltonik). Peptides for nUPLC-MS/MS analysis were extracted
directly from adjacent tissue sections into 40 uL of 0.1% triflourcaceticacid (TFA; 15 min incubation at
room temperature). Peptides were separated (60% acetonitrile/ in 0.1% formic acid) using an analytical
UPLC System (Thermo Dionex Ultimate 3000, Acclaim PepMap RSLC C18 column 75umx 15 cm;
flow rate 200 nL/min, 70 min) and analyzed via Impact [I (QTOF-MS, Bruker Daltonik). All raw spectra
from the M5/MS measurement were converted to mascot generic files (mgf) using the ProteinScape
software [44]. Mass spectra were analyzed using the Mascot search engine (version 2.4, MatrixScience;
UK) searching the UniPort database. The search was performed with the following set of parameters:
(i) taxonomy: human; (ii) proteolytic enzyme: trypsin; (iii) peptide tolerance: 10ppm; (iv) maximum of
accepted missed cleavages: 1; (v) peptide charge: 2+, 3+, 4+; (vi) variable modification: oxidation
(M); (vii) MS/MS tolerance: 0.8Da; and (viii) MOWSE score > 25. Identification of MALDI-IMS mi/z
values by using an LC-MS/MS reference list requires the accordance of more than one peptide (mass
differences <0.9 Da) to subsequently correctly assign the corresponding protein [45]. Peptides with
lowest mass difference to the LC-MS/MS reference list value were assumed as a match.

5. Conclusions

Epithelial ovarian cancer (EOC) has the highest mortality rate of the gynecological malignancies
worldwide, with HGSOC representing the most common and aggressive histological subtype.
Even though HGSOC patients diagnosed at early-stage have an excellent prognosis, a subgroup
of patients will relapse and need therapies that are more intensive at time of diagnosis. It is therefore of
great importance to identify these high-risk patients in order to improve their clinical outcome. In this
proof of concept study, we have applied a novel approach using MALDI-IMS technology to identify a
candidate prognostic peptide signature to support the clinical management of these patients. However,
there is still a need for a robust validation of our candidate signature based on a higher-size patient
cohort that should be addressed in the future. This includes implementing the identified and validated
prognostic peptide signature as part of prospective studies in the clinical routine.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/8/2000/s1,
Figure 51: Discrimination of molecular signatures for groups of HGSOC patients via probabilistic latent semantic
analysis (pLSA), Figure 52: Kaplan-Meier curves displaying the estimated overall survival probability of EOC
patients with regard KRT9 expression, Table S1: m/z values from IMS and the corresponding identification and
AUC values, Table 52: LC-MS reference list of ovarian cancer tissue.
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