6 References


Bjornerud, M., and H. Austrheim (2004), Inhibited eclogite formation: The key to the rapid growth of strong and buoyant Archean continental crust, Geology, 32, 765-768.


Giese, P; Scheuber, E; Schilling, F; Schmitz, M; Wigger, P. (1999), Crustal thickening process in the Central Andes and the different natures of the Moho-discontinuity, *Journal of South American Earth Sciences* 12, 201-220.


Hervé, F. (1994), The Southern Andes between 39° and 44°S latitude: the geological signature of a transpressive tectonic regime related to a magmatic arc, in *Tectonics of the*
Southern Central Andes (Reutter, K.-J.; Scheuber, E.; Wigger, P.J.; editors), Springer-Verlag, Berlin, Heidelberg, New York, 243-248.


Hildreth, W., and S. Moobath (1988), Crustal contributions to arc magmatism in the Andes of Central Chile. Contributions to Mineralogy and Petrology, 98, 455-489.


Holland, T. J. B., and R. Powell (1991), A compensated Redlich-Kwong (CORK) equation for volumes and fugacities of carbon dioxide and water in the range 1 bar to 50 kbar and 100–1,600 °C, Contrib. Mineral. Petrol., 109, 265–273


Jackson, J. (2002), Strength of the continental lithosphere: time to abandon the jelly sandwich?, *GSA Today*, 4-10.


Kay, S; Mpodozis, C; Coira, B. (1999), Neogene magmatism, tectonism and mineral deposits of the Central Andes (22° - 33°S Latitude), In Geology and ore deposits of the Central Andes, Skinner, B. Eds, Society of Economic Geology Spetial Publication 7, p. 27 - 59.


Kay, S., M. Gorring, and V. Ramos (2004), Magmatic sources, setting and causes of Eocene to Recent Patagonian plateau magmatism (36°S to 52°S latitude), Revista de la Asociación Geológica Argentina, 59, 556-568.


Lavenu, A., and J. Cembrano (1999), Compressional and tranpressional stress pattern for Pliocene and Quaternary brittle deformation in forearc and intraarc zones (Andes of Central and Southern Chile), *Journal of Structural Geology*, 21, 1669-1691.


Müntener, O., P.B. Kelemen, and T.L. Grove (2001), The role of H₂O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous


Pardo-Casas, F., and P. Molnar (1987), Relative motion of the Nazca (Farallón) and South America plates since Late Cretaceous time, *Tectonics*, 6, 233-248.


SERNAGEOMIN (2003), Mapa Geológico de Chile: versión digital, Servicio Nacional de Geología y Minería, Publicación Geológica Digital, No. 4 (CD-ROM, versión1.0, 2003), Santiago, Chile.

Schilling, F.R., G.M. Partzsch, H. Brasse, and G. Schwarz (1997), Partial melting below the magmatic arc in the Central Andes deduced from geoelectromagnetic field experiments and laboratory data, *Phys. Earth Planet. Inter.*, 103, 17–32.


Schobbenhaus, C., and A. Bellizzia (2001), Geological map of South America, scale 1:5000000, CGMW-CPRM-DNPM-UNESCO, Brasilia, Brazil.


Tassara, A., (submitted paper), Factors controlling the crustal density structure underneath active continental margins with implications for their evolution, paper submitted to *Geochemistry, Geophysics, Geosystems*.


Tassara, A., H.-J. Götze, S. Schmidt and R. Hackney, Three-dimensional density model of the Nazca plate and the Andean continental margin, paper under review by the *Journal of Geophysical Research*. 


Vietor, T., and H. Echtler, Episodic Neogene southward growth of the Andean subduction orogen between 30°S and 40°S - plate motions, mantle flow, climate, and upper-plate structure, paper submitted to *Subduction Orogeny along the Andean Margin*, O. Oncken Editor.


