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Perovskite solar cells are the most dynamic emerging photovoltaic technology
and attracts the attention of thousands of researchers worldwide. Recently, many
of them are targeting device stability issues–the key challenge for this
technology–which has resulted in the accumulation of a significant amount of
data. The best example is the “Perovskite Database Project,” which also includes
stability-relatedmetrics. From this database, we use data on 1,800 perovskite solar
cells where device stability is reported and use Random Forest to identify and
study the most important factors for cell stability. By applying the concept of
learning curves, we find that the potential for improving the models’ performance
by adding more data of the same quality is limited. However, a significant
improvement can be made by increasing data quality by reporting more
complete information on the performed experiments. Furthermore, we study
an in-house database with data on more than 1,000 solar cells, where the entire
aging curve for each cell is available as opposed to stability metrics based on a
single number. We show that the interpretation of aging experiments can strongly
depend on the chosen stability metric, unnaturally favoring some cells over others.
Therefore, choosing universal stability metrics is a critical question for future
databases targeting this promising technology.
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1 Introduction

New photovoltaic technologies are urgently needed to accelerate the adoption of
affordable renewable energy sources and combat climate change. Perovskite solar cells
(PSCs) represent a prime candidate technology, which has become the most dynamic
research area in photovoltaics. Researchers have obtained power conversion efficiency (PCE)
values of over 25% in a single junction device (Green et al., 2022) and over 32.5% in tandems
with silicon (‘Best Research-Cell Efficiency Chart’ n.d.) thanks to perovskite compositional
engineering, deposition techniques optimization, and device architecture adjustments.
Despite this highly competitive efficiency compared to silicon and the low
manufacturing costs, there are still barriers to the commercialization of halide
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perovskites. Operational stability is the most prominent and,
therefore, the focus of the data analysis in this work.

Currently, the lifetime of perovskite solar devices remains well
below the target value of 25–30 years (i.e., more than 200,000 h);
Figure 1 shows the average lifetime of perovskite solar devices
published in scientific papers over the period 2013 to February
2020 (i.e., the period considered in the Perovskite Database project,
see below), clearly showing the need to improve the operational
stability of these devices. The factors that have contributed so far to
improvements in PSCs stability from hours to months are, for
example, perovskite compositional engineering (Chi and
Banerjee, 2021; Mazumdar, Zhao, and Zhang, 2021), the
introduction of passivation (Chen et al., 2019) and blocking
(Brinkmann, Gahlmann, and Riedl, 2020) layers, optimization of
transport (Foo et al., 2017; Xinxing Yin et al., 2020; Dipta and Uddin,
2021) and contact (Nath et al., 2022) layers, and device
encapsulation (Lu et al., 2021).

With thousands of researchers worldwide dedicating their
efforts to studying PSCs, an individual researcher has no chance
of keeping track of all these results. Combining the device data
produced during the experiments in shared databases offers
significant benefits. The abundance of data allows the application
of statistical techniques, most notably machine learning (ML), to
empower data-driven research activities and for gaining new
insights that would be otherwise impossible to obtain by
analyzing data from individual studies only. Several authors have
already pointed at ML as one important tool in overcoming
challenges (Myung et al., 2022) in perovskite research, for
example, screening of suitable candidate materials for
photovoltaic applications (Chen et al., 2022), or to use data
extracted from scientific publications to characterize the
performance of PSCs (Liu et al., 2022). Thus far, few authors
have attempted to use shared data to examine the stability of
perovskite solar cells (Beyza Yılmaz and Ramazan Yıldırım,
2021). Even fewer authors used shared experimental data:
Tiihonen et al. (2018) studied a set of 261 aging tests to assess
the quality of published stability data, finding several issues in how
the authors reported the results of their studies at the time; Çağla
Odabaşı and Ramazan Yıldırım (2020) applied ML to a data

collection of 404 aging tests data to derive the effects of
perovskite composition and transport layers on the PSCs
stability, concluding that the analysis of data collected from the
literature can be beneficial to better understand the overall state of
the literature and for gaining insights about high stability devices.

Collecting the data from publications represents a tremendous
effort which explains the lack of studies in this direction. Notably,
the “Perovskite Database Project” was recently released (Jacobsson
et al., 2022) (www.perovskitedatabase.com). This publicly open
database contains manually extracted data from more than
15,000 publications with keywords “perovskite solar” from the
Web of Science until February 2020. It holds information about
more than 42,400 devices, 1,834 of which contain measured T80

(i.e., the time it takes for a device to lose 20% of its initial efficiency).
The Perovskite Database is not only a much larger dataset than any
other previously put together, but it also attempts to collect the most
detailed information: the authors collected more than
400 parameters in the database, which include information about
the cells’ design, the functional layers of the device stack, the details
of device synthesis and key metrics about efficiency, stability, and
outdoor performance.

Even though this dataset is the largest so far, the quality of
stability-related data is a concern. Some aspects of particular
relevance are the number of missing values due to incomplete
reporting in the source publications, the low statistical relevance
of data entries which report only the best-performing devices and an
incomplete set of experimental results, and the need to stick to
standardized guidelines for the aging conditions to improve
comparability. This work is a first attempt at applying ML to the
stability data in the Perovskite Database to identify relevant factors
affecting device stability. However, the performance of the models
turns out to be unsatisfactory. To understand if this low
performance is due to the small database size or data quality
issues introduced above, we perform computational experiments
using the concept of learning curves. This tool allows us to
extrapolate the performance of the ML models to more extensive
databases that we expect will be available in the future. We want to
show how data quality, specifically regarding the number of missing
values, impacts the performance of ML models used to study
perovskite stability. We further use the concept of learning
curves to estimate how much the performance of an ML model
would increase by collecting more data, as a function of data quality.

Importantly, even with a much larger dataset, there is another
potentially critical issue with tabular data where a single number
represents device stability. Aging experiments typically record the
evolution of power conversion efficiency (PCE) or other device
parameters under different stress conditions. Unlike PCE, a highly
standardized figure of merit (FOM) of device performance, there is
no generally accepted figure of device stability that would reduce the
time series from aging experiments to a single number in a tabular
database. T80 is one of the most common stability metrics, working
sufficiently well for solar technologies that show uniform
degradation curves. T80 is reported in the Perovskite Database
and was used in this work as the target variable for ML
modeling. To study the adequacy of this metric, we use an in-
house dataset that includes complete time series from more than
1,000 aging experiments, which were recorded in a custom-built
setup (Köbler et al., 2022) in the years 2019–2022. We show that

FIGURE 1
Lifetime T80 in hours of every perovskite solar device published
between 2013 and February 2020 (for which T80 was reported in the
Perovskite Database). The vast majority of devices reported, 1,790 out
of 1,834, have a short lifetime of at most 2,000 h.
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there are diverse aging behaviors resulting in a variety of time-series
shapes. We computed different FOMs used in the PSCs literature
(Khenkin et al., 2020; Almora et al., 2021) to all these curves,
showing that they poorly correlate with each other, given the
variety of degradation behaviors. This lack of correlation shows
the urgent need to define a “fair” FOM for device stability. This fair
FOM would then empower data-driven research activities on the
stability of PSCs, providing a meaningful, universal, accurate, and
precise stability measure. The definition of this fair FOM of stability
and the production of more complete data regarding aging
experiments can significantly accelerate the development of
commercially viable perovskite solar devices through ML methods.

2 Data and methods

2.1 Data

We used two large datasets in the analyses presented in this
work. The first one is the Perovskite Database, based on the data
extracted from the literature. It contains information on a wide
variety of device architectures and aging conditions. The other
dataset originates from in-house aging experiments and contains
fewer details but provides full aging curves. The latter is only used to
discuss the issue of selecting a FOM to characterize device stability.

2.1.1 The Perovskite Database
The Perovskite Database Project contains data manually

collected from more than 15,000 papers about perovskite solar
cells. The manual scraping of the publications resulted in
collecting information about more than 42,400 perovskite solar
devices.

The data categories, or features, contained in the Perovskite
Database include reference data about the source publication,
properties of the cell (e.g., area, architecture), data for every
functional layer in the device stack, about the synthesis of the
cell, and key metrics (e.g., stability, JV metrics, outdoor
performance). The database’s total number of features (i.e., the
number of columns) is 409.

This dataset represents the most extensive collection of
published experimental data about perovskite solar devices.
Out of more than 42,400 devices reported in the database,
only 1,834 include measured T80 values. In principle, we could
use the PCE at the end of the stability experiments and the length
of such experiments to extrapolate the value of T80 for instances
in which it has not been reported. We refrain from doing this
because, as we show in this work using the in-house dataset, the
wide variety of aging behaviors would make such extrapolation
highly uncertain.

Note that, in this study, we selected a subset of 67 out of the
409 features in the database based on expert knowledge about the
factors most likely to affect the stability of the devices.

2.1.2 In-house dataset
The in-house dataset (collected in the Department “Active

Materials and Interfaces for Stable Perovskite Solar Cells” at
Helmholtz-Zentrum Berlin) contains time-series data of aging
experiments performed on over 1,000 perovskite solar cells of

various types in the years 2019–2022. This dataset is the largest
of this type used in a publication. Cells were aged in a custom-built
high-throughput aging system (Köbler et al., 2022) under
continuous illumination of a metal-halide lamp. Special
electronics are employed to MPP-track every solar cell
individually. Experiments are performed under nitrogen
atmosphere at room temperature or at elevated temperatures
according to ISOS-L1I or ISOS-L2I (Khenkin et al., 2020). The
time exposure of experiments ranges between 150 and 2,060 h. The
exact experimental conditions are less relevant to our goals since we
want to compare how different FOMs for stability correlate with
each other for the same curve when computed automatically.
Figure 2 shows an example of aging curves.

2.2 Methods

In the following subsections, we briefly describe how we
prepared the data for analysis and the methods and concepts
used to perform the analysis. More detailed information could be
found in the Supplementary Material. The overall structure of the
experiments is depicted schematically in Figure 3.

Since the data in the Perovskite Database Project was collected
by manually extracting information from scientific publications and
manually writing the information to the database, some errors can
be present. For example, there might be spelling errors in the names
of chemical compounds and manufacturing techniques, or
numerical values might be incorrect. We have not attempted to
identify potential input errors in the numerical values of the features
(i.e., we did not perform outlier detection or additional checks for
numerical features), but we attempted to correct spelling and text
formatting errors.

We have prepared the data in the Perovskite Database encoding
every column of the dataset in numerical format, splitting columns
that contained multiple simple features (e.g., device stack containing
several layers), converting categorical values into dummy binary

FIGURE 2
Example of time series data from the in-house aging experiments
dataset. Each curve represents the aging of a different PSC (PCE
evolution over time), showing the variety of behaviors in the aging of
PSCs.
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variables, and flagging missing values (NaNs) into additional
columns.

2.2.1 Feature importance through machine
learning modeling

Machine learning can be used with different goals in mind based
on what knowledge we try to extract from the data: patterns,

explanations, and predictors. Studies like (Odabasi and Yildirim,
2020) for PSC and (David et al., 2020) for organic PV try to find
explanations, that is, explain how a given variable, like lifetime, is
affected by properties of the devices. In the ML literature, the
properties are generally referred to as features. Feature
importance analysis refers to identifying a group of features with
a significant impact on the target variable, in our case, T80.

There are different ways to study feature importance. In this
work, we use the embedded method: we fit an ML model to the
dataset and use measures of feature importance embedded in the

FIGURE 3
Schematic representation of the experiments performed.

FIGURE 4
Schematic of the general behavior of learning curves for a given
ML model.

FIGURE 5
Three different definitions of T80 for an aging time series. The
reported T80 varies depending on the chosen definition. Adapted from
(Khenkin et al., 2020).
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model to study which factors affect stability the most. We explored
several models (see Supplementary Material and Supplementary
Figure S3) and selected two of them: Elastic Net (eNet), which is a
linear model, and Random Forest (RF), which is a non-linear model.
These represent the two broadest classes of ML models we can
consider: they assume a linear or a non-linear relationship between
the input features and the target variable, respectively.

Feature importance in eNet can be derived from the coefficients
of the fitted model: the larger the magnitude of the coefficient of a
feature, the higher the importance of that feature. For RF, a feature
importance measure can be obtained during the training process by
looking at the decrease in impurity in the trees that form the forest.
Details about this can be found in (James et al., 2013).

When performing a feature importance analysis, it is necessary to
consider how well the model can capture the patterns in the data, i.e., the
goodness of fit. This is done by analyzing the model’s coefficient of
determination, also called R2-score. The closer this coefficient is to 1, the
better the goodness of fit of the model (the Supplementary Material
contains themathematical definition of the coefficient of determination).

Repeating the computation of the R2 score and feature
importance value for multiple possible realizations of train and
test set returns probability distributions instead of single values. We
perform 1,000 draws of the train and test sets, keeping 75% of the

data in the train set. We have considered both the whole dataset and
two relevant subsets of the data: aging in the dark most of the time
results in much longer lifetimes compared to photo-stability
experiments; we, therefore, split the dataset into “Dark testing”
and “Light testing” (refer to aging tests in the dark and under
illumination). We also removed features related to the performance
of the PSCs, like the initial PCE. While there is a statistical
correlation between device efficiency and stability, it might
reflect, for example, that simultaneous progress was made in
these two critical aspects of the technology. In this work, we
focused on the analysis of the impact of the device structure and
parameters of ageing experiments.

2.2.2 Learning curves
Fundamental quantities in ML analysis are train and test errors.

The train error measures the discrepancy between the values
estimated by the ML model and the actual values of the target
variable for the data in the train set, while the test error measures the
same type of discrepancy but for the data in the test dataset. Since the
train set is used to optimize the parameters of the models while the
test set contains unseen data, the test error gives a reasonable
estimation of the actual performance of the ML model.
Additional details can be found in the Supplementary Material.

Following the definition in (Cortes et al., 1993), by learning
curves, we mean the expected values of the test and training error as
a function of the size of the training set; the expected value is taken
over all the possible ways of choosing a training set of a given size.

Figure 4 schematically shows typical learning curves for a given
model on a given dataset. If the model is sufficiently flexible (i.e., can
learn a large number of functions) and the train set is relatively small,
the training error will be very low, even zero: the model can perfectly fit
the train set. In this case, the test error will be very high since it is highly
likely that the model perfectly fitting the train set has learned not to
model the data-generating process but the random noise present in the
train set. As the size of the train set increases, the training error grows:
the model learns more about the data-generating process from the
available data, while the random noise is disregarded; at the same time,
the test error decreases since the model becomes better at modeling the
data and not the noise. In the limit of infinite train set size, training and
test error converge to a common valueE∞, called limiting performance.

From theoretical arguments (Seung, Sompolinsky, and Tishby,
1992), the learning curves can be modeled as power-law decays to
the asymptotic error E∞. We can extract the parameters of these
power laws and use them to extrapolate the values of train and test
errors for larger train set sizes.

We use learning curves to estimate the performance of our ML
model in the hypothetical case in which a larger train set size
becomes available. The learning curves (and the limiting
performance) depend on the quality of the data. To simulate
different data quality levels, we perform the learning curves
experiments in three different settings:

• using the complete dataset in its original form;
• removing noisy features from the dataset;
• removing noisy data points from the dataset.

We start removing features or data points with the most missing
values, therefore containing more noise, and iteratively less noisy

FIGURE 6
Train and test score for Elastic Net on the three dataset splits.
Both quantities for the three splits are very low.

FIGURE 7
Train and test score for Random Forest. The train score is good,
while the test score shows high variability, being acceptable most of
the time but falling to negative values sometimes.
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ones, one at a time for the features, or allowing only a certain amount
of missing values per data point in the third setting.

We perform the learning curves experiments for the complete
dataset and data quality levels. We compute the learning curves for
every dataset at ten different, increasing values of the training set
size. To obtain the interpolation points, we average the results of a
20-fold cross-validation (sampling each train set 20 times) for each
train set size. We then extract the parameters of the underlying
power law function and extrapolate up to a train set size of
10,000 data points. The last step compares the estimated error

values on such a hypothetical dataset with the extrapolated value
obtained using the complete dataset.

In all learning curves experiments, we use Gradient Boosting as
model, which performs similarly to Random Forest in modeling the
dataset but has resulted in more stability during the training process;
that is, the power law approximation is more accurate.

2.2.3 Figures of merit for stability
Figures of merit for perovskite stability are numerical values used to

quantify the stability of the perovskite solar cells. Several different FOMs
exist in the field. The most commonly used is T80, which represents the
time it takes for the cell to lose 20% of its initial PCE. T80 has been
successfully used with silicon-based photovoltaic technology since the
aging behavior of such devices is relatively simple (in many cases, close
to linear), and the aging behavior is well captured by T80. This is not
necessarily the case for emerging PV technologies. For example, for
organic photovoltaics typical shape has a fast initial decay (“burn-in”)
followed by a linear decrease in efficiency, and an adapted metric called
“stabilized T80”is more common (Roesch et al., 2015).

In contrast, PSCs show a variety of aging behaviors. This variety
is reflected in the lack of a universally accepted FOM for their
stability. For example, T80 alone has at least three different
definitions based on the type of aging behavior and authors’
preferences (Khenkin et al., 2020), as illustrated in Figure 5.

Since all the FOMs are used to quantify the same concept, e.g.,
stability, ideally, we want all of them to, at least qualitatively, agree: if
a given device is more stable than another according to one FOM, it

FIGURE 8
Feature importance for the Random Forest model. The different colors identify the possible dataset splits. We show the 20 most important features
when modeling the complete dataset.

FIGURE 9
Learning curves as derived for the complete dataset.
Extrapolation to size 10,000 of the train set.

Frontiers in Energy Research frontiersin.org06

Graniero et al. 10.3389/fenrg.2023.1118654

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1118654


should also be more stable according to other FOMs. In order to
confirm whether different FOMs for perovskite stability agree, we
have used our in-house dataset of time-series data produced during
aging experiments. We have defined different FOMs:

• T80: The time it takes for the PCE to drop 20% from the value
at the beginning of the experiment.

• T’
80: The time it takes for the PCE to drop 20% from the back-

extrapolated value at the beginning of the experiment; back-
extrapolation performed with a linear function, starting after
the burn-in point.

• TS80: The time it takes for the PCE to drop 20% from the value
at the burn-in point

• % PCE after X hours: Fraction of the initial PCE measured
after X hours.

• Degradation rate: Slope of the linear interpolation of the data
after the burn-in.

We then applied these FOMs to the in-house time-series data to
get a list of stability measures for every examined cell. Finally, we
have examined the pairs of FOMs and computed the Pearson
correlation coefficient between them to check how well they
agree in quantifying the stability of the cells.

3 Results and discussion

3.1 Feature importance

As previously described, each experiment randomly samples
75% of the data points in the given dataset to train the model. The
sampling is repeated 1,000 times, and for each run, we obtain the
feature importance values alongside train and test scores.

Figure 6 shows the train and test scores of the eNet model, while
Figure 7 shows the performance of the RF model. As stated above,
we have considered the whole dataset and two relevant subsets of the
data: “Dark testing” and “Light testing” considering, respectively,
aging tests in the dark and under illumination. The scores in Figures
6, 7 are represented by the R2-scores. A score of 1 indicates perfect
agreement between estimated and actual values; a value of
0 corresponds to the performance of a random guessing model,
and negative values reflect even worse performance than this.

The performances of the two models are very different: looking
at train and test scores for the eNet, we see that the model cannot
describe this dataset. A score close to zero indicates that we cannot
do better than random guessing, which indicates the model’s
complete inability to capture patterns in the data (we non-
etheless show the results in the Supplementary Figures S7–S9).
On the other hand, RF performs better than eNet and can better
describe the data. The test score is much lower than the train score,
indicating poor generalization capabilities. Still, the performance is
acceptable for such a complicated task, at least with the available
data and all the data quality issues we discussed. The significant
difference in performance between eNet and RF lets us conclude that
a non-linear model, such as RF and Gradient Boosting, can
satisfactorily model the dataset. A linear model, even an
advanced one like eNet, cannot capture the patterns in the data
that relate the device properties to its stability.

Figure 8 shows the 20most important features that the RFmodel
identified for the complete dataset while also showing the
importance of such features for the other two dataset splits. RF
model captured many features known to influence the thermal,
moisture, or photo-stability of perovskite solar cells. Themagnitudes
of stresses (temperature, relative humidity) applied are predictably
among the top influencing factors. And so is the perovskite
composition, particularly the presence of MA or FA organic

FIGURE 10
(A) Relative change in the extrapolated test RMSE when removing noisy features (the abscissa indicates the number of raw features removed from
the 67 initial features; each raw featuremight correspond tomultiple encoded features). The baseline is taken as the extrapolated RMSE computed on the
complete dataset. The grey bars indicate how many encoded features are left in the dataset after removing the noisy ones. (B) Percent change in the
extrapolated test RMSE when removing noisy data points. The baseline is taken as the extrapolated RMSE computed on the complete dataset. The
grey bars indicate how many data points are left in the dataset after removing the noisy ones.
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species as a monovalent cation or iodine as anion will generally
result in less resilient perovskite materials. Multiple transport
materials investigated as options for electron or hole transport
layers significantly influence the device stability, and RF
predictions agree on this point too. See an extended list of
features and their impacts on stability in Supplementary Figures
S4–S6.

Some predictions are less straightforward to verify, such as the
significance of solvents, quenching, and annealing procedures.
Though they influence perovskite crystallization and, therefore,
device stability, it is hard to tell at the moment whether their
role is as defining for the final device stability as predicted by the
RF results. While it is interesting to investigate these factors’
importance on the PSC stability experimentally, we believe we
need to improve our data-driven predictions to provide confident
guidance for the experimental research.

Splitting the dataset into light and dark testing conditions
while removing performance-related features shows that
different features are selected as the most important. This is in
accordance with different degradation mechanisms present with
and without illumination. Given the low performance of the
models, the numbers come with high uncertainty. However, we
believe it is a good starting point for demonstrating the potential

of ML methods to dramatically accelerate the learning process
with a reduced number of (extremely time-consuming!) aging
experiments.

3.2 Data quality and dataset size: Learning
curves experiments

As previously mentioned, we ran the learning curves
experiments in three different settings. In the first setting, we
use the database in its original form to check how good the power
law approximation for the learning process is. As shown in
Figure 9, the approximation seems appropriate, hence we
extrapolate the learning curves to a dataset size of 10,000 data
points to simulate the performance we could obtain when more
data is added to the database. The second and third settings
simulate an increase in data quality in two different ways:
dropping noisy features and dropping noisy data points. By
noisy, we mean features and data points with the highest
number of missing values. If we consider the tabular
representation of data that is usually adopted when applying
machine learning to this type of data, in the first case, we are
dropping columns, while in the second, we are dropping rows.

FIGURE 11
Scatter plot of T80 against four other stability figures of merit. Above every plot, the corresponding Pearson correlation coefficient is shown.
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3.2.1 Whole dataset
Figure 9 shows the interpolation points for computing the

learning curves and the extrapolation to a larger train set size
when modeling the complete dataset. The limiting performance
represents the average between train and test errors at each train set
size. This experiment shows that the performance we can obtain
from a much larger dataset than the one used in this study
(10,000 points compared to the current 1,800) is not much better
in terms of the test error. The performance looks already saturated
and adding more data with the same quality and statistical
properties is not expected to improve the model’s performance.

3.2.2 Removing noisy features
In this second experiment, we simulate higher-quality datasets

by iteratively removing noisy features from the training set
according to the number of missing values they contain. We
remove the feature with the most missing values and then the
less noisy ones, one at a time. We define the baseline
performance of the ML model as the value of the test error
extrapolated to 10,000 when using the complete train set, with
no features removed. This baseline performance will also be used in
the following experiment, where we remove noisy data points.
Figure 10A shows the percentage change in extrapolated root
mean squared error (RMSE) for each dataset compared to the
baseline performance. It is clear from the figure that the
extrapolated performance does not significantly change when
removing noisy features. This might indicate that the benefit of
having fewer missing values is canceled out by having less
information about the devices, compared to when the parameters
are reported.

3.2.3 Removing noisy data points
The third experiment simulates higher-quality datasets by

iteratively removing noisy data points, i.e., data points with a
higher number of missing values (or devices with the least
reported information). We remove the noisiest data points
and then remove points with a lower noise level. Figure 10B
shows the percentage change in extrapolated RMSE for
each dataset compared to the baseline performance. The bars
in the figure represent the number of data points left after
removing the noisy ones, while the horizontal axis shows the
maximum number of missing data values allowed for each
dataset.

In contrast with the previous experiment, we observed
pronounced improvement in the test score with higher quality
data. However, we have to treat these results carefully. Removing
data points lowers the statistical significance of the results and might
also make the learning task easier, improving performance.
Nevertheless, the trend is evident even for a reasonably sized
dataset, around 1,000 data points, that are still larger than all
similar datasets used in the literature.

Better conclusions can be drawn by comparing what happens
when we remove features or data points: the first scenario
corresponds to considering fewer properties of a device for an
ML task, and the second corresponds to having only entries with
a given quality in terms of the number of missing values. The
difference in the evolution of the expected performance suggests
how the features are relevant, and we need to collect them if we want
to significantly improve the performance of machine learning
models used for applications similar to the one explored in this
study.

FIGURE 12
Scatter plot and correlation of the PCE normalized with the PCE at time 0, after 100 h, and the PCE at 250, 500, and 1,000 h.
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3.3 Figures of merit

Machine learning techniques are optimized to predict a target
variable; in our case, the lifetime is defined as T80. In this last
section, we want to discuss how representative this metric is for
describing perovskite solar cell stability. In the context of projects
involving “Big Data,” the large number of aging curves available
demands the programmatic extraction of stability metrics, which
requires exact definitions, contrary to manually extracting FOMs
from the aging curves. We have programmatically extracted different
stability FOMs for PSCs, defined above, and compared them pairwise to
assess their agreement. For this, we used the in-house data set with
complete time series for aging experiments available. Figure 11 shows
how T80 correlates to four other FOMs; the actual value of the Pearson
correlation coefficient is shown on the upper edge of every sub-figure.

Figure 12 focuses only on examining the normalized PCE after a
given time has passed during the experiment. We have compared the
PCE value after 100 h of aging against those after 250, 500, and 1,000 h
following the suggestion that it might be possible to reasonably
extrapolate shorter aging experiments (Almora et al., 2021).

From Figures 11, 12, it is clear how even FOMs with very similar
definitions can result in very different values for PSCs aging curves.
More importantly, they do not always agree regardingwhich devices are
more stable. This is due to the wide variety of PSCs’ aging behaviors,
whichmakes identifying a universal FOM for stability a non-trivial task.
An agreement on the FOM to use that best describes what we mean by
stability of PSCs will surely help in improving the performance of ML
models. The low correlation between FOMs shows that the single
number fed toML algorithmsmight not represent the task we are trying
to solve. This increases the difficulty of the task, which is already high
due to other quality issues and the relatively small size of the available
datasets compared to the number of parameters to consider.

4 Conclusion

Machine learning methods have a great potential to accelerate the
development of more stable perovskite devices, potentially avoiding the
extremely time-consuming aging experiments. Using the perovskite
database project that summarizes available literature, we have
demonstrated the possibility of applying ML for PSC stability data,
although only non-linear methods (such as random forest) show
promising results. Even in this case, however, data quality remains a
significant challenge. Learning curves experiments indicate that just
increasing the amount of data (i.e., collecting more aging experiments)
has a limited positive effect on boosting the confidence of ML forecast.
Instead, we show that it is critical to improve the data quality by
reporting as complete information on the device manufacturing and
aging conditions as possible. More accurate data leads to higher
statistical relevance of the results, better ability of the ML algorithms
to capture patterns in the data, and increased prediction performance.

Another, perhaps more significant, challenge is defining the FOMs
for stability used as target variables for the ML analysis. With in-house
data, we show that the variety of behaviors observed in the aging curves of
perovskite devices leads to the dependence of the results on the choice of
the metric. A single number (e.g., T80) cannot capture the complexity of
such curves and, therefore, is unlikely to be an optimal choice. Sharing the
complete aging curves would be vital to solving this problem. These

shared data would facilitate the discussion on universal FOMs that
describe stability for perovskite solar devices in a meaningful and
precise way.

We encourage perovskite researchers to report more complete
data regarding the experiments and full aging curves since we believe
this can significantly accelerate the development of commercially
viable perovskite solar devices through machine learning.
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